2010-09-01
Regulatory Council LRL Laboratory reporting level LDPE Low-density polyethylene MDL Minimum detection limit MNA Monitored natural attenuation...consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is heat-sealed on one end...be constructed from small- diameter LDPE tubing that fits into small-diameter wells. These polyethylene diffusion bag (PDB) samplers have been
2011-10-01
Regulatory Council LDPE low-density polyethylene MDL minimum detection limit NAVFAC ESC Naval Facilities Engineering Command Engineering Service...membrane sampler design consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is...requirements, and can be constructed from small-diameter LDPE tubing that fits into small- 4 diameter wells. These polyethylene diffusion bag
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
2007-08-30
ITRC Interstate Technology Regulatory Council LRL Laboratory reporting level LDPE Low-density polyethylene MDL Minimum detection limit MNA...diameter of the well. Another diffusion membrane sampler design consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ...
Vroblesky, Don A.; Peterson, J.E.
2004-01-01
Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that little or no vertical flow was measured in most of the tested wells in August 2002. Two of the wells (10-MW-03 and 06-MW-01) had slightly greater vertical concentration variation for some constituents. In these wells, the contaminant depth probably is lithologically influenced. The close match between concentrations measured in polyethylene diffusion bag and low-flow samples indicates that the bag samples accurately represent the distribution of volatile organic compounds in the wells. It is unclear, however, whether the distribution of volatile organic compounds in the wells, as indicated by the bag samplers, represents contaminant distributions in the aquifer or transient movement within the wells. The probable change in well hydraulics between August and late September to October indicates that the relatively uniform vertical distribution of volatile organic compounds in some of the wells may represent in-well mixing. This uncertainty could be clarified by the installation and sampling of well clusters at various times of the year. Additional insight into the vertical distribution of contamination and flow possibly could be obtained by conducting flow-meter tests and collecting polyethylene diffusion bag samples from selected wells at different times of the year. The westernmost contaminant plume at Million Gallon Hill appears to be surrounded by sufficient monitoring wells to detect changes in the plume extent; however, the installation of additional wells at Galena Airport has the potential to provide additional information on the extent of ground-water contamination in the remaining plumes. The additional information to be gained includes better definition of the vertical and lateral extents of the plumes and better definition of the ground-water flow directions.
2010-09-30
Inductively coupled plasma – mass spectrometry ITRC Interstate Technology Regulatory Council LRL Laboratory reporting level LDPE Low-density polyethylene...diameter of the well. Another diffusion membrane sampler design consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ...Vroblesky, 2001a, 2001b). The LDPE tube is heat-sealed on one end, filled with high-purity water, heat-sealed at the top, and then suspended in a well to
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-886] Polyethylene Retail Carrier... administrative review of the antidumping duty order on polyethylene retail carrier bags (PRCBs) from the People's... the PRC. See Antidumping Duty Order: Polyethylene Retail Carrier Bags From the People's Republic of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-886] Polyethylene Retail Carrier... duty order on polyethylene retail carrier bags (PRCBs) from the People's Republic of China (PRC) for... August 31, 2012, the petitioners, the Polyethylene Retail Carrier Bag Committee and its individual...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... Bags From Thailand: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative... polyethylene retail carrier bags from Thailand. See Antidumping Duty Order: Polyethylene Retail Carrier Bags From Thailand, 69 FR 48204 (August 9, 2004). On September 22, 2009, we published a notice of initiation...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-03
... Bags From Thailand: Extension of Time Limit for the Final Results of the Antidumping Duty... preliminary results of review of the antidumping duty order on polyethylene retail carrier bags from Thailand. See Polyethylene Retail Carrier Bags From Thailand: Preliminary Results of Antidumping Duty...
2010-04-01
LDPE low-density polyethylene LF low-flow purging LRL laboratory reporting level MDL minimum detection limit MNA monitored natural attenuation...shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is heat-sealed on one end, filled with high...from small- diameter LDPE tubing that fits into small-diameter wells. These PDB samplers have been shown to be useful only for collection of VOCs
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... polyethylene retail carrier bags from Malaysia for the period August 1, 2008, through July 31, 2009. See... DEPARTMENT OF COMMERCE International Trade Administration A-557-813 Polyethylene Retail Carrier Bags From Malaysia: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... Bags From Thailand: Correction to the Amended Final Results of Antidumping Duty Administrative Review... bags from Thailand for the period August 1, 2009, through July 31, 2010. The notice did not include the... bags from Thailand. See Polyethylene Retail Carrier Bags From Thailand: Amended Final Results of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-886] Polyethylene Retail Carrier... administrative review of the antidumping duty order on polyethylene retail carrier bags (PRCBs) from the People's... Retail Carrier Bags From the People's Republic of China, 69 FR 48201 (August 9, 2004). On August 1, 2011...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-28
... Bags From Thailand: Final Results of Antidumping Duty Administrative Review AGENCY: Import... antidumping duty order on polyethylene retail carrier bags from Thailand. We gave interested parties an... Bags From Thailand: Preliminary Results of Antidumping Duty Administrative Review, 76 FR 30102 (May 24...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... Bags From Thailand: Rescission of Antidumping Duty Administrative Review AGENCY: Import Administration... duty order on polyethylene retail carrier bags from Thailand. The period of review is August 1, 2010... 25685
75 FR 36679 - Polyethylene Retail Carrier Bags From China, Malaysia, and Thailand; Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... Carrier Bags From China, Malaysia, and Thailand; Determinations On the basis of the record \\1\\ developed... antidumping duty orders on polyethylene retail carrier bags from China, Malaysia, and Thailand would be likely... Retail Carrier Bags from China, Malaysia, and Thailand: Investigation Nos. 731-TA-1043-1045 (Review). By...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Bags from Thailand: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative... Thailand. See Antidumping Duty Order: Polyethylene Retail Carrier Bags From Thailand, 69 FR 48204 (August 9... Co., Ltd., Landblue (Thailand) Co., Ltd., Sahachit Watana Plastics Ind. Co., Ltd., Thai Plastic Bags...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... Bags From Indonesia: Final Determination of Sales at Less Than Fair Value AGENCY: Import Administration...) has determined that imports of polyethylene retail carrier bags (PRCBs) from Indonesia are being, or... Retail Carrier Bags from Indonesia: Preliminary Determination of Sales at Less Than Fair Value and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
... from Thailand on November 3, 2011.\\3\\ Both Thai Plastic Bags Industries Co., Ltd. and Polyethylene.../exporter margin (percent) Thai Plastic Bags Industries Company 35.79 Landblue (Thailand) Co., Ltd 25.60 In... Bags From Thailand: Notice of Court Decision Not in Harmony With Final Results of Administrative Review...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... Bags from Thailand: Rescission of Antidumping Duty Administrative Review in Part AGENCY: Import... Thailand. The period of review is August 1, 2008, through July 31, 2009. The Department of Commerce is... polyethylene retail carrier bags from Thailand. See Initiation of Antidumping and Countervailing Duty...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Antidumping Duty Orders: Polyethylene Retail Carrier Bags from Indonesia, Taiwan, and the Socialist Republic... carrier bags (PRCBs) from Indonesia, Taiwan, and the Socialist Republic of Vietnam (Vietnam). On April 26... Department of Commerce is issuing the antidumping duty orders on PRCBs from Indonesia, Taiwan, and Vietnam...
Warming preterm infants in the delivery room: polyethylene bags, exothermic mattresses or both?
McCarthy, Lisa K; O'Donnell, Colm P F
2011-12-01
To compare the admission temperature of infants treated with polyethylene bags alone to infants treated with exothermic mattresses in addition to bags in the delivery room. We prospectively studied infants born at <31 weeks' gestation who were placed in bags at birth. Some infants were also placed on mattresses. Admission axillary temperatures were measured in all infants on admission to the neonatal intensive care. We compared the temperatures of infants treated with bags alone to those treated with mattresses and bags. We studied 43 infants: 15 were treated with bags while 28 were treated with a bag and mattress. Mean admission temperature was similar between the groups. Hypothermia and hyperthermia occurred more frequently in infants treated with a bag and mattress, and more infants treated with a bag had admission temperatures 36.5-37.5°C. The use of exothermic mattresses in addition to polyethylene bags, particularly in younger, smaller newborns, may result in more hypothermia and hyperthermia on admission. A randomised controlled trial is necessary to determine which strategy results in more infants having admission temperatures in the normal range. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
The modification of renal transplantation with the usage of own polyethylene receptacle.
Pupka, Artur; Chudoba, Paweł; Patrzałek, Dariusz; Janczak, Dariusz; Szyber, Piotr
2003-01-01
In this study a method of elimination of the second warm ischemia is shown. The method is based on the application of a specially constructed polyethylene bag, in which the transplanted kidney is placed in the time course from a removal from ice to the reconstruction of vessel flow. The bag is built of polyethylene foil HDPE of low density produced under high pressure. Own construction of the bag (three spaces and polyethylene) enables the storage of a transplanted organ at the stable temperature +4 Celsius degrees. Thanks to the separation of containers for melting ice and for the kidney, possible becomes unrestrained performance of both venous and arterial anastomosis independently of existing operative conditions. Due to the applied method of the elimination of the second warm ischemia with the usage of own construction of polyethylene bag HDPE, one can expect better early renal function after transplantation--decrease in the number of cases and shortening of the time of acute tubular necrosis (ATN--Acute Tubular Necrosis).
USDA-ARS?s Scientific Manuscript database
Washed ‘Marsh’ white grapefruit were placed in polyethylene (PE) bags (1 mil) with or without micro-perforation holes (representing 0.002% of the bag surface) and evaluated for juice quality, firmness, and the development of decay and disorders during storage for 30, 60, or 90 days at 50oF. Each tre...
Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina
2016-02-15
To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Panjikkaran, Seeja Thomachan; Mathew, Deepu
2013-03-15
The existing protocol for the cultivation of oyster mushroom (Pleurotus florida) in polyethylene bags leads to environmental pollution amounting to 18 g of polyethylene per 450 g of mushroom, which is the average biological efficiency achieved from a bag. Thus the projected annual global pollution amounts to 2 million tones, corresponding to the production of 48 million tones. Experiments were conducted at Kerala Agricultural University, India, to formulate an oyster mushroom cultivation strategy that reduces this pollution level. Pooled results of experiments at the institute's and farmers' units have shown that reusable plastic buckets having perforations of 1.5 cm × 1.0 cm throughout the side walls could be used to substitute polyethylene bags, while following the standard cultivation protocols. Cultivation in perforated buckets has recorded a biological efficiency of 435.69 ± 56.75 g in 47.07 ± 5.22 days against 459.11 ± 53.52 g in 38.05 ± 4.54 days in polyethylene bags. The rate of contamination in buckets was significantly lower than that in bags: 9.28 ± 2.12 and 12.60 ± 3.73% respectively. Reusable plastic buckets with perforations on the side walls could be used to substitute the conventional polyethylene bags in oyster mushroom cultivation, with no significant difference in yield. Losses due to slight increase in crop duration in buckets will be compensated with a lower rate of contamination. For a unit having a daily output of 100 kg, it was estimated that during 10 years of permanent cultivation following this technique, the cost of cultivation could be reduced to one-tenth and the environmental pollution reduced by at least 730 000 non-degradable polyethylene bags. © 2012 Society of Chemical Industry.
Non-Flammable Containment Bag and Enclosure Development for International Space Station Use
NASA Technical Reports Server (NTRS)
Inamdar, Sunil; Cadogan, Dave; Worthy, Erica
2014-01-01
Work conducted on the International Space Station (ISS) requires the use of a significant quantity of containment bags to hold specimens, equipment, waste, and other material. The bags are in many shapes and sizes, and are typically manufactured from polyethylene materials. The amount of bags being used on ISS has grown to the point where fire safety has become a concern because of the flammability of polyethylene. Recently, a new re-sealable bag design has been developed that is manufactured from a specialized non-flammable material called Armorflex 301 that was designed specifically for this application. Besides being non-flammable, Armorflex 301 is also FDA compliant, clear, flexible, and damage tolerant. The bags can be made with closure mechanisms that resemble ZipLoc® bags, or can be open top. Sample bags have been laboratory tested by NASA to verify materials properties, and evaluated by astronauts on the ISS in 2012. Flexloc bag manufacturing will commence in 2014 to support a transition away from polyethylene on ISS. In addition to re-sealable bags, other larger containment systems such as flexible gloveboxes, deployable clean rooms, and other devices manufactured from Armorflex 301 are being explored for use on ISS and in similar confined space locations where flammability is an issue. This paper will describe the development of the Armorflex 301 material, the Flexloc bag, and other containment systems being explored for use in confined areas
Effects of packaging materials on storage quality of peanut kernels
Fu, Xiaoji; Xing, Shengping; Xiong, Huiwei; Min, Hua; Zhu, Xuejing; He, Jialin; Mu, Honglei
2018-01-01
In order to obtain optimum packaging materials for peanut kernels, the effects of four types of packaging materials on peanut storage quality (coat color, acid value, germination rate, relative damage, and prevention of aflatoxin contamination) were examined. The results showed that packaging materials had a major influence on peanut storage quality indexes. The color of the peanut seed coat packaged in the polyester/aluminum/polyamide/polyethylene (PET/AL/PA/PE) composite film bag did not change significantly during the storage period. Color deterioration was slower with polyamide/polyethylene (PA/PE) packaging materials than with polyethylene (PE) film bags and was slower in PE bags than in the woven bags. The use of PET/AL/PA/PE and PA/PE bags maintained peanut quality and freshness for more than one year and both package types resulted in better germination rates. There were significant differences between the four types of packaging materials in terms of controlling insect pests. The peanuts packaged in the highly permeable woven bags suffered serious invasion from insect pests, while both PET/AL/PA/PE and PA/PE bags effectively prevented insect infection. Peanuts stored in PET/AL/PA/PE and PA/PE bags were also better at preventing and controlling aflatoxin contamination. PMID:29518085
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-06
... DEPARTMENT OF COMMERCE International Trade Administration [A-549-821] Polyethylene Retail Carrier Bags From Thailand: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative... Thailand for the period August 1, 2009, through July 31, 2010. See Initiation of Antidumping and...
75 FR 22842 - Polyethylene Retail Carrier Bags From Indonesia, Taiwan, and Vietnam
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
...)] Polyethylene Retail Carrier Bags From Indonesia, Taiwan, and Vietnam Determinations On the basis of the record... material injury by reason of imports from Indonesia, Taiwan, and Vietnam of PRCBs that have been found by... notification of preliminary determinations by Commerce that imports of PRCBs from Indonesia, Taiwan, and...
Vroblesky, Don A.; Lorah, Michelle M.
1991-01-01
Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... excludes (1) polyethylene bags that are not printed with logos or store names and that are closeable with... comparison methodology to TCI's targeted sales and the average-to-average comparison methodology to TCI's non... average-to-average comparison method does not account for such price differences and results in the...
Characterization of ecofriendly polyethylene fiber from plastic bag waste
NASA Astrophysics Data System (ADS)
Soekoco, Asril S.; Noerati, Komalasari, Maya; Kurniawan, Hananto, Agus
2017-08-01
This paper presents the characterization of fiber morphology, fiber count and tenacity of polyethylene fiber which is made from plastic bag waste. Recycling plastic bag waste into textile fiber has not developed yet. Plastic bag waste was recycled into fiber by melt spinning using laboratory scale melt spinning equipment with single orifice nozzle and plunger system. The basic principle of melt spinning is by melting materials and then extruding it through small orifice of a spinning nozzle to form fibers. Diameter and cross section shape of Recycled polyethylene fiber were obtained by using scanning electron microscope (SEM) instrumentation. Linear density of the recycled fiber were analyzed by calculation using denier and dTex formulation and The mechanical strength of the fibers was measured in accordance with the ASTM D 3379-75 standard. The cross section of recycled fiber is circular taking the shape of orifice. Fiber count of 303.75 denier has 1.84 g/denier tenacity and fiber count of 32.52 has 3.44 g/denier tenacity. This conditions is affected by the growth of polymer chain alignment when take-up axial velocity become faster. Recycled polyethylene fiber has a great potential application in non-apparel textile.
Safety and durability of low-density polyethylene bags in solar water disinfection applications.
Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha
2017-08-01
Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.
Reuse of polyethylene waste in road construction.
Raju, S S S V Gopala; Murali, M; Rengaraju, V R
2007-01-01
The cost of construction of flexible pavements depends on thickness of the pavement layers. The thickness of pavement mainly depends on the strength of the subgrade. By suitable improvement to the strength of the subgrade, considerable saving in the scarce resources and economy can be achieved. Because of their lightweight, easy handling, non-breakable and corrosion free nature, polyethylene have surpassed all other materials in utility. But polyethylene waste has been a matter of concern to environmentalists as it is non-biodegradable. In this investigation, an attempt has been made to study the improvement of California Bearing Ratio (CBR) value of soils stabilized with waste polyethylene bags. This alternative material is mixed in different proportions to the gravel and clay to determine the improvement ofCBR value. Use of the waste polyethylene bags observed to have a significant impact on the strength and economy in pavement construction, when these are available locally in large quantities.
Performance comparison of plastic shopping bags in modern and traditional retail
NASA Astrophysics Data System (ADS)
Radini, F. A.; Wulandari, R.; Nasiri, S. J. A.; Winarto, D. A.
2017-07-01
Followed by implementation of paid plastic bag policy in Indonesia’s modern and traditional retail, community question related to plastic shopping bag performance arise. But, there is limited information about it. Therefore, the assessment of the performance to compare between plastic shopping bags in modern retail and traditional retail should be interesting. The observation performance of plastic shopping bag were weight holding capacity, tear resistant and elongation. This performance were tested using Universal Testing Machine. Physical and physico-chemical properties also identified to determine factor affecting the performance of plastic shopping bag. The physical properties were analysed using visual and thickness gauge to see the colour and measure the thickness. The analysis of physico-chemical properties were carried out using DSC (Differential Scanning Calorimetry), TGA (Thermal Gravimetry Analysis), Furnace and FTIR (Fourier Transform Infra Red Spectroscopy) to identify the materials, also its melting and decomposition temperature. The result showed that the performance difference between modern retail plastic bag with traditional retail plastic bag appears only in the performance of elongation. The elongation of modern retail plastic bag is 121 - 413%, while traditional has 170 - 609%. According to physico-chemical test result, modern retail and traditional retail plastic bag contain polyethylene as main material and has melting temperature in the range of High Density Polyethylene (HDPE) melting temperature. However, modern retail plastic bag has 18.31 - 33.87% of inorganic filler percentage, whereas the traditional retail plastic bag has 0.35 - 9.85%. This inorganic filler percentage probably a contributing factor in the elongation performance difference between modern retail plastic bag with traditional retail plastic bag.
Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.).
Hailu, M; Seyoum Workneh, T; Belew, D
2014-11-01
This study was carried out to evaluate the effect of packaging materials on the shelf life of three banana cultivars. Four packaging materials, namely, perforated low density polyethylene bag, perforated high density polyethylene bag, dried banana leaf, teff straw and no packaging materials (control) were used with three banana cultivars, locally known as, Poyo, Giant Cavendish and Williams I. The experiment was carried out in Randomized Complete Block Design in a factorial combination with three replications. Physical parameters including weight loss, peel colour, peel thickness, pulp thickness, pulp to peel ratio, pulp firmness, pulp dry matter, decay, loss percent of marketability were assessed every 3 days. Banana remained marketable for 36 days in the high density polyethylene and low density polyethylene bags, and for 18 days in banana leaf and teff straw packaging treatments. Unpackaged fruits remained marketable for 15 days only. Fruits that were not packaged lost their weight by 24.0 % whereas fruits packaged in banana leaf and teff straw became unmarketable with final weight loss of 19.8 % and 20.9 %, respectively. Packaged fruits remained well until 36th days of storage with final weight loss of only 8.2 % and 9.20 %, respectively. Starting from green mature stage, the colour of the banana peel changed to yellow and this process was found to be fast for unpackaged fruits. Packaging maintained the peel and the pulp thickness, firmness, dry matter and pulp to peel ratio was kept lower. Decay loss for unpackaged banana fruits was16 % at the end of date 15, whereas the decay loss of fruits packaged using high density and low density polyethylene bags were 43.0 % and 41.2 %, respectively at the end of the 36th day of the experiment. It can, thus, be concluded that packaging of banana fruits in high density and low density polyethylene bags resulted in longer shelf life and improved quality of the produce followed by packaging in dried banana leaf and teff straw.
Van der Auwera, I; D'Hooghe, T M
1998-08-01
The objective of this study was to test the hypothesis that ultrasound covers and sonographic gels, used during vaginal ultrasound, are toxic for mouse embryonic development in vitro. A prospective randomized design was used on pronucleate ova of F1 hybrid CBA x C57Bl female mice. The mice were superovulated with pregnant mare's serum gonadotrophin and human chorionic gonadotrophin and mated with CBA x C57Bl males. The pronucleate ova were randomly divided between culture media with the addition of commercially available ultrasound covers and sonographic gels in different concentrations. As controls and potential alternatives, plastic polyethylene bags and paraffin oil were tested simultaneously. Embryo-toxicity was assessed by documenting cleavage capacity, blastocyst formation and embryo degeneration in vitro. Exposure of culture medium to the ultrasound covers and sonographic gels tested resulted in a severely reduced cleavage capacity, a high incidence of embryo degeneration and absent or impaired blastocyst formation. This toxic effect could be reduced by high dilutions in vitro. In contrast, plastic polyethylene bags and paraffin oil had no influence on in-vitro development of mouse ova. We conclude that commercially available ultrasound latex covers and sonographic gels are toxic for mouse embryos and can potentially influence embryonic development during infertility treatment. It is safer to perform vaginal ultrasonic measurements using non-toxic paraffin oil (as contact fluid) and plastic polyethylene bags (as ultrasonic cover).
Allam, A M; Mostafa, W; Zayed, E; El-Gamaly, J
2007-09-30
Hand burns predominantly affect young adults, and therefore have serious social and financial implications. In the present work, 106 patients with less than 25% body surface area burns and acute partial-thickness burned hands were managed using polyethylene bags and 1% local silver sulphadiazine (SSD) cream or moist exposed burn ointment (MEBO). Females made up 61.3% of the cases and flame burn was the majority cause (54.7%). There were no significant differences between the two groups regarding either the analgesic effect after local ointment application or hand movement inside the polyethylene bag. Local agent crustation over the wound was very evident in the hands managed by local 1% SSD cream (69.81%). On follow-up, the burned hands healed faster using local MEBO (10.48 versus 14.53 days), with fewer post-burn hand deformities and better active hand movements; however, the total cost until complete hand burn wound healing was higher with MEBO than with 1% SSD, although the final results were superior, with early return to work, when MEBO was used. We concluded that the use of MEBO as a topical agent and of polyethylene bags for the dressing of the acute partial-thickness burned hand accelerated healing; daily wound evaluation was easy as there was no crustation over it of the agent. It was more expensive than 1% SSD cream but presented fewer post-burn complications and more rapid healing, with shorter hospital stay.
Ammonia Diffusion through Nalophan Double Bags: Effect of Concentration Gradient Reduction
Capelli, Laura; Boiardi, Emanuela; Del Rosso, Renato
2014-01-01
The ammonia loss through Nalophan bags has been studied. The losses observed for storage conditions and times as allowed by the reference standard for dynamic olfactometry (EN 13725:2003) indicate that odour concentration values due to the presence of small molecules may be significantly underestimated if samples are not analysed immediately after sampling. A diffusion model was used in order to study diffusion through the bag. The study discusses the effect of concentration gradient (ΔC) across the polymeric membrane of the analyte. The ΔC was controlled by using a setup bag called “double bags.” Experimental data show a reduction of ammonia percentage losses due to the effect of the external multibarrier. The expedient of the double bag loaded with the same gas mixture allows a reduced diffusion of ammonia into the inner bag. Comparing the inner bag losses with those of the single bag stored in the same conditions (T, P, u) and with equal geometrical characteristics (S/V, z), it was observed that the inner bag of the double bag displays a 16% loss while the single bag displays a 37% loss. Acting on the ΔC it is possible to achieve a gross reduction of 57% in the ammonia leakage due to diffusion. PMID:25506608
Propellant Containers and Expulsion Charges for M483A1 and M509 Projectiles.
1986-08-01
program. This malfunction occurred when a 58 g charge of MIO propellant misfired at -65*F. Phase II The celcon/acrylic bags had a history of a high...polyethylene loaded bags, making a total of 38 bags, each type containing 51 g of MIO propellant, were submitted to EMD, Chemistry Brioch for the following
Allam, A.M.; Mostafa, W.; Zayed, E.; El-Gamaly, J.
2007-01-01
Summary Hand burns predominantly affect young adults, and therefore have serious social and financial implications. In the present work, 106 patients with less than 25% body surface area burns and acute partial-thickness burned hands were managed using polyethylene bags and 1% local silver sulphadiazine (SSD) cream or moist exposed burn ointment (MEBO). Females made up 61.3% of the cases and flame burn was the majority cause (54.7%). There were no significant differences between the two groups regarding either the analgesic effect after local ointment application or hand movement inside the polyethylene bag. Local agent crustation over the wound was very evident in the hands managed by local 1% SSD cream (69.81%). On follow-up, the burned hands healed faster using local MEBO (10.48 versus 14.53 days), with fewer post-burn hand deformities and better active hand movements; however, the total cost until complete hand burn wound healing was higher with MEBO than with 1% SSD, although the final results were superior, with early return to work, when MEBO was used. We concluded that the use of MEBO as a topical agent and of polyethylene bags for the dressing of the acute partial-thickness burned hand accelerated healing; daily wound evaluation was easy as there was no crustation over it of the agent. It was more expensive than 1% SSD cream but presented fewer post-burn complications and more rapid healing, with shorter hospital stay. PMID:21991086
Eiden, Céline; Philibert, Laurent; Bekhtari, Khedidja; Poujol, Sylvain; Malosse, Francoise; Pinguet, Frédéric
2009-11-01
The physicochemical stability of extemporaneous dilutions of oxaliplatin in 5% dextrose injection stored in polyvinyl chloride (PVC), polypropylene, and polyethylene infusion bags was studied. Oxaliplatin 100 mg/20 mL concentrated solution was diluted in 100 mL of 5% dextrose injection in PVC, polypropylene, and polyethylene infusion bags to produce nominal oxaliplatin concentrations of 0.2 and 1.3 mg/mL. The filled bags were stored for 14 days at 20 degrees C and protected from light, at 20 degrees C under normal fluorescent light, and at 4 degrees C. A 1-mL sample was removed from each bag at time 0 and at 24, 48, 72, 120, 168, and 336 hours. The samples were visually inspected for color and clarity, and the pH values of the solutions were measured. High-performance liquid chromatography was used to assay oxaliplatin concentration. Bacterial contamination was assessed on study day 14 after incubation in trypticase soy solution for three days at 37 degrees C. Solutions of oxaliplatin 0.2 and 1.3 mg/mL in 5% dextrose injection were stable in the three container types for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure. No color change was detected during the storage period, and pH values remained stable. No microbial contamination was detected in any samples over the study period. Oxaliplatin solutions diluted in 5% dextrose injection to 0.2 and 1.3 mg/mL were stable in PVC and PVC-free infusion bags for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure.
Influence of freezing and storing cherry fruit on its nutritional value.
Vasylyshyna, Elena
2016-01-01
Cherries are a valuable dietary raw material and possess medicinal properties. Considering the nutritional, medical and vitamin value of cherry fruits, the purpose of this research was to produce a scientific justification for preserving the quality of cherry fruits using different freezing methods. To do this, cherry fruits from the Lotovka (Cerasus vulgaris) variety were frozen in various ways: packed in polyethylene bags (control); previously suspended in a 20% sugar solution and packing frozen cherry in polyethylene bags; suspended in a 20% sugar solution with the addition of 4% ascorutin and frozen followed by pre-packaging in polyethylene bags; cherry fruits were frozen in a 20% sugar solution in plastic cups of 0.25 cm3; they were also frozen in a 20% sugar solution with the addition of 4% ascorutin in plastic cups. The frozen products were stored at a temperature not higher than -18°C for up to 6 months. Result. Studies have shown the appropriateness of freezing cherry fruits, particularly in a 20% sugar solution with the addition of 4% ascorutin. The advantages of these fruits are in ascorbic acid preservation in 1. nd. Cherries are a valuable dietary raw material and possess medicinal properties. Considering the nutritional, medical and vitamin value of cherry fruits, the purpose of this research was to produce a scientific justification for preserving the quality of cherry fruits using different freezing methods. Material and methods. To do this, cherry fruits from the Lotovka (Cerasus vulgaris) variety were frozen in various ways: packed in polyethylene bags (control); previously suspended in a 20% sugar solution and packing frozen cherry in polyethylene bags; suspended in a 20% sugar solution with the addition of 4% ascorutin and frozen followed by pre-packaging in polyethylene bags; cherry fruits were frozen in a 20% sugar solution in plastic cups of 0.25 cm3; they were also frozen in a 20% sugar solution with the addition of 4% ascorutin in plastic cups. The frozen products were stored at a temperature not higher than -18°C for up to 6 months. Result. Studies have shown the appropriateness of freezing cherry fruits, particularly in a 20% sugar solution with the addition of 4% ascorutin. The advantages of these fruits are in ascorbic acid preservation in 1.5 times and reduction of tanning and coloring substances only by 27%, soluble solids to 7%, sugars - 4%, acids - 12%, in tasting evaluation of 5 points. Frozen cherry fruits in a 20% sugar solution with the addition of 4% ascorutin can be used in dietary nutrition for patients with cardiovascular diseases.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... Bags From Thailand: Preliminary Results of Antidumping Duty Administrative Review; 2011-2012 AGENCY... Import Administration, ``Decision Memorandum for Preliminary Results of the 2011/12 Antidumping Duty... (August 12, 2010) (Section 129 Determination). Preliminary Results of Review As a result of our review, we...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
... Bags From Thailand: Amended Final Results of Antidumping Duty Administrative Review AGENCY: Import...: Final Results of Antidumping Duty Administrative Review, 76 FR 59999 (September 28, 2011) (Final Results... of production exclusive of direct selling expenses.\\1\\ This incongruity was unintentional and results...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... Duty Order on Polyethylene Retail Carrier Bags From Thailand AGENCY: Import Administration... carrier bags from Thailand. The Department issued its determination on June 29, 2010, regarding the... export price and normal value in the investigation challenged by Thailand before the World Trade...
Mechanical degradation temperature of waste storage materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, M.C.; Meyer, M.L.
1993-05-13
Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90{degrees}C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66{degrees}C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-densitymore » polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185{degrees}C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110{degrees}C; (2) polyvinyl chloride -- 130{degrees}C; (3) high-density polyethylene -- 140{degrees}C; (4) sealing tape -- 140{degrees}C. Testing with LDPE and PVC at temperatures ranging from 110 to 130{degrees}C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185{degrees}C) is not anticipated.« less
Gas-phase transfer of polymer cross-linking agents and by-products to solid oral pharmaceuticals.
Maus, Russell G; Li, Min; Clement, Christopher M; Kinzer, Jeffery A
2007-11-05
In the pharmaceutical industry, solid oral compressed tablets (OCT) are frequently transported in bulk containers prior to packaging. While in this state, the product is generally protected from interaction with liquid and solid contaminants by physical barriers (e.g., polyethylene bags, drums, etc.). Vapor phase contamination, although generally less frequently observed, is possible. A specific example of the detection and identification of volatile by-products (acetophenone and 2-phenyl-2-propanol) of a common polymer cross-linking agent (dicumyl peroxide) is presented. The product tablets were compressed, placed into double polyethylene bags, and subsequently placed into a polyethylene drum for shipment overseas. To cushion the product during transit, a cross-linked polyethylene foam disk (designed to fit into the bottom of the drum) was placed below the bag of tablets. Initially, these contaminants were detected by HPLC with UV detection at the receiving laboratory, and assumed to be degradates of the active components of the product. Further analysis showed that neither the collected UV absorbance data nor the observed levels of the contaminants were consistent with known degradates of the product. Liquid extraction followed by GC-MS analysis of the product as well as the cross-linked foam disk exhibited measurable quantities of the contaminants in question. Vapor phase transfer of these cross-linking agent by-products, originating in the cross-linked foam pads, was determined to be the root cause for the presence of these compounds in the product.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
...\\ The petitioners claim that there is no commercial justification for not completing the PRCB production process at the place of manufacture and instead locating the final minor finishing operation in the United... in the production process, i.e., cutting-to- size the merchandise, sealing the bag on one end to form...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-21
... Bags From Thailand: Final Court Decision and Amended Final Results of Administrative Review of the... Thailand produced or exported by King Pac Industrial Co., Ltd. (King Pac) and Master Packaging Co., Ltd... administrative review of the antidumping duty order on PRCBs from Thailand covering the POR, in accordance with...
Veneer-reinforced particleboard for exterior structural composition board
Chung-Yun Hse; Todd F. Shupe; Hui Pan; Fu Feng
2012-01-01
Two experiments were performed to determine the physical and mechanical characteristics of panels consisting of a veneer face and a particleboard core composed of mixed wood particles/powdered-recycled polyethylene (PE) bag waste (MWP) using urea-formaldehyde (UF) resin as a binder. The addition of 25 percent powdered-recycled PE bag waste to the MWP panels did not...
Wang, Yuling; Zhang, Xinfu; Wang, Ran; Bai, Yingxin; Liu, Chenglian; Yuan, Yongbing; Yang, Yingjie; Yang, Shaolan
2017-01-01
Preharvest bagging is a simple, grower-friendly and safe physical protection technique commonly applied to many fruits, and the application of different fruit bags can have various effects. To explore the molecular mechanisms underlying the fruit quality effects of different bagging treatments, digital gene expression (DGE) profiling of bagged and unbagged ‘Chili’ (Pyrus bretschneideri Rehd.) pear pericarp during development was performed. Relative to unbagged fruit, a total of 3022 and 769 differentially expressed genes (DEGs) were detected in the polyethylene (PE)-bagged and non-woven fabric-bagged fruit, respectively. DEGs annotated as photosynthesis-antenna proteins and photosynthesis metabolism pathway were upregulated in non-woven fabric-bagged fruit but downregulated in the PE-bagged fruit. Non-woven fabric bagging inhibited lignin synthesis in ‘Chili’ pear pericarp by downregulating DEGs involved in phenylpropanoid biosynthesis; consequently, the fruit lenticels in non-woven fabric-bagged fruit were smaller than those in the other treatments. The results indicate that the non-woven fabric bagging method has a positive effect on the appearance of ‘Chili’ pear fruit but neither of the two bagging treatments is conducive to the accumulation of soluble sugar. PMID:28280542
Degradation of Green Polyethylene by Pleurotus ostreatus.
da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi
2015-01-01
We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers.
D'Angelo, Giacomo; Elhussieny, Amal; Faisal, Marwa; Fahim, I S; Everitt, Nicola M
2018-05-22
The use of biodegradable materials for shopping bag production, and other products made from plastics, has recently been an object of intense research-with the aim of reducing the environmental burdens given by conventional materials. Chitosan is a potential material because of its biocompatibility, degradability, and non-toxicity. It is a semi-natural biopolymeric material produced by the deacetylation of chitin, which is the second most abundant natural biopolymer (after cellulose). Chitin is found in the exoskeleton of insects, marine crustaceans, and the cell walls of certain fungi and algae. The raw materials most abundantly available are the shells of crab, shrimp, and prawn. Hence, in this study chitosan was selected as one of the main components of biodegradable materials used for shopping bag production. Firstly, chitin was extracted from shrimp shell waste and then converted to chitosan. The chitosan was next ground to a powder. Although, currently, polyethylene bags are prepared by blown extrusion, in this preliminary research the chitosan powder was dissolved in a solvent and the films were cast. Composite films with several fillers were used as a reinforcement at different dosages to optimize mechanical properties, which have been assessed using tensile tests. These results were compared with those of conventional polyethylene bags used in Egypt. Overall, the chitosan films were found to have a lower ductility but appeared to be strong enough to fulfill shopping bag functions. The addition of fillers, such as chitin whiskers and rice straw, enhanced the mechanical properties of chitosan films, while the addition of chitin worsened overall mechanical behavior.
NASA Astrophysics Data System (ADS)
Zainuri; Jayaputra; Sauqi, A.; Sjah, T.; Desiana, R. Y.
2018-01-01
Tomato is very important vegetable crop but has short shelf life. The objective of this research was to determine the effect of ozone and packaging combination treatment on the quality and the storage life of tomato fruit. There were six treatments including: control (without ozone and packaging); without ozone and packaged with polyethylene bag; without ozone and polyethylene terephtalate punnet; with ozone but without packaging; with ozone and packaged with polyethylene bag; and with ozone and polyethylene terephtalate punnet. Each treatment was made into 3 replications. Tomato samples were harvested at turning stage. Ozone treatment was applied for 60 seconds. Tomatoes were then treated with and without packaging. The fruit were then stored at room temperature for up to 12 days. The parameters for assessment were water content, color, texture, weight loss and the population of naturally contamination Escherichia coli. Each parameter was assessed on day 0, 6 and 12 of storage. The results indicated that combination of ozone and packaging treatments significantly affected the physical and biochemical changes (water content, color, texture and weight loss) of the fruit, suppressed the microbiological contamination on the fruit and maintained fruit freshness or quality after 12 days of storage. The combination of ozone and perforated polyethylene packaging treatment was the best treatment to maintain the quality and prolonged the shelf life of tomato fruit to be 12 days at room temperature.
Stavrou, George; Fotiadis, Kyriakos; Panagiotou, Dimitrios; Faitatzidou, Afroditi; Kotzampassi, Katerina
2015-05-01
Due to the current economic crisis in Greece, major cutbacks on healthcare costs have been imposed, resulting in a shortage of surgical supplies, including laparoscopic materials. In an attempt to reduce costs, we developed a homemade specimen retrieval bag for laparoscopic cholecystectomy. We used the polyethylene bag containing the catheter of a Redon drainage set. The bag was cut in half and pleated longitudinally; then, the gallbladder was placed in the bag and removed through the umbilicus with a grasping forceps. From September 2011 to June 2012, we used our homemade bag on 85 patients undergoing laparoscopic cholecystectomy. No rupture, accidental opening, or bile leak was observed. The learning curve was found to be five cases. Our homemade specimen retrieval bag seems to be a safe, effective, and easy tool for tissue extraction. Further studies need to be conducted to evaluate its full potential. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Degradation of Green Polyethylene by Pleurotus ostreatus
da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi
2015-01-01
We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers. PMID:26076188
Nakano, Tsutomu
Portable radiography is available for the patient who is postoperative, severe condition and old. As they have weak immunity, it is important to prevent from hospital infection. Wrapping of 14×14 inch or 14×17 inch X-ray cassette by a plastic (polyethylene) bag a little bit bigger than the cassette was proposed for infection prevention in portable radiography. How to wrap the cassette easily was devised using the sheath of a polyester bag cutting at the bottom. In radiography with the grid, the plastic bag fastens the X-ray grid to the cassette substantially without any other means. In addition, the wrapped cassette, or the cassette with grid covered by the foamed plastic sheet alleviates patient's discomfort.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... INFORMATION CONTACT: Jerrold Freeman or Yang Chun, AD/CVD Operations, Office 5, Import Administration... establishments, e.g., grocery, drug, convenience, department, specialty retail, discount stores, and restaurants...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-08
... Richard Rimlinger, AD/CVD Operations, Office 5, Import Administration, International Trade Administration... stores, and restaurants, to their customers to package and carry their purchased products. The scope of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... INFORMATION CONTACT: Dmitry Vladimirov or Minoo Hatten, AD/ CVD Operations, Office 1, Import Administration... establishments, e.g., grocery, drug, convenience, department, specialty retail, discount stores, and restaurants...
78 FR 28194 - Polyethylene Retail Carrier Bags From the People's Republic of China: Initiation of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... Countervailing Duty Orders on Certain Pasta From Italy: Affirmative Preliminary Determinations of Circumvention...-Circumvention Inquiry of the Antidumping and Countervailing Duty Orders on Certain Pasta from Italy: Affirmative...
Michelot, Harmonie; Fu, Shanlin; Stuart, Barbara; Shimmon, Ronald; Raymond, Tony; Crandell, Tony; Roux, Claude
2017-04-01
In the area of clandestine laboratory investigations, plastic bags are used to collect and store evidence, such as solvents, precursors, and other compounds usually employed for the manufacturing of drugs (although liquids may be stored in glass containers within the bags first). In this study, three different types of plastic bags were provided by the NSW Police Force and investigated for their suitability for evidence collection: two different types of low-density polyethylene (LDPE) bags and one type of polyvinyl chloride (PVC) bag. Three different experiments were carried out: (1) storing relevant chemicals in the bags for up to three months; (2) exposing the bags including their content to accelerated conditions using a weatherometer, and (3) simulating an expected real case scenario. This study indicates that drugs and related chemicals stored in plastic bags may lead to a change in the composition of the chemical and an alteration or degradation of the plastic bag. All experiments led to the same conclusion: the polyvinyl chloride bags appeared to be the most affected. LDPE bags seem to be more appropriate for routine use, although it has been established they are not suitable for the collection of liquids (unless pre-packaged in, for instance, a glass container). Copyright © 2017 Elsevier B.V. All rights reserved.
Vroblesky, Don A.; Pravecek, Tasha
2002-01-01
Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.
Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng
2016-06-01
Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment.
Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng
2016-01-01
Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment. PMID:27386559
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Calvert or Jun Jack Zhao, AD/CVD Operations, Office 6, Import Administration, International Trade..., convenience, department, specialty retail, discount stores, and restaurants to their customers to package and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
..., specialty retail, discount stores, and restaurants, to their customers to package and carry their purchased.... Selection of Information Used as Facts Available Where the Department applies an adverse facts-available...
F. T. Bonner
1973-01-01
Cherrybark, Shumard, and water oak acorns can be stored for 3 years or longer if kept at a moisture content of at least 30 percent of fresh weight and at a temperature of 37F. Polyethylene bags are good containers.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
...: Case History On November 3, 2009, the Department published in the Federal Register its preliminary..., convenience, department, specialty retail, discount stores, and restaurants to their customers to package and...
Transport stability of pesticides and PAHs sequestered in polyethylene passive sampling devices.
Donald, Carey E; Elie, Marc R; Smith, Brian W; Hoffman, Peter D; Anderson, Kim A
2016-06-01
Research using low-density polyethylene (LDPE) passive samplers has steadily increased over the past two decades. However, such research efforts remain hampered because of strict guidelines, requiring that these samplers be quickly transported in airtight metal or glass containers or foil wrapped on ice. We investigate the transport stability of model pesticides and polycyclic aromatic hydrocarbons (PAHs) with varying physicochemical properties using polytetrafluoroethylene (PTFE) bags instead. Transport scenarios were simulated with transport times up to 14 days with temperatures ranging between -20 and 35 °C. Our findings show that concentrations of all model compounds examined were stable for all transport conditions tested, with mean recoveries ranging from 88 to 113 %. Furthermore, PTFE bags proved beneficial as reusable, lightweight, low-volume, low-cost alternatives to conventional containers. This documentation of stability will allow for more flexible transportation of LDPE passive samplers in an expanding range of research applications while maintaining experimental rigor.
Transport stability of pesticides and PAHs sequestered in polyethylene passive sampling devices
Donald, Carey E.; Elie, Marc R.; Smith, Brian W.; Hoffman, Peter D.; Anderson, Kim A.
2016-01-01
Research using low-density polyethylene (LDPE) passive samplers has steadily increased over the past two decades. However such research efforts remain hampered because of strict guidelines, requiring that these samplers be quickly transported in airtight metal or glass containers, or foil-wrapped on ice. We investigate the transport stability of model pesticides and polycyclic aromatic hydrocarbons (PAHs) with varying physicochemical properties using polytetrafluoroethylene (PTFE) bags instead. Transport scenarios were simulated with transport times up to 14 days with temperatures ranging between -20 and 35 degrees Celsius. Our findings show that concentrations of all model compounds examined were stable for all transport conditions tested, with mean recoveries ranging from 88% to 113%. Furthermore, PTFE bags proved beneficial as reusable, lightweight, low-volume, low-cost alternatives to conventional containers. This documentation of stability will allow for more flexible transportation of LDPE passive samplers in an expanding range of research applications while maintaining experimental rigor. PMID:26983811
Degradation of Degradable Starch-Polyethylene Plastics in a Compost Environment †
Johnson, Kenneth E.; Pometto, Anthony L.; Nikolov, Zivko L.
1993-01-01
The degradation performance of 11 types of commercially produced degradable starch-polyethylene plastic compost bags was evaluated in municipal yard waste compost sites at Iowa State University (Ames) and in Carroll, Dubuque, and Grinnell, Iowa. Masterbatches for plastic production were provided by Archer Daniels Midland Co. (Decatur, Ill.), St. Lawrence Starch Co. Ltd. (Mississauga, Ontario, Canada), and Fully Compounded Plastics (Decatur, Ill.). Bags differed in starch content (5 to 9%) and prooxidant additives (transition metals and a type of unsaturated vegetable oil). Chemical and photodegradation properties of each material were evaluated. Materials from St. Lawrence Starch Co. Ltd. and Fully Compounded Plastics photodegraded faster than did materials from Archer Daniels Midland Co., whereas all materials containing transition metals demonstrated rapid thermal oxidative degradation in 70°C-oven (dry) and high-temperature, high-humidity (steam chamber) treatments. Each compost site was seeded with test strips (200 to 800 of each type) taped together, which were recovered periodically over an 8- to 12-month period. At each sampling date, the compost row temperature was measured (65 to 95°C), the location of the recovered test strip was recorded (interior or exterior), and at least four strips were recovered for evaluation. Degradation was followed by measuring the change in polyethylene molecular weight distribution via high-temperature gel permeation chromatography. Our initial 8-month study indicated that materials recovered from the interior of the compost row demonstrated very little degradation, whereas materials recovered from the exterior degraded well. In the second-year study, however, degradation was observed in several plastic materials recovered from the interior of the compost row by month 5 at the Carroll site and almost every material by month 12 at the Grinnell site. The plastic bags collected from each community followed a similar degradation pattern. To our knowledge, this is the first scientific study demonstrating significant polyethylene degradation by these materials in a compost environment. PMID:16348914
Degradation of degradable starch-polyethylene plastics in a compost environment.
Johnson, K E; Pometto, A L; Nikolov, Z L
1993-04-01
The degradation performance of 11 types of commercially produced degradable starch-polyethylene plastic compost bags was evaluated in municipal yard waste compost sites at Iowa State University (Ames) and in Carroll, Dubuque, and Grinnell, Iowa. Masterbatches for plastic production were provided by Archer Daniels Midland Co. (Decatur, Ill.), St. Lawrence Starch Co. Ltd. (Mississauga, Ontario, Canada), and Fully Compounded Plastics (Decatur, Ill.). Bags differed in starch content (5 to 9%) and prooxidant additives (transition metals and a type of unsaturated vegetable oil). Chemical and photodegradation properties of each material were evaluated. Materials from St. Lawrence Starch Co. Ltd. and Fully Compounded Plastics photodegraded faster than did materials from Archer Daniels Midland Co., whereas all materials containing transition metals demonstrated rapid thermal oxidative degradation in 70 degrees C-oven (dry) and high-temperature, high-humidity (steam chamber) treatments. Each compost site was seeded with test strips (200 to 800 of each type) taped together, which were recovered periodically over an 8- to 12-month period. At each sampling date, the compost row temperature was measured (65 to 95 degrees C), the location of the recovered test strip was recorded (interior or exterior), and at least four strips were recovered for evaluation. Degradation was followed by measuring the change in polyethylene molecular weight distribution via high-temperature gel permeation chromatography. Our initial 8-month study indicated that materials recovered from the interior of the compost row demonstrated very little degradation, whereas materials recovered from the exterior degraded well. In the second-year study, however, degradation was observed in several plastic materials recovered from the interior of the compost row by month 5 at the Carroll site and almost every material by month 12 at the Grinnell site. The plastic bags collected from each community followed a similar degradation pattern. To our knowledge, this is the first scientific study demonstrating significant polyethylene degradation by these materials in a compost environment.
Anomalous diffusion of poly(ethylene oxide) in agarose gels.
Brenner, Tom; Matsukawa, Shingo
2016-11-01
We report on the effect of probe size and diffusion time of poly(ethylene) oxide in agarose gels. Time-dependence of the diffusion coefficient, reflecting anomalous diffusion, was observed for poly(ethylene) oxide chains with hydrodynamic radii exceeding about 20nm at an agarose concentration of 2%. The main conclusion is that the pore distribution includes pores that are only several nm across, in agreement with scattering reports in the literature. Interpretation of the diffusion coefficient dependence on the probe size based on a model of entangled rigid rods yielded a rod length of 72nm. Copyright © 2016. Published by Elsevier B.V.
1975-10-01
pesticides were all taken on July 18, 1974. All samples were secured in six (6) ounce po.lyethylene Whirl-pac bags or one (1) liter polyethylene...tested for nutrients, minerals, o,~gen demands, trace metal’s and pesticides throughout the course of the study. The purpose of this quality control...Pastures, lawns, fields Self-heal Pycnanthemum albescens Open woods along streams White Basil Pycnanthemum muticum Dry open woods Mountain Mint Pycnanthemum
Khuu, H M; Cowley, H; David-Ocampo, V; Carter, C S; Kasten-Sportes, C; Wayne, A S; Solomon, S R; Bishop, M R; Childs, R M; Read, E J
2002-01-01
Container integrity is critical for maintaining sterility of cryopreserved cellular therapy products. We investigated a series of catastrophic bag failures, first noticed in early 2001. Process records were reviewed for all PBPC and lymphocyte products cryopreserved in bags from January 2000 through April 2002. Patient charts were also reviewed. One thousand two hundred and four bags were removed from storage for infusion to 261 patients. All products had been cryopreserved in Cryocyte poly(ethylene co-vinyl acetate) (EVA) bags in either 10% DMSO or 5% DMSO and 6% pentastarch. Product volumes were 25-75 mL, and bags were stored with overwrap bags in a liquid nitrogen tank. From January 2000 to April 2001, failure occurred in 10 of 599 (1.7%) bags. From May 2001 to April 2002, 58 of 605 (9.6%) bags failed, typically with extensive fractures that were visible before thaw. Of the 58 that failed, 24 were salvaged by aseptic methods and infused to patients under antibiotic coverage; 10 of those 24 (42%) had positive bacterial cultures. Bag failures were not related to product type, cryoprotectant solution, liquid versus vapor storage, or freezer location. Failures were linked to use of four Cryocyte bag lots manufactured in 2000 and 2001. After replacing these lots with a 1999 Cryocyte lot and with KryoSafe polyfluoroethylene polyfluoropropylene (FEP) bags, no more failures occurred in 75 and 102 bags, respectively, thawed through April 2002. High rates of bag failure were associated with four Cryocyte bag lots. No serious adverse patient effects occurred, but bag failures led to microbial contamination, increased product preparation time, increased antibiotic use, and increased resource expenditure to replace products.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... Date: July 7, 2010. FOR FURTHER INFORMATION CONTACT: Dustin Ross or Minoo Hatten, AD/CVD Operations... stores, and restaurants, to their customers to package and carry their purchased products. The scopes of...
NASA Astrophysics Data System (ADS)
Uemoto, H.; Shoji, T.; Uchida, S.
2014-04-01
The biological filter capable of simultaneous nitrification and denitrification was constructed for aquatic animal experiments in the International Space Station (ISS). The biological filter will be used to remove harmful ammonia excreted from aquatic animals in a closed water circulation system (Aquatic Habitat). The biological filter is a cylindrical tank packed with porous glass beads for nitrification and dual plastic bags for denitrification. The porous beads are supporting media for Nitrosomonas europaea and Nitrobacter winogradskyi. The N. europaea cells and N. winogradskyi cells on the porous beads, oxidize the excreted ammonia to nitrate via nitrite. On the other hand, the dual bag is composed of an outer non-woven fabric bag and an inner non-porous polyethylene film bag. The outer bag is supporting media for Paracoccus pantotrophus. The inner bag, in which 99.5% ethanol is packed, releases the ethanol slowly, since ethanol can permeate through the non-porous polyethylene film. The P. pantotrophus cells on the outer bag reduce the produced nitrate to nitrogen gas by using the released ethanol as an electron donor for denitrification. The biological filter constructed in this study consequently removed the ammonia without accumulating nitrate. Most of the excess ethanol was consumed and did not affect the nitrification activity of the N. europaea cells and N. winogradskyi cells severely. In accordance with the aquatic animal experiments in the ISS, small freshwater fish had been bred in the closed water circulation system equipped with the biological filter for 90 days. Ammonia concentration daily excreted from fish is assumed to be 1.7 mg-N/L in the recirculation water. Under such conditions, the harmful ammonia and nitrite concentrations were kept below 0.1 mg-N/L in the recirculation water. Nitrate and total organic carbon concentrations in the recirculation water were kept below 5 mg-N/L and 3 mg-C/L, respectively. All breeding fish were alive and ate the feed well. The results show that the nitrification and denitrification abilities of the biological filter sufficed to keep water quality for aquatic animal experiments in the ISS. This simple and effective system is certainly applicable to aquarium systems and aquaculture systems.
