Sample records for polyether urethane polypropylene

  1. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear.

    PubMed

    Bakker, D; van Blitterswijk, C A; Hesseling, S C; Koerten, H K; Kuijpers, W; Grote, J J

    1990-04-01

    The biocompatibility of porous implants made of Estane 5714 F1 polyether urethane, polypropylene oxide, and a poly(ethylene oxide hydantoin) and poly(tetramethylene terephthalate) segmented polyether polyester copolymer (HPOE/PBT copolymer), which were selected as candidates for an alloplastic tympanic membrane, was assessed after implantation in rat middle ears for periods of up to 1 year. Implantation of the materials led to tissue reactions initially associated with the wound-healing process, whereas after 1 month not only the presence of macrophages and foreign-body giant cells surrounding the implant materials but also implant degradation were characteristic for a foreign-body reaction. Macrophages and foreign-body giant cells dominated the picture of the tissue surrounding polypropylene oxide. The altered morphology of these cells, the persistent infiltration of the implantation sites by exudate cells, and the premature death of five rats in the 1-year group suggest that polypropylene oxide degradation was accompanied by the release of toxic substances. Estane and copolymer degradation did not induce tissue responses reflecting implant toxicity, and tympanic membranes given these alloplasts showed a normal healing pattern. Inclusions in the cytoplasm of macrophages associated with degradation and phagocytosis of all of the polymers under study were found to contain iron, silicon, titanium, and aluminum. Growth of fibrous tissue and bone, the latter into Estane and HPOE/PBT copolymer implants, indicated appropriate implant fixation by tissue, although macrophages and foreign-body giant cells were present as well. Especially the fixation of copolymer by ingrowth of bone seems promising in terms of the amount of bone in the pores and the electron-dense bone/copolymer interface. The latter is indicative for bonding osteogenesis. The HPOE/PBT copolymer is a better candidate for alloplastic tympanic membrane than Estane, and the use of polypropylene oxide cannot be recommended.

  2. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications.

    PubMed

    Thomas, V; Kumari, T V; Jayabalan, M

    2001-01-01

    The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.

  3. Flame resistant elastic elastomeric fibers

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Massucco, A. A.

    1972-01-01

    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.

  4. Spectroscopic, semiempirical studies and antibacterial activity of new urethane derivatives of natural polyether antibiotic - Monensin A

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Stefańska, Joanna; Piśmienny, Mieszko; Brzezinski, Bogumil

    2013-02-01

    A series of new Monensin A dimers linked by diurethane moiety were synthesised and their molecular structures were studied using ESI-MS, FT-IR, 1H and 13C NMR and PM5 methods. The results showed that the compounds form a pseudo-cyclic structure stabilized by three intramolecular hydrogen bonds and the sodium cation was coordinated by five oxygen atoms of polyether skeleton of Monensin moiety. The NMR and FT-IR data of complexes of Monensin urethane sodium salts demonstrated that within the pseudo-cyclic structure the carbonyl oxygen atom of the urethane group did not coordinate the sodium cation. Monensin urethanes were tested in vitro for the activity against Gram-positive and Gram-negative bacteria and fungi as well as against a series of clinical isolates of Staphylococcus: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA). The most active compound against MRSA and MSSA was 1,4-phenylene diurethane of Monensin with MIC 10.4-41.4 μmol/L).

  5. Isopropyl Myristate-Modified Polyether-Urethane Coatings as Protective Barriers for Implantable Medical Devices

    PubMed Central

    Roohpour, Nima; Wasikiewicz, Jaroslaw M.; Moshaverinia, Alireza; Paul, Deepen; Rehman, Ihtesham U.; Vadgama, Pankaj

    2009-01-01

    Polyurethane films have potential applications in medicine, especially for packaging implantable medical devices. Although polyether-urethanes have superior mechanical properties and are biocompatible, achieving water resistance is still a challenge. Polyether based polyurethanes with two different molecular weights (PTMO1000, PTMO2000) were prepared from 4,4’-diphenylmethane diisocyanate and poly(tetra-methylene oxide). Polymer films were introduced using different concentrations (0.5-10 wt %) of isopropyl myristate lipid (IPM) as a non-toxic modifying agent. The physical and mechanical properties of these polymers were characterised using physical and spectroscopy techniques (FTIR, Raman, DSC, DMA, tensile testing). Water contact angle and water uptake of the membranes as a function of IPM concentration was also determined accordingly. The FTIR and Raman data indicate that IPM is dispersed in polyurethane at ≤ 2wt% and thermal analysis confirmed this miscibility to be dependent on soft segment length. Modified polymers showed increased tensile strength and failure strain as well as reduced water uptake by up to 24% at 1-2 wt% IPM.

  6. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    NASA Astrophysics Data System (ADS)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  7. Alternative Fuels Compatibility with Army Equipment Testing - Alternative Fuels Material Compatibility Analysis

    DTIC Science & Technology

    2012-02-21

    Testing and Materials °C Celsius DiEGME Diethylene Glycol Monomethyl Ether EPDM Ethylene Propylene Diene Monomer FARE Forward Area Refueling...urethane class AU, polyether urethane class EU, EPDM , Viton®, fluorosilicone class FQ, polytetrafluoroethylene (PTFE), polyolefin and polyester...sleeve Material not provided AAFARS 4720-00-540-1368 Hose, nonmetallic Material not provided AAFARS 4720-01-218-6958 Hose, preformed Rubber

  8. The Synthesis of Carborane-Oxetane Monomers and their Polymerization

    DTIC Science & Technology

    1988-07-11

    polyether glycol was liter demonstrated.’ During this time, " modified cationic polymerization technique was developef’, which allowed the synthesis of...Migration of these chemicals in the propellant grain is a continuous and serious problem. We proposed that a urethane curable polyether glycol with a...Br CH3 g 3 Cl CH3 This scheme has the advantage that the leaving group is not on the oxetane. Oxetane is a neopentyl type system which is typically

  9. Flexible, Water-Resistant Urethane Coatings for Ferrous Surfaces on U.S. Army Corps of Engineers’ Dams.

    DTIC Science & Technology

    1982-07-01

    of Opaque Specimens by, Broad-Band Filter Reflectometry , ASTM E 97 (1977). could be produced on a specialty basis by interested 3 TEST SPECIMEN...Aeronautics and Space Adminis- tration ( NASA ) study deals with the long-term hy- drolytic stability of urethane elastomers used with CONCLUSIONS AND...necessary for high hydrolytic stability-are not better than the polyether- solids coatings. The NASA study may be correct in based X series. The highest

  10. VIBRATION TESTING OF RESILIENT PACKAGE CUSHIONING MATERIALS

    DTIC Science & Technology

    government and industry. Testing equipment which meets tentative ASTM requirements was developed. Preliminary tests were conducted on a resilient expanded ... polystyrene foam (in 3 densities) and a polyether urethane foam (in one density). When vibrated under static loads known to provide optimum shock

  11. Controlled synthesis of multi-arm star polyether-polycarbonate polyols based on propylene oxide and CO2.

    PubMed

    Hilf, Jeannette; Schulze, Patricia; Seiwert, Jan; Frey, Holger

    2014-01-01

    Multi-arm star copolymers based on a hyperbranched poly(propylene oxide) polyether-polyol (hbPPO) as a core and poly(propylene carbonate) (PPC) arms are synthesized in two steps from propylene oxide (PO), a small amount of glycidol and CO2 . The PPC arms are prepared via carbon dioxide (CO2 )/PO copolymerization, using hbPPO as a multifunctional macroinitiator and the (R,R)-(salcy)CoOBzF5 catalyst. Star copolymers with 14 and 28 PPC arms, respectively, and controlled molecular weights in the range of 2700-8800 g mol(-1) are prepared (Mw /Mn = 1.23-1.61). Thermal analysis reveals lowered glass transition temperatures in the range of -8 to 10 °C for the PPC star polymers compared with linear PPC, which is due to the influence of the flexible polyether core. Successful conversion of the terminal hydroxyl groups with phenylisocyanate demonstrates the potential of the polycarbonate polyols for polyurethane synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polyurethane intravaginal ring for controlled delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1.

    PubMed

    Gupta, Kavita M; Pearce, Serena M; Poursaid, Azadeh E; Aliyar, Hyder A; Tresco, Patrick A; Mitchnik, Mark A; Kiser, Patrick F

    2008-10-01

    Women-controlled methods for prevention of male-to-female sexual transmission of HIV-1 are urgently needed. Providing inhibitory concentrations of HIV-1 reverse transcriptase inhibitors to impede the replication of the virus in the female genital tissue offers a mechanism for prophylaxis of HIV-1. To this end, an intravaginal ring device that can provide long duration delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1, was developed utilizing a medical-grade polyether urethane. Monolithic intravaginal rings were fabricated and sustained release with cumulative flux linear with time was demonstrated under sink conditions for a period of 30 days. The release rate was directly proportional to the amount of drug loaded. Another release study conducted for a week utilizing liposome dispersions as sink conditions, to mimic the partitioning of dapivirine into vaginal tissue, also demonstrated release rates constant with time. These results qualify polyether urethanes for development of intravaginal rings for sustained delivery of microbicidal agents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Electrospun polyurethane as an alternative ventricular catheter and in vitro model of shunt obstruction

    PubMed Central

    Suresh, Supraja

    2015-01-01

    Intracranial pressure and volume vary considerably between hydrocephalic patients, and with age, health and haemodynamic status; if left untreated, intracranial pressure rises and the ventricular system expands to accommodate the excess cerebrospinal fluid, with significant morbidity and mortality. Cerebrospinal fluid shunts in use today have a high incidence of failure with shunt obstruction being the most serious. Conventional proximal shunt catheters are made from poly(dimethyl)siloxane, the walls of which are perforated with holes for the cerebrospinal fluid to pass through. The limited range of catheters, in terms of material selection and flow distribution, is responsible in large part for their poor performance. In this study, we present an alternative design of proximal catheter made of electrospun polyether urethane, and evaluate its performance in the presence of glial cells, which are responsible for shunt blockage. The viability and growth of cells on catheter materials such as poly(dimethyl)siloxane and polyurethane in the form of cast films, microfibrous mats and porous sponges were studied in the presence of proteins present in cerebrospinal fluid after 48 h and 96 h in culture. The numbers of viable cells on each substrate were comparable to untreated poly(dimethyl)siloxane, both in the presence and absence of serum proteins found in cerebrospinal fluid. A cell culture model of shunt obstruction was developed in which cells on electrospun polyether urethane catheters were subjected to flow during culture in vitro, and the degree of obstruction quantified in terms of hydraulic permeability after static and perfusion culture. The results indicate that a catheter made of electrospun polyether urethane would be able to maintain cerebrospinal fluid flow even with the presence of cells for the time period chosen for this study. These findings have implications for the design and deployment of microporous shunt catheter systems for the treatment of hydrocephalus. PMID:25245779

  14. Low loading of carbon nanotubes to enhance acoustical properties of poly(ether)urethane foams

    NASA Astrophysics Data System (ADS)

    Basirjafari, Sedigheh; Malekfar, Rasoul; Esmaielzadeh Khadem, Siamak

    2012-11-01

    The aim of this paper is to fabricate a sound absorber flexible semi-open cell polymeric foam based on polyether urethane (PEU) with carboxylic functionalized multi-walled carbon nanotubes (COOH-MWCNTs) as an energy decaying filler at low loadings up to 0.20 wt. %. This paper provides the relationship between the mentioned foam microstructure via field emission scanning electron microscopy and different acoustical and non-acoustical properties of PEU/COOH-MWCNT composites. Addition of just 0.05 wt. % COOH-MWCNTs enhanced the sound absorption coefficient of the mentioned nanocomposite foam over the entire frequency range. Raman spectra revealed the better dispersion of COOH-MWCNTs in the PEU matrix leading to more stress transfer between them to cause a significant dissipation of energy.

  15. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  16. Foam, Foam-resin composite and method of making a foam-resin composite

    NASA Technical Reports Server (NTRS)

    MacArthur, Doug E. (Inventor); Cranston, John A. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  17. The effect of virtual cross linking on the oxidative stability and lipid uptake of aliphatic poly(urethane urea).

    PubMed

    Thomas, Vinoy; Jayabalan, Muthu

    2002-01-01

    In vitro oxidative degradation and lipid sorption of aliphatic, low elastic modulus and virtually cross-linked poly(urethane urea)s based on 4,4' methylene bis(cyclohexyl isocyanate), hydroxy terminated poly butadiene and hexamethylene diamine were evaluated. The aged samples revealed no weight loss in the oxidation medium. The IR spectral analyses revealed the stability of unsaturated double bonds at 964 cm(-1) (characteristic for polybutadiene soft segment) with no change in peak intensity. The poly(tetramethylene glycol) (PTMG)-added poly(ether urethane urea) polymer also revealed no disappearance of IR peaks for ether and unsaturated double bonds in samples aged in vitro oxidation medium. All the polymers have shown increase in weight due to lipid up take in lipid-rich medium (palm oil) but it was rather low in Dulbecco's modified eagle medium (DMEM) cholesterol. The slight change in mechanical properties of the present polymers in oxidation and DMEM is due to the rearrangement of molecular structure with virtual cross links of hydrogen bonding (physical cross linking) without degradation and plasticization effect of lipid. The influence of these media on the rearrangement of virtual cross links has been observed. Higher the virtual cross-link density, lesser is the loss of tensile properties of poly(urethane urea)s in the oxidation medium and vice versa. On the other hand, higher the virtual cross-link density of poly(urethane urea), higher is the loss of ultimate tensile strength and stress at 100% strain and vice versa in DMEM medium.

  18. Effect of end segment on physicochemical properties and platelet compatibility of poly(propylene glycol)-initiated poly(methyl methacrylate).

    PubMed

    Fukuda, Chihiro; Yahata, Chie; Kinoshita, Takuya; Watanabe, Takafumi; Tsukamoto, Hideo; Mochizuki, Akira

    2017-10-01

    It is well known that polyether-based copolymers have good blood compatibility, although many mechanisms have been proposed to explain their favorable performance. Our objective in carrying out the present study was to obtain a better understanding of the effect of the (poly)ether segment on blood compatibility. Therefore, we synthesized poly(propylene glycol) (PPG)-based initiators for atom transfer polymerization, where the number of propylene glycol (PG) units in the PPG (Pn(PG) was varied from 1 to 94. Methyl methacrylate (MMA) was polymerized using the initiators, resulting in the formation of polyMMAs with a PG-based ether part at the polymer terminal. We mainly investigated the effects of Pn(PG) on the surface properties and platelet compatibility of the PPG-polyMMA. X-ray photoelectron spectroscopy and surface contact angle (CA) analysis revealed the exposure of the PG units at the surface of the polymer. The platelet compatibility of the polymers was improved compared with a commercial polyMMA, even when Pn(PG) = 1. These results suggest that PG units have an important influence on favorable blood compatibility, regardless of the Pn(PG) value. We also investigated protein adsorption behavior in terms of the amount and deformation of fibrinogen adsorbed on the polymer surface.

  19. Development of a flameproof elastic elastomeric fiber

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Nilgrom, J.; Massucco, A.; Sheth, S. G.; Dawn, F. S.

    1971-01-01

    Various flexible polyurethane structures containing halogen were synthesized from polyesters derived from aliphatic or aromatic polyols and dibasic acids. Aliphatic halide structures could not be used because they are unstable at the required reaction temperatures, giving of hydrogen halide which hydrolyzes the ester linkages. In contract, halogen-containing aromatic polyols were stable and satisfactory products were made. The most promising composition, a brominated neopentyl glycol capped with toluene disocyanate, was used as a conventional diisocyanate, in conjunction with hydroxy-terminated polyethers or polyesters to form elastomeric urethanes containing about 10% bromine with weight. Products made in this manner will not burn in air, have an oxygen index value of about 25, and have tensile strength values of about 5,000 psi at 450% elongation. The most efficient additives for imparting flame retardancy to Spandex urethanes are aromatic halides and the most effective of these are the bromide compounds. Various levels of flame retardancy have been achieved depending on the levels of additives used.

  20. Development of a collapsible reinforced cylindrical space observation window

    NASA Technical Reports Server (NTRS)

    Khan, A. Q.

    1971-01-01

    Existing material technology was applied to the development of a collapsible transparent window suitable for manned spacecraft structures. The effort reported encompasses the evaluation of flame retardants intended for use in the window matrix polymer, evaluation of reinforcement angle which would allow for a twisting pantographing motion as the cylindrical window is mechanically collapsed upon itself, and evaluation of several reinforcement embedment methods. A fabrication technique was developed to produce a reinforced cylindrical space window of 45.7 cm diameter and 61.0 cm length. The basic technique involved the application of a clear film on a male-section mold; winding axial and girth reinforcements and vacuum casting the outer layer. The high-strength transparent window composite consisted of a polyether urethane matrix reinforced with an orthogonal pattern of black-coated carbon steel wire cable. A thin film of RTV silicone rubber was applied to both surfaces of the urethane. The flexibility, retraction system, and installation system are described.

  1. Nanoscale Structure of Urethane/Urea Elastomeric Films

    NASA Astrophysics Data System (ADS)

    Reis, Dennys; Trindade, Ana C.; Godinho, Maria Helena; Silva, Laura C.; do Carmo Gonçalves, Maria; Neto, Antônio M. Figueiredo

    2017-02-01

    The nanostructure of urethane/urea elastomeric membranes was investigated by small-angle X-ray scattering (SAXS) in order to establish relationships between their structure and mechanical properties. The networks were made up of polypropylene oxide (PPO) and polybutadiene (PB) segments. The structural differences were investigated in two types of membranes with the same composition but with different thermal treatment after casting. Type I was cured at 70-80 °C and type II at 20 °C. Both membranes showed similar phase separation by TEM, with nanodomains rich in PB or PPO and 25 nm dimensions. The main difference between type I and type II membranes was found by SAXS. The type I membrane spectra showed, besides a broad band at a 27-nm q value (modulus of the scattering vector), an extra band at 6 nm, which was not observed in the type II membrane. The SAXS spectra were interpreted in terms of PPO, PB soft segments, and urethane/urea links, as well as hard moiety segregation in the reaction medium. This additional segregation ( q = 7 nm), although subtle, results in diverse mechanical behavior of in both membranes.

  2. Reconstitution of craniofacial osseous contour deformities, sequelae of trauma and post resection for tumors, with an alloplastic-autogenous graft.

    PubMed

    Leake, D L; Habal, M B

    1977-04-01

    Our experience using a new technique for reconstructing contour defects of facial bones has been presented. It employs particulate, cancellous bone and an implantable prosthesis accurately fabricated of polyether urethane and polyethylene terephthalate cloth mesh which can be produced in a variety of configurations. A mannequin made of these materials displaying the various parts of the craniofacial complex that have been restored or are currently under investigation is shown in Figure 10. Large cranial vault defects, orbital floors, mandibles including chin augmentation, and nasal bone deformities have been successfully restored in man. Restoration of the pinna of the ear is currently being evaluated in laboratory animals.

  3. Evaluation of a new composite prosthesis for the repair of abdominal wall defects.

    PubMed

    Losi, Paola; Munaò, Antonella; Spiller, Dario; Briganti, Enrica; Martinelli, Ilaria; Scoccianti, Marco; Soldani, Giorgio

    2007-10-01

    The degree of integration of biomaterials used in the repair of abdominal wall defects seems to depend upon the structure of the prosthesis. The present investigation evaluates the behaviour in terms of adhesion formation and integration of a new composite prosthesis that could be employed in this clinical application. Full-thickness abdominal wall defects (7 x 5 cm) were created in 16 anaesthetized New Zealand white rabbits and the prosthesis were placed in direct contact with the visceral peritoneum during the experiment. The defects were repaired with a composite prosthesis or pure polypropylene mesh to establish two study groups (n = 8 each). The composite device was constituted by a polypropylene mesh physically attached to a poly(ether)urethane-polydimethylsiloxane laminar sheet. Animals were sacrificed 7, 14, 21 and 30 days after implant and prosthesis/surrounding tissue specimens subjected to light and electron microscopy. Firm adhesions were detected in the polypropylene implants, while they were not present in the composite implants. The excellent behaviour of the composite prosthesis shown in this study warrants further investigation on its use for the repair of abdominal wall defects when a prosthetic device needs to be placed in contact with the intestinal loops.

  4. Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing.

    PubMed

    Walters, Nick J; Xia, Wendy; Salih, Vehid; Ashley, Paul F; Young, Anne M

    2016-02-01

    To determine the effects of various monomers on conversion and cytocompatibility of dental composites and to improve these properties without detrimentally affecting mechanical properties, depth of cure and shrinkage. Composites containing urethane dimethacrylate (UDMA) or bisphenol A glycidyl methacrylate (Bis-GMA) with poly(propylene glycol) dimethacrylate (PPGDMA) or triethylene glycol dimethacrylate (TEGDMA) were characterized using the following techniques: conversion (FTIR at 1 and 4mm depths), depth of cure (BS EN ISO 4049:2009 and FTIR), shrinkage (BS EN ISO 17304:2013 and FTIR), strength and modulus (biaxial flexural test) and water sorption. Cytocompatibility of composites and their liquid phase components was assessed using three assays (resazurin, WST-8 and MTS). UDMA significantly improved conversion, BFS and depth of cure compared to Bis-GMA, without increasing shrinkage. UDMA was cytotoxic at lower concentrations than Bis-GMA, but extracts of Bis-GMA-containing composites were less cytocompatible than of those containing UDMA. PPGDMA improved conversion and depth of cure compared to TEGDMA, without detrimentally affecting shrinkage. TEGDMA was shown by all assays to be highly toxic. Resazurin, but not WST-8 and MTS, suggested that PPGDMA exhibited improved cytocompatibility compared to TEGDMA. The use of UDMA and PPGDMA results in composites with excellent conversion, depth of cure and mechanical properties, without increasing shrinkage. Composites containing UDMA appear to be slightly more cytocompatible than those containing Bis-GMA. These monomers may therefore improve the material properties of dental restorations, particularly bulk fill materials. The effect of diluent monomer on cytocompatibility requires further investigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Characterization of a resorbable poly(ester urethane) with biodegradable hard segments.

    PubMed

    Dempsey, David K; Robinson, Jennifer L; Iyer, Ananth V; Parakka, James P; Bezwada, Rao S; Cosgriff-Hernandez, Elizabeth M

    2014-01-01

    The rapid growth of regenerative medicine and drug delivery fields has generated a strong need for improved polymeric materials that degrade at a controlled rate into safe, non-cytotoxic by-products. Polyurethane thermoplastic elastomers offer several advantages over other polymeric materials including tunable mechanical properties, excellent fatigue strength, and versatile processing. The variable segmental chemistry in developing resorbable polyurethanes also enables fine control over the degradation profile as well as the mechanical properties. Linear aliphatic isocyanates are most commonly used in biodegradable polyurethane formulations; however, these aliphatic polyurethanes do not match the mechanical properties of their aromatic counterparts. In this study, a novel poly(ester urethane) (PEsU) synthesized with biodegradable aromatic isocyanates based on glycolic acid was characterized for potential use as a new resorbable material in medical devices. Infrared spectral analysis confirmed the aromatic and phase-separated nature of the PEsU. Uniaxial tensile testing displayed stress-strain behavior typical of a semi-crystalline polymer above its Tg, in agreement with calorimetric findings. PEsU outperformed aliphatic PCL-based polyurethanes likely due to the enhanced cohesion of the aromatic hard domains. Accelerated degradation of the PEsU using 0.1 M sodium hydroxide resulted in hydrolysis of the polyester soft segment on the surface, reduced molecular weight, surface cracking, and a 30% mass loss after four weeks. Calorimetric studies indicated a disruption of the soft segment crystallinity after incubation which corresponded with a drop in initial modulus of the PEsU. Finally, cytocompatibility testing with 3T3 mouse fibroblasts exhibited cell viability on PEsU films comparable to a commercial poly(ether urethane urea) after 24 h followed by 85% cell viability at 72 h. Overall, this new resorbable polyurethane shows strong potential for use in wide range of biomedical applications.

  6. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.

    PubMed

    Li, Zibiao; Zhang, Zhongxing; Liu, Kerh Li; Ni, Xiping; Li, Jun

    2012-12-10

    This paper reports the synthesis and characterization of new hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), and polycaprolactone (PCL) segments as in situ thermogels. The hyperbranched poly(PPG/PEG/PCL urethane)s, termed as HBPEC copolymers, were synthesized from PPG-diol, PEG-diol, and PCL-triol by using 1,6-hexamethylene diisocyanate (HMDI) as a coupling agent. The compositions and structures of HBPEC copolymers were determined by GPC and 1H NMR spectroscopy. We carried out comparative studies of the new hyperbranched copolymers with their linear counterparts, the linear poly(PPG/PEG/PCL urethane) (LPEC) copolymer and Pluronic F127 PEG-PPG-PEG block copolymer, in terms of their self-assembly and aggregation behaviors and thermoresponsive properties. HBPEC copolymers were found to show thermoresponsive micelle formation and aggregation behaviors. Particularly, the lower critical solution temperature (LCST) of the copolymers was significantly affected by the copolymer architecture. HBPEC copolymers showed much lower LCST than LPEC, the linear counterpart. Our studies revealed that the effect of hyperbranch architecture was more prominent in the gelation of the copolymers. The aqueous solutions of HBPEC copolymers exhibited thermogelling behaviors at critical gelation concentrations (CGCs) ranging from 4.3 to 7.4 wt %. These values are much lower than those reported on other PCL-contained linear thermogelling copolymers and Pluronic F127 copolymer. In addition, the CGC of HBPEC copolymers is much lower than the control LPEC copolymer. More interestingly, at high temperatures, while LPEC and other linear thermogelling copolymers formed turbid sol, HBPEC formed a dehydrated gel. Our data suggest that these phenomena are caused by the hyperbranched structure of HBPEC copolymers, which could increase the interaction of copolymer branches and enhance the chain association through synergetic hydrogen bonding effect. The thermogelling behavior of HBPEC block copolymers was further evidenced by the 1H NMR molecular dynamic study and rheological study, which further support the above hypothesis. The hydrolytic degradation study showed that the HBPEC copolymer hydrogels are biodegradable under physiological conditions. Together with the good cell biocompatibility demonstrated by the cytotoxicity study, the new thermogelling copolymers reported in this paper could potentially be used as in situ-forming hydrogels for biomedical applications.

  7. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry.

    PubMed

    Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M

    2003-01-01

    Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.

  8. Development of a poly(ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation.

    PubMed

    Ma, Hongyan; Darmawan, Erica T; Zhang, Min; Zhang, Lei; Bryers, James D

    2013-12-28

    Traditional antibiotic therapy to control medical device-based infections typically fails to clear biofilm infections and may even promote the evolution of antibiotic resistant species. We report here the development of two novel antibiofilm agents; gallium (Ga) or zinc (Zn) complexed with protoporphyrin IX (PP) or mesoprotoporphyrin IX (MP) that are both highly effective in negating suspended bacterial growth and biofilm formation. These chelated gallium or zinc complexes act as iron siderophore analogs, supplanting the natural iron uptake of most bacteria. Poly (ether urethane) (PEU; Biospan®) polymer films were fabricated for the controlled sustained release of the Ga- or Zn-complexes, using an incorporated pore-forming agent, poly(ethylene glycol) (PEG). An optimum formulation containing 8% PEG (MW=1450) in the PEU polymer effectively sustained drug release for at least 3months. All drug-loaded PEU films exhibited in vitro ≥ 90% reduction of Gram-positive (Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa) bacteria in both suspended and biofilm culture versus the negative control PEU films releasing nothing. Cytotoxicity and endotoxin evaluation demonstrated no adverse responses to the Ga- or Zn-complex releasing PEU films. Finally, in vivo studies further substantiate the anti-biofilm efficacy of the PEU films releasing Ga- or Zn- complexes. © 2013.

  9. Prediction of crosslink density of solid propellant binders. [curing of elastomers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.

    1976-01-01

    A quantitative theory is outlined which allows calculation of crosslink density of solid propellant binders from a small number of predetermined parameters such as the binder composition, the functionality distributions of the ingredients, and the extent of the curing reaction. The parameter which is partly dependent on process conditions is the extent of reaction. The proposed theoretical model is verified by independent measurement of effective chain concentration and sol and gel fractions in simple compositions prepared from model compounds. The model is shown to correlate tensile data with composition in the case of urethane-cured polyether and certain solid propellants. A formula for the branching coefficient is provided according to which if one knows the functionality distributions of the ingredients and the corresponding equivalent weights and can measure or predict the extent of reaction, he can calculate the branching coefficient of such a system for any desired composition.

  10. Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers

    DOE PAGES

    McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; ...

    2014-12-11

    Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [ mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small anglemore » x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.« less

  11. Site-Selective Modification of Cellulose Nanocrystals with Isophorone Diisocyanate and Formation of Polyurethane-CNC Composites.

    PubMed

    Girouard, Natalie M; Xu, Shanhong; Schueneman, Gregory T; Shofner, Meisha L; Meredith, J Carson

    2016-01-20

    The unequal reactivity of the two isocyanate groups in an isophorone diisocyante (IPDI) monomer was exploited to yield modified cellulose nanocrystals (CNCs) with both urethane and isocyanate functionality. The chemical functionality of the modified CNCs was verified with ATR-FTIR analysis and elemental analysis. The selectivity for the secondary isocyanate group using dibutyl tin dilaurate (DBTDL) as the reaction catalyst was confirmed with (13)C NMR. The modified CNCs showed improvements in the onset of thermal degradation by 35 °C compared to the unmodified CNCs. Polyurethane composites based on IPDI and a trifunctional polyether alcohol were synthesized using unmodified (um-CNC) and modified CNCs (m-CNC). The degree of nanoparticle dispersion was qualitatively assessed with polarized optical microscopy. It was found that the modification step facilitated superior nanoparticle dispersion compared to the um-CNCs, which resulted in increases in the tensile strength and work of fracture of over 200% compared to the neat matrix without degradation of elongation at break.

  12. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  13. Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of silicone-based polyurethanes.

    PubMed

    Cosgriff-Hernandez, Elizabeth; Tkatchouk, Ekaterina; Touchet, Tyler; Sears, Nick; Kishan, Alysha; Jenney, Christopher; Padsalgikar, Ajay D; Chen, Emily

    2016-07-01

    Although silicone-based polyurethanes have demonstrated increased oxidative stability, there have been conflicting reports of the long-term hydrolytic stability of Optim™ and PurSil(®) 35 based on recent temperature-accelerated hydrolysis studies. The goal of the current study was to identify in vitro-in vivo correlations to determine the relevance of this accelerated in vitro model for predicting clinical outcomes. Temperature-accelerated hydrolytic aging of three commonly used cardiac lead insulation materials, Optim™, Elasthane™ 55D, Elasthane™ 80A, and a related silicone-polyurethane, PurSil(®) 35, was performed. After 1 year at 85°C, similar losses in Mn and Mz were observed for the poly(ether urethanes), but an increase in Mz loss as compared to Mn loss was observed for the silicone-based polyurethanes. A similar trend of increased Mz loss as compared to Mn loss was observed in explanted Optim™ leads after 2-3 years; however, no statistically significant Mn loss was detected between 2-3 and 7-8 years of implantation. Given this preferential loss of high molecular weight chains, it was hypothesized that the observed differences between the polyurethanes were due to allophanate dissociation rather than backbone chain scission. Following full dissociation of the small percentage of allophanates in vivo, the observed molecular weight stability and proven clinical performance of Optim™ was attributed to the well-documented stability of the urethane bond under physiological conditions. This allophanate dissociation reaction is incompatible with the first order mechanism proposed in previous temperature-accelerated hydrolysis studies and may be the reason for the model's inaccurate prediction of significant and progressive molecular weight loss in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1805-1816, 2016. © 2016 Wiley Periodicals, Inc.

  14. New injectable elastomeric biomaterials for hernia repair and their biocompatibility.

    PubMed

    Skrobot, J; Zair, L; Ostrowski, M; El Fray, M

    2016-01-01

    Complications associated with implantation of polymeric hernia meshes remain a difficult surgical challenge. We report here on our work, developing for the first time, an injectable viscous material that can be converted to a solid and elastic implant in vivo, thus successfully closing herniated tissue. In this study, long-chain fatty acids were used for the preparation of telechelic macromonomers end-capped with methacrylic functionalities to provide UV curable systems possessing high biocompatibility, good mechanical strength and flexibility. Two different systems, comprising urethane and ester bonds, were synthesized from non-toxic raw materials and then subjected to UV curing after injection of viscous material into the cavity at the abdominal wall during hernioplasty in a rabbit hernia model. No additional fixation or sutures were required. The control group of animals was treated with commercially available polypropylene hernia mesh. The observation period lasted for 28 days. We show here that artificially fabricated defect was healed and no reherniation was observed in the case of the fatty acid derived materials. Importantly, the number of inflammatory cells found in the surrounding tissue was comparable to these found around the standard polypropylene mesh. No inflammatory cells were detected in connective tissues and no sign of necrosis has been observed. Collectively, our results demonstrated that new injectable and photocurable systems can be used for minimally invasive surgical protocols in repair of small hernia defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    PubMed

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  16. Platelet adhesive resistance of segmented polyurethane film surface-grafted with vinyl benzyl sulfo monomer of ammonium zwitterions.

    PubMed

    Zhang, Jun; Yuan, Jiang; Yuan, Youling; Zang, Xiaopeng; Shen, Jian; Lin, Sicong

    2003-10-01

    Platelet from human plasma adhered on the segmented poly(ether urethane) (SPEU) film grafted with N,N-dimethyl-N-(p-vinylbenyl)-N-(3-sulfopropyl) ammonium (DMVSA) was studied. SPEU films were hydroxylated by potassium peroxosulfate (KPS) and then grafted with DMVSA using ceric ammonium nitrate (CAN) as initiator. The mixing time of hydroxylated SPEU/CAN and the monomer concentration effect on graft polymerization yield were determined by ATR-FTIR. Surface analysis of the grafted films by ATR-FTIR and ESCA confirmed that DMVSA was successfully grafted onto the SPEU film surface. The grafted film possessed a relatively hydrophilic surface, as revealed by water contact angle measurement. The improved blood compatibility of the grafted films was preliminarily evaluated by a platelet-rich plasma adhesion study and scanning electron microscopy, using original SPEU and hydroxylated SPEU films as the controls. The results showed that platelet attachment was decreased greatly on the segmented polyurethane films grafted with DMVSA. This kind of new biomaterials grafted with sulfo ammonium zwitterionic monomers might have potential for biomedical applications.

  17. Use Of New Industrial Coatings for the U.S. Navy Waterfront Structures

    DTIC Science & Technology

    2008-01-01

    as a coating for the interior and exterior of piping systems, which either are located in harsh environments or are transporting substances with...SSPC SP 10 Surfaces) (5). SyslCm Coating Sys\\~m A Zinc -rich urethane/MIOa·filled urethane/urethane 314/315/314 B Zinc -rich urethane/MIO-filled...urethanc/MIO-urethane 336/3361336 C Zinc -rich urethancl1vfiO & Alb-fined urethaneiMIO-fiIled 337/3401336 ,1 MicaceQus iron oxide. b Aluminum. urethane

  18. Design of 3-D Printed Concentric Tube Robots.

    PubMed

    Morimoto, Tania K; Okamura, Allison M

    2016-12-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient's body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm -1 , which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively.

  19. Implementing and Quantifying the Shape-Memory Effect of Single Polymeric Micro/Nanowires with an Atomic Force Microscope.

    PubMed

    Fang, Liang; Gould, Oliver E C; Lysyakova, Liudmila; Jiang, Yi; Sauter, Tilman; Frank, Oliver; Becker, Tino; Schossig, Michael; Kratz, Karl; Lendlein, Andreas

    2018-04-23

    The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10±1% or 21±1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of σ max,app =1.2±0.1 and 33.3±0.1 MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Environmental stress cracking performance of polyether and PDMS-based polyurethanes in an in vitro oxidation model.

    PubMed

    Gallagher, Genevieve; Padsalgikar, Ajay; Tkatchouk, Ekaterina; Jenney, Chris; Iacob, Ciprian; Runt, James

    2017-08-01

    Environmental stress cracking (ESC) was replicated in vitro on Optim™ (OPT) insulation, a polydimethylsiloxane-based polyurethane utilized clinically in cardiac leads, using a Zhao-type oxidation model. OPT performance was compared to that of two industry standard polyether urethanes: Pellethane ® 80A (P80A), and Pellethane ® 55D (P55D). Clinically relevant specimen configurations and strain states were utilized: low-voltage cardiac lead segments were held in a U-shape by placing them inside of vials. To study whether aging conditions impacted ESC formation, half of the samples were subjected to a pretreatment in human plasma for 7 days at 37°C; all samples were then aged in oxidative solutions containing 0.9% NaCl, 20% H 2 O 2 , and either 0 or 0.1M CoCl 2 , with or without glass wool for 72 days at 37°C. Visual and SEM inspection revealed significant surface cracking consistent with ESC on all P80A and P55D samples. Sixteen of twenty P80A and 10/20 P55D samples also exhibited breaches. Seven of 20 OPT samples exhibited shallow surface cracking consistent with ESC. ATR-FTIR confirmed surface changes consistent with oxidation for all materials. The number average molecular weight decreased an average of 31% for OPT, 86% for P80A, and 56% for P55D samples. OPT outperformed P80A and P55D in this Zhao-type in vitro ESC model. An aging solution of 0.9% NaCl, 20% H 2 O 2 , and 0.1M CoCl 2 , with glass wool provided the best combination of ESC replication and ease of use. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1544-1558, 2017. © 2016 Wiley Periodicals, Inc.

  1. Chemoenzymatic Synthesis and Chemical Recycling of Poly(ester-urethane)s

    PubMed Central

    Hayashi, Hiroto; Yanagishita, Yoshio; Matsumura, Shuichi

    2011-01-01

    Novel poly(ester-urethane)s were prepared by a synthetic route using a lipase that avoids the use of hazardous diisocyanate. The urethane linkage was formed by the reaction of phenyl carbonate with amino acids and amino alcohols that produced urethane-containing diacids and hydroxy acids, respectively. The urethane diacid underwent polymerization with polyethylene glycol and α,ω-alkanediols and also the urethane-containing hydroxy acid monomer was polymerized by the lipase to produce high-molecular-weight poly(ester-urethane)s. The periodic introduction of ester linkages into the polyurethane chain by the lipase-catalyzed polymerization afforded chemically recyclable points. They were readily depolymerized in the presence of lipase into cyclic oligomers, which were readily repolymerized in the presence of the same enzyme. Due to the symmetrical structure of the polymers, poly(ester-urethane)s synthesized in this study showed higher Tm, Young’s modulus and tensile strength values. PMID:22016604

  2. Genetic Screening Strategy for Rapid Access to Polyether Ionophore Producers and Products in Actinomycetes ▿ †

    PubMed Central

    Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying

    2011-01-01

    Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes. PMID:21421776

  3. Genetic screening strategy for rapid access to polyether ionophore producers and products in actinomycetes.

    PubMed

    Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying

    2011-05-01

    Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes.

  4. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams

    PubMed Central

    Álvarez-Barragán, Joyce; Domínguez-Malfavón, Lilianha; Vargas-Suárez, Martín; González-Hernández, Ricardo; Aguilar-Osorio, Guillermo

    2016-01-01

    ABSTRACT Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum. The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm−1) and N—H bonds (1,540 and 1,261 cm−1), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU. IMPORTANCE Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of polyurethanes are reported, and their biodegradative activity was studied by different experimental approaches. Varnish biodegradation analyses showed that fungi were able to break down the polymer in some of their precursors, offering the possibility that they may be recovered and used for new polyurethane synthesis. Also, the levels of degradation of solid polyether polyurethane foams reported in this work have never been observed previously. Isolation of efficient polyurethane-degrading microorganisms and delving into the mechanisms they used to degrade the polymer provide the basis for the development of biotechnological processes for polyurethane biodegradation and recycling. PMID:27316963

  5. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams.

    PubMed

    Álvarez-Barragán, Joyce; Domínguez-Malfavón, Lilianha; Vargas-Suárez, Martín; González-Hernández, Ricardo; Aguilar-Osorio, Guillermo; Loza-Tavera, Herminia

    2016-09-01

    Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm(-1)) and N-H bonds (1,540 and 1,261 cm(-1)), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU. Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of polyurethanes are reported, and their biodegradative activity was studied by different experimental approaches. Varnish biodegradation analyses showed that fungi were able to break down the polymer in some of their precursors, offering the possibility that they may be recovered and used for new polyurethane synthesis. Also, the levels of degradation of solid polyether polyurethane foams reported in this work have never been observed previously. Isolation of efficient polyurethane-degrading microorganisms and delving into the mechanisms they used to degrade the polymer provide the basis for the development of biotechnological processes for polyurethane biodegradation and recycling. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  7. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether polyester copolymer... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this section...

  8. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyether resins, chlorinated. 177.2430 Section 177... Components of Articles Intended for Repeated Use § 177.2430 Polyether resins, chlorinated. Chlorinated..., in accordance with the following prescribed conditions: (a) The chlorinated polyether resins are...

  9. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    PubMed

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  10. Urethane anesthesia blocks the development and expression of kindled seizures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cain, D.P.; Raithby, A.; Corcoran, M.E.

    1989-01-01

    The effect of anesthetic and subanesthetic doses of urethane on the development of amygdala kindled seizures and on the expression of previously kindled seizures was studied in hooded rats. An anesthetic dose of urethane almost completely eliminated evoked after discharge and completely eliminated convulsive behavior in both groups. It also eliminated the seizure response to pentylenetetrazol. Subanesthetic doses of urethane strongly attenuated the expression of previously kindled seizures. These results suggest that urethane may not be an appropriate anesthetic for the study of epileptiform phenomena.

  11. 40 CFR 721.10624 - Dicyclohexylmethane-4,4'-diisocyanate, polymer with ethoxylated, propoxylated polyethers (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., polymer with ethoxylated, propoxylated polyethers (generic). 721.10624 Section 721.10624 Protection of...,4'-diisocyanate, polymer with ethoxylated, propoxylated polyethers (generic). (a) Chemical substance... dicyclohexylmethane-4,4'-diisocyanate, polymer with ethoxylated, propoxylated polyethers (PMN P-12-326) is subject to...

  12. 40 CFR 721.10624 - Dicyclohexylmethane-4,4'-diisocyanate, polymer with ethoxylated, propoxylated polyethers (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., polymer with ethoxylated, propoxylated polyethers (generic). 721.10624 Section 721.10624 Protection of...,4'-diisocyanate, polymer with ethoxylated, propoxylated polyethers (generic). (a) Chemical substance... dicyclohexylmethane-4,4'-diisocyanate, polymer with ethoxylated, propoxylated polyethers (PMN P-12-326) is subject to...

  13. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyether resins, chlorinated. 177.2430 Section... as Components of Articles Intended for Repeated Use § 177.2430 Polyether resins, chlorinated. Chlorinated polyether resins may be safely used as articles or components of articles intended for repeated...

  14. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether acrylate. 721.405 Section... § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject to...

  15. Study of Nanocomposites of Amino Acids and Organic Polyethers by Means of Mass Spectrometry and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Zobnina, V. G.; Kosevich, M. V.; Chagovets, V. V.; Boryak, O. A.

    A problem of elucidation of structure of nanomaterials based on combination of proteins and polyether polymers is addressed on the monomeric level of single amino acids and oligomers of PEG-400 and OEG-5 polyethers. Efficiency of application of combined approach involving experimental electrospray mass spectrometry and computer modeling by molecular dynamics simulation is demonstrated. It is shown that oligomers of polyethers form stable complexes with amino acids valine, proline, histidine, glutamic, and aspartic acids. Molecular dynamics simulation has shown that stabilization of amino acid-polyether complexes is achieved due to winding of the polymeric chain around charged groups of amino acids. Structural motives revealed for complexes of single amino acids with polyethers can be realized in structures of protein-polyether nanoparticles currently designed for drug delivery.

  16. The enzymology of polyether biosynthesis.

    PubMed

    Liu, Tiangang; Cane, David E; Deng, Zixin

    2009-01-01

    Polyether ionophore antibiotics are a special class of polyketides widely used in veterinary medicine, and as food additives in animal husbandry. In this article, we review current knowledge about the mechanism of polyether biosynthesis, and the genetic and biochemical strategies used for its study. Several clear differences distinguish it from traditional type I modular polyketide biosynthesis: polyether backbones are assembled by modular polyketide synthases but are modified by two key enzymes, epoxidase and epoxide hydrolase, to generate the product. All double bonds involved in the oxidative cyclization in the polyketide backbone are of E geometry. Chain release in the polyether biosynthetic pathway requires a special type II thioesterase which specifically hydrolyzes the polyether thioester. All these discoveries should be very helpful for a deep understanding of the biosynthetic mechanism of this class of important natural compounds, and for the targeted engineering of polyether derivatives.

  17. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  18. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540) is...

  19. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540) is...

  20. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540) is...

  1. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540) is...

  2. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  3. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane adhesive is supplied in a two-part form, comprising a resin and a hardener that must be mixed. The resulting urethane adhesive has a working time of 3 to 5 minutes. To prepare the urethane/silicone blend, one must quickly add the silicone to the urethane adhesive and mix it in thoroughly within the working time of the urethane. Once the urethane/silicone blend has been mixed and applied to the bond surfaces, it takes about 2 hours for the adhesive to cure under pressure. However, it takes about 24 hours for the adhesive to reach full strength.

  4. 40 CFR Table 4 to Subpart Ppp of... - Known Organic HAP From Polyether Polyol Products

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Known Organic HAP From Polyether Polyol... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production Pt. 63, Subpt. PPP, Table 4 Table 4 to Subpart PPP of Part 63—Known Organic HAP From Polyether Polyol...

  5. [A survey of occupational health among polyether-exposed workers].

    PubMed

    Fu, Xu-ying; Yu, Bin; Zhang, Chun-ping; Zheng, Guan-hua; Bai, Lan; Zhang, Pan-pan

    2013-06-01

    To investigate the occupational health of the workers simultaneously exposed to acrylonitrile, epoxyethane, epoxypropane, and styrene. A questionnaire survey was conducted in 70 front-line workers simultaneously exposed to acrylonitrile, epoxyethane, epoxypropane, and styrene (exposure group) and 50 managers (control group) in a polyether manufacturer; in addition, air monitoring at workplace and occupational health examination were also performed. The obtained data were analyzed. The female workers in exposure group and the spouses of male workers in exposure group had significantly higher spontaneous abortion rates than their counterparts in control group (P < 0.01). The exposure group had a significantly higher abnormal rate of blood urea nitrogen than the control group (P < 0.01). The workers with different polyether-exposed working years had significantly higher mean levels of DNA damage than the control group (P < 0.01); the workers with not less than 5 and less than 20 polyether-exposed working years and those with not less than 20 polyether-exposed working years had significantly higher mean micronucleus rates than the control group (P < 0.01); there were no significant differences in overall chromosome aberration rate and mean level of DNA damage between each two groups of workers with different polyether-exposed working years (P > 0.05); the workers with not less than 5 and less than 20 polyether-exposed working years and workers with not less than 20 polyether-exposed working years had significantly higher mean micronucleus rates than those with less than 5 polyether-exposed working years (P < 0.01). Simultaneous exposure to acrylonitrile, epoxyethane, epoxypropane, and styrene causes occupational hazards among the workers in polyether manufacturer.

  6. Development of polyether urethane intravaginal rings for the sustained delivery of hydroxychloroquine

    PubMed Central

    Chen, Yufei; Traore, Yannick Leandre; Li, Amanda; Fowke, Keith R; Ho, Emmanuel A

    2014-01-01

    Hydroxychloroquine (HCQ) has been shown to demonstrate anti-inflammatory properties and direct anti-HIV activity. In this study, we describe for the first time the fabrication and in vitro evaluation of two types of intravaginal ring (IVR) devices (a surfaced-modified matrix IVR and a reservoir segmental IVR) for achieving sustained delivery (>14 days) of HCQ as a strategy for preventing male-to-female transmission of HIV. Both IVRs were fabricated by hot-melt injection molding. Surface-modified matrix IVRs with polyvinylpyrrolidone or poly(vinyl alcohol) coatings exhibited significantly reduced burst release on the first day (6.45% and 15.72% reduction, respectively). Reservoir IVR segments designed to release lower amounts of HCQ displayed near-zero-order release kinetics with an average release rate of 28.38 μg/mL per day for IVRs loaded with aqueous HCQ and 32.23 μg/mL per day for IVRs loaded with HCQ mixed with a rate-controlling excipient. Stability studies demonstrated that HCQ was stable in coated or noncoated IVRs for 30 days. The IVR segments had no significant effect on cell viability, pro-inflammatory cytokine production, or colony formation of vaginal and ectocervical epithelial cells. Both IVR systems may be suitable for the prevention of HIV transmission and other sexually transmitted infections. PMID:25336923

  7. Design of 3-D Printed Concentric Tube Robots

    PubMed Central

    Morimoto, Tania K.; Okamura, Allison M.

    2017-01-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient’s body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm−1, which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively. PMID:28713227

  8. Biosynthetic machinery of ionophore polyether lasalocid: enzymatic construction of polyether skeleton.

    PubMed

    Minami, Atsushi; Oguri, Hiroki; Watanabe, Kenji; Oikawa, Hideaki

    2013-08-01

    Diversity of natural polycyclic polyethers originated from very simple yet versatile strategy consisting of epoxidation of linear polyene followed by epoxide opening cascade. To understand two-step enzymatic transformations at molecular basis, a flavin containing monooxygenase (EPX) Lsd18 and an epoxide hydrolase (EH) Lsd19 were selected as model enzymes for extensive investigation on substrate specificity, catalytic mechanism, cofactor requirement and crystal structure. This pioneering study on prototypical lasalocid EPX and EH provides insight into detailed mechanism of ionophore polyether assembly machinery and clarified remaining issues for polyether biosynthesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Evaluation of urethane for feasibility of use in wind turbine blade design

    NASA Technical Reports Server (NTRS)

    Lieblein, S.; Ross, R. S.; Fertis, D. G.

