Sample records for polyethylene pe based

  1. Phase structure and properties of poly(ethylene terephthalate)/polyethylene based on recycled materials

    Treesearch

    Yong Lei; Qinglin Wu; Craig M. Clemons; Weihong Guo

    2009-01-01

    Blends based on recycled high density polyethylene (R-HDPE) and recycled poly(ethylene terephthalate) (R-PET) were made through reactive extrusion. The effects of maleated polyethylene (PE-g-MA), triblock copolymer of styrene and ethylene/butylene (SEBS), and 4,40-methylenedi(phenyl isocyanate) (MDI) on blend properties were studied. The 2% PE-g-MA improved the...

  2. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.

    PubMed

    Xu, Ling; Chen, Chen; Zhong, Gan-Ji; Lei, Jun; Xu, Jia-Zhuang; Hsiao, Benjamin S; Li, Zhong-Ming

    2012-03-01

    An easy approach was reported to achieve high mechanical properties of ultrahigh-molecular-weight polyethylene (UHMWPE)-based polyethylene (PE) blend for artificial joint application without the sacrifice of the original excellent wear and fatigue behavior of UHMWPE. The PE blend with desirable fluidity was obtained by melt mixing UHMWPE and low molecular weight polyethylene (LMWPE), and then was processed by a modified injection molding technology-oscillatory shear injection molding (OSIM). Morphological observation of the OSIM PE blend showed LMWPE contained well-defined interlocking shish-kebab self-reinforced superstructure. Addition of a small amount of long chain polyethylene (2 wt %) to LMWPE greatly induced formation of rich shish-kebabs. The ultimate tensile strength considerably increased from 27.6 MPa for conventional compression molded UHMWPE up to 78.4 MPa for OSIM PE blend along the flow direction and up to 33.5 MPa in its transverse direction. The impact strength of OSIM PE blend was increased by 46% and 7% for OSIM PE blend in the direction parallel and vertical to the shear flow, respectively. Wear and fatigue resistance were comparable to conventional compression molded UHMWPE. The superb performance of the OSIM PE blend was originated from formation of rich interlocking shish-kebab superstructure while maintaining unique properties of UHMWPE. The present results suggested the OSIM PE blend has high potential for artificial joint application. © 2012 American Chemical Society

  3. Ethylene-Propylene Terpolymer Rubber Processing by Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Manaila, Elena N.; Zuga, Maria Daniela T.; Martin, Diana I.; Craciun, Gabriela D.; Ighigeanu, Daniel I.; Matei, Constantin I.

    2007-04-01

    The investigations on the cross-linking by accelerated electrons of 6.23 MeV in lowly unsaturated elastomers of EPDM (ethylene-propylene terpolymer rubber) type are presented. Two rubber blends based EPDM were prepared and irradiated at different doses up to 250kGy: blend A - based on EPDM maleinized with polyethylene, zinc oxide, plasticizers, filler, and blend B - based on EPDM / PE (50 % EPDM and 50% polyethylene). Blends were prepared on a laboratory electrically heated rubber mill at temperatures of 150-160°C to enable the polyethylene (PE) melting to be reached. Plates of 150 × 150 × 2 mm were obtained in a laboratory electrical press at 170°C.

  4. Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract.

    PubMed

    Moudache, M; Colon, M; Nerín, C; Zaidi, F

    2016-12-01

    The antioxidant activity of olive leaf (OL) and cake (OC) extracts with different solvents was evaluated. 70% of aqueous ethanol extract of OL was chosen as the most antioxidant extract based on antiradical activity (DPPH) (95.4±0.3%) and oxygen radical absorbance capacity (ORAC) (0.82±0.07g equivalent Trolox per g of solution) assays. This OL extract was incorporated in two multilayer materials consisting of (i) polyethylene/polyethylene (PE/PE) film and (ii) polyethylene/paper (PE/P). These multilayers were exposed to a gas stream enriched in free radicals to evaluate the scavenging capacity of both materials. PE/PE film exhibited the highest scavenging activity of free radicals (78.8%). Migration of the phenolic compounds from olive by-products into two simulants was performed and demonstrated a non-migrating behavior. The limits of detection and quantification for oleuropein were 0.5μgkg(-1) and 1.7μgkg(-1) and for Luteolin-7-O-glucoside 1.3μgkg(-1) and 4.3μg kg(-1) respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Processable conductive graphene/polyethylene nanocomposites: Effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Muhammad Z.; Abdala, Ahmed A.; Mittal, Vikas

    Poor dispersion of graphene in non-polar polymer matrices creates composites with limited applications. A method to improve the dispersion of graphene in polyethylene (PE) via blending PE with oxidized PE (OPE) is examined. Graphene was produced by simultaneous thermal exfoliation and reduction of graphite oxide. Nanocomposites of graphene with PE as well as graphene with PE/OPE-blends were prepared by solvent blending. Improved dispersion of graphene in PE/OPE blends substantially decreases percolation from both rheological (0.3 vol%) and electrical (0.13 vol%) measurements compared to neat PE nanocomposites (1 and 0.29 vol%), respectively. A universal Brownian dispersion of graphene in polymers wasmore » concluded similar to that of nanotubes, following the Doi-Edwards theory. Micromechanical models, such as Mori-Tanaka and Halpin-Tsai models, modeled the mechanical properties of the nanocomposites. The nanocomposites microstructure, studied by small angle x-ray scattering, confirmed better dispersion of graphene at lower loadings and the formation of surface fractals in the blend/graphene nanocomposites; whereas only mass fractals were observed in neat PE/graphene nanocomposites.« less

  6. POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS

    EPA Science Inventory

    This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...

  7. Fragmentation-based QM/MM simulations: length dependence of chain dynamics and hydrogen bonding of polyethylene oxide and polyethylene in aqueous solutions.

    PubMed

    Li, Hui; Li, Wei; Li, Shuhua; Ma, Jing

    2008-06-12

    Molecular fragmentation quantum mechanics (QM) calculations have been combined with molecular mechanics (MM) to construct the fragmentation QM/MM method for simulations of dilute solutions of macromolecules. We adopt the electrostatics embedding QM/MM model, where the low-cost generalized energy-based fragmentation calculations are employed for the QM part. Conformation energy calculations, geometry optimizations, and Born-Oppenheimer molecular dynamics simulations of poly(ethylene oxide), PEO(n) (n = 6-20), and polyethylene, PE(n) ( n = 9-30), in aqueous solution have been performed within the framework of both fragmentation and conventional QM/MM methods. The intermolecular hydrogen bonding and chain configurations obtained from the fragmentation QM/MM simulations are consistent with the conventional QM/MM method. The length dependence of chain conformations and dynamics of PEO and PE oligomers in aqueous solutions is also investigated through the fragmentation QM/MM molecular dynamics simulations.