Gas diffusion liquid storage bag and method of use for storing blood
NASA Technical Reports Server (NTRS)
Bank, H.; Cleland, E. L. (Inventor)
1979-01-01
The shelf life of stored whole blood may be doubled by adding a buffer which maintains a desired pH level. However, this buffer causes the generation of CO2 which, if not removed at a controlled rate, causes the pH value of the blood to decrease, which shortens the useful life of the blood. A blood storage bag is described which permits the CO2 to be diffused out at a controlled rate into the atmosphere, thereby maintaining the desired pH value and providing a bag strong enough to permit handling.
F. T. Bonner; H. E. Kennedy
1973-01-01
Water tupelo seeds can be stored for at least 30 months without significant losses in viability. Moisture contents of 20 percent or lower and polyethylene bags with walls 4 mils thick gave the best results at 38F. At 14F, seed moisture must be below 10 percent.
Komatani, A; Akutsu, T; Yamaguchi, K; Onodera, Y; Manaka, Y; Takahashi, K
1996-04-01
99mTc-gas (TECHNEGAS) is a 99mTc-labeled micro-aerosol which is considered to have different behavior from 133Xe or 81mKr gas. In order to estimate contamination levels to room air arising from the use of 99mTc-gas, filtered expired air during administration and 1, 2, 3, 5, 10 min after the administration were collected in each polyethylene bag. Radioactivities of the polyethylene bags, used filter and the lung were measured with 3-head scintillation camera. The activity of the expired air diminished within 6-10 min and about 5% of whole discharged 99mTc-gas was released to room air. The activity of the used filter was two times of the lung. According to these results, it is recommended that the 99mTc-gas may be administrated in a exclusive room. The administrated patient and used filter must be remain in the exclusive room.
Pahl, Ina; Dorey, Samuel; Barbaroux, Magali; Lagrange, Bertille; Frankl, Heike
2014-01-01
This paper describes an approach of extractables determination and gives information on extractables profiles for gamma-sterilized single-use bags with polyethylene inner contact surfaces from five different suppliers. Four extraction solvents were chosen to capture a broad spectrum of extractables. An 80% ethanol extraction was used to extract compounds that represent the bag resin and the organic additives used to stabilize or process the polymer films which would not normally be water-soluble. Extractions with1 M HCl extract, 1 M NaOH extract, and 1% polysorbate 80 were used to bracket potential leachables in biopharmaceutical process fluids. The objective of this study was to obtain extractables data from different bags under identical test conditions. All the bags had a nominal capacity of 5 L, were gamma-irradiated prior to testing, and were tested without modification except that connectors, if any, were removed prior to filling. They were extracted at 40 °C for 30 days. Extractables from all bag extracts were identified and the concentration estimated using headspace gas chromatography-mass spectrometry and flame ionization detection for volatile compounds and for semi-volatile compounds, and liquid chromatography-mass spectrometry for targeted compounds. Metals and other elements were detected and quantified by inductively coupled plasma mass spectrometry analysis. The results showed a variety of extractables, some of which are not related to the inner polyethylene contact layer. Detected organic compounds included oligomers from polyolefins, additives and their degradation products, and oligomers from the fill tubing. The concentrations of extractables were in the range of parts-per-billion to parts-per-million per bag under the applied extraction conditions. Toxicological effects of the extractables are not addressed in this paper. Extractables and leachables characterization supports the validation and the use of single-use bags in the biopharmaceutical manufacturing process. This paper describes an approach for the identification and quantification of extractable substances for five commercially available single-use bags from different suppliers under identical analytical conditions. Four test formulations were used for the extraction, and extractables were analyzed with appropriately qualified analytical techniques, allowing for the detection of a broad range of released chemical compounds. Polymer additives such as antioxidants and processing aids and their degradation products were found to be the source of most of the extracted compounds. The concentration of extractables ranged from parts-per-billion to parts-per-million under the applied extraction conditions. © PDA, Inc. 2014.
1992-01-01
instrument logbook was maintained, but all calibration printouts for the SFC/MS were put in a dedicated loose- leaf notebook. The temperature of the...to-date temperature - monitoring sheets were located at the freezer. Each worker maintained a project-specific personal logbook to enter data...driven 10-cm-diameter gate valve into a 1.5-m3 carbon-impregnated polyethylene ( Velostat 7") sampling bag. The bag, constructed of electrically
Alhashimi, Raghad Abdulrazzaq; Mannocci, Francesco; Sauro, Salvatore
2017-05-01
To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were determined using differential scanning calorimetry (DSC). The cytocompatibility of the experimental composites used in this study was assessed using human osteoblasts and statistically analysed using the Pairwise t-test (p<0.05). Bioglass and SrO fillers were well distributed within the resin matrix and increased both the thermal properties and the radiopacity of the polyethylene matrix. The FTIR showed a clear formation of calcium-phosphates, while, MTT and AlamrBlue tests demonstrated no deleterious effects on the metabolic activity of the osteoblast-like cells. BAG-reinforced polyethylene composites may be suitable as obturation materials for endodontic treatment. Since their low melting temperature, such innovative composites may be easily removed in case of root canal retreatment. Moreover, their biocompatibility and bioactivity may benefit proliferation of human osteoblast cells at the periapical area of the root. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... Calvert or Jun Jack Zhao, AD/CVD Operations, Office 6, Import Administration, International Trade... Operations, Office 6, ``Verification of the Questionnaire Responses Submitted by Chin Sheng Company, Ltd... concerning banking in Vietnam. See Memorandum to Barbara E. Tillman, Director, AD/ CVD Operations, Office 6...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
.... See the ``Selection of Respondents'' section below. The order on PRCBs from Thailand was revoked in... establishments, e.g., grocery, drug, convenience, department, specialty retail, discount stores, and restaurants... convenience and customs purposes, the written description of the scope of the order is dispositive. Selection...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... establishments, e.g., grocery, drug, convenience, department, specialty retail, discount stores, and restaurants... convenience and customs purposes, the written description of the scope of the order is dispositive. Selection... information available at the time of selection, or exporters and producers accounting for the largest volume...
Measurement of radon diffusion in polyethylene based on alpha detection
NASA Astrophysics Data System (ADS)
Rau, Wolfgang
2012-02-01
Radon diffusion in different materials has been measured in the past. Usually the diffusion measurements are based on a direct determination of the amount of radon that diffuses through a thin layer of material. Here we present a method based on the measurement of the radon daughter products which are deposited inside the material. Looking at the decay of 210Po allows us to directly measure the exponential diffusion profile characterized by the diffusion length. In addition we can determine the solubility of radon in PE. We also describe a second method to determine the diffusion constant based on the short-lived radon daughter products 218Po and 214Po, using the identical experimental setup. Measurements for regular polyethylene (PE) and High Molecular Weight Polyethylene (HMWPE) yielded diffusion lengths of (1.3±0.3) mm and (0.8±0.2) mm and solubilities of 0.5±0.1 and 0.7±0.2, respectively, for the first method; the diffusion lengths extracted from the second method are noticeably larger which may be caused by different experimental conditions during diffusion.
76 FR 34653 - National Conference on Weights and Measures 2011 Annual Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
... polyethylene sheeting and bags. Item 260-3. Moisture Allowance for Pasta Products--The L&R Committee will consider a proposal to adopt a 3% moisture allowance for macaroni, noodle, and like products (pasta... shortages in the weight of packages of pasta are reasonable. Dated: June 8, 2011. Charles H. Romine, Acting...
Phase I prototype digesters demonstrated the feasibility of biogas generation, using simple materials such as trash cans, oil drums, and polyethylene bags – a full scale digester, based on prototype biogas production volumes, range from 5000 to 9000 liters, depending on ...
USDA-ARS?s Scientific Manuscript database
We examined the survival of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica Thompson inoculated on commercially packed table grapes under simulated in-transit conditions (1.1ºC with 90% RH) for up to three weeks. Grapes were packed in perforated polyethylene cluster bags, w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibunnisa; Mathur, P.B.; Bano, Z.
1971-11-01
Effect of cobalt-60 gamma rays at a dose-rate of 6 krad on the storage behavior of garlic bulbs packaged individually and in lots of eight in perforated polyethylene bags of 200 gauge was investigated at room temperature (75 to 90 deg F) and cold temperature (32 to 35 deg F) under relative humidity 85 to 90%. Irradiation was immediately followed by an increase in the rate of respiration in the garlic bulbs followed by a decrease in the rate of respiration towards the later part of the storage period. At room temperature, sprouting was inhibited to a considerable extent, whilemore » in cold storage after a storage period of 9 months sprouting was completely prevented. The percentage sprouting was more in large size garlic bulbs than in small sized ones. For extension of storage life, packaging singly in polyethylene bags, selection of small sized garlic bulbs, storage at 32 to 35 deg F and irradiation with 6 krad of cobalt 60 gamma rays are recommended. (INIS)« less
Koziel, Jacek A; Spinhirne, Jarett P; Lloyd, Jenny D; Parker, David B; Wright, Donald W; Kuhrt, Fred W
2005-08-01
Odorous gases associated with livestock operations are complex mixtures of hundreds if not thousands of compounds. Research is needed to know how best to sample and analyze these compounds. The main objective of this research was to compare recoveries of a standard gas mixture of 11 odorous compounds from the Carboxen/PDMS 75-microm solid-phase microextraction fibers, polyvinyl fluoride (PVF; Tedlar), fluorinated ethylene propylene copolymer (FEP; Teflon), foil, and polyethylene terephthalate (PET; Melinex) air sampling bags, sorbent 2,b-diphenylene-oxide polymer resin (Tenax TA) tubes, and standard 6-L Stabilizer sampling canisters after sample storage for 0.5, 24, and 120 (for sorbent tubes only) hrs at room temperature. The standard gas mixture consisted of 7 volatile fatty acids (VFAs) from acetic to hexanoic, and 4 semivolatile organic compounds including p-cresol, indole, 4-ethylphenol, and 2'-aminoacetophenone with concentrations ranging from 5.1 ppb for indole to 1270 ppb for acetic acid. On average, SPME had the highest mean recovery for all 11 gases of 106.2%, and 98.3% for 0.5- and 24-hr sample storage time, respectively. This was followed by the Tenax TA sorbent tubes (94.8% and 88.3%) for 24 and 120 hr, respectively; PET bags (71.7% and 47.2%), FEP bags (75.4% and 39.4%), commercial Tedlar bags (67.6% and 22.7%), in-house-made Tedlar bags (47.3% and 37.4%), foil bags (16.4% and 4.3%), and canisters (4.2% and 0.5%), for 0.5 and 24 hr, respectively. VFAs had higher recoveries than semivolatile organic compounds for all of the bags and canisters. New FEP bags and new foil bags had the lowest and the highest amounts of chemical impurities, respectively. New commercial Tedlar bags had measurable concentrations of N,N-dimethyl acetamide and phenol. Foil bags had measurable concentrations of acetic, propionic, butyric, valeric, and hexanoic acids.
System for and method of freezing biological tissue
NASA Technical Reports Server (NTRS)
Williams, T. E.; Cygnarowicz, T. A. (Inventor)
1978-01-01
Biological tissue is frozen while a polyethylene bag placed in abutting relationship against opposed walls of a pair of heaters. The bag and tissue are cooled with refrigerating gas at a time programmed rate at least equal to the maximum cooling rate needed at any time during the freezing process. The temperature of the bag, and hence of the tissue, is compared with a time programmed desired value for the tissue temperature to derive an error indication. The heater is activated in response to the error indication so that the temperature of the tissue follows the desired value for the time programmed tissue temperature. The tissue is heated to compensate for excessive cooling of the tissue as a result of the cooling by the refrigerating gas. In response to the error signal, the heater is deactivated while the latent heat of fusion is being removed from the tissue while the tissue is changing phase from liquid to solid.
Soft tissue decomposition of submerged, dismembered pig limbs enclosed in plastic bags.
Pakosh, Caitlin M; Rogers, Tracy L
2009-11-01
This study examines underwater soft tissue decomposition of dismembered pig limbs deposited in polyethylene plastic bags. The research evaluates the level of influence that disposal method has on underwater decomposition processes and details observations specific to this scenario. To our knowledge, no other study has yet investigated decomposing, dismembered, and enclosed remains in water environments. The total sample size consisted of 120 dismembered pig limbs, divided into a subsample of 30 pig limbs per recovery period (34 and 71 days) for each treatment. The two treatments simulated non-enclosed and plastic enclosed disposal methods in a water context. The remains were completely submerged in Lake Ontario for 34 and 71 days. In both recovery periods, the non-enclosed samples lost soft tissue to a significantly greater extent than their plastic enclosed counterparts. Disposal of remains in plastic bags therefore results in preservation, most likely caused by bacterial inhibition and reduced oxygen levels.
Kwak, Jae; Fan, Maomian; Martin, Jennifer A; Ott, Darrin K; Grigsby, Claude C
2017-01-01
Gas sampling bags have been used for collecting air samples. Tedlar bags are most commonly used, but bleed background chemicals such as N,N-dimethylacetamide and phenol. It is often necessary to remove the contaminant by flushing the bags with pure nitrogen or air. In this study, we identified four chloroprene dimerization products as background contaminants emitted from ALTEF bags that are made of a proprietary polyvinylidene difluoride (PVDF). No monomer chloroprene was detected in the bags analyzed. All of the dimers gradually increased once bags were filled with nitrogen due to diffusion from the bag surface. Flushing the bags with nitrogen reduced their concentrations, but was not effective for removing the contaminants. When the bags that had been flushed with nitrogen 5 times were left for 24 h, they increased again, indicating that the dimers were constantly emitted from the ALTEF bag surface. To our knowledge, these compounds have never been demonstrated in ALTEF or other PVDF bags. Our finding indicates that ALTEF might be incorporated with Neoprene (chloroprene-based polymer) during its manufacturing process.
Hmel, Peter J; Kennedy, Anthony; Quiles, John G; Gorogias, Martha; Seelbaugh, Joseph P; Morrissette, Craig R; Van Ness, Kenneth; Reid, T J
2002-07-01
Frozen blood components are shipped on dry ice. The lower temperature (-70 degrees C in contrast to usual storage at -30 degrees C) and shipping conditions may cause a rent in the storage bag, breaking sterility and rendering the unit useless. The rate of loss can reach 50 to 80 percent. To identify those bags with lower probability of breaking during shipment, the thermal and physical properties of blood storage bags were examined. Blood storage bags were obtained from several manufacturers and were of the following compositions: PVC with citrate, di-2-ethylhexylphthalate (DEHP), or tri-2-ethylhexyl-tri-mellitate (TEHTM) plasticizer; polyolefin (PO); poly(ethylene-co-vinyl acetate) (EVA); or fluorinated polyethylene propylene (FEP). The glass transition temperature (Tg) of each storage bag was determined. Bag thickness and measures of material strength (tensile modulus [MT] and time to achieve 0.5 percent strain [T0.5%]) were evaluated. M(T) and T0.5% measurements were made at 25 and -70 degrees C. Response to applied force at -70 degrees C was measured using an impact testing device and a drop test. The Tg of the bags fell into two groups: 70 to 105 degrees C (PO, FEP) and -50 to -17 degrees C (PVC with plasticizer, EVA). Bag thickness ranged from 0.14 to 0.41 mm. Compared to other materials, the ratios of M(T) and T0.5% for PVC bags were increased (p < or = 0.001) indicating that structural changes for PVC were more pronounced upon cooling from 25 to -70 degrees C. Bags containing EVA were more shock resistant, resulting in the lowest rate of breakage (10% breakage) when compared with PO (60% breakage, p = 0.0573) or PVC (100% breakage, p = 0.0001). Blood storage bags made of EVA appear better suited for shipping frozen blood components on dry ice and are cost-effective replacements for PVC bags. For the identification of blood storage bags meeting specific storage requirements, physical and thermal analyses of blood storage bags may be useful and remove empiricism from the process.
Expression of Anti-apoptotic Protein BAG3 in Human Sebaceous Gland Carcinoma of the Eyelid.
Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi
2017-04-01
Bcl-2-associated athanogene 3 (BAG3), a co-chaperone of heat shock protein 70 (HSP70), has been shown to play a role in anti-apoptosis of various malignant tumors. In this study, the expression of BAG3 was examined in human sebaceous gland carcinoma of the eyelid. The expression of BAG3 was evaluated by immunohistochemistry of surgical samples from 5 patients with sebaceous gland carcinoma in the eyelid. BAG3 was positive diffusely in the cytoplasm in all patients. The average positive rate of BAG3 was 73.0±26.0% in tumor cells of all patients. BAG3 was highly expressed in sebaceous gland carcinoma of the eyelid. BAG3 may play an important role in the pathogenesis and progression of sebaceous gland carcinoma of the eyelid. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Hamlin, Heather J; Marciano, Kathleen; Downs, Craig A
2015-11-01
Nonylphenol (NP) is a non-ionic surfactant used extensively in industrial applications, personal care products, and many plastics. We exposed marine orchid dottybacks (Pseudochromis fridmani) for 48h to either glass, Teflon, or two bags labeled as FDA food-grade polyethylene (PE1 and PE2) from different manufacturers. The PE2 bags leached high levels of NP into the contact water, which were taken up by the fish, and decreased short and long-term survival. Concentrations of NP that leached from the bags were consistent with 96h LC50 values determined in this study, indicating NP is the likely toxic agent. Despite being similarly labeled, the NP concentrations that leached from the bags and the resultant toxicity to the fish varied dramatically between manufacturers. This study highlights that some plastics, labeled as food-safe, can be highly toxic to aquatic animals, and could pose a greater threat to humans than previously realized. This study also highlights risks for aquatic animals exposed to increasing quantities of plastic waste. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers.
Thompson, Jay M; Hsieh, Ching-Hong; Luthy, Richard G
2015-02-17
Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired CPE without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... respect to when the Department will exercise its discretion to extend this 90-day deadline, interested... intends to exercise its discretion in the future. Opportunity To Request a Review: Not later than the last...-588-854 8/1/11-7/31/12 Malaysia: Polyethylene Retail Carrier Bags A-557-813. 8/1/11-7/31/12 Mexico...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
... length, and which appears ready to undergo the final step in the production process, i.e., to use a die... March 3, 2014. Notification of the International Trade Commission Pursuant to section 781(e) of the Act... Components Produced in the Foreign Country Is a Significant Portion of the Total Value of the Merchandise E...
Tacker, M; Hametner, C; Wepner, B
2002-01-01
Packaging materials are often considered a critical control point in HACCP systems of food companies. Methods for the determination of the microbial contamination rate of plastic cups, especially for dairy products, must reliably detect single moulds, yeasts or coliforms. In this study, a comparison of a specially adapted coating method, impedance method, direct inoculation and membrane filter technique was carried out to determine contamination with yeasts, moulds, coliforms and total bacterial counts using the appropriate agar in each case. The coating method is recommended for determining yeasts, moulds and coliforms as it allows the localization of the microorganisms as well as the determination of single microorganisms. For total bacterial count, a direct inoculation technique is proposed. The employing of simple measures in the production and during transport of packaging materials, such as dust-prevention or tight sealing in polyethylene bags, heavily reduces microbial contamination rates of packaging material. To reduce contamination rates further, electron beam irradiation was applied: plastic cups sealed in polyethylene bags were treated with 4-5 kGy, a dose that already leads to sterile polystyrene and polypropylene cups without influencing mechanical characteristics of the packaging material.
Noe, Gregory B.
2011-01-01
A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.
Havard, Laurent; Fellous-Jerome, Joelle; Bonan, Brigitte; Pradeau, Dominique; Prognon, Patrice
2005-01-01
Peracetic acid (PAA) permeation in flash sterilization was studied using three different plastic infusion bags made of polypropylene and polyethylene, filled with glucose 5% or NaCl 0.9%. The pH was measured and acetic acid (AA) and PAA concentrations were made by reverse phase high-performance liquid chromatography (RP-HPLC). PAA was derivatized by oxidation of methyl tolyl sulfide (MTS) into methyl tolyl sulfoxide (MTSO) detected by ultraviolet (UV) absorbance at 230 nm. The technique has a sensitivity of 0.3 microg x L(-1) and was highly specific. Results showed that pH measurements remain constant and demonstrated the absence of PAA permeation, which was confirmed by the absence of AA permeation regardless of the brand tested, with both unwrapped and overwrapped infusion bags, when flash sterilization is applied. These results allow flash sterilization to be performed with unwrapped infusion bags without any risk of drug degradation by PAA. This makes compounding safer and easier, which improves productivity.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... respect to when the Department will exercise its discretion to extend this 90-day deadline, interested... intends to exercise its discretion in the future. Opportunity To Request a Review: Not later than the last... Products A-588-854 8/1/12-7/31/13 Malaysia: Polyethylene Retail Carrier Bags A-557-813. 8/1/12-7/31/13...
Bagging system, soil stabilization mat, and tent frame for a lunar base
NASA Technical Reports Server (NTRS)
1990-01-01
Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.
Bagging system, soil stabilization mat, and tent frame for a lunar base
NASA Astrophysics Data System (ADS)
1990-11-01
Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.
Translations on Eastern Europe Political, Sociological, and Military Affairs, Number 1481
1977-12-05
crackers, and confectionery goods must be wrapped in several layers of paper and placed in pots or polyethylene bags. Crumbling products (flour, sugar...stable cooperation, unaffected by market fluctuations. 41 Opposite and Common Interests Nonetheless, it must not be ignored that influential circles...jointly on the world market and dividing the profits. This cooperation at present is also gaining in importance in the develop- ment of economic and
NASA Astrophysics Data System (ADS)
Elias, Aishah; Mutalib, Sahilah Abd.; Mustapha, Wan Aida Wan
2016-11-01
A glasshouse experiment was conducted to study the effect of different type of compost and fertilizers on the growth of tomato (Lycopersicon esculentum). The experiment consisted of sixteen treatments. Compost of Empty fruit bunch (EFB) and cow dung is mixed in the ratio of 3:2:1 (soil: compost: sand) and put into 25.4 mm2 polyethylene bag. Organic fertilizer of 10 ml were added twice a week, while inorganic fertilizer was applied at the rate of 3 g per polyethylene bag of soil three weeks after sowing. Treatment without fertilizer application was established as a control. The treatments were laid in a split-split plot design with three replications. Plant growth was assessed using accumulating plant height, fresh weight and dry weight. The application of organic plus inorganic fertilizer had significant effects on plant height. The application of organic fertilizer combination with cow dung gave significant difference to plant mass (fresh and dry). The data obtained from these treatments were significantly higher than the data obtained from the control (without fertilizer). In conclusion, the type of compost did not gave significant difference towards plant height while it only gave significant difference towards plant mass.
Babarinde, Grace Oluwakemi; Adegoke, Gabriel O
2015-03-01
Effects of Xylopia aethiopica (Dunal) A. Richard aqueous extract on the antioxidants of matured tomato fruits at red stage were investigated at 13 ± 2 °C and 80 ± 5 % relative humidity. A sample treated with sodium bicarbonate and untreated samples were included. Samples packaged in low density polyethylene (30 μm thickness) bags were analysed at intervals of 5 days. The treatments revealed statistically significant differences in ascorbic acid content of stored tomato fruits. Fruits treated with 5 % X. aethiopica on day 5 of storage had 21.0 mg/100 g which was significantly (p < 0.05) higher than 18.2 mg/100 g in untreated control samples. At 15th day of storage, ascorbic acid was 10.0 and 14.2 mg/100 g in tomato fruits treated with sodium bicarbonate and 5 % X. aethiopica respectively. The carotenoid and lycopene contents were lower in sodium bicarbonate-treated and the untreated control samples than in X. aethiopica-treated sample. The total phenolic contents were better retained in X. aethiopica-treated tomato than in control. Treatment of tomato fruits with X. aethiopica at 4 & 5 % levels significantly retained the qualities evaluated.
Musioł, Marta; Rydz, Joanna; Janeczek, Henryk; Radecka, Iza; Jiang, Guozhan; Kowalczuk, Marek
2017-06-01
The public awareness of the quality of environment stimulates the endeavor to safe polymeric materials and their degradation products. The aim of the forensic engineering case study presented in this paper is to evaluate the aging process of commercial oxo-degradable polyethylene bag under real industrial composting conditions and in distilled water at 70°C, for comparison. Partial degradation of the investigated material was monitored by changes in molecular weight, thermal properties and Keto Carbonyl Bond Index and Vinyl Bond Index, which were calculated from the FTIR spectra. The results indicate that such an oxo-degradable product offered in markets degrades slowly under industrial composting conditions. Even fragmentation is slow, and it is dubious that biological mineralization of this material would occur within a year under industrial composting conditions. The slow degradation and fragmentation is most likely due to partially crosslinking after long time of degradation, which results in the limitation of low molecular weight residues for assimilation. The work suggests that these materials should not be labeled as biodegradable, and should be further analyzed in order to avoid the spread of persistent artificial materials in nature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).
Achilias, D S; Roupakias, C; Megalokonomos, P; Lappas, A A; Antonakou, Epsilon V
2007-11-19
The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
......... 5/1/11-9/14/11 India: Silicomanganese, A-533-823 5/1/11-4/30/12 Welded Carbon Steel Pipes and Tubes... of Korea: Polyester Staple Fiber, A-580-839 5/1/11-4/30/12 Stainless Steel Plate in Coils, A-580-831...: Circular Welded Carbon Steel Pipes and Tubes, A- 5/1/11-4/30/12 583-008 Polyethylene Retail Carrier Bags, A...
ESD Protective Material and Equipment: A Critical Review
1982-04-01
having touched it. It is also of utmost importance that the resistivity of the work surface not change appreciably with changes in temperature , humidity...settings, e.g., temperature . No attempt was made to estimate the relative ease of heat-sealability of the bag materials, all of which use polyethylene...weapon in the battle against ESD. They function in two different ways. First, they reduce the materials’ coefficient of friction by increasing surface
Jurkiewicz, Elke; Husemann, Ute; Greller, Gerhard; Barbaroux, Magali; Fenge, Christel
2014-01-01
Single-use bioprocessing bags and bioreactors gained significant importance in the industry as they offer a number of advantages over traditional stainless steel solutions. However, there is continued concern that the plastic materials might release potentially toxic substances negatively impacting cell growth and product titers, or even compromise drug safety when using single-use bags for intermediate or drug substance storage. In this study, we have focused on the in vitro detection of potentially cytotoxic leachables originating from the recently developed new polyethylene (PE) multilayer film called S80. This new film was developed to guarantee biocompatibility for multiple bioprocess applications, for example, storage of process fluids, mixing, and cell culture bioreactors. For this purpose, we examined a protein-free cell culture medium that had been used to extract leachables from freshly gamma-irradiated sample bags in a standardized cell culture assay. We investigated sample bags from films generated to establish the operating ranges of the film extrusion process. Further, we studied sample bags of different age after gamma-irradiation and finally, we performed extended media extraction trials at cold room conditions using sample bags. In contrast to a nonoptimized film formulation, our data demonstrate no cytotoxic effect of the S80 polymer film formulation under any of the investigated conditions. The S80 film formulation is based on an optimized PE polymer composition and additive package. Full traceability alongside specifications and controls of all critical raw materials, and process controls of the manufacturing process, that is, film extrusion and gamma-irradiation, have been established to ensure lot-to-lot consistency. © 2014 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Nesic, M.; Popovic, M.; Rabasovic, M.; Milicevic, D.; Suljovrujic, E.; Markushev, D.; Stojanovic, Z.
2018-02-01
In this work, thermal diffusivity of crystalline high-density polyethylene samples of various thickness, and prepared using different procedures, was evaluated by transmission gas-microphone frequency photoacoustics. The samples' composition analysis and their degree of crystallinity were determined from the wide-angle X-ray diffraction, which confirmed that high-density polyethylene samples, obtained by slow and fast cooling, were equivalent in composition but with different degrees of crystallinity. Structural analysis, performed by differential scanning calorimetry, demonstrated that all of the used samples had different levels of crystallinity, depending not only on the preparing procedure, but also on sample thickness. Therefore, in order to evaluate the samples' thermal diffusivity, it was necessary to modify standard photoacoustic fitting procedures (based on the normalization of photoacoustic amplitude and phase characteristics on two thickness levels) for the interpretation of photoacoustic measurements. The calculated values of thermal diffusivity were in the range of the expected literature values. Besides that, the obtained results indicate the unexpected correlation between the values of thermal diffusivity and thermal conductivity with the degree of crystallinity of the investigated geometrically thin samples. The results indicate the necessity of additional investigation of energy transport in macromolecular systems, as well as the possible employment of the photoacoustic techniques in order to clarify its mechanism.
Maldonado-Camargo, Lorena; Rinaldi, Carlos
2016-11-09
We report observations of breakdown of the Stokes-Einstein relation for the rotational diffusivity of polymer-grafted spherical nanoparticles in polymer melts. The rotational diffusivity of magnetic nanoparticles coated with poly(ethylene glycol) dispersed in poly(ethylene glycol) melts was determined through dynamic magnetic susceptibility measurements of the collective rotation of the magnetic nanoparticles due to imposed time-varying magnetic torques. These measurements clearly demonstrate the existence of a critical molecular weight for the melt polymer, below which the Stokes-Einstein relation accurately describes the rotational diffusivity of the polymer-grafted nanoparticles and above which the Stokes-Einstein relation ceases to apply. This critical molecular weight was found to correspond to a chain contour length that approximates the hydrodynamic diameter of the nanoparticles.
Development of Spray on Bag for manufacturing of large composites parts: Diffusivity analysis
NASA Astrophysics Data System (ADS)
Dempah, Maxime Joseph
Bagging materials are utilized in many composites manufacturing processes. The selection is mainly driven by cost, temperature requirements, chemical compatibility and tear properties of the bag. The air barrier properties of the bag are assumed to be adequate or in many cases are not considered at all. However, the gas barrier property of a bag is the most critical parameter, as it can negatively affect the quality of the final laminate. The barrier property is a function of the bag material, uniformity, thickness and temperature. Improved barrier properties are needed for large parts, high pressure consolidated components and structures where air stays entrapped on the part surface. The air resistance property of the film is defined as permeability and is investigated in this thesis. A model was developed to evaluate the gas transport through the film and an experimental cell was implemented to characterize various commercial films. Understanding and characterizing the transport phenomena through the film allows optimization of the bagging material for various manufacturing processes. Spray-on-Bag is a scalable alternative bagging method compared to standard films. The approach allows in-situ fabrication of the bag on large and complex geometry structures where optimization of the bag properties can be varied on a local level. An experimental setup was developed and implemented using a six axis robot and an automated spraying system. Experiments were performed on a flat surface and specimens were characterized and compared to conventional films. Air barrier properties were within range of standard film approaches showing the potential to fabricate net shape bagging structures in an automated process.
NASA Astrophysics Data System (ADS)
Shimada, Kayori; Kato, Haruhisa; Saito, Takeshi; Matsuyama, Shigetomo; Kinugasa, Shinichi
2005-06-01
Uniform poly(ethylene glycol) (PEG) oligomers, with a degree of polymerization n =1-40, were separated by preparative supercritical fluid chromatography from commercial monodispersed samples. Diffusion coefficients, D, for separated uniform PEG oligomers were measured in dilute solutions of deuterium oxide (D2O) at 30 ° C, using pulsed-field gradient nuclear magnetic resonance. The measured D for each molecular weight was extrapolated to infinite dilution. Diffusion coefficients obtained at infinite dilution follow the scaling behavior of Zimm-type diffusion, even in the lower molecular weight range. Molecular-dynamics simulations for PEG in H2O also showed this scaling behavior, and reproduced close hydrodynamic interactions between PEG and water. These findings suggest that diffusion of PEG in water is dominated by hydrodynamic interaction over a wide molecular weight range, including at low molecular weights around 1000.
NASA Astrophysics Data System (ADS)
Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark
2004-07-01
Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.
A Gate-to-gate Case Study of the Life Cycle Assessment of an Oil Palm Seedling
Muhamad, Halimah; Sahid, Ismail Bin; Surif, Salmijah; Ai, Tan Yew; May, Choo Yuen
2012-01-01
The palm oil industry has played an important role in the economic development of Malaysia and has enhanced the economic welfare of its people. To determine the environmental impact of the oil palm seedling at the nursery stage, information on inputs and outputs need to be assessed. The oil palm nursery is the first link in the palm oil supply chain. A gate-to-gate study was carried out whereby the system boundary was set to only include the process of the oil palm seedling. The starting point was a germinated seed in a small polyethylene bag (6 in × 9 in) in which it remained until the seedling was approximately 3 to 4 months old. The seedling was then transferred into a larger polyethylene bag (12 in × 15 in), where it remained until it was 10–12 months old, when it was planted in the field (plantation). The functional unit for this life cycle inventory (LCI) is based on the production of one seedling. Generally, within the system boundary, the production of an oil palm seedling has only two major environmental impact points, the polybags used to grow the seedling and the fungicide (dithiocarbamate) used to control pathogenic fungi, as both the polybags and the dithiocarbamate are derived from fossil fuel. PMID:24575222
In Situ Manufacturing of Plastics and Composites to Support H&R Exploration
NASA Astrophysics Data System (ADS)
Carranza, Susana; Makel, Darby B.; Blizman, Brandon
2006-01-01
With the new direction of NASA to emphasize the exploration of the Moon, Mars and beyond, quick development and demonstration of efficient systems for In Situ Resources Utilization (ISRU) is more critical and timely than ever before. Beyond the production of life support consumables or propellants, long term missions will require much greater levels of utilization of indigenous resources, including fabrication of habitats, radiation shielding, and replacement parts and tools. This paper reports the development of a reactor system for the synthesis of polyethylene from carbon dioxide and water. One technology commonly found in most NASA In Situ Resources Utilization scenarios is the use of the Sabatier reaction and water electrolysis to produce methane and oxygen. The system presented uses methane and oxygen to produce ethylene, and subsequently ethylene is polymerized to produce polyethylene. The process selected enables the synthesis of high-density polyethylene suitable for the fabrication of many products for space exploration, including sheets, films, channels, etc, which can be used to construct extraterrestrial habitats, tools, replacement parts, etc. Conventional fabrication processes, such as extrusion and injection molding, which are used in the fabrication of polyethylene parts, can be adapted for space operation, making polyethylene a versatile feedstock for future in-situ manufacturing plants. Studies show that polyethylene is a very good radiation shield material, making it very suitable for construction of habitats, as well as incorporation in space suits. For the fabrication of massive structures, polyethylene can be combined with indigenous soil to maximize the use of unprocessed resources, either enclosed in channels, bags, etc., or compounded in varying proportions. The focus of this paper is to present current progress in the development of manufacturing systems and processes for the production of plastics and composites utilizing indigenous resources such as planetary atmosphere and soil.
BAG3 is involved in neuronal differentiation and migration.
Santoro, Antonietta; Nicolin, Vanessa; Florenzano, Fulvio; Rosati, Alessandra; Capunzo, Mario; Nori, Stefania L
2017-05-01
Bcl2-associated athanogene 3 (BAG3) protein belongs to the family of co-chaperones interacting with several heat shock proteins. It plays a key role in protein quality control and mediates the clearance of misfolded proteins. Little is known about the expression and cellular localization of BAG3 during nervous system development and differentiation. Therefore, we analyze the subcellular distribution and expression of BAG3 in nerve-growth-factor-induced neurite outgrowth in PC12 cells and in developing and adult cortex of mouse brain. In differentiated PC12 cells, BAG3 was localized mainly in the neuritic domain rather than the cell body, whereas in control cells, it appeared to be confined to the cytoplasm near the nuclear membrane. Interestingly, the change of BAG3 localization during neuronal differentiation was associated only with a slight increase in total BAG3 expression. These data were coroborated by transmission electron microscopy showing that BAG3 was confined mainly within large dense-core vesicles of the axon in differentiated PC12 cells. In mouse developing cortex, BAG3 appeared to be intensely expressed in cellular processes of migrating cells, whereas in adult brain, a diffuse expression of low to medium intensity was detected in neuronal cell bodies. These findings suggest that BAG3 expression is required for neuronal differentiation and migration and that its role is linked to a change in its distribution pattern rather than to an increase in its protein expression levels.
Suhrhoff, Tim Jesper; Scholz-Böttcher, Barbara M
2016-01-15
Four common consumer plastic samples (polyethylene, polystyrene, polyethylene terephthalate, polyvinylchloride) were studied to investigate the impact of physical parameters such as turbulence, salinity and UV irradiance on leaching behavior of selected plastic components. Polymers were exposed to two different salinities (i.e. 0 and 35 g/kg), UV radiation and turbulence. Additives (e.g. bisphenol A, phthalates, citrates, and Irgafos® 168 phosphate) and oligomers were detected in initial plastics and aqueous extracts. Identification and quantification was performed by GC-FID/MS. Bisphenol A and citrate based additives are leached easier compared to phthalates. The print highly contributed to the chemical burden of the analyzed polyethylene bag. The study underlines a positive relationship between turbulence and magnitude of leaching. Salinity had a minor impact that differs for each analyte. Global annual release of additives from assessed plastics into marine environments is estimated to be between 35 and 917 tons, of which most are derived from plasticized polyvinylchloride. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cariou, Stephane; Guillot, Jean-Michel
2006-01-01
Tedlar bags, which are widely used to collect air samples, especially VOCs and odorous atmospheres, can allow humidity to diffuse when relative humidity levels differ between the inside and outside. Starting with dry air inside the bag and humid air outside, we monitored equilibrium times under several conditions showing the evolution and influence of collected volumes and exposed surfaces. A double-film Tedlar bag was made, to limit the impact of external humidity on a sample at low humidity level. With the addition of a drying agent between both films, the evolution of humidity of a sample can be stopped for several hours. When a VOC mixture was monitored in a humid atmosphere, humidity was decreased but no significant evolution of VOC concentrations was observed.
Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth
NASA Technical Reports Server (NTRS)
Takano, T.; Inada, K.; Takanashi, J.
1987-01-01
Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space stations. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12 hr dark may be needed for plant growth.
EXTENSION OF STORAGE LIFE OF GARLIC BULBS BY $gamma$-IRRADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, P.B.
1963-12-01
Garlic bulbs were packaged in polyethylene bags and irradiated with 5 krad of Co/sup 60/ gamma rays. Irradiated and control bulbs were stored at 11- 12 deg C. Weight loss, number of bulbs sprouted, and number of bulbs decayed were greater in the control group than in the irradiated group. No adverse effect on the taste, flavor, texture, or pungency of irradiated garlic bulbs was determined organo-leptically at the end of seven months storage. (H.M.G.)
Compatibility and Decontamination of High-Density Polyethylene Exposed to Sulfur Mustard
2014-05-01
HD in accordance with (IAW) the Environmental Monitoring Laboratory ([ EML ) Internal Operating Procedure (IOP) MT-60.1...60 oC. h. After 1 h, MEA was decanted into another 40 mL VOA vial. i. The MEA neutralent was extracted and analyzed for HD IAW EML IOP MT-60.1 j...procedures found in EML IOP MT-60.1 n. The coupon was vapor washed in a sample bottle with nitrogen for 15 min and placed in a 10 × 10 in. plastic bag
Lining bunker walls with oxygen barrier film reduces nutrient losses in corn silages.
Lima, L M; Dos Santos, J P; Casagrande, D R; Ávila, C L S; Lara, M S; Bernardes, T F
2017-06-01
The objective of this study was to evaluate 2 systems for covering corn silage in bunker silos. The first system consisted of a sheet of 45-μm-thick oxygen barrier film (OB, polyethylene + ethylene-vinyl alcohol) placed along the length of the sidewall before filling. After filling, the excess film was pulled over the wall on top of the silage, and a sheet of polyethylene was placed on top. The second system involved using a standard sheet (ST) of 180-μm-thick polyethylene film. Eight commercial bunker silos were divided into 2 parts lengthwise so that one-half of the silo was covered with OB and the other half with a ST system. During the filling, 3 net bags with chopped corn were buried in the central part (halfway between the top and bottom of the silo) of the bunkers (CCOR) in 3 sections 10 m apart. After filling, 18 net bags (9 per covering system) were buried 40 cm below the top surface of the 3 sections. These bags were placed at 3 distances from the bunker walls (0 to 50 cm, 51 to 100 cm, and 101 to 150 cm). During unloading, the bags were removed from the silos to determine the dry matter (DM) losses, fermentation end products, and nutritive value. The Milk2006 spreadsheet was used to estimate milk per tonne of DM. The model included the fixed effect of treatment (7 different locations in the bunker) and the random effect of the silo. Two contrasts were tested to compare silages in the top laterals (shoulders) with that in the CCOR (CCOR vs. OB and CCOR vs. ST). Three contrasts compared the corresponding distances of the silage covered by the 2 systems (OB50 vs. ST50, OB100 vs. ST100 and OB150 vs. ST150). Variables were analyzed with the PROC MIXED procedure of the SAS at the 5% level. The OB method produced well-fermented silages, which were similar to CCOR, whereas the OB system showed less lactic acid and greater pH and mold counts compared with CCOR. The ST method had 116.2 kg of milk/t less than the CCOR, as the OB system and the CCOR were similar (1,258.3 and 1,294.0 kg/t, respectively). Regarding the distances from the walls, the effects were more pronounced from 0 to 101 cm. The OB50 and OB100 silages had better quality and lower mold counts and DM losses than ST50 and ST100. The OB system reduced DM and nutrient losses at the shoulders in farm bunker corn silages compared with no sidewall plastic. The OB film should lap onto the crop for at least 200 cm so that 150 cm are covered outward from the wall. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Shephard, Roy J
2017-03-01
The Douglas bag technique is reviewed as one in a series of articles looking at historical insights into measurement of whole body metabolic rate. Consideration of all articles looking at Douglas bag technique and chemical gas analysis has here focused on the growing appreciation of errors in measuring expired volumes and gas composition, and subjective reactions to airflow resistance and dead space. Multiple small sources of error have been identified and appropriate remedies proposed over a century of use of the methodology. Changes in the bag lining have limited gas diffusion, laboratories conducting gas analyses have undergone validation, and WHO guidelines on airflow resistance have minimized reactive effects. One remaining difficulty is a contamination of expirate by dead space air, minimized by keeping the dead space <70 mL. Care must also be taken to ensure a steady state, and formal validation of the Douglas bag method still needs to be carried out. We may conclude that the Douglas bag method has helped to define key concepts in exercise physiology. Although now superceded in many applications, the errors in a meticulously completed measurement are sufficiently low to warrant retention of the Douglas bag as the gold standard when evaluating newer open-circuit methodology.
Tomsej, Tomas; Horak, Jiri; Tomsejova, Sarka; Krpec, Kamil; Klanova, Jana; Dej, Milan; Hopan, Frantisek
2018-04-01
The aim of this study was to simulate a banned but widely spread practice of co-combustion of plastic with wood in a small residential boiler and to quantify its impact on emissions of gaseous pollutants, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and 1,3,5-triphenylbenzene (135TPB), a new tracer of polyethylene plastic combustion. Supermarket polyethylene shopping bags (PE) and polyethylene terephthalate bottles (PET) were burnt as supplementary fuels with beech logs (BL) in an old-type 20 kW over-fire boiler both at a nominal and reduced heat output. An impact of co-combustion was more pronounced at the nominal heat output: an increase in emissions of PM, total organic carbon (TOC), toxic equivalent (TEQ) of 7 carcinogenic PAHs (c-PAHs) and a higher ratio of c-PAHs TEQ in particulate phase was observed during co-combustion of both plastics. 135TPB was found in emissions from both plastics both at a nominal and reduced output. In contrast to findings reported in the literature, 135TPB was a dominant compound detected by mass spectrometry on m/z 306 exclusively in emissions from co-combustion of PE. Surprisingly, six other even more abundant compounds of unknown identity were found on this m/z in emissions from co-combustion of PET. One of these unknown compounds was identified as p-quaterphenyl (pQ). Principal component analysis revealed strong correlation among 135TPB, pQ and five unknown compounds. pQ seems to be suitable tracers of polyethylene terephthalate plastic co-combustion, while 135TPB proved its suitability to be an all-purpose tracer of polyethylene plastics combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.
PRESERVATION OF STRAWBERRIES BY Co$sup 60$ GAMMA-RADIATION (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshitsuka, G.; Oka, M.; Yamazaki, K.
1962-01-01
Strawberries packed in shallow wooden cases were sealed in polyethylene bags and irradiated at room temperature by Co/sup 60/ gamma rays at dosages of 0, 5, 10, 20 and 40 x 10/sup 4/ r. Preservation tests were performed at 4 deg C for 45 days after irradiation. The deterioration of qualities by irradiation was not too serious and even at the high dosage up to 40 x 10/sup 4/ r, only a little decoloration of the fruit juice and slight softening of the texture was observed. A low dosage of 5 x 10/sup 4/ r was fairly effective in retardingmore » the appearance of visible fungus growth. The polyethylene seal seemed to prevent a microbial post-infection. Possibilities of radiopreservation of strawberries at a comparatively low level dose are also discussed. (P.C.H.)« less
Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella.
Bombelli, Paolo; Howe, Christopher J; Bertocchini, Federica
2017-04-24
Plastics are synthetic polymers derived from fossil oil and largely resistant to biodegradation. Polyethylene (PE) and polypropylene (PP) represent ∼92% of total plastic production. PE is largely utilized in packaging, representing ∼40% of total demand for plastic products (www.plasticseurope.org) with over a trillion plastic bags used every year [1]. Plastic production has increased exponentially in the past 50 years (Figure S1A in Supplemental Information, published with this article online). In the 27 EU countries plus Norway and Switzerland up to 38% of plastic is discarded in landfills, with the rest utilized for recycling (26%) and energy recovery (36%) via combustion (www.plasticseurope.org), carrying a heavy environmental impact. Therefore, new solutions for plastic degradation are urgently needed. We report the fast bio-degradation of PE by larvae of the wax moth Galleria mellonella, producing ethylene glycol. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Orlovskii, V. M.; Panarin, V. A.; Shulepov, M. A.
2014-07-01
The dynamics of diffuse discharge formation under the action of nanosecond voltage pulses with short fronts (below 1 ns) in the absence of a source of additional preionization and the influence of a dielectric film on this process have been studied. It is established that the diffuse discharge is induced by the avalanche multiplication of charge initiated by high-energy electrons and then maintained due to secondary breakdowns propagating via ionized gas channels. If a dielectric film (polyethylene, Lavsan, etc.) is placed on the anode, then multiply repeated discharge will lead to surface and bulk modification of the film material. Discharge-treated polyethylene film exhibits a change in the optical absorption spectrum in the near-IR range.
Torri, Luisa; Piochi, Maria
2016-07-01
Despite the key role of the sensory quality for food acceptance, the aroma transfer properties of food packaging materials have not yet been studied using sensory approaches. This research investigated the suitability of sensory and electronic nose methods to evaluate the aroma transfer properties of plastic materials that come in contact with food. Four (W, X, Y, and Z) commercial freezer bags (polyethylene) for domestic uses were compared. The degree of the aroma transfer through the materials was estimated as the sensory contamination of an odor absorber food (bread) by an odor releaser food (onion), separated by the bags and stored under frozen conditions. Bread samples were analyzed by means of an electronic nose, and 42 assessors used three different sensory methods (triangle, scoring, and partial sorted Napping tests). From the triangle test, none of the plastic bags acted as a complete aroma barrier, showing a sensory contamination of bread stored in all four materials. Partial sorting Napping results clearly described the sensory contamination of bread as "onion flavor", due to the aroma transfer from the odor releaser food to the odor absorber food through the plastic bag. Scoring tests showed significant (p<0.0001) differences of aroma transfer properties among the plastic bags, revealing the highest aroma permeation for W (3.1±0.1), the lowest aroma transfer for X and Y (2.0±0.1), and intermediate aroma transfer properties for Z (2.6±0.1). Electronic nose data were in good agreement with the sensory responses, and a high correlation with the scoring data was observed (R 2 =0.988). The presented approaches had suitable results to provide meaningful information on the aroma transfer properties of freezer plastic bags, and could advantageously be applied in the future for analyzing other finished food containers (e.g. plastic trays, boxes, etc.) or packaging materials of a different nature (multilayer plastic films, biodegradable materials, composites, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.
A Single Chip Automotive Control LSI Using SOI Bipolar Complimentary MOS Double-Diffused MOS
NASA Astrophysics Data System (ADS)
Kawamoto, Kazunori; Mizuno, Shoji; Abe, Hirofumi; Higuchi, Yasushi; Ishihara, Hideaki; Fukumoto, Harutsugu; Watanabe, Takamoto; Fujino, Seiji; Shirakawa, Isao
2001-04-01
Using the example of an air bag controller, a single chip solution for automotive sub-control systems is investigated, by using a technological combination of improved circuits, bipolar complimentary metal oxide silicon double-diffused metal oxide silicon (BiCDMOS) and thick silicon on insulator (SOI). For circuits, an automotive specific reduced instruction set computer (RISC) center processing unit (CPU), and a novel, all integrated system clock generator, dividing digital phase-locked loop (DDPLL) are proposed. For the device technologies, the authors use SOI-BiCDMOS with trench dielectric-isolation (TD) which enables integration of various devices in an integrated circuit (IC) while avoiding parasitic miss operations by ideal isolation. The structures of the SOI layer and TD, are optimized for obtaining desired device characteristics and high electromagnetic interference (EMI) immunity. While performing all the air bag system functions over a wide range of supply voltage, and ambient temperature, the resulting single chip reduces the electronic parts to about a half of those in the conventional air bags. The combination of single chip oriented circuits and thick SOI-BiCDMOS technologies offered in this work is valuable for size reduction and improved reliability of automotive electronic control units (ECUs).
Chapman, Melinda J.; Clark, Timothy W.; Williams, John H.
2013-01-01
Geologic mapping, the collection of borehole geophysical logs and images, and passive diffusion bag sampling were conducted by the U.S. Geological Survey North Carolina Water Science Center in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina, during March through October 2011. The study purpose was to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants. Data compilation efforts included geologic mapping of more than 250 features, including rock type and secondary joints, delineation of more than 1,300 subsurface features (primarily fracture orientations) in 15 open borehole wells, and the collection of passive diffusion-bag samples from 42 fracture zones at various depths in the 15 wells.
Opara, Umezuruike Linus; Caleb, Oluwafemi J; Uchechukwu-Agua, Amarachi D
2016-02-01
The influence of packaging materials (plastic bucket, low density polyethylene [LDPE] bags and paper bags) on quality attributes of the flour of 2 cassava cultivars (TME 419 and UMUCASS 36) stored at 23 ± 2 °C and 60% relative humidity (RH) were investigated for 12 wk. Cassava flour from each package type was evaluated for proximate composition, physicochemical properties and microbial growth at 4-wk intervals. Total color difference (∆E) of both cassava flour cultivars increased with storage duration. Flour packed in plastic bucket had the lowest change in color (3.2 ± 0.42) for cv. "TME 419ˮ and (4.1 ± 0.87) for cv. "UMUCASS 36ˮ at the end of week 12. Total carotenoid decreased across all treatment, and after the 12 wk storage, the highest total carotenoid retention (1.7 ± 0.02 and 2.0 ± 0.05 μg/mL) was observed in flour packed in plastic bucket. However, cassava flour in paper bag had the lowest microbial count of 3.4 ± 0.03 and 3.4 ± 0.08 log cfu/g for total aerobic mesophilic bacteria and fungi, respectively. © 2015 Institute of Food Technologists®
Rajasekaran, Divya; Maji, Pradip K
2018-04-01
This paper deals with the utilization of plastic wastes to a useful product. The major plastic pollutants that are considered to be in maximum use i.e. PET bottle and PE bags have been taken for consideration for recycling. As these two plastic wastes are not compatible, poly (ethylene-co-methacrylic acid) copolymer has been used as compatibilizer to process these two plastic wastes. Effect of dose of poly (ethylene-co-methacrylic acid) copolymer as compatibilizer has been studied here. It has been shown that only 3 wt% of poly (ethylene-co-methacrylic acid) copolymer is sufficient to make 3:1 mass ratio of PET bottle and polyethylene bags compatible. Compatibility has been examined through mechanical testing, thermal and morphological analysis. After analysing the property of recyclates, better mechanical and thermal property has been observed. Almost 500% of tensile property has been improved by addition of 3 wt% of poly (ethylene-co-methacrylic acid) copolymer in 3:1 mass ratio blend of PET bottle and PE bags than that of pristine blend. Morphological analysis by FESEM and AFM has also confirmed the compatibility of the blend. Experimental data showed better performance than available recycling process. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moultos, Othonas A.; Zhang, Yong; Tsimpanogiannis, Ioannis N.; Economou, Ioannis G.; Maginn, Edward J.
2016-08-01
Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO2, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH3O-(CH2CH2O)n-CH3 with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.
Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P
2010-05-01
Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.
NASA Astrophysics Data System (ADS)
Leung, S. Y. Y.; Nikezic, D.; Leung, J. K. C.; Yu, K. N.
2007-10-01
Solid-state nuclear track detectors (SSNTDs) in diffusion chambers have been routinely used for long-term measurements of radon gas concentrations. In usual practice, a filter is added across the top of the diffusion chamber to stop the progeny from entering. Thoron can also be deterred from entering the diffusion chamber by using a polyethylene (PE) membrane. However, the thickness of the PE membrane is rarely specified in the literature. In this paper, we will present our experimental results for a radon exposure that the number of alpha-particle tracks registered by the LR 115 SSNTD in a Karlsruhe diffusion chamber covered with one layer of PE membrane is actually enhanced. This is explained by enhanced deposition of radon progeny on the outside surface of the PE membrane and the insufficient thickness of the PE membrane to stop the alpha particles emitted from these deposited radon progeny to reach the SSNTD. We will present the PE thickness which can stop the alpha particles emitted from the deposited radon or thoron progeny. For the "twin diffusion chambers method", one of the diffusion chambers is covered with PE membranes. The optimal number of thickness of PE membranes will be determined, which allows the largest amount of radon gas to diffuse into the diffusion chamber while at the same time screening out the largest amount of thoron gas.