    1979-01-01

    A preliminary evaluation was conducted of the use of cast urethane as a possible material for low-cost blades for wind turbines. Specimen test data are presented for ultimate tensile strength, elastic modulus, flexural strain, creep, and fatigue properties of a number of urethane formulations. Data are also included for a large-scale urethane blade section composed of cast symmetrical half-profiles tested as a cantilever beam. Based on these results, an analysis was conducted of a full-scale blade design of cast urethane that meets the design specifications of the rotor blades for the NASA/DOE experimental 100-kW MOD-0 wind turbine. Because of the low value of elastic modulus for urethane (around 457 000 psi), the design loads would have to be carried by metal reinforcement. Considerations for further evaluation are noted.

  10. Development of urethane coating and potting material with improved hydrolytic and oxidative stability

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1981-01-01

    A series of saturated hydrocarbon based urethanes was prepared and characterized for hydrolytic and oxidative stability. A series of ether based urethanes was used as a basis for comparison. The alkane base urethanes were found to be hydrolytically and oxidatively stable and had excellent electrical properties. The alkane based materials absorbed little or no water and were reversion resistant. There was little loss in hardness or weight when exposed to high temperature and humidity. Dielectric properties were excellent and suffered little adverse effects from the high temperature/humidity conditions. The alkane based urethanes were not degraded by ozone exposure.

  11. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites.

    PubMed

    Kevin Ii, Dion A; Meujo, Damaris Af; Hamann, Mark T

    2009-02-01

    As multidrug-resistant (MDR) pathogens continue to emerge, there is a substantial amount of pressure to identify new drug candidates. Carboxyl polyethers, also referred to as polyether antibiotics, are a unique class of compounds with outstanding potency against a variety of critical infectious disease targets including protozoa, bacteria and viruses. The characteristics of these molecules that are of key interest are their selectivity and high potency against several MDR etiological agents. Although many studies have been published about carboxyl polyether antibiotics, there are no recent reviews of this class of drugs. The purpose of this review is to provide the reader with an overview of the spectrum of activity of polyether antibiotics, their mechanism of action, toxicity and potential as drug candidates to combat drug-resistant infectious diseases. Polyether ionophores show a high degree of promise for the potential control of drug-resistant bacterial and parasitic infections. Despite the long history of use of this class of drugs, very limited medicinal chemistry and drug optimization studies have been reported, thus leaving the door open to these opportunities in the future. Scifinder and PubMed were the main search engines used to locate articles relevant to the topic presented in the present review. Keywords used in our search were specific names of each of the 88 compounds presented in the review as well as more general terms such as polyethers, ionophores, carboxylic polyethers and polyether antibiotics.

  12. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites

    PubMed Central

    Kevin, Dion A; Meujo, Damaris AF; Hamann, Mark T

    2016-01-01

    Background As multidrug-resistant (MDR) pathogens continue to emerge, there is a substantial amount of pressure to identify new drug candidates. Carboxyl polyethers, also referred to as polyether antibiotics, are a unique class of compounds with outstanding potency against a variety of critical infectious disease targets including protozoa, bacteria and viruses. The characteristics of these molecules that are of key interest are their selectivity and high potency against several MDR etiological agents. Objective Although many studies have been published about carboxyl polyether antibiotics, there are no recent reviews of this class of drugs. The purpose of this review is to provide the reader with an overview of the spectrum of activity of polyether antibiotics, their mechanism of action, toxicity and potential as drug candidates to combat drug-resistant infectious diseases. Conclusion Polyether ionophores show a high degree of promise for the potential control of drug-resistant bacterial and parasitic infections. Despite the long history of use of this class of drugs, very limited medicinal chemistry and drug optimization studies have been reported, thus leaving the door open to these opportunities in the future. Scifinder and PubMed were the main search engines used to locate articles relevant to the topic presented in the present review. Keywords used in our search were specific names of each of the 88 compounds presented in the review as well as more general terms such as polyethers, ionophores, carboxylic polyethers and polyether antibiotics. PMID:23480512

  13. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis.

    PubMed

    Minami, Atsushi; Shimaya, Mayu; Suzuki, Gaku; Migita, Akira; Shinde, Sandip S; Sato, Kyohei; Watanabe, Kenji; Tamura, Tomohiro; Oguri, Hiroki; Oikawa, Hideaki

    2012-05-02

    Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis. © 2012 American Chemical Society

  14. Epoxide hydrolase Lsd19 for polyether formation in the biosynthesis of lasalocid A: direct experimental evidence on polyene-polyepoxide hypothesis in polyether biosynthesis.

    PubMed

    Shichijo, Yoshihiro; Migita, Akira; Oguri, Hiroki; Watanabe, Mami; Tokiwano, Tetsuo; Watanabe, Kenji; Oikawa, Hideaki

    2008-09-17

    Polyether metabolites are an important class of natural products. Although their biosynthesis, especially construction of polyether skeletons, attracted organic chemists for many years, no experimental data on the enzymatic polyether formation has been obtained. In this study, a putative epoxide hydrolase gene lsd19 found on the biosynthetic gene cluster of an ionophore polyether lasalocid was cloned and successfully overexpressed in Escherichia coli. Using the purified Lsd19, a proposed substrate, bisepoxyprelasalocid, and its synthesized analogue were successfully converted into lasalocid A and its derivative via a 6-endo-tet cyclization mode. On the other hand, treatment of the bisepoxide with trichloroacetic acid gave isolasalocid A via a 5-exo-tet cyclization mode. Therefore, the enzymatic conversion observed in this study unambiguously showed that the bisepoxyprelasalocid is an intermediate of the lasalocid biosynthesis and that Lsd19 catalyzes the sequential cyclic ether formations involving an energetically disfavored 6-endo-tet cyclization. This is the first example of the enzymatic epoxide-opening reactions leading to a polyether natural product.

  15. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. 40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting under...

  17. 40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting under...

  18. A rare allergy to a polyether dental impression material.

    PubMed

    Mittermüller, Pauline; Szeimies, Rolf-Markus; Landthaler, Michael; Schmalz, Gottfried

    2012-08-01

    Polyether impression materials have been used in dentistry for more than 40 years. Allergic reactions to these materials such as reported in the 1970s ceased after replacement of a catalyst. Very recently, however, patients have started to report symptoms that suggest a new allergic reaction from polyether impression materials. Here, we report on the results of allergy testing with polyether impression materials as well as with its components. Eight patients with clinical symptoms of a contact allergy (swelling, redness or blisters) after exposure to a polyether impression material were subjected to patch tests, two of them additionally to a prick test. A further patient with atypical symptoms of an allergy (nausea and vomiting after contact with a polyether impression material in the oral cavity) but with a history of other allergic reaction was also patch tested. The prick tests showed no immediate reactions in the two patients tested. In the patch tests, all eight patients with typical clinical symptoms showed positive reactions to the mixed polyether impression materials, to the base paste or to a base paste component. The patient with the atypical clinical symptoms did not show any positive patch test reactions. Polyether impression materials may evoke type IV allergic reactions. The causative agent was a component of the base paste. In consideration of the widespread use of this impression material (millions of applications per year) and in comparison to the number of adverse reactions from other dental materials, the number of such allergic reactions is very low. In very scarce cases, positive allergic reactions to polyether impression materials are possible.

  19. Use of New Industrial Coatings for the U.S. Navy Waterfront Structures

    DTIC Science & Technology

    2008-12-01

    utilized as a coating for the interior and exterior of piping systems, which either are located in harsh environments or are transporting substances with...typical application process, a separate set of test Table 7. MCU Coating Systems (SSPC SP 10 Surfaces) (5). SystelD CoatiIli System A Zinc -rich urethane...urethane/MID & AI-filled Urethane/MIO-filled urethane 315/315/314 336/336/336 340/340/336 ~ Micaceous iron oxide. \\) Aluminum. C Zinc . 12 as well as an

  20. Urethane inhibits genioglossal long-term facilitation in un-paralyzed anesthetized rats.

    PubMed

    Cao, Ying; Ling, Liming

    2010-06-25

    For approximately 3 decades, urethane has been (partially or solely) used as a successful anesthetic in numerous respiratory long-term facilitation (LTF) studies, which were performed on anesthetized, paralyzed, vagotomized and artificially ventilated animals of several different species. However, things become complicated when LTF of muscle activity is studied in un-paralyzed animals. For example, a commonly used acute intermittent hypoxia (AIH) protocol failed to induce muscle LTF in anesthetized, spontaneously breathing rats. But muscle LTF could be induced when hypoxic episode number was increased and/or anesthetics other than urethane were used. In these studies however, neither anesthetic nor paralysis was mentioned as a potential factor influencing AIH-induced muscle LTF. This study tested whether urethane inhibits AIH-induced genioglossal LTF (gLTF) in un-paralyzed ventilated rats, and if so, determined whether reducing urethane dose reverses this inhibition. Three groups of adult male Sprague-Dawley rats were anesthetized (Group 1: approximately 1.6 g kg(-1) urethane; Group 2: 50 mg kg(-1) alpha-chloralose +0.9-1.2 g kg(-1) urethane; Group 3: 0.9 g kg(-1) urethane +200-400 microg kg(-1) min(-1) alphaxalone), vagotomized and mechanically ventilated. Integrated genioglossus activity was measured before, during and after AIH (5 episodes of 3-min isocapnic 12% O(2), separated by 3-min hyperoxic intervals). The AIH-induced gLTF was absent in Group 1 rats (success rate was only approximately 1/7), but was present in Group 2 (in 10/12 rats) and Group 3 (in 11/11 rats) rats. The genioglossal response to hypoxia was not significantly different among the 3 groups. Collectively, these data suggest that urethane dose-dependently inhibits gLTF in un-paralyzed anesthetized rats. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Sex-Related Differences in the Sensitivity to Carcinogenic Effect of Urethane on the Lungs in Mice Are Reversed after Neonatal Androgenization.

    PubMed

    Morozkova, T S; Kaledin, V I

    2015-10-01

    Experiments on male and female CC57BR/Mv mice differing by the sensitivity to carcinogenic effect of urethane on the lungs showed that castration 1 week before carcinogen challenge reduced the number of lung adenomas caused by it in males and somewhat increased the number of tumors in females. Exogenous testosterone after urethane injection caused virtually no changes in urethane effect in males and females. By contrast, elevation of testosterone concentrations in newborn male and female mice by injections or its decrease in feminized males receiving sodium glutamate during the neonatal period reduced the sensitivity to the carcinogenic effect of urethane in adult males and to its increase in females.

  2. Preparation of graphite intercalation compounds containing oligo and polyethers

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyang; Lerner, Michael M.

    2016-02-01

    Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets.Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets. Electronic supplementary information (ESI) available: Domain size, additional Raman spectra info, compositional calculation, and packing fractions. See DOI: 10.1039/c5nr08226a

  3. Structures and properties of naturally occurring polyether antibiotics.

    PubMed

    Rutkowski, Jacek; Brzezinski, Bogumil

    2013-01-01

    Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties.

  4. Structures and Properties of Naturally Occurring Polyether Antibiotics

    PubMed Central

    Rutkowski, Jacek; Brzezinski, Bogumil

    2013-01-01

    Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties. PMID:23586016

  5. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  6. Polyether ionophores-promising bioactive molecules for cancer therapy.

    PubMed

    Huczyński, Adam

    2012-12-01

    The natural polyether ionophore antibiotics might be important chemotherapeutic agents for the treatment of cancer. In this article, the pharmacology and anticancer activity of the polyether ionophores undergoing pre-clinical evaluation are reviewed. Most of polyether ionophores have shown potent activity against the proliferation of various cancer cells, including those that display multidrug resistance (MDR) and cancer stem cells (CSC). The mechanism underlying the anticancer activity of ionophore agents can be related to their ability to form complexes with metal cations and transport them across cellular and subcellular membranes. Increasing evidence shows that the anticancer activity of polyether ionophores may be a consequence of the induction of apoptosis leading to apoptotic cell death, arresting cell cycle progression, induction of the cell oxidative stress, loss of mitochondrial membrane potential, reversion of MDR, synergistic anticancer effect with other anticancer drugs, etc. Continued investigation of the mechanisms of action and development of new polyether ionophores and their derivatives may provide more effective therapeutic drugs for cancer treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. 40 CFR 63.1425 - Process vent control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1425 Process vent... operators of all affected sources using epoxides in the production of polyether polyols are subject to the... (c) of this section only if epoxides are used in the production of polyether polyols and nonepoxide...

  8. 77 FR 20386 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Polyether Polyols... electronic docket, go to www.regulations.gov . Title: NESHAP for Polyether Polyols Production (Renewal). ICR... Hazardous Air Pollutants (NESHAP) for Polyether Polyols Production (40 CFR part 63 subpart PPP) were...

  9. Optimization of Multilayer Laminated Film and Absorbent of Vacuum Insulation Panel for Use at High Temperature

    NASA Astrophysics Data System (ADS)

    Araki, Kuninari; Echigoya, Wataru; Tsuruga, Toshimitsu; Kamoto, Daigorou; Matsuoka, Shin-Ichi

    For the energy saving regulation and larger capacity, Vacuum Insulation Panel (VIP) has been used in refrigerators with urethane foam in recent years. VIP for low temperature is constructed by laminated plastic film, using heat welding of each neighboring part for keeping vacuum, so that the performance decrement is very large under high temperature. But recently high efficiency insulation material is desired for high temperature water holding devices (automatic vending machine, heat pump water heater, electric hot-water pot water, etc.), and we especially focused on cost and ability of the laminated plastic film and absorbent for high temperature VIP. We measured the heatproof temperature of plastic films and checked the amount of water vapor and out coming gas on temperature-programmed adsorption in absorbent. These results suggest the suitable laminated film and absorbent system for VIP use at high temperature, and the long-term reliability was evaluated by measuring thermal conductivity of high temperature. As a result it was found that high-retort pouch of CPP (cast polypropylene film) and adding of aluminum coating are the most suitable materials for use in the welded layers of high-temperature VIPs (105°C).

  10. Polyether complexes of groups 13 and 14.

    PubMed

    Swidan, Ala'aeddeen; Macdonald, Charles L B

    2016-07-21

    Notable aspects of the chemistry of complexes of polyether ligands including crown ethers, cryptands, glycols, glymes, and related polyether ligands with heavier group 13 and 14 elements are reviewed with a focus on results from 2005 to the present. The majority of reported polyether complexes contain lead(ii) and thallium(i) but recent breakthroughs in regard to the preparation of low oxidation state reagents of the lighter congeners have allowed for the generation of complexes containing indium(i), gallium(i), germanium(ii), and even silicon(ii). The important roles of ligand size, donor types, and counter anions in regard to the chemical properties of the polyether complexes is highlighted. A particular focus on the structural aspects of the numerous coordination complexes provides a rationale for some of the spectacular contributions that such compounds have made to Modern Main Group Chemistry.

  11. Epoxide hydrolase-lasalocid a structure provides mechanistic insight into polyether natural product biosynthesis.

    PubMed

    Wong, Fong T; Hotta, Kinya; Chen, Xi; Fang, Minyi; Watanabe, Kenji; Kim, Chu-Young

    2015-01-14

    Biosynthesis of some polyether natural products involves a kinetically disfavored epoxide-opening cyclic ether formation, a reaction termed anti-Baldwin cyclization. One such example is the biosynthesis of lasalocid A, an ionophore antibiotic polyether. During lasalocid A biosynthesis, an epoxide hydrolase, Lsd19, converts the bisepoxy polyketide intermediate into the tetrahydrofuranyl-tetrahydropyran product. We report the crystal structure of Lsd19 in complex with lasalocid A. The structure unambiguously shows that the C-terminal domain of Lsd19 catalyzes the intriguing anti-Baldwin cyclization. We propose a general mechanism for epoxide selection by ionophore polyether epoxide hydrolases.

  12. Low doses of urethane effectively inhibit spinal seizures evoked by sudden cooling of toad isolated spinal cord

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pina-crespo, J.C.; Dalo, N.L.

    1992-01-01

    The effect of low doses of urethane on three phases of spinal seizures evoked by sudden cooling (SSSC) of toad isolated spinal cord was studied. In control toads, SSSC began with a latency of 91[plus minus]3 sec exhibiting brief tremors, followed by clonic muscle contractions and finally reaching a tonic contraction. The latency of onset of seizures was significantly enhanced. The tonic phase was markedly abolished in toads pretreated intralymphaticaly with 0.15 g/kg of urethane. Tremors were the only phase observed in 55% of toads that received doses of 0.2 g/kg, and a total blockage of seizures was seen aftermore » doses of 0.25 g/kg of urethane in 50% of the preparations. A possible depressant effect of urethane on transmission mediated by excitatory amino acids is suggested.« less

  13. Molecular layer deposition of polyurethane-Polymerisation at the very contact to native aluminium and copper

    NASA Astrophysics Data System (ADS)

    Fug, Frank; Petry, Adrien; Jost, Hendrik; Ahmed, Aisha; Zamanzade, Mohammad; Possart, Wulff

    2017-12-01

    Thin layers of polyurethane monomers (diol, triol, diisocyanate) are deposited from gas phase onto native aluminium and copper surfaces. According to infrared external reflection absorption spectra both alcohols undergo only weak physical interactions with both metals. The diisocyanate on the other hand reveals resistance against desorption and rich new spectral features indicate strong adhesion. Preparation of urethane layers by sequential deposition of diisocyanate and diol yields urethane linkages. Urethane is formed faster on Cu than on Al. Scanning force microscopy reveals heterogeneous layers with metal dependent morphology. They show poor resistance against tetrahydrofuran rinsing i.e. most part of the formed urethane containing molecules are removed. Nevertheless, a residue of molecules sticks on the metal. It contains strongly adsorbed isocyanates and few isocyanate units which are bonded to diol units via urethane links. Further improvement of the molecular layer deposition is necessary to achieve well-crosslinked polyurethane layers.

  14. Low-VOC wood floor varnishes from waterborne oil-modified urethanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingle, D.M.; Petschke, G.H.

    Varnishes protect wood flooring and enhance its beauty. Varnish compositions have varied from drying oils and alkyds to more durable systems (moisture-cured urethanes, oil-modified urethanes, epoxies and UV-curable coatings). Some chemistries are better suited for professional or factory applied situations. Oils, alkyds and oil-modified urethanes (OMU) are suitable for onsite professional application or even refinish application by homeowners (DIY market). These materials traditionally have been high in VOC. Recently, waterborne (WB) systems (such as polyurethane dispersions) with greatly reduced VOC have been used; high costs and relatively poor durability are drawbacks. A new generation of high performance waterborne oil-modified urethanemore » is now available with extended shelf-stability required for contractor and consumer markets. Formulated varnishes are coming onto the market that offer performance similar to conventional OMU, but with significant reductions in VOC. For example, a typical formulation for a conventional solvent-borne oil-modified urethane can be supplied at 1.6 lb/gal (less water). This represents a VOC reduction of 70-75% at equal application coating weight. Furthermore, waterborne oil-modified urethane offers advantages over polyurethane dispersions in performance areas such as durability and mar resistance.« less

  15. Investigation of non-isocyanate urethane functional latexes and carbon nanofiller/epoxy coatings

    NASA Astrophysics Data System (ADS)

    Meng, Lei

    This dissertation consists of two parts. In the first part, a new class of non-isocyanate urethane methacrylates was synthesized and the effect of the new monomers on the urethane functional latex was investigated. The second part focused on a comparison of carbon nanofillers in inorganic/organic epoxy coating system for anticorrosive applications. A new class of non-isocyanate urethane methacrylates (UMAs) monomers was synthesized through an environmentally friendly non-isocyanate pathway. The kinetics of seeded semibatch emulsion polymerization of UMAs with methyl methacrylate (MMA) and butyl acrylate (BA) was monitored. The particle size and morphology were investigated by dynamic light scattering (DLS), ultrasound acoustic attenuation spectroscopy (UAAS) and transmission electron microscopy (TEM). The minimum film formation temperature (MFFT), mechanical and viscoelastic properties were studied. It was found that the emulsion polymerization processes all proceeded via Smith-Ewart control, leading to the uniform morphology and particle size. The glass transition temperature (Tg) and the mechanical properties of poly(MMA/BA/UMA) decreased with the increasing chain length of urethane methacrylate monomers due to the increasing flexibility of side chains. Without the effect of Tg, lower MFFT and improved mechanical properties were observed from urethane functional latexes. The improved mechanical properties were due to the increasing particle interaction by forming hydrogen bonding. Furthermore, the effect of urethane functionality in terms of the polymer composition, the location and the concentration was investigated by the batch, single-stage and two-stage semibatch polymerization of 2-[(butylcarbamoyl)oxy]ethyl methacrylate (BEM) with MMA and BA. The core-shell and homogeneous structures were evaluated by TEM, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (SS-NMR). The compositional drift was observed from the batch polymerization. The mechanical properties were improved with increasing urethane and the best was from the urethane in the shell due to higher concentration of urethane in the continuous phase. The inorganic/organic alkoxysilane modified epoxy coating system was formulated with carbon nanofillers, i.e. carbon black, mixture of carbon black and nanotubes, unpurified and purified non-fullerene carbon nanotubes and fullerene carbon nanotubes. Mechanical, thermal, electrical and anticorrosive properties of cured films were evaluated by tensile tests, DMTA, DSC, four-point probe method and electrochemical impedance spectroscopy (EIS), respectively. It was found that the most efficient material to enhance the electrical conductivity and anticorrosive properties of nanocomposite coating systems was fullerene CNTs.

  16. 40 CFR Table 4 to Subpart Ppp of... - Known Organic HAP From Polyether Polyol Products

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Known Organic HAP From Polyether Polyol Products 4 Table 4 to Subpart PPP of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Production Pt. 63, Subpt. PPP, Table 4 Table 4 to Subpart PPP of Part 63—Known Organic HAP From Polyether...

  17. 40 CFR Table 4 to Subpart Ppp of... - Known Organic HAP From Polyether Polyol Products

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Known Organic HAP From Polyether Polyol Products 4 Table 4 to Subpart PPP of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Polyether Polyols Production Pt. 63, Subpt. PPP, Table 4 Table 4 to Subpart PPP of Part 63—Known Organic HAP...

  18. 40 CFR Table 4 to Subpart Ppp of... - Known Organic HAP From Polyether Polyol Products

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Known Organic HAP From Polyether Polyol Products 4 Table 4 to Subpart PPP of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Polyether Polyols Production Pt. 63, Subpt. PPP, Table 4 Table 4 to Subpart PPP of Part 63—Known Organic HAP...

  19. 40 CFR Table 4 to Subpart Ppp of... - Known Organic HAP From Polyether Polyol Products

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Known Organic HAP From Polyether Polyol Products 4 Table 4 to Subpart PPP of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Pt. 63, Subpt. PPP, Table 4 Table 4 to Subpart PPP of Part 63—Known Organic HAP From Polyether Polyol...

  20. Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Snyder, C. E., Jr.

    1979-01-01

    Boundary lubricating characteristics, thermal stability and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disk apparatus, a tensimeter and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyphenyl ether had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether triazine greater than polyphenylether greater than C-ether greater than fluorinated polyether.

  1. Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Snyder, C. E., Jr.

    1979-01-01

    Boundary lubricating characteristics, thermal stability, and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disk apparatus, a tensimeter, and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyphenyl ether had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether trizine greater than polyphenyl ether greater than C-ether greater than fluorinated polyether.

  2. Handling of Polyvinylsiloxane Versus Polyether for Implant Impressions.

    PubMed

    Farhan, Daniel; Lauer, Wiebke; Heydecke, Guido; Aarabi, Ghazal; Reissmann, Daniel R

    2016-01-01

    This study compared polyvinylsiloxane with polyether in handling dental impressions. Each participant (N = 39) made four impressions, each a combination of pickup and reseating techniques with polyether or polyvinylsiloxane, of one implant cast representing a specific clinical situation (tooth gaps, limited residual dentition, or edentulous jaw). Handling of impressions was subsequently rated by using a 12-item questionnaire with 100-mm visual analog scales. While mean satisfaction scores were higher for polyvinylsiloxane than for polyether (69.5/63.0, P < .001), differences among subgroups were statistically significant only for pickup technique, limited residual dentition, and edentulous jaw. Implant impressions made with polyvinylsiloxane using a pickup technique seem to be the best option for most clinical situations.

  3. Glycerol etherification with TBA: high yield to poly-ethers using a membrane assisted batch reactor.

    PubMed

    Cannilla, Catia; Bonura, Giuseppe; Frusteri, Leone; Frusteri, Francesco

    2014-05-20

    In this work, a novel approach to obtain high yield to poly-tert-butylglycerolethers by glycerol etherification reaction with tert-butyl alcohol (TBA) is proposed. The limit of this reaction is the production of poly-ethers, which inhibits the formation of poly-ethers potentially usable in the blend with conventional diesel for transportation. The results herein reported demonstrate that the use of a water permselective membrane offers the possibility to shift the equilibrium toward the formation of poly-ethers since the water formed during reaction is continuously and selectively removed from the reaction medium by the recirculation of the gas phase. Using a proper catalyst and optimizing the reaction conditions, in a single experiment, a total glycerol conversion can be reached with a yield to poly-ethers close to 70%, which represents data never before reached using TBA as reactant. The approach here proposed could open up new opportunities for all catalytic reactions affected by water formation.

  4. Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties.

    PubMed

    Amdjadi, Parisa; Nojehdehian, Hanieh; Najafi, Farhood; Ghasemi, Amir; Seifi, Massoud; Dashtimoghadam, Erfan; Fahimipour, Farahnaz; Tayebi, Lobat

    2017-07-01

    Since octafluoropentyl methacrylate is an antifouling polymer, surface modification of polyether ether ketone with octafluoropentyl methacrylate is a practical approach to obtaining anti-biofilm biocompatible devices. In the current study, the surface treatment of polyether ether ketone by the use of ultraviolet irradiation, so as to graft (octafluoropentyl methacrylate) polymer chains, was initially implemented and then investigated. The Fourier-transform infrared and nuclear magnetic resonance spectra corroborated the appearance of new signals associated with the fluoroacrylate group. Thermogravimetric curves indicated enhanced asymmetry in the polymer structure due to the introduction of the said new groups. Measuring the peak area in differential scanning calorimetry experiments also showed additional bond formation. Static water contact angle measurements indicated a change in wettability to the more hydrophobic surface. The polyether ether ketone-octafluoropentyl methacrylate surface greatly reduced the protein adsorption. This efficient method can modulate and tune the surface properties of polyether ether ketone according to specific applications.

  5. Characterization of the P. Brevis Polyether Neurotoxin Binding Component in Excitable Membranes

    DTIC Science & Technology

    1991-09-14

    International Conference on Ciguatera . (T. R. Tosteson and D. Ballantyne, Eds.) in press. Baden, D.G. (1991) The Polyether Brevetoxins and Site Five of the...Confomrations and Potency Correlations. Third Intl. Conf. Ciguatera , Puerto Rico 1990. Tosteson, T.R., and Baden, D.G. Polyether Dinoflagellate Toxins...and Caribbean Ciguatera : Correlation of Fish Toxins with Standard Toxins Third International Conference on Ciguatera , Peurto Rico 1990. Baden, D.G

  6. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS.

    PubMed

    Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji

    2015-09-01

    Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS.

  7. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS

    PubMed Central

    Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji

    2015-01-01

    Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS. PMID:28793537

  8. Synthesis and properties of amphiphilic hyperbranched polyethers as pigment dispersant

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Zhou, Y. J.; Long, S. J.; Liu, Y. G.; Li, J. H.

    2018-01-01

    Hyperbranched polymers possess prominent properties such as low viscosity, good solubility, high rheological property, environmental non-toxic, and so on, which have potential applications in coatings. In this study, the amphiphilic hyperbranched polyethers (AHPs) consisting of hydrophobic hyperbranched polyethers core and hydrophilic poly (ethylene glycol) arms with different degree of branching (DB) under various reaction temperatures was prepared by the cation ring-opening polymerization. Their structures were characterized by IR, 13CNMR and GPC. Their dispersion properties for pigment particles were investigated. The AHP47 with 0.47 DB was found to have good dispersion properties for Yellow HGR. This work would provide experimental data and theoretical foundation for the application of hyperbranched polyethers in environmental protection coating.

  9. Age of the host and other factors affecting the production with urethane of pulmonary adenomas in mice.

    PubMed

    ROGERS, S

    1951-05-01

    Young, rapidly growing mice are greatly more responsive to the adenoma-inducing influence of urethane than are those just arriving at maturity. This is manifest both in the proportion of animals developing the tumors and in their number per individual. An amount of urethane per gram body weight which suffices to induce adenomas in only an occasional 8-week-old animal will cause them to appear in quantity in more than half the 3-week-old mice injected. There is an almost absolute inverse correlation between the rate of growth of the pulmonary tissue between the ages of 2 and 10 weeks and the response to urethane in terms of adenomas. Hence the conclusion seems justified that the natural proliferative activity of the alveolar cells during youth plays a major part in the formation of the tumors. After the 6th week the age differences become relatively slight, yet there is reason to think that they continue in some degree as life goes on. Urethane has no effect to promote multiplication of the cells it has rendered neoplastic, its whole role being to initiate neoplastic change. The abnormalities induced by urethane in the nucleus of normal and neoplastic cells, as observed by previous workers, have suggested that the substance brings about the adenomatous state by acting upon the nucleus. But colchicine, also a karyolytic poison causing pronounced nuclear changes, does not alter in the least the yield of adenomas to urethane when administered concurrently. Nor does fasting influence the yield, though it markedly reduces mitotic activity. The meaning of these facts is discussed.

  10. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.

    PubMed

    De Nardo, Luigi; Bertoldi, Serena; Cigada, Alberto; Tanzi, Maria Cristina; Haugen, Håvard Jostein; Farè, Silvia

    2012-09-27

    Porous Shape Memory Polymers (SMPs) are ideal candidates for the fabrication of defect fillers, able to support tissue regeneration via minimally invasive approaches. In this regard, control of pore size, shape and interconnection is required to achieve adequate nutrient transport and cell ingrowth. Here, we assessed the feasibility of the preparation of SMP porous structures and characterized their chemico-physical properties and in vitro cell response. SMP scaffolds were obtained via solvent casting/particulate leaching of gelatin microspheres, prepared via oil/water emulsion. A solution of commercial polyether-urethane (MM-4520, Mitsubishi Heavy Industries) was cast on compacted microspheres and leached-off after polymer solvent evaporation. The obtained structures were characterized in terms of morphology (SEM and micro-CT), thermo-mechanical properties (DMTA), shape recovery behavior in compression mode, and in vitro cytocompatibility (MG63 Osteoblast-like cell line). The fabrication process enabled easy control of scaffold morphology, pore size, and pore shape by varying the gelatin microsphere morphology. Homogeneous spherical and interconnected pores have been achieved together with the preservation of shape memory ability, with recovery rate up to 90%. Regardless of pore dimensions, MG63 cells were observed adhering and spreading onto the inner surface of the scaffolds obtained for up to seven days of static in vitro tests. A new class of SMP porous structures has been obtained and tested in vitro: according to these preliminary results reported, SMP scaffolds can be further exploited in the design of a new class of implantable devices.

  11. Intravaginal ring delivery of tenofovir disoproxil fumarate for prevention of HIV and herpes simplex virus infection.

    PubMed

    Mesquita, Pedro M M; Rastogi, Rachna; Segarra, Theodore J; Teller, Ryan S; Torres, N Merna; Huber, Ashley M; Kiser, Patrick F; Herold, Betsy C

    2012-07-01

    A safe and effective topical prevention strategy will likely require sustained delivery of potent antiviral drugs and a delivery system that simultaneously maximizes drug distribution and overcomes the behavioural challenges related to adherence. Activity against HIV and herpes simplex virus (HSV) would be advantageous, given the epidemiological link between the two pathogens. We hypothesize that tenofovir disoproxil fumarate (tenofovir DF), a prodrug of tenofovir, may be more potent than tenofovir and ideal for sustained intravaginal ring (IVR) delivery. The anti-HIV and anti-HSV activity of tenofovir and tenofovir DF were assessed in cell and explant models. Cumulative tenofovir DF release and stability from polyether urethane (PEU), ethylene-co-vinyl acetate (EVA) and silicone IVRs were compared, and the activity and safety of drug released were evaluated in cervical explants and in a polarized dual-chamber model. Tenofovir DF inhibited HIV and HSV at ≈ 100-fold lower concentrations than tenofovir and retained activity in the presence of semen. PEU rings delivered >1 mg/day of tenofovir DF for 30 days. Pre-treatment of cervical explants with 10 μg/mL tenofovir DF or eluants from PEU minirings resulted in >90% inhibition of HIV and reduced HSV-2 yields by 2.5 log. Tenofovir DF and eluants did not prevent cell growth or polarization, or have any deleterious effects on an epithelial barrier. The findings support the development of a PEU tenofovir DF ring, which may provide potent and sustained protection against HIV and HSV.

  12. Coating of Dacron vascular grafts with an ionic polyurethane: a novel sealant with protein binding properties.

    PubMed

    Phaneuf, M D; Dempsey, D J; Bide, M J; Quist, W C; LoGerfo, F W

    2001-03-01

    The purpose of this study was to develop a novel sealant that would seal prosthetic vascular graft interstices and be accessible for protein binding. Crimped knitted Dacron vascular grafts were cleaned (CNTRL) and hydrolyzed in boiling sodium hydroxide (HYD). These HYD grafts were sealed using an 11% solids solution of a polyether-based urethane with carboxylic acid groups (PEU-D) via a novel technique that employs both trans-wall and luminal perfusion. Carboxylic acid content, determined via methylene blue dye uptake, was 2.3- and 4.2-fold greater in PEU-D segments (1.0+/-0.27 nmol/mg) as compared to HYD and CNTRL segments, respectively. Water permeation through PEU-D graft (1.1+/-2 ml/cm2 min(-1)) was comparable to collagen-impregnated Dacron (9.8+/-10 ml/cm2 min(-1)). Non-specific 125I-albumin (125I-Alb) binding to PEU-D segments (18+/-3 ng/mg) was significantly lower than HYD and CNTRL segments. 125I-Alb linkage to PEU-D using the crosslinker EDC resulted in 5.7-fold greater binding (103+/-2 ng/mg) than non-specific PEU-D controls. However, covalent linkage of 125I-Alb to PEU-D was 4.9- and 5.9-fold less than CNTRL and HYD segments with EDC, respectively. Thus, ionic polyurethane can be applied to a pre-formed vascular graft, seal the interstices and create "anchor" sites for protein attachment.

  13. Effect of Hyaluronic Acid Incorporation Method on the Stability and Biological Properties of Polyurethane-Hyaluronic Acid Biomaterials

    PubMed Central

    Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.

    2014-01-01

    The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670

  14. Systematic Experimental and Computational Investigation of Ion Transport in Novel Polyether Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Webb, Michael; Jung, Yukyung; Zheng, Qi; Miller, Thomas, III; Coates, Geoffrey; Balsara, Nitash

    Polyethers, such as poly(ethylene oxide) (PEO), are considered to be the most promising polymer electrolyte materials due to their high ionic conductivity and electrochemical stability, both essential for battery applications. To gain a fundamental understanding of the transport properties of polyether systems, we design a systematic set of linear PEO-like polymers to explore the effect of adding carbon spacers to the backbone of the chain. Ac impedance spectroscopy is employed to measure the ionic conductivity of polyether/lithium salt electrolytes; the results elucidate tradeoffs between lowering the glass transition temperature and diluting the polar groups on the polymer chain. Molecular-level insight is provided by molecular dynamics simulations of the polyether electrolytes. We define the useful and intuitive metric of ``connectivity'', a parameter calculated from simulations which describes the physical arrangements of solvation sites in a polymer melt. Direct comparison of experiment and theory allows us to determine the relationship between connectivity and conductivity. The comparison provides insight regarding the factors that control conductivity, and highlights considerations that must be taken when designing new ion-conducting polymers.

  15. Biodegradation of polyether algal toxins--isolation of potential marine bacteria.

    PubMed

    Shetty, Kateel G; Huntzicker, Jacqueline V; Rein, Kathleen S; Jayachandran, Krish

    2010-12-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6×10(7) per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp.

  16. Development of low viscosity alkane-based urethane for connector potting applications

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1983-01-01

    Two series of saturated hydrocarbon-based urethanes were prepared with isophorone diisocyanate and one series with methyl bis (4-cyclohexyl isocyanate). The urethanes with molecular weights as great as 2500 had viscosities low enough and a working life long enough to be used in potting, molding, and coating applications. Specimens were prepared and mechanical properties such as hardness, tensile strength elongation, and tear strength were determined. Thermomechanical properties (glass transition and expansion coefficient) and thermogravimetric properties were determined.

  17. Thio-urethanes improve properties of dual-cured composite cements.

    PubMed

    Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S

    2014-12-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and bond strength to dentin while demonstrating reduced contraction stress. All of these benefits are derived without compromising the methacrylate conversion of the resin component. The modification does not require changing the operatory technique. © International & American Associations for Dental Research.

  18. Thio-urethanes Improve Properties of Dual-cured Composite Cements

    PubMed Central

    Bacchi, A.; Dobson, A.; Ferracane, J.L.; Consani, R.; Pfeifer, C.S.

    2014-01-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm2 × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey’s test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and bond strength to dentin while demonstrating reduced contraction stress. All of these benefits are derived without compromising the methacrylate conversion of the resin component. The modification does not require changing the operatory technique. PMID:25248610

  19. Material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties produced using multi-wall carbon nanotubes wrapped with poly(ether sulphone) in a poly(ether ether ketone) matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Shuling; Wang, Hongsong; Wang, Guibin; Jiang, Zhenhua

    2012-07-01

    A material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties was produced using multi-wall carbon nanotubes (MWCNTs) wrapped with poly(ether sulphone) (PES) dispersed in a poly(ether ether ketone) (PEEK) matrix. The material was fabricated using melt-blending, and MWCNT/PEEK composites show different degrees of improvement in the measured dielectric, mechanical, and thermal properties as compared to pure PEEK. This is attributed to the high conductivity of MWCNTs, the effect of wrapping MWCNTs with PES, the good dispersion of the wrapped MWCNTs in PEEK, and the strong interfacial adhesion between the wrapped MWCNTs and the PEEK.

  20. Complexation of triptycene-derived macrotricyclic polyether with paraquat derivatives, diquat, and a 2,7-diazapyrenium salt: guest-induced conformational changes of the host.

    PubMed

    Han, Ying; Cao, Jing; Li, Peng-Fei; Zong, Qian-Shou; Zhao, Jian-Min; Guo, Jia-Bin; Xiang, Jun-Feng; Chen, Chuan-Feng

    2013-04-05

    Complexation between a triptycene-derived macrotricyclic polyether containing two dibenzo-[30]-crown-10 cavities and different functionalized paraquat derivatives, diquat, and a 2,7-diazapyrenium salt in both solution and solid state was investigated in detail. It was found that depending on the guests with different terminal functional groups and structures, the macrotricyclic polyether could form 1:1 or 1:2 complexes with the guests in different complexation modes in solution and also in the solid state. Especially, the conformation of the macrotricyclic polyether was efficiently adjusted by the encapsulated guests, which was to some extent similar to substrate-induced fit of enzymes. Moreover, the binding and releasing of the guests in the complexes could be controlled by potassium ions.

  1. STUDIES OF THE MECHANISM OF ACTION OF URETHANE IN INITIATING PULMONARY ADENOMAS IN MICE

    PubMed Central

    Rogers, Stanfield

    1957-01-01

    The process of carcinogenesis following exposure of mice to urethane is demonstrated in the present work to be intimately related to nucleic acid synthesis. Injection of animals with a DNA hydrolysate immediately prior to a single exposure of the animals to urethane markedly reduced the number of pulmonary adenomas initiated. Aminopterin, known to interfere in nucleic acid synthesis (46), potentiated the carcinogenic action of urethane and this potentiation was blocked by injection of a DNA hydrolysate. Of the components and precursors of nucleic acids the pyrimidine series seemed especially concerned. Alterations in the utilization of oxaloacetate, ureidosuccinic acid, dihydro-orotic acid, orotic acid, cytidylic acid, and thymine appeared to be critical steps in the oncogenic process, following upon the primary disorder of cellular metabolism initiated by the carcinogen. All these substances except oxaloacetate profoundly reduced the number of tumors initiated by urethane. Oxaloacetate potentiated the carcinogenic effect. When these results are viewed together and in relation to known facts concerning nucleic acid synthesis they provide evidence suggesting that the point of action of the carcinogen is in the pathway of nucleic acid synthesis below orotic acid and perhaps at the level of ureidosuccinic acid. The potentiating influence of adenine, 4-amino-5-imidazole carboxamide, and aminopterin, the lack of effect of uracil, and the inhibitory influence of thymine together suggest that DNA rather than RNA is the nucleic acid critical to the oncogenic response of mice to urethane. PMID:13416469

  2. Guanidinylated polyethyleneimine-polyoxypropylene-polyoxyethylene conjugates as gene transfection agents.

    PubMed

    Bromberg, Lev; Raduyk, Svetlana; Hatton, T Alan; Concheiro, Angel; Rodriguez-Valencia, Cosme; Silva, Maite; Alvarez-Lorenzo, Carmen

    2009-05-20

    Conjugates of linear and branched polyethyleneimine (PEI) and monoamine polyether Jeffamine M-2070 (PO/EO mol ratio 10/31, 2000 Da) were synthesized through polyether activation by cyanuric chloride followed by attachment to PEI and guanidinylation by 1H-pyrazole-carboxamidine hydrochloride. The resulting guanidinylated PEI-polyether conjugates (termed gPEI-Jeffamine) efficiently complexed plasmid DNA, and their polyplexes possessed enhanced colloidal stability in the presence of serum proteins. In vitro studies with mammalian CHO-1, 3T3, and Cos-7 cell lines demonstrated improved transfection efficiency of the pCMVbeta-gal plasmid/gPEI-Jeffamine polyplexes. The guanidinylation of the amino groups of PEI and the conjugation of PEI with the Jeffamine polyether enhanced the conjugates' interaction with genetic material and reduced the cytotoxicity of the polyplexes in experiments with the L929 cell line.

  3. Parasites modulate within-colony activity and accelerate the temporal polyethism schedule of a social insect, the honey bee.

    PubMed

    Natsopoulou, Myrsini E; McMahon, Dino P; Paxton, Robert J

    Task allocation in social insect colonies is generally organised into an age-related division of labour, termed the temporal polyethism schedule, which may in part have evolved to reduce infection of the colony's brood by pests and pathogens. The temporal polyethism schedule is sensitive to colony perturbations that may lead to adaptive changes in task allocation, maintaining colony homeostasis. Though social insects can be infected by a range of parasites, little is known of how these parasites impact within-colony behaviour and the temporal polyethism schedule. We use honey bees ( Apis mellifera ) experimentally infected by two of their emerging pathogens, Deformed wing virus (DWV), which is relatively understudied concerning its behavioural impact on its host, and the exotic microsporidian Nosema ceranae . We examined parasite effects on host temporal polyethism and patterns of activity within the colony. We found that pathogens accelerated the temporal polyethism schedule, but without reducing host behavioural repertoire. Infected hosts exhibited increased hyperactivity, allocating more time to self-grooming and foraging-related tasks. The strength of behavioural alterations we observed was found to be pathogen specific; behavioural modifications were more pronounced in virus-treated hosts versus N. ceranae -treated hosts, with potential benefits for the colony in terms of reducing within-colony transmission. Investigating the effects of multiple pathogens on behavioural patterns of social insects could play a crucial role in understanding pathogen spread within a colony and their effects on colony social organisation.

  4. Influence of disinfection with peracetic acid and hypochlorite in dimensional alterations of casts obtained from addition silicone and polyether impressions.

    PubMed

    Queiroz, Daher Antonio; Peçanha, Marcelo Massaroni; Neves, Ana Christina Claro; Frizzera, Fausto; Tonetto, Mateus Rodrigues; Silva-Concílio, Laís Regiane

    2013-11-01

    Dental impressions disinfection is important to reduce the risk of cross contamination but this process may produce dimensional distortions. Peracetic acid is a disinfectant agent with several favorable characteristics yet underutilized in Dentistry. The aim of this paper is to compare the dimensional stability of casts obtained from addition silicone and polyether impressions that were immersed for 10 minutes in a solution of 0.2% peracetic acid or 1% sodium hypochlorite. Sixty samples in type IV gypsum were produced after a master cast that simulated a full crown preparation of a maxillary premolar. Samples were divided in 6 groups (n = 10) according to the impression material and disinfection agent: Group AC--addition silicone control (without disinfectant); Group APA--addition silicone + 0.2% peracetic acid; Group AH--addition silicone + 1% sodium hypochlorite; Group PC--polyether control (without disinfectant); Group PPA--polyether + 0.2% peracetic acid; Group PH--polyether + 1% sodium hypochlorite. Cast height, base and top diameter were measured and a mean value was obtained for each sample and group all data was statistically analyzed (ANOVA, p < 0.05). There was not a significant statistical difference between addition silicone and polyether impressions regardless of the disinfectant materials. It can be concluded that disinfection with the proposed agents did not produce significant alterations of the impressions and the peracetic acid could be considered a reliable material to disinfect dental molds.

  5. Biodegradation of polyether algal toxins–Isolation of potential marine bacteria

    PubMed Central

    SHETTY, KATEEL G.; HUNTZICKER, JACQUELINE V.; REIN, KATHLEEN S.; JAYACHANDRAN, KRISH

    2012-01-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6 × 107 per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp. PMID:20954040

  6. Flexible Vinyl and Urethane Coating and Printing: New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn about the New Source Performance Standards (NSPS) for flexible vinyl and urethane coating and printing by reading the rule summary, the rule history, the code of federal regulations subpart and related rules

  7. Allergic contact dermatitis due to urethane acrylate in ultraviolet cured inks.

    PubMed Central

    Nethercott, J R; Jakubovic, H R; Pilger, C; Smith, J W

    1983-01-01

    Seven workers exposed to ultraviolet printing inks developed contact dermatitis. Six cases were allergic and one irritant. A urethane acrylate resin accounted for five cases of sensitisation, one of which was also sensitive to pentaerythritol triacrylate and another also to an epoxy acrylate resin. One instance of allergy to trimethylpropane triacrylate accounted for the sixth case of contact dermatitis in this group of workers. An irritant reaction is presumed to account for the dermatitis in the individual not proved to have cutaneous allergy by patch tests. In this instance trimethylpropane triacrylate was thought to be the most likely irritating agent. Laboratory investigation proved urethane acrylate to be an allergen. The results of investigations of the sensitisation potentials of urethane acrylate, methylmethacrylate, epoxy acrylate resins, toluene-2,4-diisocyanate, and other multifunctional acrylic monomers in the albino guinea pig are presented. The interpretation of such predictive tests is discussed. Images PMID:6223656

  8. An investigation of the preparation of high molecular weight perfluorocarbon polyethers

    NASA Technical Reports Server (NTRS)

    Watts, R. O.; Tarrant, P.

    1972-01-01

    High molecular weight perfluorocarbon polyether gums were obtained by photolysis of perfluorodienes and discyl fluorides containing a perfluorocarbon polyether backbond. The materials obtained are represented by chemical formulas. A method was developed whereby reactive acyl fluoride and trifluorovinyl end groups are converted into inert structures. In order to investigate the possible preparation of difunctional molecules which may be useful in polymer synthesis, the reactions of hexafluoropropene oxide (HFPO) with Grignard and organolithium reagents have been studied. Reactions of various nucleophilic reagents with HFPO were also investigated.

  9. Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation.

    PubMed

    Gong, Houjian; Xu, Guiying; Liu, Teng; Xu, Long; Zhai, Xueru; Zhang, Jian; Lv, Xin

    2012-09-25

    The block polyethers PEO-PPO-ph-PPO-PEO (BPE) and PPO-PEO-ph-PEO-PPO (BEP) are synthesized by anionic polymerization using bisphenol A as initiator. Compared with Pluronic P123, the aggregation behaviors of BPE and BEP at an air/water interface are investigated by the surface tension and dilational viscoelasticity. The molecular construction can influence the efficiency and effectiveness of block polyethers in decreasing surface tension. BPE has the most efficient ability to decrease surface tension of water among the three block polyethers. The maximum surface excess concentration (Γ(max)) of BPE is larger than that of BEP or P123. Moreover, the dilational modulus of BPE is almost the same as that of P123, but much larger than that of BEP. The molecular dynamics simulation provides the conformational variations of block polyethers at the air/water interface.

  10. Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin

    PubMed Central

    Liu, Tiangang; Lin, Xin; Zhou, Xiufen; Deng, Zixin; Cane, David E.

    2008-01-01

    Summary The polyketide backbone of the polyether ionophore antibiotic nanchangmycin (1) is assembled by a modular polyketide synthase in Streptomyces nanchangensis NS3226. The ACP-bound polyketide is thought to undergo a cascade of oxidative cyclizations to generate the characteristic polyether. Deletion of the glycosyl transferase gene nanG5 resulted in accumulation of the corresponding nanchangmycin aglycone (6). The discrete thioesterase NanE exhibited a nearly 17-fold preference for hydrolysis of 4, the N-acetylcysteamine (SNAC) thioester of nanchangmycin, over 7, the corresponding SNAC derivative of the aglycone, consistent with NanE-catalyzed hydrolysis of ACP-bound nanchangmycin being the final step in the biosynthetic pathway. Site directed mutagenesis established that Ser96, His261, and Asp120, the proposed components of the NanE catalytic triad, were all essential for thioesterase activity, while Trp97 was shown to influence the preference for polyether over polyketide substrates. PMID:18482697

  11. Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures.