  8. Effective Identification on Adulteration of Polyethylene With Post-consumer Ones

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Qin, W. B.; Guo, J. F.; Liu, J.; Wang, Y. L.; Zhang, W.; Zhao, X. Y.; Wang, L.

    2018-05-01

    This paper mainly describes the effective identification of the adulteration of polyethylene with post-consumer ones. Degradation would be happened when multiple processings occurred. The melt flow index (MFI) analysis, thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC) were used to characterize the processability and thermal stabilities of virgin polyethylene and recycled polyethylene which adulterated post-consumer PE. The results indicated that MFI of PE increased with the increasing doping content. Adulterating reclaimed PE had effects on the thermal stability of PE, which led to lower thermal decomposition temperature. Melting peak of recycled LLDPE varied from merely single to double, which differently compared differently with virgin LLDPE. Besides, with the doping content of post-consumer LDPE, the melting temperature had a decreasing tendency.

  9. Preparation of Polyethylene Composites Containing Silver(I) Acylpyrazolonato Additives and SAR Investigation of their Antibacterial Activity.

    PubMed

    Marchetti, Fabio; Palmucci, Jessica; Pettinari, Claudio; Pettinari, Riccardo; Marangoni, Mirko; Ferraro, Stefano; Giovannetti, Rita; Scuri, Stefania; Grappasonni, Iolanda; Cocchioni, Mario; Maldonado Hodar, Francisco José; Gunnella, Roberto

    2016-11-02

    Novel composite materials PEn (n = 1-9) have been prepared by an easily up-scalable embedding procedure of three different families of Ag(I) acylpyrazolonato complexes in polyethylene (PE) matrix. In details, PE1-PE3 composites contain polynuclear [Ag(Q R )] n complexes, PE4-PE6 contain mononuclear [Ag(Q R )(L) m ] complexes and PE7-PE9 are loaded with mononuclear [Ag(Q R ) (PPh 3 ) 2 ] complexes, respectively (where L = 1-methylimidazole or 2-ethylimidazole, m = 1 or 2, and HQ R = 1-phenyl-3-methyl-4-RC(═O)-5-pyrazolone, where in detail HQ fb , R = -CF 2 CF 2 CF 3 ; HQ cy , R = -cyclo-C 6 H 11 ; HQ be , R = -C(H)═C(CH 3 ) 2 ). The PEn composites, prepared by using a 1:1000 w/w silver additive/polyethylene ratio, have been characterized in bulk by IR spectroscopy and TGA analyses, which confirmed that the properties of polyethylene matrix are essentially unchanged. AFM, SEM, and EDX surface techniques show that silver additives form agglomerates with dimensions 10-100 μm on the polyethylene surface, with a slight increment of surface roughness of pristine plastic within 50 nm. However, the elastic properties of the composites are essentially the same of PE. The antibacterial activity of all composites has been tested against three bacterial strains (E. coli, P. aeruginosa and S. aureus) and results show that two classes of composites, PE1-PE3 and PE4-PE6, display high and persistent bactericidal and bacteriostatic activity, comparable to PE embedded with AgNO 3 . By contrast, composites PE7-PE9 exhibit a reduced antibacterial action. Contact and release tests in several conditions for specific migration of Ag + from plastics, indicate a very limited but time persistent release of silver ions from PE1-PE6 composites, thus suggesting that they are potential antibacterial materials for future applications. Instead, PE7-PE9 almost do not release silver, only trace levels of silver ions being detected, in accordance with their reduced antibacterial action. None of the composites is toxic against higher organisms, as confirmed by D. magna test of ecotoxicity.

  10. Effect of nanoclay on the properties of low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2016-05-05

    The aim of this work is to study effect of nanoclay (Cloisite(®)15A) on morphology and properties of low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blend films. LDPE/LLDPE blend (70/30wt/wt) containing 15wt.% TPS in the presence of PE-grafted maleic anhydride (PE-g-MA, 3wt.%) with 1, 3 and 5phr of nanoclay are compounded in a twin-screw extruder and then film blown using a blowing machine. Nanocomposites with intercalated structures are obtained, based on the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. However, some exfoliated single platelets in the samples are also observable. Scanning electron microscopic (SEM) images confirm the ability of both exfoliated nanoclay and PE-g-MA to reduce the size of TPS domains and deform their particles within the PE matrices. As the nanoclay content increases from 1 to 5phr, the tensile strength, tear resistance and impact strength of the films increase, whereas a slight decrease in the elongation at break is observed. The film samples with 5phr nanoclay possess the required packaging properties, as specified by ASTM D4635. These films provide desired optical transparency and surface roughness which are more attractive for packaging applications. Copyright © 2016. Published by Elsevier Ltd.

  11. The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production.

    PubMed

    Johnston, Brian; Jiang, Guozhan; Hill, David; Adamus, Grazyna; Kwiecień, Iwona; Zięba, Magdalena; Sikorska, Wanda; Green, Matthew; Kowalczuk, Marek; Radecka, Iza

    2017-08-28

    There is an increasing demand for bio-based polymers that are developed from recycled materials. The production of biodegradable polymers can include bio-technological (utilizing microorganisms or enzymes) or chemical synthesis procedures. This report demonstrates the corroboration of the molecular structure of polyhydroxyalkanoates (PHAs) obtained by the conversion of waste polyethylene (PE) via non-oxygenated PE wax (N-PEW) as an additional carbon source for a bacterial species. The N-PEW, obtained from a PE pyrolysis reaction, has been found to be a beneficial carbon source for PHA production with Cupriavidus necator H16. The production of the N-PEW is an alternative to oxidized polyethylene wax (O-PEW) (that has been used as a carbon source previously) as it is less time consuming to manufacture and offers fewer industrial applications. A range of molecular structural analytical techniques were performed on the PHAs obtained; which included nuclear magnetic resonance (NMR) and electrospray ionisation tandem mass spectrometry (ESI-MS/MS). Our study showed that the PHA formed from N-PEW contained 3-hydroxybutyrate (HB) with 11 mol% of 3-hydroxyvalerate (HV) units.