Barbato, F; Venditti, A; Bianco, A; Guarcini, L; Bottari, E; Festa, M R; Cogliani, E; Pignatelli, V
2016-01-01
Digestate coming from an Anaerobic Digestion unit in a Biogas Plant, feeded on cow manure and vegetable waste from markets, has been used. About 8-35 L polyethylene transparent bags have been employed as cultivation container, outdoor. Different aliquots of digestate, alone or mixed with commercial liquid fertiliser, were employed to cultivate in batch Scenedesus dimorphus, a freshwater green microalga, in the ENEA facilities of Casaccia Research Center, near Rome, Italy. The cultivation period was June-July 2013. The average daily yields of dry microalgae biomass varied from 20 mg/L/d to 60 mg/L/d, mean 38.2 mg/L/d. Final dry biomass concentration varied from 0.18 to 1.29 g/L, mean 0.55 g/L. S. dimorphus proved to be very efficient in removing N and P from the culture medium. Another fact emerged from these trials is that S. dimorphus inner composition resulted to be variable in response to the tested different culture conditions.
Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.
Borreani, Giorgio; Tabacco, Ernesto
2015-01-01
The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Non-porous membrane-assisted liquid-liquid extraction of UV filter compounds from water samples.
Rodil, Rosario; Schrader, Steffi; Moeder, Monika
2009-06-12
A method for the determination of nine UV filter compounds [benzophenone-3 (BP-3), isoamyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene (OC), butyl methoxydibenzoylmethane, ethylhexyl dimethyl p-aminobenzoate (OD-PABA), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate and homosalate] in water samples was developed and evaluated. The procedure includes non-porous membrane-assisted liquid-liquid extraction (MALLE) and LC-atmospheric pressure photoionization (APPI)-MS/MS. Membrane bags made of different polymeric materials were examined to enable a fast and simple extraction of the target analytes. Among the polymeric materials tested, low- and high-density polyethylene membranes proved to be well suited to adsorb the analytes from water samples. Finally, 2 cm length tailor-made membrane bags were prepared from low-density polyethylene in order to accommodate 100 microL of propanol. The fully optimised protocol provides recoveries from 76% to 101% and limits of detection (LOD) between 0.4 ng L(-1) (OD-PABA) and 16 ng L(-1) (EHMC). The interday repeatability of the whole protocol was below 18%. The effective separation of matrix molecules was proved by only marginal matrix influence during the APPI-MS analysis since no ion suppression effects were observed. During the extraction step, the influence of the matrix was only significant when non-treated wastewater was analysed. The analysis of lake water indicated the presence of seven UV filter compounds included in this study at concentrations between 40 ng L(-1) (BP-3) and 4381 ng L(-1) (OC). In non-treated wastewater several UV filters were also detected at concentration levels as high as 5322 ng L(-1) (OC).
Dunlop, P S M; Ciavola, M; Rizzo, L; Byrne, J A
2011-11-01
Solar disinfection (SODIS) of Escherichia coli suspensions in low-density polyethylene bag reactors was investigated as a low-cost disinfection method suitable for application in developing countries. The efficiency of a range of SODIS reactor configurations was examined (single skin (SS), double skin, black-backed single skin, silver-backed single skin (SBSS) and composite-backed single skin) using E. coli suspended in model and real surface water. Titanium dioxide was added to the reactors to improve the efficiency of the SODIS process. The effect of turbidity was also assessed. In addition to viable counts, E. coli injury was characterised through spread-plate analysis using selective and non-selective media. The optimal reactor configuration was determined to be the SBSS bag (t(50)=9.0min) demonstrating the importance of UVA photons, as opposed to infrared in the SODIS disinfection mechanism. Complete inactivation (6.5-log) was achieved in the presence of turbidity (50NTU) using the SBSS bag within 180min simulated solar exposure. The addition of titanium dioxide (0.025gL(-1)) significantly enhanced E. coli inactivation in the SS reactor, with 6-log inactivation observed within 90min simulated solar exposure. During the early stages of both SODIS and photocatalytic disinfection, injured E. coli were detected; however, irreversible injury was caused and re-growth was not observed. Experiments under solar conditions were undertaken with total inactivation (6.5-log) observed in the SS reactor within 240min, incomplete inactivation (4-log) was observed in SODIS bottles exposed to the same solar conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
SURVEY AND EVALUATION OF POROUS POLYETHYLENE MEDIA FINE BUBBLE TUBE AND DISK AERATORS
Historically, while alternative media materials have been employed over the years with varying degrees of success, the principal fine pore diffuser medium has been porous ceramic. In the early-to-mid-1970s, diffusers with plastic porus media were installed in secondary treatment...
H2S Loss through Nalophan™ Bags: Contributions of Adsorption and Diffusion
2017-01-01
Hydrogen-sulfide (H2S) is a molecule of small dimensions typically present in the odor emissions from different plants. The European Standard EN 13725:2003 set a maximum storage time allowed of 30 hours, during which the sampling bag has to maintain the mixture of odorants with minimal changes. This study investigates the H2S losses through Nalophan bags and it shows that nonnegligible losses of H2S can be observed. The percent H2S loss after 30 hrs with respect to the initial concentration is equal to 33% ± 3% at a relative humidity of 20% and equal to 22% ± 1% at a relative humidity of 60%. The average quantity of adsorbed H2S at 30 h is equal to 2.17 105 gH2S/gNalophan at a storage humidity of 20% and equal to 1.79 105 gH2S/gNalophan at a storage humidity of 60%. The diffusion coefficients of H2S through Nalophan, for these two humidity conditions tested, are comparable (i.e., 7.5 10−12 m2/sec at 20% humidity and 6.6 10−12 m2/sec at 60% humidity). PMID:28740857
Degradation of plastic carrier bags in the marine environment.
O'Brine, Tim; Thompson, Richard C
2010-12-01
There is considerable concern about the hazards that plastic debris presents to wildlife. Use of polymers that degrade more quickly than conventional plastics presents a possible solution to this problem. Here we investigate breakdown of two oxo-biodegradable plastics, compostable plastic and standard polyethylene in the marine environment. Tensile strength of all materials decreased during exposure, but at different rates. Compostable plastic disappeared from our test rig between 16 and 24 weeks whereas approximately 98% of the other plastics remained after 40 weeks. Some plastics require UV light to degrade. Transmittance of UV through oxo-biodegradable and standard polyethylene decreased as a consequence of fouling such that these materials received ∼ 90% less UV light after 40 weeks. Our data indicate that compostable plastics may degrade relatively quickly compared to oxo-biodegradable and conventional plastics. While degradable polymers offer waste management solutions, there are limitations to their effectiveness in reducing hazards associated with plastic debris. Copyright © 2010 Elsevier Ltd. All rights reserved.
Haned, Zohra; Moulay, Saad; Lacorte, Silvia
2018-04-12
Flexible poly(vinyl chloride) (PVC) is widely used in the pharmaceutical industry for the manufacture of medical devices (tubes, probes, bags, primary packaging, etc.). The objective of the present study was to develop a procedure to evaluate the migration potential of nine plastic additives in aqueous infusion bags (NaCl 0.9% and glucose 5%): five phthalates, one adipate, two alkylphenols, and benzophenone. Two types of materials were analyzed: (i) new and outdated plasticized PVC (containing 40% of diethylhexyl phthalate DEHP); and (ii) tri-laminate polyethylene-polyamide-polypropylene, a multilayer material presumably exempt from DEHP. In addition, we evaluated the migration of plasticizers from PVC raw materials (film and grain) under controlled conditions to compare the migration levels according to Regulation 2011/10. Solid phase extraction and liquid-liquid extraction with gas-chromatography coupled to mass spectrometry were used in all tests. The migration of DEHP in PVC grain exceeded the maximum regulated level of 5000 μg/kg, whereas the levels were much lower in films. In new PVC bags, DEHP was the only compound detected at 4.31 ± 0.5 μg/L in NaCl 0.9% and 4.29 ± 0.25 μg/L in glucose 5% serums, whereas the levels increased 10 times in three-year shelf-life bags. In multilayer bags, DEHP was not found but instead, two plasticizers were detected namely dibuthylphthalate (DBP) and diethylphthalate (DEP) at 0.7 ± 0.1 μg/L and 4.14 ± 0.6 μg/L, respectively. These plasticizers are not mentioned as additives allowed in materials intended for parenteral use (European Pharmacopoeia 8.0, 3.1.5. and 3.1.6.). Caprolactam was tentatively identified and could have stemmed from the polyamide of the multilayer composite. The levels of phthalates remained low but not negligible and might constitute a risk to public health in the case of reiterative infusions. Copyright © 2018. Published by Elsevier B.V.
Lunar surface vehicle model competition
NASA Technical Reports Server (NTRS)
1990-01-01
During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moultos, Othonas A.; Economou, Ioannis G.; Zhang, Yong
Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO{sub 2}, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH{sub 3}O–(CH{sub 2}CH{sub 2}O){sub n}–CH{sub 3} with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. Themore » magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.« less
Lee, Hwankyu; Venable, Richard M; Mackerell, Alexander D; Pastor, Richard W
2008-08-01
A revision (C35r) to the CHARMM ether force field is shown to reproduce experimentally observed conformational populations of dimethoxyethane. Molecular dynamics simulations of 9, 18, 27, and 36-mers of polyethylene oxide (PEO) and 27-mers of polyethylene glycol (PEG) in water based on C35r yield a persistence length lambda = 3.7 A, in quantitative agreement with experimentally obtained values of 3.7 A for PEO and 3.8 A for PEG; agreement with experimental values for hydrodynamic radii of comparably sized PEG is also excellent. The exponent upsilon relating the radius of gyration and molecular weight (R(g) proportional, variantM(w)(upsilon)) of PEO from the simulations equals 0.515 +/- 0.023, consistent with experimental observations that low molecular weight PEG behaves as an ideal chain. The shape anisotropy of hydrated PEO is 2.59:1.44:1.00. The dimension of the middle length for each of the polymers nearly equals the hydrodynamic radius R(h)obtained from diffusion measurements in solution. This explains the correspondence of R(h) and R(p), the pore radius of membrane channels: a polymer such as PEG diffuses with its long axis parallel to the membrane channel, and passes through the channel without substantial distortion.
Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, Robert O.; Aulich, Ted R.
1997-12-31
Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less
NASA Astrophysics Data System (ADS)
Majer, Günter; Southan, Alexander
2017-06-01
The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between Mn = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D0 in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D0 in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.
Methane emissions to the atmosphere through aquatic plants
NASA Technical Reports Server (NTRS)
Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.
1985-01-01
The movement of methane (CH4) from anaerobic sediments through the leaves, stems, and flowers of aquatic plants and into the atmosphere was found to provide a significant pathway for the emission of CH4 from the aquatic substrates of flooded wetlands. Methane concentrations well above the surrounding ambient air levels were found in the mesophyll of 16 varies of aquatic plants and are attributed to transpiration, diffusion, and pressure-induced flow of gaseous CH4 from the roots when they are embedded in CH4-saturated anaerobic sediments. Methane emissions from the emergent parts of aquatic plants were measured using floating chamber techniques and by enclosing the plants in polyethylene bags of known volume. Concentration changes were monitored in the trapped air using syringes and gas chromatographic techniques. Vertical profiles of dissolved CH4 in sediment pore water surrounding the aquatic plants' rhizomes were obtained using an interstitial sampling technique. Methane emissions from the aquatic plants studied varied from 14.8 mg CH4/d to levels too low to be detectable. Rooted and unrooted freshwater aquatic plants were studied as well as saltwater and brackish water plants. Included in the experiment is detailed set of measurements on CH4 emissions from the common cattail (Typha latifolia). This paper illustrates that aquatic plants play an important gas exchange role in the C cycle between wetlands and the atmosphere.
Bretscher, Andrew Jonathan; Kodama-Namba, Eiji; Busch, Karl Emanuel; Murphy, Robin Joseph; Soltesz, Zoltan; Laurent, Patrick; de Bono, Mario
2011-01-01
Summary Homeostatic control of body fluid CO2 is essential in animals but is poorly understood. C. elegans relies on diffusion for gas exchange and avoids environments with elevated CO2. We show that C. elegans temperature, O2, and salt-sensing neurons are also CO2 sensors mediating CO2 avoidance. AFD thermosensors respond to increasing CO2 by a fall and then rise in Ca2+ and show a Ca2+ spike when CO2 decreases. BAG O2 sensors and ASE salt sensors are both activated by CO2 and remain tonically active while high CO2 persists. CO2-evoked Ca2+ responses in AFD and BAG neurons require cGMP-gated ion channels. Atypical soluble guanylate cyclases mediating O2 responses also contribute to BAG CO2 responses. AFD and BAG neurons together stimulate turning when CO2 rises and inhibit turning when CO2 falls. Our results show that C. elegans senses CO2 using functionally diverse sensory neurons acting homeostatically to minimize exposure to elevated CO2. PMID:21435556
NASA Technical Reports Server (NTRS)
Du, Brian; Daniels, Vernie; Crady, Camille; Putcha, Lakshmi
2010-01-01
With the advent of longer duration space missions, pharmaceutical use in space has increased. During the first 33 space shuttle missions, crew members took more than 500 individual doses of 31 different medications . Anecdotal reports from crew members described medications as generally "well tolerated" and "effective". However, reported use of increased medication doses and discrepancies in ground vs. flight efficacy may result from reduced potency or altered bioavailability due to changes in chemical and/or physical parameters of pharmaceutical stability. Based on preliminary results from a ground-based irradiation and an inflight study on pharmaceutical stability, three susceptible medications, Amoxicillin/Clavulanate and Sulfamethoxazole/trimethoprim antibiotics tablets and promethazine (PMZ), an antihistamine were selected for testing using two types of Oliver-Tolas bags, TPC-1475(Clear) and TPF-0599B (Foil) for radiation Shielding effectiveness. The material composition of the bags included aluminum coated Mylar sheathing coated with multifunctional nanocomposities based on polyethylene with dispersed boron-rich nanophases. Two bags of each medication were irradiated for different time intervals with 14.6 rad/min to achieve 0.1 Gy, 1 Gy and 10 Gy of cumulative radiation dose. Active pharmaceutical content (API) in each medication was determined and results analyzed. No significant difference in API content was observed between control and irradiated samples for both antibiotic tablets suggesting both types of bags may offer protection against gamma radiation; results with PMZ were inconclusive. These preliminary results suggest that Oliver-Tolas TPL-1475 and TPF-0599B materials may possess characteristics suitable for protection against ionizing radiation and can be considered for designing and further testing of FMD technology.
Concept for Hydrogen-Impregnated Nanofiber/Photovoltaic Cargo Stowage System
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toups, Larry David; Howard, Robert L.; Poffenberger, Jaso Eric
2012-01-01
A stowage system was conceived that consists of collapsible, reconfigurable stowage bags, rigid polyethylene or metal inserts, stainless-steel hooks, flexible photovoltaic materials, and webbing curtains that provide power generation, thermal stabilization, impact resistance, work/sleeping surfaces, and radiation protection to spaceflight hardware and crew members. Providing materials to the Lunar surface is costly from both a mass and a volume standpoint. Most of the materials that will be transferred to other planets or celestial bodies will not be returned to the Earth. In developing a plan to reconfigure pressurized logistics modules, it was determined that there was a requirement to be able to utilize the interior volume of these modules and transform them from Logistics Modules to Storage/Living Quarters. Logistics-to-living must re-utilize stowage bags and the structures that support them to construct living spaces, partitions, furniture, protective shelters from solar particle events, galactic cosmic radiation, and workspaces. In addition to reusing these logistics items for development of the interior living spaces, these items could also be reused outside the habitable volumes to build berms that protect assets from secondary blast ejecta, to define pathways, to stabilize high traffic areas, to protect against dust contamination, to secure assets to mobility elements, to provide thermal protection, and to create other types of protective shelters for surface experiments. Unique features of this innovation include hydrogen-impregnated nano fibers encapsulated in a polyethelyne coating that act as radiation shielding, flexible solar collection cells that can be connected together with cells from other bags via the webbing walls to create a solar array, and the ability to reconfigure each bag to satisfy multiple needs.
Avgoustiniatos, E.S.; Hering, B.J.; Rozak, P.R.; Wilson, J.R.; Tempelman, L.A.; Balamurugan, A.N.; Welch, D.P.; Weegman, B.P.; Suszynski, T.M.; Papas, K.K.
2009-01-01
Prolonged anoxia has deleterious effects on islets. Gas-permeable cell culture devices can be used to minimize anoxia during islet culture and especially during shipment when elimination of gas-liquid interfaces is required to prevent the formation of damaging gas bubbles. Gas-permeable bags may have several drawbacks, such as propensity for puncture and contamination, difficult islet retrieval, and significantly lower oxygen permeability than silicone rubber membranes (SRM). We hypothesized that oxygen permeability of bags may be insufficient for islet oxygenation. We measured oxygen transmission rates through the membrane walls of three different types of commercially available bags and through SRM currently used for islet shipment. We found that the bag membranes have oxygen transmission rates per unit area about 100-fold lower than SRM. We solved the oxygen diffusion-reaction equation for 150-μm diameter islets seeded at 3000 islet equivalents per cm2, a density adequate to culture and ship an entire human or porcine islet preparation in a single gas-permeable device, predicting that about 40% of the islet volume would be anoxic at 22°C and about 70% would be anoxic at 37°C. Islets of larger size or islets accumulated during shipment would be even more anoxic. The model predicted no anoxia in islets similarly seeded in devices with SRM bottoms. We concluded that commercially available bags may not prevent anoxia during islet culture or shipment; devices with SRM bottoms are more suitable alternatives. PMID:18374080
Study on flavonoid migration from active low-density polyethylene film into aqueous food simulants.
Zhang, Shuangling; Zhao, Haiyan
2014-08-15
The migration of flavonoids from low-density polyethylene (LDPE) film (0.4%, w/w) to aqueous food simulants over 16 weeks at 0, 15, and 30 °C was investigated. The migration amount of total flavonoids was calculated based on the rutin contents determined by high-performance liquid chromatography (HPLC). Diffusion and partition coefficients, along with the activation energy (Ea) were calculated based on Fick's second law. The results showed that the migration of flavonoids was influenced by temperature, time and the simulants. The Ea values for flavonoid diffusion were 49.2, 55.9, and 25.8 kJ mol(-1) in distilled water, 4% acetic acid and 30% ethanol, respectively. This study indicated that the flavonoids in LDPE film easily migrated into food simulants; and this behaviour was related to the low Ea values of flavonoid diffusion, especially in ethanol at 0-30 °C, when the antioxidants were released from the film. Copyright © 2014 Elsevier Ltd. All rights reserved.
The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers
NASA Astrophysics Data System (ADS)
LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.
2016-09-01
Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.
Influence of ordering change on the optical and thermal properties of inflation polyethylene films
NASA Astrophysics Data System (ADS)
Morikawa, Junko; Orie, Akihiro; Hikima, Yuta; Hashimoto, Toshimasa; Juodkazis, Saulius
2011-04-01
Changes of thermal diffusivity inside femtosecond laser-structured volumes as small as few percent were reliably determined (with standard deviation less than 1%) with miniaturized sensors. An increase of thermal diffusivity of a crystalline high-density polyethylene (HDPE) inflation films by 10-20% from the measured (1.16 ± 0.01) × 10 -7 m 2 s -1 value in regions not structured by femtosecond laser pulses is considerably larger than that of non-crystalline polymers, 0-3%. The origin of the change of thermal diffusivity are interplay between the laser induced disordering, voids' formation, compaction, and changes in molecular orientation. It is shown that laser structuring can be used to modify thermal and optical properties. The birefringence and infrared spectroscopy with thermal imaging of CH 2 vibrations are confirming inter-relation between structural, optical, and thermal properties of the laser-structured crystalline HDPE inflation films. Birefringence modulation as high as Δ n ˜ ± 1 × 10 -3 is achieved with grating structures.
Molecular dynamics simulation of three plastic additives' diffusion in polyethylene terephthalate.
Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying
2017-06-01
Accurate diffusion coefficient data of additives in a polymer are of paramount importance for estimating the migration of the additives over time. This paper shows how this diffusion coefficient can be estimated for three plastic additives [2-(2'-hydroxy-5'-methylphenyl) (UV-P), 2,6-di-tert-butyl-4-methylphenol (BHT) and di-(2-ethylhexyl) phthalate (DEHP)] in polyethylene terephthalate (PET) using the molecular dynamics (MD) simulation method. MD simulations were performed at temperatures of 293-433 K. The diffusion coefficient was calculated through the Einstein relationship connecting the data of mean-square displacement at different times. Comparison of the diffusion coefficients simulated by the MD simulation technique, predicted by the Piringer model and experiments, showed that, except for a few samples, the MD-simulated values were in agreement with the experimental values within one order of magnitude. Furthermore, the diffusion process for additives is discussed in detail, and four factors - the interaction energy between additive molecules and PET, fractional free volume, molecular shape and size, and self-diffusion of the polymer - are proposed to illustrate the microscopic diffusion mechanism. The movement trajectories of additives in PET cell models suggested that the additive molecules oscillate slowly rather than hopping for a long time. Occasionally, when a sufficiently large hole was created adjacently, the molecule could undergo spatial motion by jumping into the free-volume hole and consequently start a continuous oscillation and hop. The results indicate that MD simulation is a useful approach for predicting the microstructure and diffusion coefficient of plastic additives, and help to estimate the migration level of additives from PET packaging.
Milićević, Tijana; Aničić Urošević, Mira; Vuković, Gordana; Škrivanj, Sandra; Relić, Dubravka; Frontasyeva, Marina V; Popović, Aleksandar
2017-10-01
Since the methodological parameters of moss bag biomonitoring have rarely been investigated for the application in agricultural areas, two mosses, Sphagnum girgensohnii (a species of the most recommended biomonitoring genus) and Hypnum cupressiforme (commonly available), were verified in a vineyard ambient. The moss bags were exposed along transects in six vineyard parcels during the grapevine season (March‒September 2015). To select an appropriate period for the reliable 'signal' of the element enrichment in the mosses, the bags were simultaneously exposed during five periods (3 × 2 months, 1 × 4 months, and 1 × 6 months). Assuming that vineyard is susceptible to contamination originated from different agricultural treatments, a wide range of elements (41) were determined in the moss and topsoil samples. The mosses were significantly enriched by the elements during the 2-month bag exposure which gradually increasing up to 6 months, but Cu and Ni exhibited the noticeable fluctuations during the grapevine season. However, the 6-month exposure of moss bags could be recommended for comparative studies among different vineyards because it reflects the ambient pollution comprising unpredictable treatments of grapevine applied during the whole season. Although higher element concentrations were determined in S. girgensohnii than H. cupressiforme, both species reflected the spatio-temporal changes in the ambient element content. Moreover, the significant correlation of the element (Cr, Cu, Sb, and Ti) concentrations between the mosses, and the same pairs of the elements correlated within the species, imply the comparable use of S. girgensohnii and H. cupressiforme in the vineyard (agricultural) ambient. Finally, both the moss bags and the soil analyses suggest that vineyard represents a dominant diffuse pollution source of As, Cr, Cu, Ni, Fe, and V. Copyright © 2017 Elsevier Inc. All rights reserved.
Rodeghiero, Mirco; Niinemets, Ulo; Cescatti, Alessandro
2007-08-01
Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc., Lincoln, NE, USA) leaf chambers with polymer foam gaskets and enclosing either 2 or 6 cm(2) leaf area, and conducted a sensitivity analysis of the diffusion leak effects on Farquhar et al. photosynthesis model parameters - the maximum carboxylase activity of ribulose 1 x 5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), capacity for photosynthetic electron transport (J(max)) and non-photorespiratory respiration rate in light (R(d)). In addition, net assimilation rate (A(n)) versus intercellular CO(2) (C(i)) responses were measured in leaves of Mediterranean evergreen species Quercus ilex L. enclosing the whole leaf chamber in a polyvinyl fluoride bag flushed with the exhaust air of leaf chamber, thereby effectively reducing the CO(2) and water vapour gradients between ambient air and leaf chamber. For the empty chambers, average diffusion leak for CO(2), K(CO2), (molar flow rate corresponding to unit CO(2) mole fraction difference) was ca. 0.40 micromol s(-1). K(CO2) increased ca. 50% if a dead leaf was clamped between the leaf chamber. Average diffusion leak for H(2)O was ca. 5- to 10-fold larger than the diffusion leak for CO(2). Sensitivity analyses demonstrated that the consequence of a CO(2) diffusion leak was apparent enhancement of A(n) at high CO(2) mole fraction and reduction at lower CO(2) mole fraction, and overall compression of C(i) range. As the result of these modifications, Farquhar et al. model parameters were overestimated. The degree of overestimation increased in the order of V(cmax) < J(max) < R(d), and was larger for smaller chambers and for leaves with lower photosynthetic capacity, leading to overestimation of all three parameters by 70-290% for 2 cm(2), and by 10-60% for 6 cm(2) chamber. Significant diffusion corrections (5-36%) were even required for leaves with high photosynthetic capacity measured in largest chamber. Water vapour diffusion leaks further enhanced the overestimation of model parameters. For small chambers and low photosynthetic capacities, apparent C(i) was simulated to decrease with increasing A(n) because of simultaneous CO(2) and H(2)O diffusion leaks. Measurements in low photosynthetic capacity Quercus ilex leaves enclosed in 2 cm(2) leaf chamber exhibited negative apparent C(i) values at highest A(n). For the same leaves measured with the entire leaf chamber enclosed in the polyvinyl fluoride bag, C(i) and A(n) increased monotonically. While the measurements without the bag could be corrected for diffusion leaks, the required correction in A(n) and transpiration rates was 100-500%, and there was large uncertainty in Farquhar et al. model parameters derived from 'corrected'A(n)/C(i) response curves because of uncertainties in true diffusion leaks. These data demonstrate that both CO(2) and water vapour diffusion leaks need consideration in measurements with clamp-on leaf cuvettes. As plants in natural environments are often characterized by low photosynthetic capacities, cuvette designs need to be improved for reliable measurements in such species.
Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.
2003-01-01
During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.
Insights on Li-TFSI diffusion in polyethylene oxide for battery applications
NASA Astrophysics Data System (ADS)
Molinari, Nicola; Mailoa, Jonathan; Kozinsky, Boris; Robert Bosch LLC Collaboration
Improving the energy density, safety and efficiency of lithium-ion (Li-ion) batteries is crucial for the future of energy storage and applications such as electric cars. A key step in the research of next-generation solid polymeric electrolyte materials is understanding the diffusion mechanism of Li-ion in polyethylene oxide (PEO) in order to guide the design of electrolytes materials with high Li-ion diffusion while, ideally, suppress counter-anion movement. In this work we use computer simulations to investigate this long-standing problem at a fundamental level. The system under study has Li-TFSI concentration and PEO chain length that are representative of practical application specifications; the interactions of the molecular model are described via the PCFF+ all-atom force-field. Validation of the model is performed by comparing trends against experiments for diffusivity and conductivity as a function of salt concentration. The analysis of Li-TFSI molecular dynamics trajectories reveals that 1. for high Li-TFSI concentration a significant fraction of Li-ion is coordinated by only TFSI and consistently move less than PEO-coordinated Li-ion, 2. PEO chain motion is key in enabling Li-ion movement. Robert Bosch LLC.
Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Suzuki, Masazumi; Yamanashi, Shigeyuki; Ozaki, Yukihiro; Kitamura, Satoshi
2010-08-16
Release mechanism of acetaminophen (AAP) from extended-release tablets of hydrogel polymer matrices containing polyethylene oxide (PEO) and polyethylene glycol (PEG) were achieved using flow-through cell with magnetic resonance imaging (MRI). The hydrogel forming abilities are observed characteristically and the layer thickness which is corresponding to the diffusion length of AAP has a good correlation with the drug release profiles. In addition, polymeric erosion contribution to AAP releasing from hydrogel matrix tablets was directly quantified using size-exclusion chromatography (SEC). The matrix erosion profile indicates that the PEG erosion kinetic depends primarily on the composition ratio of PEG to PEO. The present study has confirmed that the combination of in situ MRI and SEC should be well suited to investigate the drug release mechanisms of hydrogel matrix such as PEO/PEG. Copyright (c) 2010 Elsevier B.V. All rights reserved.
A new oxygen barrier film reduces aerobic deterioration in farm-scale corn silage.
Borreani, G; Tabacco, E; Cavallarin, L
2007-10-01
Recently, many studies have focused on the aerobic deterioration of corn silage at the farm level, because a large part of the product stored in horizontal silos is exposed to air and is more prone to spoilage. The most important factor influencing the preservation of forage ensiling is the degree of anaerobiosis that is usually achieved with sheets of polyethylene. A new black-on-white (125-microm) coextruded oxygen barrier (OB) film has been developed for silage sealing and was tested in the present experiment to assess the effects on fermentation quality, dry matter losses, and yeast and mold counts at opening of whole-crop corn bunker silos compared with conventional polyethylene (ST) film. Two trials were carried out on 2 commercial farms. The bunkers were divided into 2 parts along the length so that half of the feedout face would be covered with ST film and the other half with OB film. Eight plastic net bags with well-mixed fresh material were weighed and buried in the upper layer of the bunker, and 4 bags were buried in the central part. The silos were opened for summer consumption and were fed out at different rates (19 vs. 33 cm/d). The bags were unloaded, weighed, and subsampled to analyze the DM content, pH, lactic and monocarboxylic acids, ammonia, yeast and mold counts, and aerobic stability. The pH of the peripheral silage was different under the 2 films, with a lower value in the OB treatment. The OB film on farm 1 affected the silage dry matter losses, which were reduced 3.7 times in comparison with the ST film sealing. On farm 2, although the dry matter losses were numerically higher in the silage sealed with the ST film compared with OB film (9.0 vs. 5.9%, respectively), the difference was not statistically significant. However, the corn silage sealed with the ST film was less stable than the silage sealed with the OB film. The results indicate that the new OB film is a promising tool to constrain spoilage and dry matter losses under critical farm conditions, when inadequate amounts of silage are removed daily. The OB film further improved the stability of the corn silage in the peripheral areas of the silos even when a proper harvest-to-feedout management was implemented.
Bretscher, Andrew Jonathan; Kodama-Namba, Eiji; Busch, Karl Emanuel; Murphy, Robin Joseph; Soltesz, Zoltan; Laurent, Patrick; de Bono, Mario
2011-03-24
Homeostatic control of body fluid CO(2) is essential in animals but is poorly understood. C. elegans relies on diffusion for gas exchange and avoids environments with elevated CO(2). We show that C. elegans temperature, O(2), and salt-sensing neurons are also CO(2) sensors mediating CO(2) avoidance. AFD thermosensors respond to increasing CO(2) by a fall and then rise in Ca(2+) and show a Ca(2+) spike when CO(2) decreases. BAG O(2) sensors and ASE salt sensors are both activated by CO(2) and remain tonically active while high CO(2) persists. CO(2)-evoked Ca(2+) responses in AFD and BAG neurons require cGMP-gated ion channels. Atypical soluble guanylate cyclases mediating O(2) responses also contribute to BAG CO(2) responses. AFD and BAG neurons together stimulate turning when CO(2) rises and inhibit turning when CO(2) falls. Our results show that C. elegans senses CO(2) using functionally diverse sensory neurons acting homeostatically to minimize exposure to elevated CO(2). Copyright © 2011 Elsevier Inc. All rights reserved.
Radon Diffusion Measurement in Polyethylene based on Alpha Detection
NASA Astrophysics Data System (ADS)
Rau, Wolfgang
2011-04-01
We present a method to measure the diffusion of Radon in solid materials based on the alpha decay of the radon daughter products. In contrast to usual diffusion measurements which detect the radon that penetrates a thin barrier, we let the radon diffuse into the material and then measure the alpha decays of the radon daughter products in the material. We applied this method to regular and ultra high molecular weight poly ethylene and find diffusion lengths of order of mm as expected. However, the preliminary analysis shows significant differences between two different approaches we have chosen. These differences may be explained by the different experimental conditions.
Diffusion across the modified polyethylene separator GX in the heat-sterilizable AgO-Zn battery
NASA Technical Reports Server (NTRS)
Lutwack, R.
1973-01-01
Models of diffusion across an inert membrane have been studied using the computer program CINDA. The models were constructed to simulate various conditions obtained in the consideration of the diffusion of Ag (OH)2 ions in the AgO-Zn battery. The effects on concentrations across the membrane at the steady state and on the fluxout as a function of time were used to examine the consequences of stepwise reducing the number of sources of ions, of stepwise blocking the source and sink surfaces, of varying the magnitude of the diffusion coefficient for a uniform membrane, of varying the diffusion coefficient across the membrane, and of excluding volumes to diffusion.
An augmented aging process in brain white matter in HIV.
Kuhn, Taylor; Kaufmann, Tobias; Doan, Nhat Trung; Westlye, Lars T; Jones, Jacob; Nunez, Rodolfo A; Bookheimer, Susan Y; Singer, Elyse J; Hinkin, Charles H; Thames, April D
2018-06-01
HIV infection and aging are both associated with neurodegeneration. However, whether the aging process alone or other factors associated with advanced age account for the progression of neurodegeneration in the aging HIV-positive (HIV+) population remains unclear. HIV+ (n = 70) and HIV-negative (HIV-, n = 34) participants underwent diffusion tensor imaging (DTI) and metrics of microstructural properties were extracted from regions of interest (ROIs). A support vector regression model was trained on two independent datasets of healthy adults across the adult life-span (n = 765, Cam-CAN = 588; UiO = 177) to predict participant age from DTI metrics, and applied to the HIV dataset. Predicted brain age gap (BAG) was computed as the difference between predicted age and chronological age, and statistically compared between HIV groups. Regressions assessed the relationship between BAG and HIV severity/medical comorbidities. Finally, correlation analyses tested for associations between BAG and cognitive performance. BAG was significantly higher in the HIV+ group than the HIV- group F (1, 103) = 12.408, p = .001). HIV RNA viral load was significantly associated with BAG, particularly in older HIV+ individuals (R 2 = 0.29, F(7, 70) = 2.66, p = .021). Further, BAG was negatively correlated with domain-level cognitive function (learning: r = -0.26, p = .008; memory: r = -0.21, p = .034). HIV infection is associated with augmented white matter aging, and greater brain aging is associated with worse cognitive performance in multiple domains. © 2018 Wiley Periodicals, Inc.
Properties of concrete modified with waste Low Density Polyethylene and saw dust ash
NASA Astrophysics Data System (ADS)
Srimanikandan, P.; Sreenath, S.
2017-07-01
The increase in industrialization creates need for disposal of large quantity of by-products. To overcome the difficulty of disposal, these by-products can be used as a replacement for raw material. In this concern, non-conventional industrial wastes such as plastic bags, PET bottles, pulverized waste Low Density Polyethylene (LDPE) and biological waste such as saw-dust ash, coconut coir were used as a replacement in concrete. In this project, saw-dust ash and pulverized waste LDPE were introduced as the partial replacement for cement and fine aggregates respectively. 0%, 5%, 10%, 15% and 20% of sand by volume was replaced with LDPE and 0%, 1%, 3%, 5% and 10% of cement by volume was replaced with saw dust ash. Standard cube, cylinder and prism specimens were cast to assess the compressive strength, split tensile strength and flexural strength of modified concrete after 28 days of curing. Optimum percentage of replacement was found by comparing the test results. The mix with 5% of LDPE and 3% of saw dust ash showed a better result among the other mixes.
Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil
2011-10-15
A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.
Plastic ingestion by a generalist seabird on the coast of Uruguay.
Lenzi, Javier; Burgues, María Fernanda; Carrizo, Daniel; Machín, Emanuel; Teixeira-de Mello, Franco
2016-06-15
We analyzed plastic ingestion by Kelp Gull (Larus dominicanus) from 806 pellets collected between 2011 and 2013. Employing a Raman spectroscopy, we characterized those polymers used to produce the plastics ingested. Debris was recorded in 143 pellets (%FO=17.7%, n=202, 92.58g). Plastic was found in 119 pellets (%FO=83%) and non-plastic occurred in 56 pellets (%FO=39%). The most important debris category was plastic film with 55.3% (n=79). Plastic bags were observed in 19 pellets (%FO=2.4%, weight=25.02g). Glass was the second most important component (%FO=18.9%) followed by plastic fragments (%FO=17.8%). Plastic debris represented the 65.3% of the debris fragments (n=132, weight=58.84g), and was composed by polyethylene (52%), polypropylene (26%), polyamide (12%), polystyrene (6%), polyvinyl chloride (2%), and polyethylene terephthalate (2%). How plastics were obtained by gulls and the effects on individuals are discussed, as well as environmental considerations about plastic pollution on coastal environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Good, A.B.; Schroder, L.J.
1984-01-01
Simulated precipitation samples containing 16 metal ions were prepared at 4 pH values. Absorptive characteristics of polypropylene, polyethylene, and polyester/polyolefin sacks were evaluated at pH 3.5, 4.0, 4.5, and 5.0. Simulated precipitation was in contact with the sacks for 17 days, and subsamples were removed for chemical analysis at 3, 7, 10, 14, and 17 days after initial contact. All three types of plastic sacks absorbed Fe throughout the entire pH range. Polypropylene and polyethylene absorbed Pb throughout the entire pH range; polyester/polyolefin sacks absorbed Pb at pH 4.0 or greater. All plastic sacks also absorbed Cu, Mo, and V at pH 4.5 and 5.0. Leaching the plastic sacks with 0.7 percent HNO3 did not result in 100 percent of Cu, Fe, Pb, and V. These sacks would be suitable collection vessels for Ba, Be, Ca, Cd, Co, Li, Mg, Mn, Na Sr and Zn in precipitation through the pH range of 3.5 to 5.0.
Saheli, P T; Rowe, R K; Petersen, E J; O'Carroll, D M
2017-05-01
The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10 -15 m 2 /s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs.
Capozzi, F; Giordano, S; Di Palma, A; Spagnuolo, V; De Nicola, F; Adamo, P
2016-04-01
In this paper we investigated the possibility to use moss bags to detect pollution inputs - metals, metalloids and polycyclic aromatic hydrocarbons (PAHs) - in sites chosen for their different land use (agricultural, urban/residential scenarios) and proximity to roads (sub-scenarios), in a fragmented conurbation of Campania (southern Italy). We focused on thirty-nine elements including rare earths. For most of them, moss uptake was higher in agricultural than in urban scenarios and in front road sites. Twenty PAHs were analyzed in a subset of agricultural sites; 4- and 5-ringed PAHs were the most abundant, particularly chrysene, fluoranthene and pyrene. Overall results indicated that investigated pollutants have a similar spatial distribution pattern over the entire study area, with road traffic and agricultural practices as the major diffuse pollution sources. Moss bags proved a very sensitive tool, able to discriminate between different land use scenarios and proximity to roads in a mixed rural-urban landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanaka, Hiroaki; Takahashi, Sachiko; Yamanaka, Mari; Yoshizaki, Izumi; Sato, Masaru; Sano, Satoshi; Motohara, Moritoshi; Kobayashi, Tomoyuki; Yoshitomi, Susumu; Tanaka, Tetsuo; Fukuyama, Seijiro
2006-09-01
The diffusion coefficients of lysozyme and alpha-amylase were measured in the various polyethylene glycol (PEG) solutions. Obtained diffusion coefficients were studied with the viscosity coefficient of the solution. It was found that the diffusion process of the protein was suppressed with a factor of vγ, where ν is a relative viscosity coefficient of the PEG solution. The value of γ is -0.64 at PEG1500 for both proteins. The value increased to -0.48 at PEG8000 for lysozyme, while decreased to -0.72 for alpha-amylase. The equation of an approximate diffusion coefficient at certain PEG molecular weight and concentration was roughly obtained.
Mumtaz, Tabassum; Khan, M R; Hassan, Mohd Ali
2010-07-01
An outdoor soil burial test was carried out to evaluate the degradation of commercially available LDPE carrier bags in natural soil for up to 2 years. Biodegradability of low density polyethylene films in soil was monitored using both optical and scanning electron microscopy (SEM). After 7-9 months of soil exposure, microbial colonization was evident on the film surface. Exposed LDPE samples exhibit progressive changes towards degradation after 17-22 months. SEM images reveal signs of degradation such as exfoliation and formation of cracks on film leading to disintegration. The possible degradation mode and consequences on the use and disposal of LDPE films is discussed. Copyright 2010 Elsevier Ltd. All rights reserved.
Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies
NASA Astrophysics Data System (ADS)
Docters, E. H.; Smolko, E. E.; Suarez, C. E.
The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Burlingame, A. L.
1972-01-01
The mirror and middle shroud were extracted for organics by washing the surfaces with solvents. The techniques are discussed. Ion microprobe analyses of the primarily atomic species are presented. The sources of the organic contaminants are: (1) hydrocarbons from lubricating oils and general terrestrial contamination, (2) dioctyl phthalate, probably from polyethylene bagging material (the plasticizer), (3) carboxylic acids from decomposition of grease and general terrestrial contamination, (4) silicones from sources such as lubricating oil, (5) outgassing of electronics and plasticizer, (6) vinyl alcohol and styrene copolymer, probably from electronic insulation, and (7) nitrogenous compounds from the lunar module and possibly Surveyor 3 engine exhaust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1959-07-15
A description is given of laminated sheet, consisting of a first layer of absorbing and preferably fibrous material (e.g., filter or blotting paper, or felt), a second layer of adhesive, impermeable, and hydrophobic material (e.g., wax, bitumen, a polyvinyl or polyacrylic compound, or a polyhydrocarbon), and a third (and fourth) layer of rigid material more or less impermeable to liquids (e.g., metal (aluminum), polyvinyl chloride, polyethylene, or cardboard). These sheets can be used for covering laboratory tables and walls, for radiation protection (manufacture of clothes, etc.), or for packaging radioactive waste (manufacture of boxes, bags, etc.). (NPO)
Omori, Y; Janik, M; Sorimachi, A; Ishikawa, T; Tokonami, S
2012-11-01
Pairs of diffusion chambers with different air exchange rates are used in a large-scale survey to determine radon and thoron, separately. When they are enclosed in radon-proof bags for keeping after the exposure, since radon does not escape out immediately from the low-diffusion chamber, it leads to further exposure in the bags and disturbs the estimation of radon and thoron concentrations. In this study, the effects of the different air exchange properties of the radon-thoron discriminative detectors with CR-39 chips on the estimations of radon and thoron concentrations were investigated. The commercially available and frequently used detectors, Raduet, are examined in this study. The result shows that radon escapes out in 10 h. When degassing is not enough after the exposure in a calibration experiment or high-background radiation area, the residual radon causes the overestimation of the radon concentration and increase in the uncertainty in the thoron concentration, i.e. a low-performance quality of radon and thoron measurements.
Inexpensive Meter for Total Solar Radiation
NASA Technical Reports Server (NTRS)
Laue, E. G.
1987-01-01
Pyranometer containing solar cells measures combined intensity of direct light from Sun and diffuse light from sky. Instrument includes polyethylene dome that diffuses entering light so output of light detectors does not vary significantly with changing angle of Sun during day. Not to be calibrated for response of each detector to Sun angle, and sensor outputs not corrected separately before summed and integrated. Aids in deciding on proper time to harvest crops.
Surface modification of closed plastic bags for adherent cell cultivation
NASA Astrophysics Data System (ADS)
Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.
2011-07-01
In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.
Polyethylene recycling: Waste policy scenario analysis for the EU-27.
Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter
2015-08-01
This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saheli, P. T.; Rowe, R. K.; Petersen, E. J.; O’Carroll, D. M.
2017-01-01
The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10−15 m2/s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs. PMID:28740357
Yu, Tao; Wang, Ying-Ying; Yang, Ming; Schneider, Craig; Zhong, Weixi; Pulicare, Sarah; Choi, Woo-Jin; Mert, Olcay; Fu, Jie; Lai, Samuel K.; Hanes, Justin
2013-01-01
Mucus secretions coating entry points to the human body that are not covered by skin efficiently trap and clear conventional drug carriers, limiting controlled drug delivery at mucosal surfaces. To overcome this challenge, we recently engineered nanoparticles that readily penetrate a variety of human mucus secretions, which we termed mucus-penetrating particles (MPP). Here, we report a new biodegradable MPP formulation based on diblock copolymers of poly(lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA-PEG). PLGA-PEG nanoparticles prepared by a solvent diffusion method rapidly diffused through fresh, undiluted human cervicovaginal mucus (CVM) with an average speed only eightfold lower than their theoretical speed in water. In contrast, PLGA nanoparticles were slowed more than 12,000-fold in the same CVM secretions. Based on the measured diffusivities, as much as 75% of the PLGA-PEG nanoparticles are expected to penetrate a 10-μm-thick mucus layer within 30 min, whereas virtually no PLGA nanoparticles are expected to do so over the same duration. These results encourage further development of PLGA-PEG nanoparticles as mucus-penetrating drug carriers for improved drug and gene delivery to mucosal surfaces. PMID:24205449
Polymer diffusion in the interphase between surface and solution.
Weger, Lukas; Weidmann, Monika; Ali, Wael; Hildebrandt, Marcus; Gutmann, Jochen Stefan; Hoffmann-Jacobsen, Kerstin
2018-05-22
Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of polyethylene glycol solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in solution is assigned to long range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling (D~N -1 ) indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.
Influence of surfactant on the drop bag breakup in a continuous air jet stream
NASA Astrophysics Data System (ADS)
Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng
2016-05-01
The deformation and breakup of surfactant-laden drops is a common phenomenon in nature and numerous practical applications. We investigate influence of surfactant on the drop bag breakup in a continuous air jet stream. The airflow would induce the advection diffusion of surfactant between interface and bulk of drop. Experiments indicate that the convective motions of deforming drop would induce the non-equilibrium distribution of surfactant, which leads to the change of surface tension. When the surfactant concentration is smaller than critical micelle concentration (CMC), with the increase of surface area of drop, the surface tension of liquid-air interface and the critical Weber number will increase. When the surfactant concentration is bigger than CMC, the micelle can be considered as the source term, which can supply the monomers. So in the presence of surfactant, there would be the significant nonlinear variation on the critical Weber number of bag breakup. We build the dynamic non-monotonic relationship between concentrations of surfactant and critical Weber number theoretically. In the range of parameters studied, the experimental results are consistent with the model estimates.
Wood Technology: Techniques, Processes, and Products
ERIC Educational Resources Information Center
Oatman, Olan
1975-01-01
Seven areas of wood technology illustrates applicable techniques, processes, and products for an industrial arts woodworking curriculum. They are: wood lamination; PEG (polyethylene glycol) diffusion processes; wood flour and/or particle molding; production product of industry; WPC (wood-plastic-composition) process; residential construction; and…
Quantitative characterization of brazing performance for Sn-plated silver alloy fillers
NASA Astrophysics Data System (ADS)
Wang, Xingxing; Peng, Jin; Cui, Datian
2017-12-01
Two types of AgCuZnSn fillers were prepared based on BAg50CuZn and BAg34CuZnSn alloy through a combinative process of electroplating and thermal diffusion. The models of wetting entropy and joint strength entropy of AgCuZnSn filler metals were established. The wetting entropy of the Sn-plated silver brazing alloys are lower than the traditional fillers, and its joint strength entropy value is slightly higher than the latter. The wetting entropy value of the Sn-plated brazing alloys and traditional filler metal are similar to the change trend of the wetting area. The trend of the joint strength entropy value with those fillers are consisted with the tensile strength of the stainless steel joints with the increase of Sn content.
Concentration dependence of lipopolymer self-diffusion in supported bilayer membranes
Zhang, Huai-Ying; Hill, Reghan J.
2011-01-01
Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction–diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient Ds at concentrations in the range c ≈ 0.5–5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation Ds = D0/(1 + αc), where D0 ≈ 3.36 µm2 s−1 and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar–Abney–Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius ae ≈ 2.41 nm. On the other hand, the Bussell–Koch–Hammer theory, which includes hydrodynamic interactions, yields ae ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, RF ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, al ≈ 0.46 nm. The diffusion coefficient at infinite dilution D0 was interpreted using the Evans–Sackmann theory, furnishing an inter-leaflet frictional drag coefficient bs ≈ 1.33 × 108 N s m−3. Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics. PMID:20504804
Coda, Rossana; Cassone, Angela; Rizzello, Carlo G.; Nionelli, Luana; Cardinali, Gianluigi; Gobbetti, Marco
2011-01-01
This study aimed at investigating the antifungal activity of Wickerhamomyces anomalus and sourdough lactic acid bacteria to extend the shelf life of wheat flour bread. The antifungal activity was assayed by agar diffusion, growth rate inhibition, and conidial germination assays, using Penicillium roqueforti DPPMAF1 as the indicator fungus. Sourdough fermented by Lactobacillus plantarum 1A7 (S1A7) and dough fermented by W. anomalus LCF1695 (D1695) were selected and characterized. The water/salt-soluble extract of S1A7 was partially purified, and several novel antifungal peptides, encrypted into sequences of Oryza sativa proteins, were identified. The water/salt-soluble extract of D1695 contained ethanol and, especially, ethyl acetate as inhibitory compounds. As shown by growth inhibition assays, both water/salt-soluble extracts had a large inhibitory spectrum, with some differences, toward the most common fungi isolated from bakeries. Bread making at a pilot plant was carried out with S1A7, D1695, or a sourdough started with a combination of both strains (S1A7-1695). Slices of the bread manufactured with S1A7-1695 did not show contamination by fungi until 28 days of storage in polyethylene bags at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate. The effect of sourdough fermentation with W. anomalus LCF1695 was also assessed based on rheology and sensory properties. PMID:21441340
Sillesen, Nanna H; Greene, Meridith E; Nebergall, Audrey K; Nielsen, Poul T; Laursen, Mogens B; Troelsen, Anders; Malchau, Henrik
2015-07-01
Vitamin E diffusion into highly cross-linked polyethylene (E-XLPE) is a method for enhancing oxidative stability of acetabular liners. The purpose of this study was to evaluate in vivo penetration of E-XLPE using radiostereometric analysis (RSA). Eighty-four hips were recruited into a prospective 10-year RSA. This is the first evaluation of the multicenter cohort after 3-years. All patients received E-XLPE liners (E1, Biomet) and porous-titanium coated cups (Regenerex, Biomet). There was no difference (P=0.450) in median femoral head penetration into the E-XLPE liners at 3-years comparing cobalt-chrome heads (-0.028mm; inter-quartile range (IQR) - 0.065 to 0.047) with ceramic heads (-0.043mm, IQR - 0.143to0.042). The 3-year follow-up indicates minimal E-XLPE liner penetration regardless of head material and minimal early cup movement. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.
2017-12-01
In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.
Hotchen, Christopher E; Nguyen, H Viet; Fisher, Adrian C; Frith, Paul E; Marken, Frank
2015-07-21
Electrochemical processes in highly viscous media such as poly(ethylene glycol) (herein PEG200) are interesting for energy-conversion applications, but problematic due to slow diffusion causing low current densities. Here, a hydrodynamic microgap experiment based on Couette flow is introduced for an inlaid disc electrode approaching a rotating drum. Steady-state voltammetric currents are independent of viscosity and readily increased by two orders of magnitude with further potential to go to higher rotation rates and nanogaps. A quantitative theory is derived for the prediction of currents under high-shear Couette flow conditions and generalised for different electrode shapes. The 1,1'-ferrocene dimethanol redox probe in PEG200 (D=1.4×10 -11 m 2 s -1 ) is employed and data are compared with 1) a Levich-type equation expressing the diffusion-convection-limited current and 2) a COMSOL simulation model providing a potential-dependent current trace. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanisms of lithium transport in amorphous polyethylene oxide.
Duan, Yuhua; Halley, J W; Curtiss, Larry; Redfern, Paul
2005-02-01
We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large lithium motions occur during short times, we find that no single type of rearrangement of the lithium environment characterizes these events. We estimate the free energies of the lithium ion as a function of position during these events by calculation of potentials of mean force and thus derive an approximate map of the free energy as a function of lithium position during these events. The results are consistent with a Marcus-like picture in which the system slowly climbs a free energy barrier dominated by rearrangement of the polymer around the lithium ions, after which the lithium moves very quickly to a new position. Reducing the torsion forces in the model causes the diffusion rates to increase.
Single-use technology for solvent/detergent virus inactivation of industrial plasma products.
Hsieh, Yao-Ting; Mullin, Lori; Greenhalgh, Patricia; Cunningham, Michael; Goodrich, Elizabeth; Shea, Jessica; Youssef, Eric; Burnouf, Thierry
2016-06-01
Virus inactivation of plasma products is conducted using stainless-steel vessels. Single-use technology can offer significant benefits over stainless such as operational flexibility, reduced capital infrastructure costs, and increased efficiency by minimizing the time and validation requirements associated with hardware cleaning. This study qualifies a single-use bag system for solvent/detergent (S/D) virus inactivation. Human plasma and immunoglobulin test materials were S/D-treated in Mobius single-use bags using 1% tri-n-butyl phosphate (TnBP) with 1% Triton X-100 or 1% Tween 80 at 31°C for 4 to 6 hours to evaluate the impact on protein quality. Volatile and nonvolatile organic leachables from low-density polyethylene film (Pureflex film) used in 1-L-scale studies after exposure to S/D in phosphate-buffered saline were identified compared to controls in glass containers. Virus inactivation studies were performed with xenotropic murine leukemia virus (XMuLV) and bovine viral diarrhea virus (BVDV) to determine the kinetics of virus inactivation, measured using infectivity assays. S/D treatment in Mobius bags did not impact the protein content and profile of plasma and immunoglobulin, including proteolytic enzymes and thrombin generation. Cumulative leachable levels after exposure to S/D were 1.5 and 1.85 ppm when using 0.3% TnBP combined with 1% Tween 80 or 1% Triton X-100, respectively. Efficient inactivation of both XMuLV and BVDV was observed, with differences in the rate of inactivation dependent on both virus and S/D mixture. Effective S/D virus inactivation in single-use container technology is achievable. It does not alter plasma proteins and induces minimal release of leachables. © 2016 The Authors. Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.