    PubMed

    Imaizumi, Satoru; Kato, Yuichi; Kokubo, Hisashi; Watanabe, Masayoshi

    2012-04-26

    Two solid polymer electrolytes, composed of a polyether-segmented polyurethaneurea (PEUU) and either a lithium salt (lithium bis(trifluoromethanesulfonyl)amide: Li[NTf2]) or a nonvolatile ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide: [C2mim][NTf2]), were prepared in order to utilize them as ionic polymer actuators. These salts were preferentially dissolved in the polyether phases. The ionic transport mechanism of the polyethers was discussed in terms of the diffusion coefficients and ionic transference numbers of the incorporated ions, which were estimated by means of pulsed-field gradient spin-echo (PGSE) NMR. There was a distinct difference in the ionic transport properties of each polymer electrolyte owing to the difference in the magnitude of interactions between the cations and the polyether. The anionic diffusion coefficient was much faster than that of the cation in the polyether/Li[NTf2] electrolyte, whereas the cation diffused faster than the anion in the polyether/[C2mim][NTf2] electrolyte. Ionic polymer actuators, which have a solid-state electric-double-layer-capacitor (EDLC) structure, were prepared using these polymer electrolyte membranes and ubiquitous carbon materials such as activated carbon and acetylene black. On the basis of the difference in the motional direction of each actuator against applied voltages, a simple model of the actuation mechanisms was proposed by taking the difference in ionic transport properties into consideration. This model discriminated the behavior of the actuators in terms of the products of transference numbers and ionic volumes. The experimentally observed behavior of the actuators was successfully explained by this model.

  12. Production development of organic nonflammable spacecraft potting encapsulating and conformal coating compounds. Volume 2: Tables

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1974-01-01

    Tables are presented which include: material properties; elemental analysis; silicone RTV formulations; polyester systems and processing; epoxy preblends and processing; urethane materials and processing; epoxy-urethanes elemental analysis; flammability test results, and vacuum effects.

  13. Cold recycle pavement using urea urethane dispersion agent and rubber : final report.

    DOT National Transportation Integrated Search

    1994-12-01

    This research study was a joint venture of the Oregon Department of Transportation (ODOT), Evans, Loosely, Inc., and Roseburg Paving Company, to evaluate the use of Urea Urethane Dispersion (UUD) agent, with finely ground tire rubber, high float emul...

  14. Evaluation of urethane and carbide-tipped blades on wheel-supported snow plows.

    DOT National Transportation Integrated Search

    1997-01-01

    The objective of this study was to evaluate the performance of urethane and carbide-tipped snow plow blades on wheel supported plows. Their performance was compared to that of VDOT's standard blade arrangement: carbide-tipped blades on plows without ...

  15. Polyether ether ketone encased monolith frits made of polyether ether ketone tubing with a 0.25 mm opening resulting in an improved separation performance in liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2016-05-01

    Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evaluation of pressor and visceromotor reflex responses to bladder distension in urethane anesthetized rats.

    PubMed

    Blatt, Lauren K; Lashinger, Erin S R; Laping, Nicholas J; Su, Xin

    2009-01-01

    We tested cardiovascular and visceromotor reflex (VMR) responses to urinary bladder distension (UBD) in urethane anesthetized rats to see if it can replicate the response pattern and the inhibition of bladder nociceptive transmission by analgesics seen in isoflurane anesthetized animals. Female Sprague-Dawley rats under 3% isoflurane anesthesia were acutely instrumented with jugular venous, carotid arterial, and bladder cannulas for drug administration, blood pressure (BP) measurement, and bladder distension, respectively. Needle electrodes were placed directly into the abdominal musculature to measure myoelectrical activity subsequent to phasic UBD (30 sec in 3 min intervals). A cardiovascular response (pressor) and a VMR response (a contraction of abdominal and hind limb musculature) to UBD were evaluated in urethane (1.2 g/kg, i.v.) or isoflurane (1%) anesthetized rats. Pressor and VMR responses to noxious UBD (60 mmHg) were generated under both anesthesics. The thresholds of stimulus response functions for both pressor and VMR responses were not affected by either anesthesics. However, the magnitude of the maximal pressor response was significantly reduced in urethane anesthesia. The analgesics, morphine, and mexiletine, significantly inhibited the VMR response to noxious UBD under both anesthetics, but the intensities of the inhibition from both analgesics under urethane anesthesia were much lower than under isoflurane anesthesia (ID50: 2.07 mg/kg vs. 0.88 mg/kg for morphine, >10 mg/kg vs. 0.47 mg/kg for mexiletine). The rat urinary bladder distension model in urethane anesthetized rats demonstrates a blunted maximal pressor response and a reduced inhibition of visceral nociceptive transmission by analgesics. Neurourol. Urodynam. 28:442-446, 2009. (c) 2008 Wiley-Liss, Inc.

  17. An Intravaginal Ring for the Simultaneous Delivery of an HIV-1 Maturation Inhibitor and Reverse-Transcriptase Inhibitor for Prophylaxis of HIV Transmission.

    PubMed

    Ugaonkar, Shweta R; Clark, Justin T; English, Lexie B; Johnson, Todd J; Buckheit, Karen W; Bahde, Robert J; Appella, Daniel H; Buckheit, Robert W; Kiser, Patrick F

    2015-10-01

    Nucleocapsid 7 (NCp7) inhibitors have been investigated extensively for their role in impeding the function of HIV-1 replication machinery and their ability to directly inactivate the virus. A class of NCp7 zinc finger inhibitors, S-acyl-2-mercaptobenzamide thioesters (SAMTs), was investigated for topical drug delivery. SAMTs are inherently unstable because of their hydrolytically labile thioester bond, thus requiring formulation approaches that can lend stability. We describe the delivery of N-[2-(3,4,5-trimethoxybenzoylthio)benzoyl]-β-alaninamide (SAMT-10), as a single agent antiretroviral (ARV) therapeutic and in combination with the HIV-1 reverse-transcriptase inhibitor pyrimidinedione IQP-0528, from a hydrophobic polyether urethane (PEU) intravaginal ring (IVR) for a month. The physicochemical stability of the ARV-loaded IVRs was confirmed after 3 months at 40°C/75% relative humidity. In vitro, 25 ± 3 mg/IVR of SAMT-10 and 86 ± 13 mg/IVR of IQP-0528 were released. No degradation of the hydrolytically labile SAMT-10 was observed within the matrix. The combination of ARVs had synergistic antiviral activity when tested in in vitro cell-based assays. Toxicological evaluations performed on an organotypic EpiVaginal(™) tissue model demonstrated a lack of formulation toxicity. Overall, SAMT-10 and IQP-0528 were formulated in a stable PEU IVR for sustained release. Our findings support the need for further preclinical evaluation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3426-3439, 2015. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Role of the polymer phase in the mechanics of nacre-like composites

    NASA Astrophysics Data System (ADS)

    Niebel, Tobias P.; Bouville, Florian; Kokkinis, Dimitri; Studart, André R.

    2016-11-01

    Although strength and toughness are often mutually exclusive properties in man-made structural materials, nature is full of examples of composite materials that combine these properties in a remarkable way through sophisticated multiscale architectures. Understanding the contributions of the different constituents to the energy dissipating toughening mechanisms active in these natural materials is crucial for the development of strong artificial composites with a high resistance to fracture. Here, we systematically study the influence of the polymer properties on the mechanics of nacre-like composites containing an intermediate fraction of mineral phase (57 vol%). To this end, we infiltrate ceramic scaffolds prepared by magnetically assisted slip casting (MASC) with monomers that are subsequently cured to yield three drastically different polymers: (i) poly(lauryl methacrylate) (PLMA), a soft and weak elastomer; (ii) poly(methyl methacrylate) (PMMA), a strong, stiff and brittle thermoplastic; and (iii) polyether urethane diacrylate-co-poly(2-hydroxyethyl methacrylate) (PUA-PHEMA), a tough polymer of intermediate strength and stiffness. By combining our experimental data with finite element modeling, we find that stiffer polymers can increase the strength of the composite by reducing stress concentrations in the inorganic scaffold. Moreover, infiltrating the scaffolds with tough polymers leads to composites with high crack initiation toughness KIC. An organic phase with a minimum strength and toughness is also required to fully activate the mechanisms programmed within the ceramic structure for a rising R-curve behavior. Our results indicate that a high modulus of toughness is a key parameter for the selection of polymers leading to strong and tough bioinspired nacre-like composites.

  19. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth.

    PubMed

    Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H

    2002-01-01

    A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.

  20. Highly selective Ba2+ separations with acyclic, lipophilic di-[N-(X)sulfonyl carbamoyl] polyethers.

    PubMed

    Elshani, Sadik; Chun, Sangki; Amiri-Eliasi, Bijan; Bartsch, Richard A

    2005-01-14

    New lipophilic acyclic polyethers with two N-(X)sulfonyl carbamoyl groups of "tunable" acidity exhibit remarkable selectivity for Ba2+ over other alkaline earth metal ions in competitive solvent extraction and transport across polymer inclusion membranes.

  1. Resin cements formulated with thio-urethanes can strengthen porcelain and increase bond strength to ceramics.

    PubMed

    Bacchi, Atais; Spazzin, Aloisio Oro; de Oliveira, Gabriel Rodrigues; Pfeifer, Carmem; Cesar, Paulo Francisco

    2018-06-01

    The use of thio-urethane oligomers has been shown to significantly improve the mechanical properties of resin cements (RCs). The aim of this study was to use thio-urethane-modified RC to potentially reinforce the porcelain-RC structure and to improve the bond strength to zirconia and lithium disilicate. Six oligomers were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP, P) or trimethylol-tris-3-mercaptopropionate (TMP, T) - with di-functional isocyanates - 1,6-Hexanediol-diissocyante (HDDI) (aliphatic, AL) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic, AR) or Dicyclohexylmethane 4,4'-Diisocyanate (HMDI) (cyclic, CC). Thio-urethanes (20 wt%) were added to a BisGMA/UDMA/TEGDMA organic matrix. Filler was introduced at 60 wt%. The microshear bond strength (μSBS), Weibull modulus (m), and failure pattern of RCs bonded to zirconia (ZR) and lithium disilicate (LD) ceramics was evaluated. Biaxial flexural test and fractographic analysis of porcelain discs bonded to RCs were also performed. The biaxial flexural strength (σ bf ) and m were calculated in the tensile surfaces of porcelain and RC structures (Z = 0 and Z = -t 2 , respectively). The μSBS was improved with RCs formulated with oligomers P_AL or T_AL bonded to LD and P_AL, P_AR or T_CC bonded to zirconia in comparison to controls. Mixed failures predominated in all groups. σ bf had superior values at Z = 0 with RCs formulated with oligomers P_AL, P_AR, T_AL, or T_CC in comparison to control; σ bf increased with all RCs composed by thio-urethanes at Z = -t 2 . Fractographic analysis revealed all fracture origins at Z = 0. The use of specific thio-urethane oligomers as components of RCs increased both the biaxial flexural strength of the porcelain-RC structure and the μSBS to LD and ZR. The current investigation suggests that it is possible to reinforce the porcelain-RC pair and obtain higher bond strength to LD and ZR with RCs formulated with selected types of thio-urethane oligomers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Comparative study to evaluate the accuracy of polyether occlusal bite registration material and occlusal registration wax as a guide for occlusal reduction during tooth preparation.

    PubMed

    Joshi, Niranjan; Shetty, Sridhar N; Prasad, Krishna D

    2013-01-01

    The use of different materials and techniques has been studied to decide the safest quantum of reduction of the occlusal surfaces. However, these methods provide limited information as to the actual amount of reduction with limitations in accuracy, accessibility and complexity. The objective of this study was to compare and evaluate the reliability of the most commonly used occlusal registration wax that with polyether bite registration material as a guide for occlusal reduction required during tooth preparations. For the purpose of this study, 25 abutment teeth requiring tooth preparation for fixed prosthesis were selected and tooth preparations carried out. Modeling wax strips of specific dimensions were placed onto the cast of prepared tooth, which was mounted on maximum intercuspation on the articulator and the articulator was closed. The thickness of the wax registration was measured at three zones namely two functional cusps and central fossa. Similar measurements were made using the polyether bite registration material and prosthesis at the same zones. The data was tabulated and was subjected to statistical analysis using anova test and Tukey honestly significant difference test. The differences in thickness between wax record and prosthesis by 0.1346 mm, whereas the difference between polyether and prosthesis was 0.02 mm with a P value of 0.042, which is statistically significant. This means that the wax record was 8.25% larger than the prosthesis while polyether was just 1.27% larger than the prosthesis. The clinical significance of the above analysis is that Ramitec polyether bite registration material is most suitable material when compared with commonly used modeling wax during the tooth preparation.

  3. Laboratory and test-site testing of moisture-cured urethanes on steel in salt-rich environment.

    DOT National Transportation Integrated Search

    2000-11-01

    Three 3-coat moisture-cured (MC) urethane commercial products formulated for protecting new steel (SSPC-SP 10) and power : tool-cleaned steel (SSPC-SP 3) surfaces against corrosion were evaluated; the total coating film thickness was about 75 : micro...

  4. Laboratory and test-site testing of moisture-cured urethanes on steel in salt-rich environment

    DOT National Transportation Integrated Search

    2000-12-01

    Three 3-coat moisture-cured (MC) urethane commercial products formulated for protecting new steel (SSPC-SP 10) and power tool-cleaned steel (SSPC-SP 3) surfaces against corrosion were evaluated; the total coating film thickness was about 75 microns. ...

  5. Evaluation of urethane snow plow blades as an alternative to rubber blades.

    DOT National Transportation Integrated Search

    1995-01-01

    The purpose of this study was to determine if urethane blades are a suitable alternative to rubber blades for use on snow plows. The importance of finding a suitable alternative is due to the anticipated increased need to protect the new, longer last...

  6. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions.

    PubMed

    Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao

    2016-02-07

    The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.

  7. Novel amide polar-embedded reversed-phase column for the fast liquid chromatography-tandem mass spectrometry method to determine polyether ionophores in environmental waters.

    PubMed

    Herrero, P; Borrull, F; Pocurull, E; Marcé, R M

    2012-11-09

    A fast chromatographic method has been developed that takes less than 5 min per run to determine five polyether ionophores with a novel amide polar-embedded reversed-phase column coupled to a triple quadrupole mass spectrometer. A comparison between Oasis HLB and Oasis MAX sorbents for the solid-phase extraction was done. Oasis HLB sorbent gave recoveries close to 90% and the repeatability (%RSD, 25-100 ng/L, n=3) of the method was less than 7% for all compounds in all matrices. The presence of polyether ionophores in environmental waters such as river water and sewage was investigated. Monensin and narasin were frequently determined in influent and effluent sewage at concentrations from 10 ng/L to 47 ng/L in influents and from 6 ng/L to 34 ng/L in effluents. In river waters, polyether ionophores were not detected in any sample. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Two-piece impression procedure for implant-retained orbital prostheses.

    PubMed

    Ozcelik, Tuncer Burak; Yilmaz, Burak

    2012-01-01

    Obtaining an accurate impression of facial tissues with undercuts and extraoral implants has always been a challenge for both clinicians and patients. This report describes a three-step, two-piece technique that enables an accurate and comfortable impression of undercut tissues and extraoral implants in an orbital defect. An impression of the basal tissue surface of the defect area was made using a medium-body polyether impression material followed by an impression of the entire face of the patient made with a polyvinyl siloxane (PVS) impression material. First, the PVS impression material was removed; second, the impression posts were removed from the magnets; and third, the polyether impression was removed from the defect. The impression posts were attached to the implant analogs and placed in the negative spaces in the polyether impression. The polyether impression, which carries the implant analogs and impression posts, was placed in the PVS impression through the negative spaces. This technique minimizes trauma to the soft tissues and implants during impression making and also does not require additional materials.

  9. Experimental toxicology of pyrolysis and combustion hazards.

    PubMed Central

    Cornish, H H; Hahn, K J; Barth, M L

    1975-01-01

    Data are presented on the acute toxicity (mortality only) of the thermal degradation products of polymers obtained by two methods of degradation. One system utilized a slowly increasing temperature (5 degrees C/min) and gradual degradation of the polymer with the rats being exposed to degradation products as they were evolved. In this system the more toxic polymers included wool, polypropylene, poly(vinyl chloride), and urethane foam. The second system utilized conditions of rapid combustion and exposure of rats to the total products of combustion for a period of 4 hr. In this system the more toxic materials included red oak, cotton, acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile. It is of interest to note that the natural product wool is among the least toxic under these rapid combustion conditions and among the most toxic under slow pyrolysis conditions. Other materials also vary in the comparative toxicity of their thermal degradation products, depending upon the conditions of degradation and animal exposure. The two experimental techniques presented here may well represent the two extreme conditions of rapid combustion versus slow pyrolysis. Intermediate types of fire situations might be expected to result in relative acute toxicities somewhere between these two extremes. This report deals with acute toxicity on the basis of mortality data only and does not include other parameters of toxicity such as organ weights and histopathology. PMID:1175552

  10. Epoxide-Opening Cascades in the Synthesis of Polycyclic Polyether Natural Products

    PubMed Central

    2009-01-01

    The group of polycyclic polyether natural products is of special interest due to the fascinating structure and biological effects displayed by its members. The latter includes potentially therapeutic antibiotic, antifungal, and anticancer properties, as well as extreme lethality. The polycyclic structural features of this family can, in some cases, be traced to their biosynthetic origin, but in others that are less well understood, only to proposed biosynthetic pathways that feature dramatic, yet speculative, epoxide–opening cascades. In this review we summarize how such epoxide–opening cascade reactions have been used in the synthesis of polycyclic polyethers and related natural products. PMID:19572302

  11. Safety Assessment of Polyether Lanolins as Used in Cosmetics.

    PubMed

    Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan; Heldreth, Bart

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 39 polyether lanolin ingredients as used in cosmetics. These ingredients function mostly as hair conditioning agents, skin conditioning agent-emollients, and surfactant-emulsifying agents. The Panel reviewed available animal and clinical data, from previous CIR safety assessments of related ingredients and components. The similar structure, properties, functions, and uses of these ingredients enabled grouping them and using the available toxicological data to assess the safety of the entire group. The Panel concluded that these polyether lanolin ingredients are safe in the practices of use and concentration as given in this safety assessment.

  12. A thin film degradation study of a fluorinated polyether liquid lubricant using an HPLC method

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1986-01-01

    A High Pressure Liquid Chromatography (HPLC) separation method was developed to study and analyze a fluorinated polyether fluid which is promising liquid lubricant for future applications. This HPLC separation method was used in a preliminary study investigating the catalytic effect of various metal, metal alloy, and ceramic engineering materials on the degradation of this fluid in a dry air atmosphere at 345 C. Using a 440 C stainless steel as a reference catalytic material it was found that a titanium alloy and a chromium plated material degraded the fluorinated polyether fluid substantially more than the reference material.

  13. 77 FR 50411 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... environmental control system (ECS) wrapped with BMS 8-39 or Aeronautical Materials Specifications (AMS) 3570... were assembled with duct assemblies in the ECS wrapped with BMS 8-39 urethane foam insulation, a... ECS with burned BMS 8-39 urethane foam insulation. We issued these ADs to prevent a potential...

  14. QUANTITATIVE ULTRAVIOLET SPECTROSCOPY IN WEATHERING OF A MODEL POLYESTER-URETHANE COATING. (R828081E01)

    EPA Science Inventory

    Spectroscopy was used to quantify the effects of ultraviolet light on a model polyester–urethane coating as it degraded in an accelerated exposure chamber. An explorative calculation of the effective dosage absorbed by the coatings was made and, depending on the quantum...

  15. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. sing a density programming and a 50-pm i.d. capillary column, a total of 18 group oligomers was separated. he effects of the operating parameters, such a...

  16. Adsorption of polypropylene from dilute solutions on a zeolite column packing.

    PubMed

    Macko, Tibor; Pasch, Harald; Denayer, Joeri F

    2005-01-01

    Faujasite type zeolite CBV-780 was tested as adsorbent for isotactic polypropylene by liquid chromatography. When cyclohexane, cyclohexanol, n-decanol, n-dodecanol, diphenylmethane, or methylcyclohexane was used as mobile phase, polypropylene was fully or partially retained within the column packing. This is the first series of sorbent-solvent systems to show a pronounced retention of isotactic polypropylene. According to the hydrodynamic volumes of polypropylene in solution, macromolecules of polypropylene should be fully excluded from the pore volume of the sorbent. Sizes of polypropylene macromolecules in linear conformations, however, correlate with the pore size of the column packing used. It is presumed that the polypropylene chains partially penetrate into the pores and are retained due to the high adsorption potential in the narrow pores.

  17. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    PubMed

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca 2+ , Mg 2+ , and Zn 2+ ) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG 8k -co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  18. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    PubMed

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  19. 40 CFR 63.1428 - Process vent requirements for group determination of PMPUs using a nonepoxide organic HAP to make...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1428 Process vent requirements for... make or modify a polyether polyol for a PMPU are less than 11,800 kg/yr, the owner or operator of that...

  20. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...

  1. Solvent for urethane adhesives and coatings and method of use

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Holt, Jerrid S.

    2010-08-03

    A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.

  2. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging.

    PubMed

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T1-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2'-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T1-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Method for making thin polypropylene film

    DOEpatents

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  4. Adhesive retention of experimental fiber-reinforced composite, orthodontic acrylic resin, and aliphatic urethane acrylate to silicone elastomer for maxillofacial prostheses.

    PubMed

    Kosor, Begüm Yerci; Artunç, Celal; Şahan, Heval

    2015-07-01

    A key factor of an implant-retained facial prosthesis is the success of the bonding between the substructure and the silicone elastomer. Little has been reported on the bonding of fiber reinforced composite (FRC) to silicone elastomers. Experimental FRC could be a solution for facial prostheses supported by light-activated aliphatic urethane acrylate, orthodontic acrylic resin, or commercially available FRCs. The purpose of this study was to evaluate the bonding of the experimental FRC, orthodontic acrylic resin, and light-activated aliphatic urethane acrylate to a commercially available high-temperature vulcanizing silicone elastomer. Shear and 180-degree peel bond strengths of 3 different substructures (experimental FRC, orthodontic acrylic resin, light-activated aliphatic urethane acrylate) (n=15) to a high-temperature vulcanizing maxillofacial silicone elastomer (M511) with a primer (G611) were assessed after 200 hours of accelerated artificial light-aging. The specimens were tested in a universal testing machine at a cross-head speed of 10 mm/min. Data were collected and statistically analyzed by 1-way ANOVA, followed by the Bonferroni correction and the Dunnett post hoc test (α=.05). Modes of failure were visually determined and categorized as adhesive, cohesive, or mixed and were statistically analyzed with the chi-squared goodness-of-fit test (α=.05). As the mean shear bond strength values were evaluated statistically, no difference was found among the experimental FRC, aliphatic urethane acrylate, and orthodontic acrylic resin subgroups (P>.05). The mean peel bond strengths of experimental fiber reinforced composite and aliphatic urethane acrylate were not found to be statistically different (P>.05). The mean value of the orthodontic acrylic resin subgroup peel bond strength was found to be statistically lower (P<.05). Shear test failure types were found to be statistically different (P<.05), whereas 180-degree peel test failure types were not found to be statistically significant (P>.05). Shear forces predominantly exhibited cohesive failure (64.4%), whereas peel forces predominantly exhibited adhesive failure (93.3%). The mean shear bond strengths of the experimental FRC and aliphatic urethane acrylate groups were not found to be statistically different (P>.05). The mean value of the 180-degree peel strength of the orthodontic acrylic resin group was found to be lower (P<.05). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation.

    PubMed

    Yoon, Mi Jin; Kang, You Jung; Kim, In Young; Kim, Eun Hee; Lee, Ju Ahn; Lim, Jun Hee; Kwon, Taeg Kyu; Choi, Kyeong Sook

    2013-08-01

    Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is preferentially cytotoxic to cancer cells over normal cells. However, many cancer cells, including malignant glioma cells, tend to be resistant to TRAIL. Monensin (a polyether ionophore antibiotic that is widely used in veterinary medicine) and salinomycin (a compound that is structurally related to monensin and shows cancer stem cell-inhibiting activity) are currently recognized as anticancer drug candidates. In this study, we show that monensin effectively sensitizes various glioma cells, but not normal astrocytes, to TRAIL-mediated apoptosis; this occurs at least partly via monensin-induced endoplasmic reticulum (ER) stress, CHOP-mediated DR5 upregulation and proteasome-mediated downregulation of c-FLIP. Interestingly, other polyether antibiotics, such as salinomycin, nigericin, narasin and lasalocid A, also stimulated TRAIL-mediated apoptosis in glioma cells via ER stress, CHOP-mediated DR5 upregulation and c-FLIP downregulation. Taken together, these results suggest that combined treatment of glioma cells with TRAIL and polyether ionophore antibiotics may offer an effective therapeutic strategy.

  6. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions.

    PubMed

    Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M

    2017-04-04

    The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.

  7. The Setting Time of Polyether Impression Materials after Contact with Conventional and Experimental Gingival Margin Displacement Agents.

    PubMed

    Nowakowska, Danuta; Raszewski, Zbigniew; Ziętek, Marek; Saczko, Jolanta; Kulbacka, Julita; Więckiewicz, Włodzimierz

    2018-02-01

    The compatibility of chemical gingival margin displacement agents with polyether impression materials has not been determined. The aim of this study was to evaluate the setting time of polyether impression elastomers after contact with conventional and experimental gingival displacement agents. The study compared the setting time of two polyether impression materials: medium body (Impregum Penta Soft) and light body (Impregum Garant L DuoSoft) after contact with 10 gingival displacement agents, including 5 conventional astringents (10%, 20%, and 25% aluminum chloride, 25% aluminum sulfate, and 15.5% ferric sulfate) and 5 experimental adrenergics (0.1% and 0.01% HCl-epinephrine, 0.05% HCl-tetrahydrozoline, 0.05% HCl-oxymetazoline, and 10% HCl-phenylephrine). As many as 120 specimens (60 light body and 60 medium body) were mixed with 20 μl of each of 10 gingival displacement agents, and the time to achieve maximum viscosity was measured with a viscometer. The setting times of these specimens were compared with the control group of 12 specimens, which were polymerized without contact with the displacement agents. The experiments were performed in two environments: 23°C and 37°C (± 0.1°C). Individual and average polymerization time compatibility indices (PTCI) were calculated. Data were analyzed by 2-way ANOVA (α = 0.05). The evaluated chemical displacement agents from both groups changed the setting time of light- and medium-body PE. The negative individual PTCI values achieved astringent (20% aluminum chloride) with two PE in both temperature environments. The average PTCI values of the experimental displacement agents at laboratory and intraoral temperatures were significantly higher than the conventional agents. The present findings suggest that experimental retraction agents can be recommended clinically as gingival margin displacement agents with minimal effects on the setting time of medium- and light-body polyether impression materials; however, direct contact of chemical displacement agents and polyether impression materials can be avoided. © 2016 by the American College of Prosthodontists.

  8. Evaluation Selection of Encapsulating Plastics for Ordnance Electronic Assemblies

    DTIC Science & Technology

    1981-05-01

    ISP-100 Dow Two-component urethane (>70D) 10 B635/1- 4BD Uniroyal Two-component urethane (ɟD) 68 4. CIRCUIT ENCAPSULATION 4.1 Introduction This phase...HARRY DIAs ’ND LABORATORIES 3975 MCMM RD ATTN CO/ TD /TSO/DIVISION DIRFXTORS ATTN JERRY KRAMR ATTN RECORD COPY, 81200 CINCINNATI, ON 45245 ATTN HDL LIBRARY

  9. In vivo response to polypropylene following implantation in animal models: a review of biocompatibility.

    PubMed

    Kelly, Michelle; Macdougall, Katherine; Olabisi, Oluwafisayo; McGuire, Neil

    2017-02-01

    Polypropylene is a material that is commonly used to treat pelvic floor conditions such as pelvic organ prolapse (POP) and stress urinary incontinence (SUI). Owing to the nature of complications experienced by some patients implanted with either incontinence or prolapse meshes, the biocompatibility of polypropylene has recently been questioned. This literature review considers the in vivo response to polypropylene following implantation in animal models. The specific areas explored in this review are material selection, impact of anatomical location, and the structure, weight and size of polypropylene mesh types. All relevant abstracts from original articles investigating the host response of mesh in vivo were reviewed. Papers were obtained and categorised into various mesh material types: polypropylene, polypropylene composites, and other synthetic and biologically derived mesh. Polypropylene mesh fared well in comparison with other material types in terms of host response. It was found that a lightweight, large-pore mesh is the most appropriate structure. The evidence reviewed shows that polypropylene evokes a less inflammatory or similar host response when compared with other materials used in mesh devices.

  10. Toxicity of pyrolysis gases from polyether sulfone

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Olcomendy, E. M.

    1979-01-01

    A sample of polyether sulfone was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. Animal response times were relatively short at pyrolysis temperatures of 600 to 800 C, with death occurring within 6 min. The principal toxicant appeared to be a compound other than carbon monoxide.

  11. High-Performance Synthetic Fibers for Composites

    DTIC Science & Technology

    1992-04-01

    under evaluation today include polyether ether ketone , polyamide, 23 polyamideimide, polyimide, polysulfone, and polyphenylene sulfide. Epoxy resins...shrinkage under intense neutron radiation . This attribute, together with other properties of high-temperature strength, toughness, and low nuclear...and (2) liquid or solid resins cross-linked with other esters in chopped-fiber and mineral-filled molding compounds. Polyether ether ketone (PEEK) A

  12. 78 FR 78748 - 2,5-Furandione, polymer With ethenylbenzene, Reaction Products With polyethylene-polypropylene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ..., polymer With ethenylbenzene, Reaction Products With polyethylene-polypropylene glycol 2-aminopropyl Me...-furandione, polymer with ethenylbenzene, reaction products with polyethylene-polypropylene glycol 2... residues of 2,5-furandione, polymer with ethenylbenzene, reaction products with polyethylene-polypropylene...

  13. Studies on wettability of polypropylene/methyl-silicone composite film and polypropylene monolithic material.

    PubMed

    Hou, Weixin; Mu, Bo; Wang, Qihua

    2008-11-01

    A polypropylene/methyl-silicone superhydrophobic surface was prepared using a simple casting method. Varying the ratio of polypropylene and methyl-silicone results in different surface microstructure. The wetting behavior of the as-prepared surface was investigated. A polypropylene monolithic material was also prepared. Its superhydrophobicity still retains when the material was cut or abraded. The as-prepared material can also be used to separate some organic solvents from water.

  14. Acute effects of pentobarbital, thiopental and urethane on lung oedema induced by alpha-naphthythiourea (ANTU).

    PubMed

    Sipahi, Emine; Ustün, Hüseyin; Niyazi Ayoglu, Ferruh

    2002-03-01

    This study was designed to investigate the possible participation of urethane, pentobarbital sodium and thiopental sodium anaesthesia in the lung oedema induced by alpha-naphthylthiourea (ANTU), which is a well known noxious chemical agent in the lung. ANTU when injected intraperitoneally (i.p.) into rats (10 mg x kg (-1) i.p.) produced lung oedema as indicated by an increase in lung weight/body weight (LW/BW) ratio and pleural effusion (PE) reaching a maximum within 4 h. Administration of urethane prior to ANTU, at doses of 100 and 200mg(100g)(-1), elicited a significant and dose-dependent inhibition in LW/BW ratio and PE. Thiopental sodium at doses of 25, 50 mg x kg (-1), also produced a significant and dose-dependent inhibition of both parameters. Prior i.p. injection of pentobarbital sodium at a dose of 40 mg x kg (-1) elicited a significant inhibition in both parameters. These results suggest that i.p. urethane, thiopental sodium and pentobarbital sodium pretreatment have a prophylactic effect on ANTU-induced lung injury in rats. The possible role of the anaesthetics in lung oedema induced by ANTU and the possible underlying mechanisms are discussed. Copyright 2002 Elsevier Science Ltd.

  15. Gaskets for low-energy houses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harr, D.

    1986-05-01

    New materials and techniques make it easier to build today's tight, energy-efficient homes. One system that has won many converts recently is the airtight drywall approach (ADA). ADA relies heavily on the use of foam gasketing. In the ADA building system, nearly all joints--sill to foundation, band joist, wall plate to subfloor, and drywall to frame-are gasketed with foam tapes. The combination of gaskets, drywall, and caulk creates an airtight envelope. Foam gasketing tape is well suited from many of these joints because it is clean, economical, and easy to apply. The right gasket will maintain the seal even ifmore » the joint moves, and won't squeeze out of the joint under compression. Caulk, on the other hand, is messy, hard to apply, and squeezes out of the joint under compression. Saturated urethanes are elastic sealants that always recover, even after being completely compressed. Some saturated urethanes recover faster than others, depending on what saturant is used, but all exert a force to recover because they are urethanes. In the construction industry, where gaskets are likely to be buried permanently within the framework, saturated urethane foam gaskets really make sense.« less

  16. The Effect of Different Doses of Cigarette Smoke in a Mouse Lung Tumor Model

    PubMed Central

    Santiago, Ludmilla Nadir; de Camargo Fenley, Juliana; Braga, Lúcia Campanario; Cordeiro, José Antônio; Cury, Patrícia M.

    2009-01-01

    Few studies have used Balb/c mice as an animal model for lung carcinogenesis. In this study, we investigated the effect of different doses of cigarette smoking in the urethane-induced Balb/c mouse lung cancer model. After injection of 3mg/kg urethane intraperitoneally, the mice were then exposed to tobacco smoke once or twice a day, five times a week, in a closed chamber. The animals were randomly divided into four groups. The control group (G0) received urethane only. The experimental groups (G1, G2 and G3) received urethane and exposure to the smoke of 3 cigarettes for 10 minutes once a day, 3 cigarettes for 10 minutes twice a day, and 6 cigarettes for 10 minutes twice a day, respectively. The mice were sacrificed after 16 weeks of exposure, and the number of nodules and hyperplasia in the lungs was counted. The results showed no statistically significant difference in the mean number of nodules and hyperplasia among the different groups, suggesting that the Balb/c mice are not suitable to study the pathogenesis of tobacco smoking-induced tumor progression in the lungs. PMID:19079653

  17. The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly(urethane)s.

    PubMed

    Labow, Rosalind S; Tang, Yiwen; McCloskey, Christopher B; Santerre, J Paul

    2002-01-01

    Although the biodegradation of polyurethanes (PU) by oxidative and hydrolytic agents has been studied extensively, few investigations have reported on the combination of their effects. Since neutrophils (PMN) arrive at an implanted device first and release HOCl, followed by monocyte-derived macrophages (MDM) which have potent esterase activities and oxidants of their own, the combined effect of oxidative and hydrolytic degradation on radiolabeled polycarbonate-polyurethanes (PCNU)s was investigated and compared to that of a polyester-PU (PESU) and a polyether-PU (PEU). The PCNUs were synthesized with PCN (MW = 1,000), and butanediol (14C-BD) and one of two diisocyanates, hexane-1,6-diisocyanate (14C-HDI) or methylene bis-p-phenyl diisocyanate (MDI). The PESU and PEU were synthesized using toluene-diisocyanate (14C-TDI), with polycaprolactone and polytetramethylene oxide as soft segments respectively, and ethylene diamine as the chain extender. The effect of pre-treatment with 0.1 mM HOC1 for 1 week on the HDI-based PCNUs and both TDI-based PUs resulted in a significant inhibition of radiolabel release (RR) elicited by cholesterol esterase (CE), when compared to buffer alone, whereas the MDI-based PCNU showed a small but significant increase. When PMN were activated on the HDI-based PCNU surface with phorbol myristate acetate (PMA), HOCl was released for 3 h, and was almost completely abolished by sodium azide (AZ). Simultaneously, the PMN-elicited RR, shown previously to be due to the esterolytic cleavage by serine proteases, was inhibited approximately 75% by PMA-activation of the cells, but significantly increased relative to the latter when AZ was added. Both in vitro oxidation by HOCl and the release of HOCI by PMN were associated with the inhibition of RR and suggest perturbations between oxidative and hydrolytic mechanisms of biodegradation.

  18. In vivo Study of the Accuracy of Dual-arch Impressions.

    PubMed

    de Lima, Luciana Martinelli Santayana; Borges, Gilberto Antonio; Junior, Luiz Henrique Burnett; Spohr, Ana Maria

    2014-06-01

    This study evaluated in vivo the accuracy of metal (Smart®) and plastic (Triple Tray®) dual-arch trays used with vinyl polysiloxane (Flexitime®), in the putty/wash viscosity, as well as polyether (Impregum Soft®) in the regular viscosity. In one patient, an implant-level transfer was screwed on an implant in the mandibular right first molar, serving as a pattern. Ten impressions were made with each tray and impression material. The impressions were poured with Type IV gypsum. The width and height of the pattern and casts were measured in a profile projector (Nikon). The results were submitted to Student's t-test for one sample (α = 0.05). For the width distance, the plastic dual-arch trays with vinyl polysiloxane (4.513 mm) and with polyether (4.531 mm) were statistically wider than the pattern (4.489 mm). The metal dual-arch tray with vinyl polysiloxane (4.504 mm) and with polyether (4.500 mm) did not differ statistically from the pattern. For the height distance, only the metal dual-arch tray with polyether (2.253 mm) differed statistically from the pattern (2.310 mm). The metal dual-arch tray with vinyl polysiloxane, in the putty/wash viscosities, reproduced casts with less distortion in comparison with the same technique with the plastic dual-arch tray. The plastic or metal dual-arch trays with polyether reproduced cast with greater distortion. How to cite the article: Santayana de Lima LM, Borges GA, Burnett LH Jr, Spohr AM. In vivo study of the accuracy of dual-arch impressions. J Int Oral Health 2014;6(3):50-5.

  19. Implant Failure After Motec Wrist Joint Prosthesis Due to Failure of Ball and Socket-Type Articulation-Two Patients With Adverse Reaction to Metal Debris and Polyether Ether Ketone.

    PubMed

    Karjalainen, Teemu; Pamilo, Konsta; Reito, Aleksi

    2018-04-21

    We describe 2 cases of articulation-related failures resulting in revision surgery after a Motec total wrist arthroplasty: one with an adverse reaction to metal debris and the other with an adverse reaction to polyether ether ketone. In the first patient, blood cobalt and chrome levels were elevated and magnetic resonance imaging showed clear signs of a pseudotumor. The other patient had an extensive release of polyether ether ketone particles into the surrounding synovia due to adverse wear conditions in the cup, leading to the formation of a fluid-filled cyst sac with a black lining and diffuse lymphocyte-dominated inflammation in the synovia. We recommend regular follow-up including x-rays, monitoring of cobalt and chrome ion levels, and a low threshold for cross-sectional imaging in patients who have undergone total wrist arthroplasty with a Motec joint prosthesis. Wear-related problems can also develop in implants in which polyether ether ketone is the bulk material. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  20. Air Quality Management Using Pollution Prevention: A Joint Service Approach

    DTIC Science & Technology

    1998-03-01

    sites to promote polymerization. High solids coatings may be one or two component systems based on acrylic , alkyd , epoxy, polyester, or urethane...formulation to form high molecular weight polymers. Examples include acrylic , epoxy/polyester hybrid , functional epoxy, thin film epoxy, and urethane...Air Human System Center (HSC/OEBQ) Naval Facilities Engineering Service Center (NFESC) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9

  1. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells.

    PubMed

    Aluri, Rajendra; Jayakannan, Manickam

    2017-01-09

    New classes of enzymatic-biodegradable amphiphilic poly(ester-urethane)s were designed and developed from l-tyrosine amino acid resources and their self-assembled nanoparticles were employed as multiple drug delivery vehicles in cancer therapy. The amine and carboxylic acid functional groups in l-tyrosine were converted into dual functional ester-urethane monomers and they were subjected to solvent free melt polycondensation with hydrophilic polyethylene glycols to produce comb-type poly(ester-urethane)s. The phenolic unit in the l-tyrosine was anchored with hydrophobic alkyl side chain to bring appropriate amphiphilicity in the polymer geometry to self-assemble them as stable nanoscaffolds in aqueous medium. The topology of the polymer was found to play a major role on the glass transition, crystallinity, and viscoelastic rheological properties of l-tyrosine poly(ester-urethane)s. The amphiphilic polymers were self-assembled as 200 ± 10 nm nanoparticles and they exhibited excellent encapsulation capabilities for anticancer drugs such as doxorubicin (DOX) and camptothecin (CPT). In vitro drug release studies revealed that the drug-loaded l-tyrosine nanoparticles were stable at extracellular conditions and they underwent enzymatic-biodegradation exclusively at the intracellular level to release the drugs. Cytotoxicity studies in the cervical cancer (HeLa) and normal WT-MEFs cell lines revealed that the nascent l-tyrosine nanoparticles were nontoxic, whereas the CPT and DOX drug-loaded polymer nanoparticles exhibited excellent cell killing in cancer cells. Confocal microscopic imaging confirmed the cellular internalization of drug-loaded nanoparticles. The drugs were taken up by the cells much higher quantity while delivering them from l-tyrosine nanoparticle platform compared to their free state. Flow cytometry analysis showed that the DOX-loaded polymer nanoscaffolds internalized the drugs 8-10× higher compared to free DOX. Both the synthesis of new classes of poly(ester-urethane)s via melt polycondensation approach and the enzyme-responsive drug delivery concept were accomplished for the first time. Thus, the present investigation is expected to open up new opportunities for l-tyrosine polymeric materials in biomaterial and thermoplastic applications.

  2. Crystallization behavior of polypropylene and its effect on woodfiber composite properties

    Treesearch

    Suzhou Yin; Timothy G. Rials; Michael P. Wolcott

    1999-01-01

    This paper describes an approach where polarizing optical microscopy is used to observe the crystallization process of different polypropylenes in the presence of wood fiber. The crystallization behavior was found to be related to the chemical composition of the polymer systems and the addition of maleic anhydride grafted polypropylene (MAPP) to polypropylene...

  3. Organic-inorganic hybrid polymer electrolytes based on polyether diamine, alkoxysilane, and trichlorotriazine: Synthesis, characterization, and electrochemical applications

    NASA Astrophysics Data System (ADS)

    Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming

    2014-12-01

    A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.

  4. Martinomycin, a new polyether antibiotic produced by Streptomyces salvialis. I. Taxonomy, fermentation and biological activity.

    PubMed

    Bernan, V S; Montenegro, D A; Goodman, J J; Alluri, M R; Carter, G T; Abbanat, D R; Pearce, C J; Maiese, W M; Greenstein, M

    1994-12-01

    Actinomycete culture LL-D37187 has been found to produce the new polyether antibiotic martinomycin. Taxonomic studies, including morphological, physiological, and cell wall chemistry analyses, revealed that culture LL-D37187 is a novel streptomycete species, and the proposed name is Streptomyces salvialis. Martinomycin exhibits activity against the Southern Army Worm (Spodoptera eridania) and Gram-positive bacteria.

  5. Preparation and properties of an internal mold release for rigid urethane foam

    NASA Astrophysics Data System (ADS)

    Paker, B. G.

    1980-08-01

    Most mold release agents used in the molding of rigid polyurethane foam are applied to the internal surfaces of the mold. These materials form a thin layer between the surface of the mold and the foam, allowing for easy release of the molded parts. This type of mold release must be applied prior to each molding operation; and, after repeated use, cleaning of the mold is required. Small amounts of this mold release are transferred to the molded part, resulting in a part with poor surface bondability characteristics. An internal release agent, which can be mixed in a urethane foam resin was investigated. The internal mold release provided good releasability and resulted in urethane foam that has excellent surface bondability. No compatibility problems are expected from the use of this type of release agent.

  6. Degradation Mechanisms of Poly(ester urethane) Elastomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Alexander S.

    This report describes literature regarding the degradation mechanisms associated with a poly(ester urethane) block copolymer, Estane® 5703 (Estane), used in conjunction with Nitroplasticizer (NP), and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, also known as high molecular weight explosive (HMX) to produce polymer bonded explosive PBX 9501. Two principal degradation mechanisms are reported: NO2 oxidative reaction with the urethane linkage resulting in crosslinking and chain scission events, and acid catalyzed hydrolysis of the ester linkage. This report details future work regarding this PBX support system, to be conducted in late 2017 and 2018 at Engineered Materials Group (MST-7), Materials Science and Technology Division, Los Alamos Nationalmore » Laboratory. This is the first of a series of three reports on the degradation processes and trends of the support materials of PBX 9501.« less

  7. Oxidation reaction of polyether-based material and its suppression in lithium rechargeable battery using 4 V class cathode, LiNi1/3Mn1/3Co1/3O2.

    PubMed

    Kobayashi, Takeshi; Kobayashi, Yo; Tabuchi, Masato; Shono, Kumi; Ohno, Yasutaka; Mita, Yuichi; Miyashiro, Hajime

    2013-12-11

    The all solid-state lithium battery with polyether-based solid polymer electrolyte (SPE) is regarded as one of next-generation lithium batteries, and has potential for sufficient safety because of the flammable-electrolyte-free system. It has been believed that polyether-based SPE is oxidized at the polymer/electrode interface with 4 V class cathodes. Therefore, it has been used for electric devices such as organic transistor, and lithium battery under 3 V. We estimated decomposition reaction of polyether used as SPE of all solid-state lithium battery. We first identified the decomposed parts of polyether-based SPE and the conservation of most main chain framework, considering the results of SPE analysis after long cycle operations. The oxidation reaction was found to occur slightly at the ether bond in the main chain with the branched side chain. Moreover, we resolved the issue by introducing a self-sacrificing buffer layer at the interface. The introduction of sodium carboxymethyl cellulose (CMC) to the 4 V class cathode surface led to the suppression of SPE decomposition at the interface as a result of the preformation of a buffer layer from CMC, which was confirmed by the irreversible exothermic reaction during the first charge, using electrochemical calorimetry. The attained 1500 cycle operation is 1 order of magnitude longer than those of previously reported polymer systems, and compatible with those of reported commercial liquid systems. The above results indicate to proceed to an intensive research toward the realization of 4 V class "safe" lithium polymer batteries without flammable liquid electrolyte.

  8. Polypropylene vs silicone Ahmed valve with adjunctive mitomycin C in paediatric age group: a prospective controlled study

    PubMed Central

    El Sayed, Y; Awadein, A

    2013-01-01

    Purpose To compare the results of silicone and polypropylene Ahmed glaucoma valves (AGV) implanted during the first 10 years of life. Methods A prospective study was performed on 50 eyes of 33 patients with paediatric glaucoma. Eyes were matched to either polypropylene or silicone AGV. In eyes with bilateral glaucoma, one eye was implanted with polypropylene and the other eye was implanted with silicone AGV. Results Fifty eyes of 33 children were reviewed. Twenty five eyes received a polypropylene valve, and 25 eyes received a silicone valve. Eyes implanted with silicone valves achieved a significantly lower intraocular pressure (IOP) compared with the polypropylene group at 6 months, 1 year, and 2 years postoperatively. The average survival time was significantly longer (P=0.001 by the log-rank test) for the silicone group than for the polypropylene group and the cumulative probability of survival by the log-rank test at the end of the second year was 80% (SE: 8.0, 95% confidence interval (CI): 64–96%) in the silicone group and 56% (SE: 9.8, 95% CI: 40–90%) in the polypropylene group. The difference in the number of postoperative interventions and complications between both groups was statistically insignificant. Conclusion Silicone AGVs can achieve better IOP control, and longer survival with less antiglaucoma drops compared with polypropylene valves in children younger than 10 years. PMID:23579403

  9. Preparation and Characterization of Various Poly(ether ether ketone) Containing Imidazolium Moiety for Anion Exchange Membrane Fuel Cell Application.

    PubMed

    Lee, Byeol-Nim; Son, Tae Yang; Park, Chi Hoon; Kim, Tae Hyun; Nam, Sang Yong

    2018-09-01

    In this study, various poly(ether ether ketone) were synthesized using three different monomers and the imidazolium group was introduced into synthesized poly(ether ether ketone)s by using substitution reaction. Synthesized polymers were used to prepare anion exchange membranes and to evaluate its properties. Thermal, chemical and structural properties were carried out using thermogravimetric analysis, nuclear magnetic resonance. The anion exchange membranes with different imidazolium moieties were characterized by several different analytical techniques such as water up take, ion exchange capacity, hydroxide conductivity for checking the possibility to apply the anion exchange membrane fuel cell. Consequently, results of characterization were studied to understand the correlation between stabilities of the membrane and functional group and polymer backbone structures. And we confirm membrane performance was improved by increasing imidazolium cation groups.

  10. Applicable research in practice: understanding the hydrophilic and flow property measurements of impression materials.

    PubMed

    Perry, Ronald D; Goldberg, Jeffrey A; Benchimol, Jacques; Orfanidis, John

    2006-10-01

    The flow properties and hydrophilicity of an impression material are key factors that affect its performance. This article details in vitro studies comparing these properties in 1 polyether and several vinyl polysiloxane light-body impression materials. The first series of studies examined the materials' flow properties used in a "shark fin" measurement procedure to determine which exhibited superior flow characteristics. The second series of studies reviewed the hydrophilic properties of the materials. Video analysis was used to record contact angle measurements at the early- and late-stage working times. Results showed 1 polyether material to be more hydrophilic. Applying this knowledge to practice, the authors present a clinical case in which a polyether's superior flow and quality of detail were used to make impressions for a patient receiving 8 single-unit zirconia crowns.