  12. The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production

    PubMed Central

    Johnston, Brian; Jiang, Guozhan; Hill, David; Adamus, Grazyna; Zięba, Magdalena; Sikorska, Wanda; Green, Matthew; Kowalczuk, Marek

    2017-01-01

    There is an increasing demand for bio-based polymers that are developed from recycled materials. The production of biodegradable polymers can include bio-technological (utilizing microorganisms or enzymes) or chemical synthesis procedures. This report demonstrates the corroboration of the molecular structure of polyhydroxyalkanoates (PHAs) obtained by the conversion of waste polyethylene (PE) via non-oxygenated PE wax (N-PEW) as an additional carbon source for a bacterial species. The N-PEW, obtained from a PE pyrolysis reaction, has been found to be a beneficial carbon source for PHA production with Cupriavidus necator H16. The production of the N-PEW is an alternative to oxidized polyethylene wax (O-PEW) (that has been used as a carbon source previously) as it is less time consuming to manufacture and offers fewer industrial applications. A range of molecular structural analytical techniques were performed on the PHAs obtained; which included nuclear magnetic resonance (NMR) and electrospray ionisation tandem mass spectrometry (ESI-MS/MS). Our study showed that the PHA formed from N-PEW contained 3-hydroxybutyrate (HB) with 11 mol% of 3-hydroxyvalerate (HV) units. PMID:28952552

  13. Effects of packaging materials on storage quality of peanut kernels

    PubMed Central

    Fu, Xiaoji; Xing, Shengping; Xiong, Huiwei; Min, Hua; Zhu, Xuejing; He, Jialin; Mu, Honglei

    2018-01-01

    In order to obtain optimum packaging materials for peanut kernels, the effects of four types of packaging materials on peanut storage quality (coat color, acid value, germination rate, relative damage, and prevention of aflatoxin contamination) were examined. The results showed that packaging materials had a major influence on peanut storage quality indexes. The color of the peanut seed coat packaged in the polyester/aluminum/polyamide/polyethylene (PET/AL/PA/PE) composite film bag did not change significantly during the storage period. Color deterioration was slower with polyamide/polyethylene (PA/PE) packaging materials than with polyethylene (PE) film bags and was slower in PE bags than in the woven bags. The use of PET/AL/PA/PE and PA/PE bags maintained peanut quality and freshness for more than one year and both package types resulted in better germination rates. There were significant differences between the four types of packaging materials in terms of controlling insect pests. The peanuts packaged in the highly permeable woven bags suffered serious invasion from insect pests, while both PET/AL/PA/PE and PA/PE bags effectively prevented insect infection. Peanuts stored in PET/AL/PA/PE and PA/PE bags were also better at preventing and controlling aflatoxin contamination. PMID:29518085

  14. Influence of Ionizing Radiation on the Mechanical Properties of a Wood-Plastic Composite

    NASA Astrophysics Data System (ADS)

    Palm, Andrew; Smith, Jennifer; Driscoll, Mark; Smith, Leonard; Larsen, L. Scott

    The focus of this study was to examine the potential benefits of irradiating polyethylene (PE)-based wood-plastic composites (WPCs) in order to enhance the mechanical properties of the WPC. The PE-based WPCs were irradiated, post extrusion, at dose levels of 0, 50, 100, 150, 200, and 250 kGy with an electron beam (EB). The irradiated WPCs were then evaluated using a third point bending test (ASTM D4761) along with scanning electron microscopy (SEM). It was found that ultimate strength and modulus of elasticity (MOE) increased with increasing dose level. Examination of the fracture surfaces of polyethylene revealed a distinct difference in failure between irradiated and non-irradiated surfaces.

  15. The effect of bearing type on the outcome of total hip arthroplasty.

    PubMed

    Peters, Rinne M; Van Steenbergen, Liza N; Stevens, Martin; Rijk, Paul C; Bulstra, Sjoerd K; Zijlstra, Wierd P

    2018-04-01

    Background and purpose - Alternative bearing surfaces such as ceramics and highly crosslinked polyethylene (HXLPE) were developed in order to further improve implant performance of total hip arthroplasties (THAs). Whether these alternative bearing surfaces result in increased longevity is subject to debate. Patients and methods - Using the Dutch Arthroplasty Register (LROI), we identified all patients with a primary, non-metal-on-metal THA implanted in the Netherlands in the period 2007-2016 (n = 209,912). Cumulative incidence of revision was calculated to determine differences in survivorship of THAs according to bearing type: metal-on-polyethylene (MoPE), metal-on-HXLPE (MoHXLPE), ceramic-on-polyethylene (CoPE), ceramic-on-HXLPE (CoHXLPE), ceramic-on-ceramic (CoC), and oxidized-zirconium-on-(HXL)polyethylene (Ox(HXL)PE). Multivariable Cox proportional hazard regression ratios (HRs) were used for comparisons. Results - After adjustment for confounders, CoHXLPE, CoC, and Ox(HXL)PE resulted in a statistically significantly lower risk of revision compared with MoPE after 9 years follow-up (HR =0.8-0.9 respectively, compared with HR =1.0). For small (22-28 mm) femoral head THAs, lower revision rates were found for CoPE and CoHXLPE (HR =0.9). In the 36 mm femoral head subgroup, CoC-bearing THAs had a lower HR compared with MoHXLPE (HR =0.7 versus 1.0). Crude revision rates in young patients (< 60 years) for CoHXLPE, CoC, and Ox(HXL)PE (HR =0.7) were lower than MoPE (HR =1.0). However, after adjustment for case mix and confounders these differences were not statistically significant. Interpretation - We found a mid-term lower risk of revision for CoHXLPE, CoC, and Ox(HXL)PE bearings compared with traditional MoPE-bearing surfaces.