Selvam, Shivaram; Chang, Wenji V.; Nakamura, Tamako; Samant, Deedar M.; Thomas, Padmaja B.; Trousdale, Melvin D.; Mircheff, Austin K.; Schechter, Joel E.
2009-01-01
With the eventual goal of developing a tissue-engineered tear secretory system, we found that primary lacrimal gland acinar cells grown on solid poly(L-lactic acid) (PLLA) supports expressed the best histiotypic morphology. However, to be able to perform vectorial transport functions, epithelia must be supported by a permeable substratum. In the present study, we describe the use of a solvent-cast/particulate leaching technique to fabricate microporous PLLA membranes (mpPLLAm) from PLLA/polyethylene glycol blends. Scanning electron microscopy revealed pores on both the air-cured (∼4 μm) and glass-cured sides (<2 μm) of the mpPLLAm. Diffusion studies were performed with mpPLLAm fabricated from 57.1% PLLA/42.9% polyethylene glycol blends to confirm the presence of channelized pores. The data reveal that glucose, L-tryptophan, and dextran (a high molecular weight glucose polymer) readily permeate mpPLLAm. Diffusion of the immunoglobulin G through the mpPLLAm decreased with time, suggesting the possible adsorption and occlusion of the pores. Cells cultured on the mpPLLAm (57.1/42.9 wt%) grew to subconfluent monolayers but retained histiotypic morphological and physiological characteristics of lacrimal acinar cells in vivo. Our results suggest that mpPLLAm fabricated using this technique may be useful as a scaffold for a bioartificial lacrimal gland device. PMID:19260769
Study of translational dynamics in molten polymer by variation of gradient pulse-width of PGSE.
Stepišnik, Janez; Lahajnar, Gojmir; Zupančič, Ivan; Mohorič, Aleš
2013-11-01
Pulsed gradient spin echo is a method of measuring molecular translation. Changing Δ makes it sensitive to diffusion spectrum. Spin translation effects the buildup of phase structure during the application of gradient pulses as well. The time scale of the self-diffusion measurement shortens if this is taken into account. The method of diffusion spectrometry with variable δ is also less sensitive to artifacts caused by spin relaxation and internal gradient fields. Here the method is demonstrated in the case of diffusion spectrometry of molten polyethylene. The results confirm a model of constraint release in a system of entangled polymer chains as a sort of tube Rouse motion. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis
2017-12-01
We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.
Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes.
Savoie, Brett M; Webb, Michael A; Miller, Thomas F
2017-02-02
Solid polymer electrolytes (SPEs) have the potential to increase both the energy density and stability of lithium-based batteries, but low Li + conductivity remains a barrier to technological viability. SPEs are designed to maximize Li + diffusivity relative to the anion while maintaining sufficient salt solubility. It is thus remarkable that poly(ethylene oxide) (PEO), the most widely used SPE, exhibits Li + diffusivity that is an order of magnitude smaller than that of typical counterions at moderate salt concentrations. We show that Lewis-basic polymers like PEO favor slow cation and rapid anion diffusion, while this relationship can be reversed in Lewis-acidic polymers. Using molecular dynamics, polyboranes are identified that achieve up to 10-fold increases in Li + diffusivities and significant decreases in anion diffusivities, relative to PEO in the dilute-ion regime. These results illustrate a general principle for increasing Li + diffusivity and transference number with chemistries that exhibit weaker cation and stronger anion coordination.
Huffman, Raegan L.
2002-01-01
Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.
USDA-ARS?s Scientific Manuscript database
In the first part of our study we determined permeability, diffusion, and solubility coefficients of gaseous chlorine dioxide (ClO2) through the following packaging material: biaxial-oriented polypropylene (BOPP); polyethylene terephthalate (PET); poly lactic acid (PLA); multilayer structure of ethy...
Dimensional stabilization of southern pines
E.T. Choong; H.M. Barnes
1969-01-01
The effectiveness of five dimensional stabilizing agents and three impregnation methods on southern pine was determined. Four southern pine species were studies in order to determine the effect of wood factors. The best dimensional stability was obtained when the wood was preswollen and the chemical was impregnated by a diffusion process. In general, polyethylene...
Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.
Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo
2017-07-19
Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.
Chen, Chien-Yi
2009-01-01
Optimal conditions for the simultaneous determination of As, Sb and Sm in Chinese medicinal herbs using epithermal neutron activation analysis were investigated. The minimum detectable concentrations of 76As, 122Sb and 153Sm in lichen and medicinal herbs depended on the weight of the irradiated sample, and irradiation and decay durations. Optimal conditions were obtained by wrapping the irradiated target with 3.2 mm borated polyethylene neutron filters, which were adopted to screen the original reactor fission neutrons and to reduce the background activities of 38Cl, 24Na and 42K. Twelve medicinal herbs, commonly consumed by Taiwanese children as a diuretic treatment, were analysed since trace elements, such as As and Sb, in these herbs may be toxic when consumed in sufficiently large quantities over a long period. Various amounts of medicinal herbs, standardised powder, lichen and tomato leaves were weighed, packed into polyethylene bags, irradiated and counted under different conditions. The results indicated that about 350 mg of lichen irradiated for 24 h and counted for 20 min following a 30-60 h decay period was optimal for irradiation in a 10(11)n/cm s epithermal neutron flux. The implications of the content of the studied elements in Chinese medicinal herbs are discussed.
Xu, Xu; Xu, Zhaokang; Liu, Junyi; Zhang, Zhaoliang; Chen, Hao; Li, Xingyi; Shi, Shuai
2016-01-01
To visually trace the diffusion and biodistribution of amphiphilic cation micelles after vitreous injection, various triblock copolymers of monomethoxy poly(ethylene glycol)–poly(ε-caprolactone)–polyethylenimine were synthesized with different structures of hydrophilic and hydrophobic segments, followed by labeling with near-infrared fluorescent dye Cyanine5 or Cyanine7. The micellar size, polydispersity index, and surface charge were measured by dynamic light scattering. The diffusion was monitored using photoacoustic imaging in real time after intravitreal injections. Moreover, the labeled nanoparticle distribution in the posterior segment of the eye was imaged histologically by confocal microscopy. The results showed that the hydrophilic segment increased vitreous diffusion, while a positive charge on the particle surface hindered diffusion. In addition, the particles diffused through the retinal layers and were enriched in the retinal pigment epithelial layer. This work tried to study the diffusion rate via a simple method by using visible images, and then provided basic data for the development of intraocular drug carriers. PMID:27785015
Xu, Xu; Xu, Zhaokang; Liu, Junyi; Zhang, Zhaoliang; Chen, Hao; Li, Xingyi; Shi, Shuai
To visually trace the diffusion and biodistribution of amphiphilic cation micelles after vitreous injection, various triblock copolymers of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone)-polyethylenimine were synthesized with different structures of hydrophilic and hydrophobic segments, followed by labeling with near-infrared fluorescent dye Cyanine5 or Cyanine7. The micellar size, polydispersity index, and surface charge were measured by dynamic light scattering. The diffusion was monitored using photoacoustic imaging in real time after intravitreal injections. Moreover, the labeled nanoparticle distribution in the posterior segment of the eye was imaged histologically by confocal microscopy. The results showed that the hydrophilic segment increased vitreous diffusion, while a positive charge on the particle surface hindered diffusion. In addition, the particles diffused through the retinal layers and were enriched in the retinal pigment epithelial layer. This work tried to study the diffusion rate via a simple method by using visible images, and then provided basic data for the development of intraocular drug carriers.
Step - wise transient method - Influence of heat source inertia
NASA Astrophysics Data System (ADS)
Malinarič, Svetozár; Dieška, Peter
2016-07-01
Step-wise transient (SWT) method is an experimental technique for measuring the thermal diffusivity and conductivity of materials. Theoretical models and experimental apparatus are presented and the influence of the heat source capacity are investigated using the experiment simulation. The specimens from low density polyethylene (LDPE) were measured yielding the thermal diffusivity 0.165 mm2/s and thermal conductivity 0.351 W/mK with the coefficient of variation less than 1.4 %. The heat source capacity caused the systematic error of the results smaller than 1 %.
Laforsch, Christian; Weber, Miriam
2015-01-01
The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat. PMID:26394047
Eich, Andreas; Mildenberger, Tobias; Laforsch, Christian; Weber, Miriam
2015-01-01
The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat.
Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio
2011-01-01
The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm3 m−2 per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log10 CFU g−1, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure. PMID:21821764
Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide
Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; ...
2015-11-03
We studied the dynamics of water in polyethylene oxide (PEO)/LiCl solution with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. Furthermore, the measured diffusion coefficient of interfacial water remained 5–10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li +. Detailed analysis of MD trajectories suggests that Li + is favorably found at the surface of the hydration layer, and the probability to find the caged Li + configuration formed by themore » PEO is lower than for the noncaged Li +-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li + hydration complexes. Moreover, performing the MD simulation with different ions (Na + and K +) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.« less
Hammel, E. C.; Campa, J. A.; Armbrister, C. E.; ...
2017-09-06
Gelcasting and liquid desiccant drying are novel forming and drying methods used to mitigate common issues associated with the fabrication of complex advanced ceramic objects. Here, the molecular weight and osmotic pressure of aqueous poly(ethylene glycol) (PEG) desiccant solutions were simultaneously varied to understand their influence on the net mass loss rates of gelcast alumina samples prepared using gelatin as a gelling agent. Additionally, the amount of PEG diffusion and water diffusion to and from the ceramic samples after 150 min of immersion in the liquid desiccant was correlated to the solution properties as was the final bulk density ofmore » the sintered samples. Furthermore, solutions with high molecular weight and low osmotic pressure resulted in low PEG gain and low water loss, while solutions with low molecular weight and high osmotic pressure resulted in high PEG gain and high water loss. In some cases, more than 40 wt% of the total water per sample was removed through the liquid desiccant drying process.« less
Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; Jalarvo, Niina H.; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S.; Do, Changwoo
2015-11-01
The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li+ . Detailed analysis of MD trajectories suggests that Li+ is favorably found at the surface of the hydration layer, and the probability to find the caged Li+ configuration formed by the PEO is lower than for the noncaged Li+-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li+ hydration complexes. Performing the MD simulation with different ions (Na+ and K+ ) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.
Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide.
Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O; Jalarvo, Niina H; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S; Do, Changwoo
2015-11-06
The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li(+). Detailed analysis of MD trajectories suggests that Li(+) is favorably found at the surface of the hydration layer, and the probability to find the caged Li(+) configuration formed by the PEO is lower than for the noncaged Li(+)-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li(+) hydration complexes. Performing the MD simulation with different ions (Na(+) and K(+)) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.
Zardalidis, George; Mars, Julian; Allgaier, Jürgen; Mezger, Markus; Richter, Dieter; Floudas, George
2016-10-04
The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < M e ), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > M e undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, E. C.; Campa, J. A.; Armbrister, C. E.
Gelcasting and liquid desiccant drying are novel forming and drying methods used to mitigate common issues associated with the fabrication of complex advanced ceramic objects. Here, the molecular weight and osmotic pressure of aqueous poly(ethylene glycol) (PEG) desiccant solutions were simultaneously varied to understand their influence on the net mass loss rates of gelcast alumina samples prepared using gelatin as a gelling agent. Additionally, the amount of PEG diffusion and water diffusion to and from the ceramic samples after 150 min of immersion in the liquid desiccant was correlated to the solution properties as was the final bulk density ofmore » the sintered samples. Furthermore, solutions with high molecular weight and low osmotic pressure resulted in low PEG gain and low water loss, while solutions with low molecular weight and high osmotic pressure resulted in high PEG gain and high water loss. In some cases, more than 40 wt% of the total water per sample was removed through the liquid desiccant drying process.« less
Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug.
Iza, M; Stoianovici, G; Viora, L; Grossiord, J L; Couarraze, G
1998-03-02
Thermosensitive polymer networks were synthesized from poly(ethylene glycol), hexamethylene diisocyanate and 1,2,6-hexanetriol in stoichiometric proportions. By varying the amount of 1,2,6-hexanetriol and the molar mass of the poly(ethylene glycol), a wide range of networks with different crosslinking densities was prepared. The networks obtained were characterized by the temperature dependence of their degree of equilibrium swelling in water and by their Young's moduli. For each network, the molecular weight between crosslinks was estimated. The structure of the hydrogels was analysed with respect to scaling laws, and it was found that the results obtained with PEG 1500 and PEG 6000 hydrogels are in agreement with theoretical predictions, whereas those obtained with PEG 400 hydrogels are in disagreement. The release properties of PEG hydrogels were studied by the determination of the diffusion coefficient for acebutolol chlorhydrate and by an analysis of the effect of temperature on these coefficients. Finally, these release properties were correlated with the swelling and structural properties of the hydrogels.
Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread.
Rizzello, Carlo Giuseppe; Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco
2015-06-15
In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Coda, Rossana; Rizzello, Carlo G.; Nigro, Franco; De Angelis, Maria; Arnault, Philip; Gobbetti, Marco
2008-01-01
The antifungal activity of proteinaceous compounds from different food matrices was investigated. In initial experiments, water-soluble extracts of wheat sourdoughs, cheeses, and vegetables were screened by agar diffusion assays with Penicillium roqueforti DPPMAF1 as the indicator fungus. Water-soluble extracts of sourdough fermented with Lactobacillus brevis AM7 and Phaseolus vulgaris cv. Pinto were selected for further study. The crude water-soluble extracts of L. brevis AM7 sourdough and P. vulgaris cv. Pinto had a MIC of 40 mg of peptide/ml and 30.9 mg of protein/ml, respectively. MICs were markedly lower when chemically synthesized peptides or partially purified protein fractions were used. The water-soluble extract of P. vulgaris cv. Pinto showed inhibition toward a large number of fungal species isolated from bakeries. Phaseolin alpha-type precursor, phaseolin, and erythroagglutinating phytohemagglutinin precursor were identified in the water-soluble extract of P. vulgaris cv. Pinto by nano liquid chromatography-electrospray ionization-tandem mass spectrometry. When the antifungal activity was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all three proteins were inhibitory. A mixture of eight peptides was identified from the water-soluble extract of sourdough L. brevis AM7, and five of these exhibited inhibitory activity. Bread was made at the pilot plant scale by sourdough fermentation with L. brevis AM7 and addition of the water-soluble extract (27%, vol/wt; 5 mg of protein/ml) of P. vulgaris cv. Pinto. Slices of bread packed in polyethylene bags did not show contamination by fungi until at least 21 days of storage at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate. PMID:18849463
Coda, Rossana; Rizzello, Carlo G; Nigro, Franco; De Angelis, Maria; Arnault, Philip; Gobbetti, Marco
2008-12-01
The antifungal activity of proteinaceous compounds from different food matrices was investigated. In initial experiments, water-soluble extracts of wheat sourdoughs, cheeses, and vegetables were screened by agar diffusion assays with Penicillium roqueforti DPPMAF1 as the indicator fungus. Water-soluble extracts of sourdough fermented with Lactobacillus brevis AM7 and Phaseolus vulgaris cv. Pinto were selected for further study. The crude water-soluble extracts of L. brevis AM7 sourdough and P. vulgaris cv. Pinto had a MIC of 40 mg of peptide/ml and 30.9 mg of protein/ml, respectively. MICs were markedly lower when chemically synthesized peptides or partially purified protein fractions were used. The water-soluble extract of P. vulgaris cv. Pinto showed inhibition toward a large number of fungal species isolated from bakeries. Phaseolin alpha-type precursor, phaseolin, and erythroagglutinating phytohemagglutinin precursor were identified in the water-soluble extract of P. vulgaris cv. Pinto by nano liquid chromatography-electrospray ionization-tandem mass spectrometry. When the antifungal activity was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all three proteins were inhibitory. A mixture of eight peptides was identified from the water-soluble extract of sourdough L. brevis AM7, and five of these exhibited inhibitory activity. Bread was made at the pilot plant scale by sourdough fermentation with L. brevis AM7 and addition of the water-soluble extract (27%, vol/wt; 5 mg of protein/ml) of P. vulgaris cv. Pinto. Slices of bread packed in polyethylene bags did not show contamination by fungi until at least 21 days of storage at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate.
Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread
Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco
2015-01-01
In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). PMID:25862230
2013-01-01
Background White wine quality, especially in warm climates, is affected by sunlight and heat stress. These factors increase the probability that ambering processes will occur and reduce the potential flavour compounds. This study aimed to investigate the effect of sunlight reduction on the accumulation of polyphenolic and aromatic compounds. Results This study was conducted in a commercial vineyard containing V. vinifera L. cv Grillo. Opaque polypropylene boxes (100% shading) and high-density polyethylene (HDPE) net bags (50% shading) were applied at fruit set. The effect of the shaded treatments was compared to the exposed fruit treatment. The shaded treatments resulted in heavier berries and lower must sugar contents than the exposed treatments. Proanthocyanidins and total polyphenol levels were similar in the exposed and bagged grapes; however, the levels were always lower in the boxed fruit. At harvest, the highest aroma level was measured in the boxed fruits. Conclusions The boxed fruit had less sugar, fewer proanthocyanidins and more flavours than the exposed grapes. The reduction in flavanols reactive to p-dimethylamino-cinnamaldehyde as (+)-catechin equivalents and total skin proanthocyanidins is an important result for the white winemaking process. In addition, the higher level of aromatic compounds in shaded grapes at harvest is an important contribution to the development of different wine styles. PMID:24195612
The reference cube: A new ballistic model to generate staining in firearm barrels.
Schyma, Christian; Bauer, Kristina; Brünig, Julia
2017-06-01
After contact shots to the head biological traces can be found inside firearm barrels. So far silicone coated, gelatin filled box models were used to generate such staining according to the triple contrast method (mixture of acrylic paint, barium sulfate and blood sealed in a thin foil bag). This study was conducted to develop a transparent ballistic model allowing contact shots. Gelatin filled polyethylene bottles with and without a silicone coat were tested in comparison to non-covered gelatin blocks. Finally, thin foil bags of 5 cm × 5 cm dimension were glued on a synthetic absorbent kitchen wipe on top of which 1 L 10% gelatin solution was molded to create blocks of 8.5 cm length. A kitchen wipe with a paint pad on its inside formed the front of the cube. Three contact shots each with a 9 mm Luger pistol and a .38 special revolver were performed on all model variations. The staining was documented by endoscopy and swabs gathered from both ends of the barrel were analyzed by quantitative PCR. Reliable staining was achieved using the front covered gelatin block with comparable results to the silicone coated box model used before. For further research using ballistic models to simulate a human head a symmetric form of the gelatin block such as a cube is recommended.
NASA Technical Reports Server (NTRS)
Rasmussen, Ole
1992-01-01
The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.
Anomalous Diffusion of Water in Lamellar Membranes Formed by Pluronic Polymers
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Ohl, Michael; Han, Youngkyu; Smith, Gregory; Do, Changwoo; Biology; Soft-Matter Division, Oak Ridge National Laboratory Team; Julich CenterNeutron Science Team
Water diffusion is playing an important role in polymer systems. We calculated the water diffusion coefficient at different layers along z-direction which is perpendicular to the lamellar membrane formed by Pluronic block copolymers (L62: (EO6-PO34-EO6)) with the molecular dynamics simulation trajectories. Water molecules at bulk layers are following the normal diffusion, while that at hydration layers formed by polyethylene oxide (PEO) and hydrophobic layers formed by polypropylene oxide (PPO) are following anomalous diffusion. We find that although the subdiffusive regimes at PEO layers and PPO layers are the same, which is the fractional Brownian motion, however, the dynamics are different, i.e. diffusion at the PEO layers is much faster than that at the PPO layers, and meanwhile it exhibits a normal diffusive approximation within a short time period which is governed by the localized free self-diffusion, but becomes subdiffusive after t >8 ps, which is governed by the viscoelastic medium. The Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; and Zhe Zhang gratefully acknowledges financial support from Julich Center for Neutron Science.
Haley, Jeffrey C; Lodge, Timothy P
2005-06-15
The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.
Activation energies of diffusion of organic migrants in cyclo olefin polymer.
Welle, Frank
2014-10-01
Cyclo olefin polymer (COP) is an amorphous polymer with good optical transparency and barrier properties, which is increasingly used for pharmaceutical packaging applications like pre-filled syringes, plastic vials, nutrition bags and blisters as well as for micro-well plates. For regulatory purposes, it is important to know the amount and quantity of compounds which migrate from the polymer into the pharmaceutical product. Within the study, diffusion coefficients of organic (model) compounds in COP at various temperatures were determined and the activation energies of diffusion were calculated according to the Arrhenius approach. Correlations were established between the molecular volume V of the migrating compound and the activation energy of diffusion EA as well as between the pre-exponential factor in the Arrhenius equation D0 and EA. From these correlations a prediction model was established for the migration of organic compounds in COP. This might be a useful tool supporting the evaluation process of COP packed pharmaceutical products. Copyright © 2014 Elsevier B.V. All rights reserved.
Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting
2007-04-02
The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (p<0.001). The steady state permeation rates also showed a good agreement between ASTM F739 and immersion experiments (r(2)=0.973, p<0.001). Using a one-dimensional diffusion equation based on Fick's second law, the diffusion and solubility coefficients obtained by immersion test resulted in over estimates of the ASTM F739 permeation results. The modeling results indicated that the diffusion and solubility coefficients should be obtained using ASTM F739 method which closely simulates the practical application of HDPE as barriers in the field.
Lateral Diffusion in a DMPC:DMPE-EO Binary Monolayer at the Air/Water Interface
NASA Astrophysics Data System (ADS)
Adalsteinsson, Thorsteinn; Porter, Ryan; Yu, Hyuk
2002-03-01
Polyethylene glycol tethered phospholipids (lipo-polymers) have recently attracted attention for improving the stability of liposomes and other bilayer delivery systems. Here, we report a study of surface pressure measurement and diffusion measurements of a probe lipid (NBD-DMPC) in a binary monolayer of DMPC and DMPE-EO at the Air/Water interface. Our findings are that the DMPE-EO lipo-polymer desorbs from the interface at intermediate surface pressures if the EO tail is sufficiently large (i.e. EO_45) and does not interfere with the diffusion of the probe thereafter. In the case where the EO tail is short (i.e. EO_17) the lipo-polymer retards the diffusion of the probe, but as the surface pressure increases, the diffusion behavior approaches that of pure DMPC monolayer independent of lipo-polymer. Thus, we conclude that the surface pressure and EO molar mass dependent desorption of the lipo-polymer modulates the probe diffusion retardation.
Radon diffusion coefficients in 360 waterproof materials of different chemical composition.
Jiránek, M; Kotrbatá, M
2011-05-01
This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints.
Wietstock, Philip C; Glattfelder, Richard; Garbe, Leif-Alexander; Methner, Frank-Jürgen
2016-04-06
Absorption of hop volatiles by crown cork liner polymers and can coatings was investigated in beer during storage. All hop volatiles measured were prone to migrate into the closures, and the absorption kinetics was demonstrated to fit Fick's second law of diffusion well for a plane sheet. The extent and rate of diffusion were significantly dissimilar and were greatly dependent upon the nature of the volatile. Diffusion coefficients ranged from 1.32 × 10(-5) cm(2)/day (limonene) to 0.26 × 10(-5) cm(2)/day (α-humulene). The maximum amounts absorbed into the material at equilibrium were in the following order: limonene > α-humulene > trans-caryophyllene > myrcene ≫ linalool > α-terpineol > geraniol. With the application of low-density polyethylene (LDPE) liners with oxygen-scavenging functionality, oxygen-barrier liners made up from high-density polyethylene (HDPE) or liner polymers from a different manufacturer had no significant effect on the composition of hop volatiles in beers after prolonged storage of 55 days; however, significantly higher amounts of myrcene and limonene were found in the oxygen-barrier-type crown cork, while all other closures behaved similarly. Can coatings were demonstrated to absorb hop volatiles in a similar pattern as crown corks but to a lesser extent. Consequently, significantly higher percentages of myrcene were found in the beers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akyildiz, Halil I.; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; Mousa, Moataz Bellah M.
Exposing a polymer to sequential organometallic vapor infiltration (SVI) under low pressure conditions can significantly modify the polymer's chemical, mechanical, and optical properties. We demonstrate that SVI of trimethylaluminum into polyethylene terephthalate (PET) can also proceed readily at atmospheric pressure, and at 60 °C the extent of reaction determined by mass uptake is independent of pressure between 2.5 Torr and 760 Torr. At 120 °C, however, the mass gain is 50% larger at 2.5 Torr relative to that at 760 Torr, indicating that the precursor diffusion in the chamber and fiber matrix decreases at higher source pressure. Mass gain decreases, in general, as the SVI processmore » temperature increases both at 2.5 Torr and 760 Torr attributed to the faster reaction kinetics forming a barrier layer, which prevents further diffusion of the reactive species. The resulting PET/Al-O{sub x} product shows high photoluminescence compared to untreated fibers. A physical mask on the polymer during infiltration at 760 Torr is replicated in the underlying polymer, producing an image in the polymer that is visible under UV illumination. Because of the reduced precursor diffusivity during exposure at 760 Torr, the image shows improved resolution compared to SVI performed under typical 2.5 Torr conditions.« less
Paseiro-Cerrato, Rafael; Rodríguez-Bernaldo de Quirós, Ana; Otero-Pazos, Pablo; Sendón, Raquel; Paseiro-Losada, Perfecto
2018-03-01
The aim of the present study was to determine the migration kinetics of one photoinitiator, benzophenone, and two optical brighteners, Uvitex OB and 1,4-diphenyl-1,3-butadiene (DPBD), from low-density polyethylene (LDPE) films into cake. Transfer was assessed by both direct contact and also the vapour phase. To perform the migration tests by direct contact, plastic films enriched with the additives were placed between two cake slices. To evaluate the migration through the gas phase, cake and the fortified LDPE film were placed with no direct contact in a glass container that was hermetically closed. Samples were stored at different time-temperature conditions. Target compounds were extracted from the films with ethanol (70°C, 24 h) and analysed by HPLC-DAD. Relevant parameters such as partition and diffusion coefficients between food and plastic film were calculated. The Arrhenius equation was applied to estimate the diffusion coefficient at any temperature. The data indicate that migration of benzophenone occurs in a significant extent into cake by both direct contact and through the gas phase (no direct contact). Conversely, very little migration occurred for Uvitex OB by direct contact and none through the gas phase. Results for benzophenone suggest that migration through the gas phase should be considered when evaluating migration from food packaging materials into food.
Yanagisawa, Osamu; Takahashi, Hideyuki; Fukubayashi, Toru
2010-09-01
In this study, we determined the effects of different cooling treatments on exercised muscles. Seven adults underwent four post-exercise treatments (20-min ice-bag application, 60-min gel-pack application at 10 degrees C and 17 degrees C, and non-cooling treatment) with at least 1 week between treatments. Magnetic resonance diffusion- and T2-weighted images were obtained to calculate the apparent diffusion coefficients (apparent diffusion coefficient 1, which reflects intramuscular water diffusion and microcirculation, and apparent diffusion coefficient 2, which is approximately equal to the true diffusion coefficient that excludes as much of the effect of intramuscular microcirculation as possible) and the T2 values (intramuscular water content level) of the ankle dorsiflexors, respectively, before and after ankle dorsiflexion exercise and after post-exercise treatment. The T2 values increased significantly after exercise and returned to pre-exercise values after each treatment; no significant differences were observed among the four post-exercise treatments. Both apparent diffusion coefficients also increased significantly after exercise and decreased significantly after the three cooling treatments; no significant difference was detected among the three cooling treatments. Local cooling suppresses both water diffusion and microcirculation within exercised muscles. Moreover, although the treatment time was longer, adequate cooling effects could be achieved using the gel-pack applications at relatively mild cooling temperatures.
Testing of SRS and RFETS Nylon Bag Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurinat, J.E.
1998-11-03
This report compares the effects of radiation and heating on nylon bagout materials used at the Savannah River Site (SRS) and the Rocky Flats Environmental Technology Site (RFETS). Recently, to simplify the processing of sand, slag, and crucible (SS and C), FB-Line has replaced the low-density polyethylene (LDPE) and polyvinyl chloride (PVC) bags normally used to package cans of plutonium-bearing material with nylon bags. LDPE and PVC are not soluble in the nitric acid dissolver solution used in F-Canyon, so cans bagged using these materials had to be repackaged before they were added to the dissolver. Because nylon dissolves inmore » nitric acid, cans bagged in nylon can be charged to the F-Canyon dissolvers without repackaging, thereby reducing handling requirements and personnel exposure. As part of a program to process RFETS SS and C at SRS, RFETS has also begun to use a nylon bagout material. The RFETS bag materials is made from a copolymer of nylon 6 and nylon 6.9, while the SRS material is made from a nylon 6 monomer. In addition, the SRS nylon has an anti-static agent added. The RFETS nylon is slightly softer than the SRS nylon, but does not appear to be as resistant to flex cracks initiated by contact with sharp corners of the inner can containing the SS and C.2 FB-Line Operations has asked for measurement of the effects of radiation and heating on these materials. Specifically, they have requested a comparison of the material properties of the plastics before and after irradiation, a measurement of the amount of outgassing when the plastics are heated, and a calculation of the amount of radiolytic gas generation. Testing was performed on samples taken from material that is currently used in FB-Line (color coded orange) and at RFETS. The requested tests are the same tests previously performed on the original and replacement nylon and LDPE bag materials.3,4,5. To evaluate the effect of irradiation on material properties, tensile stresses and elongations to break w ere compared for unirradiated and irradiated samples. A standard ASTM method for the measurement of tensile plastic properties6 was used. Properties were measured both parallel to the direction of machining (MD) and transverse to the direction of machining (TD). Tensile strength measurements showed that the ultimate strengths of the SRS replacement bag material decreased by 22 percent in the MD orientation and 17 percent in the TD orientation after irradiation with 5 x 106 rad, a dose equivalent to about 8-9 months exposure in a plutonium can. For the RFETS material, the decreases were 23 percent in the MD orientation and 56 percent in the TD orientation. Although the 5 x 106 dose significantly degraded the properties of both materials, their strengths remained superior to those previously measured for LDPE,4 even after irradiation. Elongations to break also decreased, especially for the SRS material. The decrease for the SRS material were 86 percent in the MD orientation and 95 percent in the TD orientation. For the RFETS material, elongations to break decreased at least 18 percent in the MD orientation and 29 percent in the TD orientation. When samples of both the SRS and RFETS materials were heated in a sealed container to the maximum expected storage can temperature of about 95 C, they outgassed at pressures ranging from 16 to 22 psig. These pressure increases would not cause a can to fail. Using a representative G value of 1.6 molecules/100 ev, the amount of outgassing due to radiolysis was calculated to be negligible. In conclusion, it may be stated that the results of the strength tests and the outgassing measurements and calculations demonstrate that the SRS and RFETS replacement bag materials are acceptable substitutes for LDPE with respect to mechanical properties.« less
Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells
NASA Astrophysics Data System (ADS)
Trbojevich, Raul A.; Fernandez, Avelina; Watanabe, Fumiya; Mustafa, Thikra; Bryant, Matthew S.
2016-03-01
Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.
NASA Astrophysics Data System (ADS)
Resano, M.; García-Ruiz, E.; Vanhaecke, F.
2005-11-01
In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due to the formation of volatile compounds.
Zheng, Xiaoli; Xu, Qun
2010-07-29
In this work, we provided a comparison study of morphology and crystallization behavior of polyethylene (PE) and poly(ethylene oxide) (PEO) on single-walled carbon nanotubes (SWNTs) with assistance of supercritical CO(2). The resulting polymer/SWNT nanohybrids were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide-angle X-ray diffraction, and differential scanning calorimetry. SWNT small bundles were decorated by PE lamellar crystals, forming nanohybrid "shish-kebab" (NHSK) structure, whereas SWNTs were only wrapped by a thin amorphous polymer coating in the case of PEO. The varying morphologies of the nanohybrids were found to depend on the molecular conformation and the interactions between polymer chains and SWNTs. Nonisothermal experiments showed that SWNTs provided heterogeneous nucleation sites for PE crystallization, while the NHSK structure hindered polymer chain diffusion and crystal growth. Also, SWNTs played antinucleation effect on PEO. In addition, the formation mechanism analysis indicated that PE chains preferred to form a homogeneous coating along the tube axis before proceeding to kebab crystal growth. The purpose of this work is to enlarge the area of theoretical understanding of introducing precisely hierarchical structures on carbon nanotubes, which are important for functional design in nanodevice applications.
Physical properties and application in the confined geometrical systems
NASA Astrophysics Data System (ADS)
Pak, Hunkyun
Surface viscoelasticity of a vitamin E modified polyethylene glycol (vitamin E-TPGS) monolayers at the air/water interface is deduced by the surface light scattering method and Wilhelmy plate method. It was found that the viscoelasticity of vitamin E-TPGS monolayer is similar to that of PEO monolayer at the surface pressure lower than the collapse pressure of the polyethylene oxide (PEO). However, at higher surface pressure than the collapse pressure of PEO, it deviates from the viscoelastic behavior of PEO. Lateral diffusion constants of a probe lipid (NBD-PC) in a binary monolayer of L-a-dilauroylphosphatidylcholine (DLPC) and poly-(di-isobutylene-alt-maleic acid) (PDIBMA) were determined by the fluorescence recovery after photobleaching (FRAP) method at the air/pH 7 buffer interface as a function of composition. The diffusion constant is found to retard down to less than one hundredth to that at pure DLPC monolayers as the mole fraction of PDIBMA increased. The free area model was used to interpret the probe diffusion retardation. Translational diffusion constants of a probe molecule, 4-octadecylamino-7-nitrobenzo-2-oxa-1,3-diazole (C18-NBD), in thin polyisoprene (PI) and polydimethyl siloxane (PDMS) films, spin coated on methylated and propylyaminated silicon wafers, are studied by the FRAP method as a function of film thickness. Reduction of the diffusion constant is observed as thickness of the films is decreased. Two empirical models, the two-layer model and the continuous layer model are proposed to account for the diffusion constant dependence on the film thickness vs. thickness. It was observed that the diffusion profiles in the films are dependet on the nature of the substrate surfaces. Self-assembled patterns of magnetic particles were made and fixed by applying magnetic field on the particles dispersed at the air/liquid interface, followed by gelling of the liquid subphase. With this method, the large patterns with controllable lattice constant can be made. The fixation of the subphase enhances the stability of the patterns. Further, three-dimensional self-assembled patterns can be made by this method when the fixation process is incorporated.
Leelaphiwat, Pattarin; Auras, Rafael A; Burgess, Gary J; Harte, Janice B; Chonhenchob, Vanee
2018-03-01
Aroma permeation through packaging material is an important factor when designing a package for food products. The masses of aroma compounds permeating through films over time were measured at 25 °C using a quasi-isostatic system. A model was proposed for estimating the permeability coefficients (P) of key aroma compounds present in fresh herbs (i.e. eucalyptol, estragole, linalool and citral) through major plastic films used by the food industry [i.e. low-density polyethylene (LDPE), polypropylene (PP), nylon (Nylon), polyethylene terephthalate (PET), metalised-polyethylene terephthalate (MPET) and poly(lactic acid) (PLA)]. Solubility coefficients (S) were estimated from the amount of aroma compound sorbed in the films. Diffusion coefficients (D) were estimated following from the relation P = D*S. P and D for all four aroma compounds were highest in LDPE, except for eucalyptol, which P was slightly higher in PLA. The solubility coefficients and contact angles were highest in PLA suggesting the highest affinity of PLA to these aroma compounds. The theoretical solubility parameters were correlated with the solubility coefficients for estragole and citral, but not for eucalyptol and linalool. The preliminary P, D and S of eucalyptol, estragole, linalool and citral through LDPE, PP, Nylon, PET, MPET and PLA can be useful in selecting the proper packaging material for preserving these specific aroma compounds in food products and can potentially be used for estimating the shelf life of food products based on aroma loss. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro
2016-09-01
The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). © The Author(s) 2016.
Improved Assessment Strategies for Vapor Intrusion Passive Samplers and Building Pressure Control
2013-09-01
pressure control. Matrix Analyte Method Container Holding Time (Days) Vapor Radon McHugh , Hammond, Nickels , and Hartman, 2008 Tedlar ® bag 14...2: Diffusive Sampling,” ISO 16017-2:2003. McHugh T. E., D. E. Hammond, T. Nickels , and B. Hartman. 2008. “Use of Radon Measurements for Evaluation...Control I. D. Rivera-Duarte D. B. Chadwick SSC Pacific T. McAlary H. Groenevelt T. Creamer D. Bertrand Geosyntec Consultants, Inc. T. McHugh
Jefferies, L. K.
2016-01-01
The quality of dehydrated taro slices in accelerated storage (45°C and 75% RH) was determined as a function of initial water activity (a w) and package type. Color, rehydration capacity, thiamin content, and α-tocopherol content were monitored during 34 weeks of storage in polyethylene and foil laminate packaging at initial storage a w of 0.35 to 0.71. Initial a w at or below 0.54 resulted in less browning and higher rehydration capacity, but not in significantly higher α-tocopherol retention. Foil laminate pouches resulted in a higher rehydration capacity and increased thiamin retention compared to polyethylene bags. Type of packaging had no effect on the color of the samples. Product stability was highest when stored in foil laminate pouches at 0.4a w. Sensory panels were held to determine the acceptability of rehydrated taro slices using samples representative of the taro used in the analytical tests. A hedonic test on rehydrated taro's acceptability was conducted in Fiji, with panelists rating the product an average of 7.2 ± 1.5 on a discrete 9-point scale. Using a modified Weibull analysis (with 50% probability of product failure), it was determined that the shelf life of dehydrated taro stored at 45°C was 38.3 weeks. PMID:27891508
Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals.
Haldimann, M; Blanc, A; Dudler, V
2007-08-01
Antimony residues, a result of the use of a polycondensation catalyst in the production of polyethylene terephthalate (PET) oven-proof trays, were analysed in ready-to-eat meals. The toxicity of antimony has raised concerns about consumer safety; therefore, the migration of small fractions of these residues into ready meals and foods as a result of cooking directly in the PET trays was studied. A straightforward approach of measuring real samples was selected to obtain accurate exposure data. Background antimony concentration was determined separately from a series of lunch meals, which ranged from not detectable to 3.4 microg kg(-1). Microwave and conventional oven-cooking caused a distinct increase in the concentration of antimony in food and ready meals of 0-17 and 8-38 microg kg(-1), respectively, depending, to a certain extent, on the industrial preparations. The migrated quantities of antimony corresponded to 3-13 microg. For comparison, PET roasting bags and ready-made dough products in PET baking dishes were also evaluated. About half of the products prepared at a temperature of 180 degrees C exceeded the specific migration limit set for food contact material by the European Commission. However, the migrated amounts of antimony relative to the accepted tolerable daily intake (TDI) show that exposure from this type of food is currently not of toxicological concern.
Blettler, Martin C M; Ulla, Maria Alicia; Rabuffetti, Ana Pia; Garello, Nicolás
2017-10-23
Plastic pollution is considered an important environmental problem by the United Nations Environment Programme, and it is identified, alongside climate change, as an emerging issue that might affect biological diversity and human health. However, despite research efforts investigating plastics in oceans, relatively little studies have focused on freshwater systems. The aim of this study was to estimate the spatial distribution, types, and characteristics of macro-, meso-, and microplastic fragments in shoreline sediments of a freshwater lake. Food wrappers (mainly polypropylene and polystyrene), bags (high- and low-density polyethylene), bottles (polyethylene terephthalate), and disposable Styrofoam food containers (expanded polystyrene) were the dominant macroplastics recorded in this study. Contrary to other studies, herein macroplastic item surveys would not serve as surrogates for microplastic items. This is disadvantageous since macroplastic surveys are relatively easier to conduct. Otherwise, an average of 25 mesoplastics (mainly expanded polystyrene) and 704 microplastic particles (diverse resins) were recorded per square meter in sandy sediments. Comparisons with other studies from freshwater and marine beaches indicated similar relevance of plastic contamination, demonstrating for the first time that plastic pollution is a serious problem in the Paraná floodplain lakes. This study is also valuable from a social/educational point of view, since plastic waste has been ignored in the Paraná catchment as a pollutant problem, and therefore, the outcome of the current study is a relevant contribution for decision makers.
Savoie, Jennifer G.; LeBlanc, Denis R.
2012-01-01
Field tests were conducted near the Impact Area at Camp Edwards on the Massachusetts Military Reservation, Cape Cod, Massachusetts, to determine the utility of no-purge groundwater sampling for monitoring concentrations of ordnance-related explosive compounds and perchlorate in the sand and gravel aquifer. The no-purge methods included (1) a diffusion sampler constructed of rigid porous polyethylene, (2) a diffusion sampler constructed of regenerated-cellulose membrane, and (3) a tubular grab sampler (bailer) constructed of polyethylene film. In samples from 36 monitoring wells, concentrations of perchlorate (ClO4-), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the major contaminants of concern in the Impact Area, in the no-purge samples were compared to concentrations of these compounds in samples collected by low-flow pumped sampling with dedicated bladder pumps. The monitoring wells are constructed of 2- and 2.5-inch-diameter polyvinyl chloride pipe and have approximately 5- to 10-foot-long slotted screens. The no-purge samplers were left in place for 13-64 days to ensure that ambient groundwater flow had flushed the well screen and concentrations in the screen represented water in the adjacent formation. The sampling methods were compared first in six monitoring wells. Concentrations of ClO4-, RDX, and HMX in water samples collected by the three no-purge sampling methods and low-flow pumped sampling were in close agreement for all six monitoring wells. There is no evidence of a systematic bias in the concentration differences among the methods on the basis of type of sampling device, type of contaminant, or order in which the no-purge samplers were tested. A subsequent examination of vertical variations in concentrations of ClO4- in the 10-foot-long screens of six wells by using rigid porous polyethylene diffusion samplers indicated that concentrations in a given well varied by less than 15 percent and the small variations were unlikely to affect the utility of the various sampling methods. The grab sampler was selected for additional tests in 29 of the 36 monitoring wells used during the study. Concentrations of ClO4-, RDX, HMX, and other minor explosive compounds in water samples collected by using a 1-liter grab sampler and low-flow pumped sampling were in close agreement in field tests in the 29 wells. A statistical analysis based on the sign test indicated that there was no bias in the concentration differences between the methods. There also was no evidence for a systematic bias in concentration differences between the methods related to location of the monitoring wells laterally or vertically in the groundwater-flow system. Field tests in five wells also demonstrated that sample collection by using a 2-liter grab sampler and sequential bailing with the 1-liter grab sampler were options for obtaining sufficient sample volume for replicate and spiked quality assurance and control samples. The evidence from the field tests supports the conclusion that diffusion sampling with the rigid porous polyethylene and regenerated-cellulose membranes and grab sampling with the polyethylene-film samplers provide comparable data on the concentrations of ordnance-related compounds in groundwater at the MMR to that obtained by low-flow pumped sampling. These sampling methods are useful methods for monitoring these compounds at the MMR and in similar hydrogeologic environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarode, Himanshu N.; Yang, Yuan; Motz, Andrew R.
Herein, we report the anion and water transport properties of an anion-exchange membrane (AEM) comprising a block copolymer of polyethylene and poly- (vinylbenzyl trimethylammonium) (PE-b-PVBTMA) with an ion-exchange capacity (IEC) of 1.08 mequiv/g. The conductivity varied little among the anions CO3 2-, HCO3 -, and F-, with a value of Ea ≈ 20 kJ/mol and a maximum fluoride conductivity of 34 mS/cm at 90 °C and 95% relative humidity. The Br- conductivity showed a transition at 60 °C. Pulsed gradient stimulated spin echo nuclear magnetic resonance (PGSE NMR) experiments showed that water diffusion in this AEM is heterogeneous and ismore » affected by the anion present, being fastest in the presence of F-. We determined the methanol self-diffusion in this membrane and observed that it is lower than that in Nafion 117, because of the lower water uptake. This article reports the first measurements of 13C-labeled bicarbonate self-diffusion in an AEM using PGSE NMR spectrometry, which was found to be significantly slower than F- self-diffusion. Back-calculation of the bicarbonate conductivity using the Nernst-Einstein equation gave a value that was significantly lower than the measured value, implying that bicarbonate transport involves OH- in the transport mechanism. Fourier transform infrared spectroscopy, PGSE NMR spectrometry, and small-angle X-ray scattering (SAXS) indicated the presence of different types of waters present in the membrane at different length scales. The SAXS data indicated that there is a water-rich region within the hydrophilic domains of the polymer that has a temperature dependence in intensity at 95% relative humidity (RH).« less
Excess entropy scaling for the segmental and global dynamics of polyethylene melts.
Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C
2014-11-28
The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.
Le Feunteun, Steven; Mariette, François
2007-12-26
The translational dynamics of poly(ethylene glycol) (PEG) polymers with molecular weights (Mw) varying from 6x10(2) to 5x10(5) were investigated by pulsed field gradient NMR in casein suspensions and in gels induced by acidification, enzyme action, and a combination of both. For molecules with Mw
Antimicrobial Wound Dressing. Phase 1
1987-06-11
12 a. Antimicrobial Sensitivity Tests 12 b. Anin.il Model 13 5. Preparatiua of Microcapsules 14 B. Results 15 1. AIn Vit Diffusion 15 a. PVA... Microcapsules 35 Table 5 Tetracycline Hydrochloride Cellulose 36 Triacetate Microcapsules Table 6 Polyethylene Oxide Hydrogels 37 Table 7 Swelling of...Water and Crosslinking Effect Figure 24 In Vi trq Chlorhexidine Release 70 Polyacrylamide Hydrogel - Microcapsules Figure 25 In _Vitro Tetracycline
NASA Astrophysics Data System (ADS)
Ujianto, O.; Jollands, M.; Kao, N.
2018-03-01
A comparative study on effect of internal mixer on high density Polyethylene (HDPE)/clay nanocomposites preparation was done. Effect of temperature, rotor rotation (rpm), and mixing time, as well as rotor type (Roller and Banbury) on mechanical properties and morphology of HDPE/clay nanocomposites were studied using Box-Behnken experimental design. The model was developed according to secant modulus and confirmed to morphology analysis using Transmission Electron Microscopy (TEM). The finding suggests that there is different mechanisms occurred in each rotor to improve the mechanical properties. The mechanism in Roller is medium shear and medium diffusion, while Banbury is high shear and low diffusion. The difference in mechanism to disperse the clay particles attribute to the different optimum processing conditions in each rotor. The settings for roller samples are predicted around mid temperature, mid speed, and mid mixing time. There is no optimum setting for Banbury within the processing boundaries. The best settings for Banbury are at low, high, low settings. The morphology results showed a hybrid composite structure, with some exfoliations and some intercalations. There was a correlation between better mechanical properties and morphology with more exfoliation and thinner intercalated particles.
Franz, Roland; Gmeiner, Margit; Gruner, Anita; Kemmer, Diana; Welle, Frank
2016-01-01
ABSTRACT Polyethylene terephthalate (PET) bottles are widely used as packaging material for natural mineral water. However, trace levels of acetaldehyde can migrate into natural mineral water during the shelf life and might influence the taste of the PET bottled water. 2-Aminobenzamide is widely used during PET bottle production as a scavenging agent for acetaldehyde. The aim of this study was the determination of the migration kinetics of 2-aminobenzamide into natural mineral water as well as into 20% ethanol. From the migration kinetics, the diffusion coefficients of 2-aminobenzamide in PET at 23 and 40°C were determined to be 4.2 × 10− 16 and 4.2 × 10− 15 cm2 s–1, respectively. The diffusion coefficient for 20% ethanol at 40°C was determined to be 7.7 × 10− 15 cm2 s–1, which indicates that 20% ethanol is causing swelling of the PET polymer. From a comparison of migration values between 23 and 40°C, acceleration factors of 9.7 when using water as contact medium and 18.1 for 20% ethanol as simulant can be derived for definition of appropriate accelerated test conditions at 40°C. The European Union regulatory acceleration test based on 80 kJ mol–1 as conservative activation energy overestimates the experimentally determined acceleration rates by a factor of 1.6 and 3.1, respectively. PMID:26666986
NASA Astrophysics Data System (ADS)
Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana
2002-03-01
Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.
Morphology of Thermally Degraded PU and Irradiated PE
NASA Astrophysics Data System (ADS)
Harris, Douglas; Gillen, Kenneth; Celina, Mathias; Assink, Roger
2001-03-01
Several 1H and 13C NMR techniques have been applied to study the morphology and chemical structure of thermally degraded polyurethane rubber and irradiated polyethylene cable insulation. The combination of heat and presence of air results in oxidation of the hydroxyl-terminated polybutadiene/isophorone diisocyanate polyurethane and the gel content increases. The oxidation is inhomogeneous: pristine regions remain with a length scale of approximately 20 nm. The morphology and oxidation products were characterized by 1H spin diffusion with 13C detection. In addition, dynamics were probed with 1H and 2D WISE experiments. Radiation of cross-linked polyethylene cable insulation obeys anomalous aging behavior where lower temperature can result in a greater loss in ultimate tensile elongation. Annealing of the irradiated polyethylene allows significant recovery of mechanical properties. Analysis of 13C NMR data was used to study this "Lazarus effect" and the inverse temperature relationship. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500.
New perspectives in plastic biodegradation.
Sivan, Alex
2011-06-01
During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kent, B A; Arambel, M J; Winsryg, M D; Walters, J L
1989-09-01
Third-cutting alfalfa hay harvested at bud stage and wilted to approximately 65% moisture was treated with a live bacterial inoculant at the rate of 300,000 cfu/g fresh alfalfa. Treated alfalfa was packed in polyethylene bags. Samples were taken at time of ensiling and d 1, 2, 3, 4, 7, and 28 postensiling. Mean pH was lower in the treated haylage (5.09 and 5.71 for treatment and control, respectively). Mean temperatures were higher in the treated haylage (30.0 and 28.0 degrees C for treatment and control, respectively). Mold count, water-soluble carbohydrate, alpha amino nitrogen, CP, and ADF were not affected by treatment. Regardless of treatment, pH, mold counts, and water-soluble carbohydrates declined with time. There was no significant difference between treatments for DM intake, milk production, and milk composition.
NASA Astrophysics Data System (ADS)
van Loon, J. J. W. A.; Veldhuijzen, J. P.; Windgassen, E. J.; Brouwer, T.; Wattel, K.; van Vilsteren, M.; Maas, P.
1994-08-01
To study the effects of weightlessness on mouse fetal long bone rudiment growth and mineralization we have developed a tissue culture system for the Biorack facility of Spacelab. The technique uses standard liquid tissue culture medium, supplemented with Na-β-glycerophosphate, confined in gas permeable polyethylene bags mounted inside ESA Biorack Type I experiment containers. The containers can be flushed with an air/5% CO2 gas mixture necessary for the physiological bicarbonate buffer used. Small amounts of fluid can be introduced at the beginning (e.g. radioactive labels for incorporation studies) or at the end of the experiment (fixatives). A certain form of mechanical stimulation (continuous compression) can be used to counteract the, possibly, adverse effect of μ-gravity. Using 16 day old metatarsals the in vitro calcification process under μ-gravity conditions can be studied for a 4 day period.
Sampson, Maureen M.; Chambers, David M.; Pazo, Daniel Y.; Moliere, Fallon; Blount, Benjamin C.; Watson, Clifford H.
2015-01-01
Quantifying volatile organic compounds (VOCs) in cigarette smoke is necessary to establish smoke-related exposure estimates and evaluate emerging products and potential reduced-exposure products. In response to this need, we developed an automated, multi-VOC quantification method for machine-generated, mainstream cigarette smoke using solidphase microextraction gas chromatography–mass spectrometry (SPME-GC–MS). This method was developed to simultaneously quantify a broad range of smoke VOCs (i.e., carbonyls and volatiles, which historically have been measured by separate assays) for large exposure assessment studies. Our approach collects and maintains vapor-phase smoke in a gas sampling bag, where it is homogenized with isotopically labeled analogue internal standards and sampled using gas-phase SPME. High throughput is achieved by SPME automation using a CTC Analytics platform and custom bag tray. This method has successfully quantified 22 structurally diverse VOCs (e.g., benzene and associated monoaromatics, aldehydes and ketones, furans, acrylonitrile, 1,3-butadiene, vinyl chloride, and nitromethane) in the microgram range in mainstream smoke from 1R5F and 3R4F research cigarettes smoked under ISO (Cambridge Filter or FTC) and Intense (Health Canada or Canadian Intense) conditions. Our results are comparable to previous studies with few exceptions. Method accuracy was evaluated with third-party reference samples (≤15% error). Short-term diffusion losses from the gas sampling bag were minimal, with a 10% decrease in absolute response after 24 h. For most analytes, research cigarette inter- and intrarun precisions were ≤20% relative standard deviation (RSD). This method provides an accurate and robust means to quantify VOCs in cigarette smoke spanning a range of yields that is sufficient to characterize smoke exposure estimates. PMID:24933649
On the Role of Specific Interactions in the Diffusion of Nanoparticles in Aqueous Polymer Solutions
2013-01-01
Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions. PMID:24354390
On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions.