  11. Solubility of polyethers in hydrocarbons at low temperatures. A model for potential genetic backbones on warm titans.

    PubMed

    McLendon, Christopher; Opalko, F Jeffrey; Illangkoon, Heshan I; Benner, Steven A

    2015-03-01

    Ethers are proposed here as the repeating backbone linking units in linear genetic biopolymers that might support Darwinian evolution in hydrocarbon oceans. Hydrocarbon oceans are found in our own solar system as methane mixtures on Titan. They may be found as mixtures of higher alkanes (propane, for example) on warmer hydrocarbon-rich planets in exosolar systems ("warm Titans"). We report studies on the solubility of several short polyethers in propane over its liquid range (from 85 to 231 K, or -188 °C to -42 °C). These show that polyethers are reasonably soluble in propane at temperatures down to ca. 200 K. However, their solubilities drop dramatically at still lower temperatures and become immeasurably low below 170 K, still well above the ∼ 95 K in Titan's oceans. Assuming that a liquid phase is essential for any living system, and genetic biopolymers must dissolve in that biosolvent to support Darwinism, these data suggest that we must look elsewhere to identify linear biopolymers that might support genetics in Titan's surface oceans. However, genetic molecules with polyether backbones may be suitable to support life in hydrocarbon oceans on warm Titans, where abundant organics and environments lacking corrosive water might make it easier for life to originate.

  12. Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis.

    PubMed

    Hotta, Kinya; Chen, Xi; Paton, Robert S; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N; Kim, Chu-Young

    2012-03-04

    Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A to form lasalocid A. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue to provide the first atomic structure-to our knowledge-of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. © 2012 Macmillan Publishers Limited. All rights reserved

  13. Effect of wet-dry cycling on the decay properties of aspen fiber high-density polypropylene composites.

    Treesearch

    Rebecca E. Ibach; Roger M. Rowell; Sandra E. Lange; Rebecca L. Schumann

    2002-01-01

    Aspen fiber-polypropylene composites were prepared with various levels of fiber (0,30%, 40%, 50%, and 60%), polypropylene (PP) (100%, 98%, 70%, 68%, 60%, 58%, 50%, 48%, 40%, and 38%), and the compatibilizer maleated polypropylene (MAPP) (0 and 2%). Specimens were either subjected to 10 cycles of 1 week room temperature water soaking-oven drying or 2-hr. boiling...

  14. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2016-01-26

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  15. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-16

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  16. The Reactions of Nitrogen Peroxide with Possible Stabilisers for Propellants

    DTIC Science & Technology

    1957-03-01

    ether Carbamite Phe nyl-be nzyl-ure thane (pure) Cyclohexanyl-urethane Cyclohexano ne Die thyl phthalate Di-isoamyl phthalate Dibutyl oxalate Glycollic...saponification" arises from the presence of phenyl urethane and diphenyl urea; differences in contents of these impurities and of benzyl aniline...nitrogen that is recovered from a product. 4.2.2 Ure are fairly reactive. Triphenylethylurea present with diphenyl - amine in 蠢 compound" leads to a

  17. FOAM-IN-PLACE FORM FITTING HELMET LINERS

    DTIC Science & Technology

    A urethane foam formulation has been developed to produce foamed-in-place helmet liners for Air Force crash or flying helmets. High density urethane...foam helmet liners has been foamed-in-place directly on the flying crew member’s head, producing a perfectly fitting helmet liner with a minimum of...time, labor and inconvenience. These liners were produced at an extremely modest cost. Design and fabrication of a suitable mold in which the helmet

  18. Stability of cyclosporine solutions stored in polypropylene-polyolefin bags and polypropylene syringes.

    PubMed

    Li, Mengqing; Forest, Jean-Marc; Coursol, Christian; Leclair, Grégoire

    2011-09-01

    The stability of cyclosporine diluted to 0.2 or 2.5 mg/mL with 0.9% sodium chloride injection or 5% dextrose injection and stored in polypropylene-polyolefin containers or polypropylene syringes was evaluated. Intravenous cyclosporine solutions (0.2 and 2.5 mg/mL) were aseptically prepared and transferred to 250-mL polypropylene-polyolefin bags or 60-mL polypropylene syringes. Chemical stability was measured using a stability-indicating high-performance liquid chromatography (HPLC) assay. Physical stability was assessed by visual inspection and a dynamic light scattering (DLS) method. After 14 days, HPLC assay showed that the samples of i.v. cyclosporine stored in polypropylene-polyolefin bags remained chemically stable (>98% of initial amount remaining); the physical stability of the samples was confirmed by DLS and visual inspection. The samples stored in polypropylene syringes were found to contain an impurity (attributed to leaching of a syringe component by the solution) that could be detected by HPLC after 1 day; on further investigation, no leaching was detected when the syringes were exposed to undiluted i.v. cyclosporine 50 mg/mL for 10 minutes. Samples of i.v. cyclosporine solutions of 0.2 and 2.5 mg/mL diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 25 °C in polypropylene-polyolefin bags were physically and chemically stable for at least 14 days. When stored in polypropylene syringes, the samples were contaminated by an impurity within 1 day; however, the short-term (i.e., ≤10 minutes) use of the syringes for the preparation and transfer of i.v. cyclosporine solution is considered safe.

  19. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  20. Study on Welding Mechanism Based on Modification of Polypropylene for Improving the Laser Transmission Weldability to PA66

    PubMed Central

    Liu, Huixia; Jiang, Hairong; Guo, Dehui; Chen, Guochun; Yan, Zhang; Li, Pin; Zhu, Hejun; Chen, Jun; Wang, Xiao

    2015-01-01

    Polypropylene and PA66 are widely used in our daily life, but they cannot be welded by laser transmission welding (LTW) because of polar differences and poor compatibility. In this paper, grafting modification technology is used to improve the welding performance between polypropylene and PA66. Firstly, the strong reactive and polar maleic-anhydride (MAH) is grafted to polypropylene and infrared spectrometer is used to prove that MAH has been grafted to polypropylene. At the same time, the mechanical and thermal properties of the graft modified polypropylene (TGMPP) are tested. The results prove that the grafting modification has little influence on them. Also, the optical properties of TGMPP are measured. Then, the high welding strength between TGMPP and PA66 is found and the mechanism of the weldability is researched, which shows that there are two reasons for the high welding strength. By observing the micro morphology of the welding zone, one reason found is that the modification of polypropylene can improve the compatibility between polypropylene and PA66 and make them easy to diffuse mutually, which causes many locking structures formed in the welding region. The other reason is that there are chemical reactions between TGMPP and PA66 proved by the X-ray photoelectron spectrometer. PMID:28793484

  1. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  2. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  3. Morphology and properties of amine terminated poly(arylene ether ketone) and poly(arylene ether sulfone) modified epoxy resin systems

    NASA Technical Reports Server (NTRS)

    Cecere, J. A.; Mcgrath, J. E.; Hedrick, J. L.

    1986-01-01

    Epoxy resin networks cured with DDS were modified by incorporating tough ductile thermoplastics such as the amine terminated polyether sulfones and amine terminated polyether ketones. Both linear copolymers were able to significantly improve the fracture toughness values at the 15 and 30 weight percent concentrations examined. These improvements in fracture toughness were achieved without any significant change in the flexural modulus.

  4. Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms.

    PubMed

    Miao, Xuepei; Liu, Tuan; Zhang, Chen; Geng, Xinxin; Meng, Yan; Li, Xiaoyu

    2016-02-14

    The strong fluorescence, in both the solution and the bulk state, of a chromophore-free aliphatic hyperbranched polyether which does not contain N and P atoms was reported for the first time. Effects of concentration and solvent solubility were measured. Its ethanol solution shows a strong blue-green fluorescence (Yu = 0.11-0.39), and its fluorescence shows a strong selective quenching with respect to Fe(3+).

  5. Roll-on perfume compositions containing polyoxybutylene-polyoxyethylene copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmolka, I.R.

    1987-05-26

    This patent describes a liquid roll-on composition containing, in weight percent based upon the total composition weight, from 5 percent to 15 percent of a perfume oil, from 25 percent to 40 percent of a volatile alcohol, from 10 percent to 60 percent water, and from 10 percent to 30 percent of a nonionic polyether surfactant. The improvement comprises employing as the nonionic polyether surfactant a cogeneric polyoxybutylene-polyoxyethylene block copolymer.

  6. Ureasil-polyether hybrid film-forming materials.

    PubMed

    Souza, L K; Bruno, C H; Lopes, L; Pulcinelli, S H; Santilli, C V; Chiavacci, L A

    2013-01-01

    The objectives of this work were to study the suitability and highlight the advantages of the use of cross-linked ureasil-polyether hybrid matrices as film-forming systems. The results revealed that ureasil-polyethers are excellent film-forming systems due to specific properties, such as their biocompatibility, their cosmetic attractiveness for being able to form thin and transparent films, their short drying time to form films and their excellent bioadhesion compared to the commercial products known as strong adhesives. Rheological measurements have demonstrated the ability of these hybrid matrices to form a film in only a few seconds and Water Vapor Transmitting Rate (WVTR) showed adequate semi-occlusive properties suggesting that these films could be used as skin and wound protectors. Both the high skin bioadhesion and non-cytotoxic character seems to be improved by the presence of multiple amine groups in the hybrid molecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Custelcean, Radu; Bartsch, Richard A.

    Two series of novel mono-ionizable calix[4]arene-benzocrown-6 ligands in 1,3-alternate conformations are synthesized. In one series, the proton-ionizable group (PIG) is attached to the para position of one aromatic ring in the calixarene framework, thereby positioning it over the polyether ring cavity. In the other series, the PIG is a substituent on the benzo group in the polyether ring. This orients the PIG away from the crown ether cavity. In addition to carboxylic acid functions, the PIGs include N-(X)sulfonyl carboxamide groups. With X group variation from methyl to phenyl to 4-nitrophenyl to trifluoromethyl, the acidity of the PIG is 'tuned'. Solventmore » extraction of Ag{sup +} from aqueous solutions into chloroform is used to probe the influence of structural variation within the mono-ionizable calixcrown ligand on metal ion extraction efficiency, including the identity and acidity of the PIG and its orientation with respect to the polyether ring.« less

  9. Storage, Preservation, and Recovery of Magnetic Recording Tape

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.

    1994-01-01

    During the 1970's, a commercial magnetic recording tape fabricated with magnetic oxide particles, and with oxide and backcoat binders made from polyester urethane was being used for spacecraft tape recorders, and which would periodically manifest operational problems such as layer-to-layer adhesion, stick-slip, and shedding of sticky organic materials. These problems were generally associated with periods of high humidity. An experimental study identified that these problems resulted from hydrolysis of the polyester urethane binders.

  10. An Acoustic-Instrumented Mine for Studying Subsequent Burial

    DTIC Science & Technology

    2007-01-01

    seawater . A strong reflection from the transducer face therefore indicates sediment flush with the mine surface (i.e., the mine surface is buried...variations in seawater sound speed and urethane sound speed that create a slight acoustic impedance mismatch at the water-urethane in- terface. The water...following was used: w. = \\//,„/2f/« TTH, U, T;Sinh( kh ) /„• = 0.237 0.52 /„, is the wave friction factor, Uw is the wave orbital velocity

  11. Isolation and characterization of an ether-type polyurethane-degrading micro-organism and analysis of degradation mechanism by Alternaria sp.

    PubMed

    Matsumiya, Y; Murata, N; Tanabe, E; Kubota, K; Kubo, M

    2010-06-01

    To degrade ether-type polyurethane (ether-PUR), ether-PUR-degrading micro-organism was isolated. Moreover, ether-PUR-degrading mechanisms were analysed using model compounds of ether-PUR. A fungus designated as strain PURDK2, capable of changing the configuration of ether-PUR, has been isolated. This isolated fungus was identified as Alternaria sp. Using a scanning electron microscope, the grid structure of ether-PUR was shown to be melted and disrupted by the fungus. The degradation of ether-PUR by the fungus was analysed, and the ether-PUR was degraded by the fungus by about 27.5%. To analyse the urethane-bond degradation by the fungus, a degraded product of ethylphenylcarbamate was analysed using GC/MS. Aniline and ethanol were detected by degradation with the supernatant, indicating that the fungus secreted urethane-bond-degrading enzyme(s). PURDK2 also degraded urea bonds when diphenylmethane-4,4'-dibutylurea was used as a substrate. The enzyme(s) from PURDK2 degraded urethane and urea bonds to convert the high molecular weight structure of ether-PUR to small molecules; and then the fungus seems to use the small molecules as an energy source. Ether-PUR-degrading fungus, strain PURDK2, was isolated, and the urethane- and urea-bonds-degrading enzymes from strain PURDK2 could contribute to the material recycling of ether-PUR.

  12. Permeation Tests on Polypropylene Fiber Materials

    DTIC Science & Technology

    2018-03-16

    Engineering at the Naval Research Laboratory (NRL) evaluated polypropylene nanofiber materials for their potential in air filtration to remove toxic......The Center for Bio/Molecular Science and Engineering at the Naval Research Laboratory (NRL) evaluated polypropylene nanofiber materials provided by

  13. Polyurethanes from fluoroalkyl propyleneglycol polyethers

    NASA Technical Reports Server (NTRS)

    Trischler, F. D. (Inventor)

    1969-01-01

    A description is given of highly stable polyurethane polymers prepared by reacting a polyether with a diisocyanate. Compounded stocks of these polymers may be shaped and cured in conventional equipment used in the rubber industry. The solutions are dispersed gels prepared from the polymers and may be used for forming supported or unsupported films for coating fabrics or solid surfaces, and for forming adhesive bonds between a wide variety of plastics, elastomers, fabrics, metals, wood, leather, ceramics and the like.

  14. Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis

    PubMed Central

    Hotta, Kinya; Chen, Xi; Paton, Robert S.; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I.; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N.; Kim, Chu-Young

    2012-01-01

    Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid1 and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed2. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates2. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions3–5. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A6 to form lasalocid A7,8. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue9 to provide the first atomic structure—to our knowledge—of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. PMID:22388816

  15. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material

    PubMed Central

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-01-01

    Objective: The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Materials and Methods: Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. Results: E. coli counts were higher in hand-mixed materials (P < 0.05); no other statistically significant differences were found between hand- and auto-mixed materials. According to the Kruskal-Wallis test, significant differences were found between the disinfection procedures (Z > 2.394). Conclusion: The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface. PMID:24966729

  16. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    PubMed

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  17. Accuracy of impressions with different impression materials in angulated implants.

    PubMed

    Reddy, S; Prasad, K; Vakil, H; Jain, A; Chowdhary, R

    2013-01-01

    To evaluate the dimensional accuracy of the resultant (duplicative) casts made from two different impression materials (polyvinyl siloxane and polyether) in parallel and angulated implants. Three definitive master casts (control groups) were fabricated in dental stone with three implants, placed at equi-distance. In first group (control), all three implants were placed parallel to each other and perpendicular to the plane of the cast. In the second and third group (control), all three implants were placed at 10° and 15 o angulation respectively to the long axis of the cast, tilting towards the centre. Impressions were made with polyvinyl siloxane and polyether impression materials in a special tray, using a open tray impression technique from the master casts. These impressions were poured to obtain test casts. Three reference distances were evaluated on each test cast by using a profile projector and compared with control groups to determine the effect of combined interaction of implant angulation and impression materials on the accuracy of implant resultant cast. Statistical analysis revealed no significant difference in dimensional accuracy of the resultant casts made from two different impression materials (polyvinyl siloxane and polyether) by closed tray impression technique in parallel and angulated implants. On the basis of the results of this study, the use of both the impression materials i.e., polyether and polyvinyl siloxane impression is recommended for impression making in parallel as well as angulated implants.

  18. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material.

    PubMed

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-09-01

    The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. E. coli counts were higher in hand-mixed materials (P < 0.05); no other statistically significant differences were found between hand- and auto-mixed materials. According to the Kruskal-Wallis test, significant differences were found between the disinfection procedures (Z > 2.394). The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface.

  19. Biodegradation of polyether-polyol-based polyurethane elastomeric films: influence of partial replacement of polyether polyol by biopolymers of renewable origin.

    PubMed

    Obruca, Stanislav; Marova, Ivana; Vojtova, Lucy

    2011-07-01

    In this work we investigated the degradation process ofpolyether-polyol-based polyurethane (PUR) elastomeric films in the presence of a mixed thermophilic culture as a model of a natural bacterial consortium. The presence of PUR material in cultivation medium resulted in delayed but intensive growth of the bacterial culture. The unusually long lag phase was caused by the release of unreacted polyether polyol and tin catalyst from the material. The lag phase was significantly shortened and the biodegradability of PUR materials was enhanced by partial replacement (10%) of polyether polyol with biopolymers (carboxymethyl cellulose, hydroxyethyl cellulose, acetyl cellulose and actylated starch). The process of material degradation consisted of two steps. First, the materials were mechanically disrupted and, second, the bacterial culture was able to utilize abiotic degradation products, which resulted in supported bacterial growth. Direct utilization of PUR by the bacterial culture was observed as well, but the bacterial culture contributed only slightly to the total mass losses. The only exception was PUR material modified by acetyl cellulose. In this case, direct biodegradation represented the major mechanism of material decomposition. Moreover, PUR material modified by acetyl cellulose did not tend to undergo abiotic degradation. In conclusion, the modification of PUR by proper biopolymers is a promising strategy for reducing potential negative effects of waste PUR materials on the environment and enhancing their biodegradability.

  20. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi.

    PubMed

    Lando, Gabriela Albara; Marconatto, Letícia; Kessler, Felipe; Lopes, William; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2017-07-18

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae , when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  1. Depletion of serotonin synthesis with p-CPA pretreatment alters EEG in urethane anesthetized rats under whole body hyperthermia.

    PubMed

    Sinha, Rakesh Kumar; Aggarwal, Yogender

    2007-01-01

    Serotonin is believed as an important factor in brain function. The role of serotonin in cerebral psycho-patho-physiology has already been well established. However, the function of serotonin antagonist in anesthetized subjects under hyperthermia has not been studied properly. Experiments were performed in three groups of urethane-anesthetized rats, such as: (i) control group, (ii) whole body hyperthermia group and (iii) p-CPA (para-Chlorophenylalanine) pretreated hyperthermia group. Hyperthermia was produced by subjecting the rats to high ambient temperature of 38 +/- 1 degrees C (relative humidity 45-50%). Each group was divided for EEG (electroencephalogram) study and for determination of edematous swelling in the brain. Urethane anesthetized rats under hyperthermia show highly significant reduction in their survival time. The body temperature recorded during the hyperthermia was observed with significant and linear rise with marked increase in brain water content, which was analyzed just after the death of the subjects. The results of the electroencephalographic study in urethane-anesthetized rats recorded before death indicate that brain function varies in systematic manner during hyperthermia as sequential changes in EEG patterns were observed. However, a serotonin antagonist, p-CPA pretreatment increases the survival time with significant reduction in edematous swelling in brain but it does not affect the relationship between the core body temperature and the brain cortical potentials as observed in urethane anesthetized subjects exposed to whole body hyperthermia. The core body temperature in p-CPA pretreated rats show non-linear relationship with respect to the exposure time as it was observed in drug untreated subjects. The findings of the present study indicate that although pretreatment of p-CPA in rats has a marked correlation between the extravasations of the blood-brain barrier under hyperthermia but shows minimum effect on the EEG in a model of hyperthermia under irreversible anesthesia.

  2. Properties of antibacterial polypropylene/nanometal composite fibers

    USDA-ARS?s Scientific Manuscript database

    Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted...

  3. Photo-oxidative degradation of TiO{sub 2}/polypropylene films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Montelongo, X.L.; Martínez-de la Cruz, A., E-mail: azael70@yahoo.com.mx; Vázquez-Rodríguez, S.

    Graphical abstract: - Highlights: • Photo-oxidative degradation of polypropylene is accelerated by TiO{sub 2} incorporation. • Weight loss, FTIR, SEM and GPC shown high degree of degradation of polypropylene. • A mechanism of the photo-degradation of polypropylene by TiO{sub 2} is proposed. - Abstract: Photo-oxidative degradation of polypropylene films with TiO{sub 2} nanoparticles incorporated was studied in a chamber of weathering with Xenon lamps as irradiation source. TiO{sub 2} powder with crystalline structure of anatase was synthesized by thermal treatments at 400 and 500 °C starting from a precursor material obtained by sol–gel method. Composites of TiO{sub 2}/polypropylene were preparedmore » with 0.1, 0.5 and 1.0 wt% of TiO{sub 2}. The mixture of components was performed using a twin screw extruder, the resulting material was pelletized by mechanical fragmenting and then hot-pressed in order to form polypropylene films with TiO{sub 2} dispersed homogeneously. Photo-oxidative degradation process was followed by visual inspection, weight loss of films, scanning electron microscopy (SEM), infrared spectroscopy with Fourier transformed (FTIR), and gel permeation chromatography (GPC)« less

  4. Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Lignocellulose Nanofibers Dried in Melted Ethylene-Butene Copolymer

    PubMed Central

    Iwamoto, Shinichiro; Yamamoto, Shigehiro; Lee, Seung-Hwan; Ito, Hirokazu; Endo, Takashi

    2014-01-01

    Lignocellulose nanofibers were prepared by the wet disk milling of wood flour. First, an ethylene-butene copolymer was pre-compounded with wood flour or lignocellulose nanofibers to prepare master batches. This process involved evaporating the water of the lignocellulose nanofiber suspension during compounding with ethylene-butene copolymer by heating at 105 °C. These master batches were compounded again with polypropylene to obtain the final composites. Since ethylene-butene copolymer is an elastomer, its addition increased the impact strength of polypropylene but decreased the stiffness. In contrast, the wood flour- and lignocellulose nanofiber-reinforced composites showed significantly higher flexural moduli and slightly higher flexural yield stresses than did the ethylene-butene/polypropylene blends. Further, the wood flour composites exhibited brittle fractures during tensile tests and had lower impact strengths than those of the ethylene-butene/polypropylene blends. On the other hand, the addition of the lignocellulose nanofibers did not decrease the impact strength of the ethylene-butene/polypropylene blends. Finally, the addition of wood flour and the lignocellulose nanofibers increased the crystallization temperature and crystallization rate of polypropylene. The increases were more remarkable in the case of the lignocellulose nanofibers than for wood flour. PMID:28788222

  5. Influence of the grade on the variability of the mechanical properties of polypropylene waste.

    PubMed

    Jmal, Hamdi; Bahlouli, Nadia; Wagner-Kocher, Christiane; Leray, Dimitri; Ruch, Frédéric; Munsch, Jean-Nicolas; Nardin, Michel

    2018-05-01

    The prior properties of recycled polypropylene depend on the origin of waste deposits and its chemical constituents. To obtain specific properties with a predefine melt flow index of polypropylene, the suppliers of polymer introduce additives and fillers. However, the addition of additives and/or fillers can modify strongly the mechanical behaviour of recycled polypropylene. To understand the impact of the additives and fillers on the quasi-static mechanical behaviour, we consider, in this study, three different recycled polypropylenes with three different melt flow index obtained from different waste deposits. The chemical constituents of the additives and filler contents of the recycled polypropylenes are determined through thermo-physico-chemical analysis. Tensile and bending tests performed at different strain rates allow identifying the mechanical properties such as the elastic modulus, the yield stress, the maximum stress, and the failure mechanisms. The results obtained are compared with non-recycled polypropylene and with few researches to explain the combined effect of additives. Finally, a post-mortem analysis of the samples was carried out to make the link between the obtained mechanical properties and microstructure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Research of low cost wind generator rotors

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Ross, R. S.

    1978-01-01

    A feasibility program determined that it would be possible to significantly reduce the cost of manufacturing wind generator rotors by making them of cast urethane. Several high modulus urethanes which were structurally tested were developed. A section of rotor was also cast and tested showing the excellent aerodynamic surface which results. A design analysis indicated that a cost reduction of almost ten to one can be achieved with a small weight increase to achieve the same structural integrity as expected of current rotor systems.

  7. NAVFAC Ocean Thermal Energy Conversion (OTEC) Project; OTEC Technology Development Report

    DTIC Science & Technology

    2010-11-01

    platform and CWP. It was a goal of this program to find a material that is high in abrasion resistance and low in friction for the guide layers. Figure...preferred material was a high density urethane. Urethane has very high abrasion resistance – it is often used for marine buoys, fenders, and coatings...design thread in the document. The following is a list of the top level sections in the report. EXECUTIVE SUMMARY  1  1.  INTRODUCTION  2  2

  8. Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment.

    PubMed

    Regis, Shawn; Jassal, Manisha; Mukherjee, Nilay; Bayon, Yves; Scarborough, Nelson; Bhowmick, Sankha

    2012-05-01

    Incisional hernias represent a serious and common complication following laparotomy. The use of synthetic (e.g. polypropylene) meshes to aid repair of these hernias has considerably reduced recurrence rates. While polypropylene is biocompatible and has a long successful clinical history in treating hernias and preventing reherniation, this material may suffer some limitations, particularly in challenging patients at risk of wound failure due to, for example, an exaggerated inflammation reaction, delayed wound healing, and infection. Surface modification of the polypropylene mesh without sacrificing its mechanical properties, critical for hernia repair, represents one way to begin to address these clinical complications. Our hypothesis is treatment of a proprietary polypropylene mesh with sodium hydroxide (NaOH) will increase in vitro NIH/3T3 cell attachment, predictive of earlier and improved cell colonization and tissue integration of polypropylene materials. Our goal is to achieve this altered surface functionality via enhanced removal of chemicals/oils used during material synthesis without compromising the mechanical properties of the mesh. We found that NaOH treatment does not appear to compromise the mechanical strength of the material, despite roughly a 10% decrease in fiber diameter. The treatment increases in vitro NIH/3T3 cell attachment within the first 72 h and this effect is sustained up to 7 days in vitro. This research demonstrates that sodium hydroxide treatment is an efficient way to modify the surface of polypropylene hernia meshes without losing the mechanical integrity of the material. This simple procedure could also allow the attachment of a variety of biomolecules to the polypropylene mesh that may aid in reducing the complications associated with polypropylene meshes today. Copyright © 2012 Wiley Periodicals, Inc.

  9. Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride.

    PubMed

    Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C; Burruel-Ibarra, Silvia E; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus

    2017-01-25

    The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films.

  10. Finite element investigation of temperature dependence of elastic properties of carbon nanotube reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Ahmadi, Masoud; Ansari, Reza; Rouhi, Saeed

    2017-11-01

    This paper aims to investigate the elastic modulus of the polypropylene matrix reinforced by carbon nanotubes at different temperatures. To this end, the finite element approach is employed. The nanotubes with different volume fractions and aspect ratios (the ratio of length to diameter) are embedded in the polymer matrix. Besides, random and regular algorithms are utilized to disperse carbon nanotubes in the matrix. It is seen that as the pure polypropylene, the elastic modulus of carbon nanotube reinforced polypropylene decreases by increasing the temperature. It is also observed that when the carbon nanotubes are dispersed parallelly and the load is applied along the nanotube directions, the largest improvement in the elastic modulus of the nanotube/polypropylene nanocomposites is obtained.

  11. Polypropylene Oil as a Fuel for Ni-YSZ | YSZ | LSCF Solid Oxide Fuel Cell

    NASA Astrophysics Data System (ADS)

    Pratiwi, Andini W.; Rahmawati, Fitria; Rochman, Refada A.; Syahputra, Rahmat J. E.; Prameswari, Arum P.

    2018-01-01

    This research aims to convert polypropylene plastic to polypropylene oil through pyrolysis method and use the polypropylene oil as fuel for Solid Oxide Fuel Cell, SOFC, to produce electricity. The material for SOFC single cell are Ni-YSZ, YSZ, and LSCF as anode, electrolyte and cathode, respectively. YSZ is yttria-stabilized-zirconia. Meanwhile, LSCF is a commercial La0.6Sr0.4Co0.2Fe0.8O3. The Ni-YSZ is a composite of YSZ with nickel powder. LSCF and Ni-YSZ slurry coated both side of YSZ electrolyte pellet through screen printing method. The result shows that, the produced polypropylene oil consist of C8 to C27 hydrocarbon chain. Meanwhile, a single cell performance test at 673 K, 773 K and 873 K with polypropylene oil as fuel, found that the maximum power density is 1.729 μW. cm-2 at 673 K with open circuit voltage value of 9.378 mV.

  12. Binding Assays for the Quantitative Detection of P. brevis Polyether Neurotoxins in Biological Samples and Antibodies as Therapeutic Aids for Polyether Marine Intoxication

    DTIC Science & Technology

    1987-12-01

    editions are obsolete. -I Block 19 continued structure. Preliminary experiments involving conversion of the radio- immunoassay to a urease enzyme linked...the radioimmunoassay to a urease I enzyme linked form have been successful. DTIC GTAB Di tributioul AV~i~b~±~YCoded Avsi abi11i ntY___ tat Special...necessary prior to thin- layer chromatography. A preparative thin- layer chromatography step using silica gel plates (1000 u thickness) utilizes acetone

  13. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    NASA Technical Reports Server (NTRS)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  14. Theoretical study of binding and permeation of ether-based polymers through interfaces.

    PubMed

    Samanta, Susruta; Hezaveh, Samira; Roccatano, Danilo

    2013-11-27

    We present a molecular dynamics simulation study on the interactions of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and their ABA-type block copolymer, poloxamers, at water/n-heptane and 1,2-dimyristoyl-sn-glycero-3-phospatidycholine (DMPC) lipid bilayer/water interfaces. The partition coefficients in water/1-octanol of the linear polyethers up to three monomers were calculated. The partition coefficients evidenced a higher hydrophobicity of the PPO in comparison to PEO. At the water/n-heptane interface, the polymers tend to adopt elongated conformations in agreement with similar experimental ellipsometry studies of different poloxamers. In the case of the poloxamers at the n-heptane/water interface, the stronger preference of the PPO block for the hydrophobic phase resulted in bottle-brush-type polymer conformations. At lipid bilayer/water interface, the PEO polymers, as expected from their hydrophilic nature, are weakly adsorbed on the surface of the lipid bilayer and locate in the water phase close to the headgroups. The free energy barriers of permeation calculated for short polymer chains suggest a thermodynamics propensity for the water phase that increase with the chain length. The lower affinity of PEO for the hydrophobic interior of the lipid bilayer resulted in the spontaneous expulsion within the simulation time. On the contrary, PPO chains and poloxamers have a longer residence time inside the bilayer, and they tend to concentrate in the tail region of the bilayer near the polar headgroups. In addition, polymers with PPO unit length comparable to the thickness of the hydrophobic region of the bilayer tend to span across the bilayer.

  15. Simultaneous Improvement of Oxidative and Hydrolytic Resistance of Polycarbonate Urethanes Based on Polydimethylsiloxane/Poly(hexamethylene carbonate) Mixed Macrodiols.

    PubMed

    Li, Zhen; Yang, Jian; Ye, Heng; Ding, Mingming; Luo, Feng; Li, Jianshu; Li, Jiehua; Tan, Hong; Fu, Qiang

    2018-06-11

    The degradation behaviors including oxidation and hydrolysis of silicone modified polycarbonate urethanes were thoroughly investigated. These polyurethanes were based on polyhexamethylene carbonate (PHMC)/polydimethylsiloxane (PDMS) mixed macrodiols with molar ratio of PDMS ranging from 5% to 30%. It was proved that PDMS tended to migrate toward surface and even a small amount of PDMS could form a silicone-like surface. Macrophages-mediated oxidation process indicated that the PDMS surface layer was desirable to protect the fragile soft PHMC from the attack of degradative species. Hydrolysis process was probed in detail after immersing in boiling buffered water using combined analytical tools. Hydrolytically stable PDMS could act as protective shields for the bulk to hinder the chain scission of polycarbonate carbonyls whereas the hydrolysis of urethane linkages was less affected. Although the promoted phase separation at higher PDMS fractions lead to possible physical defects and mechanical compromise after degradation, simultaneously enhanced oxidation and hydrolysis resistance could be achieved for the polyurethanes with proper PDMS incorporation.

  16. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  17. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  18. Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.

    PubMed

    Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok

    2014-10-01

    Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.

  19. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  20. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  1. Organotin Polyethers as Biomaterials

    PubMed Central

    Carraher, Charles E.; Roner, Michael R.

    2009-01-01

    Organotin polyethers are easily synthesized employing interfacial polymerization systems involving the reaction of hydroxyl-containing Lewis bases and organotin halides. A wide variety of organotin-containing polymeric products have been synthesized including those derived from natural and synthetic polymers such as lignin, xylan, cellulose, dextran, and poly(vinyl alcohol). Others have been synthesized employing known drug diols such as dicumarol, DES, and dienestrol and a wide variety of synthetic diols. Included in these materials are the first water soluble organotin polymers. The organotin polyethers exhibit a wide range of biological activities. Some selectively inhibit a number of unwanted bacteria, including Staph. MRSA, and unwanted yeasts such as Candida albicans. Some also inhibit a variety of viruses including those responsible for herpes infections and smallpox. Others show good inhibition of a wide variety of cancer cell lines including cell lines associated with ovarian, colon, lung, prostrate, pancreatic and breast cancer. The synthesis, structural characterization, and biological characterization of these materials is described in this review.

  2. Safety Assessment of Methyl Glucose Polyethers and Esters as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of methyl glucose polyethers and esters which function in cosmetics as skin/hair-conditioning agents, surfactants, or viscosity increasing agents. The esters included in this assessment are mono-, di-, or tricarboxyester substituted methyl glucosides, and the polyethers are mixtures of various chain lengths. The Panel reviewed available animal and clinical data, including the molecular weights, log K ow s, and other properties in making its determination of safety on these ingredients. Where there were data gaps, similarities between molecular structures, physicochemical and biological characteristics, and functions and concentrations in cosmetics allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that there likely would be no significant systemic exposure from cosmetic use of these ingredients, and that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. © The Author(s) 2016.

  3. 40 CFR 721.9516 - Siloxanes and silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal..., reaction products with polyethylene-polypropylene glycol Bu glycidal ether. (a) Chemical substance and... silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene...

  4. 40 CFR 721.9516 - Siloxanes and silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal..., reaction products with polyethylene-polypropylene glycol Bu glycidal ether. (a) Chemical substance and... silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene...

  5. Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride

    PubMed Central

    Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C.; Burruel-Ibarra, Silvia E.; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus

    2017-01-01

    The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films. PMID:28772464

  6. Raman structural study of melt-mixed blends of isotactic polypropylene with polyethylene of various densities

    NASA Astrophysics Data System (ADS)

    Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.

    2018-04-01

    We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.

  7. Effects of Surface Modification on the Mechanical Properties of Flax/β-Polypropylene Composites

    PubMed Central

    Wu, Chang-Mou; Lai, Wen-You; Wang, Chen-Yu

    2016-01-01

    The effects of surface treatment of flax fibers featuring vinyltrimethoxy silane (VTMO) and maleic anhydride-polypropylene (MAPP) on the mechanical properties of flax/PP composites were investigated. α-polypropylene (α-PP) and β-polypropylene (β-PP) were used as matrices for measuring the mechanical properties of the flax fiber/polypropylene (flax/PP) composites. Flax/PP composites composed of double-covered uncommingled yarn (DCUY) were prepared using a film-stacking technique. The influence of surface treatment on the tensile, flexural, impact, and water uptake properties of Flax/PP composites were investigated. MAPP treatment was suitable for flax/PP composites in terms of superior tensile and impact properties. VTMO treatment showed superior flexural properties and less influence on the impact properties after moisture absorption. PMID:28773439

  8. Selective laser vaporization of polypropylene sutures and mesh

    NASA Astrophysics Data System (ADS)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  9. Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on l-Tyrosine for Intracellular Drug Delivery to Cancer Cells.

    PubMed

    Aluri, Rajendra; Saxena, Sonashree; Joshi, Dheeraj Chandra; Jayakannan, Manickam

    2018-06-11

    Multistimuli-responsive l-tyrosine-based amphiphilic poly(ester-urethane) nanocarriers were designed and developed for the first time to administer anticancer drugs in cancer tissue environments via thermoresponsiveness and lysosomal enzymatic biodegradation from a single polymer platform. For this purpose, multifunctional l-tyrosine monomer was tailor-made with a PEGylated side chain at the phenolic position along with urethane and carboxylic ester functionalities. Under melt dual ester-urethane polycondensation, the tyrosine monomer reacted with diols to produce high molecular weight amphiphilic poly(ester-urethane)s. The polymers produced 100 ± 10 nm spherical nanoparticles in aqueous medium, and they exhibited thermoresponsiveness followed by phase transition from clear solution into a turbid solution in heating/cooling cycles. Variable temperature transmittance, dynamic light scattering, and 1 H NMR studies revealed that the polymer chains underwent reversible phase transition from coil-to-expanded chain conformation for exhibiting the thermoresponsive behavior. The lower critical solution temperature of the nanocarriers was found to correspond to cancer tissue temperature (at 42-44 °C), which was explored as an extracellular trigger (stimuli-1) for drug delivery through the disassembly process. The ester bond in the poly(ester-urethane) backbones readily underwent enzymatic biodegradation in the lysosomal compartments that served as intracellular stimuli (stimuli-2) to deliver drugs. Doxorubicin (DOX) and camptothecin (CPT) drug-loaded polymer nanocarriers were tested for cellular uptake and cytotoxicity studies in the normal WT-MEF cell line and cervical (HeLa) and breast (MCF7) cancer cell lines. In vitro drug release studies revealed that the polymer nanoparticles were stable under physiological conditions (37 °C, pH 7.4) and they exclusively underwent disassembly at cancer tissue temperature (at 42 °C) and biodegradation by lysosomal-esterase enzyme to deliver 90% of DOX and CPT. Drug-loaded polymer nanoparticles exhibited better cytotoxic effects than their corresponding free drugs. Live cell confocal microscopy imaging experiments with lysosomal tracker confirmed the endocytosis of the polymer nanoparticles and their biodegradation in the lysosomal compartments in cancer cells. The increment in the drug content in the cells incubated at 42 °C compared to 37 °C supported the enhanced drug uptake by the cancer cells under thermoresponsive stimuli. The present work creates a new platform for the l-amino acid multiple-responsive polymer nanocarrier platform for drug delivery, and the proof-of-concept was successfully demonstrated for l-tyrosine polymers in cervical and breast cancer cells.

  10. Magnetic solid-phase extraction based on carbon nanotubes for the determination of polyether antibiotic and s-triazine drug residues in animal food with LC-MS/MS.

    PubMed

    Liu, Xiaoxing; Xie, Shuyu; Ni, Tengteng; Chen, Dongmei; Wang, Xu; Pan, Yuanhu; Wang, Yulian; Huang, Lingli; Cheng, Guyue; Qu, Wei; Liu, Zhenli; Tao, Yanfei; Yuan, Zonghui

    2017-06-01

    Carbon nanotubes-magnetic nanoparticles, comprising ferroferric oxide nanoparticles and carbon nanotubes, were prepared through a simple one-step synthesis method and subsequently applied to magnetic solid-phase extraction for the determination of polyether antibiotic and s-triazine drug residues in animal food coupled with liquid chromatography with tandem mass spectrometry. The nanocomposites were characterized by transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The components within the nanocomposites endowed the material with high extraction performance and manipulative convenience. Compared with carbon nanotubes, the as-prepared carbon nanotubes-magnetic nanoparticles showed better extraction and separation efficiencies for polyether antibiotics and s-triazine drugs thanks to the contribution of the iron-containing magnetic nanoparticles. Various experimental parameters affecting the extraction efficiency had been investigated in detail. Under the optimal conditions, the good linearity ranging from 1 to 200 μg/kg for diclazuril, toltrazuril, toltrazuril sulfone, lasalocid, monensin, salinomycin, narasin, nanchangmycin, and maduramicin, low limits of detection ranging from 1 to 5 μg/kg, and satisfactory spiked recoveries (77.1-91.2%, with the inter relative standard deviation values from 4.0 to 12.2%) were shown. It was confirmed that this novel method was an efficient pretreatment and enrichment procedure and could be successfully applied for extraction and determination of polyether and s-triazine drug residues in complex matrices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    PubMed Central

    Lando, Gabriela Albara; Marconatto, Letícia; Schrank, Augusto; Vainstein, Marilene Henning

    2017-01-01

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management. PMID:28718785

  12. Binding of tetramethylammonium to polyether side-chained aromatic hosts. Evaluation of the binding contribution from ether oxygen donors.

    PubMed

    Bartoli, Sandra; De Nicola, Gina; Roelens, Stefano

    2003-10-17

    A set of macrocyclic and open-chain aromatic ligands endowed with polyether side chains has been prepared to assess the contribution of ether oxygen donors to the binding of tetramethylammonium (TMA), a cation believed incapable of interacting with oxygen donors. The open-chain hosts consisted of an aromatic binding site and side chains possessing a variable number of ether oxygen donors; the macrocyclic ligands were based on the structure of a previously investigated host, the dimeric cyclophane 1,4-xylylene-1,4-phenylene diacetate (DXPDA), implemented with polyether-type side chains in the backbone. Association to tetramethylammonium picrate (TMAP) was measured in CDCl(3) at T = 296 K by (1)H NMR titrations. Results confirm that the main contribution to the binding of TMA comes from the cation-pi interaction established with the aromatic binding sites, but they unequivocally show that polyether chains participate with cooperative contributions, although of markedly smaller entity. Water is also bound, but the two guests interact with aromatic rings and oxygen donors in an essentially noncompetitive way. An improved procedure for the preparation of cyclophanic tetraester derivatives has been developed that conveniently recycles the oligomeric ester byproducts formed in the one-pot cyclization reaction. An alternative entry to benzylic diketones has also been provided that makes use of a low-order cyanocuprate reagent to prepare in fair yields a class of compounds otherwise uneasily accessible.

  13. Langmuir and Langmuir-Blodgett films of multifunctional, amphiphilic polyethers with cholesterol moieties.

    PubMed

    Reuter, Sascha; Hofmann, Anna M; Busse, Karsten; Frey, Holger; Kressler, Jörg

    2011-03-01

    Langmuir films of multifunctional, hydrophilic polyethers containing a hydrophobic cholesterol group (Ch) were studied by surface pressure-mean molecular area (π-mmA) measurements and Brewster angle microscopy (BAM). The polyethers were either homopolymers or diblock copolymers of linear poly(glycerol) (lPG), linear poly(glyceryl glycidyl ether) (lPGG), linear poly(ethylene glycol) (lPEG), or hyperbranched poly(glycerol) (hbPG). Surface pressure measurements revealed that the homopolymers lPG and hbPG did not stay at the water surface after spreading and solvent evaporation, in contrast to lPEG. Because of the incorporation of the Ch group in the polymer structure, stable Langmuir films were formed by Ch-lPG(n), Ch-lPGG(n), and Ch-hbPG(n). The Ch-hbPG(n), Ch-lPEG(n), Ch-lPEG(n)-b-lPG(m), Ch-lPEG(n)-b-lPGG(m), and Ch-lPEG(n)-b-hbPG(m) systems showed an extended plateau region assigned to a phase transition involving the Ch groups. Typical hierarchically ordered morphologies of the LB films on hydrophilic substrates were observed for all Ch-initiated polymers. All LB films showed that Ch of the Ch-initiated homopolymers is able to crystallize. This strong tendency of self-aggregation then triggers further dewetting effects of the respective polyether entities. Fingerlike morphologies are observed for Ch-lPEG(69), since the lPEG(69) entity is able to undergo crystallization after transfer onto the silicon substrate.

  14. Evaluation of the Efficacy of Different Mixing Techniques and Disinfection on Microbial Colonization of Polyether Impression Materials: A Comparative Study.

    PubMed

    Singla, Youginder; Pachar, Renu B; Poriya, Sangeeta; Mishra, Aalok; Sharma, Rajni; Garg, Anshu

    2018-03-01

    This study aims to determine the role of mixing techniques of polyether impression materials and efficacy of disinfection on microbial colonization of these impression materials. Polyether impression material was mixed using two methods: First by hand mixing (group I) and second using an automixer (group II) with a total of 100 samples. Four microbial strains were studied, which included Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. After incubation, the bacterial colonies were counted, and then, disinfectant solution was applied. The effect of disinfection solution was evaluated for each specimen. The surface of polyether impression materials mixed with an automixer has less number of voids and overall a smoother surface as compared with the hand-mixed ones. On comparing the disinfection procedures, i.e., specimens without any disinfection and specimens after disinfection, statistically highly significant difference was seen between all the groups. We can conclude that impression mixing procedures are important in determining the surface characteristics of the impression and ultimately the colonization of bacteria and also determine the importance of disinfection on microbial colonization. This study emphasises the deleterious role of nosocomial infections and specific measures that should be taken regarding the prevention of such diseases. Dental impressions are proved to be a source of such infections and may lead to transmission of such diseases. Thus, proper measures should be taken right from the first step of impression taking to minimizing and preventing such kind of contaminations in clinical practice.

  15. Effects of moisture on aspen-fiber/polypropylene composites

    Treesearch

    Roger M. Rowell

    2002-01-01

    Aspen fiber/polypropylene composites were made using several different levels of aspen fiber (0 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted polypropylene, MAPP). These composites were tested under various relative humidity conditions and in water soaking, boiling water, cyclic liquid water and oven drying tests. In all...

  16. Selective removal of polyethylene or polypropylene from their blends based on difference in their adsorption behaviour.

    PubMed

    Macko, Tibor; Pasch, Harald; Brüll, Robert

    2006-05-19

    The adsorption of polyethylene and polypropylene on zeolites depends on the nature of zeolite, the solvent as well as the molar mass of the polymer sample. For example, linear polyethylene is strongly retained on zeolite SH-300 from decalin, while isotactic, syndiotactic or atactic polypropylene is fully eluted in this system. On the other hand, polypropylene is retained on zeolite CBV-780 from diphenylether, while linear polyethylene is eluted. These differences in the elution behaviour have been utilised for selective removal of either linear polyethylene or polypropylene from blends of both polymers. The desorption of the retained polymer is difficult, or at times impossible. However, the selected adsorption systems have complimentary character, i.e. either one or second component is eluted or fully retained. Thus these sorbent/solvent systems, identified herein, are the first isocratic chromatographic systems, which enable selectively to remove polyethylene or polypropylene from their mixture. Moreover, decalin/SH-300 enables the removal of both linear and branched polyethylene from mixtures with random ethylene/propylene copolymers (polyethylene fully retained, ethylene/propylene copolymers eluted).

  17. Strength of laser welded joints of polypropylene composites

    NASA Astrophysics Data System (ADS)

    Votrubec, V.; Hisem, P.; Vinšová, L.; Lukášová, V.

    2017-11-01

    This paper deals with experimental tests of laser welded polypropylene composites. Polymers, such as polypropylene, are often filled with fibres in order to increase their mechanical properties. The welding procedure can also influence material properties nearby weld joints. Therefore the strength of weld joints is lower than strength of primary materials. This effect is proved by realized shear tests. Polymer specimens were filled with 20 % and 40 % of glass fibres and all possible combinations of specimens were welded for experiments. There is also discussed influence of volume fraction of glass fibres in polypropylene on the strength of weld joint.

  18. Structure development in melt processing isotactic polypropylene, polypropylene blends/compounds and dynamically vulcanized polyolefin TPEs

    NASA Astrophysics Data System (ADS)

    Yu, Yishan

    The influence of various fillers, nucleating agents and ethylene propylene diene terpolymer (EPDM) additive on crystalline modification (alpha-, beta- and smectic forms) and crystalline orientation of polypropylene in die extrudates, melt spun filaments, thick rods, blow molded bottles and injection molded parts of isotactic polypropylene (PP), its blends/compounds and dynamically vulcanized polypropylene thermoplastic elastomers (TPEs) were experimentally studied under a range of cooling and processing conditions. The phenomena of crystallization, polymorphism and orientation in processing of both thin and thick samples (filaments, rods, bottles and injection molded parts) were simulated through transport laws incorporating polymer crystallization kinetics. Continuous cooling transformation (CCT) curves for the various material systems investigated were developed under quiescent and uniaxial stress conditions. We applied experimental data on polymorphism of thin sections to predict crystalline structure variation in thick parts. The predictions were consistent with experiments. For filaments, the polypropylene crystalline orientation-spinline stress relationship is generally similar for the neat PP, blends/compounds and TPEs. However, the blends and TPEs have much lower birefringence apparently due to a lack of orientation in the rubber phase. It was shown that the polypropylene contribution to the birefringence for the neat PP and its blends is the same at the same spinline stress. For bottles, the inflation pressures used have little effect on orientation of either polypropylene crystals or disc-shaped talc filler. The talc discs are highly oriented parallel to the bottle surface. For the bottles without talc, the orientation of polypropylene crystallographic axes are low. The polypropylene crystallographic b-axes in the talc filled bottles are more highly oriented. For injection molded parts, it was found that a low orientation layer exists between the part surface and an intermediate highly oriented layer in the parts of neat PP and its blends/compounds. The thickness of this layer increases as the injection pressure decreases. This layer was not formed in the TPE parts. This would seem to be associated with the TPEs exhibiting a yield stress in shear flow and not exhibiting fountain flow in mold filling. For all parts studied, the orientation characteristics of polypropylene crystallographic axes in the highly oriented layer are similar from sample to sample. The strong orientation of the c-axis parallel to the machine direction and the b-axis perpendicular to the machine direction are observed in the highly oriented layer. The talc discs in both the highly oriented layer and the intermediate position are highly oriented parallel to the part face due to melt flow. At intermediate position in the talc-filled parts, the polypropylene crystallographic (040) planes prefer to align themselves parallel to the part surface but are not so well oriented when the talc is absent.