  16. Thermal and catalytic degradation of high and low density polyethylene into fuel oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Azhar; Koizumi, Kazuo; Sakata, Yusaku

    1996-12-31

    The degradation of four different types of polyethylene (PE) namely high density PE (HDPE), low density PE (LDPE), linear low density PE (LLDPE), and cross-linked PE (XLPE) was carried out at 430 {degrees}C by batch operation using silica-alumina as a solid acid catalyst and thermally without any catalyst. For thermal degradation, both HDPE and XLPE produced significant amount of wax-like compounds and the yield of liquid products were lower than that of LDPE and LLDPE. LDPE and LLDPE also produced small amount of wax-like compounds. Thus the structure of the degrading polymers influenced the product yields. The liquid products frommore » thermal degradation were broadly distributed in the carbon fraction of n-C{sub 5} to n-C{sub 25} (boiling point range, 36-405 C). With silica-alumina, the polyethylenes were converted to liquid products with high yields (77-83 wt%) and without any wax production. The liquid products were distributed in the range of n-C{sub 5} to n-C{sub 20} (Mostly C{sub 5}-C{sub 12}). Solid acid catalyst indiscriminately degraded the various types of polyethylene into light fuel oil. 5 refs., 4 figs., 1 tab.« less

  17. Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites.

    PubMed

    Upadhyay, Rahul; Naskar, Sharmistha; Bhaskar, Nitu; Bose, Suryasarathi; Basu, Bikramjit

    2016-05-18

    The uniform dispersion of nanoparticles in a polymer matrix, together with an enhancement of interfacial adhesion is indispensable toward achieving better mechanical properties in the nanocomposites. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. To address these issues, we prepared high-density polyethylene (HDPE) based composites reinforced with graphene oxide (GO) by melt mixing followed by compression molding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, we immobilized polyethylene (PE) onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic modulus (ca. 600 MPa), and an outstanding elongation at failure (ca. 70%) were recorded with 3 wt % polyethylene grafted graphene oxide (PE-g-GO) reinforced HDPE composites. Considering the relevance of protein adsorption as a biophysical precursor to cell adhesion, the protein adsorption isotherms of bovine serum albumin (BSA) were determined to realize three times higher equilibrium constant (Keq) for PE-g-GO-reinforced HDPE composites as compared to GO-reinforced composites. To assess the cytocompatibility, we grew osteoblast cell line (MC3T3) and human mesenchymal stem cells (hMSCs) on HDPE/GO and HDPE/PE-g-GO composites, in vitro. The statistically significant increase in metabolically active cell over different time periods in culture for up to 6 days in MC3T3 and 7 days for hMSCs was observed, irrespective of the substrate composition. Such observation indicated that HDPE with GO or PE-g-GO addition (up to 3 wt %) can be used as cell growth substrate. The extensive proliferation of cells with oriented growth pattern also supported the fact that tailored GO addition can support cellular functionality in vitro. Taken together, the experimental results suggest that the PE-g-GO in HDPE can effectively be utilized to enhance both mechanical and cytocompatibility properties and can further be explored for potential biomedical applications.

  18. Differences in Femoral Head Penetration Between Highly Cross-Linked Polyethylene Cemented Sockets and Uncemented Liners.

    PubMed

    Morita, Daigo; Seki, Taisuke; Higuchi, Yoshitoshi; Takegami, Yasuhiko; Ishiguro, Naoki

    2017-12-01

    This study aimed at investigating differences in femoral head penetration between highly cross-linked polyethylene (HXLPE) cemented sockets and uncemented liners during 5 years postoperatively. Ninety-six patients (106 hips) with a mean age of 64.4 (range, 35-83) years underwent total hip arthroplasty using a HXLPE cemented socket or liner and were respectively divided into cemented (35 patients [37 hips]) and uncemented (61 patients [69 hips]) groups. Femoral head penetrations were evaluated on both anteroposterior (AP)-view and Lauenstein-view radiographs, and mean polyethylene (PE) wear rates were calculated based on femoral head penetration from 2 to 5 years. Multivariate analyses were performed to assess risk factors for PE wear. At 5 years postoperatively, the cemented and uncemented groups exhibited proximal direction femoral head penetrations of 0.103 mm and 0.124 mm (P = .226) and anterior direction penetrations of 0.090 mm and 0.151 mm (P = .002), respectively. The corresponding mean PE wear rates were 0.004 mm/y and 0.009 mm/y in the AP-view (P = .286) and 0.005 mm/y and 0.012 mm/y in the Lauenstein-view (P = .168), respectively. Left-side operation and high activity were independent risk factors for PE wear on AP-view. When HXLPE was used, all mean PE wear rates were very low and those of cemented sockets and uncemented liners were very similar. PE particle theory suggests that the occurrence of osteolysis and related aseptic loosening might consequently decrease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Pyrolysis of polyethylene mixed with paper and wood: Interaction effects on tar, char and gas yields.

    PubMed

    Grieco, E M; Baldi, G

    2012-05-01

    In the present study the interactions between the main constituents of the refuse derived fuel (plastics, paper, and wood) during pyrolysis were studied. Binary mixtures of polyethylene-paper and polyethylene/sawdust have been transformed into pellets and pyrolyzed. Various mixtures with different composition were analyzed and pyrolysis products (tar, gas, and char) were collected. The mixtures of wood/PE and paper/PE have a different behavior. The wood/PE mixtures showed a much reduced interaction of the various compounds because the yields of pyrolysis products of the mixture can be predicted as linear combination of those of the pure components. On the contrary, a strong char yield increase was found at a low heating rate for paper/PE mixtures. In order to explain the results, the ability of wood and paper char to adsorb and convert the products of PE pyrolysis into was studied. Adsorption and desorption tests were performed on the char obtained by paper and wood by using n-hexadecane as a model compound for the heavy products of PE pyrolysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators

    NASA Astrophysics Data System (ADS)

    Lee, Hoogil; Jeon, Hyunkyu; Gong, Seokhyeon; Ryou, Myung-Hyun; Lee, Yong Min

    2018-01-01

    To enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene (PE) separators, their surfaces were treated with thin and hydrophilic polydopamine layers. As a result, an aqueous ceramic coating slurry consisting of Al2O3 particles, carboxyl methyl cellulose (CMC) binders, and water solvent was easily spread on the separator surface, and a uniform ceramic layer was formed after solvent drying. Moreover, the ceramic coating layer showed greatly improved adhesion properties to the PE separator surface. Whereas the adhesion strength within the bulk coating layer (Fmid) ranged from 43 to 86 N m-1 depending on the binder content of 1.5-3.0 wt%, the adhesion strength at the interface between the ceramic coating layer and PE separator (Fsepa-Al2O3) was 245-360 N m-1, a value equivalent to an increase of four or five times. Furthermore, an additional ceramic coating layer of approximately 7 μm did not degrade the ionic conductivity and electrochemical properties of the bare PE separators. Thus, all the LiMn2O4/graphite cells with ceramic-coated separators delivered an improved cycle life and rate capability compared with those of the control cells with bare PE separators.