Mun, Ellina A; Hannell, Claire; Rogers, Sarah E; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V
2014-01-14
Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.
Measurement of Diffusion in Entangled Rod-Coil Triblock Copolymers
NASA Astrophysics Data System (ADS)
Olsen, B. D.; Wang, M.
2012-02-01
Although rod-coil block copolymers have attracted increasing attention for functional nanomaterials, their dynamics relevant to self-assembly and processing have not been widely investigated. Because the rod and coil blocks have different reptation behavior and persistence lengths, the mechanism by which block copolymers will diffuse is unclear. In order to understand the effect of the rigid block on reptation, tracer diffusion of a coil-rod-coil block copolymer through an entangled coil polymer matrix was experimentally measured. A monodisperse, high molecular weight coil-rod-coil triblock was synthesized using artificial protein engineering to prepare the helical rod and bioconjugaiton of poly(ethylene glycol) coils to produce the final triblock. Diffusion measurements were performed using Forced Rayleigh scattering (FRS), at varying ratios of the rod length to entanglement length, where genetic engineering is used to control the protein rod length and the polymer matrix concentration controls the entanglement length. As compared to PEO homopolymer tracers, the coil-rod-coil triblocks show markedly slower diffusion, suggesting that the mismatch between rod and coil reptation mechanisms results in hindered diffusion of these molecules in the entangled state.
Wang, Muzhou; Timachova, Ksenia; Olsen, Bradley D.
2014-01-01
The diffusion of coil-rod-coil triblock copolymers in entangled coil homopolymers is experimentally measured and demonstrated to be significantly slower than rod or coil homopolymers of the same molecular weight. A model coil-rod-coil triblock was prepared by expressing rodlike alanine-rich α-helical polypeptides in E. coli and conjugating coillike poly(ethylene oxide) (PEO) to both ends to form coil-rod-coil triblock copolymers. Tracer diffusion through entangled PEO homopolymer melts was measured using forced Rayleigh scattering at various rod lengths, coil molecular weights, and coil homopolymer concentrations. For rod lengths, L, that are close to the entanglementh length, a, the ratio between triblock diffusivity and coil homopolymer diffusivity decreases monotonically and is only a function of L/a, in quantitative agreement with previous simulation results. For large rod lengths, diffusion follows an arm retraction scaling, which is also consistent with previous theoretical predictions. These experimental results support the key predictions of theory and simulation, suggesting that the mismatch in curvature between rod and coil entanglement tubes leads to the observed diffusional slowing. PMID:25484454
Kumagai, H; Nohara, S; Suzuki, H; Hashimoto, W; Yamamoto, K; Sakai, H; Sakabe, K; Fukuyama, K; Sakabe, N
1993-12-20
gamma-Glutamyltranspeptidase (EC 2.3.2.2) from Escherichia coli K-12 has been purified and crystallized by means of vapor diffusion in hanging drops. Two kinds of crystals on cell dimensions were found for X-ray diffraction analysis, one from ammonium sulfate and the other from polyethylene glycol 6000 as precipitants. The crystals of the orthorhombic form grown in the presence of 15% polyethylene glycol and 20 mM sodium acetate buffer were chosen for further analysis. The crystals belonged to space group P2(1)2(1)2(1), with cell dimensions of a = 128.1, b = 129.9 and c = 79.2 A, and two molecules constitute an asymmetric unit. These crystals diffracted to 2.0 A resolution and were suitable for X-ray crystallographic studies.
Mc Conville, Christopher; Major, Ian; Friend, David R; Clark, Meredith R; Woolfson, A David; Malcolm, R Karl
2012-05-01
Vaginal rings are currently being investigated for delivery of HIV microbicides. However, vaginal rings are currently manufactured form hydrophobic polymers such as silicone elastomer and polyethylene vinyl acetate (PEVA), which do not permit release of hydrophilic microbicides such as the nucleotide reverse transcriptase inhibitor tenofovir. Biodegradable polymers such as polylactide (PLA) may help increase release rates by controlling polymer degradation rather than diffusion of the drug through the polymer. However, biodegradable polymers have limited flexibility making them unsuitable for use in the manufacture of vaginal rings. This study demonstrates that by blending PLA and PEVA together it is possible to achieve a blend that has flexibility similar to native PEVA but also allows for the release of tenofovir. Copyright © 2011 Wiley Periodicals, Inc.
Walton, David A; Randall, Bruce W; Le Lagadec, Marie D; Wallace, Helen M
2013-09-01
Kernel brown centres in macadamia are a defect causing internal discolouration of kernels. This study investigates the effect on the incidence of brown centres in raw kernel after maintaining high moisture content in macadamia nuts-in-shell stored at temperatures of 30°C, 35°C, 40°C and 45°C. Brown centres of raw kernel increased with nuts-in-shell storage time and temperature when high moisture content was maintained by sealing in polyethylene bags. Almost all kernels developed the defect when kept at high moisture content for 5 days at 45°C, and 44% developed brown centres after only 2 days of storage at high moisture content at 45°C. This contrasted with only 0.76% when stored for 2 days at 45°C but allowed to dry in open-mesh bags. At storage temperatures below 45°C, there were fewer brown centres, but there were still significant differences between those stored at high moisture content and those allowed to dry (P < 0.05). Maintenance of high moisture content during macadamia nuts-in-shell storage increases the incidence of brown centres in raw kernels and the defect increases with time and temperature. On-farm nuts-in-shell drying and storage practices should rapidly remove moisture to reduce losses. Ideally, nuts-in-shell should not be stored at high moisture content on-farm at temperatures over 30°C. © 2013 Society of Chemical Industry.
Goveia, Danielle; Rosa, André Henrique; Bellin, Iramaia Corrêa; Lobo, Fabiana Aparecida; Fraceto, Leonardo Fernandes; Roveda, José Arnaldo Frutuoso; Romão, Luciane Pimenta Cruz; Dias Filho, Newton Luiz
2008-02-01
This work involved the development and application of a new analytical procedure for in-situ characterization of the lability of metal species in aquatic systems by using a system equipped with a diffusion membrane and cellulose organomodified with p-aminobenzoic acid groups (DM-Cell-PAB). To this end, the DM-Cell-PAB system was prepared by adding cellulose organomodified with p-aminobenzoic acid groups (Cell-PAB) to pre-purified cellulose bags. After the DM-Cell-PAB system was sealed, it was examined in the laboratory. The in-situ application involved immersing the DM-Cell-PAB system in two different rivers, enabling us to study the relative lability of metal species (Cu, Cd, Fe, Mn, and Ni) as a function of time and quantity of exchanger. The procedure is simple and opens up a new perspective for understanding environmental phenomena relating to the complexation, transport, stability, and lability of metal species in aquatic systems rich in organic matter.
Partitioning and diffusion of PBDEs through an HDPE geomembrane.
Rowe, R Kerry; Saheli, Pooneh T; Rutter, Allison
2016-09-01
Polybrominated diphenyl ether (PBDE) has been measured in MSW landfill leachate and its migration through a modern landfill liner has not been investigated previously. To assure environmental protection, it is important to evaluate the efficacy of landfill liners for controlling the release of PBDE to the environment to a negligible level. The partitioning and diffusion of a commercial mixture of PBDEs (DE-71: predominantly containing six congeners) with respect to a high-density polyethylene (HDPE) geomembrane is examined. The results show that the partitioning coefficients of the six congeners in this mixture range from 700,000 to 7,500,000 and the diffusion coefficients range from 1.3 to 6.0×10(-15)m(2)/s depending on the congener. This combination of very high partitioning coefficients and very low diffusion coefficients suggest that a well constructed HDPE geomembrane liner will be an extremely effective barrier for PBDEs with respect to diffusion from a municipal solid waste landfill, as illustrated by an example. The results for pure diffusion scenario showed that the congeners investigated meet the guidelines by at least a factor of three for an effective geomembrane liner where diffusion is the controlling transport mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Renfro, Nancy
1983-01-01
Thirteen ideas for using paper bags for class art activities are given. Directions for making bag barracudas, bionic bags, bigfoot bags, bag sculptures, bag beads, and body bag superstars are included. (PP)
Lee, Hwankyu; Venable, Richard M.; MacKerell, Alexander D.; Pastor, Richard W.
2008-01-01
A revision (C35r) to the CHARMM ether force field is shown to reproduce experimentally observed conformational populations of dimethoxyethane. Molecular dynamics simulations of 9, 18, 27, and 36-mers of polyethylene oxide (PEO) and 27-mers of polyethylene glycol (PEG) in water based on C35r yield a persistence length λ = 3.7 Å, in quantitative agreement with experimentally obtained values of 3.7 Å for PEO and 3.8 Å for PEG; agreement with experimental values for hydrodynamic radii of comparably sized PEG is also excellent. The exponent υ relating the radius of gyration and molecular weight (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{g}}}{\\propto}M_{{\\mathrm{w}}}^{{\\upsilon}}\\end{equation*}\\end{document}) of PEO from the simulations equals 0.515 ± 0.023, consistent with experimental observations that low molecular weight PEG behaves as an ideal chain. The shape anisotropy of hydrated PEO is 2.59:1.44:1.00. The dimension of the middle length for each of the polymers nearly equals the hydrodynamic radius \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{h}}}\\end{equation*}\\end{document}obtained from diffusion measurements in solution. This explains the correspondence of \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{h}}}\\end{equation*}\\end{document} and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{p}}},\\end{equation*}\\end{document} the pore radius of membrane channels: a polymer such as PEG diffuses with its long axis parallel to the membrane channel, and passes through the channel without substantial distortion. PMID:18456821
Liu, Zehan; Ren, Shuai; Fu, Kuang; Wu, Qiong; Wu, Jun; Hou, Liting; Pan, Hong; Sun, Linlin; Zhang, Jian; Wang, Bingjian; Miao, Qing; Sun, Guiyin; Bonicalzi, Vincenzo; Canavero, Sergio; Ren, Xiaoping
2018-05-01
Cephalosomatic anastomosis or what has been called a "head transplantation" requires full reconnection of the respective transected ends of the spinal cords. The GEMINI spinal cord fusion protocol has been developed for this reason. Here, we report the first randomized, controlled study of the GEMINI protocol in large animals. We conducted a randomized, controlled study of a complete transection of the spinal cord at the level of T10 in dogs at Harbin Medical University, Harbin, China. These dogs were followed for up to 8 weeks postoperatively by assessments of recovery of motor function, somato-sensory evoked potentials, and diffusion tensor imaging using magnetic resonance imaging. A total of 12 dogs were subjected to operative exposure of the dorsal aspect of the spinal cord after laminectomy and longitudinal durotomy followed by a very sharp, controlled, full-thickness, complete transection of the spinal cord at T10. The fusogen, polyethylene glycol, was applied topically to the site of the spinal cord transection in 7 of 12 dogs; 0.9% NaCl saline was applied to the site of transection in the remaining 5 control dogs. Dogs were selected randomly to receive polyethylene glycol or saline. All polyethylene glycol-treated dogs reacquired a substantial amount of motor function versus none in controls over these first 2 months as assessed on the 20-point (0-19), canine, Basso-Beattie-Bresnahan rating scale (P<.006). Somatosensory evoked potentials confirmed restoration of electrical conduction cranially across the site of spinal cord transection which improved over time. Diffusion tensor imaging, a magnetic resonance permutation that assesses the integrity of nerve fibers and cells, showed restitution of the transected spinal cord with polyethylene glycol treatment (at-injury level difference: P<.02). A sharply and fully transected spinal cord at the level of T10 can be reconstructed with restoration of many aspects of electrical continuity in large animals following the GEMINI spinal cord fusion protocol, with objective evidence of motor recovery and of electrical continuity across the site of transection, opening the way to the first cephalosomatic anastomosis. (Surgery 2017;160:XXX-XXX.). Copyright © 2017. Published by Elsevier Inc.
Bag-of-features approach for improvement of lung tissue classification in diffuse lung disease
NASA Astrophysics Data System (ADS)
Kato, Noriji; Fukui, Motofumi; Isozaki, Takashi
2009-02-01
Many automated techniques have been proposed to classify diffuse lung disease patterns. Most of the techniques utilize texture analysis approaches with second and higher order statistics, and show successful classification result among various lung tissue patterns. However, the approaches do not work well for the patterns with inhomogeneous texture distribution within a region of interest (ROI), such as reticular and honeycombing patterns, because the statistics can only capture averaged feature over the ROI. In this work, we have introduced the bag-of-features approach to overcome this difficulty. In the approach, texture images are represented as histograms or distributions of a few basic primitives, which are obtained by clustering local image features. The intensity descriptor and the Scale Invariant Feature Transformation (SIFT) descriptor are utilized to extract the local features, which have significant discriminatory power due to their specificity to a particular image class. In contrast, the drawback of the local features is lack of invariance under translation and rotation. We improved the invariance by sampling many local regions so that the distribution of the local features is unchanged. We evaluated the performance of our system in the classification task with 5 image classes (ground glass, reticular, honeycombing, emphysema, and normal) using 1109 ROIs from 211 patients. Our system achieved high classification accuracy of 92.8%, which is superior to that of the conventional system with the gray level co-occurrence matrix (GLCM) feature especially for inhomogeneous texture patterns.
Spectral distribution of UV range diffuse reflectivity for Si+ ion implanted polymers
NASA Astrophysics Data System (ADS)
Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.
2008-05-01
The analysis of the UV range spectral characteristics can supply additional information on the formed sub-surface buried layer with implanted dopants. The near-surface layer (50÷150 nm) of bulk polymer samples have been implanted with silicon (Si+) ions at low energies (E = 30 keV) and a wide range of ion doses (D = 1.1013 ÷ 1, 2.1017 cm-2). The studied polymer materials were: ultra-high-molecular-weight polyethylene (UHMWPE), poly-methyl-metacrylate (PMMA) and poly-tetra-fluor-ethylene (PTFE). The diffuse optical reflectivity spectra Rd = f(λ) of the ion implanted samples have been measured in the UV range (λ = 220÷350 nm). In this paper the dose dependences of the size and sign of the diffuse optical reflectivity changes λRd = f(D) have been analysed.
Maggot excretions inhibit biofilm formation on biomaterials.
Cazander, Gwendolyn; van de Veerdonk, Mariëlle C; Vandenbroucke-Grauls, Christina M J E; Schreurs, Marco W J; Jukema, Gerrolt N
2010-10-01
Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect. Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured. The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured. Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.
Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse
2004-01-01
The fumigant 1,3-dichloropropene (1,3-D) is considered to be a potential replacement for methyl bromide when methyl bromide is phased out in 2005. This study on surface emissions and subsurface diffusion of 1,3-D in a Florida sandy soil was conducted in field beds with or without plastic covers. After injection of the commercial fumigant Telone II by conventional chisels to field beds at 30cm depth which were covered with polyethylene film (PE), virtually impermeable film, or no cover (bare), (Z)- and (E)-1,3-D rapidly diffused upward. Twenty hours after injection, majority of (Z)- and (E)-1,3-D had moved upward from 30 cm depth to the layer of 5-20 cm depth. Downward movement of the two isomers in the beds with or without a plastic cover was not significant. (Z)-1,3-D diffused more rapidly than (E)-1,3-D. Virtually impermeable films (VIF) had a good capacity to retain (Z)- and (E)-1,3-D in soil pore air space. Vapor concentrations of the two isomers in the shallow subsurface of the field bed covered with VIF were greater than that in the two beds covered with polyethylene film (PE) or no cover (bare). In addition, VIF cover provided more uniform distribution of (Z)- and (E)-1,3-D in shallow subsurface than PE cover or no cover. Virtually impermeable film also had a better capability to retard surface emissions of the two isomers from soil in field beds than PE cover or no cover.
Zupančič, Špela; Potrč, Tanja; Baumgartner, Saša; Kocbek, Petra; Kristl, Julijana
2016-12-01
Nanofibers combined with an antimicrobial represent a powerful strategy for treatment of various infections. Local infections usually have a low fluid volume available for drug release, whereas pharmacopoeian dissolution tests include a much larger receptor volume. Therefore, the development of novel drug-release methods that more closely resemble the in-vivo conditions is necessary. We first developed novel biocompatible and biodegradable chitosan/polyethylene oxide nanofibers using environmentally friendly electrospinning of aqueous polymer solutions, with the inclusion of the antimicrobial metronidazole. Here, the focus is on the characterization of these nanofibers, which have high potential for bioadhesion and retention at the site of application. These can be used where prolonged retention of the delivery system at an infected target site is needed. Drug release was studied using three in-vitro methods: a dissolution apparatus (Apparatus 1 of the European Pharmacopoeia), vials, and a Franz diffusion cell. In contrast to other studies, here the Franz diffusion cell method was modified to introduce a small volume of medium with the nanofibers in the donor compartment, where the nanofibers swelled, eroded, and released the metronidazole, which then diffused into the receptor compartment. This set-up with nanofibers in a limited amount of medium released the drug more slowly compared to the other two in-vitro methods that included larger volumes of medium. These findings show that drug release from nanofibers strongly depends on the release method used. Therefore, in-vitro test methods should closely resemble the in-vivo conditions for more accurate prediction of drug release at a therapeutic site. Copyright © 2016 Elsevier B.V. All rights reserved.
Lin, Ligang; Zhang, Yuzhong; Li, Hong
2010-10-01
Polyethylene glycol (PEG)-CuY zeolite hybrid membranes were prepared for sulfur removal from gasoline feed. The sorption and diffusion behavior of typical gasoline components through the hybrid membranes has been investigated by systematic studies of dynamic sorption curves. Influencing factors including feed temperature, permeate pressure, and zeolite content in the membranes on membrane performance have been evaluated. Immersion experiments results showed the preferential sorption of thiophene, which is key in fulfilling the separation of thiophene/hydrocarbon mixtures. The sorption, diffusion, and permeation coefficients of gasoline components in filled membranes are higher than those in unfilled membranes. Pervaporation (PV) and gas chromatography (GC) experiments results corresponded to the discussions on dynamic sorption curves. PV experiments showed that lower permeate pressure meant higher separation performance. The optimum temperature occurred at 383K, and an Arrhenius relationship existed between permeation flux and operating temperature. The CuY zeolite filling led to a significant increase of flux since the porous zeolite provides for more diffusion for small molecules in mixed matrix membranes. The sulfur enrichment factor increased first and then decreased with the increasing zeolite content, which was attributed to the combined influence of complexation force between CuY and thiophenes as well as the trade-off phenomenon between flux and selectivity. At 9 wt% CuY content, a higher permeation flux (3.19 kg/(m(2) h)) and sulfur enrichment factor (2.95) were obtained with 1190 microg/g sulfur content level in gasoline feed. Copyright 2010 Elsevier Inc. All rights reserved.
McCarthy, M R; Vandegriff, K D; Winslow, R M
2001-08-30
We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.
Maia, Joaquim; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Cruz, José Manuel; Seiler, Annika; Franz, Roland; Simoneau, Catherine; Castle, Laurence; Driffield, Malcolm; Mercea, Peter; Oldring, Peter; Tosa, Valer; Paseiro, Perfecto
2016-01-01
The mass transport process (migration) of a model substance, benzophenone (BZP), from LDPE into selected foodstuffs at three temperatures was studied. A mathematical model based on Fick's Second Law of Diffusion was used to simulate the migration process and a good correlation between experimental and predicted values was found. The acquired results contribute to a better understanding of this phenomenon and the parameters so-derived were incorporated into the migration module of the recently launched FACET tool (Flavourings, Additives and Food Contact Materials Exposure Tool). The migration tests were carried out at different time-temperature conditions, and BZP was extracted from LDPE and analysed by HPLC-DAD. With all data, the parameters for migration modelling (diffusion and partition coefficients) were calculated. Results showed that the diffusion coefficients (within both the polymer and the foodstuff) are greatly affected by the temperature and food's physical state, whereas the partition coefficient was affected significantly only by food characteristics, particularly fat content.
Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N
2017-08-01
Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.
Jiang, R; Roberts, M S; Prankerd, R J; Benson, H A
1997-07-01
This study provides an investigation of the availability of octyl salicylate (OS), a common sunscreen agent, from liquid paraffin and the effect of OS on skin permeability. A model membrane system to isolate the vehicle effect from membrane permeability has been developed. Partitioning of OS between liquid paraffin and aqueous receptor phases was conducted. Partition coefficients increased with increase in OS concentration. A range of OS concentrations in liquid paraffin was diffused across human epidermis and synthetic membranes into 4% bovine serum albumin in phosphate-buffered saline and 50% ethanol. Absorption profiles of OS obtained from silicone and low-density polyethylene (LDPE) membranes were similar to each other but higher than for the high-density polyethylene [HDPE (3 times)] membrane and human epidermis (15 times). The steady state fluxes and apparent permeability coefficients (Kp') obtained from the diffusion studies showed the same trends with all membranes, except for the HDPE membrane which showed greater increase in flux and Kp' at concentrations above 30%. IR spectra showed that several bands of OS were shifted with concentrations, and the molecular models further suggested that the main contribution to the self-association is from non-1,4 van der Waals interactions.
Theory of Transport of Long Polymer Molecules through Carbon Nanotube Channels
NASA Technical Reports Server (NTRS)
Wei, Chenyu; Srivastava, Deepak
2003-01-01
A theory of transport of long chain polymer molecules through carbon nanotube (CNT) channels is developed using Fokker-Planck equation and direct molecular dynamics (MD) simulations. The mean transport or translocation time tau is found to depend on the chemical potential energy, entropy and diffusion coefficient. A power law dependence tau approx. N(sup 2)is found where N is number of monomers in a molecule. For 10(exp 5)-unit long polyethylene molecules, tau is estimated to be approx. 1micro-s. The diffusion coefficient of long polymer molecules inside CNTs, like that of short ones, are found to be few orders of magnitude larger than in ordinary silicate based zeolite systems.
NASA Astrophysics Data System (ADS)
Pavithra, Nagaraj; Velayutham, David; Sorrentino, Andrea; Anandan, Sambandam
2017-06-01
A new series of transparent gel polymer electrolytes are prepared by adding various weight percent of thiourea coupled with poly(ethylene oxide) for the application of dye-sensitized solar cells. Coupling of thiourea in the presence of iodine undergoes dimerization reaction to produce formamidine disulfide. Fourier Transform Infrared spectroscopy shows that the interactions of thiourea and formamidine disulfide with electronegative ether linkage of poly(ethylene oxide) results in conformational changes of gel polymer electrolytes. Electrochemical impedance spectroscopy and linear sweep voltammetry experiments reveal an increment in ionic conductivity and tri-iodide diffusion coefficient, for thiourea modified gel polymer electrolytes. Finally, the prepared electrolytes are used as a redox mediator in dye-sensitized solar cells and the photovoltaic properties were studied. Apart from transparency, the gel polymer electrolytes with thiorurea show higher photovoltaic properties compared to bare gel polymer electrolyte and a maximum photocurrent efficiency of 7.17% is achieved for gel polymer electrolyte containing 1 wt% of thiourea with a short circuit current of 11.79 mA cm-2 and open circuit voltage of 834 mV. Finally, under rear illumination, almost 90% efficiency is retained upon compared to front illumination.
Performance tests of three types of air-sampling bags on organic solvent vapor retention.
Fukui, Yoshinari; Kanemaru, Ai; Nagasawa, Yasuhiro; Kawakami, Takuya; Iwata, Toyoto; Murata, Katsuyuki; Ohashi, Fumiko; Ikeda, Masayuki
2013-01-01
Performance of two new air sampling bags [the transparent bag (TP bag) and the semi-transparent bag (ST bag)] was examined as possible surrogates for the traditional PVF bag (the Ref bag). Solvent vapor mixture of butyl acetate, chloroform, ethyl acetate, isopropyl alcohol and toluene at administrative control levels were introduced to each bag (n=5 for each of the three types), and the decay in the concentrations (by%) was followed by use of a gas auto-sampler - FID-GC system. A trend of time-dependent decay was noted for all types including the Ref bag. When the performance was compared, the TP bag was equal to or even better than the Ref bag. In contrast, the performance of the ST bag was comparable to that of the other two types of bags with regard to toluene and chloroform when the storage time was short, but poorer than others for the other three solvents throughout the test period. The TP bag may be a bag of choice when the storage time is extended (e.g., up to 48 h) although this bag is physically less robust and requires careful handling. The ST bag may be used when analysis will be completed within 24 h.
NASA Astrophysics Data System (ADS)
Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.
2017-02-01
In this research, the result of pyrolysis on polyethylene was used as fuel for a solid oxide fuel cell (SOFC). The pyrolysis result is a liquid which consists of hydrocarbon chains. According to GC-MS analysis, the hydrocarbons mainly consist of C7 to C20 hydrocarbon chain. Then, the liquid was applied to a single cell of NSDC-L | NSDC | NSDC-L. NSDC is a composite SDC (samarium doped-ceria) with sodium carbonate. Meanwhile, NSDC-L is a composite of NSDC with LiNiCuO (LNC). NSDC and LNC were analyzed by X-ray diffraction to understand their crystal structure. The result shows that presence of carbonate did not change the crystal structure of SDC. SEM EDX analysis for fuel cell before and after being loaded with polyethylene oil to get information of element diffusion to the electrolyte. Meanwhile, the conductivity properties were investigated through impedance measurement. The presence of carbonate even increases the electrical conductivity. The single cell test with the pyrolysis result of polyethylene at 300 - 600 °C, found that the highest power density is at 600 °C with the maximum power density of 0.14 mW/cm2 and open circuit voltage of 0.4 Volt. Elemental analysis at three point spots of single cell NDSC-L |NSDC|NSDC-L found that a migration of ions was occurred during fuel operation at 300 - 600 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, San San; Crabb, Simon J.; Janghra, Nari
2007-09-10
In oral cancers, cytoplasmic BAG-1 overexpression is a marker of poor prognosis. BAG-1 regulates cellular growth, differentiation and survival through interactions with diverse proteins, including the vitamin D receptor (VDR), a key regulator of keratinocyte growth and differentiation. BAG-1 is expressed ubiquitously in human cells as three major isoforms of 50 kDa (BAG-1L), 46 kDa (BAG-1M) and 36 kDa (BAG-1S) from a single mRNA. In oral keratinocytes BAG-1L, but not BAG-1M and BAG-1S, enhanced VDR transactivation in response to 1{alpha},25-dihydroxyvitamin D{sub 3.} BAG-1L was nucleoplasmic and nucleolar, whereas BAG-1S and BAG-1M were cytoplasmic and nucleoplasmic in localisation. Having identified themore » nucleolar localisation sequence in BAG-1L, we showed that mutation of this sequence did not prevent BAG-1L from potentiating VDR activity. BAG-1L also potentiated transactivation of known vitamin-D-responsive gene promoters, osteocalcin and 24-hydroxylase, and enhanced VDR-dependent transcription and protein expression of the keratinocyte differentiation marker, involucrin. These results demonstrate endogenous gene regulation by BAG-1L by potentiating nuclear hormone receptor function and suggest a role for BAG-1L in 24-hydroxylase regulation of vitamin D metabolism and the cellular response of oral keratinocytes to 1{alpha},25-dihydroxyvitamin D{sub 3}. By contrast to the cytoplasmic BAG-1 isoforms, BAG-1L may act to suppress tumorigenesis.« less
Johnston, D H; Voigt, D R; MacInnes, C D; Bachmann, P; Lawson, K F; Rupprecht, C E
1988-01-01
An aerial baiting system was developed to deliver oral rabies vaccines to wild carnivore vectors of rabies, e.g., red fox, striped skunk, and raccoon. The bait consists of a polyethylene bag that contains either a 30-g hamburger ball or a 25-mL cube of polyurethane sponge coated with a wax-beef tallow mixture containing 100-150 mg of tetracycline as a biomarker. Attractants used with the sponge were added to the bag (e.g., liver slurry, cheeses, fish oils, or fruits). Baits (greater than 80,000) were dropped from light aircraft at densities of 18-120 baits/km2 over test areas in Ontario and Pennsylvania. Rates of bait acceptance were assessed by the presence of fluorescent tetracycline deposits in the teeth of animals obtained from hunters and trappers. Bait acceptance reached 74% in foxes, 54% in skunks, 43% in raccoons, and 85% in coyotes in the Ontario trials; bait acceptance by raccoons in a small trial in Pennsylvania reached 76%. Also, 66% of juvenile foxes that ate baits ate a second bait 7 or more days after eating the first, thus giving the potential for a booster effect. The cost of aerial distribution of bait (excluding cost of bait and vaccine) in Canadian dollars was $1.45/km2. The aerial distribution system is capable of economically reaching a high proportion of foxes, skunks, and raccoons over large areas. Trials with attenuated ERA (Evelyn-Rokitnicki-Abelseth) vaccines are under way in Ontario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riscassi, Ami L; Miller, Carrie L; Brooks, Scott C
Mercury (Hg) and methylmercury (MeHg) concentrations in streamwater can vary on short timescales (hourly or less) during storm flow and on a diel cycle; the frequency and timing of sampling required to accurately characterize these dynamics may be difficult to accomplish manually. Automated sampling can assist in sample collection; however use has been limited for Hg and MeHg analysis due to stability concerns of trace concentrations during extended storage times. We examined the viability of using automated samplers with disposable low-density polyethylene (LDPE) sample bags to collect industrially contaminated streamwater for unfiltered and filtered Hg and MeHg analysis. Specifically wemore » investigated the effect of holding times ranging from hours to days on streamwater collected during baseflow and storm flow. Unfiltered and filtered Hg and MeHg concentrations decreased with increases in time prior to sample processing; holding times of 24 hours or less resulted in concentration changes (mean 11 7% different) similar to variability in duplicates collected manually during analogous field conditions (mean 7 10% different). Comparisons of samples collected with manual and automated techniques throughout a year for a wide range of stream conditions were also found to be similar to differences observed between duplicate grab samples. These results demonstrate automated sampling into LDPE bags with holding times of 24 hours or less can be effectively used to collect streamwater for Hg and MeHg analysis, and encourage the testing of these materials and methods for implementation in other aqueous systems where high-frequency sampling is warranted.« less
Lorenzini, R; Biedermann, M; Grob, K; Garbini, D; Barbanera, M; Braschi, I
2013-01-01
Mineral oil hydrocarbons present in printing inks and recycled paper migrate from paper-based food packaging to foods primarily through the gas phase. Migration from two commercial products packed in recycled paperboard, i.e. muesli and egg pasta, was monitored up to the end of their shelf life (1 year) to study the influence of time, storage conditions, food packaging structure and temperature. Mineral oil saturated and aromatic hydrocarbons (MOSH and MOAH, respectively), and diisopropyl naphthalenes (DIPN) were monitored using online HPLC-GC/FID. Storage conditions were: free standing, shelved, and packed in transport boxes of corrugated board, to represent domestic, supermarket and warehouse storage, respectively. Migration to food whose packs were kept in transport boxes was the highest, especially after prolonged storage, followed by shelved and free-standing packs. Tested temperatures were representative of refrigeration, room temperature, storage in summer months and accelerated migration testing. Migration was strongly influenced by temperature: for egg pasta directly packed in paperboard, around 30 mg kg⁻¹ of MOSH migrated in 8 months at 20°C, but in only 1 week at 40°C. Muesli was contained into an internal polyethylene bag, which firstly adsorbed hydrocarbons and later released them partly towards the food. Differently, the external polypropylene bag, containing pasta and recycled paper tray, strongly limited the migration towards the atmosphere and gave rise to the highest level of food contamination. Tests at increased temperatures not only accelerated migration, but also widened the migration of hydrocarbons to higher molecular masses, highlighting thus a difficult interpretation of data from accelerated simulation.
Song, Yoon S; Koontz, John L; Juskelis, Rima O; Zhao, Yang
2013-01-01
The migration of low molecular weight organic compounds through polyethylene terephthalate (PET) films was determined by using a custom permeation cell assembly. Fatty food simulant (Miglyol 812) was added to the receptor chamber, while the donor chamber was filled with 1% and 10% (v/v) migrant compounds spiked in simulant. The permeation cell was maintained at 40°C, 66°C, 100°C or 121°C for up to 25 days of polymer film exposure time. Migrants in Miglyol were directly quantified without a liquid-liquid extraction step by headspace-GC-MS analysis. Experimental diffusion coefficients (DP) of toluene, benzyl alcohol, ethyl butyrate and methyl salicylate through PET film were determined. Results from Limm's diffusion model showed that the predicted DP values for PET were all greater than the experimental values. DP values predicted by Piringer's diffusion model were also greater than those determined experimentally at 66°C, 100°C and 121°C. However, Piringer's model led to the underestimation of benzyl alcohol (Áp = 3.7) and methyl salicylate (Áp = 4.0) diffusion at 40°C with its revised "upper-bound" Áp value of 3.1 at temperatures below the glass transition temperature (Tg) of PET (<70°C). This implies that input parameters of Piringer's model may need to be revised to ensure a margin of safety for consumers. On the other hand, at temperatures greater than the Tg, both models appear too conservative and unrealistic. The highest estimated Áp value from Piringer's model was 2.6 for methyl salicylate, which was much lower than the "upper-bound" Áp value of 6.4 for PET. Therefore, it may be necessary further to refine "upper-bound" Áp values for PET such that Piringer's model does not significantly underestimate or overestimate the migration of organic compounds dependent upon the temperature condition of the food contact material.
Chonhenchob, Vanee; Kamhangwong, Damrongpol; Kruenate, Jittiporn; Khongrat, Krittaphat; Tangchantra, Nantavat; Wichai, Uthai; Singh, S Paul
2011-03-15
Preharvest bagging has been shown to improve development and quality of fruits. Different light transmittance bags showed different effects on fruit quality. This study presents the benefits of using newly developed plastic bagging materials with different wavelength-selective characteristics for mangoes (cv. Nam Dok Mai #4). Mangoes were bagged at 45 days after full bloom (DAFB) and randomly harvested at 65, 75, 85, 95, and 105 DAFB. The bags were removed on the harvest days. The wavelength-selective bags (no pigment, yellow, red, blue/violet, blue) were compared with the Kraft paper bag with black paper liner, which is currently used commercially for several fruits, and with non-bagging as a control. Bagging significantly (p⩽0.05) reduced diseases and blemishes. Mango weight at 95 DAFB was increased approximately 15% by VM and V plastic bagging, as compared to paper bagging and control. Plastic bagging accelerated mango ripening as well as growth. Plastic-bagged mangoes reached maturity stage at 95 DAFB, while non-bagged mangoes reached maturity stage at 105 DAFB. Paper bagging resulted in a pale-yellow peel beginning at 65 DAFB, while plastic bagging improved peel glossiness. Preharvest bagging with different wavelength-selective materials affected mango development and quality. Bagging mangoes with VM and V materials could reduce peel defects and diseases, increase weight, size, and sphericity, improve peel appearance, and shorten the development periods of mangoes. The results suggest a favorable practice using the newly developed VM and V plastic bags in the production of mangoes, and possibly other fruits as well. Copyright © 2010 Society of Chemical Industry.
Cabasso, Israel; Korngold, Emmanuel
1988-01-01
A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.
Effectiveness of the ZeroFly® storage bag fabric against stored-product insects
USDA-ARS?s Scientific Manuscript database
The ZeroFly® Storage Bag is a polypropylene bag (PP) which has deltamethrin incorporated in its fibers, and represents a novel approach to reducing stored-product insect pest-related postharvest losses. Fabric samples from ZeroFly bags, polypropylene (PP) bags, jute bags, malathion-treated PP bags, ...
Tan, Wensheng; Wang, Xiao
2017-01-01
Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force. PMID:29278367
Liu, Huixia; Jiang, Yingjie; Tan, Wensheng; Wang, Xiao
2017-12-26
Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.
Siqueira, Leonardo J A; Ribeiro, Mauro C C
2006-12-07
The dynamical properties of the polymer electrolyte poly(ethylene oxide) (PEO)LiClO(4) have been investigated by molecular dynamics simulations. The effect of changing salt concentration and temperature was evaluated on several time correlation functions. Ionic displacements projected on different directions reveal anisotropy in short-time (rattling) and long-time (diffusive) dynamics of Li(+) cations. It is shown that ionic mobility is coupled to the segmental motion of the polymeric chain. Structural relaxation is probed by the intermediate scattering function F(k,t) at several wave vectors. Good agreement was found between calculated and experimental F(k,t) for pure PEO. A remarkable slowing down of polymer relaxation is observed upon addition of the salt. The ionic conductivity estimated by the Nernst-Einstein equation is approximately ten times higher than the actual conductivity calculated by the time correlation function of charge current.
Saad, Walid; Slika, Wael; Mawla, Zara; Saad, George
2017-12-01
Recently, there has been a growing interest in identifying suitable routes for the disposal of pharmaceutical wastes. This study investigates the potential of matrix materials composed of recycled polyethylene/polypropylene reclaimed from municipal solid wastes at immobilizing pharmaceutical solid wastes. Diclofenac (DF) drug product was embedded in boards of recycled plastic material, and leaching in water was assessed at various temperatures. DF concentrations were determined by high-performance liquid chromatography and revealed a maximum leachable fraction of 4% under accelerated conditions of 70°C, and less than 0.3% following 39 days of exposure at 20°C. The Ensemble Kalman Filter was employed to characterize the leaching behavior of DF. The filter verified the occurrence of leaching through diffusion, and was successful in predicting the leaching behavior of DF at 50°C and 70°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinitt, C.A.M.; Wood, J.; Lee, S.S.
2010-08-01
Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF)more » in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.« less
Storage of Maize in Purdue Improved Crop Storage (PICS) Bags
2017-01-01
Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality. PMID:28072835
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2011 CFR
2011-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction... bag. (2) Bags, sift-proof, 5L2: The bag must be made sift-proof, by appropriate means, such as by the...
Li, Danqing; Qin, Xiaoyi; Tian, Pingping; Wang, Jie
2016-04-01
Toughening-induced textural decay easily occurs in stored mushrooms. The objective of this study was to investigate the textural alteration caused by toughening in relation to other quality attributes of king oyster mushroom (Pleurotus eryngii). Fresh king oyster mushrooms, packed in low-density polyethylene bags, were stored at different low temperatures for 18 days to measure textural and other quality attributes. It was found that toughening occurred twice during the entire storage time. Highly associated change profiles were observed for the lignin content and activities of three important enzymes involved in lignin synthesis. The chitin and cellulose contents exhibited low correlation with toughening. Malondialdehyde content, electrolyte leakage rate and total phenolics content appeared to be related to toughening, but the browning index showed a negative correlation with toughening. Our results suggested that toughening may be mainly caused by lignification and can affect the postharvest quality of the tested mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Azodrin® poisoning of waterfowl in rice fields in Louisiana
White, D.H.; Mitchell, C.A.; Kolbe, E.J.; Ferguson, W.H.
1983-01-01
During the period 2-4 April 1981 about 100 birds, mostly ducks and geese, were found dead and dying in a rice field near Sweet Lake, Calcasieu Parish, Louisiana. Fresh specimens were collected to determine the cause of mortality. Birds were placed individually in polyethylene freezer bags, tagged, and frozen soon after collection. Four snow geese (Chen caerulescens), two blue-winged teal (Anas discors), one green-winged teal (Anas crecca), and one mottled duck (Anas fulvigula) were shipped to the National Wildlife Health Laboratory (NWHL), Madison, Wisconsin, for necropsy and pathological examination. Ten snow geese, 10 blue-winged teal, three green-winged teal, three great-tailed grackles (Quiscalus mexicanus), and eight red-winged blackbirds (Agelaius phoeniceus) were transported to the Gulf Coast Field Station, Victoria, Texas, for brain acetylcholinesterase (AChE) activity determinations and preparation for chemical residue analysis. Additionally, apparently healthy specimens of the affected species were collected near Lake Charles, Louisiana, and Victoria, Texas, to serve as controls in the analyses.
Effect of Soil Water Potential on Survival of Meloidogyne javanica in Fallow Soil
Towson, A. J.; Apt, W. J.
1983-01-01
A natural infestation of Meloidogyne javanica in an aggregated Oxisol declined at an exponential rate when aliquots of the soil were stored for 72 days in polyethylene bags at various soil water potentials (Ψ). Time periods required for reduction in soil infestations by 50% were 2.7, 4.9, 110, 10, and 2.6 days at Ψ of -0.16, -0.30, -1.1, -15, and -92 bars, respectively. In the wetter soils, at Ψ of -0.16, -0.30, and -1.1 bars, the predominant stage recovered was the second-stage larva. In the drier soils, at Ψ of -15 and -92 bars, both eggs and larvae were recovered with neither stage predominating. Incidence of coiled larvae was inversely related to the Ψ value of the soil, a greater incidence occurring in the drier soils. After 15-32 days, percentages of coiled larvae were 13, 27, 55, 65, and 88% in soil at Ψ of -0.17, -0.60, -1.9, -15, and -82 bars, respectively. PMID:19295774
Stream-water storage in the ocean using an impermeable membrane
NASA Astrophysics Data System (ADS)
Murabayashi, E. T.; Asuka, M.; Yamada, R.; Fok, Y. S.; Gee, H. K.
1983-05-01
The conceptual feasibility of storing fresh water in the ocean was investigated using a plastic membrane as the reservoir liner. In the initial phase, two physical hydraulic models were constructed to test the concept. The first was a water-filled, glass-sided box to observe the movement and reaction of the membrane to various simulated effects of currents, waves, and sediment deposition. The second was a 1:400-scale model (6.7 x 6.1 m) of West Loch, Pearl Harbor (a potential field application site), with 1:24 vertical exaggeration for similitude. The curtain method was used because it can enclose a large water body. The effect of wind, waves, tides, and currents on the curtain were simulated and the reactions observed. Although modeling is a useful tool for investigating initial concepts, its direct field application is limited because of scaling. Curtains, floating reservoirs, and bags were constructed of polyethylene sheets and deployed. All worked well after modifications were made following initial testing.
Chiemchaisri, Chart; Charnnok, Boonya; Visvanathan, Chettiyappan
2010-03-01
An effort to utilize solid wastes at dumpsite as refuse-derived fuel (RDF) was carried out. The produced RDF briquette was then utilized in the gasification system. These wastes were initially examined for their physical composition and chemical characteristics. The wastes contained high plastic content of 24.6-44.8%, majority in polyethylene plastic bag form. The plastic wastes were purified by separating them from other components through manual separation and trommel screen after which their content increased to 82.9-89.7%. Subsequently, they were mixed with binding agent (cassava root) and transformed into RDF briquette. Maximum plastic content in RDF briquette was limit to 55% to maintain physical strength and maximum chlorine content. The RDF briquette was tested in a down-draft gasifier. The produced gas contained average energy content of 1.76 MJ/m(3), yielding cold gas efficiency of 66%. The energy production cost from this RDF process was estimated as USD0.05 perkWh. 2009 Elsevier Ltd. All rights reserved.
Comparison of optical and electrical investigations of meat ageing
NASA Astrophysics Data System (ADS)
Prokopyeva, Elena; Tománek, Pavel; Kocová, Lucie; Palai-Dany, Tomáš; Balík, Zdeněk.; Škarvada, Pavel; Grmela, Lubomír.
2013-05-01
Different ultrasonic, electromagnetic, electrical and optical methods are used for meat ageing detection. Muscles are turbid anisotropic media, they exhibit changes in electrical and optical properties according to the direction of the electrical and optical fields in the sample. The work assesses the feasibility of impedance measurements for meat ageing detection and their comparison with optical measurement of scattered light. The pork chop slices were used for their relative homogeneity. An investigation was carried out for the detection of the ageing of unpacked slices exposed directly to the air, and other packed in polyethylene bags. The electrical method is a promising method due to the possibility of getting much information and realizing cheap and fast enough measurement systems. The optical method allows measure the rotation of polarization plane in the range of 95 degrees within considered period. Nevertheless, further work has to be provided to determine closer relationships between optical scattering characteristics, electrical anisotropy in ageing-related tissue structural properties.
Unit-Dose Bags For Formulating Intravenous Solutions
NASA Technical Reports Server (NTRS)
Finley, Mike; Kipp, Jim; Scharf, Mike; Packard, Jeff; Owens, Jim
1993-01-01
Smaller unit-dose flowthrough bags devised for use with large-volume parenteral (LVP) bags in preparing sterile intravenous solutions. Premeasured amount of solute stored in such unit-dose bag flushed by predetermined amount of water into LVP bag. Relatively small number of LVP bags used in conjunction with smaller unit-dose bags to formulate large number of LVP intravenous solutions in nonsterile environment.
[Effects of bagging on the microenvironment, yield and quality of overwintering tomato].
Wang, Lei; Xu, Kun; Bei, Feng; Gao, Fang-Sheng
2007-04-01
Taking overwintering tomato variety "L402" as test material, this paper studied the effects of bagging with different texture bags on its fruit enlarging and quality, and the microenvironment within the bags. The results showed that bagging could change the microenvironment of fruit development, promote fruit maturing in advance, and improve fruit mass and quality. The light intensity and humidity in parchment bag were at the intermediate of those in plastic and no-spinning cloth bags, and the temperature was the highest among all treatments, except that it was lower than that in plastic bag at forenoon. The fruit enlarging rate in parchment bag was also the highest, and the single fruit mass increased by 15.34%, compared with the control. However, the fruit soluble solid, soluble sugar, and vitamine C contents and the sugar/acid ratio in all bagging treatments were lower than those of the control, suggesting that bagging debased the nutritive quality and the tastiness of tomato fruit. Due to the fact that bagging prevented the direct contact of fruit with pesticides, the fruit chlorpyrifos and betacypermethrin contents in parchment and plastic bags were lower than the control, except that the chlorpyrifos content in no-spinning cloth bag was higher.
Takahashi, Yasuhito; Tateiwa, Toshiyuki; Shishido, Takaaki; Masaoka, Toshinori; Kubo, Kosuke; Yamamoto, Kengo
2016-10-01
The in-vivo progression of creep and wear in ultra-high molecular weight polyethylene (UHMWPE) acetabular liners has been clinically evaluated by measuring radiographic penetration of femoral heads. In such clinical assessments, however, viscoelastic strain relaxation has been rarely considered after a removal of hip joint loading, potentially leading to an underestimation of the penetrated thickness. The objective of this study was to investigate shape-recovery behavior of pre-compressed, radiation crosslinked and antioxidant vitamin E-diffused UHMWPE acetabular liners, and also to characterize the effects of varying their internal diameter (ID) and wall thickness (WT). We applied uniaxial compression to the UHMWPE specimens of various ID (28, 32, 36mm) and WT (4.8, 6.8, 8.9mm) for 4320min under the constant load of 3000N, and subsequently monitored the strain-relaxation behavior as a function of time after unloading. It was observed that there was a considerable shape recovery of the components after removal of the external static load. Reducing ID and WT significantly accelerated the rate of creep strain recovery, and varying WT was more sensitive to the recovery behavior than ID. Creep deformation of the tested liners recovered mostly within the first 300min after unloading. Note that approximately half of the total recovery amount proceeded just within 5min after unloading. These results suggest a remarkably high capability of shape recovery of vitamin E-diffused highly crosslinked UHMWPE. In conclusion, the time-dependent shape recovering and the diameter-thickness effect on its behavior should be carefully considered when the postoperative penetration is quantified in highly crosslinked UHMWPE acetabular liners (especially on the non-weight bearing radiographs). Copyright © 2016 Elsevier Ltd. All rights reserved.
How have changes in front air bag designs affected frontal crash death rates? An update.
Teoh, Eric R
2014-01-01
Provide updated death rates comparing latest generations of frontal air bags in fatal crashes. Rates of driver and right-front passenger deaths in frontal crashes per 10 million registered vehicle years were compared using Poisson marginal structural models for passenger vehicles equipped with air bags certified as advanced and compliant (CAC), sled-certified air bags with advanced features, and sled-certified air bags without any advanced features. Analyses of driver death rates were disaggregated by age group, gender, and belt use. CAC air bags were associated with slightly elevated frontal crash death rates for both drivers and right-front passengers compared to sled-certified air bags with advanced features, but the differences were not statistically significant. Sled-certified air bags with advanced features were associated with significant benefits for drivers and for right-front passengers compared to sled-certified air bags without advanced features. CAC air bags were associated with a significant increase in belted driver death rate and a comparable but nonsignificant decrease in unbelted driver death rate compared to sled-certified air bags with advanced features. Sled-certified air bags with advanced features were associated with a nonsignificant 2 percent increase in belted driver death rate and a significant 26 percent decrease in unbelted driver death rate, relative to sled-certified air bags without advanced features. Implementing advanced features in sled-certified air bags was beneficial overall to drivers and right-front passengers with sled-certified air bags. No overall benefit was observed for CAC air bags compared to sled-certified air bags with advanced features. Further study is needed to understand the apparent reduction in belted driver protection observed for CAC air bags.
BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A., E-mail: ksooa@dongguk.ac.kr
2015-08-21
Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We alsomore » demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling.« less
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) 5L2 for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction... bag. (2) Bags, sift-proof, 5L2: The bag must be made sift-proof, by appropriate means, such as by the...
Breaking BAG: The Co-Chaperone BAG3 in Health and Disease.
Behl, Christian
2016-08-01
Human BAG (Bcl-2-associated athanogene) proteins form a family of antiapoptotic proteins that currently consists of six members (BAG1-6) all sharing the BAG protein domain from which the name arises. Via this domain, BAG proteins bind to the heat shock protein 70 (Hsp70), thereby acting as a co-chaperone regulating the activity of Hsp70. In addition to their antiapoptotic activity, all human BAG proteins have distinct functions in health and disease, and BAG3 in particular is the focus of many investigations. BAG3 has a modular protein domain composition offering the possibility for manifold interactions with other proteins. Various BAG3 functions are implicated in disorders including cancer, myopathies, and neurodegeneration. The discovery of its role in selective autophagy and the description of BAG3-mediated selective macroautophagy as an adaptive mechanism to maintain cellular homeostasis, under stress as well as during aging, make BAG3 a highly interesting target for future pharmacological interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cowan, Jeremy Scott
Biodegradable mulch may offer the benefits of polyethylene mulch for crop production with the added benefit of biodegradability. Four studies were carried out in Mount Vernon, WA to evaluate biodegradable mulch for tomato (Solanum lycopersicum L.) and broccoli (Brassica oleracea var. italica) production. The first study compared four biodegradable mulch treatments: BioAgri, BioTelo, WeedGuardPlus (cellulose product), and SB-PLA-10/11/12 (experimental, non-woven fabric), to polyethylene mulch and bare ground in high tunnels and in the open field for tomato yield and fruit quality over three growing seasons. Biodegradable plastic films produced yields and fruit quality comparable to polyethylene. Moreover, high tunnels increased total and marketable fruit weight five and eight times, respectively, compared to the open field. The second study quantified relationships among visual assessment parameters and mulch mechanical properties. Visual assessments and mechanical property tests of polyethylene, BioAgri, BioTelo, WeedGuardPlus, and SB-PLA-10/11/12, were made over three growing seasons. Regression analyses found the strongest relationship overall (r2 = 0.41) to be between the percent of initial breaking force in the machine direction and log 10 of percent visual deterioration. However, evaluating mulch products individually and increasing sample frequency are recommended for future research. The third study evaluated three biodegradable mulch products, BioAgri, Crown 1, and SB-PLA-11, after soil-incorporation. The average area of recovered mulch fragments decreased for all mulch products over time. The number of mulch fragments initially increased for all mulch products, with the greatest number of Crown 1 and BioAgri fragments recovered 132 and 299 days after incorporation, respectively. At 397 days after soil-incorporation, the total area of recovered fragments of Crown 1 and BioAgri was 0% and 34% of the theoretical maximum area, respectively. The fourth study used the diffusion of innovations framework to study perceptions about biodegradable mulch and employed the concept of "tactile space" to create sensuously rich learning environments wherein participants could interact with each other and the environment to evaluate biodegradable plastic mulch. Participants' perceptions about biodegradable mulch and attitudes toward adoption improved. Employing tactile space as a diffusion strategy may encourage non-representational learning to supplement and reinforce the knowledge claims being made at outreach/education events.
Thermo-activated nano-material for use in optical devices
NASA Astrophysics Data System (ADS)
Mias, Solon; Sudor, Jan; Camon, Henri
2007-05-01
In this paper we describe the use of thermo-activated PNIPAM nano-material in optical switching devices. In other publications, the PNIPAM is used either as a carrier for crystalline colloidal array self-assemblies or as micro-particles that serve as pigment bags. In this publication we use a simpler-to-fabricate pure PNIPAM solution in a semi-dilute regime. The PNIPAM devices produced are transparent at temperatures below a critical temperature of 32°C and become diffusing above this temperature. We show that at 632nm the transmission through the devices is about 75% in the transparent state while the additional attenuation achieved in the diffusing state is of the order of 38 dB. The experimental fall and rise times obtained are large (about 300ms and 5s respectively) due to the non-optimised thermal addressing scheme. In addition, spectral measurements taken in the infrared spectrum (700-1000nm) demonstrate that the cell response is flat over a large portion of the infrared spectrum in both the transparent and the diffusing states.
Schroeder, Susan A.; Fulton, David C.; Lawrence, Jeffrey S.; Cordts, Steven D.