  19. Binding Assays for the Quantitative Detection of P. brevis Polyether Neurotoxins in Biological Samples and Antibodies as Therapeutic Aids for Polyether Marine Intoxication

    DTIC Science & Technology

    1990-05-15

    was also linked to urease and toxin-enzyme conjugates were evaluated. 4. Toxin Enzyme Conjugates. Brevetoxins linked to either Jack Bean urease or...described in materials and methods. For urease conjugates, 1:2, 1:4 and 1:6 molar ratios were investigated. The following protocol yielded the most...fold excess urease in 1 volume equivalent of water, in three equal aliquots. Total volume after addition is 2-fold the volume in step [2], final

  20. Dynamic fracture toughness of cellulose-fiber-reinforced polypropylene : preliminary investigation of microstructural effects

    Treesearch

    Craig M. Clemons; Daniel F. Caulfield; A. Jeffrey Giacomin

    1999-10-01

    In this study, the microstructure of injection-molded polypropylene reinforced with cellulose fiber was investigated. Scanning electron microscopy of the fracture surfaces and X-ray diffraction were used to investigate fiber orientation. The polypropylene matrix was removed by solvent extraction, and the lengths of the residual fibers were optically determined. Fiber...

  1. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites

    Treesearch

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci

    2012-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...

  2. Division of constricted and urethane-treated sand dollar eggs: a test of the polar stimulation hypothesis.

    PubMed

    Rappaport, R; Rappaport, B N

    1984-07-01

    In spherical cells with a central mitotic apparatus, the centers of the asters are closer to the poles than to the equator. This circumstance is basic to several hypothetical explanations of the way in which the mitotic apparatus establishes the division mechanism. This investigation was designed to determine whether that geometrical relationship is necessary for division. Fertilized, mechanically denuded sand dollar eggs were inserted into glass loops, which reduced the diameter in the constriction plane from the normal 142 to 78-80 microns and partly constricted the cell into equal parts. The mitotic apparatus straddled the constriction, and its length was not significantly changed. The manipulation increased the distance from the astral centers to the poles and decreased the distance from the astral centers to the equator to a degree that reversed the normal distance relations. These cells divided normally. Ethyl urethane (0.06 M) reduces the size of the mitotic apparatus and blocks cleavage in spherical cells. When treated cells are confined in 80-microns i.d. capillaries, they divide. Treated cells also divide when they are constricted by an 80-microns i.d. glass loop if the mitotic apparatus straddles the constriction. An equal degree of constriction in the subfurrow and subpolar areas did not reverse the effect of urethane. The results demonstrate that cleavage does not depend on the normal distance relation between the mitotic apparatus and the poles, and that the urethane effect can be remedied only by reducing the distance between the mitotic apparatus and the equatorial surface. Both findings are inconsistent with the polar stimulation hypothesis.

  3. [Change of character of intersystemic interactions in newborn rat pups under conditions of a decrease of central influences (urethane anesthesia)].

    PubMed

    Kuznetsov, S V; Sizonov, V A; Dmitrieva, L E

    2014-01-01

    On newborn rat pups, for the first day after birth, there was studied the character of mutual influences between the slow-wave rhythmical components of the cardiac, respiratory, and motor activities reflecting interactions between the main functional systems of the developing organism. The study was carried out in norm and after pharmacological depression of the spontaneous periodical motor activity (SPMA) performed by narcotization of rat pups with urethane at low (0.5 g/kg, i/p) and maximal (1 g/kg, i/p) doses. Based on the complex of our obtained data, it is possible to conclude that after birth in rat pups the intersystemic interactions are realized mainly by the slow-wave oscillations of the near- and manyminute diapason. The correlational interactions mediated by rhythms of the decasecond diapason do not play essential role in integrative processes. Injection to the animals of urethane producing selective suppression of reaction of consciousness, but not affecting activating influences of reticular formation on cerebral cortex does not cause marked changes of autonomous parameters, but modulates structure and expression of spontaneous periodical motor activity. There occurs an essential decrease of mutual influences between motor and cardiovascular systems. In the case of preservation of motor activity bursts, a tendency for enhancement of correlational relations between the modulating rhythms of motor and somatomotor systems is observed. The cardiorespiratory interactions, more pronounced in intact rat pups in the near- and many-minute modulation diapason, under conditions of urethane, somewhat decrease, whereas the rhythmical components of the decasecond diapason--are weakly enhanced.

  4. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice.

    PubMed

    Orenstein, Sean B; Saberski, Ean R; Kreutzer, Donald L; Novitsky, Yuri W

    2012-08-01

    While synthetic prosthetics have essentially become mandatory for hernia repair, mesh-induced chronic inflammation and scarring can lead to chronic pain and limited mobility. Mesh propensity to induce such adverse effects is likely related to the prosthetic's material, weight, and/or pore size. We aimed to compare histopathologic responses to various synthetic meshes after short- and long-term implantations in mice. Samples of macroporous polyester (Parietex [PX]), heavyweight microporous polypropylene (Trelex[TX]), midweight microporous polypropylene (ProLite[PL]), lightweight macroporous polypropylene (Ultrapro[UP]), and expanded polytetrafluoroethylene (DualMesh[DM]) were implanted subcutaneously in mice. Four and 12 wk post-implantation, meshes were assessed for inflammation, foreign body reaction (FBR), and fibrosis. All meshes induced varying levels of inflammatory responses. PX induced the greatest inflammatory response and marked FBR. DM induced moderate FBR and a strong fibrotic response with mesh encapsulation at 12 wk. UP and PL had the lowest FBR, however, UP induced a significant chronic inflammatory response. Although inflammation decreased slightly for TX, marked FBR was present throughout the study. Of the three polypropylene meshes, fibrosis was greatest for TX and slightly reduced for PL and UP. For UP and PL, there was limited fibrosis within each mesh pore. Polyester mesh induced the greatest FBR and lasting chronic inflammatory response. Likewise, marked fibrosis and encapsulation was seen surrounding ePTFE. Heavier polypropylene meshes displayed greater early and persistent fibrosis; the reduced-weight polypropylene meshes were associated with the least amount of fibrosis. Mesh pore size was inversely proportional to bridging fibrosis. Moreover, reduced-weight polypropylene meshes demonstrated the smallest FBR throughout the study. Overall, we demonstrated that macroporous, reduced-weight polypropylene mesh exhibited the highest degree of biocompatibility at sites of mesh implantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Effect of different fibers on mechanical properties and ductility of alkali-activated slag cementitious material

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zheng, W. Z.; Qin, C. Z.; Xu, Z. Z.; Wu, Y. Q.

    2018-01-01

    The effect of different fibers on mechanical properties and ductility of alkali-activated slag cementitious material (AASCM) is studied. The research contents include: fiber type (plant fiber, polypropylene fiber), fiber content, mechanical property index, tensile stress-strain relationship curve, treating time. The test results showed that the compressive strength of two fibers reinforced AASCM was about 90 ~ 110MPa, and the tensile strength was about 3 ~ 5MPa. The reinforcement effect of polypropylene fiber is superior to that of plant fiber, and the mechanical properties of polypropylene fiber reinforced AASCM are superior to those of plant fiber, According to the comparison of SEM pictures, the plant fiber and polypropylene fiber are both closely bound with the matrix, and the transition zones are complete and close. Thus, it is proved that plant fiber and polypropylene fiber delay the crack extension and enhance the ductility of AASCM.

  6. Comparison of Linear and Hyperbranched Polyether Lipids for Liposome Shielding by 18F-Radiolabeling and Positron Emission Tomography.

    PubMed

    Wagener, Karolin; Worm, Matthias; Pektor, Stefanie; Schinnerer, Meike; Thiermann, Raphael; Miederer, Matthias; Frey, Holger; Rösch, Frank

    2018-04-27

    Multifunctional and highly biocompatible polyether structures play a key role in shielding liposomes from degradation in the bloodstream, providing also multiple functional groups for further attachment of targeting moieties. In this work hyperbranched polyglycerol ( hbPG) bearing lipids with long alkyl chain anchor are evaluated with respect to steric stabilization of liposomes. The branched polyether lipids possess a hydrophobic bis(hexadecyl)glycerol membrane anchor for the liposomal membrane. hbPG was chosen as a multifunctional alternative to PEG, enabling the eventual linkage of multiple targeting vectors. Different hbPG lipids ( M n = 2900 and 5200 g mol -1 ) were examined. A linear bis(hexadecyl)glycerol-PEG lipid ( M n = 3000 g mol -1 ) was investigated as well, comparing hbPG and PEG with respect to shielding properties. Radiolabeling of the polymers was carried out using 1-azido-2-(2-(2-[ 18 F]fluoroethoxy)ethoxy)ethane ([ 18 F]F-TEG-N) 3 via copper-catalyzed alkyne-azide cycloaddition with excellent radiochemical yields exceeding 95%. Liposomes were prepared by the thin-film hydration method followed by repeated extrusion. Use of a custom automatic extrusion device gave access to reproducible sizes of the liposomes (hydrodynamic radius of 60-94 nm). The in vivo fate of the bis(hexadecyl)glycerol polyethers and their corresponding assembled liposome structures were evaluated via noninvasive small animal positron emission tomography (PET) imaging and biodistribution studies (1 h after injection and 4 h after injection) in mice. Whereas the main uptake of the nonliposomal polyether lipids was observed in the kidneys and in the bladder after 1 h due to rapid renal clearance, in contrast, the corresponding liposomes showed uptake in the blood pool as well as in organs with good blood supply, that is, heart and lung over the whole observation period of 4 h. The in vivo behavior of all three liposomal formulations was comparable, albeit with remarkable differences in splenic uptake. Overall, liposomes shielded by the branched polyglycerol lipids show a favorable biodistribution with greatly prolonged blood circulation times, rendering them promising novel nanovesicles for drug transport and targeting.

  7. Melt rheological properties of natural fiber-reinforced polypropylene

    Treesearch

    Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield

    2000-01-01

    The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 s–1...

  8. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-06-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  9. Autoclaved Sand-Lime Products with a Polypropylene Mesh

    NASA Astrophysics Data System (ADS)

    Kostrzewa, Paulina; Stępień, Anna

    2017-10-01

    The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.

  10. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-01-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  11. Kenaf/PP and EFB/PP: Effect of fibre loading on the mechanical properties of polypropylene composites

    NASA Astrophysics Data System (ADS)

    Anuar, N. I. S.; Zakaria, S.; Harun, J.; Wang, C.

    2017-07-01

    Kenaf and empty fruit bunch (EFB) fibre which are the important natural fibres in Malaysia were studied as nonwoven polymer composites. The effect of fibre loading on kenaf polypropylene and EFB polypropylene nonwoven composite was studied at different mixture ratio. Kenaf polypropylene nonwoven composite (KPNC) and EFB polypropylene nonwoven composite (EPNC) were prepared by carding and needle-punching techniques, followed by a compression moulding at 6 mm thickness. This study was conducted to identify the optimum fibre loading of nonwoven polypropylene composite and their effect on the mechanical strength. The study was designed at 40%, 50%, 60% and 70% of fibre content in nonwoven mat and composite. The tensile strength, flexural strength and compression strength were tested to evaluate the composite mechanical properties. It was found that the mechanical properties for both kenaf and EFB nonwoven composites were influenced by the fibre content. KPNC showed higher mechanical strength than EPNC. The highest flexural strength was obtained at 60% KPNC and the lowest value was showed by 40% EPNC. The tensile and flexural strength for both KPNC and EPNC decreased after the fibre loading of 60%.

  12. Differences in cooperative behavior among Damaraland mole rats are consequences of an age-related polyethism

    PubMed Central

    Zöttl, Markus; Vullioud, Philippe; Mendonça, Rute; Torrents Ticó, Miquel; Gaynor, David; Mitchell, Adam; Clutton-Brock, Tim

    2016-01-01

    In many cooperative breeders, the contributions of helpers to cooperative activities change with age, resulting in age-related polyethisms. In contrast, some studies of social mole rats (including naked mole rats, Heterocephalus glaber, and Damaraland mole rats, Fukomys damarensis) suggest that individual differences in cooperative behavior are the result of divergent developmental pathways, leading to discrete and permanent functional categories of helpers that resemble the caste systems found in eusocial insects. Here we show that, in Damaraland mole rats, individual contributions to cooperative behavior increase with age and are higher in fast-growing individuals. Individual contributions to different cooperative tasks are intercorrelated and repeatability of cooperative behavior is similar to that found in other cooperatively breeding vertebrates. Our data provide no evidence that nonreproductive individuals show divergent developmental pathways or specialize in particular tasks. Instead of representing a caste system, variation in the behavior of nonreproductive individuals in Damaraland mole rats closely resembles that found in other cooperatively breeding mammals and appears to be a consequence of age-related polyethism. PMID:27588902

  13. Validation of a liquid chromatography-electrospray ionization tandem mass spectrometric method to determine six polyether ionophores in raw, UHT, pasteurized and powdered milk.

    PubMed

    Pereira, Mararlene Ulberg; Spisso, Bernardete Ferraz; Jacob, Silvana do Couto; Monteiro, Mychelle Alves; Ferreira, Rosana Gomes; Carlos, Betânia de Souza; da Nóbrega, Armi Wanderley

    2016-04-01

    This study aimed to validate a method developed for the determination of six antibiotics from the polyether ionophore class (lasalocid, maduramicin, monensin, narasin, salinomycin and semduramicin) at residue levels in raw, UHT, pasteurized and powdered milk using QuEChERS extraction and high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The validation was conducted under an in-house laboratory protocol that is primarily based on 2002/657/EC Decision, but takes in account the variability of matrix sources. Overall recoveries between 93% and 113% with relative standard deviations up to 16% were obtained under intermediate precision conditions. CCα calculated values did not exceed 20% the Maximum Residue Limit for monensin and 25% the Maximum Levels for all other substances. The method showed to be simple, fast and suitable for verifying the compliance of raw and processed milk samples regarding the limits recommended by Codex Alimentarius and those adopted in European Community for polyether ionophores. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Impact of Polyether Chain Length on the Iron Clearing Efficiency and Physiochemical Properties of Desferrithiocin Analogues

    PubMed Central

    Bergeron, Raymond J.; Bharti, Neelam; Wiegand, Jan; McManis, James S.; Singh, Shailendra; Abboud, Khalil A.

    2010-01-01

    (S)-2-(2,4-Dihydroxyphenyl)-4,5-dihydro-4-methyl-4-thiazolecarboxylic acid (2) was abandoned in clinical trials as an iron chelator for the treatment of iron overload disease because of its nephrotoxicity. However, subsequent investigations revealed that replacing the 4′-(HO) of 2 with a 3,6,9-trioxadecyloxy group, ligand 4, increased iron clearing efficiency (ICEa) and ameliorated the renal toxicity of 2. This compelled a closer look at additional polyether analogues, the subject of this work. The 3,6,9,12-tetraoxatridecyloxy analogue of 4, chelator 5, an oil, had twice the ICE in rodents of 4, although its ICE in primates was reduced relative to 4. The corresponding 3,6-dioxaheptyloxy analogue of 2, 6 (a crystalline solid), had high ICEs in both the rodent and primate models. It significantly decorporated hepatic, renal, and cardiac iron, with no obvious histopathologies. These findings suggest that polyether chain length has a profound effect on ICE, tissue iron decorporation, and ligand physiochemical properties. PMID:20232803

  15. Instrumented impact testing of kenaf fiber reinforced polypropylene composites: effects of temperature and composition

    Treesearch

    Craig Merrill Clemons; Anand R. Sanadi

    2007-01-01

    An instrumented Izod test was used to investigate the effects of fiber content, coupling agent, and temperature on the impact performance of kenaf fiber reinforced polypropylene (PP). Composites containing 0-60% (by weight) kenaf fiber and 0 or 2% maleated polypropylene (MAPP) and PP/wood flour composites were tested at room temperature and between -50 °C and +...

  16. Comparison of polypropylene and silicone Ahmed Glaucoma Valves.

    PubMed

    Ishida, Kyoko; Netland, Peter A; Costa, Vital P; Shiroma, Lineu; Khan, Baseer; Ahmed, Iqbal Ike K

    2006-08-01

    To evaluate and compare the clinical outcomes after implantation of the silicone plate and the polypropylene plate Ahmed Glaucoma Valves. Prospective, multicenter, comparative series. A total of 132 patients with uncontrolled glaucoma were treated with either the silicone or polypropylene Ahmed Glaucoma Valve implant. Success was defined according to 2 criteria: (1) intraocular pressure (IOP) of 6 mmHg or more or 21 mmHg or less, and (2) IOP reduction of at least 30% relative to preoperative values. Eyes requiring further glaucoma surgery, including cyclophotocoagulation, or showing loss of light perception were classified as failures. Average follow-up was 12.8 months (range, 6-30 months) for the silicone plate group and 14.5 months (range, 6-30 months) for the polypropylene plate group (P = 0.063). At the last follow-up examination, the mean IOP was 13.8+/-3.9 mmHg and 17.3+/-6.5 mmHg (P<0.0001) and the mean number of antiglaucoma medications was 1.9+/-1.3 and 2.1+/-1.4 (P = 0.48) in the silicone plate and polypropylene plate groups, respectively. The life-table success rates for the silicone plate and polypropylene plate groups were 94.2% and 83.2% at 12 months and 82.4% and 56.7% at 24 months by definition 1, respectively (P = 0.035). When an IOP reduction of at least 30% was used for success criterion (definition 2), probabilities of success were 89.5% and 71.7% at 12 months and 78.3% and 68.5% at 24 months in the silicone and the polypropylene plate groups, respectively (P = 0.012). Visual outcomes were comparable between the 2 groups. However, complications including Tenon's cyst were observed more frequently in the polypropylene plate than in the silicone plate group (P<0.05). The silicone Ahmed Glaucoma Valve (model FP7) showed improved IOP reduction compared with the polypropylene (model S2) implant. Differences observed in mean IOP, success rate, and complications suggest that plate material may influence clinical outcome.

  17. Accelerated simulations of aromatic polymers: application to polyether ether ketone (PEEK)

    NASA Astrophysics Data System (ADS)

    Broadbent, Richard J.; Spencer, James S.; Mostofi, Arash A.; Sutton, Adrian P.

    2014-10-01

    For aromatic polymers, the out-of-plane oscillations of aromatic groups limit the maximum accessible time step in a molecular dynamics simulation. We present a systematic approach to removing such high-frequency oscillations from planar groups along aromatic polymer backbones, while preserving the dynamical properties of the system. We consider, as an example, the industrially important polymer, polyether ether ketone (PEEK), and show that this coarse graining technique maintains excellent agreement with the fully flexible all-atom and all-atom rigid bond models whilst allowing the time step to increase fivefold to 5 fs.

  18. Studies toward brevisulcenal F via convergent strategies for marine ladder polyether synthesis.

    PubMed

    Katcher, Matthew; Jamison, Timothy F

    2018-03-15

    Shortly after the initial isolation of marine ladder polyether natural products, biomimetic epoxide-opening cascade reactions were proposed as an efficient strategy for the synthesis of these compounds. However, difficulties in assembling the cascade precursors have limited the realization of these cascades. In this report, we describe strategies that provide convergent access to cascade precursors via regioselective allylation and efficient fragment coupling. We then investigate epoxide-opening cascades promoted by strong bases for the formation of fused tetrahydropyrans. These strategies are evaluated in the context of the synthesis of rings CDEFG of brevisulcenal F.

  19. Morphology and crystalline-phase-dependent electrical insulating properties in tailored polypropylene for HVDC cables

    NASA Astrophysics Data System (ADS)

    Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min

    2016-11-01

    Polypropylene (PP) has become one promising material to potentially replace the cross-link polyethylene used for high voltage direct current cables. Besides the isotactic polypropylene, the block polypropylene (b-PP) and random polypropylene (r-PP) can be synthesized through the copolymerization of ethylene and propylene molecules. In this letter, the effect of morphology and crystalline phases on the insulating electrical properties of PP was investigated. It was found that the introduction of polyethylene monomer resulted in the formation of β and γ phases in b-PP and r-PP. The results from the characteristic trap energy levels indicated that the β and γ phases could induce deep electron traps which enable to capture the carriers. And the space charge accumulation was obviously suppressed. Besides, the decreased electrical conductivity was observed in b-PP and r-PP. It is attributed to the existence of deep traps which can effectively reduce the carrier mobility and density in materials.

  20. MDI Exposure for Spray-On Truck Bed Lining.

    PubMed

    Lofgren, Don J; Walley, Terry L; Peters, Phillip M; Weis, Marty L

    2003-10-01

    Worker exposure to MDI (methylenediphenyl isocyanate) in the sprayed-on truck bed lining industry was assessed by examining Washington State OSHA inspection files and industrial insurance records. The industry uses MDI to form a protective urethane coating on pick-up truck beds. The lining is applied by a worker using a handheld spray gun with application equipment at temperatures and pressures specified by the urethane supplier. Inspections with MDI sampling were initially identified by searching the agency's laboratory database and were further screened for the targeted process. Data for 13 employers was found and extracted from the inspection records. All were small companies with only 1 to 2 workers exposed to MDI; 10 of the 13 employers had started the bed lining service within the last 4 years. The process was found in truck bed lining specialty shops as well as in other truck-related businesses. Six different urethane products were used with reported MDI monomer concentrations of up to 75 percent along with varying concentrations of MDI pre-polymers and other reactants and solvents. Sampling for MDI by inspectors found 7 worksites with worker exposure in excess of the state and OSHA ceiling limit of 0.200 mg/M(3). Deficiencies in respirator programs and engineering controls for MDI were cited. A review of the industrial insurance records found a total of five MDI-related claims at 4 inspected worksites, two for new-onset asthma. It was concluded that workers in the urethane sprayed-on truck bed lining industry are at an increased risk of developing illnesses associated with isocyanate exposure. Interventions are needed to further assess the hazard as well as motivate and assist franchisers, distributors, and retailers to implement effective engineering controls and respiratory protection programs in this nationally emerging small employer industry.

  1. Lamb Wave Dispersion Ultrasound Vibrometry (LDUV) Method for Quantifying Mechanical Properties of Viscoelastic Solids

    PubMed Central

    Nenadic, Ivan Z.; Urban, Matthew W.; Mitchell, Scott A.; Greenleaf, James F.

    2011-01-01

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of Shearwave Dispersion Ultrasound Vibrometry (SDUV), a noninvasive ultrasound based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave Dispersion Ultrasound Vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify mechanical properties of soft tissues with a plate-like geometry. PMID:21403186

  2. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids.

    PubMed

    Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F

    2011-04-07

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.

  3. Tensile properties of wood flour/kenaf fiber polypropylene hybrid composites

    Treesearch

    Jamal Mirbagheri; Mehdi Tajvidi; John C. Hermanson; Ismaeil Ghasemi

    2007-01-01

    Hybrid composites of wood flour/kenaf fiber and polypropylene were prepared at a fixed fiber to plastic ratio of 40 : 60 and variable ratios of the two reinforcements namely 40 : 0, 30 : 10, 20 : 20, 10 : 30, and 0 : 40 by weight. Polypropylene was used as the polymer matrix, and 40–80 mesh kenaf fiber and 60–100 mesh wood flour were used as the...

  4. Tensile Properties and Deflection Temperature of Polypropylene/Sumberejo Kenaf Fiber Composites with Fiber Content Variation

    NASA Astrophysics Data System (ADS)

    Ollivia, S. L.; Juwono, A. L.; Roseno, Seto

    2017-05-01

    The use of synthetic fibers as reinforcement in composites has disadvantage which are unsustainable and an adverse impact on the environment. An alternative reinforcement for composites is natural fiber. Polypropylene and Sumberejo kenaf fibers were used respectively as the matrix and reinforcement. The aim of this research was to obtain the optimum tensile properties and deflection temperature with the variation of kenaf fiber fractions. Polypropylene/kenaf fiber composites were fabricated by hot press method. The kenaf fiber was soaked in NaOH solution before being used as the reinforcement and polypropylene was extruded before being used as the matrix. The weight fractions were varied to produce composites and pristine polypropylene samples were also prepared for comparison. The optimum tensile strength, modulus and deflection temperature were found in the composites with the 40 wt% kenaf fiber fraction with an increase up to 80% and 170% compared to the pristine polypropylene with the values of (60.3 ± 4,3) MPa and (159.1 ± 1,8) °C respectively. The Scanning Electron Microscope observation results in the fracture surface of the composites with the 40 wt% fiber fraction showed a relatively good bonding interface between fibers and the matrix and the failure modes were fiber breakage and matrix failures.

  5. Multi response optimization of sheet forming of Kenaf-Polypropylene composites using grey based fuzzy algorithm

    NASA Astrophysics Data System (ADS)

    Oktariani, Erfina; Istikowati, Rita; Tomo, Hendro Sat Setijo; Rizal, Rafliansyah; Pratama, Yosea

    2018-02-01

    Composites from natural fiber reinforcement are developed as the alternative sheet materials of plastic composite for small-size bodywork parts in automotive industries. Kenaf fiber is selected as the reinforcement of plastic composite. Press forming of Kenaf-Polypropylene is experimentally produced in this study. The aim of this study is to obtain the optimal factor of the process of sheet forming of Kenaf-Polypropylene. The Kenaf delignified is cut into 5 cm lengths and distributed on the surface of Polypropylene sheet for 3 and 5 ply layers. The layers of Kenaf-Polypropylene then pressed by hot press at 190 and 210°C, 40 and 50 bar, for 3 and 5 minutes. However, there are limitations in handling multi responses in design of experiments. The application of the fuzzy logic theory to the grey relational analysis may further develop its performance in solving multi-response problems for process parameter optimization. The layer of Kenaf and Polypropylene, temperature, the duration of hot press and pressure are factors that affect the process. The result of experimental investigation and as well as analysis, shows that the best combination values were 3 ply layer, 210°C, 5 minutes of hot press and 50 bar.

  6. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    NASA Astrophysics Data System (ADS)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  7. Wettability changes in polyether impression materials subjected to immersion disinfection.

    PubMed

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-07-01

    Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P < 0.001). After 30 min of disinfection, only the samples immersed in 0.05% iodophor showed there were no significant changes in the contact angle, whereas the other disinfectants significantly increased the contact angle and decreased the wettability of the polyether material. Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material.

  8. Wettability changes in polyether impression materials subjected to immersion disinfection

    PubMed Central

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-01-01

    Background: Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. Materials and Methods: A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. Results: The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P < 0.001). After 30 min of disinfection, only the samples immersed in 0.05% iodophor showed there were no significant changes in the contact angle, whereas the other disinfectants significantly increased the contact angle and decreased the wettability of the polyether material. Conclusion: Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material. PMID:24130593

  9. Gamma irradiation assisted fungal degradation of the polypropylene/biomass composites

    NASA Astrophysics Data System (ADS)

    Butnaru, Elena; Darie-Niţă, Raluca Nicoleta; Zaharescu, Traian; Balaeş, Tiberius; Tănase, Cătălin; Hitruc, Gabriela; Doroftei, Florica; Vasile, Cornelia

    2016-08-01

    White-rot fungus Bjerkandera adusta has been tested for its ability to degrade some biocomposites materials based on polypropylene and biomass (Eucalyptus globulus, pine cones, and Brassica rapa). γ-irradiation was applied to initiate the degradation of relatively inert polypropylene matrix. The degradation process has been studied by scanning electron microscopy, atomic force microscopy, infrared spectroscopy, contact angle measurements, rheological and chemiluminescence tests. These analyses showed that the polypropylene/biomass composites properties are worsen under the action of the selected microorganism. The formation of cracks and scrap particles over the entire matrix surface and the decrease of the complex viscosity values, as well as the dynamic moduli of gamma irradiated PP/biomass composite and exposed to Bjerkandera adusta fungus, indicate fungal efficiency in composite degradation.

  10. Strength of titanium intramedullary implant versus miniplate fixation of mandibular condyle fractures.

    PubMed

    Frake, Paul C; Howell, Rebecca J; Joshi, Arjun S

    2012-07-01

    To test the strength of internal fixation of mandibular condyle fractures repaired with titanium miniplates versus titanium intramedullary implants. Prospective laboratory experimentation in urethane mandible models and human cadaveric mandibles. Materials testing laboratory at an academic medical center. Osteotomies of the mandibular condyle were created in 40 urethane hemimandible models and 24 human cadaveric specimens. Half of the samples in each group were repaired with traditional miniplates, and the other half were repaired with intramedullary titanium implants. Anteroposterior and mediolateral loads were applied to the samples, and the displacement was measured with reference to the applied force. Titanium intramedullary implants demonstrated statistically significant improved strength and stiffness versus miniplates in the urethane model experimental groups. Despite frequent plastic deformation and mechanical failures of the miniplates, a 1.6-mm-diameter titanium intramedullary pin did not mechanically fail in any of the cases. Intramedullary implantation failures were due to secondary fracture of the adjacent cortical bone or experimental design limitations including rotation of the smooth pin implant. Mechanical implant failures that were encountered with miniplate fixation were not seen with titanium intramedullary implants. These intramedullary implants provide stronger and more rigid fixation of mandibular condyle fractures than miniplates in this in vitro model.

  11. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice.

    PubMed

    Hamzawy, Mohamed A; Abo-Youssef, Amira M; Salem, Heba F; Mohammed, Sameh A

    2017-11-01

    The current study aimed to develop gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) as drug carriers for temozolomide (TMZ) and investigate the possible therapeutic effects of intratracheal inhalation of nanoformulation of TMZ-loaded gold nanoparticles (TGNPs) and liposome-embedded TGNPs (LTGNPs) against urethane-induced lung cancer in BALB/c mice. Physicochemical characters and zeta potential studies for gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) were performed. The current study was conducted by inducing lung cancer chemically via repeated exposure to urethane in BALB/C mice. GNPs and LGNPs were exhibited in uniform spherical shape with adequate dispersion stability. GNPs and LGNPs showed no significant changes in comparison to control group with high safety profile, while TGNPs and LTGNPs succeed to improve all biochemical data and histological patterns. GNPs and LGNPs are promising drug carriers and succeeded in the delivery of small and efficient dose of temozolomide in treatment lung cancer. Antitumor activity was pronounced in animal-treated LTGNPs, these effects may be due to synergistic effects resulted from combination of temozolomide and gold nanoparticles and liposomes that may improve the drug distribution and penetration.

  12. Effect of diisocyanate linkers on the degradation characteristics of copolyester urethanes as potential drug carrier matrices.

    PubMed

    Mathew, Simi; Baudis, Stefan; Neffe, Axel T; Behl, Marc; Wischke, Christian; Lendlein, Andreas

    2015-09-01

    In this study, the effect of three aliphatic diisocyanate linkers, L-lysine diisocyanate ethyl ester (LDI), hexamethylene diisocyanate (HDI), and racemic 2,2,4-/2,4,4-trimethyl hexamethylene diisocyanate (TMDI), on the degradation of oligo[(rac-lactide)-co-glycolide] (64:36 mol%) based polyester urethanes (PEU) was examined. Samples were characterized for their molecular weight, mass loss, water uptake, sequence structure, and thermal and mechanical properties. Compared to non-segmented PLGA, the PEU showed higher water uptake and generally degraded faster. Interestingly, the rate of degradation was not directly correlating with the hydrophilicity of the diisocyanate moieties; instead, competing intra-/intermolecular hydrogen bonds in between urethane moieties appear to substantially decrease the rate of degradation for LDI-derived PEU. By comparing microparticles (μm) and films (mm) as matrices of different dimensions, it was shown that autocatalysis remains a contributor to degradation of the larger-sized PEU matrices as it is typical for non-segmented lactide/glycolide copolymers. The shown capacity of lactide/glycolide-based multiblock copolymers to degrade faster than PLGA and exhibit improved elastic properties could be of interest for medical implants and drug release systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Syntheses and properties of elastic copoly(ester-urethane)s containing a phospholipid moiety and the fabrication of nanosheets.

    PubMed

    Sirithep, Wariya; Morita, Kohei; Iwano, Atsushi; Komachi, Takuya; Okamura, Yosuke; Nagase, Yu

    2014-01-01

    In these years, we have investigated the syntheses of novel diamine and diol monomers containing phosphorylcholine (PC) group to obtain biocompatible polymers, the backbone components of which were thermally stable and mechanically strong. In this study, the preparations of elastic copoly(ester-urethane)s containing PC group and polycarbonate segment were carried out by polycondensation and polyaddition using a diol monomer containing PC group and polycarbonate diol. It was found that the obtained polymers exhibited the high-thermal stability up to 200 °C and the elasticity derived from the soft segment. The introduction of PC group was effective to improve the resistance to the adhesions of proteins and platelets on the polymer films, which was the result of surface properties derived from the PC moiety. In addition, we tried to prepare ultra-thin polymer films composed of copoly(ester-urethane)s, so-called nanosheets. As a result, the desired nanosheets were successfully fabricated and the obtained nanosheets exhibited the high adhesive strength, indicating that the nanosheets could conform closely to the desired surfaces due to their exquisite flexibility and low roughness.

  14. Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh.

    PubMed

    Matthews, Brent D; Pratt, Broc L; Pollinger, Harrison S; Backus, Charles L; Kercher, Kent W; Sing, R F; Heniford, B Todd

    2003-10-01

    The development of intra-abdominal adhesions, bowel obstruction, and enterocutaneous fistulas are potentially severe complications related to the intraperitoneal placement of prosthetic biomaterials. The purpose of this study was to determine the natural history of adhesion formation to polypropylene mesh and two types of polytetrafluoroethylene (ePTFE) mesh when placed intraperitoneally in a rabbit model that simulates laparoscopic ventral hernia repair. Thirty New Zealand white rabbits were used for this study. A 10-cm midline incision was performed for intra-abdominal access and a 2 cm x 2 cm piece of mesh (n = 60) was sewn to an intact peritoneum on each side of the midline. Two types of ePTFE mesh (Dual Mesh and modified Dual Mesh, W.L. Gore & Assoc., Flagstaff, AZ) and polypropylene mesh were compared. The rate of adhesion formation was evaluated by direct visualization using microlaparoscopy (2-mm endoscope/trocar) at 7 days, 3 weeks, 9 weeks, and 16 weeks after mesh implantation. Adhesions to the prosthetic mesh were scored for extent (%) using the Modified Diamond Scale (0 = 0%, 1 50%). At necropsy the mesh was excised en bloc with the anterior abdominal wall for histological evaluation of mesothelial layer growth. The mean adhesion score for the polypropylene mesh was significantly greater (P < 0.05) than Dual Mesh at 9 weeks and 16 weeks and modified Dual Mesh at 7 days, 9 weeks, and 16 weeks. Fifty-five percent (n = 11) of the polypropylene mesh had adhesions to small intestine or omentum at necropsy compared to 30% (n = 6) of the Dual Mesh and 20% (n = 4) of the modified Dual Mesh. There was a significantly greater percentage (P < 0.003) of ePTFE mesh mesothelialized at explant (modified Dual Mesh 44.2%; Dual Mesh 55.8%) compared to the polypropylene mesh (12.9%). Serial microlaparoscopic evaluation of intraperitoneally implanted polypropylene mesh and ePTFE mesh in a rabbit model revealed a progression of adhesions to polypropylene mesh over a 16 week period. The pore size of mesh is critical in the development and maintenance of abdominal adhesions and tissue ingrowth. The macroporous polypropylene mesh promoted adhesion formation, while the microporous nature of the visceral side of the ePTFE served as a barrier to adhesions.

  15. The effect of modified ijuk fibers to crystallinity of polypropylene composite

    NASA Astrophysics Data System (ADS)

    Prabowo, I.; Nur Pratama, J.; Chalid, M.

    2017-07-01

    Nowadays, plastics becomes concern associated with its degradation and environmental issues. It has led studies to develop an environmental-friendly material. To minimize the impact of those problems, recently the usage of natural fibers as a filler are introduced because of biodegradability and availability. The promising natural fiber is “ijuk” fiber from Arenga pinnata plant as a filler and polypropylene (PP) polymer as a matrix. Unfortunately, the natural fibers and polymers have the different properties on which polymers are polar while natural fibers are non-polar so that reducing the compatibility and resulting the poor crystallinity. To enhance the compatibility and crystallinity, ijuk fibers were prepared by multistage treatments including alkalinization with 5 and 10% sodium hydroxide (NaOH), oxidation with 3 and 6% sodium hypochlorite (NaClO) and hydrolysis with 20% sulphuric acid (H2SO4) in sequences. The purposes of multistage treatments are to remove the components such as lignin, wax, hemicellulose, to cause an oxidative fragmentation of remaining lignin and to annihilate the amorphous parts respectively. Fourier-Transform Infrared (FTIR) confirms the compatibility meanwhile Differential Scanning Calorimetry (DSC) reveals the crystallinity and Scanning Electron Microscope (SEM) displays surface morphology of polypropylene. The experiments were revealing that the effects of “ijuk” fibers by the multistage treatments of 5 and 10% NaOH resulting the crystallinity of polypropylene around 31.2 and 27.64% respectively compared to the crystallinity before adding the “ijuk” fibers for 16.8%. It indicates that the entire treatments increasing the compatibility and crystallinity of polypropylene. In addition, the use of 5% NaOH offers the better crystallinity than non-treated polypropylene. The experiments conclude that by adding alkalinized “ijuk” fibers of multistage treatments can increase the compatibility and crystallinity of polypropylene.

  16. [INFLUENCE OF TITANIUM COATING ON THE BIOCOMPATIBILITY OF POLYPROPYLENE IMPLANTS].

    PubMed

    Babichenko, I I; Kazantsev, A A; Titarov, D L; Shemyatovsky, K A; Ghevondian, N M; Melchenko, D; Alekhin, A I

    2016-01-01

    Comparative analysis of the proliferative activity of inflammatory cells and distribution of collagen types I and III was carried out around the net materials of polypropylene and titanium coating polypropylene using im- munohistochemical method and polarization microscopy. Experimental modeling of implanted mesh material were made in the soft tissues of the lumbar region of rats. On the 7th postoperative day, quantitative analysis of proliferating cells delected using antibodies to the Ki-67 protein showed, a significant decrease (p < 0.001) in the number of proliferating cells around the network elements of the polypropylene (29.1 ± 5.7 %), when com- pared to similar figures of infiltrates in titanium coating polypropylene (33.6 ± 3.1 %). Similar patterns were found on the 30th day of the experiment--15.9 ± 4.3 and 26.9 ± 3.6%--respectively (p < 0.001). Different types of collagen fibers in the granulomas around various types of implanted mesh material were detected on sections stained with Sirius red at polarizing light. On the 7th day after surgery, the ratio of collagen fibers ty- pe I and III in granulomas around the mesh material made of polypropylene was 1.085 ± 0.022 and this rati around materials of titanium coated polypropylene was higher--1.107 ± 0.013 (p = 0.017). On the 30th posto- perative day in the interface area ratio I/III collagen significantly increased and amounted to 1.174 ± 0.036 and 1.246 ± 0.102, respectively (p = 0.045). Assessing the impact of the use of titanium as a coating on the po- lypropylene, it can be argued that it promotes the formation of collagen I type and a more mature connective tis- sue around the mesh of the implants.

  17. Brevisulcatic acids, marine ladder-frame polyethers from the red tide dinoflagellate Karenia brevisulcata in New Zealand.

    PubMed

    Suzuki, Rina; Irie, Raku; Harntaweesup, Yanit; Tachibana, Kazuo; Holland, Patrick T; Harwood, D Tim; Shi, Feng; Beuzenberg, Veronica; Itoh, Yoshiyuki; Pascal, Steven; Edwards, Patrick J B; Satake, Masayuki

    2014-11-21

    The isolation and structural determination of new marine ladder-frame polyethers, brevisulcatic acids-1 (1) and -4 (2) are reported. Brevisulcatic acids were isolated from the dinoflagellate Karenia brevisulcata, which was identified as the causative species of a major red tide event in New Zealand in 1998. The ether ring composition and a β-hydroxy, γ-methylene valeric acid side chain of 1 and 2 are common, but 2 has a γ-lactone as the 5-membered A-ring while 1 is the seco acid analogue. Compound 2 has structural and bioactivity similarities to brevetoxin A.

  18. Nonthmicin, a Polyether Polyketide Bearing a Halogen-Modified Tetronate with Neuroprotective and Antiinvasive Activity from Actinomadura sp.

    PubMed

    Igarashi, Yasuhiro; Matsuoka, Noriaki; In, Yasuko; Kataura, Tetsushi; Tashiro, Etsu; Saiki, Ikuo; Sudoh, Yuri; Duangmal, Kannika; Thamchaipenet, Arinthip

    2017-03-17

    Nonthmicin (1), a new polyether polyketide bearing a chlorinated tetronic acid, was isolated from the culture extract of a soil-derived Actinomadura strain. The structure of 1 was elucidated by interpretation of NMR and MS spectroscopic data, and the absolute configuration of 1 was proposed on the basis of the crystal structure of its dechloro congener ecteinamycin (2) also isolated from the same strain. Tetronic acids modified by halogenation have never been reported from natural products. Compounds 1 and 2 were found to have neuroprotective activity and antimetastatic properties at submicromolar concentrations in addition to antibacterial activity.

  19. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    NASA Astrophysics Data System (ADS)

    Sun, Junfen; Wu, Lishun

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  20. Concentration-response data on toxicity of pyrolysis gases from some natural and synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Huttlinger, N. V.

    1978-01-01

    Concentration-response data are presented on the toxic effects of the pyrolysis gases from some natural and synthetic polymers, using the toxicity screening test method developed at the University of San Francisco. The pyrolysis gases from wool, red oak, Douglas fir, polycaprolactam, polyether sulfone, polyaryl sulfone, and polyphenylene sulfide appeared to exhibit the concentration-response relationships commonly encountered in toxicology. Carbon monoxide seemed to be an important toxicant in the pyrolysis gases from red oak, Douglas fir, and polycaprolactam, but did not appear to have been the principal toxicant in the pyrolysis gases from polyether sulfone and polyphenylene sulfide.

  1. Azidated Ether-Butadiene-Ether Block Copolymers as Binders for Solid Propellants

    NASA Astrophysics Data System (ADS)

    Cappello, Miriam; Lamia, Pietro; Mura, Claudio; Polacco, Giovanni; Filippi, Sara

    2016-07-01

    Polymeric binders for solid propellants are usually based on hydroxyl-terminated polybutadiene (HTPB), which does not contribute to the overall energy output. Azidic polyethers represent an interesting alternative but may have poorer mechanical properties. Polybutadiene-polyether copolymers may combine the advantages of both. Four different ether-butadiene-ether triblock copolymers were prepared and azidated starting from halogenated and/or tosylated monomers using HTPB as initiator. The presence of the butadiene block complicates the azidation step and reduces the storage stability of the azidic polymer. Nevertheless, the procedure allows modifying the binder properties by varying the type and lengths of the energetic blocks.

  2. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    PubMed

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Division of Labor in Colonies of the Eusocial Wasp, Mischocyttarus consimilis

    PubMed Central

    Torres, Viviana O.; Montagna, Thiago S.; Raizer, Josué; Antonialli-Junior, William F.

    2012-01-01

    The division of labor between castes and the division of labor in workers according to age (temporal polyethism) in social wasps are crucial for maintaining social organization. This study evaluated the division of labor between castes, and the temporal polyethism in workers of Mischocyttarus consimilis Zikán (Hymenoptera: Vespidae). To describe the behavioral repertory of this species, observations were made of 21 colonies, with 100 hours of observations. In order to observe temporal polyethism, each newly emerged wasp was marked with colored dots on the upper area of the thorax. This allowed the observation of behavioral acts performed by each worker from the time of emergence to its death. Through hybrid multidimensional scaling, a clear division between queens and workers could be identified, in which the behaviors of physical dominance and food solicitation characterized the queen caste; while behaviors such as adult—adult trophallaxis, destruction of cells, alarm, foraging for prey, foraging for nectar, and unsuccessful foraging characterized the worker caste. Hybrid multidimensional scaling characterized two groups, with intra—nest activities preferentially accomplished by younger workers, while extra—nest activities such as foraging were executed more frequently by older workers. PMID:22954231

  4. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    NASA Astrophysics Data System (ADS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  5. Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2011-12-15

    In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs atmore » the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center. Highlights: Black-Right-Pointing-Pointer CNTs were functionalized by epoxide ring-opening polymerization. Black-Right-Pointing-Pointer Polyether and epoxide group covalently attached to the sidewalls of CNTs. Black-Right-Pointing-Pointer Functionalized CNTs have a polymer weight percentage of ca. 14-74 wt%. Black-Right-Pointing-Pointer Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.« less

  6. ELECTRON SPIN RESONANCE STUDIES ON PEROXIDE RADICALS IN IRRADIATED POLYPROPYLENE (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, H.; Hellwege, K.-H.; Neudoerfl, P.

    1963-06-01

    Peroxide radicals are formed by oxidation of carbon radicals in irradiated isotactic polypropylene. An interpretation of their ESR spectra is given. The recombination of the peroxide radicals follows a chain reaction mechanism, which is derived from the reversibility of formation of peroxide radicals, the time dependence of their concentration, and from the oxygen consumption of samples containing peroxide radicals. The reactions are discussed in view of the radiation induced oxidative degradation of polypropylene. (auth)

  7. [Experimental basis of a new material for the manufacture of bases dentures].

    PubMed

    Shturminskiĭ, V G

    2013-10-01

    The author studied the problem of improving the quality of prosthetic removable prostheses through the development of new basic material based on polypropylene copolymer. To this end, we examined the physical and chemical structure and hygienic properties of the produced material. The studies found that the developed material of polypropylene optimal solution for the partial plate denture bases, without flaws acrylic prosthesis and improves the properties of the previously used polypropylene plastics.

  8. Nonadhesive, silica nanoparticles-based brush-coated contact lens cases--compromising between ease of cleaning and microbial transmission to contact lenses.

    PubMed

    Qu, Wenwen; Hooymans, Johanna M M; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C; Busscher, Henk J

    2013-05-01

    Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based brush-coating to polypropylene cases to evaluate their ease of cleaning and probability of bacterial transmission to CLs. Adhesion forces of nine bacterial strains (Pseudomonas, Staphylococci, and Serratia) to rigid CLs, polypropylene, and silica nanoparticles-based brush-coated polypropylene were measured using atomic-force-microscopy and subjected to Weibull analyses to yield bacterial transmission probabilities. Biofilms of each strain were grown in coated and uncoated cases and rinsed with a NaCl or antimicrobial lens care solution. Residual, viable organisms were quantified. Bacterial adhesion forces of all strains were significantly, up to tenfold smaller on brush-coated than on uncoated polypropylene. This yielded, higher transmission probabilities to a CL, but mild-rinsing yielded 10-100 fold higher removal of bacteria from brush-coated than from polypropylene cases. Moreover, due to weak adhesion forces, bacteria on brush-coated cases were two-to-three fold more susceptible to an antimicrobial lens care solution than on polypropylene cases. Therewith, the design of lens case surfaces is a compromise between ease of cleaning and transmission probability to CLs. Copyright © 2013 Wiley Periodicals, Inc.

  9. Polypropylene Production Optimization in Fluidized Bed Catalytic Reactor (FBCR): Statistical Modeling and Pilot Scale Experimental Validation

    PubMed Central

    Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed

    2014-01-01

    Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576

  10. Polypropylene oil as fuel for solid oxide fuel cell with samarium doped-ceria (SDC)-carbonate as electrolyte

    NASA Astrophysics Data System (ADS)

    Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.

    2017-03-01

    The research focusses on converting polypropylene oil as pyrolysis product of polypropylene plastic into an electricity. The converter was a direct liquid fuel-solid oxide fuel cell (SOFC) with cerium oxide based material as electrolyte. The polypropylene vapor flowed into fuel cell, in the anode side and undergo oxidation reaction, meanwhile, the Oxygen in atmosphere reduced into oxygen ion at cathode. The fuel cell test was conducted at 400 - 600 °C. According to GC-MS analysis, the polypropylene oil consist of C8 to C27 hydrocarbon chain. The XRD analysis result shows that Na2CO3 did not change the crystal structure of SDC even increases the electrical conductivity. The maximum power density is 0.079 mW.cm-2 at 773 K. The open circuite voltage is 0.77 volt. Chemical stability test by analysing the single cell at before and after fuel cell test found that ionic migration occured during fuel cell operation. It is supported by the change of elemental composition in the point position of electrolyte and at the electrolyte-electrode interface

  11. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating.

    PubMed

    Duan, Dengle; Wang, Yunpu; Dai, Leilei; Ruan, Roger; Zhao, Yunfeng; Fan, Liangliang; Tayier, Maimaitiaili; Liu, Yuhuan

    2017-10-01

    Microwave-assisted fast co-pyrolysis of lignin and polypropylene for bio-oil production was conducted using the ex-situ catalysis technology. Effects of catalytic temperature, feedstock/catalyst ratio, and lignin/polypropylene ratio on product distribution and chemical components of bio-oil were investigated. The catalytic temperature of 250°C was the most conducive to bio-oil production in terms of the yield. The bio-oil yield decreased with the addition of catalyst during ex-situ catalytic co-pyrolysis. When the feedstock/catalyst ratio was 2:1, the minimum char and coke values were 21.22% and 1.54%, respectively. The proportion of cycloalkanes decreased and the aromatics increased with the increasing catalyst loading. A positive synergistic effect was observed between lignin and polypropylene. The char yield dramatically deceased and the bio-oil yield improved during co-pyrolysis compared with those during lignin pyrolysis alone. The proportion of oxygenates dramatically and the minimum value of 6.74% was obtained when the lignin/polypropylene ratio was 1:1. Copyright © 2017. Published by Elsevier Ltd.