  1. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV.

    PubMed

    Nikezic, D; Shahmohammadi Beni, Mehrdad; Krstic, D; Yu, K N

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy.

  2. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV

    PubMed Central

    Nikezic, D.; Shahmohammadi Beni, Mehrdad; Krstic, D.; Yu, K. N.

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy. PMID:27362656

  3. Measurement of radon diffusion in polyethylene based on alpha detection

    NASA Astrophysics Data System (ADS)

    Rau, Wolfgang

    2012-02-01

    Radon diffusion in different materials has been measured in the past. Usually the diffusion measurements are based on a direct determination of the amount of radon that diffuses through a thin layer of material. Here we present a method based on the measurement of the radon daughter products which are deposited inside the material. Looking at the decay of 210Po allows us to directly measure the exponential diffusion profile characterized by the diffusion length. In addition we can determine the solubility of radon in PE. We also describe a second method to determine the diffusion constant based on the short-lived radon daughter products 218Po and 214Po, using the identical experimental setup. Measurements for regular polyethylene (PE) and High Molecular Weight Polyethylene (HMWPE) yielded diffusion lengths of (1.3±0.3) mm and (0.8±0.2) mm and solubilities of 0.5±0.1 and 0.7±0.2, respectively, for the first method; the diffusion lengths extracted from the second method are noticeably larger which may be caused by different experimental conditions during diffusion.

  4. Kinetics and microscopic processes of long term fracture in polyethylene piping materials

    NASA Astrophysics Data System (ADS)

    Brown, N.; Lu, X.

    1992-07-01

    The report contains 9 completed works as follows: The Dependence of Slow Crack Growth in a Polyethylene Copolymer on Testing Temperature and Morphology; A Test of Slow Crack Growth Failure of PE Under Constant Load; Effect of Annealing on Slow Crack Growth in an Ethylene-Hexene Copolymer; The Fundamental Material Parameters that Govern Slow Crack Growth in Linear Polyethylene; Slow Crack Growth in Blends of HDPE and UHMWPE; The Mechanism of Fatigue Failure in a Polyethylene Copolymer; PENT Quality Control Test for PE Gas Pipes and Resins; International Round Robin Study of a Fatigue Test Approach to the Ranking of Polyethylene Pipe Material; and Proposed ASTM Specification for ASTM F17.40 Test Methods Committee.

  5. Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation

    PubMed Central

    Park, Jong-Seok; Lim, Youn-Mook; Nho, Young-Chang

    2015-01-01

    Polyurethane (PU) is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA). The PE-g-MA-grafted PU/high density polyethylene (HDPE) composite was prepared by melt-blending at various concentrations (0–10 phr) of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR), and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased. PMID:28788022

  6. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  7. A new method for isolation of polyethylene wear debris from tissue and synovial fluid.

    PubMed

    Visentin, Manuela; Stea, Susanna; Squarzoni, Stefano; Antonietti, Barbara; Reggiani, Matteo; Toni, Aldo

    2004-11-01

    Sub-micron-sized ultrahigh molecular-weight polyethylene (PE) debris is generated in the joint space as a result of articulation and cyclic loading of an orthopaedic implant. Its characterization requires isolation and subsequent analysis by ultra-structural methods. An innovative method based on the digestion of paraffin-embedded tissue samples was proposed. Tissue slices were digested with sodium hypochlorite directly on polycarbonate filter. The same procedure could be applied also to fresh synovial fluid. Plastic particles were not lost or damaged during treatment. Chemical identification of particles was done by micro-Raman spectroscopy that confirmed purity of retrieved PE particles. Size and shape of PE particles were characterised using scanning electron microscopy and were comparable in number and morphology to the retrieval by other authors. Equivalent diameter ranged from 0.48 to 0.95microm and particle number ranged from 9 to 23x10(9)/cm(3).

  8. Influence of structure on radiation shielding effectiveness of graphite fiber reinforced polyethylene composite

    NASA Astrophysics Data System (ADS)

    Emmanuel, A.; Raghavan, J.

    2015-10-01

    While LEO and GEO are used for most satellite missions, Highly Elliptical Orbits (HEOs) are also used for satellite missions covering Polar Regions of Earth. Satellites in HEO are exposed to a relatively harsher radiation environment than LEO and GEO. The mass of traditionally used aluminum radiation shield, required to attenuate the radiation to a level below a certain threshold that is safe for the satellite bus and payload, scales with the level of radiation. It has been shown (Emmanuel et al., 2014) that materials with low atomic number (Z) such as polyethylene (PE) can result in a lighter shield than aluminum (Al) in HEO. However, PE has to be reinforced with relatively high Z fibers such as graphite (G) to improve its mechanical properties. The effect of introduction of G and the resulting composite structure (that meets the requirements on mechanical properties, manufacturing and service) on the radiation shielding effectiveness of PE was studied through simulation using a layered PE-G composite. The Total Ionization Dose (TID), deposited in a silicon detector behind the composite shield, has been found to be function of layer volume fraction, layer thickness and stacking sequence of the PE and G layers. One composite configuration has resulted in a TID lower than that for PE, demonstrating the possibility of tailoring the mechanical properties of PE-based composite radiation shield with minimal negative impact on its radiation shielding effectiveness.

  9. Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Sohn, Joon-Yong; Shin, Junhwa; Park, Jong-Seok; Lim, Yoon-Mook; Kang, Phil-Hyun

    2017-03-01

    Although micro-porous membranes made of polyethylene (PE) offer excellent mechanical strength and chemical stability, they exhibit large thermal shrinkage at high temperature, which causes a short circuit between positive and negative electrodes in cases of unusual heat generation. We tried to develop a new technology to reduce the thermal shrinkage of PE separators by introducing γ-Al2O3 particles treated with coupling agent on PE separators. Nanocomposite γ-Al2O3/PE separators were prepared by the dip coating of polyethylene(PE) separators in γ-Al2O3/poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP)/crosslinker (1,3,5-trially-1,3,5-triazine-2,4,6(1 H,3 H,5 H)-trione (TTT) solution with humidity control followed by electron beam irradiation. γ-Al2O3/PVDF-HFP/TTT (95/5/2)-coated PE separator showed the highest electrolyte uptake (157%) and ionic conductivity (1.3 mS/cm). On the basis of the thermal shrinkage test, the nanocomposite γ-Al2O3/PE separators containing TTT irradiated by electron beam exhibited a higher thermal resistance. Moreover, a linear sweep voltammetry test showed that the irradiated nanocomposite γ-Al2O3/PE separators have electrochemical stabilities of up to 5.0 V. In a battery performance test, the coin cell assembled with γ-Al2O3/PVDF-HFP/TTT-coated PE separator showed excellent discharge cycle performance.