2017-01-01
This study explored how factors, including the function of bag limits, agency trust, satisfaction, hunting participation, and demographics, related to opinions about duck bag limits. The results are from a survey of 2014 Minnesota resident waterfowl hunters. Analyses identified four dimensions of attitudes about functions of bag limits, including that they: (a) are descriptive in defining the acceptable number of ducks that can be bagged, (b) are injunctive in establishing how many ducks should be allowed to be bagged, (c) ensure fair opportunities for all hunters to bag ducks, and (d) reflect biological limitations to protect waterfowl populations. Descriptive and fairness functions of bag limits were related to opinions about bag limits, as were factors related to agency trust, satisfaction, ducks bagged, experience with more restrictive bag limits, hunter age, and hunting group membership. Agencies may increase support by building trust and emphasizing the descriptive and fairness functions of regulations.
LeBlanc, Denis R.; Vroblesky, Don A.
2008-01-01
Laboratory and field tests were conducted at Camp Edwards on the Massachusetts Military Reservation on Cape Cod to examine the utility of passive diffusion sampling for long-term monitoring of concentrations of perchlorate and explosive compounds in ground water. The diffusion samplers were constructed of 1-inch-diameter rigid, porous polyethylene tubing. The results of laboratory tests in which diffusion samplers were submerged in containers filled with ground water containing perchlorate, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) indicate that concentrations inside the diffusion samplers equilibrated with concentrations in the containers within the 19-day-long test period. Field tests of the diffusion samplers were conducted in 15 wells constructed of 2- or 2.5-inch-diameter polyvinyl chloride pipe with 10-foot-long slotted screens. Concentrations of perchlorate, RDX, and HMX in the diffusion samplers placed in the wells for 42 to 52 days were compared to concentrations in samples collected by low-flow pumped sampling from 53 days before to 109 days after retrieval of the diffusion samples. The results of the field tests indicate generally good agreement between the pumped and diffusion samples for concentrations of perchlorate, RDX, and HMX. The concentration differences indicate no systematic bias related to contaminant type or concentration levels.
1976-03-12
Reduction in Pipe Flow at R =14xl03 (from Hoyt (1972)) Guar Gum Karaya Polyox WSR 301 400 850 10 Polyacrylamide, Polyhall-250 20 21 ■.I...shown to be effec- tive drag reducers. Polysaccharides ( Guar ), polyethylene oxide, polyacrylamides, and sodium carboxymethyl...sifting the premeasured polyox powder onto the surface of the carefully weighed water which was being slowly stirred by a magnetic mixing bar. After a
The bundling of actin with polyethylene glycol 8000 in the presence and absence of gelsolin.
Goverman, J; Schick, L A; Newman, J
1996-01-01
Actin filament and bundle formation occur in the cytosol under conditions of very high total macromolecular concentration. In this study we have utilized the inert molecule polyethylene glycol 8000 (PEG) as a means of simulating crowded conditions in vitro. Column-purified Ca-actin was polymerized in the absence and presence of gelsolin (to regulate mean filament lengths between 50 and 5000 mers) and PEG (2-8%) using various concentrations of KCl and/or 2 mM divalent cations. Bundling was characterized by the scattered light intensity and mean diffusion coefficients obtained from dynamic light scattering, as well as by fluorescence and phase-contrast microscopy. The minimum concentration of KCl required for bundling decreases both with increasing concentration of PEG at a fixed mean filament length, and with decreasing filament length at a fixed concentration of PEG. In the absence of divalent cation, bundling is reversible on dilution, as determined by intensity levels, diffusion coefficients, and microscopy. However, with either 2 mM Mg2+ or Ca2+ added, bundling is irreversible under conditions of higher PEG concentrations or longer filaments, indicating that osmotic pressure effects cannot fully explain actin bundling with PEG. Weaker divalent cation-binding sites on actin as well as disulfide bonds appear to be involved in the irreversible bundling. Images FIGURE 7 PMID:8874022
NASA Astrophysics Data System (ADS)
Mahmoud, Ghada A.; Ali, Amr El-Hag; Raafat, Amany I.; Badawy, Nagwa A.; Elshahawy, Mai. F.
2018-06-01
A series of mucoadhesive nanocomposites with self disinfection properties composed of acrylic acid, polyethylene glycol and ZnO nanoparticles (AAc/PEG)-ZnO were developed for localized buccal Propranolol HCl delivery. γ-irradiation as a clean tool for graft copolymerization process was used for the preparation of (AAc/PEG) hydrogels. In suite precipitation technique was used for ZnO nanoparticles immobilization within (AAc/PEG) hydrogels. The developed (AAc/PEG)-ZnO nanocomposites were characterized by X-ray diffraction (XRD), UV-Vis spectrophotometer, energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) to confirm the success of ZnO nanoparticles formation within the (AAc/PEG) matrices. The presence of ZnO nanoparticles improves the thermal stability as indicated using thermogravimetric analysis (TGA). The mucoadhesion characteristics such as hydration degree, surface pH, and mucoadhesive strength were evaluated in artificial saliva solution. The self disinfection property of the developed (AAc/PEG)-ZnO nanocomposites was investigated by examining their resistance to pathogenic microorganisms such as Staphylococcus aureus, Bacillus subtilis, and Escherichia coli using disc diffusion method. The release of Propranolol -HCl drug in artificial saliva was found to obey a non-Fickian diffusion mechanism. The obtained results suggests that (AAc/PEG)-ZnO nanocomposites could be used as mucoadhesive carrier for buccal drug delivery with efficient antibacterial properties.
Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.
Mao, Feng; Ong, Say Kee; Gaunt, James A
2015-09-01
Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.
Campbell, Kayleen; Craig, Duncan Q M; McNally, Tony
2008-11-03
Composites of paracetamol loaded poly(ethylene glycol) (PEG) with a naturally derived and partially synthetic layered silicate (nanoclay) were prepared using hot-melt extrusion. The extent of dispersion and distribution of the paracetamol and nanoclay in the PEG matrix was examined using a combination of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and wide-angle X-ray diffraction (WAXD). The paracetamol polymorph was shown to be well dispersed in the PEG matrix and the nanocomposite to have a predominately intercalated and partially exfoliated morphology. The form 1 monoclinic polymorph of the paracetamol was unaltered after the melt mixing process. The crystalline behaviour of the PEG on addition of both paracetamol and nanoclay was investigated using differential scanning calorimetry (DSC) and polarised hot-stage optical microscopy. The crystalline content of PEG decreased by up to 20% when both drug and nanoclay were melt blended with PEG, but the average PEG spherulite size increased by a factor of 4. The time taken for 100% release of paracetamol from the PEG matrix and corresponding diffusion coefficients were significantly retarded on addition of low loadings of both naturally occurring and partially synthetic nanoclays. The dispersed layered silicate platelets encase the paracetamol molecules, retarding diffusion and altering the dissolution behaviour of the drug molecule in the PEG matrix.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
...; cable clamps; locks; belts; O-rings; sealing gaskets; support packages; filter bags; disposable bags; assembly bags; dust bags; maintenance packs; paper bags; dirt tube kits; paper adaptor bags; filters...; wire racks; bake pans; pizza pans; coffee water filters; water filters; base assemblies; dust cup...
WW domain of BAG3 is required for the induction of autophagy in glioma cells.
Merabova, Nana; Sariyer, Ilker Kudret; Saribas, A Sami; Knezevic, Tijana; Gordon, Jennifer; Turco, M Caterina; Rosati, Alessandra; Weaver, Michael; Landry, Jacques; Khalili, Kamel
2015-04-01
Autophagy is an evolutionarily conserved, selective degradation pathway of cellular components that is important for cell homeostasis under healthy and pathologic conditions. Here we demonstrate that an increase in the level of BAG3 results in stimulation of autophagy in glioblastoma cells. BAG3 is a member of a co-chaperone family of proteins that associates with Hsp70 through a conserved BAG domain positioned near the C-terminus of the protein. Expression of BAG3 is induced by a variety of environmental changes that cause stress to cells. Our results show that BAG3 overexpression induces autophagy in glioma cells. Interestingly, inhibition of the proteasome caused an increase in BAG3 levels and induced autophagy. Further analysis using specific siRNA against BAG3 suggests that autophagic activation due to proteosomal inhibition is mediated by BAG3. Analyses of BAG3 domain mutants suggest that the WW domain of BAG3 is crucial for the induction of autophagy. BAG3 overexpression also increased the interaction between Bcl2 and Beclin-1, instead of disrupting them, suggesting that BAG3 induced autophagy is Beclin-1 independent. These observations reveal a novel role for the WW domain of BAG3 in the regulation of autophagy. © 2014 Wiley Periodicals, Inc.
WW domain of BAG3 is required for the induction of autophagy in glioma cells
Merabova, Nana; Sariyer, Ilker Kudret; Saribas, A Sami; Knezevic, Tijana; Gordon, Jennifer; Weaver, Michael; Landry, Jacques; Khalili, Kamel
2015-01-01
Autophagy is an evolutionarily conserved, selective degradation pathway of cellular components that is important for cell homeostasis under healthy and pathologic conditions. Here we demonstrate that an increase in the level of BAG3 results in stimulation of autophagy in glioblastoma cells. BAG3 is a member of a co-chaperone family of proteins that associate with Hsp70 through a conserved BAG domain positioned near the C-terminus of the protein. Expression of BAG3 is induced by a variety of environmental changes that cause stress to cells. Our results show that BAG3 overexpression induces autophagy in glioma cells. Interestingly, inhibition of the proteasome caused an increase in BAG3 levels and induced autophagy. Further analysis using specific siRNA against BAG3 suggests that autophagic activation due to proteosomal inhibition is mediated by BAG3. Analyses of BAG3 domain mutants suggest that the WW domain of BAG3 is crucial for the induction of autophagy. BAG3 overexpression also increased the interaction between Bcl2 and Beclin-1, instead of disrupting them, suggesting that BAG3 induced autophagy is Beclin-1 independent. These observations reveal a novel role for the WW domain of BAG3 in the regulation of autophagy. PMID:25204229
Effect of Packaging on Shelf-life and Lutein Content of Marigold (Tagetes erecta L.) Flowers.
Pal, Sayani; Ghosh, Probir Kumar; Bhattacharjee, Paramita
2016-01-01
African marigold (Tagetes erecta L.) flowers are highly valued for their ornamental appeal as well as medicinal properties. However, their short shelf lives cause high post-harvest loss and limit their export potential. The review of patents and research articles revealed that different types of packaging designs/materials have been successfully employed for extension of shelf lives of cut flowers. The current work focuses on designing of different packaging configurations and selection of best configuration for preservation of marigold cut flowers. Ten packaging configurations, composed of four different packaging materials i.e., low density polyethylene (LDPE), polyethylene terephthalate, glassine paper and cellophane paper, were designed. Each pack, consisting of 20 ± 1 g of marigold flowers along with non-packaged control set were stored at 23 ± 2°C, 80% R.H., in an environmental chamber and the flowers were evaluated for their sensory attributes, phytochemical characteristics and physicochemical parameters of senescence to determine their shelf lives. Flowers packed in LDPE bag showed highest shelf life of 8 days with a lead of 4 days compared to control (shelf life - 4 days). This study also established for the first time the phenomenon of carotenogenesis in marigold cut flowers with significantly (P<0.01) higher production of lutein in LDPE packaged flowers. LDPE pack was the best design among the ten package designs, in preserving lutein content of marigold flowers and extending their shelf lives. This economically viable packaging can not only boost the export potential of this ornamental flower, but also allow utilization of nutraceutical potency of lutein.
Carter, Michelle Qiu; Feng, Doris; Chapman, Mary H; Gabler, Franka
2018-06-01
We examined the survival of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica Thompson inoculated on commercially packed table grapes under simulated refrigerated transit conditions (1.1 ± 0.5 °C; 90% RH). Grapes were placed in perforated polyethylene cluster bags, within a commercial expanded polystyrene box equipped with either a SO 2 -generating pad; a perforated polyethylene box liner; a SO 2 -generating pad and a box liner; or none of them. L. monocytogenes was most sensitive to SO 2 -generating pad. SO 2 -generating pad or SO 2 -generating pad with box liner inactivated this pathogen completely on day 12 following the inoculation. S. enterica Thompson displayed a similar cold sensitivity as L. monocytogenes, but was more resistant to SO 2 -generating pad than L. monocytogenes. While SO 2 -generating pad eliminated S. enterica Thompson on day 20, a combination of box liner with SO 2 -generating pad inactivated this pathogen completely on day 13. E. coli O157:H7 had the highest tolerance to transit temperature and to SO 2 -generating pad; SO 2 -generating pad inactivated this pathogen completely on Day 20. Our data suggest that use of SO 2 -generating pad combined with box liner is effective in reducing foodborne pathogens L. monocytogenes and S. enterica Thompson, while the use of SO 2 -generating pad alone was more effective on E. coli O157:H7. Published by Elsevier Ltd.
Yang, F M; Li, H M; Li, F; Xin, Z H; Zhao, L Y; Zheng, Y H; Hu, Q H
2010-04-01
A novel nano-packing material with lower relative humidity, oxygen transmission rate and high longitudinal strength was synthesized by blending polyethylene with nano-powder (nano-Ag, kaolin, anatase TiO(2), rutile TiO(2)), and its effect on preservation quality of strawberry fruits (Fragaria ananassa Duch. cv Fengxiang) was investigated during storage at 4 degrees C. Results showed that nano-packaging was able to maintain the sensory, physicochemical, and physiological quality of strawberry fruits at a higher level compared with the normal packing (polyethylene bags). After a 12-d storage, decreases in the contents of total soluble solids, titratable acidity, and ascorbic acid of nano-packing were significantly inhibited. Meanwhile, decay rate, anthocyanin, and malondialdehyde contents were decreased to 16.7%, 26.3 mg/100g, 66.3 micromol/g for nano-packing and 26.8%, 31.9 mg/100g, 75.4 micromol/g for normal packing; polyphenoloxidase (PPO) and pyrogallol peroxidase (POD) activities were significantly lower in nano-packing than the control. These data indicated that the nano-packaging might provide an attractive alternative to improve preservation quality of the strawberry fruits during extended storage. Nano-packing exhibited identified quality benefits applicable to the preservation of fresh strawberry. Furthermore, nano-packing has the advantages of simple processing and feasibility to be industrialized in contrast with other storages. Thus, the utilization of nano-packing will likely assist commercial producers and retailers in extending the shelf life of products over a broader range in the future.
Yang, Song-Yi; Kim, Seong-Hwan; Choi, Se-Young; Kim, Kwang-Mahn
2016-02-24
The objective of the study was to compare the acid neutralizing ability and shear bond strength (SBS) of three different types of orthodontic adhesives containing bioactive glasses (BAGs). 45S5, 45S5F and S53P4 BAGs were prepared using the melting technique and ground to fine particles. Orthodontic adhesives containing three types of BAGs were prepared as follows: 52.5% 45S5 BAG + 17.5% glass (45S5_A); 61.25% 45S5 BAG + 8.75% glass (45S5_B); 52.5% 45S5F BAG + 17.5% glass (45S5F_A); 61.25% 45S5F BAG + 8.75% glass (45S5F_B); 52.5% S53P4 BAG + 17.5% glass (S53P4_A); 61.25% S53P4 BAG + 8.75% glass (S53P4_B); and 70.0% glass (BAG_0). To evaluate the acid neutralizing properties, specimens were immersed in lactic acid solution, and pH changes were measured. SBS was measured with a universal testing machine. For all of the BAG-containing adhesives, the one with 61.25% of BAG showed a significantly greater increase of pH than the one with 52.5% of BAG ( p < 0.05). Groups with 61.25% of BAG showed lower SBS than samples with 52.5% of BAG. 45S5F_A showed no significant difference of SBS compared to BAG_0 ( p > 0.05). The adhesive containing 61.25% of 45S5F BAG exhibited clinically acceptable SBS and acid neutralizing properties. Therefore, this composition is a suitable candidate to prevent white spot lesions during orthodontic treatment.
Sajeesh, S; Sharma, Chandra P
2006-02-01
In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.
BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta
Minoia, Melania; Boncoraglio, Alessandra; Vinet, Jonathan; Morelli, Federica F; Brunsting, Jeanette F; Poletti, Angelo; Krom, Sabine; Reits, Eric; Kampinga, Harm H; Carra, Serena
2014-01-01
Eukaryotic cells use autophagy and the ubiquitin–proteasome system as their major protein degradation pathways. Upon proteasomal impairment, cells switch to autophagy to ensure proper clearance of clients (the proteasome-to-autophagy switch). The HSPA8 and HSPA1A cochaperone BAG3 has been suggested to be involved in this switch. However, at present it is still unknown whether and to what extent BAG3 can indeed reroute proteasomal clients to the autophagosomal pathway. Here, we show that BAG3 induces the sequestration of ubiquitinated clients into cytoplasmic puncta colabeled with canonical autophagy linkers and markers. Following proteasome inhibition, BAG3 upregulation significantly contributes to the compensatory activation of autophagy and to the degradation of the (poly)ubiquitinated proteins. BAG3 binding to the ubiquitinated clients occurs through the BAG domain, in competition with BAG1, another BAG family member, that normally directs ubiquitinated clients to the proteasome. Therefore, we propose that following proteasome impairment, increasing the BAG3/BAG1 ratio ensures the “BAG-instructed proteasomal to autophagosomal switch and sorting” (BIPASS). PMID:25046115
Minoia, Melania; Boncoraglio, Alessandra; Vinet, Jonathan; Morelli, Federica F; Brunsting, Jeanette F; Poletti, Angelo; Krom, Sabine; Reits, Eric; Kampinga, Harm H; Carra, Serena
2014-09-01
Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Upon proteasomal impairment, cells switch to autophagy to ensure proper clearance of clients (the proteasome-to-autophagy switch). The HSPA8 and HSPA1A cochaperone BAG3 has been suggested to be involved in this switch. However, at present it is still unknown whether and to what extent BAG3 can indeed reroute proteasomal clients to the autophagosomal pathway. Here, we show that BAG3 induces the sequestration of ubiquitinated clients into cytoplasmic puncta colabeled with canonical autophagy linkers and markers. Following proteasome inhibition, BAG3 upregulation significantly contributes to the compensatory activation of autophagy and to the degradation of the (poly)ubiquitinated proteins. BAG3 binding to the ubiquitinated clients occurs through the BAG domain, in competition with BAG1, another BAG family member, that normally directs ubiquitinated clients to the proteasome. Therefore, we propose that following proteasome impairment, increasing the BAG3/BAG1 ratio ensures the "BAG-instructed proteasomal to autophagosomal switch and sorting" (BIPASS).
Braver, E R; Ferguson, S A; Greene, M A; Lund, A K
1997-11-05
Virtually all new cars now are equipped with passenger air bags. Determining whether passenger air bags are saving lives is important, particularly because passenger air bags have caused some deaths among children and adults. To assess the effectiveness of passenger air bags in reducing the risk of death in frontal crashes for right front passengers. Air bags are designed to protect occupants in frontal crashes. Using Fatality Analysis Reporting System data for calendar years 1992 through 1995, the relative frequency of right front passenger deaths in frontal vs nonfrontal fatal crashes was compared for cars with dual air bags and for cars with driver-only air bags. Odds of right front passengers dying in frontal compared with nonfrontal fatal crashes were computed for 1992 through 1995 model year cars with dual air bags and for cars with driver-only air bags. Percentage reductions in right front passenger deaths in dual air bag vehicles were estimated. Right front passenger fatalities were 18% lower than expected in frontal crashes of cars with dual air bags and 11% lower in all crashes. An estimated 73 fewer than expected right front passengers died in 1992 through 1995 model cars with dual air bags during 1992 through 1995. The risk of frontal crash death for right front passengers in cars with dual air bags was reduced 14% among those reported to be using belts and 23% among belt nonusers. Children younger than 10 years in cars with dual air bags had a 34% increased risk of dying in frontal crashes. Passenger air bags were associated with substantial reductions in fatalities among right front passengers in frontal crashes. However, more children are being killed than are being saved by air bags. Immediate countermeasures to reduce the dangers of air bags to children and adults are suggested.
Method for measurement of radon diffusion and solubility in solid materials
NASA Astrophysics Data System (ADS)
Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia
2018-02-01
In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.
Study of the suitability of DUO plastic bags for the storage of dynamites.
Sáiz, Jorge; Ferrando, José-Luis; Atoche, Juan-Carlos; García-Ruiz, Carmen
2013-10-10
A comparative study on the retentiveness of two plastic bags (DUO and Royal Pack) has been carried out by gas chromatography with mass spectrometry detection. Two types of dynamites were packed in both plastic bags. The bags were placed into glass jars and headspace analyses were performed over 11 weeks to detect whether the volatile constituents of the dynamites were released from the bags. DUO plastic bags showed much better retentiveness than Royal Pack plastic bags. Ethylene glycol dinitrate (EGDN) was quickly detected in the headspace of the glass jars containing Royal Pack plastic bags after 1 week of storage. On the contrary, only a weak signal of EGDN, which was not detectable in the total ion chromatogram, was detected after 11 weeks of storage. Moreover, DUO plastic bags have shown less background signals than the Royal Pack bags, being the former bags much more suitable for the storage of dynamites. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
42 CFR 84.88 - Breathing bag test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated with... Institute upon request. (d) The air within the bag(s) shall not contain more than 100 parts per million of... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing bag test. 84.88 Section 84.88 Public...
NASA Technical Reports Server (NTRS)
1972-01-01
The experimental determination of purge bag materials properties, development of purge bag manufacturing techniques, experimental evaluation of a subscale purge bag under simulated operating conditions and the experimental evaluation of the purge pin concept for MLI purging are discussed. The basic purge bag material, epoxy fiberglass bounded by skins of FEP Teflon, showed no significant permeability to helium flow under normal operating conditions. Purge bag small scale manufacturing tests were conducted to develop tooling and fabrication techniques for use in full scale bag manufacture. A purge bag material layup technique was developed whereby the two plys of epoxy fiberglass enclosed between skins of FEP Teflon are vacuum bag cured in an oven in a single operation. The material is cured on a tool with the shape of a purge bag half. Plastic tooling was selected for use in bag fabrication. A model purge bag 0.6 m in diameter was fabricated and subjected to a series of structural and environmental tests simulating various flight type environments. Pressure cycling tests at high (450 K) and low (200 K) temperature as well as acoustic loading tests were performed. The purge bag concept proved to be structurally sound and was used for the full scale bag detailed design model.
BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress.
Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A
2015-08-21
Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1(-/-)) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.
Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel
Sayre, William W.; Chamberlain, A.R.
1964-01-01
In natural streams turbulent diffusion is one of the principal mechanisms by which liquid and suspended-particulate contaminants are dispersed in the flow. A knowledge of turbulence characteristics is therefore essential in predicting the dispersal rates of contaminants in streams. In this study the theory of diffusion by continuous movements for homogeneous turbulence is applied to lateral diffusion at the surface of an open channel in which there is uniform flow. An exploratory-laboratory investigation was conducted in which the lateral dispersion at the water surface of a sand-Led flume was studied by measuring the lateral spread from a point source of small floating polyethylene articles. The experiment was restricted to a single set of low and channel geometry conditions. The results of the study indicate that with certain restrictions lateral dispersion in alluvial channels may be successfully described by the theory of diffusion by continuous movements. The experiment demonstrates a means for evaluating the lateral diffusion coefficient and also methods for quantitatively estimating fundamental turbulence properties, such as the intensity and the Lagrangian integral scale of turbulence in an alluvial channel. The experimental results show that with increasing distance from the source the coefficient of lateral turbulent diffusion increases initially but tends toward a constant limiting value. This result is in accordance with turbulent diffusion theory. Indications are that the distance downstream from the source required for the diffusion coefficient to reach its limiting value is actually very small when compared to the length scale of most diffusion phenomena in natural streams which are of practical interest.
USDA-ARS?s Scientific Manuscript database
The deltamethrin-incorporated polypropylene (PP) bag, ZeroFly® Storage Bag, is a new technology to reduce postharvest losses caused by stored-product insect pests. ZeroFly bags filled with untreated maize were compared to PP bags filled with maize treated with Betallic Super (80 g pirimiphos-methyl ...
Roth, W; Grimmel, C; Rieger, L; Strik, H; Takayama, S; Krajewski, S; Meyermann, R; Dichgans, J; Reed, J C; Weller, M
2000-04-01
Bag-1 is a heat shock 70 kDa (Hsp70)-binding protein that can collaborate with Bcl-2 in suppressing apoptosis under some conditions. Here, we report that 11 of 12 human glioma cell lines express Bag-1 protein in vitro. Moreover, 15 of 19 human glioblastomas expressed Bag-1 as assessed by immunohistochemistry in primary tumor specimens. To examine the biological effects of Bag-1 in glioma cells, we expressed Bag-1 or Bcl-2 transgenes in 2 human malignant glioma cell lines, LN-18 and LN-229. Bag-1 significantly slowed glioma cell growth and reduced clonogenicity of both cell lines in vitro. Coexpressed Bcl-2 abrogated these effects of Bag-1. Intracranial LN-229 glioma xenografts implanted into nude mice revealed a substantial growth advantage afforded by Bcl-2. Bag-1 had no such effect, either in the absence or presence of Bcl-2. Upon serum starvation in vitro, Bcl-2 prevented cell death whereas Bag-1 did not. Both Bcl-2 and Bag-1 slowed proliferation of serum-starved cells when expressed alone. Importantly, coexpression of Bcl-2 and Bag-1 provided a distinct growth advantage under conditions of serum starvation that is probably the result of (i) the death-preventing activity of Bcl-2 and (ii) the property of Bag-1 to overcome a Bcl-2-mediated enhancement of exit from the cell cycle. In contrast to these Bcl-2/Bag-1 interactions observed under serum starvation conditions, Bag-1 did not further enhance the strong protection from staurosporine-, CD95 (Fas/Apo1) ligand-, Apo2 ligand (TRAIL)- or chemotherapeutic drug-induced apoptosis afforded by Bcl-2. Taken together, these results indicate a role for Bag-1/Bcl-2 interactions in providing a survival advantage to cancer cells in a deprived microenvironment that may be characteristic of ischemic/hypoxic tumors such as human glioblastoma multiforme, and suggest that Bcl-2/Bag-1 interactions also modulate cell proliferation.
Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury
Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.
2016-01-01
Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction. PMID:27882354
Nitriding of Polymer by Low Energy Nitrogen Neutral Beam Source
NASA Astrophysics Data System (ADS)
Hara, Yasuhiro; Takeda, Keigo; Yamakawa, Koji; Den, Shoji; Toyoda, Hirotaka; Sekine, Makoto; Hori, Masaru
2012-03-01
Nitriding of polyethylene naphthalate (PEN) has been carried out at room temperature using a nitrogen neutral beam with kinetic energy of less than 100 eV. The surface hardness of nitrided samples increased to two times that of the untreated sample, when the acceleration voltage was between 30 and 50 V. The thickness of the hardened polymer layer was estimated to be 1 µm. It was concluded that the hardness enhancement was caused by the diffusion of nitrogen atoms into the polymer.
Inomata, Yui; Nagasaka, Shouta; Miyate, Kazuki; Goto, Yuta; Hino, Chizuru; Toukairin, Chihiro; Higashio, Rieko; Ishida, Kinji; Saino, Tomoyuki; Hirose, Masamichi; Tsumura, Hideki; Sanbe, Atsushi
2018-02-19
Bcl-2-associated athanogene 3 (BAG3) is strongly expressed in both cardiac and skeletal muscle. A recent study showed that BAG3 may play a protective role in muscles. Little is known, however, regarding the detailed role of BAG3 in cardiac muscle. To better understand the functional role of cardiac BAG3 in the heart, we generated transgenic (TG) mice that overexpress BAG3. A decrease in fractional shortening, and the induction of cardiac atrial natriuretic peptide, were observed in BAG3 TG mice. Moreover, a marked reduction in the protein level of small HSPs was detected in BAG3 TG mouse hearts. We analyzed the cardiac small HSP levels when either the ubiquitin-proteasome system (UPS) or the autophagy system (AS) was inhibited in BAG3 TG mice. The protein turnovers of small HSPs by the AS were activated in BAG3 TG mouse hearts. Thus, BAG3 is critical for the protein turnover of small HSPs via activation of autophagy in the heart. Copyright © 2018 Elsevier Inc. All rights reserved.
Bagworm bags as portable armour against invertebrate predators.
Sugiura, Shinji
2016-01-01
Some animals have evolved the use of environmental materials as "portable armour" against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators' mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.
BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.
Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y
2016-03-01
Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes
Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.
2016-01-01
Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036
A new possible picture of the hadron structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokrovsky, Yury E.
A new chiral-scale invariant version of the bag model (CSB) is developed and applied to calculations of masses and radii for single bag states. The mass formula of the CSB model contains no free parameters and connects masses and radii of the bags with fundamental QCD scales, namely with {lambda}{sub QCD},
A mechanistic modelling approach to polymer dissolution using magnetic resonance microimaging.
Kaunisto, Erik; Abrahmsen-Alami, Susanna; Borgquist, Per; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders
2010-10-15
In this paper a computationally efficient mathematical model describing the swelling and dissolution of a polyethylene oxide tablet is presented. The model was calibrated against polymer release, front position and water concentration profile data inside the gel layer, using two different diffusion models. The water concentration profiles were obtained from magnetic resonance microimaging data which, in addition to the previously used texture analysis method, can help to validate and discriminate between the mechanisms of swelling, diffusion and erosion in relation to the dissolution process. Critical parameters were identified through a comprehensive sensitivity analysis, and the effect of hydrodynamic shearing was investigated by using two different stirring rates. Good agreement was obtained between the experimental results and the model. Copyright © 2010 Elsevier B.V. All rights reserved.
Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth
NASA Astrophysics Data System (ADS)
Jin, Xu-Hui; Price, Michael B.; Finnegan, John R.; Boott, Charlotte E.; Richter, Johannes M.; Rao, Akshay; Menke, S. Matthew; Friend, Richard H.; Whittell, George R.; Manners, Ian
2018-05-01
Easily processed materials with the ability to transport excitons over length scales of more than 100 nanometers are highly desirable for a range of light-harvesting and optoelectronic devices. We describe the preparation of organic semiconducting nanofibers comprising a crystalline poly(di-n-hexylfluorene) core and a solvated, segmented corona consisting of polyethylene glycol in the center and polythiophene at the ends. These nanofibers exhibit exciton transfer from the core to the lower-energy polythiophene coronas in the end blocks, which occurs in the direction of the interchain π-π stacking with very long diffusion lengths (>200 nanometers) and a large diffusion coefficient (0.5 square centimeters per second). This is made possible by the uniform exciton energetic landscape created by the well-ordered, crystalline nanofiber core.
Ruparelia, Avnika A; Oorschot, Viola; Vaz, Raquel; Ramm, Georg; Bryson-Richardson, Robert J
2014-12-01
Mutations in the co-chaperone Bcl2-associated athanogene 3 (BAG3) can cause myofibrillar myopathy (MFM), a childhood-onset progressive muscle disease, characterized by the formation of protein aggregates and myofibrillar disintegration. In contrast to other MFM-causing proteins, BAG3 has no direct structural role, but regulates autophagy and the degradation of misfolded proteins. To investigate the mechanism of disease in BAG3-related MFM, we expressed wild-type BAG3 or the dominant MFM-causing BAG3 (BAG3(P209L)) in zebrafish. Expression of the mutant protein results in the formation of aggregates that contain wild-type BAG3. Through the stimulation and inhibition of autophagy, we tested the prevailing hypothesis that impaired autophagic function is responsible for the formation of protein aggregates. Contrary to the existing theory, our studies reveal that inhibition of autophagy is not sufficient to induce protein aggregation. Expression of the mutant protein, however, did not induce myofibrillar disintegration and we therefore examined the effect of knocking down Bag3 function. Loss of Bag3 resulted in myofibrillar disintegration, but not in the formation of protein aggregates. Remarkably, BAG3(P209L) is able to rescue the myofibrillar disintegration phenotype, further demonstrating that its function is not impaired. Together, our knockdown and overexpression experiments identify a mechanism whereby BAG3(P209L) aggregates form, gradually reducing the pool of available BAG3, which eventually results in BAG3 insufficiency and myofibrillar disintegration. This mechanism is consistent with the childhood onset and progressive nature of MFM and suggests that reducing aggregation through enhanced degradation or inhibition of nucleation would be an effective therapy for this disease.
Room-temperature ballistic energy transport in molecules with repeating units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong
2015-06-07
In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport inmore » molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.« less
Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes
NASA Astrophysics Data System (ADS)
Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.
2018-03-01
The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.
Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan
2018-01-01
To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.
NMR study on the network structure of a mixed gel of kappa and iota carrageenans.
Hu, Bingjie; Du, Lei; Matsukawa, Shingo
2016-10-05
The temperature dependencies of the (1)H T2 and diffusion coefficient (D) of a mixed solution of kappa-carrageenan and iota-carrageenan were measured by NMR. Rheological and NMR measurements suggested an exponential formation of rigid aggregates of kappa-carrageenan and a gradual formation of fine aggregates of iota-carrageenan during two step increases of G'. The results also suggested that longer carrageenan chains are preferentially involved in aggregation, thus resulting in a decrease in the average Mw of solute carrageenans. The results of diffusion measurements for poly(ethylene oxide) (PEO) suggested that kappa-carrageenan formed thick aggregates that decreased hindrance to PEO diffusion by decreasing the solute kappa-carrageenan concentration in the voids of the aggregated chains, and that iota-carrageenan formed fine aggregates that decreased the solute iota-carrageenan concentration less. DPEO in a mixed solution of kappa-carrageenan and iota-carrageenan suggested two possibilities for the microscopic network structure: an interpenetrating network structure, or micro-phase separation. Copyright © 2016. Published by Elsevier Ltd.
Effects of multilayered bags vs ethylvinyl-acetate bags on oxidation of parenteral nutrition.
Balet, Antònia; Cardona, Daniel; Jané, Salvador; Molins-Pujol, Antoni M; Sánchez Quesada, José Luís; Gich, Ignasi; Mangues, Ma Antònia
2004-01-01
We evaluate the effects of multilayered bags vs ethylvinyl-acetate bags on peroxidate formation of various emulsions for all-in-one total parenteral nutrition solutions (TPN) during storage. Twenty-four parenteral nutritions were prepared with 4 commercial i.v. lipid emulsions (Soyacal 20%, Grifols; Intralipid 20%, Fresenius-Kabi; Lipofundina 20%, Braun; and Clinoleic 20%, Clintex) and 2 different bags (multilayered [ML] bag, Miramed; and 1 ethylvinyl-acetate [EVA] bag, Miramed). Each kind of TPN was prepared in triplicate. Samples were taken at 3 different times: immediately after preparation (time 0), after 6 days at 4 degrees C and 48 hours at 37 degrees C (time 1), and finally after a total of 14 days at 37 degrees C (time 2). Oxidation of TPN was evaluated by analysis of hydroperoxides by ferrous oxidation-xylenol orange (FOX) reactive, lipoperoxides by thiobarbituric acid reactive species (TBARS), alpha-tocopherol by high-performance liquid chromatography (HPLC), and ascorbic acid and dehydroascorbic acid by HPLC. TPN admixtures in ML bag showed less oxidation evaluated by peroxide determination using FOX than EVA bag. Lipoperoxides by TBARS did not show significant differences between 2 bags. Ascorbic acid and dehydroascorbic acid disappeared in EVA bags at time 1. No important differences were found in alpha-tocopherol content. Multilayered bags minimize oxidation.
How have changes in air bag designs affected frontal crash mortality?
Braver, Elisa R; Shardell, Michelle; Teoh, Eric R
2010-07-01
To determine whether front air bag changes have affected occupant protection, frontal crash mortality rates were compared among front outboard occupants in vehicles having certified-advanced air bags (latest generation of air bags) or sled-certified air bags with and without advanced features. Poisson marginal structural models were used to calculate standardized mortality rate ratios (MRRs) for front occupants per registered vehicle. Vehicle age-corrected mortality rates were lower for drivers of vehicles having sled-certified air bags with advanced features than for drivers having sled-certified air bags without advanced features (MRR = 0.88; 95% confidence interval [CI]: 0.81-0.95), including unbelted men and drivers younger than 60. The mortality rate was higher, though not statistically significant, for drivers having certified-advanced air bags compared with sled-certified air bags with advanced features (vehicle age-corrected MRR = 1.13; 95% CI: 0.97-1.32) and significantly higher for belted drivers (MRR = 1.21; 95% CI: 1.04-1.39). Advanced air bag features appeared protective for some occupants. However, increased mortality rates among belted drivers of vehicles having certified-advanced air bags relative to those having sled-certified air bags with advanced features suggest that further study is needed to identify any potential problems with requirements for certification. 2010 Elsevier Inc. All rights reserved.
Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia.
Zhu, Huayuan; Wu, Wei; Fu, Yuan; Shen, Wenyi; Miao, Kourong; Hong, Min; Xu, Wei; Young, Ken H; Liu, Peng; Li, Jianyong
2014-03-01
Bcl-2-associated athanogene 3 (BAG3), a member of BAG family, is shown to sustain cell survival and underlie resistance to chemotherapy in human neoplastic cells. We aimed to determine the exact role and underlying mechanisms of BAG3 in human chronic lymphocytic leukemia (CLL). One hundred human CLL samples and 20 normal B-cell samples from healthy controls were collected. We measured the BAG3 expression in these cells and explored its relationship with known prognostic factors for CLL. The roles of BAG3 in cell apoptosis and migration were evaluated by small interfering RNA-mediated knockdown of BAG3 in primary CLL cells. We showed that BAG3 expression level was increased in CLL cells compared with normal B cells. Moreover, BAG3 expression was particularly upregulated in CD38 positive, unmutated immunoglobulin heavy-chain patients and those with lymphadenopathy and/or splenomegaly. Importantly, patients with increased BAG3 expression level have poor overall survival in subgroups with positive ZAP-70 or those without any "p53 abnormality". In addition, knocking down of BAG3 expression resulted in increased apoptotic ratio and decreased migration in primary CLL cells. Our data indicate that BAG3 is a marker of poor prognostic in specific subgroups of CLL patients and may be a potential therapeutic target for this disease.
Impact of storage environment on the efficacy of hermetic storage bags.
Lane, Brett; Woloshuk, Charles
2017-05-01
Small hermetic bags (50 and 100 kg capacities) used by smallholder farmers in several African countries have proven to be a low-cost solution for preventing storage losses due to insects. The complexity of postharvest practices and the need for ideal drying conditions, especially in the Sub-Sahara, has led to questions about the efficacy of the hermetic bags for controlling spoilage by fungi and the potential for mycotoxin accumulation. This study compared the effects of environmental temperature and relative humidity at two locations (Indiana and Arkansas) on dry maize (14% moisture content) in woven polypropylene bags and Purdue Improved Crop Storage (PICS) hermetic bags. Temperature and relative humidity data loggers placed in the middle of each bag provided profiles of environmental influences on stored grain at the two locations. The results indicated that the PICS bags prevented moisture penetration over the three-month storage period. In contrast, maize in the woven bags increased in moisture content. For both bag types, no evidence was obtained indicating the spread of Aspergillus flavus from colonized maize to adjacent non-colonized maize. However, other storage fungi did increase during storage. The number of infected kernels did not increase in the PICS bags, but the numbers in the woven bags increased significantly. The warmer environment in Arkansas resulted in significantly higher insect populations in the woven bags than in Indiana. Insects in the PICS bags remained low at both locations. This study demonstrates that the PICS hermetic bags are effective at blocking the effects of external humidity fluctuations as well as the spread of fungi to non-infected kernels.
Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng
2013-01-01
Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909
Serrano, K; Levin, E; Chen, D; Hansen, A; Turner, T R; Kurach, J; Reidel, A; Boecker, W F; Acker, J P; Devine, D V
2016-04-01
Di-2-ethylhexyl phthalate (DEHP) is a blood bag plasticizer. It is also a toxin, raising concerns for vulnerable populations, for example, neonates and infants. Here, the in vitro quality of red cell concentrates (RCC) stored in paediatric bags formulated with alternative plasticizers to DEHP was compared. RCC were pooled and split into polyvinylchloride (PVC)/DEHP, PVC/1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH) or PVC/butyryl trihexyl citrate (BTHC) bags. Quality was assessed on storage days 5, 21, 35 and 43. Metabolism differed among the bags: pCO2 levels were lowest and pO2 were highest in BTHC bags. Glucose consumption and lactate production suggested higher metabolic rates in BTHC bags. ATP levels were best maintained in DINCH bags (day 43 mean level: 2·86 ± 0·29 μmol/g Hb). RCC in BTHC bags had the greatest potassium release (54·6 ± 3·0 mm on day 43). From day 21, haemolysis was higher in BTHC bags (P < 0·01) and by day 43 had exceeded 0·8% (0·85 ± 0·10%). RCC in BTHC bags showed more microparticle formation than RCC in DEHP or DINCH bags. The results suggest that the BTHC formulation used was detrimental to RBC quality. DINCH bags could be a viable alternative to DEHP: they outperformed DEHP bags energetically, with better maintenance of ATP levels. © 2015 International Society of Blood Transfusion.
Cruz, Maria C Pinto; Ravagnani, Sergio P; Brogna, Fabio M S; Campana, Sérgio P; Triviño, Galo Cardenas; Lisboa, Antonio C Luz; Mei, Lucia H Innocentini
2004-12-01
Diffusion studies of OTC (oxytetracycline) entrapped in microbeads of calcium alginate, calcium alginate coacervated with chitosan (of high, medium and low viscosity) and calcium alginate coacervated with chitosan of low viscosity, covered with PEG [poly(ethylene glycol) of molecular mass 2, 4.6 and 10 kDa, were carried out at 37+/-0.5 degrees C, in pH 7.4 and pH 1.2 buffer solutions - conditions similar to those found in the gastrointestinal system. The diffusion coefficient, or diffusivity (D), of OTC was calculated by equations provided by Crank [(1975) Mathematics in Diffusion, p. 85, Clarendon Press, Oxford] for diffusion, which follows Fick's [(1855) Ann. Physik (Leipzig) 170, 59] second law, considering the diffusion from the inner parts to the surface of the microbeads. The least-squares and the Newton-Raphson [Carnahan, Luther and Wilkes (1969) Applied Numerical Methods, p. 319, John Wiley & Sons, New York] methods were used to obtain the diffusion coefficients. The microbead swelling at pH 7.4 and OTC diffusion is classically Fickian, suggesting that the OTC transport, in this case, is controlled by the exchange rates of free water and relaxation of calcium alginate chains. In case of acid media, it was observed that the phenomenon did not follow Fick's law, owing, probably, to the high solubility of the OTC in this environment. It was possible to modulate the release rate of OTC in several types of microbeads. The presence of cracks formed during the process of drying the microbeads was observed by scanning electron microscopy.
Reduction of plastic carrier bag use: An analysis of alternatives in Israel.
Ayalon, Ofira; Goldrath, Tal; Rosenthal, Gad; Grossman, Michal
2009-07-01
Plastic carrier bags have been drawing the attention of the public and politicians. Different policy measures to reduce the environmental burden of these bags have been implemented and more are planned. The research analyzed the actual environmental aspects of consumption and use of plastic carrier bags and assessed the effectiveness of the proposed regulation in Israel. Since plastic bags are provided free of charge, people have a tendency to use these bags excessively, therefore a rigorous educational program should address this trend. However, the environmental load imposed by the bags is more a politically correct issue than an actual environmental hazard, and therefore the means for reducing their use should not include a high levy or total elimination of these bags.
Comparison of cryopreservation bags for hematopoietic progenitor cells using a WBC-enriched product.
Dijkstra-Tiekstra, Margriet J; Hazelaar, Sandra; Gkoumassi, Effimia; Weggemans, Margienus; de Wildt-Eggen, Janny
2015-04-01
Hematopoietic progenitor cells (HPC) are stored in cryopreservation bags that are resistant to liquid nitrogen. Since Cryocyte bags of Baxter (B-bags) are no longer available, an alternative bag was sought. Also, the influence of freezing volume was studied. Miltenyi Biotec (MB)- and MacoPharma (MP)-bags passed the integrity tests without failure. Comparing MB- and MP-bags with B-bags, no difference in WBC recovery or viability was found when using a WBC-enriched product as a "dummy" HPC product. Further, a freezing volume of 30 mL resulted in better WBC recovery and viability than 60 mL. Additonal studies using real HPC might be necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ghosh, Samik; Kim, Ki-Hyun; Sohn, Jong Ryeul
2011-01-01
In this study, we have examined the patterns of VOCs released from used Tedlar bags that were once used for the collection under strong source activities. In this way, we attempted to account for the possible bias associated with the repetitive use of Tedlar bags. To this end, we selected the bags that were never heated. All of these target bags were used in ambient temperature (typically at or below 30°C). These bags were also dealt carefully to avoid any mechanical abrasion. This study will provide the essential information regarding the interaction between VOCs and Tedlar bag materials as a potential source of bias in bag sampling approaches. PMID:22235175
Ghosh, Samik; Kim, Ki-Hyun; Sohn, Jong Ryeul
2011-01-01
In this study, we have examined the patterns of VOCs released from used Tedlar bags that were once used for the collection under strong source activities. In this way, we attempted to account for the possible bias associated with the repetitive use of Tedlar bags. To this end, we selected the bags that were never heated. All of these target bags were used in ambient temperature (typically at or below 30°C). These bags were also dealt carefully to avoid any mechanical abrasion. This study will provide the essential information regarding the interaction between VOCs and Tedlar bag materials as a potential source of bias in bag sampling approaches.
Legitimization of regulatory norms: Waterfowl hunter acceptance of changing duck bag limits
Schroeder, Susan A.; Fulton, David C.; Lawrence, Jeffrey S.; Cordts, Steven D.
2014-01-01
Few studies have examined response to regulatory change over time, or addressed hunter attitudes about changes in hunting bag limits. This article explores Minnesota waterfowl hunters’ attitudes about duck bag limits, examining attitudes about two state duck bag limits that were initially more restrictive than the maximum set by the U.S. Fish and Wildlife Service (USFWS), but then increased to match federal limits. Results are from four mail surveys that examined attitudes about bag limits over time. Following two bag limit increases, a greater proportion of hunters rated the new bag limit “too high” and a smaller proportion rated it “too low.” Several years following the first bag limit increase, the proportion of hunters who indicated that the limit was “too high” had declined, suggesting hunter acceptance of the new regulation. Results suggest that waterfowl bag limits may represent legal norms that influence hunter attitudes and gain legitimacy over time.
Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer.
Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying
2017-11-10
Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach.
Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer
Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying
2017-01-01
Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach. PMID:29221135
Bagworm bags as portable armour against invertebrate predators
2016-01-01
Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators’ mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators. PMID:26893969
High expression of BAG3 predicts a poor prognosis in human medulloblastoma.
Yang, Dong; Zhou, Ji; Wang, Hao; Wang, Yutao; Yang, Ge; Zhang, Yundong
2016-10-01
Bcl2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock protein (Hsp) 70, regulates various physiological and pathological processes. However, its role in human medulloblastoma has not been clarified. First of all, the expression of BAG3 was examined in formalin-fixed, paraffin-embedded specimens by immunohistochemical staining. And then, the prognostic role of BAG3 was analyzed in 51 medulloblastoma samples. Finally, the roles of BAG3 in the proliferation, migration, and invasion of Daoy medulloblastoma cell were investigated using a specific short hairpin RNA (shRNA). The expression of BAG3 in medulloblastoma tissues was higher than nontumorous samples. Furthermore, BAG3 overexpression significantly correlated with poor prognosis of patients with medulloblastoma. The overall survival and tumor-free survival in patients with BAG3 low expression were higher than high expression. Univariate and multivariate analysis showed that BAG3 overexpression was an independent prognostic marker for medulloblastoma. After the BAG3 knockdown, the Daoy cells exhibited decreased the ability to proliferate and form neurosphere. The preliminary mechanism study showed that overexpression of BAG3 might facilitate the cell cycle transition from G1 to S phase by modulating the cyclin-dependent kinase 2 (CDK2) and cyclin E expression. Additionally, we found that BAG3 might enhance the medulloblastoma cell migratory and invasive ability. In summary, BAG3 overexpression may regulate the survival and invasive properties of medulloblastoma and may serve as a potential therapy target for medulloblastoma.
BAG3: a multifaceted protein that regulates major cell pathways
Rosati, A; Graziano, V; De Laurenzi, V; Pascale, M; Turco, M C
2011-01-01
Bcl2-associated athanogene 3 (BAG3) protein is a member of BAG family of co-chaperones that interacts with the ATPase domain of the heat shock protein (Hsp) 70 through BAG domain (110–124 amino acids). BAG3 is the only member of the family to be induced by stressful stimuli, mainly through the activity of heat shock factor 1 on bag3 gene promoter. In addition to the BAG domain, BAG3 contains also a WW domain and a proline-rich (PXXP) repeat, that mediate binding to partners different from Hsp70. These multifaceted interactions underlie BAG3 ability to modulate major biological processes, that is, apoptosis, development, cytoskeleton organization and autophagy, thereby mediating cell adaptive responses to stressful stimuli. In normal cells, BAG3 is constitutively present in a very few cell types, including cardiomyocytes and skeletal muscle cells, in which the protein appears to contribute to cell resistance to mechanical stress. A growing body of evidence indicate that BAG3 is instead expressed in several tumor types. In different tumor contexts, BAG3 protein was reported to sustain cell survival, resistance to therapy, and/or motility and metastatization. In some tumor types, down-modulation of BAG3 levels was shown, as a proof-of-principle, to inhibit neoplastic cell growth in animal models. This review attempts to outline the emerging mechanisms that can underlie some of the biological activities of the protein, focusing on implications in tumor progression. PMID:21472004
[Expression of BAG3 Gene in Acute Myeloid Leukemia and Its Prognostic Value].
Zhu, Hua-Yuan; Fu, Yuan; Wu, Wei; Xu, Jia-Dai; Chen, Ting-Mei; Qiao, Chun; Li, Jian-Yong; Liu, Peng
2015-08-01
To investigate the expression of BAG3 gene in acue myeloid leukemia (AML) and its prognostic value. Real-time quantitative RT-PCR was used to detect the expression of BAG3 mRNA in 88 previously untreated AML patients. The corelation of BAG3 expression level with clinical characteristics and known prognostic markers of AML was analyzed. In 88 patients with AML, the expression of BAG3 mRNA in NPMI mutated AML patients was obviously lower than that in NPMI unmutated patients (P = 0.018). The expression level of BAG3 mRNA did not related to clinical parameters, such as age, sex, FAB subtype, WBC count, extra-modullary presentation, and to prognostic factors including cytogenetics, FLT3-ITD, c-kit and CEBPα mutation status (P > 0.05). The expression level of BAG3 had no obvious effect on complete remission (CR) of patients in first treatment. The expression level of BAG3 in non-M3 patients was higher than that in relapsed patients (P = 0.036). The expression level of BAG3 had no effect on overall survival (OS) of patients. The expression level of BAG3 does not correlated with known-prognostic markers of AML, only the expression level of BAG3 in NPM1 mutated patients is lower than that in NPM1 unmutated patients. The expression level of BAG3 has no effect on OS of AML patients, the BAG3 can not be difined as a prognostic marker in AML.
Mixing of two solutions combined by gravity drainage.
Leuptow, R M; Smith, K; Mockros, L F
1995-01-01
A variety of medical therapies require the mixing of solutions from two separate bags before use. One scenario for the mixing is to drain the solution from one bag into the other by gravity through a short connecting tube. The degree of mixing in the lower bag depends on the relative densities of the two solutions, the geometry of the two bags and the connecting tube, and the placement of the connecting tube. Solutions with densities differing by as much as 12% were mixed by draining the solution from an upper bag into a lower bag for a particular geometric configuration. The two solutions had different electrical conductivities, and the conductivity of the combined solution as it exited from the lower bag was used as a measure of the effectiveness of mixing. When the more dense solution was drained from the upper bag into the less dense solution in a lower bag, mixing was very effective. The incoming jet of high density solution entrained the low density solution. Flow visualization indicated that the incoming jet penetrated to the bottom of the lower bag, and resulting large vortical structures enhanced mixing. When the less dense solution was drained from the upper bag into the more dense solution in the lower bag mixing was less effective. The buoyancy force reduced the momentum of the incoming jet such that it did not penetrate to the bottom of the lower bag, resulting in stratification of the solutions.
Micromixer based on viscoelastic flow instability at low Reynolds number.
Lam, Y C; Gan, H Y; Nguyen, N T; Lie, H
2009-03-30
We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re approximately 0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 mus. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing.
Micromixer based on viscoelastic flow instability at low Reynolds number
Lam, Y. C.; Gan, H. Y.; Nguyen, N. T.; Lie, H.