  12. Study of rheological properties of polypropylene/organoclay hybrid materials.

    PubMed

    Yu, Suzhu; Liu, Songlin; Zhao, Jianhong; Yong, Ming Shyan

    2006-12-01

    Polypropylene nanocomposites reinforced with organic modified montmorillonite clay have been fabricated by melt compounding using extrusion. The morphology of the composites is studied with transmission electron microscopy and X-ray diffraction. The melt-state rheological properties of the nanocomposites have been investigated as a function of temperature and organoclay loading. It is found that the organoclays are intercalated and dispersed evenly in the matrix. The storage and loss moduli of the hybrid composites decrease with temperature and increase with organoclay concentration. Both polypropylene and its composites demonstrate a melt-like rheological behavior, indicating the low degree of exfoliation of the organoclay. A shear thinning behavior is found for both polypropylene and its composites, but the onset of shear thinning for organoclay composites occurs at lower shear rates.

  13. [Morphology of tissue reactions around implants after combined surgical repair of the abdominal wall].

    PubMed

    Vostrikov, O V; Zotov, V A; Nikitenko, E V

    2004-01-01

    Tissue reactions to titanium-nickelide and polypropylen and caprone implants used in surgical treatment of anterior aldomen wall hernias were studied in experiment. Digital density of leukocytes, fibroblasts, vessels, thickness of the capsule were studied. Pronounced inflammatory reaction was observed on day 3 which attenuated on day 14 in case of titanium nickelide and on day 30-60 in case of polypropylene and caprone. Fibroplastic processes start in the first group after 7 days while in the second group only after 30 days of the experiment. Thickness of the capsule around titanium-nickelide was 2-3 times less than around polypropylene and caprone. Thus, titanium-nickelide material is biologically more inert than caprone and polypropylen which are widely used in surgery of hernias.

  14. Analysis and optimization of machining parameters of laser cutting for polypropylene composite

    NASA Astrophysics Data System (ADS)

    Deepa, A.; Padmanabhan, K.; Kuppan, P.

    2017-11-01

    Present works explains about machining of self-reinforced Polypropylene composite fabricated using hot compaction method. The objective of the experiment is to find optimum machining parameters for Polypropylene (PP). Laser power and Machining speed were the parameters considered in response to tensile test and Flexure test. Taguchi method is used for experimentation. Grey Relational Analysis (GRA) is used for multiple process parameter optimization. ANOVA (Analysis of Variance) is used to find impact for process parameter. Polypropylene has got the great application in various fields like, it is used in the form of foam in model aircraft and other radio-controlled vehicles, thin sheets (∼2-20μm) used as a dielectric, PP is also used in piping system, it is also been used in hernia and pelvic organ repair or protect new herrnis in the same location.

  15. Neodymium:YAG laser cutting of intraocular lens haptics in vitro and in vivo.

    PubMed

    Feder, J M; Rosenberg, M A; Farber, M D

    1989-09-01

    Various complications following intraocular lens (IOL) surgery result in explantation of the lenses. Haptic fibrosis may necessitate cutting the IOL haptics prior to removal. In this study we used the neodymium: YAG (Nd:YAG) laser to cut polypropylene and poly(methyl methacrylate) (PMMA) haptics in vitro and in rabbit eyes. In vitro we were able to cut 100% of both haptic types successfully (28 PMMA and 30 polypropylene haptics). In rabbit eyes we were able to cut 50% of the PMMA haptics and 43% of the polypropylene haptics. Poly(methyl methacrylate) haptics were easier to cut in vitro and in vivo than polypropylene haptics, requiring fewer shots for transection. Complications of Nd:YAG laser use frequently interfered with haptic transections in rabbit eyes. Haptic transection may be more easily accomplished in human eyes.

  16. Macrophage polarization in response to ECM coated polypropylene mesh

    PubMed Central

    Wolf, MT; Dearth, CL; Ranallo, CA; LoPresti, S; Carey, LE; Daly, KA; Brown, BN; Badylak, SF

    2015-01-01

    The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3-35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo. PMID:24856104

  17. Storing of Extracts in Polypropylene Microcentrifuge Tubes Yields Contaminant Peak During Ultra-flow Liquid Chromatographic Analysis.

    PubMed

    Kshirsagar, Parthraj R; Hegde, Harsha; Pai, Sandeep R

    2016-05-01

    This study was designed to understand the effect of storage in polypropylene microcentrifuge tubes and glass vials during ultra-flow liquid chromatographic (UFLC) analysis. One ml of methanol was placed in polypropylene microcentrifuge tubes (PP material, Autoclavable) and glass vials (Borosilicate) separately for 1, 2, 4, 8, 10, 20, 40, and 80 days intervals stored at -4°C. Contaminant peak was detected in methanol stored in polypropylene microcentrifuge tubes using UFLC analysis. The contaminant peak detected was prominent, sharp detectable at 9.176 ± 0.138 min on a Waters 250-4.6 mm, 4 μ, Nova-Pak C18 column with mobile phase consisting of methanol:water (70:30). It was evident from the study that long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peak. Further, this may mislead in future reporting an unnatural compound by researchers. Long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peakContamination peak with higher area under the curve (609993) was obtained in ultra-flow liquid chromatographic run for methanol stored in PP microcentrifuge tubesContamination peak was detected at retention time 9.113 min with a lambda max of 220.38 nm and 300 mAU intensity on the given chromatographic conditionsGlass vials serve better option over PP microcentrifuge tubes for storing biological samples. Abbreviations used: UFLC: Ultra Flow Liquid Chromatography; LC: Liquid Chromatography; MS: Mass spectrometry; AUC: Area Under Curve.

  18. Study on epoxy resin modified by polyether ionic liquid

    NASA Astrophysics Data System (ADS)

    Jin, X. C.; Guo, L. Y.; Deng, L. L.; Wu, H.

    2017-06-01

    Chloride 1-carboxyl polyether-3-methyl imidazole ionic liquid (PIIL) was synthesized. Then blended with epoxy resin(EP) to prepare the composite materials of PIIL/EP, which cured with aniline curing agent. The structure and curing performance of PIIL/EP were determined by FT-IR and DSC. The effects of the content of PIIL on strength of EP were studied. The results show that the PIIL was the target product. The strength was improved significantly with increase of the PIIL content. The obvious rubber elasticity of PIIL/EP after cured was showed when the content of PIIL accounts for 40% and the impact strength was up to 15.95kJ/m2.

  19. Ladder Polyether Synthesis via Epoxide-Opening Cascades Directed by a Disappearing Trimethylsilyl Group

    PubMed Central

    Heffron, Timothy P.; Simpson, Graham L.; Merino, Estibaliz; Jamison, Timothy F.

    2010-01-01

    Epoxide-opening cascades offer the potential to construct complex polyether natural products expeditiously and in a manner that emulates the biogenesis proposed for these compounds. Herein we provide a full account of our development of a strategy that addresses several important challenges of such cascades. The centerpiece of the method is a trimethylsilyl (SiMe3) group that serves several purposes and leaves no trace of itself by the time the cascade has come to an end. The main function of the SiMe3 group is to dictate the regioselectivity of epoxide opening. This strategy is the only general method of effecting endo-selective cascades under basic conditions. PMID:20302314

  20. One-pot synthesis and cytotoxicity studies of new Mannich base derivatives of polyether antibiotic--lasalocid acid.

    PubMed

    Huczyński, Adam; Rutkowski, Jacek; Borowicz, Izabela; Wietrzyk, Joanna; Maj, Ewa; Brzezinski, Bogumil

    2013-09-15

    Seven Mannich base derivatives of polyether antibiotic Lasalocid acid (2a-2g) were synthesized and screened for their antiproliferative activity against various human cancer cell lines. A novel chemoselective one-pot synthesis of these Mannich bases was developed. Compounds 2a-2c and 2g with sterically smaller dialkylamine substituent, displayed potent antiproliferative activity (IC50: 3.2-7.3 μM), and demonstrated higher than twofold selectivity for specific type of cancer. The nature of Mannich base substituent on C-2 atom at the aromatic ring may be critical in the search for selectivity towards a particular cancer cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application.

    PubMed

    Dandeniyage, Loshini S; Gunatillake, Pathiraja A; Adhikari, Raju; Bown, Mark; Shanks, Robert; Adhikari, Benu

    2017-08-31

    Mixed macrodiol based siloxane poly(urethane-urea)s (SiPUU) having number average molecular weights in the range 87-129 kDa/mol were synthesized to give elastomers with high tensile and tear strengths required to fabricate artificial heart valves. Polar functional groups were introduced into the soft segment to improve the poor segmental compatibility of siloxane polyurethanes. This was achieved by linking α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane) (PDMS) or poly(hexamethylene oxide) (PHMO) macrodiols with either 4,4'-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI) prior to polyurethane synthesis. The hard segment was composed of MDI, and a 1:1 mixture of 1,3-bis(4-hydroxybutyl)-1,1,3,3-tetramethyldisiloxane and 1,2-ethylene diamine. We report the effect of urethane linkers in soft segments on properties of the SiPUU. PHMO linked with either MDI or IPDI produced SiPUU with the highest tensile and tear strengths. Linking PDMS hardly affected the tensile strength; however, the tear strength was improved. The stress-strain curves showed no plastic deformation region typically observed for conventional polyurethanes indicating good creep resistance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  2. Physiological Effects of Touching Coated Wood.

    PubMed

    Ikei, Harumi; Song, Chorong; Miyazaki, Yoshifumi

    2017-07-13

    This study examined the physiological effects of touching wood with various coating with the palm of the hand on brain activity and autonomic nervous activity. Participants were 18 female university students (mean age, 21.7 ± 1.6 years). As an indicator of brain activity, oxyhemoglobin concentrations were measured in the left and right prefrontal cortices using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) and heart rate were used as indicators of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflects parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflects sympathetic nervous activity, were measured. Plates of uncoated, oil-finished, vitreous-finished, urethane-finished, and mirror-finished white oak wood were used as tactile stimuli. After sitting at rest with their eyes closed for 60 s, participants touched the stimuli with their palm for 90 s each. The results indicated that tactile stimulation with uncoated wood calmed prefrontal cortex activity (vs. urethane finish and mirror finish), increased parasympathetic nervous activity (vs. vitreous finish, urethane finish, and mirror finish), and decreased heart rate (vs. mirror finish), demonstrating a physiological relaxation effect. Further, tactile stimulation with oil- and vitreous-finished wood calmed left prefrontal cortex activity and decreased heart rate relative to mirror-finished wood.

  3. Physiological Effects of Touching Coated Wood

    PubMed Central

    2017-01-01

    This study examined the physiological effects of touching wood with various coating with the palm of the hand on brain activity and autonomic nervous activity. Participants were 18 female university students (mean age, 21.7 ± 1.6 years). As an indicator of brain activity, oxyhemoglobin concentrations were measured in the left and right prefrontal cortices using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) and heart rate were used as indicators of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflects parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflects sympathetic nervous activity, were measured. Plates of uncoated, oil-finished, vitreous-finished, urethane-finished, and mirror-finished white oak wood were used as tactile stimuli. After sitting at rest with their eyes closed for 60 s, participants touched the stimuli with their palm for 90 s each. The results indicated that tactile stimulation with uncoated wood calmed prefrontal cortex activity (vs. urethane finish and mirror finish), increased parasympathetic nervous activity (vs. vitreous finish, urethane finish, and mirror finish), and decreased heart rate (vs. mirror finish), demonstrating a physiological relaxation effect. Further, tactile stimulation with oil- and vitreous-finished wood calmed left prefrontal cortex activity and decreased heart rate relative to mirror-finished wood. PMID:28703777

  4. Measurement of tritium penetration through concrete material covered by various paints coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edao, Y.; Kawamura, Y.; Kurata, R.

    The present study aims at obtaining fundamental data on tritium migration in porous materials, which include soaking effect, interaction between tritium and cement paste coated with paints and transient tritium sorption in porous cement. The amounts of tritium penetrated into or released from cement paste with epoxy and urethane paint coatings were measured. The tritium penetration amounts were increased with the HTO (tritiated water) exposure time. Time to achieve a saturated value of tritium sorption was more than 60 days for cement paste coated with epoxy paint and with urethane paint, while that for cement paste without any paint coatingmore » took 2 days to achieve it. The effect of tritium permeation reduction by the epoxy paint was higher than that of the urethane. Although their paint coatings were effective for reduction of tritium penetration through the cement paste which was exposed to HTO for a short period, it was found that the amount of tritium trapped in the paints became large for a long period. Tritium penetration rates were estimated by an analysis of one-dimensional diffusion in the axial direction of a thickness of a sample. Obtained data were helpful for evaluation of tritium contamination and decontamination. (authors)« less

  5. Nondegradable magnetic poly (carbonate urethane) microspheres with good shape memory as a proposed material for vascular embolization.

    PubMed

    Liu, Rongrong; Zhang, Qian; Zhou, Qian; Zhang, Ping; Dai, Honglian

    2018-06-01

    In this study, nondegradable poly (carbonate urethane) (PCU) and poly (carbonate urethane) incorporated variable Fe 3 O 4 content microspheres (PCU/Fe 3 O 4 ) were synthesized using pre-polymerization and suspension polymerization. Synthesis was confirmed through Fourier transform infrared spectroscopy (FTIR). The effect of Fe 3 O 4 incorporation was investigated on crystalline, thermal, shape memory and degradation properties by X-Ray diffraction (XRD), Differential scanning calorimetery (DSC), compression test and degradation in vitro, respectively. Otherwise, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior depends on the amount of magnetic particles incorporated within the networks. The biological study results of as-synthesized polymers from the platelet adhesion test and the cell proliferation inhibition test indicated they were biocompatible in vitro. Fe 3 O 4 incorporation was conductive to reducing platelet adhesion in blood contacting test and promotion of rat vascular smooth muscle cell proliferation and growth. These nondegradable, superparamagnetic, biocompatible polymers, combined with their good shape memory properties may allow for their future exploitation in the biomedical field, such as, in cardiovascular implants, targeted tumor treatment, tissue engineering and artificial organ's engineering. Copyright © 2018. Published by Elsevier Ltd.

  6. Anesthetic state modulates excitability but not spectral tuning or neural discrimination in single auditory midbrain neurons

    PubMed Central

    Schumacher, Joseph W.; Schneider, David M.

    2011-01-01

    The majority of sensory physiology experiments have used anesthesia to facilitate the recording of neural activity. Current techniques allow researchers to study sensory function in the context of varying behavioral states. To reconcile results across multiple behavioral and anesthetic states, it is important to consider how and to what extent anesthesia plays a role in shaping neural response properties. The role of anesthesia has been the subject of much debate, but the extent to which sensory coding properties are altered by anesthesia has yet to be fully defined. In this study we asked how urethane, an anesthetic commonly used for avian and mammalian sensory physiology, affects the coding of complex communication vocalizations (songs) and simple artificial stimuli in the songbird auditory midbrain. We measured spontaneous and song-driven spike rates, spectrotemporal receptive fields, and neural discriminability from responses to songs in single auditory midbrain neurons. In the same neurons, we recorded responses to pure tone stimuli ranging in frequency and intensity. Finally, we assessed the effect of urethane on population-level representations of birdsong. Results showed that intrinsic neural excitability is significantly depressed by urethane but that spectral tuning, single neuron discriminability, and population representations of song do not differ significantly between unanesthetized and anesthetized animals. PMID:21543752

  7. PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY

    NASA Astrophysics Data System (ADS)

    Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya

    The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.

  8. Soy-based polyols

    DOEpatents

    Suppes, Galen; Lozada, Zueica; Lubguban, Arnold

    2013-06-25

    The invention provides processes for preparing soy-based oligomeric polyols or substituted oligomeric polyols, as well as urethane bioelasteromers comprising the oligomeric polyols or substituted oligomeric polyols.

  9. PEG-template for surface modification of zeolite: A convenient material to the design of polypropylene based composite for packaging films

    NASA Astrophysics Data System (ADS)

    Toommee, S.; Pratumpong, P.

    2018-06-01

    Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging.

  10. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque.

    PubMed

    Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A

    2017-02-01

    The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate post-hoc tests. The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical endpoints of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extracellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. Copyright © 2016. Published by Elsevier Inc.

  11. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque

    PubMed Central

    Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W.; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A.

    2016-01-01

    BACKGROUND The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. OBJECTIVE Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. STUDY DESIGN A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/ biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/ I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate posthoc tests. RESULTS The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical end-points of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. CONCLUSION Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extra-cellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. PMID:27615441

  12. Early Wound Morbidity after Open Ventral Hernia Repair with Biosynthetic or Polypropylene Mesh.

    PubMed

    Sahoo, Sambit; Haskins, Ivy N; Huang, Li-Ching; Krpata, David M; Derwin, Kathleen A; Poulose, Benjamin K; Rosen, Michael J

    2017-10-01

    Recently introduced slow-resorbing biosynthetic and non-resorbing macroporous polypropylene meshes are being used in hernias with clean-contaminated and contaminated wounds. However, information about the use of biosynthetic meshes and their outcomes compared with polypropylene meshes in clean-contaminated and contaminated cases is lacking. Here we evaluate the use of biosynthetic mesh and polypropylene mesh in elective open ventral hernia repair (OVHR) and investigate differences in early wound morbidity after OVHR within clean-contaminated and contaminated cases. All elective, OVHR with biosynthetic mesh or uncoated polypropylene mesh from January 2013 through October 2016 were identified within the Americas Hernia Society Quality Collaborative. Association of mesh type with 30-day wound events in clean-contaminated or contaminated wounds was investigated using a 1:3 propensity-matched analysis. Biosynthetic meshes were used in 8.5% (175 of 2,051) of elective OVHR, with the majority (57.1%) used in low-risk or comorbid clean cases. Propensity-matched analysis in clean-contaminated and contaminated cases showed no significant difference between biosynthetic mesh and polypropylene mesh groups for 30-day surgical site occurrences (20.7% vs 16.7%; p = 0.49) or unplanned readmission (13.8% vs 9.8%; p = 0.4). However, surgical site infections (22.4% vs 10.9%; p = 0.03), surgical site occurrences requiring procedural intervention (24.1% vs 13.2%; p = 0.049), and reoperation rates (13.8% vs 4.0%; p = 0.009) were significantly higher in the biosynthetic group. Biosynthetic mesh appears to have higher rates of 30-day wound morbidity compared with polypropylene mesh in elective OVHR with clean-contaminated or contaminated wounds. Additional post-market analysis is needed to provide evidence defining best mesh choices, location, and surgical technique for repairing contaminated ventral hernias. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Mesh fixation in laparoscopic incisional hernia repair: glue fixation provides attachment strength similar to absorbable tacks but differs substantially in different meshes.

    PubMed

    Rieder, Erwin; Stoiber, Martin; Scheikl, Verena; Poglitsch, Marcus; Dal Borgo, Andrea; Prager, Gerhard; Schima, Heinrich

    2011-01-01

    Laparoscopic ventral hernia repair has gained popularity among minimally invasive surgeons. However, mesh fixation remains a matter of discussion. This study was designed to compare noninvasive fibrin-glue attachment with tack fixation of meshes developed primarily for intra-abdominal use. It was hypothesized that particular mesh structures would substantially influence detachment force. For initial evaluation, specimens of laminated polypropylene/polydioxanone meshes were anchored to porcine abdominal walls by either helical titanium tacks or absorbable tacks in vitro. A universal tensile-testing machine was used to measure tangential detachment forces (TF). For subsequent experiments of glue fixation, polypropylene/polydioxanone mesh and 4 additional meshes with diverse particular mesh structure, ie, polyvinylidene fluoride/polypropylene mesh, a titanium-coated polypropylene mesh, a polyester mesh bonded with a resorbable collagen, and a macroporous condensed PTFE mesh were evaluated. TF tests revealed that fibrin-glue attachment was not substantially different from that achieved with absorbable tacks (median TF 7.8 Newton [N], range 1.3 to 15.8 N), but only when certain open porous meshes (polyvinylidene fluoride/polypropylene mesh: median 6.2 N, range 3.4 to 10.3 N; titanium-coated polypropylene mesh: median 5.2 N, range 2.1 to 11.7 N) were used. Meshes coated by an anti-adhesive barrier (polypropylene/polydioxanone mesh: median 3.1 N, range 1.7 to 5.8 N; polyester mesh bonded with a resorbable collagen: median 1.3 N, range 0.5 to 1.9 N), or the condensed PTFE mesh (median 3.1 N, range 2.1 to 7.0 N) provided a significantly lower TF (p < 0.01). Fibrin glue appears to be an appealing noninvasive option for mesh fixation in laparoscopic ventral hernia repair, but only if appropriate meshes are used. Glue can also serve as an adjunct to mechanical fixation to reduce the number of invasive tacks. Copyright © 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  14. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    PubMed Central

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  15. Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety

    NASA Astrophysics Data System (ADS)

    Wcisło, Anna; Cirocka, Anna; Zarzeczańska, Dorota; Niedziałkowski, Paweł; Nakonieczna, Sandra; Ossowski, Tadeusz

    2015-02-01

    A series of novel polyether derivatives of 9,10-anthraquinone (AQ) was synthesized and characterized by means of UV-Vis spectroscopy, acid-base titration and complexometric titration. The results were compared with 1-NEt2AQ and 1-NHEtAQ - model compounds of alkylaminoanthraquinones. Acetonitrile and methanol were used as solvents for determination of spectroscopic and acid-base properties. Complexometric titrations were carried out exclusively in acetonitrile. Spectral characteristic of these compounds strongly depends on pH. Addition of acid causes the decrease of absorption intensity and in some cases also a shift of the visible range band. The weakest base is the compound (2), and the strongest - compound (1), both in methanol and acetonitrile solution. The introduction of an additional substituent in the position 8 of the anthraquinone compound increases its basicity. The presence of metal ions causes changes in intensity of absorption (decrease for compounds (2) and (3) and increase with bathochromic shift for (1) and (4)). For the determination of the coordination properties aluminum (III) ions were chosen. The highest complex stability constant with Al (III) ions is observed for compound (1), and the weakest for compound (3). The elongation of the polyether chain decreases the stability of the complex formed.

  16. Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety.

    PubMed

    Wcisło, Anna; Cirocka, Anna; Zarzeczańska, Dorota; Niedziałkowski, Paweł; Nakonieczna, Sandra; Ossowski, Tadeusz

    2015-02-25

    A series of novel polyether derivatives of 9,10-anthraquinone (AQ) was synthesized and characterized by means of UV-Vis spectroscopy, acid-base titration and complexometric titration. The results were compared with 1-NEt2AQ and 1-NHEtAQ--model compounds of alkylaminoanthraquinones. Acetonitrile and methanol were used as solvents for determination of spectroscopic and acid-base properties. Complexometric titrations were carried out exclusively in acetonitrile. Spectral characteristic of these compounds strongly depends on pH. Addition of acid causes the decrease of absorption intensity and in some cases also a shift of the visible range band. The weakest base is the compound (2), and the strongest--compound (1), both in methanol and acetonitrile solution. The introduction of an additional substituent in the position 8 of the anthraquinone compound increases its basicity. The presence of metal ions causes changes in intensity of absorption (decrease for compounds (2) and (3) and increase with bathochromic shift for (1) and (4)). For the determination of the coordination properties aluminum (III) ions were chosen. The highest complex stability constant with Al (III) ions is observed for compound (1), and the weakest for compound (3). The elongation of the polyether chain decreases the stability of the complex formed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Study of microstructural characterization and ionic conductivity of a chemical-covalent polyether-siloxane hybrid doped with LiClO4.

    PubMed

    Liang, Wuu-Jyh; Chen, Ying-Pin; Wu, Chien-Pang; Kuo, Ping-Lin

    2005-12-29

    The chemical-covalent polyether-siloxane hybrids (EDS) doped with various amounts of LiClO4 salt were characterized by FT-IR, DSC, TGA, and solid-state NMR spectra as well as impedance measurements. These observations indicate that different types of complexes by the interactions of Li+ and ClO4- ions are formed within the hybrid host, and the formation of transient cross-links between Li+ ions and ether oxygens results in the increase in T(g) of polyether segments and the decrease in thermal stability of hybrid electrolyte. Initially a cation complexation dominated by the oxirane-cleaved cross-link site and PEO block is present, and after the salt-doped level of O/Li+ = 20, the complexation through the PPO block becomes more prominent. Moreover, a significant degree of ionic association is examined in the polymer-salt complexes at higher salt uptakes. A VTF-like temperature dependence of ionic conductivity is observed in all of the investigated salt concentrations, implying that the diffusion of charge carrier is assisted by the segmental motions of the polymer chains. The behavior of ion transport in these hybrid electrolytes is further correlated with the interactions between ions and polymer host.

  18. Determination of six polyether antibiotic residues in foods of animal origin by solid phase extraction combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Ha, Jing; Song, Ge; Ai, Lian-Feng; Li, Jian-Chen

    2016-04-01

    A new method using solid phase extraction (SPE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the determination of six polyether antibiotics, including lasalocid, salinomycin, monensin, narasin, madubamycin and nigericin residues, in foods of animal origin. The samples were extracted with acetonitrile and purified by ENVI-Carb SPE columns after comparing the impurity effect and maneuverability of several SPE cartridges. Subsequently, the analytes were separated on a Hypersil Gold column (2.1×150mm, 5μm) and analyzed by MS/MS detection. The limit of quantization (LOQ) for milk and chicken was 0.4μg/kg, and for chicken livers and eggs, it was 1μg/kg. The linearity was satisfactory with a correlation coefficient of >0.9995 at concentrations ranging from 2 to 100μg/L. The average recoveries of the analytes fortified at three levels ranged from 68.2 to 114.3%, and the relative standard deviations ranged from 4.5 to 12.1%. The method was suitable for quantitative analysis and confirmation of polyether antibiotic residues in foods of animal origin. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  20. Synthesis and Characterization of Macrocyclic Polyether N,N'-Diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6.

    PubMed

    Toeri, Julius; Laborie, Marie-Pierre

    2016-01-29

    In this study an efficient and direct production procedure for a macrocyclic polyether N,N'-diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6 from the reaction of catechol and N,N-bis(2-chloroethyl)prop-2-en-1-amine in n-butanol in the presence of a strong base is reported. The synthesis involves a two-step addition of sodium hydroxide to enhance the cyclization process, and at the end of the reaction, the reaction mixture is neutralized and the solvent replaced with water in-situ through distillation to afford a relatively pure precipitate that is easily recrystallized from acetone. The yield of the macrocycle was 36%-45% and could be scaled-up to one-mole quantities. The structure and purity of this compound was verified on the basis of elemental analysis, IR, UV-Vis, ¹H-, (13)C-NMR, 2D-NMR, mass spectroscopy, and thermal analysis. The white crystalline compound has a sharp melting point of 124 °C and a crystallization temperature of 81.4 °C determined by differential scanning calorimetry. Our motivation behind the synthesis of the bibracchial lariat azacrown polyether ligand was to examine its possible applications in ion-selective polymer-supported materials.

  1. Salinomycin and other polyether ionophores are a new class of antiscarring agent.

    PubMed

    Woeller, Collynn F; O'Loughlin, Charles W; Roztocil, Elisa; Feldon, Steven E; Phipps, Richard P

    2015-02-06

    Although scarring is a component of wound healing, excessive scar formation is a debilitating condition that results in pain, loss of tissue function, and even death. Many tissues, including the lungs, heart, skin, and eyes, can develop excessive scar tissue as a result of tissue injury, chronic inflammation, or autoimmune disease. Unfortunately, there are few, if any, effective treatments to prevent excess scarring, and new treatment strategies are needed. Using HEK293FT cells stably transfected with a TGFβ-dependent luciferase reporter, we performed a small molecule screen to identify novel compounds with antiscarring activity. We discovered that the polyether ionophore salinomycin potently inhibited the formation of scar-forming myofibroblasts. Salinomycin (250 nm) blocked TGFβ-dependent expression of the cardinal myofibroblast products α smooth muscle actin, calponin, and collagen in primary human fibroblasts without causing cell death. Salinomycin blocked phosphorylation and activation of TAK1 and p38, two proteins fundamentally involved in signaling myofibroblast and scar formation. Expression of constitutively active mitogen activated kinase kinase 6, which activates p38 MAPK, attenuated the ability of salinomycin to block myofibroblast formation, demonstrating that salinomycin targets the p38 kinase pathway to disrupt TGFβ signaling. These data identify salinomycin and other polyether ionophores as novel potential antiscarring therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups.

    PubMed

    Christ, Eva-Maria; Hobernik, Dominika; Bros, Matthias; Wagner, Manfred; Frey, Holger

    2015-10-12

    The cationic ring-opening copolymerization of 3,3-bis(hydroxymethyl)oxetane (BHMO) with glycidol using different comonomer ratios (BHMO content from 25 to 90%) and BF3OEt2 as an initiator has been studied. Apparent molecular weights of the resulting hyperbranched polyether copolymers ranged from 1400 to 3300 g mol(-1) (PDI: 1.21-1.48; method: SEC, linear PEG standards). Incorporation of both comonomers is evidenced by MALDI-TOF mass spectroscopy. All hyperbranched polyether polyols with high content of primary hydroxyl groups portray good solubility in water, which correlates with an increasing content of glycerol units. Detailed NMR characterization was employed to elucidate the copolymer microstructures. Kinetic studies via FTIR demonstrated a weak gradient-type character of the copolymers. MTT assays of the copolymers (up to 100 μg mL(-1)) on HEK and fibroblast cell lines (3T3, L929, WEHI) as well as viability tests on the fibroblast cells were carried out to assess the biocompatibility of the materials, confirming excellent biocompatibility. Transfection efficiency characterization by flow cytometry and confocal laser microscopy demonstrated cellular uptake of the copolymers. Antiadhesive properties of the materials on surfaces were assessed by adhesion assays with fibroblast cells.

  4. Salinomycin and Other Polyether Ionophores Are a New Class of Antiscarring Agent*

    PubMed Central

    Woeller, Collynn F.; O'Loughlin, Charles W.; Roztocil, Elisa; Feldon, Steven E.; Phipps, Richard P.

    2015-01-01

    Although scarring is a component of wound healing, excessive scar formation is a debilitating condition that results in pain, loss of tissue function, and even death. Many tissues, including the lungs, heart, skin, and eyes, can develop excessive scar tissue as a result of tissue injury, chronic inflammation, or autoimmune disease. Unfortunately, there are few, if any, effective treatments to prevent excess scarring, and new treatment strategies are needed. Using HEK293FT cells stably transfected with a TGFβ-dependent luciferase reporter, we performed a small molecule screen to identify novel compounds with antiscarring activity. We discovered that the polyether ionophore salinomycin potently inhibited the formation of scar-forming myofibroblasts. Salinomycin (250 nm) blocked TGFβ-dependent expression of the cardinal myofibroblast products α smooth muscle actin, calponin, and collagen in primary human fibroblasts without causing cell death. Salinomycin blocked phosphorylation and activation of TAK1 and p38, two proteins fundamentally involved in signaling myofibroblast and scar formation. Expression of constitutively active mitogen activated kinase kinase 6, which activates p38 MAPK, attenuated the ability of salinomycin to block myofibroblast formation, demonstrating that salinomycin targets the p38 kinase pathway to disrupt TGFβ signaling. These data identify salinomycin and other polyether ionophores as novel potential antiscarring therapeutics. PMID:25538236

  5. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants.

    PubMed

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.

  6. The Continuing Saga of the Marine Polyether Biotoxins

    PubMed Central

    Nicolaou, K. C.; Frederick, Michael O.; Aversa, Robert J.

    2009-01-01

    Lead-in Brevetoxin B emerged from the sea and into the laboratories of Nakanishi and Clardy who, in 1981, reported its magnificent and unprecedented structure. With its ladder-like fused polyether molecular architecture, potent toxicity, and fascinating voltage-sensitive sodium channel-based mechanism of action, it immediately captured the imagination of chemists around the world. Their synthetic escapades resulted in numerous new synthetic methods and strategies for the construction of cyclic ethers, and culminated in several impressive total syntheses of this imposing molecule and some of its equally challenging siblings that followed. Indeed, many more brevetoxin-type marine polyethers have been reported since 1981 with maitotoxin being not only the most complex and most toxic of the class, but also the largest non-polymeric natural product known to date. In this article, we begin with a brief history of these biotoxins and the phenomena that led to their isolation and highlight their biological properties and mechanism of action. We then review the chemical synthesis endeavors so far published in this long running saga, placing particular emphasis on the new synthetic methods and technologies discovered, developed and applied to their total syntheses over the last few decades. Finally, we conclude with a discussion of the, as yet unfinished, story of maitotoxin, and project into the future of this fascinating area of research. PMID:18763702

  7. Elastomeric impression materials: a comparison of accuracy of multiple pours.

    PubMed

    Kumar, Dheeraj; Madihalli, Anand U; Reddy, K Rajeev Kumar; Rastogi, Namrataa; Pradeep, N T

    2011-07-01

    The aim of the present study is to compare the various elastomeric impression materials in terms of accuracy and dimensional stability, with respect to obtaining multiple casts from a single elastomeric impression at various times of pours. Three master dies were prepared for the impression making, two of these were made of brass containing a central hole with undercuts. The third die simulated a conventionally prepared typodont maxillary central incisor. Three elastomeric impression materials were chosen for the study. Each impression was poured at various time periods. Casts thus obtained were evaluated under a traveling microscope to evaluate various dimensional changes. Addition silicones provided dies which were shorter in height and bigger in diameter. Polyethers provided dies which were shorter in both height and diameter. Condensation silicones showed insignificant changes from the master die at the immediate pour but deteriorated rapidly after that in subsequent pours. None of the impression material showed a consistent behavior up to the fourth pour. They occasionally showed deviation from the pattern, but all these values were statistically insignificant. Polyethers showed lesser ability than both the addition silicones as well as the condensation silicones to recover from induced deformation. Addition silicones as well as the condensation silicones have better ability to recover from induced deformation when compared to polyether.

  8. Torrefied biomass-polypropylene composites

    USDA-ARS?s Scientific Manuscript database

    Torrefied almond shells and wood chips were incorporated into polypropylene as fillers to produce torrefied biomass-polymer composites. Response surface methodology was used to examine the effects of filler concentration, filler size, and lignin factor (relative lignin to cellulose concentration) on...

  9. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  10. Analysis of Nanodomain Composition in High-Impact Polypropylene by Atomic Force Microscopy-Infrared.

    PubMed

    Tang, Fuguang; Bao, Peite; Su, Zhaohui

    2016-05-03

    In this paper, compositions of nanodomains in a commercial high-impact polypropylene (HIPP) were investigated by an atomic force microscopy-infrared (AFM-IR) technique. An AFM-IR quantitative analysis method was established for the first time, which was then employed to analyze the polyethylene content in the nanoscopic domains of the rubber particles dispersed in the polypropylene matrix. It was found that the polyethylene content in the matrix was close to zero and was high in the rubbery intermediate layers, both as expected. However, the major component of the rigid cores of the rubber particles was found to be polypropylene rather than polyethylene, contrary to what was previously believed. The finding provides new insight into the complicated structure of HIPPs, and the AFM-IR quantitative method reported here offers a useful tool for assessing compositions of nanoscopic domains in complex polymeric systems.

  11. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrzyńska-Mizera, Monika, E-mail: monika.dobrzynska-mizera@doctorate.put.poznan.pl; Sterzyński, Tomasz; Dutkiewicz, Michał

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP whichmore » improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.« less

  12. Vibration behaviour of foamed concrete floor with polypropylene and rise husk ash fibre

    NASA Astrophysics Data System (ADS)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Ayub, N.; Ibrahim, M. Z.

    2017-11-01

    In the history of the construction industry, lightweight concrete or foamed concrete is a special concrete which can very useful in the construction sector because it is very lightweight and it can compact by itself at each angle of foamwork. Foamed concrete is one of lightweight concrete which widely used for floor construction due to its light weight and economic. The significant challenges in the floor design process are considering the vibration that needs improvements for the poor dynamic behaviour insulation. An alternative material to replace sand with certain amount of rice husk ash (RHA) and polypropylene was introduced. Research was determine the dynamic behavior of foam-polypropylene and foam-RHA concrete by using impact hammer test. The natural frequency for normal foamed concrete, 0.5 % of Polypropylene and 15% of RHA is 29.8 Hz, 29.3 Hz and 29.5 Hz respectively.

  13. Nickel-titanium wire in circumferential suture of a flexor tendon repair: a comparison to polypropylene.

    PubMed

    Karjalainen, T; He, M; Chong, A K S; Lim, A Y T; Ryhanen, J

    2010-07-01

    Nickel-titanium (NiTi) has been proposed as an alternative material for flexor tendon core suture. To our knowledge, its suitability as a circumferential suture of flexor tendon repair has not been investigated before. The purpose of this ex vivo study was to investigate the biomechanical properties of NiTi circumferential repairs and to compare them with commonly used polypropylene. Forty porcine flexor tendons were cut and repaired by simple running or interlocking mattress technique using 100 microm NiTi wire or 6-0 polypropylene. The NiTi circumferential repairs showed superior stiffness, gap resistance, and load to failure when compared to polypropylene repairs with both techniques. Nickel-titanium wire seems to be a potential material for circumferential repair of flexor tendons. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. Effect of Curing Period on Properties of Steel and Polypropylene Fibre Reinforced Ultra-High Performance Concrete

    NASA Astrophysics Data System (ADS)

    Smarzewski, Piotr

    2017-10-01

    This study has investigated the effect of curing period on the mechanical properties of straight polypropylene and hooked-end steel fibre reinforced ultra-high performance concrete (UHPC). Various physical properties are evaluated, i.e. absorbability, apparent density and open porosity. Compressive strength, tensile splitting strength, flexural strength and modulus of elasticity were determined at 28, 56 and 730 days. Comparative strength development of fibre reinforced mixes at 0.5%, 1%, 1.5% and 2% by volume fractions in relation to the mix without fibres was observed. Good correlations between the compressive strength and the modulus of elasticity are established. Steel and polypropylene fibres significantly increased the compressive strength, tensile splitting strength, flexural strength and modulus of elasticity of UHPC after two years curing period when fibre content volume was at least 1%. It seems that steel fibre reinforced UHPC has better properties than the polypropylene fibre reinforced UHPC.

  15. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    NASA Astrophysics Data System (ADS)

    Dobrzyńska-Mizera, Monika; Dutkiewicz, Michał; Sterzyński, Tomasz; Di Lorenzo, Maria Laura

    2015-12-01

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.

  16. Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging.

    PubMed

    Ummartyotin, S; Pechyen, C

    2016-05-20

    Cellulose based composite was successfully designed as active packaging with additional feature of microwavable properties. Small amount of cellulose with 10 μm in diameter was integrated into polypropylene matrix. The use of maleic anhydride was employed as coupling agent. Thermal and mechanical properties of cellulose based composite were superior depending on polypropylene matrix. Crystallization temperature and compressive strength were estimated to be 130 °C and 5.5 MPa. The crystal formation and its percentage were therefore estimated to be 50% and it can be predicted on the feasibility of microwavable packaging. Morphological properties of cellulose based composite presented the good distribution and excellent uniformity. It was remarkable to note that cellulose derived from cotton can be prepared as composite with polypropylene matrix. It can be used as packaging for microwave application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. High improvement in trap level density and direct current breakdown strength of block polypropylene by doping with a β-nucleating agent

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min

    2018-02-01

    Polypropylene is one kind of eco-friendly insulating material, which has attracted more attention for use in high voltage direct current (HVDC) insulation due to the long-distance transmission, low loss, and recyclability. In this work, the morphology and thermal and electrical properties of the block polypropylene with various β-nucleating agent (β-NA) contents were investigated. The relative fraction of the β-crystal can reach 64.7% after adding 0.05 wt. % β-NA. The β-NA also greatly reduced the melting point and improved the crystallization temperature. The electrical property results showed that the alternating and direct current breakdown strength and conduction current were obviously improved. In addition, space charge accumulation was significantly suppressed by introducing the β-NA. This work provides an attractive strategy of design and fabrication of polypropylene for HVDC application.

  18. Highly fluorinated polyurethanes

    NASA Technical Reports Server (NTRS)

    Stump, E. C., Jr.; Rochow, S. E. (Inventor)

    1973-01-01

    The reaction perfluorinated hydroxyl terminated polyether with diisocyanate to form polyurethane is discussed. Data are given on the resin's oxidation stability, chemical resistance, and low temperature flexibility.

  19. Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity.

    PubMed

    Wierzchowski, Marcin; Sobotta, Lukasz; Skupin-Mrugalska, Paulina; Kruk, Justyna; Jusiak, Weronika; Yee, Michael; Konopka, Krystyna; Düzgüneş, Nejat; Tykarska, Ewa; Gdaniec, Maria; Mielcarek, Jadwiga; Goslinski, Tomasz

    2013-10-01

    Four novel magnesium(II) and zinc(II) phthalocyanines bearing 1,4,7-trioxanonyl, polyether and/or (2-methyl-5-nitro-1H-imidazol-1-yl)ethoxy, heterocyclic substituents at their non-peripheral positions were synthesized and assessed in terms of physicochemical and biological properties. Magnesium phthalocyanine derivatives bearing polyether substituents (Pc-1), a mixed system of polyether and heterocyclic substituents (Pc-3), and four heterocyclic substituents (Pc-4), respectively, were synthesized following the Linstead macrocyclization reaction procedure. Zinc phthalocyanine (Pc-2) bearing polyether substituents at non-peripheral positions was synthesized following the procedure in n-pentanol with the zinc acetate, and DBU. Novel phthalocyanines were purified by flash column chromatography and characterized using NMR, MS, UV-Vis and HPLC. Moreover, two precursors in macrocyclization reaction phthalonitriles were characterized using X-ray. Photophysical properties of the novel macrocycles were evaluated, including UV-Vis spectra analysis and aggregation study. All macrocycles subjected to singlet oxygen generation and the oxidation rate constant measurements exhibited lower quantum yields of singlet oxygen generation in DMSO than in DMF. In addition, the Pc-2 molecule was found to be the most efficient singlet oxygen generator from the group of macrocycles studied. The photocytotoxicity evaluated on the human oral squamous cell carcinoma cell line, HSC-3, for Pc-3 was significantly higher than that for Pc-1, Pc-2, and Pc-4. Interestingly, Pc-3 was found to be the most active macrocycle in vitro although its ability to generate singlet oxygen was significantly lower than those of Pc-1 and Pc-2. However, attempts to encapsulate phthalocyanines Pc-1-Pc-3 in liposomal membranes were unsuccessful. The phthalocyanine-nitroimidazole conjugate, Pc-4 was encapsulated in phosphatidylglycerol:phosphatidylcholine unilamellar liposomes and subjected to photocytotoxicity study. © 2013.

  20. Anticoccidial efficacy testing: In vitro Eimeria tenella assays as replacement for animal experiments.

    PubMed

    Thabet, Ahmed; Zhang, Runhui; Alnassan, Alaa-Aldin; Daugschies, Arwid; Bangoura, Berit

    2017-01-15

    Availability of an accurate in vitro assay is a crucial demand to determine sensitivity of Eimeria spp. field strains toward anticoccidials routinely. In this study we tested in vitro models of Eimeria tenella using various polyether ionophores (monensin, salinomycin, maduramicin, and lasalocid) and toltrazuril. Minimum inhibitory concentrations (MIC 95 , MIC 50/95 ) for the tested anticoccidials were defined based on a susceptible reference (Houghton strain), Ref-1. In vitro sporozoite invasion inhibition assay (SIA) and reproduction inhibition assay (RIA) were applied on sensitive laboratory (Ref-1 and Ref-2) and field (FS-1, FS-2, and FS-3) strains to calculate percent of inhibition under exposure of these strains to the various anticoccidials (%I SIA and%I RIA, respectively). The in vitro data were related to oocyst excretion, lesion scores, performance, and global resistance indices (GI) assessed in experimentally infected chickens. Polyether ionophores applied in the RIA were highly effective at MIC 95 against Ref-1 and Ref-2 (%I RIA ≥95%). In contrast, all tested field strains displayed reduced to low efficacy (%I RIA <95%).%I RIA values significantly correlated with oocyst excretion determined in the animal model (p<0.01) for polyether ionophores. However, this relationship could not be demonstrated for toltrazuril due to unexpected lack of in vitro sensitivity in Ref-2 (%I RIA =56.1%). In infected chickens, toltrazuril was generally effective (GI>89%) against all strains used in this study. However, adjusted GI (GI adj ) for toltrazuril-treated groups exhibited differences between reference and field strains which might indicate varying sensitivity. RIA is a suitable in vitro tool to detect sensitivity of E. tenella towards polyether ionophores, and may thus help to reduce, replace, or refine use of animal experimentation for in vivo sensitivity assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    PubMed

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.

  2. Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    PubMed Central

    2011-01-01

    Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in in vivo experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II). Results New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)2(H2O)2] (1) and [Pb(Sal)(NO3)] (2), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming. PMID:21906282

  3. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis.

    PubMed

    Xie, Xinqiang; Garg, Ashish; Khosla, Chaitan; Cane, David E

    2017-03-01

    The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR 0 ) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR 0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2- 2 H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP + in the presence of redox-inactive, recombinant NanKR1 0 or NanKR5 0 , from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR7 0 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR 0 -catalyzed isotope exchange of the reversibly generated, transiently formed oxidation product [2- 2 H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR 0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR 0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations.

  4. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis

    PubMed Central

    Xie, Xinqiang; Garg, Ashish; Khosla, Chaitan; Cane, David E.

    2017-01-01

    The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR0) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2-2H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP+ in the presence of redox-inactive, recombinant NanKR10 or NanKR50, from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR70 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR0-catalyzed isotope exchange of the reversibly-generated, transiently-formed oxidation product [2-2H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations. PMID:28157306

  5. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material.

    PubMed

    Manoj, Smita Sara; Cherian, K P; Chitre, Vidya; Aras, Meena

    2013-12-01

    There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregum Soft™, 3 M ESPE and the four impression techniques used were (1) Monophase impression technique using medium body impression material. (2) One step double mix impression technique using heavy body and light body impression materials simultaneously. (3) Two step double mix impression technique using a cellophane spacer (heavy body material used as a preliminary impression to create a wash space with a cellophane spacer, followed by the use of light body material). (4) Matrix impression using a matrix of polyether occlusal registration material. The matrix is loaded with heavy body material followed by a pick-up impression in medium body material. For each technique, thirty impressions were made of a stainless steel master model that contained three complete crown abutment preparations, which were used as the positive control. Accuracy was assessed by measuring eight dimensions (mesiodistal, faciolingual and inter-abutment) on stone dies poured from impressions of the master model. A two-tailed t test was carried out to test the significance in difference of the distances between the master model and the stone models. One way analysis of variance (ANOVA) was used for multiple group comparison followed by the Bonferroni's test for pair wise comparison. The accuracy was tested at α = 0.05. In general, polyether impression material produced stone dies that were smaller except for the dies produced from the one step double mix impression technique. The ANOVA revealed a highly significant difference for each dimension measured (except for the inter-abutment distance between the first and the second die) between any two groups of stone models obtained from the four impression techniques. Pair wise comparison for each measurement did not reveal any significant difference (except for the faciolingual distance of the third die) between the casts produced using the two step double mix impression technique and the matrix impression system. The two step double mix impression technique produced stone dies that showed the least dimensional variation. During fabrication of a cast restoration, laboratory procedures should not only compensate for the cement thickness, but also for the increase or decrease in die dimensions.

  6. 40 CFR 60.561 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recovered for reuse in the process, off-site purification or treatment, or sale, at the time the process... polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable) or poly(ethylene... production of polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable), or poly...

  7. 40 CFR 60.561 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recovered for reuse in the process, off-site purification or treatment, or sale, at the time the process... polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable) or poly(ethylene... production of polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable), or poly...

  8. Polypropylene fiber reinforced concrete detention ponds : final report.

    DOT National Transportation Integrated Search

    1995-09-01

    In 1991, two Durafiber polypropylene fiber reinforced concrete lined detention ponds were constructed. The detention ponds are located on the north side of the 181st Avenue Interchange, on the Columbia River Highway (I-84), approximately ten miles ea...

  9. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    PubMed Central

    Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.

    2017-01-01

    Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties. PMID:28317893

  10. Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds.

    PubMed

    Wang, Yongwei; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-04-20

    Degradable shape memory polymers (SMPs), especially for polyurethane-based SMPs, have shown great potential for biomedical applications. How to reasonably fabricate SMPs with the ideal combination of degradability, shape reconfigurability, and reprocessability is a critical issue and remains a challenge for medical disposable materials. Herein, a shape memory poly(urethane-urea) with synergetic triple dynamic covalent bonds is reported via embedding polycaprolactone unit into poly(urethane-urea) with the hindered urea dynamic bond. The single polymer network is biodegradable, thermadapt, and reprocessable, without sacrificing the outstanding shape memory performance. Such a shape memory network with plasticity and reprocessability is expected to have significant and positive impact on the medical device industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    NASA Astrophysics Data System (ADS)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  12. Fire retardant polyisocyanurate foam

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Parker, J. A.

    1972-01-01

    Fire retardant properties of low density polymer foam are increased. Foam has pendant nitrile groups which form thermally-stable heterocyclic structures at temperature below degradation temperature of urethane linkages.

  13. Polypropylene fiber reinforced microsilica concrete bridge deck overlay at Link River Bridge

    DOT National Transportation Integrated Search

    2000-02-01

    In 1997 ODOT overlaid the Link River Bridge with microsilica concrete, reinforced with polypropylene fibers (FMC). The manufacturer claimed the fibers would reduce plastic shrinkage cracks and settlement cracking during the early life of the concrete...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouza, R.; Barral, L.; Abad, M. J.