  10. XPS analysis of PE and EVA samples irradiated at different γ-doses

    NASA Astrophysics Data System (ADS)

    Dorey, Samuel; Gaston, Fanny; Marque, Sylvain R. A.; Bortolotti, Benjamin; Dupuy, Nathalie

    2018-01-01

    The principal plastic materials used for the fluid contact and storage in the biopharmaceutical industry are mainly made up of semi-crystalline polymers, polyolefins, PVC, Siloxane and PET. The polyethylene (PE) and the polypropylene (PP) are often used as fluid contact in multi-layer materials like films. As one sterilisation way of single-use plastic devices used in medical and pharmaceutical fields can take place via γ-irradiation, the effect of sterilization on plastics must be investigated. The irradiation process leads to the production of radicals, which can generate changes in the polymer structure and on the polymer surface. It is well known that the presence of oxygen with free radicals precede the generation of peroxide species so called ROS (reactive oxygen species) which are highly reactive. The purpose of this work is to investigate the γ-rays impact on the surface of PE (polyethylene) and EVA (polyethylene vinyl alcohol) based films when ionized at different doses. X-ray Photoelectron Spectroscopy (XPS) was applied to determine the surface compositions of the polymers to highlight the different chemical moieties generated during the γ-irradiation process and to monitor the potential presence of the ROS.

  11. Partitioning of dissolved organic matter-bound mercury between a hydrophobic surface and polysulfide-rubber polymer.

    PubMed

    Kim, Eun-Ah; Luthy, Richard G

    2011-11-01

    This study investigated the role of dissolved organic matter on mercury partitioning between a hydrophobic surface (polyethylene, PE) and a reduced sulfur-rich surface (polysulfide rubber, PSR). Comparative sorption studies employed polyethylene and polyethylene coated with PSR for reactions with DOM-bound mercuric ions. These studies revealed that PSR enhanced the Hg-DOM removal from water when DOM was Suwannee River natural organic matter (NOM), fulvic acid (FA), or humic acid (HA), while the same amount of 1,3-propanedithiol-bound mercuric ion was removed by both PE and PSR-PE. The differences for Hg-DOM removal efficiencies between PE and PSR-PE varied depending on which DOM was bound to mercuric ion as suggested by the PE/water and PSR-PE/water partition coefficients for mercury. The surface concentrations of mercury on PE and PSR-PE with the same DOM measured by x-ray photoelectron spectroscopy were similar, which indicated the comparable amounts of immobilized mercury on PE and PSR-PE being exposed to the aqueous phase. With these observations, two major pathways for the immobilization reactions between PSR-PE and Hg-DOM were examined: 1) adsorption of Hg-DOM on PE by hydrophobic interactions between DOM and PE, and 2) addition reaction of Hg-DOM onto PSR by a complexation reaction between Hg and PSR. The percent contribution of each pathway was derived from a mass balance and the ratios among aqueous mercury, PE-bound Hg-DOM, and PSR-bound Hg-DOM concentrations. The results indicate strong binding of mercuric ion with both dissolved organic matter and PSR polymer. The FT-IR examination of Hg-preloaded-PSR-PEs after the reaction with DOM corroborated a strong interaction between mercuric ion and 1,3-propanedithiol compared to Hg-HA, Hg-FA, or Hg-NOM interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Partitioning of dissolved organic matter-bound mercury between a hydrophobic surface and polysulfide-rubber polymer

    PubMed Central

    Kim, Eun-Ah

    2011-01-01

    This study investigated the role of dissolved organic matter on mercury partitioning between a hydrophobic surface (polyethylene, PE) and a reduced sulfur-rich surface (polysulfide rubber, PSR). Comparative sorption studies employed polyethylene and polyethylene coated with PSR for reactions with DOM-bound mercuric ions. These studies revealed that PSR enhanced the Hg-DOM removal from water when DOM was Suwannee River natural organic matter (NOM), fulvic acid (FA), or humic acid (HA), while the same amount of 1,3-propanedithiol-bound mercuric ion was removed by both PE and PSR-PE. The differences for Hg-DOM removal efficiencies between PE and PSR-PE varied depending on which DOM was bound to mercuric ion as suggested by the PE/water and PSR-PE/water partition coefficients for mercury. The surface concentrations of mercury on PE and PSR-PE with the same DOM measured by x-ray – photoelectron spectroscopy were similar, which indicated the comparable amounts of immobilized mercury on PE and PSR-PE being exposed to the aqueous phase. With these observations, two major pathways for the immobilization reactions between PSR-PE and Hg- DOM were examined: 1) adsorption of Hg-DOM on PE by hydrophobic interactions between DOM and PE, and 2) addition reaction of Hg-DOM onto PSR by a complexation reaction between Hg and PSR. The percent contribution of each pathway was derived from a mass balance and the ratios among aqueous mercury, PE-bound Hg-DOM, and PSR-bound Hg-DOM concentrations. The results indicate strong binding of mercuric ion with both dissolved organic matter and PSR polymer. The FT-IR examination of Hg-preloaded-PSR-PEs after the reaction with DOM corroborated a strong interaction between mercuric ion and 1,3-propanedithiol compared to Hg-HA, Hg-FA, or Hg-NOM interactions. PMID:21872900

  13. Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2015-03-30

    In this work, low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) films are prepared with the aim of obtaining environmentally friendly materials containing high TPS content with required packaging properties. Blending of LDPE/LLDPE (70/30 wt/wt) with 5-20 wt% of TPS and 3 wt% of PE-grafted maleic anhydride (PE-g-MA) is performed in a twin-screw extruder, followed by the blowing process. Differential scanning calorimetric results indicate starch has more pronounced effect on crystallization of LLDPE than LDPE. Scanning electron micrograph shows a fairly good dispersion of TPS in PE matrices. Fourier transfer infrared spectra confirm compatibility between polymers using PE-g-MA as the compatibilizer. Storage modulus, loss modulus and complex viscosity increase with incorporation of starch. Tensile strength and elongation-at-break decrease from 18 to 10.5 MPa and 340 to 200%, respectively when TPS increases from 5 to 20%. However, the required mechanical properties for packaging applications are attained when 15 wt% starch is added, as specified in ASTM D4635. Finally 12% increase in water uptake is achieved with inclusion of 15 wt% starch. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Surface modification of a polyethylene film for anticoagulant and anti-microbial catheter

    PubMed Central

    Zheng, Yingying; Miao, Jianjun; Zhang, Fuming; Cai, Chao; Koh, Amanda; Simmons, Trevor J.; Mousa, Shaker A.; Linhardt, Robert J.