2009-01-01
We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re≈0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 μs. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing. PMID:19693399
BAG3 promotes chondrosarcoma progression by upregulating the expression of β-catenin
Shi, Huijuan; Chen, Wenfang; Dong, Yu; Lu, Xiaofang; Zhang, Wenhui; Wang, Liantang
2018-01-01
To investigate the roles of B-cell lymphoma-2 associated athanogene 3 (BAG3) in human chondrosarcoma and the potential mechanisms, the expression levels of BAG3 were detected in the present study, and the associations between BAG3 and clinical pathological parameters, clinical stage as well as the survival of patients were analyzed. The present study detected BAG3 mRNA and protein expression in the normal cartilage cell line HC-a and in SW1353 chondrosarcoma cells by reverse transcription-quantitative polymerase chain reaction and western blot analysis. The BAG3 protein expression in 59 cases of chondrosarcoma, 30 patients with endogenous chondroma and 8 cases of normal cartilage was semi-quantitatively analyzed using the immunohistochemical method. In addition, the BAG3 protein expression level, the clinical pathological parameters, clinical stage and the survival time of patients with chondrosarcoma were analyzed. The plasmid transfection method was employed to upregulate the expression BAG3 and small RNA interference to downregulate the expression of BAG3 in SW1353 cells. The expression levels of BAG3 protein and mRNA were significantly increased in the chondrosarcoma cell line when compared with the normal cartilage cell line. The immunohistochemistry results indicated that BAG3 protein was overexpressed in the tissue of human chondrosarcoma. Statistical analysis showed that the expression level of BAG3 was significantly increased in the different Enneking staging of patients with chondrosarcoma and Tumor staging, and there were no statistical differences in age, gender, histological classification and tumor size. In the in vitro experiments, the data revealed that BAG3 significantly promoted chondrosarcoma cell proliferation, colony-formation, migration and invasion; however, it inhibited chondrosarcoma cell apoptosis. It was observed that BAG3 upregulated β-catenin expression at the mRNA and protein levels. In addition, BAG3 induced the expression of runt-related transcription factor 2 (RUNX2) in chondrosarcoma cells by upregulating β-catenin. These clinical analyses revealed a positive association between β-catenin and BAG3 in chondrosarcoma tumors. BAG3 was significantly increased in chondrosarcoma cells and tissues compared with the normal cartilage cells, tissue and cartilage benign tumors. Thus, BAG3 may serve as an oncogene in the development of chondrosarcoma via the induction of RUNX2 expression. The results of the present study contribute to further research on the biological development of chondrosarcoma. PMID:29484408
Investigating reduced bag weight as an effective risk mediator for mason tenders.
Davis, Kermit G; Kotowski, Susan E; Albers, James; Marras, William S
2010-10-01
Masonry workers face some of the highest physical demands in the construction industry where large bags of masonry material weighing 42.7 kg are commonly handled by mason tenders who mix the mortar, distribute mortar and bricks/blocks, and erect/dismantle scaffolding throughout the day. The objective of this study was to determine the effectiveness of using half-weight bags (21.4 kg) on reducing the biomechanical loading, physiological response, and perceived exertions. Ten male subjects performed asymmetric lifting tasks simulating unloading bags from a pallet. Muscle activity, trunk kinematics, heart rate, blood pressure and subjective rating data were collected. Spine loads were predicted from a well-validated EMG-assisted model. Bag weight, lift type, bag height at origin, and asymmetry at destination significantly impacted the spine loads. While there was a 50% reduction in bag weight, the peak loads for the half-weight bags were only 25% less than the more available full-weight bags (a reduction of about 320 N of shear and 1000 N of compression). Lifts allowing movement of the feet reduced the loads by about 22% in shear and 27% in compression compared to constrained postures. Interestingly, cumulative spine loads were greater for the lighter bags than the heavy bags ( approximately 40%). The subjective ratings of exertion and risk were significantly lower for the lighter bags. RELEVANCE TO INDUSTRY: The reduction in peak spine loading for the half-weight bags, particularly at the higher heights and when the feet were allowed to move could significantly reduce the injuries of masonry workers. However, there were trade-offs with cumulative loads that may minimize the reduced risk. Overall, given the limited amount of time lifting bags, the reduction of peak loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Jana V., E-mail: Jana.maier@kit.edu; Volz, Yvonne; Berger, Caroline
2010-10-22
Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulatemore » the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.« less
Neal, Paul R; Anderson, Gregory J
2004-05-01
Fabrics used in pollination bags may exclude pollen carried by biotic vectors, but have varying degrees of permeability to wind-borne pollen. The permeability of bags to wind-borne pollen may have important consequences in studies of pollination and reproductive biology. The permeability of four fabrics commonly used in the construction of pollination bags was examined. Deposition of wind-borne pollen on horizontally and vertically oriented microscope slides was assessed on slides enclosed in pollination bags, as well as on control slides. It was found that the permeability of fabrics to wind-borne pollen, as measured by deposition on both horizontally and vertically oriented slides, decreased with pore size. However, deposition on horizontal slides was always greater than on vertical slides for a given fabric; this could manifest itself as differential success of pollination of flowers in bags-dependent on flower orientation. Obviously, bags with mesh size smaller than most pollen grains are impermeable to pollen. However, material for such bags is very expensive. In addition, it was also observed that bags with even moderately small pore size, such as pores (approx. 200 microm) in twisted fibre cotton muslin, offered highly significant barriers to passage of wind-borne pollen. Such bags are sufficiently effective in most large-sample-size reproductive biology studies.
Chiappetta, Gennaro; Basile, Anna; Arra, Claudio; Califano, Daniela; Pasquinelli, Rosa; Barbieri, Antonio; De Simone, Veronica; Rea, Domenica; Giudice, Aldo; Pezzullo, Luciano; De Laurenzi, Vincenzo; Botti, Gerardo; Losito, Simona; Conforti, Daniela; Turco, Maria Caterina
2012-01-01
Anaplastic thyroid tumors (ATC) express high levels of BAG3, a member of the BAG family of cochaperone proteins that is involved in regulating cell apoptosis through multiple mechanisms. The objective of the study was the investigation of the influence of B-cell lymphoma-2-associated athanogene 3 (BAG3) on ATC growth. We investigated the effects of BAG3 down-modulation, obtained by using a specific small interfering RNA, on in vitro and in vivo growth of the human ATC cell line 8505C. Because BRAF protein plays an important role in ATC cell growth, we analyzed the effects of BAG3 down-modulation on BRAF protein levels. Furthermore, by using a proteasome inhibitor, we verified whether BAG3-mediated regulation of BRAF levels involved a proteasome-dependent mechanism. BAG3 down-modulation significantly inhibits ATC growth in vitro and in vivo. BAG3 coimmunoprecipitates with BRAF protein, and its down-modulation results in a significant reduction of BRAF protein levels, which can be reverted by incubation with the proteasome inhibitor MG132. BAG3 protein sustains ATC growth in vitro and in vivo. The underlying molecular mechanism appears to rely on BAG3 binding to BRAF, thus protecting it from proteasome-dependent degradation. These results are in line with the reported ability of BAG3 to interfere with the proteasomal delivery of a number of other client proteins.
Chiappetta, Gennaro; Basile, Anna; Barbieri, Antonio; Falco, Antonia; Rosati, Alessandra; Festa, Michelina; Pasquinelli, Rosa; Califano, Daniela; Palma, Giuseppe; Costanzo, Raffaele; Barcaroli, Daniela; Capunzo, Mario; Franco, Renato; Rocco, Gaetano; Pascale, Maria; Turco, Maria Caterina; De Laurenzi, Vincenzo; Arra, Claudio
2014-08-30
BAG3, member the HSP70 co-chaperones family, has been shown to play a relevant role in the survival, growth and invasiveness of different tumor types. In this study, we investigate the expression of BAG3 in 66 specimens from different lung tumors and the role of this protein in small cell lung cancer (SCLC) tumor growth. Normal lung tissue did not express BAG3 while we detected the expression of BAG3 by immunohistochemistry in all the 13 squamous cell carcinomas, 13 adenocarcinomas and 4 large cell carcinomas. Furthermore, we detected BAG3 expression in 22 of the 36 SCLCs analyzed. The role on SCLC cell survival was determined by down-regulating BAG3 levels in two human SCLC cell lines, i.e. H69 and H446, in vitro and measuring cisplatin induced apoptosis. Indeed down-regulation of BAG3 determines increased cell death and sensitizes cells to cisplatin treatment. The effect of BAG3 down-regulation on tumor growth was also investigated in an in vivo xenograft model by treating mice with an adenovirus expressing a specific bag3 siRNA. Treatment with bag3 siRNA-Ad significantly reduced tumor growth and improved animal survival. In conclusion we show that a subset of SCLCs over express BAG3 that exerts an anti-apoptotic effect resulting in resistance to chemotherapy.
... this page: //medlineplus.gov/ency/patientinstructions/000142.htm Urine drainage bags To use the sharing features on this page, please enable JavaScript. Urine drainage bags collect urine. Your bag will attach ...
49 CFR 178.519 - Standards for plastic film bags.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for plastic film bags. 178.519 Section...-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film bags are as...
16 CFR 255.1 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... an uncooked chicken in the oven roasting bag and places the bag in one oven. He then takes a chicken roasting bag from a second oven, removes from the bag what appears to be a perfectly cooked chicken, tastes... conduct. Example 4: A well-known celebrity appears in an infomercial for an oven roasting bag that...
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2011 CFR
2011-10-01
... an inflatable bag assembly. A seat-belt pre-tensioner contains similar hazardous materials and is... manufacturer has submitted each design type air bag inflator, air bag module, or seat-belt pretensioner to a... or pretensioner design type for which approval is sought and details on the complete package. The...
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2010 CFR
2010-10-01
... an inflatable bag assembly. A seat-belt pre-tensioner contains similar hazardous materials and is... manufacturer has submitted each design type air bag inflator, air bag module, or seat-belt pretensioner to a... or pretensioner design type for which approval is sought and details on the complete package. The...
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2012 CFR
2012-10-01
... an inflatable bag assembly. A seat-belt pre-tensioner contains similar hazardous materials and is... manufacturer has submitted each design type air bag inflator, air bag module, or seat-belt pretensioner to a... or pretensioner design type for which approval is sought and details on the complete package. The...
49 CFR 178.519 - Standards for plastic film bags.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for plastic film bags. 178.519 Section...-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film bags are as...
49 CFR 178.519 - Standards for plastic film bags.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for plastic film bags. 178.519 Section...-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film bags are as...
49 CFR 178.519 - Standards for plastic film bags.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for plastic film bags. 178.519 Section...-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film bags are as...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Communication Requirements for the Safe Transportation of Air Bag Inflators, Air Bag Modules, and Seat-Belt... Materials Regulations applicable to air bag inflators, air bag modules, and seat-belt pretensioners. The... amending the current approval and documentation requirements for a material classified as a UN3268 air bag...
Liu, Bao-Qin; Zhang, Song; Li, Si; An, Ming-Xin; Li, Chao; Yan, Jing; Wang, Jia-Mei; Wang, Hua-Qin
2017-07-13
BAG3 is an evolutionarily conserved co-chaperone expressed at high levels and has a prosurvival role in many tumor types. The current study reported that BAG3 was induced under specific floating culture conditions that enrich breast cancer stem cell (BCSC)-like cells in spheres. Ectopic BAG3 overexpression increased CD44 + /CD24 - CSC subpopulations, first-generation and second-generation mammosphere formation, indicating that BAG3 promotes CSC self-renewal and maintenance in breast cancer. We further demonstrated that mechanically, BAG3 upregulated CXCR4 expression at the post-transcriptional level. Further studies showed that BAG3 interacted with CXCR4 mRNA and promoted its expression via its coding and 3'-untranslational regions. BAG3 was also found to be positively correlated with CXCR4 expression and unfavorable prognosis in patients with breast cancer. Taken together, our data demonstrate that BAG3 promotes BCSC-like phenotype through CXCR4 via interaction with its transcript. Therefore, this study establishes BAG3 as a potential adverse prognostic factor and a therapeutic target of breast cancer.
Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M
2015-12-01
Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.
Analysis of BAG3 plasma concentrations in patients with acutely decompensated heart failure.
Gandhi, Parul U; Gaggin, Hanna K; Belcher, Arianna M; Harisiades, Jamie E; Basile, Anna; Falco, Antonia; Rosati, Alessandra; Piscione, Federico; Januzzi, James L; Turco, M Caterina
2015-05-20
BCL-2-associated athanogene 3 (BAG3) is a protein implicated in the cardiomyocyte stress response and genesis of cardiomyopathy. Extracellular BAG3 is measurable in patients with heart failure (HF), but the relationship of BAG3 with HF prognosis is unclear. BAG3 plasma concentrations were measured in 39 acutely decompensated HF patients; the primary endpoint was death at 1 year. Baseline characteristics were compared by vital status and median BAG3 concentration. Correlation of BAG3 with left ventricular ejection fraction (LVEF) and other biomarkers was performed. Prognostic value was assessed using Cox proportional hazards regression and Kaplan-Meier analysis. At baseline, median BAG3 was significantly higher in decedents (N=11) than survivors (N=28; 1489 ng/mL versus 50 ng/mL; P=0.04); decedents also had worse renal function and higher median natriuretic peptide (NP) and sST2. BAG3 was not significantly correlated with NPs, mid-regional pro-adrenomedullin, sST2, or eGFR, however. Mortality was increased in patients with supra-median BAG3 (>336 ng/mL; 42.1% versus 15.0%, P=0.06). In age and LVEF-adjusted Cox proportional hazards, BAG3 remained a significant mortality predictor (HR=3.20; 95% CI=1.34-7.65; P=0.02); those with supra-median BAG3 had significantly shorter time-to-death (P=0.04). The stress response protein BAG3 is measurable in patients with ADHF and may be prognostic for death. Copyright © 2015 Elsevier B.V. All rights reserved.
Eriksen, Anne Z; Brewer, Jonathan; Andresen, Thomas L; Urquhart, Andrew J
2017-04-30
The diffusion dynamics of nanocarriers in the vitreous and the influence of nanocarrier physicochemical properties on these dynamics is an important aspect of the efficacy of intravitreal administered nanomedicines for the treatment of posterior segment eye diseases. Here we use fluorescence correlation spectroscopy (FCS) to determine liposome diffusion coefficients in the intact vitreous (D Vit ) of ex vivo porcine eyes using a modified Miyake-Apple technique to minimize the disruption of the vitreous fine structure. We chose to investigate whether the zeta potential of polyethylene glycol functionalized (i.e. PEGylated) liposomes altered liposome in situ diffusion dynamics in the vitreous. Non-PEGylated cationic nanocarriers have previously shown little to no diffusion in the vitreous, whilst neutral and anionic have shown diffusion. The liposomes investigated had diameters below 150nm and zeta potentials ranging from -20 to +12mV. We observed that PEGylated cationic liposomes had significantly lower D Vit values (1.14μm 2 s -1 ) than PEGylated neutral and anionic liposomes (2.78 and 2.87μm 2 s -1 ). However, PEGylated cationic liposomes had a similar biodistribution profile across the vitreous to the other systems. These results show that PEGylated cationic liposomes with limited cationic charge can diffuse across the vitreous and indicate that the vitreous as a barrier to nanocarriers (Ø<500nm) is more complicated than simply an electrostatic barrier as previously suggested. Copyright © 2017 Elsevier B.V. All rights reserved.
2'-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression.
Nguyen, Hai-Anh; Kim, Soo-A
2017-01-01
BAG3, a member of BAG co-chaperone family, is induced by stressful stimuli such as heat shock and heavy metals. Through interaction with various binding partners, BAG3 is thought to play a role in cellular adaptive responses against stressful conditions in normal and neoplastic cells. 2'-Hydroxycinnamaldehyde (HCA) is a natural derivative of cinnamaldehyde and has antitumor activity in various cancer cells. In the present study, for the first time, we identified that HCA induced BAG3 expression and BAG3-mediated apoptosis in cancer cells. The apoptotic cell death induced by HCA was demonstrated by caspase-7, -9 and PARP activation, and confirmed by Annexin V staining in both SW480 and SW620 colon cancer cells. Notably, both the mRNA and protein levels of BAG3 were largely induced by HCA in a dose- and time-dependent manner. By showing transcription factor HSF1 activation, we demonstrated that HCA induces the expression of BAG3 through HSF1 activation. More importantly, knockdown of BAG3 expression using siRNA largely inhibited HCA-induced apoptosis, suggesting that BAG3 is actively involved in HCA-induced cancer cell death. Considering the importance of the stress response mechanism in cancer progression, our results strongly suggest that BAG3 could be a potential target for anticancer therapy.
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...
Plastic, Fantastic? What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
This module provides information about plastics, focusing on the uses of plastic bags in particular. Topic areas considered include: (1) making plastic bags; (2) transparency of plastic bags; (3) plastic bags and food odors; (4) food containers (before and since plastics); and (5) disposing of plastic bags and other plastic products. The text is…
Industrial filter bags cleaned by high-frequency vibration: A concept
NASA Technical Reports Server (NTRS)
Kooy, A. V.
1973-01-01
System holds filter bag around fine-mesh metal screen and vibrates screen at its resonant frequency. This removes deposited byproducts and protects bag fibers from damaging forces. Because filter bags represent 20 to 40% of any industrial filtering investment, this method of extending bag life should be of interest to those responsible for plant maintenance.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... regarding the availability of advanced air bag technology. Docket Nos. NHTSA-2011-0030-0006, NHTSA-2011-0006... advanced air bag technology.\\9\\ Accordingly, NHTSA concludes that the expense of advanced air bag... belief that advanced air bag technology has become more accessible to small volume manufacturers in...
Busingye, Diana S; Turner, Renée J; Vink, Robert
2016-10-01
While a number of studies have shown that free magnesium (Mg) decline is a feature of traumatic brain injury (TBI), poor central penetration of Mg has potentially limited clinical translation. This study examines whether polyethylene glycol (PEG) facilitates central penetration of Mg after TBI, increasing neuroprotection while simultaneously reducing the dose requirements for Mg. Rats were exposed to diffuse TBI and administered intravenous MgCl2 either alone (254 μmol/kg or 25.4 μmol/kg) or in combination with PEG (1 g/kg PEG) at 30-min postinjury. Vehicle-treated (saline or PEG) and sham animals served as controls. All animals were subsequently assessed for blood-brain barrier permeability and edema at 5 h, and functional outcome for 1 week postinjury. Optimal dose (254 μmol/kg) MgCl2 or Mg PEG significantly improved all outcome parameters compared to vehicle or PEG controls. Intravenous administration of 10% MgCl2 alone (25.4 μmol/kg) had no beneficial effect on any of the outcome parameters, whereas 10% Mg in PEG had the same beneficial effects as optimal dose Mg administration. Polyethylene glycol facilitates central penetration of Mg following TBI, reducing the concentration of Mg required to confer neuroprotection while simultaneously reducing the risks associated with high peripheral Mg concentration. © 2016 John Wiley & Sons Ltd.
Kong, De-Hui; Li, Si; Du, Zhen-Xian; Liu, Chuan; Liu, Bao-Qin; Li, Chao; Zong, Zhi-Hong; Wang, Hua-Qin
2016-01-01
Bcl-2 associated athanogene 3 (BAG3) contains multiple protein-binding motifs to mediate potential interactions with chaperons and/or other proteins, which is possibly ascribed to the multifaceted functions assigned to BAG3. The current study demonstrated that BAG3 directly interacted with glucose 6 phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). BAG3 suppressed the PPP flux, de novo DNA synthesis and cell growth in hepatocellular carcinomas (HCCs). The growth defect of HCCs with forced BAG3 expression can be rescued by enforced G6PD expression. However, BAG3 elevation did not cause a reduction in cellular NADPH concentrations, another main product of G6PD. In addition, supplement of nucleosides alone was sufficient to recover the growth defect mediated by BAG3 elevation. Collectively, the current study established a tumor suppressor-like function of BAG3 via direct interaction with G6PD in HCCs at the cellular level. PMID:26621836
BAG3 regulates epithelial-mesenchymal transition and angiogenesis in human hepatocellular carcinoma.
Xiao, Heng; Cheng, Shaobing; Tong, Rongliang; Lv, Zheng; Ding, Chaofeng; Du, Chengli; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen
2014-03-01
Bcl2-associated athanogene 3 (BAG3) protein is a co-chaperone of heat-shock protein (Hsp) 70 and may regulate major physiological and pathophysiological processes. However, few reports have examined the role of BAG3 in human hepatocellular carcinoma (HCC). In this study, we show that BAG3 regulates epithelial-mesenchymal transition (EMT) and angiogenesis in HCC. BAG3 was overexpressed in HCC tissues and cell lines. BAG3 knockdown resulted in reduction in migration and invasion of HCC cells, which was linked to reversion of EMT by increasing E-cadherin expression and decreasing N-cadherin, vimentin and slug expression, as well as suppressing matrix metalloproteinase 2 (MMP-2) expression. In a xenograft tumorigenicity model, BAG3 knockdown effectively inhibited tumor growth and metastasis through reduction in CD34 and VEGF expression and reversal of the EMT pathway. In conclusion, BAG3 is associated with the invasiveness and angiogenesis in HCC, and the BAG3 gene may be a novel therapeutic approach against HCC.
Kong, De-Hui; Li, Si; Du, Zhen-Xian; Liu, Chuan; Liu, Bao-Qin; Li, Chao; Zong, Zhi-Hong; Wang, Hua-Qin
2016-01-05
Bcl-2 associated athanogene 3 (BAG3) contains multiple protein-binding motifs to mediate potential interactions with chaperons and/or other proteins, which is possibly ascribed to the multifaceted functions assigned to BAG3. The current study demonstrated that BAG3 directly interacted with glucose 6 phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). BAG3 suppressed the PPP flux, de novo DNA synthesis and cell growth in hepatocellular carcinomas (HCCs). The growth defect of HCCs with forced BAG3 expression can be rescued by enforced G6PD expression. However, BAG3 elevation did not cause a reduction in cellular NADPH concentrations, another main product of G6PD. In addition, supplement of nucleosides alone was sufficient to recover the growth defect mediated by BAG3 elevation. Collectively, the current study established a tumor suppressor-like function of BAG3 via direct interaction with G6PD in HCCs at the cellular level.
Multiple-Instance Regression with Structured Data
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran; Roper, Alex
2008-01-01
We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.
Comparative efficacy of storage bags, storability and damage potential of bruchid beetle.
Harish, G; Nataraja, M V; Ajay, B C; Holajjer, Prasanna; Savaliya, S D; Gedia, M V
2014-12-01
Groundnut during storage is attacked by number of stored grain pests and management of these insect pests particularly bruchid beetle, Caryedon serratus (Oliver) is of prime importance as they directly damage the pod and kernels. In this regard different storage bags that could be used and duration up to which we can store groundnut has been studied. Super grain bag recorded minimum number of eggs laid and less damage and minimum weight loss in pods and kernels in comparison to other storage bags. Analysis of variance for multiple regression models were found to be significant in all bags for variables viz, number of eggs laid, damage in pods and kernels, weight loss in pods and kernels throughout the season. Multiple comparison results showed that there was a high probability of eggs laid and pod damage in lino bag, fertilizer bag and gunny bag, whereas super grain bag was found to be more effective in managing the C. serratus owing to very low air circulation.
Testing odorants recovery from a novel metallized fluorinated ethylene propylene gas sampling bag.
Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Wright, Donald; Kuhrt, Fred
2015-12-01
Industry-standard Tedlar bags for odor sample collection from confined animal feeding operations (CAFOs) have been challenged by the evidence of volatile organic compound (VOC) losses and background interferences. Novel impermeable aluminum foil with a thin layer of fluorinated ethylene propylene (FEP) film on the surface that is in contact with a gas sample was developed to address this challenge. In this research, Tedlar and metallized FEP bags were compared for (a) recoveries of four characteristic CAFO odorous VOCs (ethyl mercaptan, butyric acid, isovaleric acid and p-cresol) after 30 min and 24 hr sample storage time and for (b) chemical background interferences. All air sampling and analyses were performed with solid-phase microextraction (SPME) followed by gas chromatography-mass spectroscopy (GC-MS). Mean target gas sample recoveries from metallized FEP bags were 25.9% and 28.0% higher than those in Tedlar bags, for 30 min and 24 hr, respectively. Metallized FEP bags demonstrated the highest p-cresol recoveries after 30-min and 24-hr storage, 96.1±44.5% and 44.8±10.2%, respectively, among different types of sampling bags reported in previous studies. However, a higher variability was observed for p-cresol recovery with metallized FEP bags. A 0% recovery of ethyl mercaptan was observed with Tedlar bags after 24-hr storage, whereas an 85.7±7.4% recovery was achieved with metallized FEP bags. Recoveries of butyric and isovaleric acids were similar for both bag types. Two major impurities in Tedlar bags' background were identified as N,N-dimethylacetamide and phenol, while backgrounds of metallized FEP bags were significantly cleaner. Reusability of metallized FEP bags was tested. Caution is advised when using polymeric materials for storage of livestock-relevant odorous volatile organic compounds. The odorants loss with storage time confirmed that long-term storage in whole-air form is ill advised. A focused short-term odor sample containment should be biased toward the most inert material available relative to the highest impact target odorant. Metallized FEP was identified as such a material to p-cresol as the highest impact odorant from confined animal feeding operations. Metallized FEP bags have much cleaner background than commercial Tedlar bags do. Significantly higher recoveries of methyl mercaptan and p-cresol were also observed with metallized FEP bags.
Hoddle, M S; Millar, J G; Hoddle, C D; Zou, Y; McElfresh, J S; Lesch, S M
2011-04-01
The sex pheromone of Stenoma catenifer was evaluated in commercial avocado orchards in Guatemala to determine operational parameters, such as optimal lure type, trap height, trap density and estimates of the distances that male moths fly. Of four pheromone dispensers tested, gray and white rubber septa were of equal efficacy, whereas 1-ml low-density polyethylene vials and 2×3-cm polyethylene ziplock bags were least efficacious. The height at which wing traps were hung did not significantly affect the number of adult male S. catenifer captured. For monitoring S. catenifer, these data suggest that the pheromone should be dispensed from gray rubber septa in wing traps hung inside the tree canopy at 1.75 m, a height convenient for trap placement and monitoring. Mark-recapture studies of male S. catenifer indicated that, on average, males flew 67 m in one night. However, it is likely that this is an underestimate of the distance that male moths are capable of flying in a single night. Probabilistic modeling of S. catenifer capture data from different numbers of pheromone traps deployed in seven commercial avocado orchards of varying sizes and infestation levels suggested that 10-13 randomly deployed traps per orchard for a 7-day period are needed to detect at least one male S. catenifer with 90% confidence. These data provide sufficient information to develop effective protocols for using the S. catenifer pheromone to detect and monitor this pest in countries with endemic populations that are exporting fresh avocados, and for quarantine detection and incursion monitoring in countries receiving avocado imports from high risk areas.
The Portuguese plastic carrier bag tax: The effects on consumers' behavior.
Martinho, Graça; Balaia, Natacha; Pires, Ana
2017-03-01
Marine litter from lightweight plastic bags is a global problem that must be solved. A plastic bag tax was implemented in February 2015 to reduce the consumption of plastic grocery bags in Portugal and in turn reduce the potential contribution to marine litter. This study analyzes the effect of the plastic bag tax on consumer behavior to learn how it was received and determine the perceived effectiveness of the tax 4months after its implementation. In addition, the study assessed how proximity to coastal areas could influence behaviors and opinions. The results showed a 74% reduction of plastic bag consumption with a simultaneously 61% increase of reusable plastic bags after the tax was implemented. Because plastic bags were then reused for shopping instead of garbage bags, however, the consumption of garbage bags increased by 12%. Although reduction was achieved, the tax had no effect on the perception of marine litter or the impact of plastic bags on environment and health. The majority of respondents agree with the tax but view it as an extra revenue to the State. The distance to the coast had no meaningful influence on consumer behavior or on the perception of the tax. Although the tax was able to promote the reduction of plastics, the role of hypermarkets and supermarkets in providing alternatives through the distribution of reusable plastic bags was determinant to ensuring the reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
BAG3 promotes chondrosarcoma progression by upregulating the expression of β-catenin.
Shi, Huijuan; Chen, Wenfang; Dong, Yu; Lu, Xiaofang; Zhang, Wenhui; Wang, Liantang
2018-04-01
To investigate the roles of B‑cell lymphoma‑2 associated athanogene 3 (BAG3) in human chondrosarcoma and the potential mechanisms, the expression levels of BAG3 were detected in the present study, and the associations between BAG3 and clinical pathological parameters, clinical stage as well as the survival of patients were analyzed. The present study detected BAG3 mRNA and protein expression in the normal cartilage cell line HC‑a and in SW1353 chondrosarcoma cells by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The BAG3 protein expression in 59 cases of chondrosarcoma, 30 patients with endogenous chondroma and 8 cases of normal cartilage was semi-quantitatively analyzed using the immunohistochemical method. In addition, the BAG3 protein expression level, the clinical pathological parameters, clinical stage and the survival time of patients with chondrosarcoma were analyzed. The plasmid transfection method was employed to upregulate the expression BAG3 and small RNA interference to downregulate the expression of BAG3 in SW1353 cells. The expression levels of BAG3 protein and mRNA were significantly increased in the chondrosarcoma cell line when compared with the normal cartilage cell line. The immunohistochemistry results indicated that BAG3 protein was overexpressed in the tissue of human chondrosarcoma. Statistical analysis showed that the expression level of BAG3 was significantly increased in the different Enneking staging of patients with chondrosarcoma and Tumor staging, and there were no statistical differences in age, gender, histological classification and tumor size. In the in vitro experiments, the data revealed that BAG3 significantly promoted chondrosarcoma cell proliferation, colony‑formation, migration and invasion; however, it inhibited chondrosarcoma cell apoptosis. It was observed that BAG3 upregulated β‑catenin expression at the mRNA and protein levels. In addition, BAG3 induced the expression of runt‑related transcription factor 2 (RUNX2) in chondrosarcoma cells by upregulating β‑catenin. These clinical analyses revealed a positive association between β‑catenin and BAG3 in chondrosarcoma tumors. BAG3 was significantly increased in chondrosarcoma cells and tissues compared with the normal cartilage cells, tissue and cartilage benign tumors. Thus, BAG3 may serve as an oncogene in the development of chondrosarcoma via the induction of RUNX2 expression. The results of the present study contribute to further research on the biological development of chondrosarcoma.
Code of Federal Regulations, 2010 CFR
2010-07-01
... design specifications, installation, and operation of a bag leak detection system? 63.1184 Section 63... bag leak detection system? A bag leak detection system must meet the following requirements: (a) The bag leak detection system must be certified by the manufacturer to be capable of detecting PM...
49 CFR 178.521 - Standards for paper bags.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for paper bags. 178.521 Section 178.521...-Oriented Packaging Standards § 178.521 Standards for paper bags. (a) The following are identification codes for paper bags: (1) 5M1 for a multi-wall paper bag; and (2) 5M2 for a multi-wall water-resistant paper...
49 CFR 178.521 - Standards for paper bags.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for paper bags. 178.521 Section 178.521...-bulk Performance-Oriented Packaging Standards § 178.521 Standards for paper bags. (a) The following are identification codes for paper bags: (1) 5M1 for a multi-wall paper bag; and (2) 5M2 for a multi-wall water...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... that many vehicles will depend on side impact air bag technology to meet all of the injury criteria of... ``lead to the installation of new technologies, such as side curtain air bags and torso side air bags... is side air bag technology incorporated in the vehicle's roof rail (side air bag curtain), door, and...
Evaluation of advanced air bag deployment algorithm performance using event data recorders.
Gabler, Hampton C; Hinch, John
2008-10-01
This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments.
Evaluation of Advanced Air Bag Deployment Algorithm Performance using Event Data Recorders
Gabler, Hampton C.; Hinch, John
2008-01-01
This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments. PMID:19026234
In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants.
Abdulmajeed, Aous A; Kokkari, Anne K; Käpylä, Jarmo; Massera, Jonathan; Hupa, Leena; Vallittu, Pekka K; Närhi, Timo O
2014-01-01
This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.
An, Ming-Xin; Li, Si; Yao, Han-Bing; Li, Chao; Wang, Jia-Mei; Sun, Jia; Li, Xin-Yu; Meng, Xiao-Na; Wang, Hua-Qin
2017-12-04
Aerobic glycolysis, a phenomenon known historically as the Warburg effect, is one of the hallmarks of cancer cells. In this study, we characterized the role of BAG3 in aerobic glycolysis of pancreatic ductal adenocarcinoma (PDAC) and its molecular mechanisms. Our data show that aberrant expression of BAG3 significantly contributes to the reprogramming of glucose metabolism in PDAC cells. Mechanistically, BAG3 increased Hexokinase 2 (HK2) expression, the first key enzyme involved in glycolysis, at the posttranscriptional level. BAG3 interacted with HK2 mRNA, and the degree of BAG3 expression altered recruitment of the RNA-binding proteins Roquin and IMP3 to the HK2 mRNA. BAG3 knockdown destabilized HK2 mRNA via promotion of Roquin recruitment, whereas BAG3 overexpression stabilized HK2 mRNA via promotion of IMP3 recruitment. Collectively, our results show that BAG3 promotes reprogramming of glucose metabolism via interaction with HK2 mRNA in PDAC cells, suggesting that BAG3 may be a potential target in the aerobic glycolysis pathway for developing novel anticancer agents. © 2017 An et al.
Yan, Jing; Liu, Chuan; Jiang, Jing-Yi; Liu, Hans; Li, Chao; Li, Xin-Yu; Yuan, Ye; Zong, Zhi-Hong; Wang, Hua-Qin
2017-10-01
Bcl-2 associated athanogene 3 (BAG3) contains a modular structure, through which BAG3 interacts with a wide range of proteins, thereby affording its capacity to regulate multifaceted biological processes. BAG3 is often highly expressed and functions as a pro-survival factor in many cancers. However, the oncogenic potential of BAG3 remains not fully understood. The cell cycle regulator, S-phase kinase associated protein 2 (Skp2) is increased in various cancers and plays an important role in tumorigenesis. The current study demonstrated that BAG3 promoted proliferation of ovarian cancer cells via upregulation of Skp2. BAG3 stabilized Skp2 mRNA via its 3'-untranslated region (UTR). The current study demonstrated that BAG3 interacted with Skp2 mRNA. In addition, miR-21-5p suppressed Skp2 expression, which was compromised by forced BAG3 expression. These results indicated that at least some oncogenic functions of BAG3 were mediated through posttranscriptional regulation of Skp2 via antagonizing suppressive action of miR-21-5p in ovarian cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Bao-Qin; Zhang, Song; Li, Si; An, Ming-Xin; Li, Chao; Yan, Jing; Wang, Jia-Mei; Wang, Hua-Qin
2017-01-01
BAG3 is an evolutionarily conserved co-chaperone expressed at high levels and has a prosurvival role in many tumor types. The current study reported that BAG3 was induced under specific floating culture conditions that enrich breast cancer stem cell (BCSC)-like cells in spheres. Ectopic BAG3 overexpression increased CD44+/CD24− CSC subpopulations, first-generation and second-generation mammosphere formation, indicating that BAG3 promotes CSC self-renewal and maintenance in breast cancer. We further demonstrated that mechanically, BAG3 upregulated CXCR4 expression at the post-transcriptional level. Further studies showed that BAG3 interacted with CXCR4 mRNA and promoted its expression via its coding and 3′-untranslational regions. BAG3 was also found to be positively correlated with CXCR4 expression and unfavorable prognosis in patients with breast cancer. Taken together, our data demonstrate that BAG3 promotes BCSC-like phenotype through CXCR4 via interaction with its transcript. Therefore, this study establishes BAG3 as a potential adverse prognostic factor and a therapeutic target of breast cancer. PMID:28703799
Sim, Yvonne Hui Ying; Koh, Alaric C W; Lim, Shing Min; Yew, Sok Yee
2015-10-01
Drug packaging is commonly submitted to the Forensic Chemistry and Physics Laboratory of the Health Sciences Authority, Singapore, for examination. The drugs seized are often packaged in plastic bags. These bags are examined for linkages to provide law enforcement with useful associations between the traffickers and drug abusers. The plastic bags submitted may include snap-lock bags, some with a red band located above the snap-lock closure and some without. Current techniques for examination involve looking at the physical characteristics (dimensions, thickness and polarising patterns) and manufacturing marks of these bags. In cases where manufacturing marks on the main body of the bags are poor or absent, the manufacturing characteristics present on the red band can be examined. A study involving approximately 1000 bags was conducted to better understand the variations in the manufacturing characteristics of the red band. This understanding is crucial in helping to determine associations/eliminations between bags. Two instrumental techniques, namely differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were explored to evaluate the effectiveness of examining the chemical composition to discriminate the bags. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The effect of air bags on pregnancy outcomes in Washington State: 2002-2005.
Schiff, Melissa A; Mack, Christopher D; Kaufman, Robert P; Holt, Victoria L; Grossman, David C
2010-01-01
To estimate whether air-bag deployment is associated with an increased risk of adverse pregnancy outcomes. We performed a retrospective cohort study to assess the effect of air-bag availability and air-bag deployment on the risk of adverse pregnancy outcomes among pregnant, front-seat occupants in motor vehicle crashes in Washington State. Pregnant women involved in motor vehicle crashes were identified by linking birth and fetal death certificate data with Washington State Patrol crash data, which reported air-bag availability and deployment. We calculated relative risks (RRs) of adverse maternal and perinatal outcomes and 95% confidence intervals (CIs) using Poisson regression, adjusted for maternal age, seatbelt use, and vehicle model year. We found no increased risk of adverse maternal or perinatal pregnancy outcomes among occupants of air-bag-equipped vehicles in all collisions (n=2,207) compared with those in vehicles without air bags (n=1,141). Among crashes in which air-bag deployment would be likely, we found a nonsignificant 70% increased risk of preterm labor (RR 1.7, 95% CI 0.9-3.2) and a nonsignificant threefold increased risk (RR 3.1, 95% CI 0.4-22.1) of fetal death among occupants in vehicles with air-bag deployment compared with occupants in vehicles without air bags, although fetal death results were limited by small numbers (2/198 [1.0%] in pregnant women whose air bags deployed; 2/622 [0.3%] in pregnant women whose air bags did not deploy). Our findings provide clinicians with evidence to advise women that air bags do not seem to elevate risk of most potential adverse outcomes during pregnancy. II.
Gentilella, Antonio; Khalili, Kamel
2011-01-01
Disposal of damaged proteins and protein aggregates is a prerequisite for the maintenance of cellular homeostasis and impairment of this disposal can lead to a broad range of pathological conditions, most notably in brain-associated disorders including Parkinson and Alzheimer diseases, and cancer. In this respect, the Protein Quality Control (PQC) pathway plays a central role in the clearance of damaged proteins. The Hsc/Hsp70-co-chaperone BAG3 has been described as a new and critical component of the PQC in several cellular contexts. For example, the expression of BAG3 in the rodent brain correlates with the engagement of protein degradation machineries in response to proteotoxic stress. Nevertheless, little is known about the molecular events assisted by BAG3. Here we show that ectopic expression of BAG3 in glioblastoma cells leads to the activation of an HSF1-driven stress response, as attested by transcriptional activation of BAG3 and Hsp70. BAG3 overexpression determines an accumulation of ubiquitinated proteins and this event requires the N-terminal region, WW domain of BAG3 and the association of BAG3 with Hsp70. The ubiquitination mainly occurs on BAG3-client proteins and the inhibition of proteasomal activity results in a further accumulation of ubiquitinated clients. At the cellular level, overexpression of BAG3 in glioblastoma cell lines, but not in non-glial cells, results in a remarkable decrease in colony formation capacity and this effect is reverted when the binding of BAG3 to Hsp70 is impaired. These observations provide the first evidence for an involvement of BAG3 in the ubiquitination and turnover of its partners. PMID:21233200
Pasillas, Martina P.; Shields, Sarah; Reilly, Rebecca; Strnadel, Jan; Behl, Christian; Park, Robin; Yates, John R.; Klemke, Richard; Gonias, Steven L.; Coppinger, Judith A.
2015-01-01
Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapy-induced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer. PMID:24997994
Reducing single-use plastic shopping bags in the USA.
Wagner, Travis P
2017-12-01
In the USA, local governments have the primary responsibility to manage MSW. However, local governments lack the authority to explicitly shift costs or responsibility back onto the producer for specific problem wastes. A particularly problematic waste for local governments is the single-use plastic bag. In 2014, in the USA, 103.465 billion single-use plastic shopping bags were consumed. Because of their extremely low recyclability rate, plastic bags remain a significant source of land-based litter and marine debris and impair stormwater management systems. They also reduce the effectiveness of automated recycling systems. In response, local governments increasingly have adopted a variety of measures specifically intended to reduce the store-level consumption of single-use shopping bags in 5 major categories: bans, imposition of fees and taxes, establishing minimum product design of bags, requiring consumer education, and mandating retailer take-back programs. As of September 2017, there were 271 local governments in the USA with plastic bag ordinances covering 9.7% of the nation's population. The majority (95%) of the ordinances is a ban on single-use plastic bags; 56.9% of these bans also include a mandatory fee on paper and/or reusable bags. For the fee-based ordinances, the mode is $0.10 per bag; every tax/fee ordinance allows retailers to retain some or all the collected fee. As local governments continue to increase their actions on plastic bags, 11 states have enacted laws to prohibit local governments from regulating single-use plastic bags. Because of the success with single-use bags, local governments are also enacting similar ordinances on single-use expanded polystyrene consumer products and other single-use plastic products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vapor pressure measured with inflatable plastic bag
NASA Technical Reports Server (NTRS)
1965-01-01
Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.
Mikhail, J N; Huelke, D F
1997-10-01
Overwhelming evidence shows that air bags save lives and reduce morbidity associated with MVCs. The resulting benefits far outweigh the risks of air bag injury or death. Emergency nurses play a pivotal role in educating the public about active seat belt use in conjunction with passive restraint systems such as air bags. Air bags cannot be viewed as a single solution or panacea to occupant protection. Air bags are designed as supplemental devices to be used with seat belts and require the active participation of the user for maximum benefit and safety.
Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saburi, Wataru; Hondoh, Hironori, E-mail: hondoh@abs.agr.hokudai.ac.jp; Unno, Hideaki
2007-09-01
Dextran glucosidase from S. mutans was crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution. Dextran glucosidase from Streptococcus mutans is an exo-hydrolase that acts on the nonreducing terminal α-1,6-glucosidic linkage of oligosaccharides and dextran with a high degree of transglucosylation. Based on amino-acid sequence similarity, this enzyme is classified into glycoside hydrolase family 13. Recombinant dextran glucosidase was purified and crystallized by the hanging-drop vapour-diffusion technique using polyethylene glycol 6000 as a precipitant. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 72.72, b = 86.47, cmore » = 104.30 Å. A native data set was collected to 2.2 Å resolution from a single crystal.« less
Stuke, Lance E; Nirula, Raminder; Gentilello, Larry M; Shafi, Shahid
2010-10-01
More than 9,000 vehicle occupants die each year in side-impact vehicle collisions, primarily from head injuries. The authors hypothesized that side-curtain air bags significantly improve head and neck safety in side-impact crash testing. Side-impact crash-test data were obtained from the Insurance Institute for Highway Safety, which ranks occupant protection as good, acceptable, marginal, or poor. Vehicles of the same make and model that underwent side-impact crash testing both with and without side-curtain air bags were compared, as well as the protective effect of these air bags on occupants' risk for head and neck injury. Of all the passenger vehicles, 25 models have undergone side-impact crash testing with and without side-curtain air bags by the Insurance Institute for Highway Safety. Only 3 models without side-curtain air bags (12%) provided good head and neck protection for drivers, while 21 cars with side-curtain air bags (84%) provided good protection (P < .001). For rear passengers, the added protection from side-curtain air bags was less dramatic but significant (84% without vs 100% with side-curtain air bags, P = .04). Side-curtain air bags significantly improve vehicle occupant safety in side-impact crash tests. Installation of these air bags should be federally mandated in all passenger vehicles. Copyright © 2010 Elsevier Inc. All rights reserved.
Efficacy of side air bags in reducing driver deaths in driver-side collisions.
Braver, Elisa R; Kyrychenko, Sergey Y
2004-03-15
Side air bags, a relatively new technology designed to protect the head and/or torso in side-impact collisions, are becoming increasingly common in automobiles. Their efficacy in preventing US driver deaths among cars struck on the near (driver's) side was examined using data from the Fatality Analysis Reporting System and the General Estimates System. Risk ratios for driver death per nearside collision during 1999-2001 were computed for head/torso and torso-only side air bags in cars from model years 1997-2002, relative to cars without side air bags. Confounding was addressed by adjusting nearside risk ratios for front- and rear-impact mortality, which is unaffected by side air bags. Risk ratios were 0.55 (95% confidence interval: 0.43, 0.71) for head/torso air bags and 0.89 (95% confidence interval: 0.79, 1.01) for torso-only air bags. Risk was reduced when cars with head/torso air bags were struck by cars/minivans (significant) or pickup trucks/sport utility vehicles (nonsignificant). Risk was reduced in two-vehicle collisions and among male drivers and drivers aged 16-64 years. Protective effects associated with torso-only air bags were observed in single-vehicle crashes and among male and 16- to 64-year-old drivers. Head/torso side air bags appear to be very effective in reducing nearside driver deaths, whereas torso-only air bags appear less protective.
A role of BAG3 in regulating SNCA/α-synuclein clearance via selective macroautophagy.
Cao, Yu-Lan; Yang, Ya-Ping; Mao, Cheng-Jie; Zhang, Xiao-Qi; Wang, Chen-Tao; Yang, Jing; Lv, Dong-Jun; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng
2017-12-01
Many studies reveal that BAG3 plays a critical role in the regulation of protein degradation via macroautophagy. However, it remains unknown whether BAG3 affects the quality control of α-synuclein (SNCA), a Parkinson's disease-related protein. In this study, we demonstrated the increases of BAG3 expression in the ventral midbrain of SNCA A53T transgenic mice and also in MG132-treated PC12 cells overexpressing wild-type SNCA (SNCA WT -PC12). Moreover, we showed that BAG3 overexpression was sufficient to enhance the autophagy activity while knockdown of Bag3 reduced it in SNCA WT -PC12 cells. Immunoprecipitation revealed that BAG3 interacted with heat shock protein 70 and sequestosome 1. The immunostaining also showed the perinuclear accumulation and colocalization of BAG3 with these 2 proteins, as well as with LC3 dots in tyrosine hydroxylase-positive neurons in the midbrain of SNCA A53T mice. BAG3 overexpression was able to modulate SNCA degradation via macroautophagy which was prevented by Atg5 knockdown. Taken together, these results indicate that BAG3 plays a relevant role in regulating SNCA clearance via macroautophagy, and the heat shock protein 70-BAG3-sequestosome 1 complex may be involved in this process. Copyright © 2017 Elsevier Inc. All rights reserved.
BAG3 protects bovine papillomavirus type 1-transformed equine fibroblasts against pro-death signals.
Cotugno, Roberta; Gallotta, Dario; d'Avenia, Morena; Corteggio, Annunziata; Altamura, Gennaro; Roperto, Franco; Belisario, Maria Antonietta; Borzacchiello, Giuseppe
2013-07-22
In human cancer cells, BAG3 protein is known to sustain cell survival. Here, for the first time, we demonstrate the expression of BAG3 protein both in equine sarcoids in vivo and in EqS04b cells, a sarcoid-derived fully transformed cell line harbouring bovine papilloma virus (BPV)-1 genome. Evidence of a possible involvement of BAG3 in equine sarcoid carcinogenesis was obtained by immunohistochemistry analysis of tumour samples. We found that most tumour samples stained positive for BAG3, even though to a different grade, while normal dermal fibroblasts from healthy horses displayed very weak staining pattern for BAG3 expression. By siRNA technology, we demonstrate in EqS04b the role of BAG3 in counteracting basal as well as chemical-triggered pro-death signals. BAG3 down-modulation was indeed shown to promote cell death and cell cycle arrest in G0/G1. In addition, we found that BAG3 silencing sensitized EqS04b cells to phenethylisothiocyanate (PEITC), a promising cancer chemopreventive/chemotherapeutic agent present in edible cruciferous vegetables. Notably, such a pro-survival role of BAG3 was less marked in E. Derm cells, an equine BPV-negative fibroblast cell line taken as a normal counterpart. Altogether our findings might suggest a mutual cooperation between BAG3 and viral oncoproteins to sustain cell survival.
BAG3 protects Bovine Papillomavirus type 1-transformed equine fibroblasts against pro-death signals
2013-01-01
In human cancer cells, BAG3 protein is known to sustain cell survival. Here, for the first time, we demonstrate the expression of BAG3 protein both in equine sarcoids in vivo and in EqS04b cells, a sarcoid-derived fully transformed cell line harbouring bovine papilloma virus (BPV)-1 genome. Evidence of a possible involvement of BAG3 in equine sarcoid carcinogenesis was obtained by immunohistochemistry analysis of tumour samples. We found that most tumour samples stained positive for BAG3, even though to a different grade, while normal dermal fibroblasts from healthy horses displayed very weak staining pattern for BAG3 expression. By siRNA technology, we demonstrate in EqS04b the role of BAG3 in counteracting basal as well as chemical-triggered pro-death signals. BAG3 down-modulation was indeed shown to promote cell death and cell cycle arrest in G0/G1. In addition, we found that BAG3 silencing sensitized EqS04b cells to phenethylisothiocyanate (PEITC), a promising cancer chemopreventive/chemotherapeutic agent present in edible cruciferous vegetables. Notably, such a pro-survival role of BAG3 was less marked in E. Derm cells, an equine BPV-negative fibroblast cell line taken as a normal counterpart. Altogether our findings might suggest a mutual cooperation between BAG3 and viral oncoproteins to sustain cell survival. PMID:23876161
BAG3 sensitizes cancer cells exposed to DNA damaging agents via direct interaction with GRP78.
Kong, De-Hui; Zhang, Qiang; Meng, Xin; Zong, Zhi-Hong; Li, Chao; Liu, Bao-Qin; Guan, Yifu; Wang, Hua-Qin
2013-12-01
Bcl-2 associated athanogene 3 (BAG3) has a modular structure that contains a BAG domain, a WW domain, a proline-rich (PxxP) domain to mediate potential interactions with chaperons and other proteins that participate in more than one signal transduction. In search for novel interacting partners, the current study identified that 78kDa glucose-regulated protein (GRP78) was a novel partner interacting with BAG3. Interaction between GRP78 and BAG3 was confirmed by coimmunoprecipitation and glutathione S-transferase (GST) pulldown. We also identified that the ATPase domain of GRP78 and BAG domain of BAG3 mediated their interaction. Counterintuitive for a prosurvival protein, BAG3 was found to promote the cytotoxicity of breast cancer MCF7, thyroid cancer FRO and glioma U87 cells subjected to genotoxic stress. In addition, the current study demonstrated that BAG3 interfered with the formation of the antiapoptotic GRP78-procaspase-7 complex, which resulted in an increased genotoxic stress-induced cytotoxicity in cancer cells. Furthermore, overexpression of GRP78 significantly blocked the enhancing effects of BAG3 on activation of caspase-7 and induction of apoptosis by genotoxic stress. Overall, these results suggested that through direct interaction BAG3 could prevent the antiapoptotic effect of GRP78 upon genotoxic stress. © 2013.
Design of Control System for Flexible Packaging Bags Palletizing Production Line Based on PLC
NASA Astrophysics Data System (ADS)
Zheng, Huiping; Chen, Lin; Zhao, Xiaoming; Liu, Zhanyang
Flexible packaging bags palletizing production line is to put the bags in the required area according to particular order and size, in order to finish handling, storage, loading and unloading, transportation and other logistics work of goods. Flexible packaging bags palletizing line is composed of turning bags mechanism, shaping mechanism, indexing mechanism, marshalling mechanism, pushing bags mechanism, pressing bags mechanism, laminating mechanism, elevator, tray warehouse, tray conveyor and loaded tray conveyor. Whether the whole production line can smoothly run depends on each of the above equipment and precision control among them. In this paper the technological process and the control logic of flexible packaging bags palletizing production line is introduced. Palletizing process of the production line realized automation by means of a control system based on programmable logic controller (PLC). It has the advantages of simple structure, reliable and easy maintenance etc.
Fire safety evaluation of aircraft lavatory and cargo compartments
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. B.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.
1976-01-01
A program of experimental fires has been carried out to assess fire containment and other fire hazards in lavatory and cargo compartments of wide-body jet aircraft by evaluation of ignition time, burn-through time, fire spread rate, smoke density, evolution of selected combustible and toxic gases, heat flux, and detector response. Two tests were conducted: one involving a standard Boeing 747 lavatory and one involving a simulated DC-10 cargo compartment. A production lavatory module was furnished with conventional materials and was installed in an enclosure. The ignition load was four polyethylene bags containing paper and plastic waste materials representive of a maximum flight cabin waste load. Standard aircraft ventilation conditions were utilized and the lavatory door was closed during the test. Lavatory wall and ceiling panels contained the fire spread during the 30-minute test. Smoke was driven into the enclosure primarily through the ventilation grille in the door and through the gaps between the bifold door and the jamb where the door distorted from the heat earlier in the test. The interior of the lavatory was almost completely destroyed by the fire.
Effect of packaging material on enological parameters and volatile compounds of dry white wine.
Revi, M; Badeka, A; Kontakos, S; Kontominas, M G
2014-01-01
The enological parameters and volatile compounds of white wine packaged in dark coloured glass and two commercial bag-in-box (BIB) pouches (low density polyethylene - LDPE and ethylene vinyl acetate - EVA lined) were determined for a period of 6 months at 20 °C. Parameters monitored included: titratable acidity, volatile acidity, pH, total SO2, free SO2, colour, volatile compounds and sensory attributes. The BIB packaging materials affected the titratable acidity, total and free SO2 and colour of wine. A substantial portion of the wine aroma compounds was adsorbed by the plastic materials or lost to the environment through leakage of the valve fitment. Between the two plastics, the LDPE lined pouch showed a considerably higher aroma sorption as compared to EVA. Wine packaged in glass retained the largest portion of its aroma compounds. Sensory evaluation showed that white wine packaged in both plastics was of acceptable quality for 3 months vs. at least 6 months for that in glass bottles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thermal valorization of post-consumer film waste in a bubbling bed gasifier.