    The effects of Pinus Sylvestris wood flour as filler in polypropylene matrix was evaluated. The mechanical properties and the morphology of different wood flour/polypropylene composites (WPC) were studied. The composites materials were prepared with several amounts of wood flour from 10 to 30% wt. Mechanical properties show that the wood flour incorporation increases the rigidity of the composites. Morphological analysis indicates that agglomerates are formed, with amounts exceeding 30% of wood flour. For the silane--treated composites, the dispersion of the filler into the polypropylene (PP) matrix improved. Shore D hardness of the composites is decreased with the addition of themore » coupling agent.« less

  15. Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate

    PubMed Central

    Moradian, Siamak; Ameri, Farhad

    2013-01-01

    Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM), FT-IR spectroscopy, differential scanning calorimetry (DSC), and tensile testing. PMID:24288485

  16. Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion

    NASA Astrophysics Data System (ADS)

    Pantoja, M.; Encinas, N.; Abenojar, J.; Martínez, M. A.

    2013-09-01

    Polypropylene is one of the most used polymers due to its lightweight and recyclability properties, among others. However, its poor characteristics regarding surface energy and lack of polar functional groups have to be overcome to perform adhesion processes. The main objective of this work is to improve the adhesion behavior of polypropylene by combining atmospheric pressure plasma surface activation and silane adhesion promoter. Tetraethoxysilane hydrolysis and condensation are followed through infrared spectroscopy by attenuated total reflectance in order to set the coating conditions. Contact angle measurements and surface energy calculations as well as infrared and X-ray photoelectron spectroscopy are used to evaluate polymer chemical modifications. Morphological changes are studied through scanning electron and atomic force microscopy. Results show the ability of plasma treatment to create active oxydised functional groups on the polypropylene surface. These groups lead to a proper wetting of the polymer by the silane. Shear strength of single-lap bonding of polypropylene with a polyurethane adhesive suffers a significant improvement when the silane coating is applied on previously plasma activated samples. It has been also demonstrated that the silane curing conditions play a decisive role on the adhesion response. Finally, the stability of the silane solution is tested up to 30 days, yielding diminished but still acceptable adhesion strength values.

  17. Upcycling of polypropylene waste by surface modification using radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Hassan, Muhammad Inaam ul; Taimur, Shaista; Yasin, Tariq

    2017-11-01

    In this work, upcycling of polypropylene waste into amidoxime functionalized polypropylene adsorbent was studied using radiation-induced grafting technique. Polypropylene waste (PPw) was resulted from accelerated thermal ageing of polypropylene (PP). Bulk grafting of acrylonitrile (AN) onto PPw was achieved by simultaneous radiation grafting method using gamma rays. Degree of grafting of AN on PPw is affected by absorbed dose and dose rate. The acrylonitrile groups of grafted PPw were chemically converted into amidoxime functionality. Both the acrylonitrile-grafted PP waste and its amidoxime product were investigated by FTIR, XRD, SEM-EDX and TGA techniques. The prepared amidoxime adsorbent with amidoxime group density of 8.06 mmol/g was used for removal of copper ions from aqueous solutions. The effects of various physicochemical conditions such as: solution pH, adsorbent content, initial metal ion concentration and time on adsorption were studied to maximize adsorption of metal ion. Pseudo-first-order, pseudo-second-order and intra-particle diffusion models were applied to study the kinetics of adsorption. Maximum Langmuir adsorption capacity of 208.3 mg/g at pH 5.0 with optimum contact time of 120 min was observed. Utilization of PP waste and its comparable adsorption capacity with existing radiation grafted polymer-based adsorbents provide a new, cheap and cost effective system.

  18. Environmental aging and degradation of multiwalled carbon nanotube reinforced polypropylene

    EPA Science Inventory

    The degradation of polypropylene (PP) and PP-multiwalled carbon nanotube (PP-MWCNT) panels during environmental weathering resulted in an increased degree of crystallinity, making them brittle, and creating surface cracks. The degradation led to a breakdown of the panels and incr...

  19. Effect of combined extrusion parameters on mechanical properties of basalt fiber-reinforced plastics based on polypropylene

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Ovcharenko, V. G.; Boot, Yu. A.

    1997-11-01

    Basalt fibers are efficient reinforcing fillers for polypropylene because they increase both the mechanical and the tribotechnical properties of composites. Basalt fibers can compete with traditional fillers (glass and asbestos fibers) of polypropylene with respect to technological, economic, and toxic properties. The effect of technological parameters of producing polypropylene-based basalt fiber-reinforced plastics (BFRPs) by combined extrusion on their mechanical properties has been investigated. The extrusion temperature was found to be the main parameter determining the mechanical properties of the BFRPs. With temperature growth from 180 to 240°C, the residual length of the basalt fibers in the composite, as well as the adhesive strength of the polymer-fiber system, increased, while the composite defectiveness decreased. The tensile strength and elastic modulus increased from 35 to 42 MPa and 3.2 to 4.2 GPa, respectively. At the same time, the growth in composite solidity led to its higher brittleness. Thus, a higher temperature of extrusion allows us to produce materials which can be subjected to tensile and bending loads, while the materials produced at a lower temperature of extrusion are impact stable. The effect of the gap size between the extruder body and moving disks on the mechanical properties of the BFRPs is less significant than that of temperature. An increase of the gap size from 2 to 8 mm improves the impregnation quality of the fibers, but the extruder productivity diminishes. The possibility of controling the properties of reinforced polypropylene by varying the technological parameters of combined extrusion is shown. The polypropylene-based BFRPs produced by the proposed method surpass the properties of glass and asbestos fiber-reinforced plastics.

  20. COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Linda J. Broadbelt; Matthew J. DeWitt; Hsi-Wu Wong

    2000-09-30

    The final project period was devoted to investigating the binary mixture pyrolysis of polypropylene and polystyrene. Their interactions were assessed in order to provide a baseline for experiments with multicomponent mixtures of polymers with coal. Pyrolysis of polypropylene, polystyrene and their binary mixture was investigated at temperatures of 350 C and 420 C with reaction times from 1 to 180 minutes. Two different loadings, 10 mg and 20 mg, were studied for neat polypropylene and polystyrene to assess the effect of total pressure on product yields and selectivities. For neat pyrolysis of polypropylene, total conversion was much higher at 420more » C, and no significant effect of loading on the total conversion was observed. Four classes of products, alkanes, alkenes, dienes, and aromatic compounds, were observed, and their distribution was explained by a typical free radical mechanism. For neat polystyrene pyrolysis, conversion reached approximately 75% at 350 C, while at 420 C the conversion reached a maximum around 90% at 10 minutes and decreased at longer times because of condensation reactions. The selectivities to major products were slightly different for the two different loadings due to the effect of total reaction pressure on secondary reactions. For binary mixture pyrolysis, the overall conversion was higher than the average of the two neat cases. The conversion of polystyrene remained the same, but a significant enhancement in the polypropylene conversion was observed. This suggests that the less reactive polypropylene was initiated by polystyrene-derived radicals. These results are summarized in detail in an attached manuscript that is currently in preparation. The other results obtained during the lifetime of this grant are documented in the set of attached manuscripts.« less

  1. Acrylate-endcapped polymer precursors: effect of chemical composition on the healing efficiency of active concrete cracks

    NASA Astrophysics Data System (ADS)

    Araújo, Maria; Van Tittelboom, Kim; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-05-01

    The repair of cracks in concrete is an unavoidable practice since these cracks endanger the durability of the structure. Inspired by nature, the self-healing concept has been widely investigated in concrete as a promising solution to solve the limitations of manual repair. This self-healing functionality may be realized by the incorporation of encapsulated healing agents in concrete. Depending on the nature of the cracks, different healing agents can be used. For structures subjected to repeated loads, elastic materials should be considered to cope with the crack opening and closing movement. In this study, various acrylate-endcapped polymer precursors were investigated for their suitability to heal active cracks. The strain capacity of the polymers was assessed by means of visual observation together with water flow tests after widening of the healed cracks in a stepwise manner. A strain of at least 50% could be sustained by epoxy- and siloxane-based healing agents. For polyester- and urethane/poly(propylene glycol)-based precursors, failure occurred at 50% elongation due to detachment of the polymer from the crack walls. However, for urethane/poly(propylene glycol)-based healing agent, debonding was limited to some local spots. The resistance of the polymerized healing agents against degradation in the strong alkaline environment characteristic for concrete has also been evaluated, with the urethane/poly(propylene glycol)-based precursor showing the best performance to withstand degradation.

  2. Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties.

    PubMed

    Vilaseca, Fabiola; Valadez-Gonzalez, Alex; Herrera-Franco, Pedro J; Pèlach, M Angels; López, Joan Pere; Mutjé, Pere

    2010-01-01

    In this paper, abaca strands were used as reinforcement of polypropylene matrix and their tensile mechanical properties were studied. It was found relevant increments on the tensile properties of the abaca strand-PP composites despite the lack of good adhesion at fiber-matrix interface. Afterwards, it was stated the influence of using maleated polypropylene (MAPP) as compatibilizer to promote the interaction between abaca strands and polypropylene. The intrinsic mechanical properties of the reinforcement were evaluated and used for modeling both the tensile strength and elastic modulus of the composites. For these cases, the compatibility factor for the ultimate tensile strength was deduced from the modified rule of mixtures. Additionally, the experimental fiber orientation coefficient was measured, allowing determining the interfacial shear strengths of the composites and the critical fiber length of the abaca strand reinforcement. The mechanical improvement was compared to that obtained for fiberglass-reinforced PP composites and evaluated under an economical and technical point of view.

  3. Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient

    PubMed Central

    Wood, A. J.; Cozad, M. J.; Grant, D. A.; Ostdiek, A. M.; Bachman, S. L.

    2014-01-01

    During its tenure in vivo, synthetic mesh materials are exposed to foreign body responses, which can alter physicochemical properties of the material. Three different synthetic meshes comprised of polypropylene, expanded polytetrafluoroethylene (ePTFE), and polyethylene terephthalate (PET) materials were explanted from a single patient providing an opportunity to compare physicochemical changes between three different mesh materials in the same host. Results from infrared spectroscopy demonstrated significant oxidation in polypropylene mesh while ePTFE and PET showed slight chemical changes that may be caused by adherent scar tissue. Differential scanning calorimetry results showed a significant decrease in the heat of enthalpy and melt temperature in the polypropylene mesh while the ePTFE and PET showed little change. The presence of giant cells and plasma cells surrounding the ePTFE and PET were indicative of an active foreign body response. Scanning electron micrographs and photo micrographs displayed tissue entrapment and distortion of all three mesh materials. PMID:23371769

  4. Catalytic copyrolysis of particle board and polypropylene over Al-MCM-48

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hannah; Choi, Suek Ju; Kim, Ji Man

    Highlights: • Al-MCM-48 was used for catalytic copyrolysis of particle board and polypropylene. • Catalytic produced mainly hydrocarbons. • The hydrocarbons produced were mainly in the diesel range. - Abstract: Particle board and polypropylene (PP) at a mixing ratio of 1:1 were copyrolyzed over two Al-MCM-48 catalysts with Si/Al ratios of 20 and 80. The catalyst characteristics were examined by measuring the Brunauer-Emmett-Teller surface area, temperature programmed desorption of ammonia, and X-ray diffraction. The main pyrolysis products of particle board were oxygenates, acids, and phenolics, whereas a large quantity of hydrocarbons within the diesel fuel range was produced from copyrolysismore » with polypropylene. The catalytic copyrolysis of particle board and PP over the Al-MCM-48 catalysts produced bio-oil with a much larger hydrocarbon content than that from the catalytic pyrolysis of particle board only. The hydrocarbons produced were mainly in the diesel range, highlighting the potential for the production of high-quality fuel.« less

  5. Influence of some packaging materials and of natural tocopherols on the sensory properties of breakfast cereals.

    PubMed

    Paradiso, Vito M; Caponio, Francesco; Summo, Carmine; Gomes, Tommaso

    2014-04-01

    The combined effect of natural antioxidants and packaging materials on the quality decay of breakfast cereals during storage was evaluated. Corn flakes were produced on industrial scale, using different packages and adding natural tocopherols to the ingredients, and stored for 1 year. The samples were then submitted to sensory analysis and HS-solid phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) analysis. The packaging had a significant influence on the sensory profile of the aged product: metallized polypropylene gave the highest levels of oxidation compounds and sensory defects. The sensory profile was improved using polypropylene and especially high-density polyethylene. Natural tocopherols reduced the sensory decay of the flakes and the oxidative evolution of the volatile profile. They gave the most remarkable improvement in polypropylene (either metallized or not) packs. Polypropylene showed a barrier effect on the scalping of volatiles outside of the pack. This led to higher levels of oxidation volatiles and faster rates of the further oxidative processes involving the volatiles.

  6. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison

    PubMed Central

    De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  8. A Dioxane Template for Highly Selective Epoxy Alcohol Cyclizations

    PubMed Central

    Mousseau, James J.; Morten, Christopher J.

    2013-01-01

    Ladder polyether natural products are a class of natural products denoted by their high functional group density and large number of well-defined stereocenters. They comprise the toxic component of harmful algal blooms (HABs), having significant negative economic and environmental ramifications. However, their mode of action, namely blocking various cellular ion channels, also denotes their promise as potential anticancer agents. Understanding their potential mode of biosynthesis will not only help with developing ways to limit the damage of HABs, but would also facilitate the synthesis of a range of analogues with interesting biological activity. 1,3-Dioxan-5-ol substrates display remarkable ‘enhanced template effects’ in water-promoted epoxide cyclization processes en route to the synthesis of these ladder polyether natural products. In many cases they provide near complete endo to exo selectivity in the cyclization of epoxy alcohols, thereby strongly favouring the formation of tetrahydropyran (THP) over tetrahydrofuran (THF) rings. The effects of various Brønsted and Lewis acidic and basic conditions are explored to demonstrate the superior selectivity of the template over the previously reported THP-based epoxy alcohols. In addition, the consideration of other synthetic routes are also considered with the goal of gaining rapid access to a plethora of potential starting materials applicable towards the synthesis of ladder polyethers. Finally, cascade sequences with polyepoxides are investigated, further demonstrating the versatility of this new reaction template. PMID:23775936

  9. Role of Modular Polyketide Synthases in the Production of Polyether Ladder Compounds in Ciguatoxin-Producing Gambierdiscus polynesiensis and G. excentricus (Dinophyceae).

    PubMed

    Kohli, Gurjeet S; Campbell, Katrina; John, Uwe; Smith, Kirsty F; Fraga, Santiago; Rhodes, Lesley L; Murray, Shauna A

    2017-09-01

    Gambierdiscus, a benthic dinoflagellate, produces ciguatoxins that cause the human illness Ciguatera. Ciguatoxins are polyether ladder compounds that have a polyketide origin, indicating that polyketide synthases (PKS) are involved in their production. We sequenced transcriptomes of Gambierdiscus excentricus and Gambierdiscus polynesiensis and found 264 contigs encoding single domain ketoacyl synthases (KS; G. excentricus: 106, G. polynesiensis: 143) and ketoreductases (KR; G. excentricus: 7, G. polynesiensis: 8) with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 24 contigs (G. excentricus: 3, G. polynesiensis: 21) encoding multiple PKS domains (forming typical type I PKSs modules) were found. The proposed structure produced by one of these megasynthases resembles a partial carbon backbone of a polyether ladder compound. Seventeen contigs encoding single domain KS, KR, s-malonyltransacylase, dehydratase and enoyl reductase with sequence similarity to type II fatty acid synthases (FAS) in plants were found. Type I PKS and type II FAS genes were distinguished based on the arrangement of domains on the contigs and their sequence similarity and phylogenetic clustering with known PKS/FAS genes in other organisms. This differentiation of PKS and FAS pathways in Gambierdiscus is important, as it will facilitate approaches to investigating toxin biosynthesis pathways in dinoflagellates. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  10. Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding.

    PubMed

    Hüttel, Wolfgang; Spencer, Jonathan B; Leadlay, Peter F

    2014-01-01

    Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L(-1) dehydroxymonensin; ΔmonE: 0.50 g L(-1) demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L(-1) dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation.

  11. Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211

    PubMed Central

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing

    2012-01-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity. PMID:22156425

  12. Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques.

    PubMed

    Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Montero, Javier; Albaladejo, Alberto; Suárez-García, María Jesús

    2012-07-01

    This study evaluated the vertical discrepancy of implant-fixed 3-unit structures. Frameworks were constructed with laser-sintered Co-Cr, and vacuum-cast Co-Cr, Ni-Cr-Ti, and Pd-Au. Samples of each alloy group were randomly luted in standard fashion using resin-modified glass-ionomer, self-adhesive, and acrylic/urethane-based cements (n = 12 each). Discrepancies were SEM analyzed. Three-way ANOVA and Student-Newman-Keuls tests were run (P < 0.05). Laser-sintered structures achieved the best fit per cement tested. Within each alloy group, resin-modified glass-ionomer and acrylic/urethane-based cements produced comparably lower discrepancies than the self-adhesive agent. The abutment position did not yield significant differences. All misfit values could be considered clinically acceptable.

  13. Plant growth responses to polypropylene--biocontainers

    USDA-ARS?s Scientific Manuscript database

    The influence of bio-fillers incorporated into polypropylene (PP) on the growth of plants was evaluated. Biocontainers were created by injection molding of PP with 25-40% by weight of Osage orange tree, Paulownia tree, coffee tree wood or dried distillers grain and 5% by weight of maleated polypropy...

  14. 21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5010...

  15. 21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5010...

  16. 21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5010...

  17. 21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5010...

  18. Fluid handling and fabric handle profiles of hydroentangled greige cotton and spunbond polypropylene nonwoven topsheets

    USDA-ARS?s Scientific Manuscript database

    Absorbent nonwoven topsheets are traditionally spunbond (or spunbond-meltblown (SM)) polypropylene nonwoven fabrics, and are used for a wide range of incontinence applications. Here we describe how nonwoven greige cotton demonstrates positive incontinence performance indices suitable for top sheet ...

  19. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Oisik; Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz; Bhattacharyya, Debes

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted bymore » manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications.« less

  20. Comparative experiments for in vivo fibroplasia and biological stability of four porous polymers intended for use in the Seoul-type keratoprosthesis

    PubMed Central

    Kim, M K; Lee, J L; Wee, W R; Lee, J H

    2002-01-01

    Aims: To evaluate in vivo fibroplasia and biological stability of porous polymers intended for use in the Seoul-type keratoprosthesis (S-KPro). Methods: Four porous polymers (polypropylene, two kinds of polyethylene terephthalate (PE70 and PE50), and polyurethane) were investigated. Discs of polymers were inserted into the corneal stroma of rabbits for a 2 and 5 month period. Corneal oedema and neovascularisation were evaluated. The fibroplasia and collagen deposition were examined under light and transmission electron microscopy. S-KPros, whose skirt was made of four types of polymer, were implanted into the rabbits' eyes. The retention time and complications were evaluated. Results: Neovascularisation and corneal oedema were found in all of the disc inserted eyes, but the corneal oedema subsided within 2 months in most of the eyes. The mean number of fibroblasts increased significantly in polypropylene and PE50 disc inserted eyes compared with polyurethane disc inserted eyes. Plentiful collagen deposition was also found in both polypropylene and PE50 disc inserted eyes. Mean retention time in the polypropylene SK-Pro implanted eyes was longer than that of the other eyes (20.7 weeks). The PE70 skirt induced corneal melting around the prosthesis. Conclusion: Polypropylene encourages fibroblast ingrowth and shows good biological stability when used as a skirt material in S-KPro. PMID:12084755

  1. Polypropylene-based composite mesh versus standard polypropylene mesh in the reconstruction of complicated large abdominal wall hernias: a prospective randomized study.

    PubMed

    Kassem, M I; El-Haddad, H M

    2016-10-01

    To compare polypropylene mesh positioned onlay supported by omentum and/or peritoneum versus inlay implantation of polypropylene-based composite mesh in patients with complicated wide-defect ventral hernias. This was a prospective randomized study carried out on 60 patients presenting with complicated large ventral hernia in the period from January 2012 to January 2016 in the department of Gastrointestinal Surgery unit and Surgical Emergency of the Main Alexandria University Hospital, Egypt. Large hernia had an abdominal wall defect that could not be closed. Patients were divided into two groups of 30 patients according to the type of mesh used to deal with the large abdominal wall defect. The study included 38 women (63.3 %) and 22 men (37.7 %); their mean age was 46.5 years (range, 25-70). Complicated incisional hernia was the commonest presentation (56.7 %).The operative and mesh fixation times were longer in the polypropylene group. Seven wound infections and two recurrences were encountered in the propylene group. Mean follow-up was 28.7 months (2-48 months). Composite mesh provided, in one session, satisfactory results in patients with complicated large ventral hernia. The procedure is safe and effective in lowering operative time with a trend of low wound complication and recurrence rates.

  2. MAK-4 and -5 supplemented diet inhibits liver carcinogenesis in mice

    PubMed Central

    Penza, Marialetizia; Montani, Claudia; Jeremic, Marija; Mazzoleni, Giovanna; Hsiao, WL Wendy; Marra, Maurizio; Sharma, Hari; Di Lorenzo, Diego

    2007-01-01

    Background Maharishi Amrit Kalash (MAK) is an herbal formulation composed of two herbal mixtures, MAK-4 and MAK-5. These preparations are part of a natural health care system from India, known as Maharishi Ayur-Veda. MAK-4 and MAK-5 are each composed of different herbs and are said to have maximum benefit when used in combination. This investigation evaluated the cancer inhibiting effects of MAK-4 and MAK-5, in vitro and in vivo. Methods In vitro assays: Aqueous extracts of MAK-4 and MAK-5 were tested for effects on ras induced cell transformation in the Rat 6 cell line assessed by focus formation assay. In vivo assays: Urethane-treated mice were put on a standard pellet diet or a diet supplemented with MAK-4, MAK-5 or both. At 36 weeks, livers were examined for tumors, sera for oxygen radical absorbance capacity (ORAC), and liver homogenates for enzyme activities of glutathione peroxidase (GPX), glutathione-S-transferase (GST), and NAD(P)H: quinone reductase (QR). Liver fragments of MAK-fed mice were analyzed for connexin (cx) protein expression. Results MAK-5 and a combination of MAK-5 plus MAK-4, inhibited ras-induced cell transformation. In MAK-4, MAK-5 and MAK4+5-treated mice we observed a 35%, 27% and 46% reduction in the development of urethane-induced liver nodules respectively. MAK-4 and MAK4+5-treated mice had a significantly higher ORAC value (P < 0.05) compared to controls (200.2 ± 33.7 and 191.6 ± 32.2 vs. 152.2 ± 15.7 ORAC units, respectively). The urethane-treated MAK-4, MAK-5 and MAK4+5-fed mice had significantly higher activities of liver cytosolic enzymes compared to the urethane-treated controls and to untreated mice: GPX(0.23 ± 0.08, 0.21 ± 0.05, 0.25 ± 0.04, 0.20 ± 0.05, 0.21 ± 0.03 U/mg protein, respectively), GST (2.0 ± 0.4, 2.0 ± 0.6, 2.1 ± 0.3, 1.7 ± 0.2, 1.7 ± 0.2 U/mg protein, respectively) and QR (0.13 ± 0.02, 0.12 ± 0.06, 0.15 ± 0.03, 0.1 ± 0.04, 0.11 ± 0.03 U/mg protein, respectively). Livers of MAK-treated mice showed a time-dependent increased expression of cx32. Conclusion Our results show that a MAK-supplemented diet inhibits liver carcinogenesis in urethane-treated mice. The prevention of excessive oxidative damage and the up-regulation of connexin expression are two of the possible effects of these products. PMID:17559639

  3. Toxoplasma gondii: activity of the polyether ionophorous antibiotic nigericin on tachyzoites in cell culture.

    PubMed

    Couzinet, S; Dubremetz, J F; David, L; Prensier, G

    1994-06-01

    Polyether ionophorous antibiotics are widely used prophylactically to prevent coccidiosis in livestock production. The study of the effects of the nigericin on tachyzoites of Toxoplasma gondii clearly demonstrated that very low concentrations of this ionophore (0.05 microgram/ml) were sufficient to inhibit strongly the penetration and totally inhibit the intracellular development of parasites. Both nigericin and epinigericin showed a similar activity against tachyzoite development. However, the activity of abierixicin was 50-fold lower. Such antibiotic concentrations did not seem to affect host cells. Immunofluorescence and electron microscopy showed important changes in the cytology of the antibiotic-treated parasites: they were vacuolated or swollen and were sometimes found burst open, having lost their original shape. The magnitude and the frequency of alterations rose as concentrations in ionophore increased.

  4. Chemical regulation of polyethism during foraging in the neotropical termiteNasutitermes costalis.

    PubMed

    Traniello, J F; Busher, C

    1985-03-01

    The soldiers ofNasutitermes costalis communicate information about the presence and location of food by laying chemical trails of sternal gland secretion. These trails first recruit additional soldiers, and as the number of soldiers contacting food and returning to the nest increases, trail pheromone concentration increases, and workers are recruited. This polyethic pattern of recruitment does not appear to depend on qualitative (caste-specific) properties of soldier and worker sternal gland secretions, but rather on quantitative differences in pheromone production between castes. Large third-instar workers have significantly greater sternal gland volumes than soldiers, and glands of approximately equivalent size have approximately equivalent recruitment effects. The recruitment and orientation effects of artificial trails prepared from worker sternal glands can be mimicked by increasing the concentration of soldier sternal gland pheromone.

  5. Safe battery solvents

    DOEpatents

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  6. A comparative evaluation of dimensional stability of three types of interocclusal recording materials-an in-vitro multi-centre study.

    PubMed

    Tejo, Sampath Kumar; Kumar, Anil G; Kattimani, Vivekanand S; Desai, Priti D; Nalla, Sandeep; Chaitanya K, Krishna

    2012-10-05

    The introduction of different interocclusal recording materials has put clinicians in dilemma that which material should be used in routine clinical practice for precise recording and transferring of accurate existing occlusal records for articulation of patient's diagnostic or working casts in the fabrication of good satisfactory prosthesis. In the era of developing world of dentistry the different materials are introduced for interocclusal record with different brand names because of this; the utility of the material is confusing for successful delivery of prosthesis with lack of in vitro or in vivo studies which will predict the property of the material with utility recommendations. The aim of this multicenter research is to evaluate the time dependent linear dimensional stability of three types of interocclusal recording materials; which gives very clear idea to clinicians in regard to its usage in routine practice and recommendations for usage of the different materials. Also to find out ideal time for articulation of three types of interocclusal recording materials with accuracy. Commercially available and ADA approved Polyether bite registration paste (Ramitec), Poly vinyl siloxane bite registration paste (Jetbite) and Zinc oxide eugenol (ZOE) bite registration paste (Super bite) were used in the study.A stainless steel die was made according to modified American dental Associations (ADA) specification no. 19. Each one of the tested materials were manipulated according to manufacturers' instructions. The materials separated from die, 3-mins after their respective setting time, resulted in disks of standard diameter. Two parallel lines and three perpendicular lines reproduced on the surface. The distance between two parallel lines was measured at different time intervals i.e. 1 hour, 24, 48 and 72 hours by using travelling microscope (magnus) and compared with standard die measurements made according to ADA specification no.19 to find out the dimensional stability of these interocclusal recording materials. Total 120 samples were made for observation and results were subjected to statistical analysis. Statistical analysis was performed using analysis of variance (ANOVA) and then Tukey's Honestly Significant Difference (HSD) test for comparison among groups at the 0.05 level of significance. After statistical analysis of the data, results were obtained and analyzed for interpretation. The results shows significant difference between the dimensional stability of all three material at different intervals with p-value <0.05. Comparatively the polyether bite registration material showed less distortion with good dimensional stability compared to Poly vinyl siloxane bite (Jetbite), Zinc oxide eugenol(ZOE) bite (Super bite) at 1 hour, 24, 48, and 72 hours. The dimensional stability decreased with increase in time and is influenced by both material factor and time factor. Polyether was found to be more dimensionally stable interocclusal recording material, which was followed by Silicone and Zinc oxide eugenol (ZOE). The dimensional stability of Polyether was good. Zinc oxide eugenol is dimensionally more unstable when compared with polyether and polyvinyl siloxane. We recommend that the polyether interocclusal records must be articulated within 48 hours and Polyvinylsiloxane interocclusal records must be articulated within 24 hours and the ZOE should be articulated within 1 hour to get a correct restoration to have very minimum distortion and maximum satisfaction without failure of prosthesis.

  7. A comparative evaluation of dimensional stability of three types of interocclusal recording materials-an in-vitro multi-centre study

    PubMed Central

    2012-01-01

    Background The introduction of different interocclusal recording materials has put clinicians in dilemma that which material should be used in routine clinical practice for precise recording and transferring of accurate existing occlusal records for articulation of patient’s diagnostic or working casts in the fabrication of good satisfactory prosthesis. In the era of developing world of dentistry the different materials are introduced for interocclusal record with different brand names because of this; the utility of the material is confusing for successful delivery of prosthesis with lack of in vitro or in vivo studies which will predict the property of the material with utility recommendations. Purpose of the study The aim of this multicenter research is to evaluate the time dependent linear dimensional stability of three types of interocclusal recording materials; which gives very clear idea to clinicians in regard to its usage in routine practice and recommendations for usage of the different materials. Also to find out ideal time for articulation of three types of interocclusal recording materials with accuracy. Materials and method Commercially available and ADA approved Polyether bite registration paste (Ramitec), Poly vinyl siloxane bite registration paste (Jetbite) and Zinc oxide eugenol (ZOE) bite registration paste (Super bite) were used in the study. A stainless steel die was made according to modified American dental Associations (ADA) specification no. 19. Each one of the tested materials were manipulated according to manufacturers’ instructions. The materials separated from die, 3-mins after their respective setting time, resulted in disks of standard diameter. Two parallel lines and three perpendicular lines reproduced on the surface. The distance between two parallel lines was measured at different time intervals i.e. 1 hour, 24, 48 and 72 hours by using travelling microscope (magnus) and compared with standard die measurements made according to ADA specification no.19 to find out the dimensional stability of these interocclusal recording materials. Total 120 samples were made for observation and results were subjected to statistical analysis. Statistical analysis was performed using analysis of variance (ANOVA) and then Tukey’s Honestly Significant Difference (HSD) test for comparison among groups at the 0.05 level of significance. After statistical analysis of the data, results were obtained and analyzed for interpretation. Results The results shows significant difference between the dimensional stability of all three material at different intervals with p-value <0.05. Comparatively the polyether bite registration material showed less distortion with good dimensional stability compared to Poly vinyl siloxane bite (Jetbite), Zinc oxide eugenol(ZOE) bite (Super bite) at 1 hour, 24, 48, and 72 hours. Conclusion The dimensional stability decreased with increase in time and is influenced by both material factor and time factor. Polyether was found to be more dimensionally stable interocclusal recording material, which was followed by Silicone and Zinc oxide eugenol (ZOE). The dimensional stability of Polyether was good. Zinc oxide eugenol is dimensionally more unstable when compared with polyether and polyvinyl siloxane. We recommend that the polyether interocclusal records must be articulated within 48 hours and Polyvinylsiloxane interocclusal records must be articulated within 24 hours and the ZOE should be articulated within 1 hour to get a correct restoration to have very minimum distortion and maximum satisfaction without failure of prosthesis. PMID:23039395

  8. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...

  9. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...

  10. Evaluating penetration ability of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) larvae into multilayer polypropylene packages

    USDA-ARS?s Scientific Manuscript database

    Larvae of the Indian meal moth, Plodia interpunctella (Hübner), can invade or penetrate packaging materials and infest food products. Energy bars with three polypropylene packaging types were challenged with eggs (first instars), third, and fifth instars of P. interpunctella to determine package res...

  11. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...

  12. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...

  13. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...

  14. Crack sealer fill characteristics.

    DOT National Transportation Integrated Search

    2010-06-01

    Laboratory testing was conducted to determine the extent of crack fill for crack sealers composed of methyl methacrylate, : epoxy, urethane, and high molecular weight methacrylate. The test specimens consisted of eight-inch long concrete : cylinders ...

  15. Additive manufacturing with polypropylene microfibers.

    PubMed

    Haigh, Jodie N; Dargaville, Tim R; Dalton, Paul D

    2017-08-01

    The additive manufacturing of small diameter polypropylene microfibers is described, achieved using a technique termed melt electrospinning writing. Sequential fiber layering, which is important for accurate three-dimensional fabrication, was achieved with the smallest fiber diameter of 16.4±0.2μm obtained. The collector speed, temperature and melt flow rate to the nozzle were optimized for quality and minimal fiber pulsing. Of particular importance to the success of this method is appropriate heating of the collector plate, so that the electrostatically drawn filament adheres during the direct-writing process. By demonstrating the direct-writing of polypropylene, new applications exploiting the favorable mechanical, stability and biocompatible properties of this polymer are envisaged. Copyright © 2017. Published by Elsevier B.V.

  16. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    PubMed

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Morphology Evolution of Polypropylene in Immiscible Polymer Blends for Fabrication of Nanofibers

    USDA-ARS?s Scientific Manuscript database

    Immiscible blends of cellulose acetate butyrate (CAB) and isotactic polypropylenes (iPPs) with different melting index were extruded through a two-strand rod die. The extrudates were hot-drawn at the die exit at different draw ratios by controlling the drawing speed. The morphologies of iPP fibers e...

  18. Effects of moisture on aspen-fiber/polypropylene composites

    Treesearch

    Roger M. Rowell; Sandra E. Lange; Rodney E. Jacobson

    2004-01-01

    Moisture sorption in fiber-thermoplastic composites leads to dimensional instability and biological attack. To determine the pick up of moisture this type of composite, aspen fiber/polypropylene composites were made using several different levels of aspen fiber (30 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted...

  19. Maleated polypropylene film and wood fiber handsheet laminates

    Treesearch

    Sangyeob Lee; Todd F. Shupe; Leslie H. Groom; Chung Y. Hse

    2008-01-01

    The grafting effect of maleic anhydride (MA) as an interfacial bonding agent and its influence on the tensile strength properties of thermomechanical pulp handsheet-isotactic polypropylene (iPP) film laminates was studied. For the MA treated with benzoyl peroxide (BPO) as an initiator, tensile strength properties increased 76% with PP film over untreated laminates. The...

  20. 21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...: Surgical Sutures; Guidance for Industry and FDA.” See § 878.1(e) for the availability of this guidance...

  1. Effectiveness of the ZeroFly® storage bag fabric against stored-product insects

    USDA-ARS?s Scientific Manuscript database

    The ZeroFly® Storage Bag is a polypropylene bag (PP) which has deltamethrin incorporated in its fibers, and represents a novel approach to reducing stored-product insect pest-related postharvest losses. Fabric samples from ZeroFly bags, polypropylene (PP) bags, jute bags, malathion-treated PP bags, ...

  2. Geopolymer Porous Nanoceramics for Structural Smart and Thermal Shock Resistant Applications

    DTIC Science & Technology

    2011-02-02

    porous membranes and foams, ceramic armor composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene... geopolymers and geopolymer composites , as fabricated and upon conversion to ceramics with heating. The microstucture consisted of nanoporous...ceramic armore composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene or basalt fibers and

  3. Presidential Green Chemistry Challenge: 2005 Greener Reaction Conditions Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2005 award winner, BASF, invented a one-component, urethane acrylate oligomer primer system for automobile refinishing that is UV-curable, has VOCs, and is free of diisocyanates.

  4. Quality evaluation of polypropylene packaged corn yogurt during storage

    NASA Astrophysics Data System (ADS)

    Aini, Nur; Prihananto, V.; Sustriawan, B.; Astuti, Y.; Maulina, M. R.

    2018-01-01

    Packaging is an important factor to control the process of quality decrease of any food product, including to determine the shelf life. The objective of this study was to determine changes quality of corn yogurt packaged using polypropylene. The method were using was package yogurt polypropylene, then it was stored in a refrigerator at 5, 10, or 15°C during 21 days. The yogurt was analysed every 7 days over a 21-day period. The results indicate that protein content decreased during storage, while the lactic acid bacteria, total acid, pH, viscosity, and total solids were increased. At the end of storage, the amount of lactic acid bacteria still fulfil the minimum requirements of a probiotic food, with a count of 6.407 log CFU/g. Overal scoring by panelist (scores ranged from 0 to 5) have a 4.78 at the beginning of storage. By the 21st day of storage, yogurt was packaging using transparent polypropylene having a score of 3.85, and that stored in opaque white packaging having a value of 3.95.

  5. Synthesis, characterization and properties of carbon nanotubes microspheres from pyrolysis of polypropylene and maleated polypropylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junhao, E-mail: jhzhang6@mail.ustc.edu.cn; Department of Chemistry, University of Science and Technology of China, Heifei, Anhui 230026; Du, Jin

    Microspheres assembled from carbon nanotubes (MCNTs), with the diameters ranging from 5.5 to 7.5 {mu}m, were synthesized by means of pyrolysis of polypropylene and maleated polypropylene in an autoclave. The characterization of structure and morphology was carried out by X-ray diffractometer (XRD), field-emission scanning electron microscopy (FESEM), (high resolution) transmission electron microscope [(HR)TEM)], selected-area electron diffraction (SAED) and Raman spectrum. As a typical morphology, the possible growth process of MCNTs was also investigated and discussed. The results of nitrogen adsorption-desorption indicate that the Brunauer-Emett-Teller (BET) surface area (140.6 m{sup 2}/g) of the MCNTs obtained at 600 {sup o}C is aboutmore » twice as that (74.5 m{sup 2}/g) of carbon nanotubes obtained at 700 {sup o}C. The results of catalytic experiment show that MCNTs based catalyst has higher catalytic activity than the carbon nanotubes based catalyst for the preparation of methanol and dimethoxy-ethane by oxidation of dimethyl ether.« less

  6. Stability of dendriplexes formed by anti-HIV genetic material and poly(propylene imine) dendrimers in the presence of glucosaminoglycans.

    PubMed

    Szewczyk, Michal; Drzewinska, Joanna; Dzmitruk, Volha; Shcharbin, Dzmitry; Klajnert, Barbara; Appelhans, Dietmar; Bryszewska, Maria

    2012-12-20

    There are several barriers to the application of dendriplexes formed by poly(propylene imine) dendrimers and genetic material for gene therapy. One limitation is their interaction with extracellular matrix components such as glucosaminoglycans. These can displace the genetic material from the dendriplexes, affecting their transfection activity. In this study, we analyzed the interaction between dendriplexes and the four main glucosaminoglycans (heparin, heparan sulfate, chondroitin sulfate, and hyaluronic acid) by fluorescence polarization and gel electrophoresis. Dendriplexes were formed by combining three anti-HIV antisense oligodeoxynucleotides with three poly(propylene imine) dendrimers of the fourth generation: unmodified and partially modified with maltose and maltotriose (open shell glycodendrimers). The data showed that the effect of glucosaminoglycans on dendriplexes depends on the glucosaminoglycan type and the oligosaccharide serving as the surface group of the dendrimer. Heparin at physiological concentrations destroys dendriplexes formed by open shell glycodendrimers, but dendriplexes based on unmodified poly(propylene imine) dendrimers are stable in its presence. The other glucosaminoglycans at physiological concentrations cannot destroy dendriplexes formed by any of the dendrimers studied.

  7. [Synthesis and characterization of chromium doped Y3Al5O12 compound pigment].

    PubMed

    Yue, Shi-Juan; Su, Xiao; Jiang, Han-Jie; Liu, Shao-Xuan; Hong, You-Li; Zhang, Kai; Huang, Wan-Xias; Xiong, Zu-Jiang; Zhao, Ying; Liu, Cui-Ge; Wei, Yong-Ju; Meng, Tao; Xu, Yi-Zhuang; Wu, Jin-Guang

    2012-09-01

    The authors synthesized a new kind of green pigment via co-precipitation method by doping Y3Al5O12 with Cr+. The size of the pigment particles is around 200 nm as observed under scanning electron microscope. XRD results demonstrate that the pigment crystalline form of the pigment is yttrium alluminium garnet. UV-Vis spectra were used to investigate the coordination states and transition behavior of the doping ions. In addition, the colour feature was measured by CIE L* a* b* chroma value. The pigment was blended with polypropylene and then polypropylene fiber was produced using the polypropelene-pigment composite via molten spinning process. The distribution of the pigment particles in the polypropylene fibers was characterized by Xray computed tomography (CT) technique on the Beijing synchrotron radiation facility. The result states that the composite oxide pigment particles are homogeneously dispersed in the polypropylene fibers. The pigments are stable, non-toxic to the environment, and may be applied in non-aqueous dyeing to reduce waste water emitted by textile dyeing and printing industry.

  8. [Effect of pyrolysis products of polypropylene plastic on the defence mechanisms of the respiratory system (author's transl)].

    PubMed

    Bouley, G; Dubreuil, A; Jouany, J M; Boudène, C

    1981-01-01

    Since the use of plastic materials, a change in the pathology of fire victims has been observed. We studied the effects of a single short-term inhalation (30 min) of a sub-lethal dose of polypropylene pyrolysis products (one LD-0). Including control and test animals, 66 rats and 112 mice were used. The exposure provoked disturbances in the antixenic defense mechanisms of the respiratory system, chiefly in tracheo-bronchial defenses, since we observed a lowering of ciliary activity of 35 to 78% in test animals exposed a few hours before, compared with the controls. These changes provoked a significant increase in death-rate of test animals, following experimental airborne infection by Klebsiella pneumoniae. The combustion products of polypropylene plastic materials did not contain hydrocyanic acid nor hydrochloric acid, and neither the temperature of the inhaled air, nor the concentration of carbon monoxide could explain these effects. On the contrary, we can suspect the well known irritative properties of aldehyde compounds formed during smoldering combustion of polypropylene.

  9. Stable polyurethane coatings for electronic circuits. NASA tech briefs, fall 1982, volume 7, no. 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    One of the most severe deficiencies of polyurethanes as engineering materials for electrical applications has been their sensitivity to combined humidity and temperature environments. Gross failure by reversion of urethane connector potting materials has occurred under these conditions. This has resulted in both scrapping of expensive hardware and reduction in reliability in other instances. A basic objective of this study has been to gain a more complete understanding of the mechanisms and interactions of moisture in urethane systems to guide the development of reversion resistant materials for connector potting and conformal coating applications in high humidity environments. Basic polymer studies of molecular weight and distribution, polymer structure, and functionality were carried out to define those areas responsible for hydrolytic instability and to define polymer structural feature conducive to optimum hydrolytic stability.

  10. Continuous N-alkylation reactions of amino alcohols using γ-Al2O3 and supercritical CO2: unexpected formation of cyclic ureas and urethanes by reaction with CO2.

    PubMed

    Streng, Emilia S; Lee, Darren S; George, Michael W; Poliakoff, Martyn

    2017-01-01

    The use of γ-Al 2 O 3 as a heterogeneous catalyst in scCO 2 has been successfully applied to the amination of alcohols for the synthesis of N -alkylated heterocycles. The optimal reaction conditions (temperature and substrate flow rate) were determined using an automated self-optimising reactor, resulting in moderate to high yields of the target products. Carrying out the reaction in scCO 2 was shown to be beneficial, as higher yields were obtained in the presence of CO 2 than in its absence. A surprising discovery is that, in addition to cyclic amines, cyclic ureas and urethanes could be synthesised by incorporation of CO 2 from the supercritical solvent into the product.

  11. Identification and quantification of ethyl carbamate occurring in urea complexation processes commonly utilized for polyunsaturated fatty acid concentration.

    PubMed

    Vázquez, Luis; Prados, Isabel M; Reglero, Guillermo; Torres, Carlos F

    2017-08-15

    The concentration of polyunsaturated fatty acids by formation of urea adducts from three different sources was studied to elucidate the formation of ethyl carbamates in the course of these procedures. Two different methodologies were performed: with ethanol at high temperature and with hexane/ethanol mixtures at room temperature. It was proved that the amount of urethanes generated at high temperature was higher than at room temperature. Besides, subsequent washing steps of the PUFA fraction with water were efficient to remove the urethanes from the final products. The methodology at room temperature with 0.4mL ethanol and 3g urea provided good relationship between concentration and yield of the main bioactive PUFA, with the lowest formation of ethyl carbamates in the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Method of making thermally removable polyurethanes

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.; Durbin-Voss, Marvie Lou

    2002-01-01

    A method of making a thermally-removable polyurethane material by heating a mixture of a maleimide compound and a furan compound, and introducing alcohol and isocyanate functional groups, where the alcohol group and the isocyanate group reacts to form the urethane linkages and the furan compound and the maleimide compound react to form the thermally weak Diels-Alder adducts that are incorporated into the backbone of the urethane linkages during the formation of the polyurethane material at temperatures from above room temperature to less than approximately 90.degree. C. The polyurethane material can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The polyurethane material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  13. Modeling the microstructurally dependent mechanical properties of poly(ester-urethane-urea)s.

    PubMed

    Warren, P Daniel; Sycks, Dalton G; McGrath, Dominic V; Vande Geest, Jonathan P

    2013-12-01

    Poly(ester-urethane-urea) (PEUU) is one of many synthetic biodegradable elastomers under scrutiny for biomedical and soft tissue applications. The goal of this study was to investigate the effect of the experimental parameters on mechanical properties of PEUUs following exposure to different degrading environments, similar to that of the human body, using linear regression, producing one predictive model. The model utilizes two independent variables of poly(caprolactone) (PCL) type and copolymer crystallinity to predict the dependent variable of maximum tangential modulus (MTM). Results indicate that comparisons between PCLs at different degradation states are statistically different (p < 0.0003), while the difference between experimental and predicted average MTM is statistically negligible (p < 0.02). The linear correlation between experimental and predicted MTM values is R(2) = 0.75. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  14. Laboratory development and field testing of sentinel toys to assess environmental faecal exposure of young children in rural India.

    PubMed

    Torondel, Belen; Gyekye-Aboagye, Yaw; Routray, Parimita; Boisson, Sophie; Schimdt, Wolf; Clasen, Thomas

    2015-06-01

    Sentinel toys are increasingly used as a method of assessing young children's exposure to faecal pathogens in households in low-income settings. However, there is no consensus on the suitability of different approaches. We evaluated three types of toy balls with different surfaces (plastic, rubber, urethane) in the laboratory to compare the uptake of faecal indicator bacteria (Escherichia coli) on their surface. We performed bacteria survival analysis under different environmental conditions and tested laboratory methods for bacteria removal and recovery. In a field study we distributed sterile urethane balls to children <5 from 360 households in rural India. After 24 hours, we collected and rinsed the toys in sterile water, assayed for thermotolerant coliforms (TTC) and explored associations between the level of contamination and household characteristics. In the laboratory, urethane foam balls took up more indicator bacteria than the other balls. Bacteria recovery did not differ based on mechanic vs no agitation. Higher temperatures and moisture levels increased bacterial yield. In the field, the only factor associated with a decreased recovery of TTC from the balls was having a soil (unpaved) floor. Sentinel toys may be an effective tool for assessing young children's exposure to faecal pathogens. However, even using methods designed to increase bacterial recovery, limited sensitivity may require larger sample sizes. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Comparative Study of Structure-Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates

    PubMed Central

    Barszczewska-Rybarek, Izabela; Jurczyk, Sebastian

    2015-01-01

    The effect of various dimethacrylates on the structure and properties of homo- and copolymer networks was studied. The 2,2-bis-[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]-propane) (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA) and 1,6-bis-(methacryloyloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (HEMA/TMDI), all popular in dentistry, as well as five urethane-dimethacrylate (UDMA) alternatives of HEMA/TMDI were used as monomers. UDMAs were obtained from mono-, di- and tri(ethylene glycol) monomethacrylates and various commercial diisocyanates. The chemical structure, degree of conversion (DC) and scanning electron microscopy (SEM) fracture morphology were related to the mechanical properties of the polymers: flexural strength and modulus, hardness, as well as impact strength. Impact resistance was widely discussed, being lower than expected in the case of poly(UDMA)s. It was caused by the heterogeneous morphology of these polymers and only moderate strength of hydrogen bonds between urethane groups, which was not high enough to withstand high impact energy. Bis-GMA, despite having the highest polymer morphological heterogeneity, ensured fair impact resistance, due to having the strongest hydrogen bonds between hydroxyl groups. The TEGDMA homopolymer, despite being heterogeneous, produced the smoothest morphology, which resulted in the lowest brittleness. The UDMA monomer, having diethylene glycol monomethacrylate wings and the isophorone core, could be the most suitable HEMA/TMDI alternative. Its copolymer with Bis-GMA and TEGDMA had improved DC as well as all the mechanical properties. PMID:28787999

  16. Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers.

    PubMed

    Wisse, Eva; Spiering, A J H; van Leeuwen, Ellen N M; Renken, Raymond A E; Dankers, Patricia Y W; Brouwer, Linda A; van Luyn, Marja J A; Harmsen, Martin C; Sommerdijk, Nico A J M; Meijer, E W

    2006-12-01

    The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in terms of mechanical properties, processibility and histocompatibility. Comparison of the data with those obtained from the structurally related poly(urethane urea) 1 revealed that the difference in hard segment structure does not significantly affect the potency for application as a biomaterial. Nevertheless, the small differences in hard block composition had a strong effect on the molecular recognition properties of the hydrogen bonding segments. High selectivity was found for poly(urea) 2 in which bisureidobutylene-functionalized azobenzene dye 3 was selectively incorporated while bisureidopentylene-functionalized azobenzene dye 4 was completely released. In contrast, the incorporation of both dyes in poly(urethane urea) 1 led in both cases to their gradual release in time. Thermal analysis of the polymers in combination with variable temperature infrared experiments indicated that the hard blocks in 1 showed a sharp melting point, whereas those in 2 showed a very broad melting trajectory. This suggests a more precise organization of the hydrogen bonding segments in the hard blocks of poly(urea) 2 compared to poly(urethane urea) 1 and explains the results from the molecular recognition experiments. Preliminary results revealed that a bisureidobutylene-functionalized GRGDS peptide showed more supramolecular interaction with the PCL-based poly(urea), containing the bisureidobutylene recognition unit, as compared to HMW PCL, lacking this recognition unit.