    2016-01-01

    A functional anticoagulant and anti-bacterial coating for polyethylene (PE) films is described. The stepwise preparation of this nanocomposite surface coating involves O2 plasma etching of PE film, carbodiimide coupling of cysteamine to the etched PE film, binding of Ag to sulfhydryl groups of cysteamine, and assembly of heparin capped AgNPs on the PE film. The nanocomposite film and its components were characterized by 1H-nuclear magnetic resonance spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and field emission-scanning electron microscopy. The resulting PE films demonstrate anticoagulant activity using a hemoglobin whole blood clotting assay, and anti-bacterial activity against Bacillus cereus 3551 (Gram-positive) and Escherichia coli BL21 (Gram-negative) bacteria. The hydrophilicity of the heparin coated PE was determined by contact angle measurements; and the stability of the nanocomposite film, with respect to Ag leaching, was assessed by atomic absorption spectroscopy. PMID:26900340

  15. Adhesion Improvement between Polyethylene and Aluminum Using Eco-Friendly Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Popelka, Anton; Krupa, Igor; Novák, Igor; Ouederni, Mabrouk; Abdulaqder, Fatima; Al-Yazedi, Shrooq; Al-Gunaid, Taghreed; Al-Senani, Thuraya

    Polyethylene (PE) belongs among the most widely used polymers in many industrial applications, such as in building, packaging or transport industry. Qatar is one of the largest producers of PE in the world. Composite laminates consisting of PE and metal materials, such as aluminum (Al) lead to an improvement of various mechanical and physical properties necessary for special applications in building industry. Aluminum composite panel (ACP) represents type of flat panel that consists of two thin aluminum sheets bonded to a non-aluminum core, often made from PE. ACPs are frequently used for external cladding or facades of buildings. The main problem relates the adhesion between both materials. In this research work the improvement of adhesion properties of composite laminates prepared from PE and Al using plasma treatment was investigated. This surface treatment led to the significantly increase of peel strength of PE-Al adhesive joints.

  16. Synthesis and characterization of novel low density polyethylene-multiwall carbon nanotube porous composites

    NASA Astrophysics Data System (ADS)

    Rizvi, Reza; Kim, Jae-Kyung; Naguib, Hani

    2009-10-01

    This study details the synthesis and characterization of novel porous composites of low density polyethylene (PE) and multiwalled carbon nanotubes (MWNT). PE-MWNT composites were prepared by melt blending the components in a twin screw compounder and porous structures were produced by a batch technique using CO2 as the solvent. The composites were characterized for dispersion using scanning electron microscopy and transmission electron microscopy; the results indicate a finely dispersed MWNT phase in PE. Thermal, rheological, electrical and mechanical properties of the composites were characterized and results indicate an electrical and rheological percolation threshold concentration of between 1 and 2 wt% MWNT in PE. Substantial improvements in the mechanical and electrical properties of PE were observed with the addition of 5 wt% MWNT. The porous PE-MWNT composites fabricated in this study were found to be conductive and have potential applications as anti-static materials for electrostatic discharge prevention.

  17. Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films

    NASA Astrophysics Data System (ADS)

    Martínez-Romo, A.; González Mota, R.; Bernal, J. J. Soto; Frausto Reyes, C.; Rosales Candelas, I.

    2015-01-01

    One of the most widely used plastics in the world is the High density polyethylene (HDPE), it is a stable material due to its carbon-carbon bonds, causing their slow degradation; which is why we are looking for alternative ways to accelerate the degradation process of this polymer. An alternative is the addition of oxidized groups in its molecular structure, which results in the development of polymers susceptible to biodegradation (PE-BIO). In this paper, HDPE and PE-BIO films were exposed to UV-B radiation (320-280 nm) at different exposure times, 0-60 days. The effects of UV radiation in samples of HDPE and PE-BIO were characterized using infrared spectroscopy with attenuated total reflectance (ATR). The results show that the exposed materials undergo changes in their molecular structure, due to the infrared bands formed which corresponds to the photo-oxidation of HDPE and PE films when submitted to UV-B radiation.

  18. Improved self-healing of polyethylene/carbon black nanocomposites by their shape memory effect.

    PubMed

    Wang, Xiaoyan; Zhao, Jun; Chen, Min; Ma, Lan; Zhao, Xiaodong; Dang, Zhi-Min; Wang, Zhenwen

    2013-02-07

    In this work, the improved self-healing of cross-linked polyethylene (PE) (cPE)/carbon black (CB) nanocomposites by their shape memory effect (SME) is investigated. CB nanoparticles are found to be homogeneously dispersed in the PE matrix and significantly increase the strength of the materials. Compared with the breaking of linear PE (lPE) at the melting temperature (T(m)), the cPE and cPE/CB nanocomposites still have high strength above T(m) due to the formation of networks. The cPE and cPE/CB nanocomposites show both high strain fixity ratio (R(f)) and high strain recovery ratio (R(r)). Crystallization-induced elongation is observed for all the prepared shape memory polymer (SMP) materials and the effect becomes less remarkable with increasing volume fraction of CB nanoparticles (v(CB)). The scratch self-healing tests show that the cross-linking of PE matrix, the addition of CB nanoparticles, and the previous stretching in the direction perpendicular to the scratch favor the closure of the scratch and its complete healing. This SME-aided self-healing could have potential applications in diverse fields such as coating and structure materials.