Martínez-Lera, S; Torrico, J; Pallarés, J; Gil, A
2013-07-01
The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m3 and cold gas efficiencies up to 60%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microbial barrier assessment of Tyvek stopper packaging for rubber closures.
Moldenhauer, J E; Bass, S A; Kupinski, M J; Walters, M L; Rubio, S L
1996-01-01
Two types of Tyvek and high density polyethylene or polypropylene packaging used for sterilization of rubber closures were evaluated for Microbial Barrier properties. The packaging evaluated was "Ready to Sterilize" (1) stoppers and a second test package (Test 2) which was designated as appropriate for a clean room, filled with washed and siliconized stoppers and then heat sealed. Each type of packaging was subjected to three different sterilization temperatures (125 degrees C, 128 degrees C and 131 degrees C) in a production sterilizer (15-18 psi). Following sterilization, a microbial barrier assessment was performed, using Bacillus subtilis niger (ATCC 9372), to determine whether the packaging could maintain a sterile barrier following sterilization. Results of the testing indicated that a microbial barrier was maintained for products in "Ready to Sterilize" packages at 125 degrees C and 128 degrees C. For products sterilized in the Test 2 container a microbial barrier could not be maintained at 128 degrees C, and no further testing was performed. Following sterilization at 131 degrees C physical defects were noted for the "Ready to Sterilize" bag and a microbial barrier could not be maintained.
Fratianni, Florinda; Cefola, Maria; Pace, Bernardo; Cozzolino, Rosaria; De Giulio, Beatrice; Cozzolino, Autilia; d'Acierno, Antonio; Coppola, Raffaele; Logrieco, Antonio Francesco; Nazzaro, Filomena
2017-08-15
Leaves of three different sweet basil (Ocimum basilicum L.) cultivars (Italico a foglia larga, Cammeo, and Italiano classico) packed in macro-perforated polyethylene bags were stored at chilling (4°C) or non-chilling temperature (12°C) for 9days. During storage, visual quality, physiological (respiration rate, ethylene production, ammonium content) and chemical (antioxidant activity, total polyphenols and polyphenol profile) parameters were measured. Detached leaves stored at chilling temperature showed visual symptoms related to chilling injury, while ethylene production and ammonium content resulted associated to cultivar sensibility to damage at low temperature. Storage at 4°C caused a depletion in polyphenols content and antioxidant capability, which was preserved at 12°C. Regarding the polyphenols profile, stressful storage conditions did not enhance the phenolic metabolism. However, leaves stored at 12°C did not loss a significant amount of metabolites respect to fresh leaves, suggesting the possibility to extend the storability after the expiration date, for a possible recovery of bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Commercial liquid bags as a potential source of venous air embolism in shoulder arthroscopy.
Austin, Luke; Zmistowski, Benjamin; Tucker, Bradford; Hetrick, Robin; Curry, Patrick; Williams, Gerald
2010-09-01
Venous air embolism is a rare but potentially fatal complication of arthroscopy. Fatal venous air embolism has been reported with as little as 100 mL of air entering the venous system. During liquid-only arthroscopy, avenues for air introduction into the joint are limited. Therefore, we hypothesized that commercially prepared 3-L saline-solution bags are a source of potentially fatal amounts of gas that can be introduced into the joint by arthroscopic pumps. Eight 3-L arthroscopic saline-solution bags were obtained and visually inspected for air. The air was aspirated from four bags, and the volume of the air was recorded. A closed-system pump was prepared, and two 3-L bags were connected to it. The pump emptied into an inverted graduated cylinder immersed in a water bath. Both bags were allowed to run dry. Two more bags were then connected and also allowed to run dry. The air was quantified by the downward displacement of water. The experiment was then repeated with the four bags after the air had been aspirated from them. This experiment was performed at three institutions, with utilization of three pump systems and two brands of 3-L saline-solution bags. Air was visualized in all bags, and the bags contained between 34 and 85 mL of air. Arthroscopic pumps can pump air efficiently through the tubing. The total volumes of gas ejected from the tubing after the four 3-L bags had been emptied were 75, 80, and 235 mL. When bags from which the air had been evacuated were used, no air exited the system. Because a saline-solution arthroscopic pump is theoretically a closed system, venous air embolism has not been a concern. However, this study shows that it is possible to pump a fatal amount of air from 3-L saline-solution bags into an environment susceptible to the creation of emboli. Evacuation of air from the 3-L bags prior to use may eliminate this risk.
Wong, Anselm; Graudins, Andis
2016-01-01
Adverse reactions to intravenous (IV) acetylcysteine treatment in paracetamol overdose, are common. Previous studies suggest the incidence and severity of non-allergic anaphylactic reactions (NAARs) are influenced by the rate of acetylcysteine infusion. We compared the incidence of adverse drug events of a two-bag IV acetylcysteine regimen with that of the traditional three-bag regimen. This was a retrospective analysis of patients presenting with paracetamol overdose requiring treatment with acetylcysteine to three emergency departments. We prospectively identified all presentations where IV acetylcysteine was administered using a 20 h, two-bag regimen (200 mg/kg over 4 h followed by 100 mg/kg over 16 h) from February 2014 to June 2015. We compared this to an historical cohort treated with the 21 h three-bag IV regimen (150 mg/kg over 1 h, 50 mg/kg over 4 h and 100 mg/kg over 16 h) from October 2009 to October 2013. Medical and nursing notes were searched retrospectively for entries suggesting the presence of an adverse reaction. The primary outcome was incidence of NAARs and gastrointestinal reactions in each group. 389 presentations were treated with the three-bag regimen and 210 presentations received the two-bag regimen. NAARs were recorded more commonly with the three-bag acetylcysteine regimen than the two-bag regimen (10% vs 4.3%, p = 0.02, OR 2.5, 95% CI 1.1-5.8). There was no difference in reports of gastrointestinal reactions between cohorts (three-bag 39% vs two-bag 41%, p = 0.38, OR 1.17 95% CI (0.83-1.65)). The incidence of NAARs was significantly reduced by combining the first two bags of the traditional three-bag regimen and infusing these over 4 h at 50 mg/kg/hr. Simplifying the administration of acetylcysteine may have other benefits such as better utilisation of nursing time and reduced infusion administration errors. A two-bag 20 h acetylcysteine regimen was well tolerated and resulted in significantly fewer and milder NAARs than the standard three-bag regimen.
Wang, Chunxiao; Zhang, Xinyu; Tang, Xiangchen; Liu, Jianping; Congdon, Nathan; Chen, Jingjing; Lin, Zhuoling; Liu, Yizhi
2013-01-01
Pediatric ophthalmologists increasingly recognize that the ideal site for intraocular lens (IOL) implantation is in the bag for aphakic eyes, but it is always very difficult via conventional technique. We conducted a prospective case series study to investigate the success rate and clinical outcomes of capsular bag reestablishment and in-the-bag IOL implantation via secondary capsulorhexis with radiofrequency diathermy (RFD) in pediatric aphakic eyes, in which twenty-two consecutive aphakic pediatric patients (43 aphakic eyes) enrolled in the Childhood Cataract Program of the Chinese Ministry of Health were included. The included children underwent either our novel technique for secondary IOL implantation (with RFD) or the conventional technique (with a bent needle or forceps), depending on the type of preoperative proliferative capsular bag present. In total, secondary capsulorhexis with RFD was successfully applied in 32 eyes (32/43, 74.4%, age 5.6±2.3 years), of which capsular bag reestablishment and in-the-bag IOL implantation were both achieved in 30 eyes (30/43, 70.0%), but in the remaining 2 eyes (2/32, 6.2%) the IOLs were implanted in the sulcus with a capsular bag that was too small. Secondary capsulorhexis with conventional technique was applied in the other 11 eyes (11/43, 25.6%, age 6.9±2.3 years), of which capsular bag reestablishment and in-the-bag IOL implantation were both achieved only in 3 eyes(3/43, 7.0%), and the IOLs were implanted in the sulcus in the remaining 8 eyes. A doughnut-like proliferative capsular bag with an extensive Soemmering ring (32/43, 74.4%) was the main success factor for secondary capsulorhexis with RFD, and a sufficient capsular bag size (33/43, 76.7%) was an additional factor in successful in-the-bag IOL implantation. In conclusion, RFD secondary capsulorhexis technique has 70% success rate in the capsular bag reestablishment and in-the-bag IOL implantation in pediatric aphakic eyes, particularly effective in cases with a doughnut-like, extensively proliferative Soemmering ring. PMID:23638058
NASA Astrophysics Data System (ADS)
Roach, David J.
Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments. Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T g) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components and relative mobilities of the polymer backbone of a suite of. lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content. Each of the main backbone components (PEO spacer and isophthalate groups) exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content on PEO mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, determined from the rate of magnetization transfer from 1H to 13C nuclei, in all ionic samples becomes similar for T [special characters omitted] 1.1 Tg, indicating that the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results compliment previous findings and present an improved picture of the dependence of backbone dynamics on cation type and density in these amorphous PEO-based ionomer systems. 7Li PFG NMR experiments provided measurements of the self-diffusion coefficients for Li+ cations in the PEO600-y Li ionomer series over a range of temperatures. When the Tg values are taken into account, the self-diffusion coefficients of Li+ in each sample follow a similar trendline, indicating that lithium diffusion is independent of ion concentration at any given reduced inverse temperature, Tg/T. Ion aggregation increases Tg and slows both lithium cation diffusion and displacement, but there is no further slowing beyond the Tg effect in the PEO600-y Li ionomers samples. The differences in activation energies obtained from diffusion measurements and relaxation times suggest that at least one additional barrier must be overcome for cations emerge from local hopping motion to macroscopic cation transpfort. Using the Nernst- Einstein equation lithium diffusion coefficients were also calculated from conductivity measurements. The differences between the diffusion measured by the two separate techniques indicate the presence of ion pairs. The activation energy of lithium diffusion was found to be nearly identical between the PFG NMR and conductivity, suggesting that the conductivity and ionic diffusion are related to the same ionic dynamics. As the ion content within the PEO600-y Li samples increases the relative concentration of nonconducting ion pairs decrease. Also an increase in temperature causes a fraction of ion pairs to thermally dissociate into positive triple ions.
Lipid globule size in total nutrient admixtures prepared in three-chamber plastic bags.
Driscoll, David F; Thoma, Andrea; Franke, Rolf; Klütsch, Karsten; Nehne, Jörg; Bistrian, Bruce R
2009-04-01
The stability of injectable lipid emulsions in three-chamber plastic (3CP) bags, applying the globule-size limits established by United States Pharmacopeia ( USP ) chapter 729, was studied. A total of five premixed total nutrient admixture (TNA) products packaged in 3CP bags from two different lipid manufacturers containing either 20% soybean oil or a mixture of soybean oil and medium-chain-triglyceride oil as injectable lipid emulsions were tested. Two low-osmolarity 3CP bags and three high-osmolarity 3CP bags were studied. All products were tested with the addition of trace elements and multivitamins. All additive conditions (with and without electrolytes) were tested in triplicate at time 0 (immediately after mixing) and at 6, 24, 30, and 48 hours after mixing; the bags were stored at 24-26 degrees C. All additives were equally distributed in each bag for comparative testing, applying both globule sizing methods outlined in USP chapter 729. Of the bags tested, all bags from one manufacturer were coarse emulsions, showing signs of significant growth in the large-diameter tail when mixed as a TNA formulation and failing the limits set by method II of USP chapter 729 from the outset and throughout the study, while the bags from the other manufacturer were fine emulsions and met these limits. Of the bags that failed, significant instability was noted in one series containing additional electrolytes. Injectable lipid emulsions provided in 3CP bags that did not meet the globule-size limits of USP chapter 729 produced coarser TNA formulations than emulsions that met the USP limits.
Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian
2012-01-01
Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.
Kim, Yong-Hyun; Kim, Ki-Hyun; Jo, Sang-Hee; Jeon, Eui-Chan; Sohn, Jong Ryeul; Parker, David B
2012-01-27
Whole air sampling using containers such as flexible bags or rigid canisters is commonly used to collect samples of volatile organic compounds (VOC) in air. The objective of this study was to compare the stability of polyester aluminum (PEA) and polyvinyl fluoride (PVF, brand name Tedlar(®)) bags for gaseous VOC sampling. Eight VOC standards (benzene, toluene, p-xylene, styrene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, and isobutyl alcohol) were placed into each bag at storage times of 0, 2, and 3 days prior to analyses by gas chromatography/mass spectrometry (GC/MS). From each bag representing each storage day, samples of 3 different mass loadings were withdrawn and analyzed to derive response factors (RF) of each chemical between the slope of the GC response (y-axis) vs. loaded mass (x-axis). The relative recoveries (RR) of VOC, if derived by dividing RF value of a given storage day by that of 0 day, varied by time, bag type, and VOC type. If the RR values after three days are compared, those of methyl isobutyl ketone were the highest with 96 (PVF) and 99% (PEA); however, the results of isobutyl alcohol were highly contrasting between the two bags with 31 and 94%, respectively. Differences in RR values between the two bag types increased with storage time, such that RR of PEA bags (88±10%) were superior to those of PVF bags (73±22%) after three days, demonstrating that VOC in PEA bags were more stable than in PVF bags. Copyright © 2011 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of Puerto Rico and the U.S. Virgin Islands § 622.456 Bag limits. (a) Applicability. Section 622.11(a... fishing license issued by Puerto Rico or the U.S. Virgin Islands. (b) Bag limit. The bag limit for spiny...
Enamel Surface with Pit and Fissure Sealant Containing 45S5 Bioactive Glass.
Yang, S-Y; Kwon, J-S; Kim, K-N; Kim, K-M
2016-05-01
Enamel demineralization adjacent to pit and fissure sealants leads to the formation of marginal caries, which can necessitate the replacement of existing sealants. Dental materials with bioactive glass, which releases ions that inhibit dental caries, have been studied. The purpose of this study was to evaluate the enamel surface adjacent to sealants containing 45S5 bioactive glass (BAG) under simulated microleakage between the material and the tooth in a cariogenic environment. Sealants containing 45S5BAG filler were prepared as follows: 0% 45S5BAG + 50.0% glass (BAG0 group), 12.5% 45S5BAG + 37.5% glass (BAG12.5 group), 25.0% 45S5BAG + 25.0% glass (BAG25.0 group), 37.5% 45S5BAG + 12.5% glass (BAG37.5 group), and 50.0% 45S5BAG + 0% glass (BAG50.0 group). A cured sealant disk was placed over a flat bovine enamel disk, separated by a 60-µm gap, and immersed in lactic acid solution (pH 4.0) at 37 °C for 15, 30, and 45 d. After the storage period, each enamel disk was separated from the cured sealant disk, and the enamel surface was examined with optical 3-dimensional surface profilometer, microhardness tester, and scanning electron microscopy. The results showed a significant increase in roughness and a decrease in microhardness of the enamel surface as the proportion of 45S5BAG decreased (P< 0.05). In the scanning electron microscopy images, enamel surfaces with BAG50.0 showed a smooth surface, similar to those in the control group with distilled water, even after prolonged acid storage. Additionally, an etched pattern was observed on the surface of the demineralized enamel with a decreasing proportion of 45S5BAG. Increasing the 45S5BAG filler contents of the sealants had a significant impact in preventing the demineralization of the enamel surface within microgaps between the material and the tooth when exposed to a cariogenic environment. Therefore, despite some marginal leakage, these novel sealants may be effective preventive dental materials for inhibiting secondary caries at the margins. © International & American Associations for Dental Research 2016.
Amadou, L; Baoua, I B; Baributsa, D; Williams, S B; Murdock, L L
2016-10-01
We assessed the performance of hermetic triple layer Purdue Improved Crop Storage (PICS) bags for protecting Hibiscus sabdariffa grain against storage insects. The major storage pest in the grain was a bruchid, Spermophagus sp.. When we stored infested H. sabdariffa grain for six months in the woven polypropylene bags typically used by farmers, the Spermophagus population increased 33-fold over that initially present. The mean number of emergence holes per 100 seeds increased from 3.3 holes to 35.4 holes during this time period, while grain held for the same length of time in PICS bags experienced no increase in the numbers of holes. Grain weight loss in the woven control bags was 8.6% while no weight loss was observed in the PICS bags. Seed germination rates of grain held in woven bags for six months dropped significantly while germination of grain held in PICS bags did not change from the initial value. PICS bags can be used to safely store Hibiscus grain after harvest to protect against a major insect pest.
Cordyceps sinensis attenuates renal fibrosis and suppresses BAG3 induction in obstructed rat kidney.
Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Zong, Zhi-Hong; Du, Zhen-Xian; Li, De-Tian; Wang, Hua-Qin; Liu, Bo; Miao, Jia-Ning; Bian, Xiao-Hui
2015-01-01
BAG3 regulates a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, and epithelial-mesenchymal transition (EMT). However, the role of BAG3 in renal tubular EMT and renal interstitial fibrosis remains elusive. This study aimed to examine the dynamic expression of BAG3 during renal fibrosis, and to investigate the efficacy of Cordyceps sinensis (C. sinensis) on renal fibrosis. A rat model of unilateral ureteral obstruction (UUO) was established, and the expression of BAG3 and α-SMA, and the efficacy of C. sinensis on renal fibrosis induced by UUO were examined. The results showed that UUO led to collagen accumulation, which was significantly suppressed by C. sinensis. UUO increased the expression of BAG3 and α-SMA, a mesenchymal marker, while UUO induced BAG3 and α-SMA expression was significantly inhibited by C. sinensis. In addition, immunohistochemical staining demonstrated that BAG3 immunoreactivity was restricted to tubular epithelium. In conclusion, BAG3 is a potential target for the prevention and/or treatment of renal fibrosis, and C. Sinensis is a promising agent for renal fibrosis.
Sköldenberg, Olof; Rysinska, Agata; Chammout, Ghazi; Salemyr, Mats; Muren, Olle; Bodén, Henrik; Eisler, Thomas
2016-07-07
In vitro, Vitamin-E-diffused, highly cross-linked polyethylene (PE) has been shown to have superior wear resistance and improved mechanical properties when compared to those of standard highly cross-linked PE liners used in total hip arthroplasty (THA). The aim of the study is to evaluate the safety of a new cemented acetabular cup with Vitamin-E-doped PE regarding migration, head penetration and clinical results. In this single-centre, double-blinded, randomised controlled trial, we will include 50 patients with primary hip osteoarthritis scheduled for THA and randomise them in a 1:1 ratio to a cemented cup with either argon gas-sterilised PE (control group) or Vitamin-E-diffused PE (vitamin-e group). All patients and the assessor of the primary outcome will be blinded and the same uncemented stem will be used for all participants. The primary end point will be proximal migration of the cup at 2 years after surgery measured with radiostereometry. Secondary end points include proximal migration at other follow-ups, total migration, femoral head penetration, clinical outcome scores and hip-related complications. Patients will be followed up at 3 months and at 1, 2, 5 and 10 years postoperatively. Results will be analysed using 95% CIs for the effect size. A regression model will also be used to adjust for stratification factors. The ethical committee at Karolinska Institutet has approved the study. The first results from the study will be disseminated to the medical community via presentations and publications in relevant medical journals when the last patient included has been followed up for 2 years. NCT02254980. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Sköldenberg, Olof; Rysinska, Agata; Chammout, Ghazi; Salemyr, Mats; Muren, Olle; Bodén, Henrik; Eisler, Thomas
2016-01-01
Introduction In vitro, Vitamin-E-diffused, highly cross-linked polyethylene (PE) has been shown to have superior wear resistance and improved mechanical properties when compared to those of standard highly cross-linked PE liners used in total hip arthroplasty (THA). The aim of the study is to evaluate the safety of a new cemented acetabular cup with Vitamin-E-doped PE regarding migration, head penetration and clinical results. Methods and analysis In this single-centre, double-blinded, randomised controlled trial, we will include 50 patients with primary hip osteoarthritis scheduled for THA and randomise them in a 1:1 ratio to a cemented cup with either argon gas-sterilised PE (control group) or Vitamin-E-diffused PE (vitamin-e group). All patients and the assessor of the primary outcome will be blinded and the same uncemented stem will be used for all participants. The primary end point will be proximal migration of the cup at 2 years after surgery measured with radiostereometry. Secondary end points include proximal migration at other follow-ups, total migration, femoral head penetration, clinical outcome scores and hip-related complications. Patients will be followed up at 3 months and at 1, 2, 5 and 10 years postoperatively. Results Results will be analysed using 95% CIs for the effect size. A regression model will also be used to adjust for stratification factors. Ethics and dissemination The ethical committee at Karolinska Institutet has approved the study. The first results from the study will be disseminated to the medical community via presentations and publications in relevant medical journals when the last patient included has been followed up for 2 years. Trial registration number NCT02254980. PMID:27388352
Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications.
Meier, Raphael P H; Montanari, Elisa; Morel, Philippe; Pimenta, Joël; Schuurman, Henk-Jan; Wandrey, Christine; Gerber-Lemaire, Sandrine; Mahou, Redouan; Bühler, Leo H
2017-01-01
Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.
NASA Technical Reports Server (NTRS)
Cannon, Reuben; Henninger, Scott; Levandoski, Mark; Perkins, Jim; Pitchon, Jack; Swats, Robin; Wessels, Roger
1990-01-01
A design of a lunar regolith bag and bagging system is described. The bags of regolith are to be used for construction applications on the lunar surface. The machine is designed to be used in conjunction with the lunar SKITTER currently under development. The bags for this system are 1 cu ft volume and are made from a fiberglass composite weave. The machinery is constructed mostly from a boron/aluminum composite. The machine can fill 120 bags per hour and work for 8 hours a day. The man hours to machine hours ratio to operate the machine is .5/8.
A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress
Judge, Luke M.; Perez-Bermejo, Juan A.; Truong, Annie; Ribeiro, Alexandre J.S.; Yoo, Jennie C.; Jensen, Christina L.; Mandegar, Mohammad A.; Huebsch, Nathaniel; Kaake, Robyn M.; So, Po-Lin; Srivastava, Deepak; Krogan, Nevan J.
2017-01-01
Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity. PMID:28724793
Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes
Tahrir, Farzaneh G.; Knezevic, Tijana; Gupta, Manish K.; Gordon, Jennifer; Cheung, Joseph Y.; Feldman, Arthur M.; Khalili, Kamel
2017-01-01
Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates expression of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. PMID:27381181
A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.
Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R
2017-07-20
Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.
Two cases of death due to plastic bag suffocation.
Nadesan, K; Beng, O B
2001-01-01
Deaths due to plastic bag suffocation or plastic bag asphyxia are not reported in Malaysia. In the West many suicides by plastic bag asphyxia, particularly in the elderly and those who are chronically and terminally ill, have been reported. Accidental deaths too are not uncommon in the West, both among small children who play with shopping bags and adolescents who are solvent abusers. Another well-known but not so common form of accidental death from plastic bag asphyxia is sexual asphyxia, which is mostly seen among adult males. Homicide by plastic bag asphyxia too is reported in the West and the victims are invariably infants or adults who are frail or terminally ill and who cannot struggle. Two deaths due to plastic bag asphyxia are presented. Both the autopsies were performed at the University Hospital Mortuary, Kuala Lumpur. Both victims were 50-year old married Chinese males. One death was diagnosed as suicide and the other as sexual asphyxia. Sexual asphyxia is generally believed to be a problem associated exclusively with the West. Specific autopsy findings are often absent in deaths due to plastic bag asphyxia and therefore such deaths could be missed when some interested parties have altered the scene and most importantly have removed the plastic bag. A visit to the scene of death is invariably useful.
[Impact of storage conditions and time on herb of Lonicera macranthoides].
Ma, Peng; Li, Long-Yun; Zhang, Ying
2014-03-01
To study the effect of different storage conditions and storage time on herb quality of Lonicera macranthoides, different packaging materials including vacuum plastic bags, plastic bags, woven bags, sealed with endometrial bags, paper bags, sack bags were selected for the study under different storage conditions including room temperature, 5 degrees C refrigerator, low temperature of - 20 degrees C refrigerator and desiccator. Twenty-four batches of samples were used for the study, and active ingredients were determined. The experimental results showed that the ingredients in each storage group changed with the storage time, storage conditions (storage environment, packaging). Under the same storage time, the storage environment (temperature, humidity) had effect on the stability of herb quality. Low temperature had less effect on herb quality. The effect of packaging on herb quality was as following: plastic vacuum packaging > woven with endometrial sealed packaging > plastic bag > woven bag > sack bags > paper bags. Under the same storage conditions, with the increase of storage time, caffeic acid content increased slowly, and other five ingredients content decreased gradually. Storage time affected significantly on the intrinsic quality (chemical composition) and appearance of herb. It is suggested that low temperature (5 degrees C), dark and sealed storage are suitable for storage of L. macranthoides herb, the storage time should be not more than 24 months.
Olson, Carin M; Cummings, Peter; Rivara, Frederick P
2006-07-15
First-generation air bags entail a decreased risk of death for most front seat occupants in car crashes but an increased risk for children. Second-generation air bags were developed to reduce the risks for children, despite the possibility of decreasing protection for others. Using a matched cohort design, the authors estimated risk ratios for death for use of each generation of air bag versus no air bag, adjusted for seat position, restraint use, sex, age, and all vehicle and crash characteristics, among 128,208 automobile occupants involved in fatal crashes on US roadways during 1990-2002. The authors then compared adjusted risk ratios (aRRs) between the two generations of air bags. Among front seat occupants, the aRR for death with a first-generation air bag was 0.90 (95% confidence interval (CI): 0.86, 0.94); the aRR with a second-generation air bag was 0.89 (95% CI: 0.79, 1.00) (p = 0.83 for comparison of aRRs). Among children under age 6 years, the aRR with a first-generation air bag was 1.66 (95% CI: 1.20, 2.30), while the aRR with a second-generation air bag was 1.10 (95% CI: 0.63, 1.93) (p = 0.20 for comparison of aRRs). The differences in aRRs between first- and second-generation air bags among other subgroups were small and not statistically significant.
The field performance of frontal air bags: a review of the literature.
Kent, Richard; Viano, David C; Crandall, Jeff
2005-03-01
This article presents a broad review of the literature on frontal air bag field performance, starting with the initial government and industry projections of effectiveness and concluding with the most recent assessments of depowered systems. This review includes as many relevant metrics as practicable, interprets the findings, and provides references so the interested reader can further evaluate the limitations, confounders, and utility of each metric. The evaluations presented here range from the very specific (individual case studies) to the general (statistical analyses of large databases). The metrics used to evaluate air bag performance include fatality reduction or increase; serious, moderate, and minor injury reduction or increase; harm reduction or increase; and cost analyses, including insurance costs and the cost of life years saved for various air bag systems and design philosophies. The review begins with the benefits of air bags. Fatality and injury reductions attributable to the air bag are presented. Next, the negative consequences of air bag deployment are described. Injuries to adults and children and the current trends in air bag injury rates are discussed, as are the few documented instances of inadvertent deployments or non-deployment in severe crashes. In the third section, an attempt is made to quantify the influence of the many confounding factors that affect air bag performance. The negative and positive characteristics of air bags are then put into perspective within the context of societal costs and benefits. Finally, some special topics, including risk homeostasis and the performance of face bags, are discussed.
Braver, Elisa R; Kufera, Joseph A; Alexander, Melvin T; Scerbo, Marge; Volpini, Karen; Lloyd, Joseph P
2008-03-01
US air bag regulations were changed in 1997 to allow tests of unbelted male dummies in vehicles mounted and accelerated on sleds, resulting in longer crash pulses than rigid-barrier crashes. This change facilitated depowering of frontal air bags and was intended to reduce air bag-induced deaths. Controversy ensued as to whether sled-certified air bags could increase adult fatality risk. A matched-pair cohort study of two-vehicle, head-on, fatal collisions between drivers involving first-generation versus sled-certified air bags during 1998-2005 was conducted by using Fatality Analysis Reporting System data. Sled certification was ascertained from public information and a survey of automakers. Conditional Poisson regression for matched-pair cohorts was used to estimate risk ratios adjusted for age, seat belt status, vehicle type, passenger car size, and model year for driver deaths in vehicles with sled-certified air bags versus first-generation air bags. For all passenger-vehicle pairs, the adjusted risk ratio was 0.87 (95% confidence interval: 0.77, 0.98). In head-on collisions involving only passenger cars, the adjusted risk ratio was 1.04 (95% confidence interval: 0.85, 1.29). Increased fatality risk for drivers with sled-certified air bags was not observed. A borderline significant interaction between vehicle type and air bag generation suggested that sled-certified air bags may have reduced the risk of dying in head-on collisions among drivers of pickup trucks.
Kenney, Kristin S; Fanciullo, Lisa M
2005-07-01
Although air bags are placed in automobiles to act as safety devices, they have been shown to carry a risk of injury themselves. Ocular injury, in particular, can often be a direct consequence of air bag deployment. A case of ocular air bag injury is presented. A discussion and review of the current literature on this issue follows. A 63-year-old man was transferred to our clinic after sustaining injuries related to a motor vehicle accident, during which the automobile's air bag was deployed. Initial examination revealed many signs of blunt ocular trauma of the O.D., including iridodialysis, dislocated lens with traumatic cataract, and traumatic/inflammatory glaucoma. Initial B-scan showed an attached retina O.D. One month later, the patient underwent an attempted pars plana vitrectomy with lensectomy, iris repair, and insertion of an anterior chamber intraocular lens. Complications arose during the procedure, and a total retinal detachment developed. Resultant acuity is no light perception O.D. Although ocular morbidity can be a direct consequence of air bag deployment, most eye injuries are minimal, and seem to be outweighed by the benefits of air bags. Drivers, as well as passengers, can minimize associated injuries by adhering to specific safety guidelines. This, as well as continual modification and improvement in air bag design, will maximize the safety of air bags and decrease the incidence of vision-threatening ocular injury caused by air bag deployment.
Li, N; Du, Z-X; Zong, Z-H; Liu, B-Q; Li, C; Zhang, Q; Wang, H-Q
2013-09-19
Protein kinase C delta (PKCδ) is a serine (Ser)/threonine kinase, which regulates numerous cellular processes, including proliferation, differentiation, migration and apoptosis. In the current study, Chinese hamster ovary cells were transfected with either a constitutively activated PKCδ or a dominant negative PKCδ, phosphoprotein enrichment, two-dimensional difference gel electrophoresis and mass spectrometry was combined to globally identified candidates of PKCδ cascade. We found that Bcl-2 associated athanogene 3 (BAG3) was one of the targets of PKCδ cascade, and BAG3 interacted with PKCδ in vivo. In addition, we clarified that BAG3 was phosphorylate at Ser187 site in a PKCδ-dependent manner in vivo. BAG3 has been implicated in multiple cellular functions, including proliferation, differentiation, apoptosis, migration, invasion, macroautophagy and so on. We generated wild-type (WT)-, Ser187Ala (S187A)- or Ser187Asp (S187D)-BAG3 stably expressing FRO cells, and noticed that phosphorylation state of BAG3 influenced FRO morphology. Finally, for the first time, we showed that BAG3 was implicated in epithelial-mesenchymal transition (EMT) procedure, and phosphorylation state at Ser187 site had a critical role in EMT regulation by BAG3. Collectively, the current study indicates that BAG3 is a novel substrate of PKCδ, and PKCδ-mediated phosphorylation of BAG3 is implicated in EMT and invasiveness of thyroid cancer cells.
Morelli, Federica F; Mediani, Laura; Heldens, Lonneke; Bertacchini, Jessika; Bigi, Ilaria; Carrà, Arianna Dorotea; Vinet, Jonathan; Carra, Serena
2017-07-01
The ten mammalian small heat shock proteins (sHSPs/HSPBs) show a different expression profile, although the majority of them are abundant in skeletal and cardiac muscles. HSPBs form hetero-oligomers and homo-oligomers by interacting together and complexes containing, e.g., HSPB2/HSPB3 or HSPB1/HSPB5 have been documented in mammalian cells and muscles. Moreover, HSPB8 associates with the Hsc70/Hsp70 co-chaperone BAG3, in mammalian, skeletal, and cardiac muscle cells. Interaction of HSPB8 with BAG3 regulates its stability and function. Weak association of HSPB5 and HSPB6 with BAG3 has been also reported upon overexpression in cells, supporting the idea that BAG3 might indirectly modulate the function of several HSPBs. However, it is yet unknown whether other HSPBs highly expressed in muscles such as HSPB2 and HSPB3 also bind to BAG3. Here, we report that in mammalian cells, upon overexpression, HSPB2 binds to BAG3 with an affinity weaker than HSPB8. HSPB2 competes with HSPB8 for binding to BAG3. In contrast, HSPB3 negatively regulates HSPB2 association with BAG3. In human myoblasts that express HSPB2, HSPB3, HSPB8, and BAG3, the latter interacts selectively with HSPB8. Combining these data, it supports the interpretation that HSPB8-BAG3 is the preferred interaction.
The prosurvival protein BAG3: a new participant in vascular homeostasis.
Carrizzo, Albino; Damato, Antonio; Ambrosio, Mariateresa; Falco, Antonia; Rosati, Alessandra; Capunzo, Mario; Madonna, Michele; Turco, Maria C; Januzzi, James L; De Laurenzi, Vincenzo; Vecchione, Carmine
2016-10-20
Bcl2-associated athanogene 3 (BAG3), is constitutively expressed in a few normal cell types, including myocytes, peripheral nerves and in the brain, and is also expressed in certain tumors. To date, the main studies about the role of BAG3 are focused on its pro-survival effect in tumors through various mechanisms that vary according to cellular type. Recently, elevated concentrations of a soluble form of BAG3 were described in patients affected by advanced stage of heart failure (HF), identifying BAG3 as a potentially useful biomarker in monitoring HF progression. Despite the finding of high levels of BAG3 in the sera of HF patients, there are no data on its possible role on the modulation of vascular tone and blood pressure levels. The aim of this study was to investigate the possible hemodynamic effects of BAG3 performing both in vitro and in vivo experiments. Through vascular reactivity studies, we demonstrate that BAG3 is capable of evoking dose-dependent vasorelaxation. Of note, BAG3 exerts its vasorelaxant effect on resistance vessels, typically involved in the blood pressure regulation. Our data further show that the molecular mechanism through which BAG3 exerts this effect is the activation of the PI3K/Akt signalling pathway leading to nitric oxide release by endothelial cells. Finally, we show that in vivo BAG3 administration is capable of regulating blood pressure and that this is dependent on eNOS regulation since this ability is lost in eNOS KO animals.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... Communication Requirements for the Safe Transportation of Air Bag Inflators, Air Bag Modules, and Seat-Belt... Regulations applicable to air bag inflators, air bag modules, and seat-belt pretensioners. The proposed... classified as a [[Page 17395
NASA Astrophysics Data System (ADS)
Slobodzinsky, A.
Features, materials, and techniques of vacuum, pressure, and autoclave FRP bag molding processes are described. The bags are used in sealed environments, inflated to flexibly force a curing FRP laminate to conform to a stiff mold form which defines the shape of the finished product. Densification is achieved as the bag presses out the voids and excess resin from the laminate, and consolidation occurs as the plies and adherends are bonded by the bag pressure. Curing techniques nominally involved room temperature or high temperature, and investigations of alternative techniques, such as induction, dielectric, microwave, xenon flash, UV, electron beam, and gamma radiation heating are proceeding. Polysulfone is the most common thermoplastic. Details are given of mold preparations, peel plies or release films and fabrics, bagging techniques, and reusable venting blankets and silicone rubber bags.
Advanced Air Bag Technology Assessment
NASA Technical Reports Server (NTRS)
Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.
1998-01-01
As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the proximity of the occupants to the airbag module; (5) the deployment time, which includes the time to sense the need for deployment, the inflator response parameters, the air bag response, and the reliability of the air bag. The requirements for an advanced air bag technology is discussed. These requirements includes that the system use information related to: (1) the crash severity; (2) the status of belt usage; (3) the occupant category; and (4) the proximity to the air bag to adjust air bag deployment. The parameters for the response of the air bag are: (1) deployment time; (2) inflator parameters; and (3) air bag response and reliability. The state of occupant protection advanced technology is reviewed. This review includes: the current safety restraint systems, and advanced technology characteristics. These characteristics are summarized in a table, which has information regarding the technology item, the potential, and an date of expected utilization. The use of technology and expertise at NASA centers is discussed. NASA expertise relating to sensors, computing, simulation, propellants, propulsion, inflatable systems, systems analysis and engineering is considered most useful. Specific NASA technology developments, which were included in the study are: (1) a capacitive detector; (2) stereoscopic vision system; (3) improved crash sensors; (4) the use of the acoustic signature of the crash to determine crash severity; and (5) the use of radar antenna for pre-crash sensing. Information relating to injury risk assessment is included, as is a summary of the areas of the technology which requires further development.
Comparison of bacterial attachment to platelet bags with and without preconditioning with plasma.
Loza-Correa, M; Kalab, M; Yi, Q-L; Eltringham-Smith, L J; Sheffield, W P; Ramirez-Arcos, S
2017-07-01
Canadian Blood Services produces apheresis and buffy coat pooled platelet concentrates (PCs) stored in bags produced by two different manufacturers (A and B, respectively), both made of polyvinyl chloride-butyryl trihexyl citrate. This study was aimed at comparing Staphylococcus epidermidis adhesion to the inner surface of both bag types in the presence or absence of plasma factors. Sets (N = 2-6) of bags type A and B were left non-coated (control) or preconditioned with platelet-rich, platelet-poor or defibrinated plasma (PRP, PPP and DefibPPP, respectively). Each bag was inoculated with a 200-ml S. epidermidis culture adjusted to 0·5 colony-forming units/ml. Bags were incubated under platelet storage conditions for 7 days. After culture removal, bacteria attached to the plastic surface were either dislodged by sonication for bacterial quantification or examined in situ by scanning electron microscopy (SEM). Higher bacterial adhesion was observed to preconditioned PC bags than control containers for both bag types (P < 0·0001). Bacterial attachment to preconditioned bags was confirmed by SEM. Bacteria adhered equally to both types of containers in the presence of PRP, PPP and DefibPPP residues (P > 0·05). By contrast, a significant increase in bacterial adherence was observed to type A bags compared with type B bags in the absence of plasma (P < 0·05) [Correction added on 16 June 2017, after first online publication: this sentence has been corrected]. The ability of S. epidermidis to adhere to preconditioned platelet collection bags depends on the presence of plasma factors. Future efforts should be focused on reducing plasma proteins' attachment to platelet storage containers to decrease subsequent bacterial adhesion. © 2017 International Society of Blood Transfusion.
Wood, Joseph; Mahajan, Ekta; Shiratori, Masaru
2013-01-01
The use of disposable bags for cell culture media storage has grown significantly in the past decade. Some of the key advantages of using disposable bags relative to non-disposable containers include increased product throughput, decreased cleaning validation costs, reduced risk of cross contamination and lower facility costs. As the scope of use of disposable bags for cell culture applications increases, problematic bags and scenarios should be identified and addressed to continue improving disposables technologies and meet the biotech industry's needs. In this article, we examine a cell culture application wherein media stored in disposable bags is warmed at 37°C before use for cell culture operations. A problematic bag film was identified through a prospective and retrospective cell culture investigation. The investigation provided information on the scope and variation of the issue with respect to different Chinese hamster ovary (CHO) cell lines, cell culture media, and application-specific parameters. It also led to the development of application-specific test methods and enabled a strategy for disposable bag film testing. The strategy was implemented for qualifying an alternative bag film for use in our processes. In this test strategy, multiple lots of 13 bag film types, encompassing eight vendors were evaluated using a three round, cell culture-based test strategy. The test strategy resulted in the determination of four viable bag film options based on the technical data. The results of this evaluation were used to conclude that a volatile or air-quenched compound, likely generated by gamma irradiation of the problematic bag film, negatively impacted cell culture performance. © 2013 American Institute of Chemical Engineers.
Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.
2015-01-01
Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles exhibited bactericidal activity at 100% concentration. Conclusion: Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only. PMID:25992336
Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H P
2015-01-01
The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. All vehicles exhibited bactericidal activity at 100% concentration. Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only.
Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations
Khvostenko, D.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.
2015-01-01
Objectives Bioactive glass (BAG) is known to possess antimicrobial and remineralizing properties; however, the use of BAG as a filler for resin based composite restorations to slow recurrent caries has not been studied. Accordingly, the objective of this study was to investigate the effect of 15 wt% BAG additions to a resin composite on bacterial biofilms penetrating into marginal gaps of simulated tooth fillings in vitro during cyclic mechanical loading. Methods Human molars were machined into approximately 3 mm thick disks of dentin and 1.5–2 mm deep composite restorations were placed. A narrow 15–20 micrometer wide dentin-composite gap was allowed to form along half of the margin by not applying dental adhesive to that region. Two different 72 wt% filled composites were used, one with 15 wt% BAG filler (15BAG) and the balance silanated strontium glass and one filled with OX-50 and silanated strontium glass without BAG (0BAG – control). Samples of both groups had Streptococcus mutans biofilms grown on the surface and were tested inside a bioreactor for two weeks while subjected to periods of cyclic mechanical loading. After post-test biofilm viability was confirmed, each specimen was fixed in glutaraldehyde, gram positive stained, mounted in resin and cross-sectioned to reveal the gap profile. Depth of biofilm penetration for 0BAG and 15BAG was quantified as the fraction of gap depth. The data were compared using a Student’s t-test. Results The average depth of bacterial penetration into the marginal gap for the 15BAG samples was significantly smaller (~61%) in comparison to 0BAG, where 100% penetration was observed for all samples with the biofilm penetrating underneath of the restoration in some cases. Significance BAG containing resin dental composites reduce biofilm penetration into marginal gaps of simulated tooth restorations. This suggests BAG containing composites may have the potential to slow the development and propagation of secondary tooth decay at restoration margins. PMID:26621028
Milly, Hussam; Festy, Frederic; Andiappan, Manoharan; Watson, Timothy F; Thompson, Ian; Banerjee, Avijit
2015-05-01
To evaluate the effect of pre-conditioning enamel white spot lesion (WSL) surfaces using bioactive glass (BAG) air-abrasion prior to remineralization therapy. Ninety human enamel samples with artificial WSLs were assigned to three WSL surface pre-conditioning groups (n=30): (a) air-abrasion with BAG-polyacrylic acid (PAA-BAG) powder, (b) acid-etching using 37% phosphoric acid gel (positive control) and (c) unconditioned (negative control). Each group was further divided into three subgroups according to the following remineralization therapy (n=10): (I) BAG paste (36 wt.% BAG), (II) BAG slurry (100 wt.% BAG) and (III) de-ionized water (negative control). The average surface roughness and the lesion step height compared to intra-specimen sound enamel reference points were analyzed using non-contact profilometry. Optical changes within the lesion subsurface compared to baseline scans were assessed using optical coherence tomography (OCT). Knoop microhardness evaluated the WSLs' mechanical properties. Raman micro-spectroscopy measured the v-(CO3)(2-)/v1-(PO4)(3-) ratio. Structural changes in the lesion were observed using confocal laser scanning microscopy (CLSM) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). All comparisons were considered statistically significant if p<0.05. PAA-BAG air-abrasion removed 5.1 ± 0.6 μm from the lesion surface, increasing the WSL surface roughness. Pre-conditioning WSL surfaces with PAA-BAG air-abrasion reduced subsurface light scattering, increased the Knoop microhardness and the mineral content of the remineralized lesions (p<0.05). SEM-EDX revealed mineral depositions covering the lesion surface. BAG slurry resulted in a superior remineralization outcome, when compared to BAG paste. Pre-conditioning WSL surfaces with PAA-BAG air-abrasion modified the lesion surface physically and enhanced remineralization using BAG 45S5 therapy. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Knezevic, Tijana; Myers, Valerie D.; Su, Feifei; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Gao, Erhe; Gao, Guofeng; Muniswamy, Madesh; Gupta, Manish K.; Gordon, Jennifer; Weiner, Kristen N.; Rabinowitz, Joseph; Ramsey, Frederick V.; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.; Feldman, Arthur M.
2016-01-01
Objectives The present study was undertaken to test the hypothesis that gene delivery of BCL2-Associated Athanogene 3 (BAG3) to the heart of mice with left ventricular dysfunction secondary to a myocardial infarction could enhance cardiac performance. Background BAG3 is a 575 amino acid protein that has pleotropic functions in the cell including pro-autophagy and anti-apoptosis. Mutations in BAG3 have been associated with both skeletal muscle dysfunction and familial dilated cardiomyopathy and BAG3 levels are diminished in non-familial heart failure. Methods Eight-week-old C57/BL6 mice underwent ligation of the left coronary artery (MI) or sham surgery (Sham). Eight weeks later, mice in both groups were randomly assigned to receive either a retro-orbital injection of rAAV9-BAG3 (MI-BAG3 or Sham-BAG3) or rAAV9-GFP (MI-GFP or Sham GFP). Mice were sacrificed at 3 weeks post-injection and myocytes were isolated from the left ventricle. Results MI-BAG3 mice demonstrated a significantly (p < 0.0001) higher left ventricular ejection fraction (LVEF) 9 days after rAAV9-BAG3 injection with further improvement in LVEF, fractional shortening and stroke volume at 3 weeks post-injection without changes in LV mass or LV volume. Injection of rAAV9-BAG3 had no effect on LVEF in Sham mice. The salutary benefits of rAAV9-BAG3 were also observed in myocytes isolated from MI hearts including improved cell shortening (p<0.05), increased systolic [Ca2+]i, increased [Ca2+]i transient amplitudes and increased maximal ICa amplitude. Implications The results suggest that BAG3 gene therapy may provide a novel therapeutic option for the treatment of heart failure. PMID:28164169
BAG3 promotes the phenotypic transformation of primary rat vascular smooth muscle cells via TRAIL.
Fu, Yao; Chang, Ye; Chen, Shuang; Li, Yuan; Chen, Yintao; Sun, Guozhe; Yu, Shasha; Ye, Ning; Li, Chao; Sun, Yingxian
2018-05-01
Under normal physiological condition, the mature vascular smooth muscle cells (VSMCs) show differentiated phenotype. In response to various environmental stimuluses, VSMCs convert from the differentiated phenotype to dedifferentiated phenotype characterized by the increased ability of proliferation/migration and the reduction of contractile ability. The phenotypic transformation of VSMCs played an important role in atherosclerosis. Both Bcl-2-associated athanogene 3 (BAG3) and tumor necrosis factor-related apopt-osis inducing ligand (TRAIL) involved in apoptosis. The relationship between BAG3 and TRAIL and their effects the proliferation and migration in VSMCs are rarely reported. This study investigated the effects of BAG3 on the phenotypic modulation and the potential underlying mechanisms in primary rat VSMCs. Primary rat VSMCs were extracted and cultured in vitro. Cell proliferation was detected by cell counting, real-time cell analyzer (RTCA) and EdU incorporation. Cell migration was detected by wound healing, Transwell and RTCA. BAG3 and TRAIL were detected using real-time PCR and western blotting and the secreted proteins in the cultured media by dot blot. The expression of BAG3 increased with continued passages in cultured primary VSMCs. BAG3 promoted the proliferation and migration of primary rat VSMC in a time-dependent manner. BAG3 significantly increased the expression of TRAIL while had no effects on its receptors. TRAIL knockdown or blocking by neutralizing antibody inhibited the proliferation of VSMCs induced by BAG3. TRAIL knockdown exerted no obvious influence on the migration of VSMCs. Based on this study, we report for the first time that BAG3 was expressed in cultured primary rat VSMCs and the expression of BAG3 increased with continued passages. Furthermore, BAG3 promoted the proliferation of VSMCs via increasing the expression of TRAIL. In addition, we also demonstrated that BAG3 promoted the migration of VSMCs independent of TRAIL upregulation.
Guilbert, Solenn M; Lambert, Herman; Rodrigue, Marc-Antoine; Fuchs, Margit; Landry, Jacques; Lavoie, Josée N
2018-02-05
BCL2-associated athanogene (BAG)-3 is viewed as a platform that would physically and functionally link distinct classes of molecular chaperones of the heat shock protein (HSP) family for the stabilization and clearance of damaged proteins. In this study, we show that HSPB8, a member of the small heat shock protein subfamily, cooperates with BAG3 to coordinate the sequestration of harmful proteins and the cellular adaptive response upon proteasome inhibition. Silencing of HSPB8, like depletion of BAG3, inhibited targeting of ubiquitinated proteins to the juxtanuclear aggresome, a mammalian system of spatial quality control. However, aggresome targeting was restored in BAG3-depleted cells by a mutant BAG3 defective in HSPB8 binding, uncoupling HSPB8 function from its binding to BAG3. Depletion of HSPB8 impaired formation of ubiquitinated microaggregates in an early phase and interfered with accurate modifications of the stress sensor p62/sequestosome (SQSTM)-1. This impairment correlated with decreased coupling of BAG3 to p62/SQSTM1 in response to stress, hindering Kelch-like ECH-associated protein (KEAP)-1 sequestration and stabilization of nuclear factor E2-related factor (Nrf)-2, an important arm of the antioxidant defense. Notably, the myopathy-associated mutation of BAG3 (P209L), which lies within the HSPB8-binding motif, deregulated the association between BAG3 and p62/SQSTM1 and the KEAP1-Nrf2 signaling axis. Together, our findings support a so-far-unrecognized role for the HSPB8-BAG3 connection in mounting of an efficient stress response, which may be involved in BAG3-related human diseases.-Guilbert, S. M., Lambert, H., Rodrigue, M.-A., Fuchs, M., Landry, J., Lavoie, J. N. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.
Knezevic, Tijana; Myers, Valerie D; Su, Feifei; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Gao, Erhe; Gao, Guofeng; Muniswamy, Madesh; Gupta, Manish K; Gordon, Jennifer; Weiner, Kristen N; Rabinowitz, Joseph; Ramsey, Frederick V; Tilley, Douglas G; Khalili, Kamel; Cheung, Joseph Y; Feldman, Arthur M
2016-12-01
The present study was undertaken to test the hypothesis that gene delivery of BCL2-Associated Athanogene 3 (BAG3) to the heart of mice with left ventricular dysfunction secondary to a myocardial infarction could enhance cardiac performance. BAG3 is a 575 amino acid protein that has pleotropic functions in the cell including pro-autophagy and anti-apoptosis. Mutations in BAG3 have been associated with both skeletal muscle dysfunction and familial dilated cardiomyopathy and BAG3 levels are diminished in non-familial heart failure. Eight-week-old C57/BL6 mice underwent ligation of the left coronary artery (MI) or sham surgery (Sham). Eight weeks later, mice in both groups were randomly assigned to receive either a retro-orbital injection of rAAV9-BAG3 (MI-BAG3 or Sham-BAG3) or rAAV9-GFP (MI-GFP or Sham GFP). Mice were sacrificed at 3 weeks post-injection and myocytes were isolated from the left ventricle. MI-BAG3 mice demonstrated a significantly (p < 0.0001) higher left ventricular ejection fraction (LVEF) 9 days after rAAV9-BAG3 injection with further improvement in LVEF, fractional shortening and stroke volume at 3 weeks post-injection without changes in LV mass or LV volume. Injection of rAAV9-BAG3 had no effect on LVEF in Sham mice. The salutary benefits of rAAV9-BAG3 were also observed in myocytes isolated from MI hearts including improved cell shortening (p<0.05), increased systolic [Ca 2+ ] i , increased [Ca 2+ ] i transient amplitudes and increased maximal I Ca amplitude. The results suggest that BAG3 gene therapy may provide a novel therapeutic option for the treatment of heart failure.
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2011 CFR
2011-10-01
... plastic bag; (2) 5H2 for a sift-proof woven plastic bag; and (3) 5H3 for a water-resistant woven plastic... other equally strong method of closure. (3) Bags, sift-proof, 5H2 must be made sift-proof by appropriate...
Vented spikes improve delivery from intravenous bags with no air headspace.
Galush, William J; Horst, Travis A
2015-07-01
Flexible plastic bags are the container of choice for most intravenous (i.v.) infusions. Under certain circumstances, however, the air-liquid interface present in these i.v. bags can lead to physical instability of protein biopharmaceuticals, resulting in product aggregation. In principle, the air headspace present in the bags can be removed to increase drug stability, but experiments described here show that this can result in incomplete draining of solution from the bag using gravity delivery, or generation of negative pressure in the bag when an infusion pump is used. It is expected that these issues could lead to incomplete delivery of medication to patients or pump-related problems, respectively. However, here it is shown that contrary to the standard pharmacy practice of using nonvented spikes with i.v. bags, the use of vented spikes with i.v. bags that lack air headspace allows complete delivery of the dose solution without impacting the physical stability of a protein-based drug. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.
Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra
2014-01-01
BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.
Lepper-Blilie, A N; Berg, E P; Buchanan, D S; Keller, W L; Maddock-Carlin, K R; Berg, P T
2014-03-01
A 3×3×2 factorial was utilized to determine if roast size (small, medium, large), cooking method (open-pan, oven bag, vacuum bag), and heating process (fresh, reheated) prevented warmed-over flavor (WOF) in beef clod roasts. Fresh vacuum bag and reheated open-pan roasts had higher cardboardy flavor scores compared with fresh open-pan roast scores. Reheated roasts in oven and vacuum bags did not differ from fresh roasts for cardboardy flavor. Brothy and fat intensity were increased in reheated roasts in oven and vacuum bags compared with fresh roasts in oven and vacuum bags. Differences in TBARS were found in the interaction of heating process and roast size with the fresh and reheated large, and reheated medium roasts having the lowest values. Based on TBARS data, to prevent WOF in reheated beef roasts, a larger size roast in a cooking bag is the most effective method. Copyright © 2013 Elsevier Ltd. All rights reserved.