  17. Decontamination of laboratory microbiological waste by steam sterilization.

    PubMed Central

    Rutala, W A; Stiegel, M M; Sarubbi, F A

    1982-01-01

    A steam sterilizer (autoclave) was tested to determine the operating parameters that affected sterilization of microbiological waste. Tests involved standardized loads (5, 10 ad 15 lb [ca. 2.27, 4.54, and 6.80 kg, respectively]) contaminated petri plates in autoclave bags placed in polypropylene or stainless steel containers. Thermal and biological data were obtained by using a digital potentiometer and a biological indicator containing spores of Bacillus stearothermophilus, respectively. The transfer of heat was more efficient when smaller loads of microbiological waste were tested and stainless steel rather than polypropylene containers were used. A single bag with the sides rolled down to expose the top layer of petri plates allowed heat to pass better than did a single bag with the top constricted by a twist-tie. The presence of water in the autoclave bag did not significantly improve heat-up time in stainless steel or polypropylene containers. The results of biological tests substantiated the temperature data. When 10 or 15 lb of microbiological waste was exposed to various test conditions, the only condition that ensured the destruction of B. stearothermophilus involved the use of a stainless steel container (with or without water) for 90 min. Autoclaving for 45 min resulted in the destruction of bacteria included in 10 lb (136 +/- 3 plates) or 15 lb (205 +/- 6 plates) of microbiological waste when stainless steel containers with or without water or polypropylene containers with water used, whereas 60 min was required to kill all bacteria if polypropylene containers without water were used. PMID:7103486

  18. Polypropylene Darning: A New Alternative for Reconstruction of Orbital Floor after Total Maxillectomy.

    PubMed

    Sharma, Prashant

    2015-06-01

    Removal of orbital floor is an integral part of total (radical) maxillectomy (type IIIa), which if not managed properly, may lead to some eye related distressing complications like diplopia, eyelid malposition, epiphora, dacryocystitis, enopthalmos and ectoprion. Among all, diplopia is the most distressing complication which hampers daily activity. Various options for orbital floor reconstruction are available like titanium sheet, polypropylene mesh, non-vascularized or vascularized bone graft, pedicled flaps, micro-vascular free flaps, prosthesis placement, and split skin graft followed by obturator placement. Till date no-body has tried stabilization of eye ball by 'darning' the orbital floor using non-absorbable suture. 'Polypropylene suture darning' is an easy to learn, novel method with equally good results. Five patients with potentially resectable tumors underwent total maxillectomy. I used polypropylene 3-0 round body suture and 'darning' was done at orbital floor, incorporating periosteum (if remaining) and peri-orbital fat into the sutures. Muscle flaps were done to provide bulk and palatal reconstruction. Assessment of patients was done post-operatively at day-5 i.e., before discharge and at 1 month after surgery, and also in further follow up visits. The results were very good in terms of clear vision & eye movements (directly related to 'darning'), and the aesthetic look of patients and bilateral symmetry were satisfactory (not related to darning). Darning of orbital floor by polypropylene after total maxillectomy is an easy to learn and cost-effective method of reconstruction with good results.

  19. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    PubMed

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.

  20. Responses of Hyalella azteca to acute and chronic microplastic exposures.

    PubMed

    Au, Sarah Y; Bruce, Terri F; Bridges, William C; Klaine, Stephen J

    2015-11-01

    Limited information is available on the presence of microplastics in freshwater systems, and even less is known about the toxicological implications of the exposure of aquatic organisms to plastic particles. The present study was conducted to evaluate the effects of microplastic ingestion on the freshwater amphipod, Hyalella azteca. Hyalella azteca was exposed to fluorescent polyethylene microplastic particles and polypropylene microplastic fibers in individual 250-mL chambers to determine 10-d mortality. In acute bioassays, polypropylene microplastic fibers were significantly more toxic than polyethylene microplastic particles; 10-d lethal concentration 50% values for polyethylene microplastic particles and polypropylene microplastic fibers were 4.64 × 10(4) microplastics/mL and 71.43 microplastics/mL, respectively. A 42-d chronic bioassay using polyethylene microplastic particles was conducted to quantify effects on reproduction, growth, and egestion. Chronic exposure to polyethylene microplastic particles significantly decreased growth and reproduction at the low and intermediate exposure concentrations. During acute exposures to polyethylene microplastic particles, the egestion times did not significantly differ from the egestion of normal food materials in the control; egestion times for polypropylene microplastic fibers were significantly slower than the egestion of food materials in the control. Amphipods exposed to polypropylene microplastic fibers also had significantly less growth. The greater toxicity of microplastic fibers than microplastic particles corresponded with longer residence times for the fibers in the gut. The difference in residence time might have affected the ability to process food, resulting in an energetic effect reflected in sublethal endpoints. © 2015 SETAC.

  1. Compressive and flexural strength of concrete containing palm oil biomass clinker and polypropylene fibres

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.

    2017-11-01

    This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.

  2. Identification and Quantitation of Sorbitol-Based Nuclear Clarifying Agents Extracted from Common Laboratory and Consumer Plasticware Made of Polypropylene

    PubMed Central

    McDonald, Jeffrey G.; Cummins, Carolyn L.; Barkley, Robert M.; Thompson, Bonne M.; Lincoln, Holly A.

    2009-01-01

    Reported here is the mass spectral identification of sorbitol-based nuclear clarifying agents (NCAs) and the quantitative description of their extractability from common laboratory and household plasticware made of polypropylene. NCAs are frequently added to polypropylene to improve optical clarity, increase performance properties, and aid in the manufacturing process of this plastic. NCA addition makes polypropylene plasticware more aesthetically pleasing to the user and makes the product competitive with other plastic formulations. We show here that several NCAs are readily extracted with either ethanol or water from plastic labware during typical laboratory procedures. Observed levels ranged from a nanogram to micrograms of NCA. NCAs were also detected in extracts from plastic food storage containers; levels ranged from 1to 10 μg in two of the three brands tested. The electron ionization mass spectra for three sorbitol-based nuclear clarifying agents (1,3:2,4-bis-O-(benzylidene)sorbitol, 1,3:2,4-bis-O-(p-methylbenzylidene)sorbitol, 1,3:2,4-bis-O-(3,4-dimethylbenzylidene)sorbitol) are presented for the native and trimethylsilylderivatized compounds together with the collision-induced dissociation mass spectra; gas and liquid chromatographic data are also reported. These NCAs now join other well-known plasticizers such as phthalate esters and bisphenol A as common laboratory contaminants. While the potential toxicity of NCAs in mammalian systems is unknown, the current data provide scientists and consumers the opportunity to make more informed decisions regarding the use of polypropylene plastics. PMID:18533681

  3. Non-cross-linked porcine acellular dermal matrices for abdominal wall reconstruction.

    PubMed

    Burns, Nadja K; Jaffari, Mona V; Rios, Carmen N; Mathur, Anshu B; Butler, Charles E

    2010-01-01

    Non-cross-linked porcine acellular dermal matrices have been used clinically for abdominal wall repair; however, their biologic and mechanical properties and propensity to form visceral adhesions have not been studied. The authors hypothesized that their use would result in fewer, weaker visceral adhesions than polypropylene mesh when used to repair ventral hernias and form a strong interface with the surrounding musculofascia. Thirty-four guinea pigs underwent inlay repair of surgically created ventral hernias using polypropylene mesh, porcine acellular dermal matrix, or a composite of the two. The animals were killed at 4 weeks, and the adhesion tenacity grade and surface area of the repair site involved by adhesions were measured. Sections of the repair sites, including the implant-musculofascia interface, underwent histologic analysis and uniaxial mechanical testing. The incidence of bowel adhesions to the repair site was significantly lower with the dermal matrix (8 percent, p < 0.01) and the matrix/mesh combination (0 percent, p < 0.001) than with polypropylene mesh alone (70 percent). The repairs made with the matrix or the matrix/mesh combination, compared with the polypropylene mesh repairs, had significantly lower mean adhesion surface areas [12.8 percent (p < 0.001), 9.2 percent (p < 0.001), and 79.9 percent] and grades [0.6 (p < 0.001), 0.6 (p < 0.001), and 2.9]. The dermal matrix underwent robust cellular and vascular infiltration. The ultimate tensile strength at the implant-musculofascia interface was similar in all groups. Porcine acellular dermal matrix becomes incorporated into the host tissue and causes fewer adhesions to repair sites than does polypropylene mesh, with similar implant-musculofascia interface strength. It also inhibits adhesions to adjacent dermal matrix in the combination repairs. It has distinct advantages over polypropylene mesh for complex abdominal wall repairs, particularly when material placement directly over bowel is unavoidable.

  4. Lithium diffusion in polyether ether ketone and polyimide stimulated by in situ electron irradiation and studied by the neutron depth profiling method

    NASA Astrophysics Data System (ADS)

    Vacik, J.; Hnatowicz, V.; Attar, F. M. D.; Mathakari, N. L.; Dahiwale, S. S.; Dhole, S. D.; Bhoraskar, V. N.

    2014-10-01

    Diffusion of lithium from a LiCl aqueous solution into polyether ether ketone (PEEK) and polyimide (PI) assisted by in situ irradiation with 6.5 MeV electrons was studied by the neutron depth profiling method. The number of the Li atoms was found to be roughly proportional to the diffusion time. Regardless of the diffusion time, the measured depth profiles in PEEK exhibit a nearly exponential form, indicating achievement of a steady-state phase of a diffusion-reaction process specified in the text. The form of the profiles in PI is more complex and it depends strongly on the diffusion time. For the longer diffusion time, the profile consists of near-surface bell-shaped part due to Fickian-like diffusion and deeper exponential part.

  5. One-pot synthesis and antiproliferative activity of novel double-modified derivatives of the polyether ionophore monensin A.

    PubMed

    Klejborowska, Greta; Maj, Ewa; Wietrzyk, Joanna; Stefańska, Joanna; Huczyński, Adam

    2018-05-02

    Monensin A (MON) is a polyether ionophore antibiotic, which shows a wide spectrum of biological activity. New MON derivatives such as double-modified ester-carbonates and double-modified amide-carbonates were obtained by a new and efficient one-pot synthesis with triphosgene as the activating reagent and the respective alcohol or amine. All new derivatives were tested for their antiproliferative activity against two drug-sensitive (MES-SA, LoVo) and two drug-resistant (MES-SA/DX5, LoVo/DX) cancer cell lines, and were also studied for their antimicrobial activity against different Staphylococcus aureus and Staphylococcus epidermidis bacterial strains. For the first time, the activity of MON and its derivatives against MES-SA and MES-SA/DX5 were evaluated. © 2018 John Wiley & Sons A/S.

  6. Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes containing diazafluorene for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng

    2015-06-01

    A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.

  7. Clinical characteristics of an allergic reaction to a polyether dental impression material.

    PubMed

    Rafael, Caroline Freitas; Liebermann, Anja

    2017-04-01

    Allergic and hypersensitivity reactions to dental impression materials may occur throughout dental treatment, with diverse manifestations from slight redness to severe pain and a burning mouth with total stomatitis. Patients are often unaware of these allergic reactions, which makes early identification of the cause almost impossible. In addition, symptoms usually begin after 24 hours and mostly in patients with a preexisting history of allergic responses. This report describes a patient with a suspected allergic reaction to a polyether dental impression material during prosthetic rehabilitation associated with a mandibular telescopic denture. Although instances of such occurrence are rare, clinicians need to be aware of these symptoms and select materials carefully for patients with a history of allergy. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Repairing a Facial Cleft by Polyether-Ether-Ketone Implant Combined With Titanium Mesh.

    PubMed

    Deng, Yuan; Tang, Weiwei; Li, Zhengkang

    2018-05-15

    The Tessier Number 4 cleft is one of the rarest, most complex craniofacial anomalies that presents difficulties in surgical treatment. In this article, we report a case of simultaneous facial depression, eye displacement, and medial canthus deformity. In this case, the maxillary bony defect was reconstructed using computer-assisted design computer-assisted manufacturing (CAD-CAM) polyether-ether-ketone (PEEK) material, and the orbital floor defect was repaired with AO prefabricated titanium mesh. Additionally, the medial canthus was modified with canthopexy and a single Z-plasty flap. Owing to its relative rarity and varied clinical presentations, no definitive operative methods have been accepted for Tessier No. 4 facial cleft. This study presents the combination of CAD-CAM manufactured PEEK material and titanium mesh as an alternative approach for reconstructing the bony defect of Tessier No. 4 facial clefts.

  9. Quantitative proteomic studies in resistance mechanisms of Eimeria tenella against polyether ionophores.

    PubMed

    Thabet, Ahmed; Honscha, Walther; Daugschies, Arwid; Bangoura, Berit

    2017-05-01

    Polyether ionophores are widely used to treat and control coccidiosis in chickens. Widespread use of anticoccidials resulted in worldwide resistance. Mechanisms of resistance development and expansion are complex and poorly understood. Relative proteomic quantification using LC-MS/MS was used to compare sensitive reference strains (Ref-1, Ref-2) with putatively resistant and moderately sensitive field strains (FS-R, FS-mS) of Eimeria tenella after isotopic labelling with tandem mass tags (TMT). Ninety-seven proteins were identified, and 25 of them were regulated. Actin was significantly upregulated in resistant strains in comparison with their sensitive counterparts. On the other hand, microneme protein (MIC4) was downregulated in resistant strains. Optimization of labelling E. tenella sporozoites by TMT might identify further proteins that play a role in the obvious complex mechanism leading to resistance against Monensin.

  10. Accuracy of a new elastomeric impression material for complete-arch dental implant impressions.

    PubMed

    Baig, Mirza R; Buzayan, Muaiyed M; Yunus, Norsiah

    2018-05-01

    The aim of the present study was to assess the accuracy of multi-unit dental implant casts obtained from two elastomeric impression materials, vinyl polyether silicone (VPES) and polyether (PE), and to test the effect of splinting of impression copings on the accuracy of implant casts. Forty direct impressions of a mandibular reference model fitted with six dental implants and multibase abutments were made using VPES and PE, and implant casts were poured (N = 20). The VPES and PE groups were split into four subgroups of five each, based on splinting type: (a) no splinting; (b) bite registration polyether; (c) bite registration addition silicone; and (d) autopolymerizing acrylic resin. The accuracy of implant-abutment replica positions was calculated on the experimental casts, in terms of interimplant distances in the x, y, and z-axes, using a coordinate measuring machine; values were compared with those measured on the reference model. Data were analyzed using non-parametrical Kruskal-Wallis and Mann-Whitney tests at α = .05. The differences between the two impression materials, VPES and PE, regardless of splinting type, were not statistically significant (P>.05). Non-splinting and splinting groups were also not significantly different for both PE and VPES (P>.05). The accuracy of VPES impression material seemed comparable with PE for multi-implant abutment-level impressions. Splinting had no effect on the accuracy of implant impressions. © 2018 John Wiley & Sons Australia, Ltd.

  11. Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding

    PubMed Central

    Spencer, Jonathan B; Leadlay, Peter F

    2014-01-01

    Summary Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L−1 dehydroxymonensin; ΔmonE: 0.50 g L−1 demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L−1 dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation. PMID:24605157

  12. Conversion of calibration curves for accurate estimation of molecular weight averages and distributions of polyether polyols by conventional size exclusion chromatography.

    PubMed

    Xu, Xiuqing; Yang, Xiuhan; Martin, Steven J; Mes, Edwin; Chen, Junlan; Meunier, David M

    2018-08-17

    Accurate measurement of molecular weight averages (M¯ n, M¯ w, M¯ z ) and molecular weight distributions (MWD) of polyether polyols by conventional SEC (size exclusion chromatography) is not as straightforward as it would appear. Conventional calibration with polystyrene (PS) standards can only provide PS apparent molecular weights which do not provide accurate estimates of polyol molecular weights. Using polyethylene oxide/polyethylene glycol (PEO/PEG) for molecular weight calibration could improve the accuracy, but the retention behavior of PEO/PEG is not stable in THF-based (tetrahydrofuran) SEC systems. In this work, two approaches for calibration curve conversion with narrow PS and polyol molecular weight standards were developed. Equations to convert PS-apparent molecular weight to polyol-apparent molecular weight were developed using both a rigorous mathematical analysis and graphical plot regression method. The conversion equations obtained by the two approaches were in good agreement. Factors influencing the conversion equation were investigated. It was concluded that the separation conditions such as column batch and operating temperature did not have significant impact on the conversion coefficients and a universal conversion equation could be obtained. With this conversion equation, more accurate estimates of molecular weight averages and MWDs for polyether polyols can be achieved from conventional PS-THF SEC calibration. Moreover, no additional experimentation is required to convert historical PS equivalent data to reasonably accurate molecular weight results. Copyright © 2018. Published by Elsevier B.V.

  13. Cooling vest

    NASA Technical Reports Server (NTRS)

    Kosmo, J.; Kane, J.; Coverdale, J.

    1977-01-01

    Inexpensive vest of heat-sealable urethane material, when strapped to person's body, presents significant uncomplicated cooling system for environments where heavy accumulation of metabolic heat exists. Garment is applicable to occupations where physical exertion is required under heavy protective clothing.

  14. Synthesis, morphology and dynamics of polyureas and their lithium ionomers

    NASA Astrophysics Data System (ADS)

    Chuayprakong, Sunanta

    Electrolytes currently used in commercial lithium ion batteries have led to leakage and safety issues. Solvent-free solid polymer electrolytes (SPEs) offering high energy density are promising materials for lithium battery applications. SPEs require high modulus to separate the electrodes and suppress lithium dendrite growth. Microphase separation of the hard segments in amorphous polyureas (PUs) yields materials with higher moduli than typical low glass transition temperature (Tg) polymers. In this dissertation, several families of solution polymerized polyether-based PU ionomers were synthesized and their thermal, morphology and dynamic properties characterized as a function of chemical composition. In the initial phase of this investigation, polyethylene oxide (PEO) diamines (with molecular weights = 200, 600, 1050, 2000, 3000 and 6000 g/mol) were polymerized with 4,4' methylene diphenyl diisocyanate (MDI). PUs with 200 and 600 g/mol PEO soft segments are amorphous and single phase. The amorphous PU having 1050 g/mol PEO segments exhibits a small degree of phase separation, as demonstrated by X-ray scattering. PUs with 2000, 3000 and 6000 g/mol PEO soft segments are semicrystalline and their melting points and degrees of crystallinity are lower than those of the precursor PEO diamines due to their attachment to rigid hard segments. Even though polypropylene oxide (PPO) does not dissolve cations as efficiently as PEO, PPO is not crystallizable and was chosen to create a second family of amorphous PUs. PPO-containing diamines ((Jeff400 (MW = 400 g/mol) and Jeff2000 (MW = 2000 g/mol)) and MDI were chosen as the neutral soft segment and the hard segment, respectively. 2,5-diaminobenzene sulfonate was successfully synthesized and used for preparing ionomers. The amount of ionic species in these ionomers was varied and quantified using 1H-NMR. Single Tgs were observed and they increased with increasing ionic content. No X-ray scattering peaks corresponding to microphase separation of hard and soft segments were detected, nor were ordered hydrogen bonded carbonyl bands in FTIR spectra, demonstrating that the Jeff400 PUs are single phase. Using dielectric relaxation spectroscopy (DRS), segmental relaxation temperatures also increase with increasing ionic species content.. Increasing the number of ionic groups increases the hard segment content, which results in higher DSC Tgs and slower fmaxs for the segmental relaxation processes. For the non-ionic and all of the ionic Jeff2000 PU samples that contain some nonionic soft segments, low temperature Tgs were observed that arise from microphase separated soft phases. X-ray scattering peaks related to microphase separation and ordered hydrogen bonded carbonyl bands were observed, reinforcing the conclusion of hard/soft segment segregation. The DRS segmental relaxation is associated with soft phase relaxation, with some of the ion dipoles participating in this process for the ionic samples. The ionomers could not be dialyzed due to water insolubility, but were purified by multiple precipitation in deionize water. Nevertheless, the findings suggest that the observed conductivity primarily arises from ionic impurities. A third family of PU ionomers was synthesized using an amorphous polypropylene oxide-b- polyethylene oxide-b-polypropylene oxide diamine (ED900, MW = 900 g/mol, 68% EO) and 2,5-diaminobenzene sulfonate. Hexamethylene diisocyanate was utilized as the hard segment as its high packing efficiency is known to facilitate microphase separation. The non-ionic ED900 PU and its ionomers with various ion contents were successfully synthesized. Low Tgs due to segregation of soft segments, X-ray scattering peaks related to microphase separation between segments, and ordered hydrogen bonded carbonyl bands were detected. Tapping mode atomic force microscopy was also used to explore the morphology of these microphase separated materials. DRS segmental relaxations are associated with soft phase. These materials were extensively dialyzed and their low conductivities suggest that the lithium ions are primarily trapped in hard domains.

  15. Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength

    Treesearch

    Yucheng Peng; Sergio A. Gallegos; Douglas J. Gardner; Yousoo Han; Zhiyong Cai

    2014-01-01

    The unique aspect of polymer composites reinforced by various fillers or additives is that the mechanical properties of the material can be tailored to fit a variety of uses: construction, transportation, industrial, and consumer applications. By selecting a specific reinforcement or designing a particular manufacturing process a material with desired properties can be...

  16. Chapter 1.4: Spatially Resolved Characterization of CNC-Polypropylene composite by Confocal Raman Microscopy

    Treesearch

    Umesh Agarwal; Ronald Sabo; Richard Reiner; Craig Clemons; Alan Rudie

    2013-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)-polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose), and two of the three composites...

  17. Spatially Resolved Characterization of Cellulose Nanocrystal-Polypropylene Composite by Confocal Raman Microscopy

    Treesearch

    Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie

    2012-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)–polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...

  18. Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent

    Treesearch

    A.R. Sanadi; D.F. Caulfield

    2000-01-01

    The interest in lignocellulosic fiber composites has been growing in recent years because of their high specific properties. In this work, a new technique was used to prepare specimen to observe the transcrystalline zones in kenaf fiber-polypropylene composites. A maleated polypropylene (MAPP) coupling agent was used to improve the stress-transfer efficiency in the...

  19. Repair of a deep digital tendon deficit in a horse using a polypropylene implant.

    PubMed Central

    Crawford, W H; Ingle, J E

    1997-01-01

    A yearling horse was treated for a chronic wound with a 4 cm deficit in the deep digital tendon. The gap in the tendon was bridged with paired polypropylene braided implants designed for use as a ligament augmentation device. Uncomplicated healing and return to function occurred. Images Figure 1. PMID:9167878

  20. Prototyping the Use of Dispersion Models to Predict Ground Concentrations During Burning of Deployed Military Waste

    DTIC Science & Technology

    2012-03-22

    Fabric 3.85% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 1.32% Yard waste 5.67% PVC (Class 3...plastics, milk jugs) 1.23% Cardboard 31.33% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 0.62

  1. Thermomechanical pulp fiber surface modification for enhancing the interfacial adhesion with polypropylene

    Treesearch

    Sangyeob Lee; Todd F. Shupe; Leslie H. Groom; Chung Y. Hse

    2007-01-01

    Chemical coupling on the thermomechanical pulp (TMP) fiber improved tensile strength of the TMP fiber handsheet and isotactic polypropylene film laminates (TPL). For the maleic anhydride W) with benzoyl peroxide (BPO)a an initiator, tensile strength increaded 52: with the TMP fiber treatment over untreated laminates. The optimum strength properties were obtained with...

  2. Impact toughness of cellulose-fiber reinforced polypropylene : influence of microstructure in laminates and injection molded composites

    Treesearch

    Craig Clemons; Daniel Caulfield; A. Jeffrey Giacomin

    2003-01-01

    Unlike their glass reinforced counterparts, microstructure and dynamic fracture behavior of natural fiber-reinforced thermoplastics have hardly been investigated. Here, we characterize the microstructure of cellulose fiber-reinforced polypropylene and determined its effect on impact toughness. Fiber lengths were reduced by one-half when compounded in a high-intensity...

  3. Evaluation of the mechanical and thermal properties of coffee tree wood flour - polypropylene composites

    USDA-ARS?s Scientific Manuscript database

    Columbian coffee trees are subject to frequent replacement plantings due to disease and local climate changes which makes them an ideal source of wood fibers for wood plastic composites (WPC). Composites of polypropylene (PP) consisting of 25% and 40% by weight of coffee wood flour (CF) and 0% or 5%...

  4. Mechanical performance of hemp fiber polypropylene composites at different operating temperatures

    Treesearch

    Mehdi Tajvidi; Nazanin Motie; Ghonche Rassam; Robert H. Falk; Colin Felton

    2010-01-01

    In order to quantify the effect of temperature on the mechanical properties of hemp fiber polypropylene composites, formulations containing 25% and 40% (by weight) hemp fiber were produced and tested at three representative temperatures of 256, 296, and 336 K. Flexural, tensile, and impact tests, as well as dynamic mechanical analysis, were performed and the reduction...

  5. Geopolymer Porous Nanoceramics for Structural, for Smart and Thermal Shock Resistant Applications

    DTIC Science & Technology

    2011-02-02

    porous membranes and foams, ceramic armor composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene...the microstructure of geopolymers and geopolymer composites , as fabricated and upon conversion to ceramics with heating. The microstructure consisted...porous membranes and foams, ceramic armor composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene or

  6. End-group characterisation of poly(propylene glycol)s by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS).

    PubMed

    Jackson, Anthony T; Slade, Susan E; Thalassinos, Konstantinos; Scrivens, James H

    2008-10-01

    The end-group functionalisation of a series of poly(propylene glycol)s has been characterised by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). A series of peaks with mass-to-charge ratios that are close to that of the precursor ion were used to generate information on the end-group functionalities of the poly(propylene glycol)s. Fragment ions resulting from losses of both of the end groups were noted from some of the samples. An example is presented of how software can be used to significantly reduce the length of time involved in data interpretation (which is typically the most time-consuming part of the analysis).

  7. Polypropylene Mesh Sling for Stress Urinary Incontinence: Does Memory Shaping of the Polypropylene Mesh Matter?

    PubMed

    Doering, Andrew; Azadi, Ali; Doering, David; Ostergard, Donald R

    2017-12-22

    We report a case of a mid-urethral sling (Advantage Fit™, Boston Scientific Corporation, Marlborough, Massachusetts) freshly removed from its original package. Upon removal from the packaging, the sling was noted to have a deformation in positioning at the midpoint, with curvature opposite the natural curve of the sling in the body. The images show the comparison to a sling with the desired positioning. Mid-urethral slings are commonly made from polypropylene mesh which has memory properties. It is important that manufacturers ensure that any steps in the processing or packaging of slings do not result in changes in the shape of the sling that may have unknown impacts on its clinical outcome.

  8. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2002-01-01

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.w)in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  9. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2004-02-17

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.W) in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  10. Moisture-resistant baffle material for fuel tanks

    NASA Technical Reports Server (NTRS)

    Bilow, N.

    1974-01-01

    Test results indicated superiority of certain polyether-based polyurethanes as protective coatings and suggested that baffle-materials with one of these coatings should have useful life approximately twice that of uncoated foams now in use.

  11. Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects.

    PubMed

    Wu, Tongfei; Frydrych, Martin; O'Kelly, Kevin; Chen, Biqiong

    2014-07-14

    Biodegradable and biocompatible materials with shape-memory effects (SMEs) are attractive for use as minimally invasive medical devices. Nanocomposites with SMEs were prepared from biodegradable poly(glycerol sebacate urethane) (PGSU) and renewable cellulose nanocrystals (CNCs). The effects of CNC content on the structure, water absorption, and mechanical properties of the PGSU were studied. The water-responsive mechanically adaptive properties and shape-memory performance of PGSU-CNC nanocomposites were observed, which are dependent on the content of CNCs. The PGSU-CNC nanocomposite containing 23.2 vol % CNCs exhibited the best SMEs among the nanocomposites investigated, with the stable shape fixing and shape recovery ratios being 98 and 99%, respectively, attributable to the formation of a hydrophilic, yet strong, CNC network in the elastomeric matrix. In vitro degradation profiles of the nanocomposites were assessed with and without the presence of an enzyme.

  12. Synthesis of palm-based polyurethane-LiClO{sub 4} via prepolymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sien, Jason Wong Chee; School of Biosciences, Taylor’s University, Subang Jaya; Badri, Khairiah Haji

    2015-09-25

    Palm-based polyurethane (pPU) with varying lithium salt (LiClO{sub 4}) content was synthesized. Higher loading percentage of LiClO{sub 4} in the pPU led to the inhibition of prepolymerization process from taking place. Hydrogen bonded C=O was detected in the FTIR spectrum indicating the hydrogen bonding between the urethane bonds. Ordered complexed C=O was observed in the FTIR spectrum confirming the complex formation between urethane bond and Li{sup +} ion. DSC thermogram showed the increase in the LiClO{sub 4} content could increase the glass transition temperature. SEM micrographs exhibited that more bubbles were formed when the LiClO{sub 4} increased from 10 tomore » 30wt% indicating the reaction between free isocyanate groups with moisture presence in the salt due to the hygroscopic properties of LiClO{sub 4}.« less

  13. Frequency-Dependent Activation of Glucose Utilization in the Superior Cervical Ganglion by Electrical Stimulation of Cervical Sympathetic Trunk

    NASA Astrophysics Data System (ADS)

    Yarowsky, Paul; Kadekaro, Massako; Sokoloff, Louis

    1983-07-01

    Electrical stimulation of the distal stump of the transected cervical sympathetic trunk produces a frequency-dependent activation of glucose utilization, measured by the deoxy[14C]glucose method, in the superior cervical ganglion of the urethane-anesthetized rat. The frequency dependence falls between 0-15 Hz; at 20 Hz the activation of glucose utilization is no greater than at 15 Hz. Deafferentation of the superior cervical ganglion by transection of the cervical sympathetic trunk does not diminish the rate of glucose utilization in the ganglion in the urethane-anesthetized rat. These results indicate that the rate of energy metabolism in an innervated neural structure is, at least in part, regulated by the impulse frequency of the electrical input to the structure, and this regulation may be an essential component of the mechanism of the coupling of metabolic activity to functional activity in the nervous system.

  14. Effect of Immobilized Antithrombin III on the Thromboresistance of Polycarbonate Urethane.

    PubMed

    Lukas, Karin; Stadtherr, Karin; Gessner, Andre; Wehner, Daniel; Schmid, Thomas; Wendel, Hans Peter; Schmid, Christof; Lehle, Karla

    2017-03-24

    The surface of foils and vascular grafts made from a thermoplastic polycarbonate urethanes (PCU) (Chronoflex AR) were chemically modified using gas plasma treatment, binding of hydrogels-(1) polyethylene glycol bisdiamine and carboxymethyl dextran (PEG-DEX) and (2) polyethyleneimine (PEI)-and immobilization of human antithrombin III (AT). Their biological impact was tested in vitro under static and dynamic conditions. Static test methods showed a significantly reduced adhesion of endothelial cells, platelets, and bacteria, compared to untreated PCU. Modified PCU grafts were circulated in a Chandler-Loop model for 90 min at 37 °C with human blood. Before and after circulation, parameters of the hemostatic system (coagulation, platelets, complement, and leukocyte activation) were analyzed. PEI-AT significantly inhibited the activation of both coagulation and platelets and prevented the activation of leukocytes and complement. In conclusion, both modifications significantly reduce coagulation activation, but only PEI-AT creates anti-bacterial and anti-thrombogenic functionality.

  15. Production development of organic nonflammable spacecraft potting, encapsulating and conformal coating compounds. Volume 1: Discussion, figures, and references

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1974-01-01

    Based upon extensive contacts with vendors, a broad array of non-flammable polymeric specie, and additives generally noted to have flame retarding properties, were considered. The following polymeric matrices were examined: modified silicone and fluorosilicone RTV's polyesters, epoxies, urethanes, and epoxy-urethanes. Optimization of formulations to obtain a suitable balance between the various properties and flammability resistance led to the final selection of a silicone RTV/additive-loaded compound which meets almost all program requirements. The very low valued properties found are within a realistic level of design toleration. Complete formulation, processing, and test data is provided for this compound, EPOCAST 87517-A/B, and the other formulations prepared by the project. Details of those test methods are presented along with procedures utilized in the program. In addition, a description of the special flammability facility previously designed and then modified for this program is also presented.

  16. Light-curing reinforcement for denture base resin using a glass fiber cloth pre-impregnated with various urethane oligomers.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2004-09-01

    The purpose of this study was to investigate the flexural properties of denture base resin reinforced using glass fiber cloth and a urethane oligomer. The five types of oligomer used in this study were S5, S9, S3, U4, and U6, which have varying functional groups and viscosities. The flexural properties of S9 with glass fiber cloth could not be measured because S9 is elastic. In the heat-cured resin reinforced with S9, the reinforcement peeled away from the resin. In the self- and light-cured resins reinforced with S9, the flexural properties increased significantly. When reinforced with the other four oligomers (S5, S3, U4, and U6), the flexural strength and flexural modulus of the self-, heat-, and light-cured resins increased significantly (p<0.01).

  17. Assessment of the viscoelastic mechanical properties of polycarbonate urethane for medical devices.

    PubMed

    Beckmann, Agnes; Heider, Yousef; Stoffel, Marcus; Markert, Bernd

    2018-06-01

    The underlying research work introduces a study of the mechanical properties of polycarbonate urethane (PCU), used in the construction of various medical devices. This comprises the discussion of a suitable material model, the application of elemental experiments to identify the related parameters and the numerical simulation of the applied experiments in order to calibrate and validate the mathematical model. In particular, the model of choice for the simulation of PCU response is the non-linear viscoelastic Bergström-Boyce material model, applied in the finite-element (FE) package Abaqus®. For the parameter identification, uniaxial tension and unconfined compression tests under in-laboratory physiological conditions were carried out. The geometry of the samples together with the applied loadings were simulated in Abaqus®, to insure the suitability of the modelling approach. The obtained parameters show a very good agreement between the numerical and the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Investigation of test methods, material properties, and processes for solar cell encapsulants. Fourteenth quarterly progress report, August 12, 1978-November 12, 1979. [EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, P. B.; Baum, B.; Schnitzer, H. S.

    1979-12-01

    Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project (LSA) funded by DOE. The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. This report presents the results of a cost analysis of candidate potting compounds for long life solar module encapsulation. Additionally, the two major encapsulation processes, sheet lamination and liquid casting, are costed on the basis of a large scale production facility. Potting compounds studied include EVA, sheet, clear; EVA,more » sheet, pigmented; EPDM, sheet, clear; Aliphatic urethane, syrup; PVC Plastisol; Butyl acrylate, syrup; and Butyl acrylate, sheet.« less

  19. The Optimisation of Processing Condition for Injected Mould Polypropylene-Nanoclay-Gigantochloa Scortechinii based on Melt Flow Index

    NASA Astrophysics Data System (ADS)

    Othman, M. H.; Rosli, M. S.; Hasan, S.; Amin, A. M.; Hashim, M. Y.; Marwah, O. M. F.; Amin, S. Y. M.

    2018-03-01

    The fundamental knowledge of flow behaviour is essential in producing various plastic parts injection moulding process. Moreover, the adaptation of advanced polymer-nanocomposites such as polypropylene-nanoclay with natural fibres, for instance Gigantochloa Scortechinii may boost up the mechanical properties of the parts. Therefore, this project was proposed with the objective to optimise the processing condition of injected mould polypropylene-nanoclay-Gigantochloa Scortechini fibres based on the flow behaviour, which was melt flow index. At first, Gigantochloa Scortechinii fibres have to be preheated at temperature 120°C and then mixed with polypropylene, maleic anhydride modified polypropylene oligomers (PPgMA) and nanoclay by using Brabender Plastograph machine. Next, forms of pellets were produced from the samples by using Granulator machine for use in the injection moulding process. The design of experiments that was used in the injection moulding process was Taguchi Method Orthogonal Array -L934. Melt Flow Index (MF) was selected as the response. Based on the results, the value of MFI increased when the fiber content increase from 0% to 3%, which was 17.78 g/10min to 22.07 g/10min and decreased from 3% to 6%, which was 22.07 g/10min to 20.05 g/10min and 3%, which gives the highest value of MFI. Based on the signal to ratio analysis, the most influential parameter that affects the value of MFI was the melt temperature. The optimum parameter for 3% were 170°C melt temperature, 35% packing pressure, 30% screw speed and 3 second filling time.

  20. Influence of moisture absorption on mechanical properties of wood flour- polypropylene composites

    Treesearch

    Nicole Stark

    2001-09-01

    Wood-plastic composites are being examined for a greater number of structural-type applications that may be exposed to different environments, some of them adverse. This paper discusses the influence of moisture absorption on the mechanical proper-ties of wood flour-polypropylene composites. Composites filled with 20% or 40% wood flour (by weight) were placed in...

  1. Nanoindentation of the interphase region of a wood-reinforced polypropylene composite

    Treesearch

    Joseph E. Jakes; John C. Hermanson; Donald S. Stone

    2007-01-01

    The interphase region of a wood-reinforced polypropylene (PP) composite was investigated with nanoindentation techniques capable of separating intrinsic properties of PP in the interphase region from the effect of elastic discontinuity caused by the nearby wood cell wall. From data collected in this experiment, no differences in hardness or Young’s modulus for PP were...

  2. Self-Cleaning Coatings

    DTIC Science & Technology

    2014-06-01

    Canada), telle que representee par le ministre de la Defense nationale, 2014 i Abstract Under certain conditions, military coatings...μm Particle C: a compound of fluorinated polymer and polypropylene , mean particle size 9 μm Due to the fact that all three types of particles have...functional particles, which are either pure fluorinated polymer or compound of fluorinated polymer and polypropylene , possessing certain degrees of

  3. Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites

    Treesearch

    Nicole M. Stark; Robert E. Rowlands

    2003-01-01

    Commercial wood flour, the most common wood-derived filler for thermoplastics, is produced in a mixture of particle sizes and generally has a lower aspect ratio than wood and other natural fibers. To understand how wood flour and fiber characteristics influence the mechanical properties of polypropylene composites, we first investigated the effect of different sizes of...

  4. Environmental effects on the mechanical and thermomechanical properties of aspen fiber–polypropylene composites

    Treesearch

    Y. Xue; D.R. Veazie; C. Glinsey; M.F. Horstemeyer; R.M. Rowell

    2007-01-01

    The mechanical properties of newly developed aspen fiber–polypropylene composites (APC) were experimentally explored and numerically predicted at the temperatures and humidity that are typical for domestic housing applications. The mechanical properties of APCs with five different fiber-loadings were evaluated at the room temperature, 4 [degrees] C, and 40 [degrees] C...

  5. Thermosets as compatibilizers at the isotactic polypropylene film and thermomechanical pulp fiber interphase

    Treesearch

    Sangyeob Lee; Todd F. Shupe; Chung Y. Hse

    2008-01-01

    The objective of this study was to improve interfacial adhesion properties at the interface of thermomechanical pulp (TMP) fiber and isotactic polypropylene (iPP) using thermoset adhesives such as phenol formaldehyde (PF) and urea formaldehyde (UF). This study also attempted to achieve fiber-to-fiber adhesion using thermoset adhesives before the molten iPP would flow...

  6. Coir fiber reinforced polypropylene composite panel for automotive interior applications

    Treesearch

    Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White

    2011-01-01

    In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...

  7. Novel Particulate Air-Filtration Media: Market Survey

    DTIC Science & Technology

    2013-02-01

    efficiencies up to 99.999% (0.001% penetration) using two solid-state laser photometers to measure aerosol concentration levels up and downstream of...MN) Tetratex, Ultra-Web, Spider-Web, Dura-Life, Fiber-Web, and Syntek XP DuPont (Wilmington, DE) Spunbond Polypropylene , Nomex KD, and Hybrid...nanofiber technology. The meltblown textiles can be manufactured using polypropylene , polyamides, polylactic acid and biodegradable polymers

  8. Neodymium:YAG laser cutting of intraocular lens haptics.

    PubMed

    Gorn, R A; Steinert, R F

    1985-11-01

    Neodymium:YAG laser cutting of polymethylmethacrylate and polypropylene anterior chamber and posterior chamber intraocular lens haptics was studied in terms of ease of transection and physical structure of the cut areas as seen by scanning electron microscopy. A marked difference was discovered, with the polymethylmethacrylate cutting easily along transverse planes, whereas the polypropylene resisted cutting along longitudinal fibers. Clinical guidelines are presented.

  9. Porous structure, permeability, and mechanical properties of polyolefin microporous films

    NASA Astrophysics Data System (ADS)

    Elyashevich, G. K.; Kuryndin, I. S.; Lavrentyev, V. K.; Bobrovsky, A. Yu.; Bukošek, V.

    2012-09-01

    Microporous films of polyolefins, namely, polyethylene and polypropylene, have been prepared using the process based on the extrusion of the melt with the subsequent annealing, uniaxial extension, and thermal fixation. The influence of the conditions used for preparation of the films on their morphology, porosity, number and sizes of through-flow channels, and mechanical properties has been investigated. It has been found that a significant influence on the characteristics of the porous structure of the films is exerted by the degree of orientation of the melt at extrusion, the annealing temperature, and the degree of uniaxial extension of the films. The threshold values of these parameters, at which through-flow channels are formed in the films, have been determined. It has been shown using filtration porosimetry that polyethylene films have a higher permeability to liquids as compared to the polypropylene samples (240 and 180 L/(m2 h atm), respectively). The porous structure of the polyethylene films is characterized by larger sizes of through pores than those of the polypropylene samples (the average pore sizes are 210 and 160 nm, respectively), whereas the polypropylene films contain a larger number of through-flow channels.

  10. High strain rate behaviour of polypropylene microfoams

    NASA Astrophysics Data System (ADS)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  11. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites

    PubMed Central

    Monsiváis-Barrón, Alejandra J.; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio

    2014-01-01

    Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes. PMID:28788233

  12. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites.

    PubMed

    Monsiváis-Barrón, Alejandra J; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio

    2014-10-20

    Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  13. Water Absorption and Thickness Swelling Behavior of Polypropylene Reinforced with Hybrid Recycled Newspaper and Glass Fiber

    NASA Astrophysics Data System (ADS)

    Shakeri, Alireza; Ghasemian, Ali

    2010-04-01

    This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.

  14. Study of Tensile Properties and Deflection Temperature of Polypropylene/Subang Pineapple Leaf Fiber Composites

    NASA Astrophysics Data System (ADS)

    Hafizhah, R.; Juwono, A. L.; Roseno, S.

    2017-05-01

    The development of eco-friendly composites has been increasing in the past four decades because the requirement of eco-friendly materials has been increasing. Indonesia has a lot of natural fiber resources and, pineapple leaf fiber is one of those fibers. This study aimed to determine the influence of weight fraction of pineapple leaf fibers, that were grown at Subang, to the tensile properties and the deflection temperature of polypropylene/Subang pineapple leaf fiber composites. Pineapple leaf fibers were pretreated by alkalization, while polypropylene pellets, as the matrix, were extruded into sheets. Hot press method was used to fabricate the composites. The results of the tensile test and Heat Deflection Temperature (HDT) test showed that the composites that contained of 30 wt.% pineapple leaf fiber was the best composite. The values of tensile strength, modulus of elasticity and deflection temperature were (64.04 ± 3.91) MPa; (3.98 ± 0.55) GPa and (156.05 ± 1.77) °C respectively, in which increased 187.36%, 198.60%, 264.72% respectively from the pristine polypropylene. The results of the observation on the fracture surfaces showed that the failure modes were fiber breakage and matrix failure.

  15. Mechanical Characterization of Composites and Foams for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Veazie, D. R.; Glinsey, C.; Webb, M. M.; Norman, M.; Meador, Michael A. (Technical Monitor)

    2000-01-01

    Experimental studies to investigate the mechanical properties of ultra-lightweight polyimide foams for space applications, compression after impact (CAI) properties for low velocity impact of sandwich composites, and aspen fiber/polypropylene composites containing an interface adhesive additive, Maleic Anhydride Grafted Polypropylene (MAPP), were performed at Clark Atlanta University. Tensile, compression, flexural, and shear modulus tests were performed on TEEK foams categorized by their densities and relative cost according to ASTM specifications. Results showed that the mechanical properties of the foams increased as a function of higher price and increasing density. The CAI properties of Nomex/phenolic honeycomb core, fiberglass/epoxy facesheet sandwich composites for two damage arrangements were compared using different levels of impact energy ranging from 0 - 452 Joules. Impact on the thin side showed slightly more retention of CAI strength at low impact levels, whereas higher residual compressive strength was observed from impact on the thick side at higher impact levels. The aspen fiber/polypropylene composites studied are composed of various percentages (by weight) of aspen fiber and polypropylene ranging from 30%-60% and 40%-100%, respectively. Results showed that the MAPP increases tensile and flexural strength, while having no significant influence on tensile and flexural modulus.

  16. Bone-anchored sling using the Mini Quick Anchor Plus and polypropylene mesh to treat post-radical prostatectomy incontinence: early experience.

    PubMed

    Suzuki, Yasutomo; Saito, Yuka; Ogushi, Satoko; Kimura, Go; Kondo, Yukihiro

    2012-10-01

    Herein we describe our experience with a bone-anchored sling using a suture anchor and polypropylene mesh for the treatment of post-radical prostatectomy urinary incontinence. Eight patients with urinary incontinence as a result of intrinsic sphincter deficiency after radical prostatectomy were included in the analysis. The procedure involved piercing the pubic bone with a bone drill, inserting the suture anchor and fixing a soft or rigid polypropylene mesh to press firmly on the bulbar urethra. Urinary incontinence was significantly improved according to changes in the daily number of pads used at 1, 3 and 6 months postoperatively in comparison with preoperatively. However, no meaningful improvement at 6 months postoperatively was seen with the soft mesh. Complications included perineal pain in four cases, but pain control was achieved using non-steroidal anti-inflammatory drugs. The bone-anchored sling with a suture anchor and polypropylene mesh appears to be safe and effective for the treatment of post-radical prostatectomy urinary incontinence. Soft mesh appears inappropriate as material for the bone-anchored sling because of the progressive likelihood of worsened urinary incontinence. © 2012 The Japanese Urological Association.

  17. 3D evaluation of the effect of disinfectants on dimensional accuracy and stability of two elastomeric impression materials.

    PubMed

    Soganci, Gokce; Cinar, Duygu; Caglar, Alper; Yagiz, Ayberk

    2018-05-31

    The aim of this study was to determine and compare the dimensional changes of polyether and vinyl polyether siloxane impression materials under immersion disinfection with two different disinfectants in three time periods. Impressions were obtained from an edentulous master model. Sodium hypochlorite (5.25%) and glutaraldehyde (2%) were used for disinfection and measurements were done 30 min later after making impression before disinfection, after required disinfection period (10 min), and after 24 h storage at room temperature. Impressions were scanned using 3D scanner with 10 microns accuracy and 3D software was used to evaluate the dimensional changes with superimpositioning. Positive and negative deviations were calculated and compared with master model. There was no significant difference between two elastomeric impression materials (p>0.05). It was concluded that dimensional accuracy and stability of two impression materials were excellent and similar.

  18. Ciguatoxins: Cyclic Polyether Modulators of Voltage-gated Iion Channel Function

    PubMed Central

    Nicholson, Graham M.; Lewis, Richard J.

    2006-01-01

    Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.

  19. Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment

    PubMed Central

    Kojio, Ken; Furukawa, Mutsuhisa; Nonaka, Yoshiteru; Nakamura, Sadaharu

    2010-01-01

    Mechanical properties of thermoplastic polyurethane elastomers based on either polyether or polycarbonate (PC)-glycols, 4,4’-dipheylmethane diisocyanate (1,1’-methylenebis(4-isocyanatobenzene)), 1,4-butanediol, were controlled by restriction of crystallization of polymer glycols. For the polyether glycol based-polyurethane elastomers (PUEs), poly(oxytetramethylene) glycol (PTMG), and PTMG incorporating dimethyl groups (PTG-X) and methyl side groups (PTG-L) were employed as a polymer glycol. For the PC-glycol, the randomly copolymerized PC-glycols with hexamethylene (C6) and tetramethylene (C4) units between carbonate groups with various composition ratios (C4/C6 = 0/100, 50/50, 70/30 and 90/10) were employed. The degree of microphase separation and mechanical properties of both the PUEs were investigated using differential scanning calorimetry, dynamic viscoelastic property measurements and tensile testing. Mechanical properties could be controlled by changing the molar ratio of two different monomer components. PMID:28883371

  20. Polyethers with pendent phenylvinyl substituted carbazole rings as polymers for hole transporting layers of OLEDs

    NASA Astrophysics Data System (ADS)

    Griniene, R.; Liu, L.; Tavgeniene, D.; Sipaviciute, D.; Volyniuk, D.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Leduskrasts, K.; Grigalevicius, S.

    2016-01-01

    Polyethers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic routes. Full characterization of their structures is presented. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the range of 56-658 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting layer. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometric efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m2.

Top