  19. Anti-bacterial treatment of polyethylene by cold plasma for medical purposes.

    PubMed

    Popelka, Anton; Novák, Igor; Lehocký, Marián; Chodák, Ivan; Sedliačik, Ján; Gajtanska, Milada; Sedliačiková, Mariana; Vesel, Alenka; Junkar, Ita; Kleinová, Angela; Spírková, Milena; Bílek, František

    2012-01-13

    Polyethylene (PE) is one of the most widely used polymers in many industrial applications. Biomedical uses seem to be attractive, with increasing interest. However, PE it prone to infections and its additional surface treatment is indispensable. An increase in resistance to infections can be achieved by treating PE surfaces with substances containing antibacterial groups such as triclosan (5-Chloro-2-(2,4-dichlorophenoxy)phenol) and chlorhexidine (1,1'-Hexamethylenebis[5-(4-chlorophenyl)biguanide]). This work has examined the impact of selected antibacterial substances immobilized on low-density polyethylene (LDPE) via polyacrylic acid (PAA) grafted on LDPE by low-temperature barrier discharge plasma. This LDPE surface treatment led to inhibition of Escherichia coli and Staphylococcus aureus adhesion; the first causes intestinal disease, peritonitis, mastitis, pneumonia, septicemia, the latter is the reason for wound and urinary tract infections.

  20. Comparison study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes.

    PubMed

    Zheng, Xiaoli; Xu, Qun

    2010-07-29

    In this work, we provided a comparison study of morphology and crystallization behavior of polyethylene (PE) and poly(ethylene oxide) (PEO) on single-walled carbon nanotubes (SWNTs) with assistance of supercritical CO(2). The resulting polymer/SWNT nanohybrids were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide-angle X-ray diffraction, and differential scanning calorimetry. SWNT small bundles were decorated by PE lamellar crystals, forming nanohybrid "shish-kebab" (NHSK) structure, whereas SWNTs were only wrapped by a thin amorphous polymer coating in the case of PEO. The varying morphologies of the nanohybrids were found to depend on the molecular conformation and the interactions between polymer chains and SWNTs. Nonisothermal experiments showed that SWNTs provided heterogeneous nucleation sites for PE crystallization, while the NHSK structure hindered polymer chain diffusion and crystal growth. Also, SWNTs played antinucleation effect on PEO. In addition, the formation mechanism analysis indicated that PE chains preferred to form a homogeneous coating along the tube axis before proceeding to kebab crystal growth. The purpose of this work is to enlarge the area of theoretical understanding of introducing precisely hierarchical structures on carbon nanotubes, which are important for functional design in nanodevice applications.

  1. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films

    PubMed Central

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Repouskou, Eftychia; Kroll, Kevin; Kolvenbach, Boris; Corvini, Philippe F-X; Fava, Fabio

    2017-01-01

    This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE) and natural (cellulose) polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented) reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics. PMID:28841722

  2. An innovative recycling process to obtain pure polyethylene and polypropylene from household waste.

    PubMed

    Serranti, Silvia; Luciani, Valentina; Bonifazi, Giuseppe; Hu, Bin; Rem, Peter C

    2015-01-01

    An innovative recycling process, based on magnetic density separation (MDS) and hyperspectral imaging (HSI), to obtain high quality polypropylene and polyethylene as secondary raw materials, is presented. More in details, MDS was applied to two different polyolefin mixtures coming from household waste. The quality of the two separated PP and PE streams, in terms of purity, was evaluated by a classification procedure based on HSI working in the near infrared range (1000-1700 nm). The classification model was built using known PE and PP samples as training set. The results obtained by HSI were compared with those obtained by classical density analysis carried in laboratory on the same polymers. The results obtained by MDS and the quality assessment of the plastic products by HSI showed that the combined action of these two technologies is a valid solution that can be implemented at industrial level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Modular Polyethylene Inserts for Total Knee Arthroplasty: Can Surgeons Detect 1-mm Thickness Increments?

    PubMed

    Yoo, Joanne Y; Cai, Jenny; Chen, Antonia F; Austin, Matthew S; Sharkey, Peter F

    2016-05-01

    Some manufacturers have introduced polyethylene (PE) inserts in 1-mm increment thickness options to allow for finer adjustments in total knee arthroplasty kinematics. Two surgeons with extensive experience performed 88 total knee arthroplasties using implants with 1-mm PE inserts. After trial components were inserted and the optimal PE thickness was selected, the insert was removed and a trial insert size was randomly chosen from opaque envelopes (1-mm smaller, same size, and 1-mm larger). The knee was re-examined and the surgeon determined which size PE had been placed. Surgeons reliably determined insert thicknesses in 62.5% (55 of 88; P = .050) of trials. Surgeons were not able to accurately detect 1-mm incremental changes of trial PE implants on a consistent basis. The potential clinical usefulness of this concept should be further evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Doping Effect of Graphene Nanoplatelets on Electrical Insulation Properties of Polyethylene: From Macroscopic to Molecular Scale

    PubMed Central

    Jing, Ziang; Li, Changming; Zhao, Hong; Zhang, Guiling; Han, Baozhong

    2016-01-01

    The doping effect of graphene nanoplatelets (GNPs) on electrical insulation properties of polyethylene (PE) was studied by combining experimental and theoretical methods. The electric conduction properties and trap characteristics were tested for pure PE and PE/GNPs composites by using a direct measurement method and a thermal stimulated current (TSC) method. It was found that doping smaller GNPs is more beneficial to decrease the conductivity of PE/GNPs. The PE/GNPs composite with smaller size GNPs mainly introduces deep energy traps, while with increasing GNPs size, besides deep energy traps, shallow energy traps are also introduced. These results were also confirmed by density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) method calculations. Therefore, doping small size GNPs is favorable for trapping charge carriers and enhancing insulation ability, which is suggested as an effective strategy in exploring powerful insulation materials. PMID:28773802

  6. Improvement of barrier properties of rotomolded PE containers with nanoclay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamshidi, Shadi; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca

    Polyethylene (PE) is widely used to make bulk containers in rotational molding process. The challenge in this study is to improve permeation resistance of PE to hydrocarbon solvents and gases. Adding organomodified clay improves the thermal, barrier and mechanical properties of PE. In fact, clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, the compatibilizer plays a crucial role to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylenemore » (LLDPE) layered silicate nanocomposite were melt-compounded with two concentrations of organomodified clay (2 and 4 wt. %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined by using X-ray diffraction, transmission electron microscopy (TEM) and rheology test. Rheology was used to determine the performance of our material at low shear processing condition.« less

  7. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    PubMed

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites.

  8. Peri-Implant Distribution of Polyethylene Debris in Postmortem-Retrieved Knee Arthroplasties: Can Polyethylene Debris Explain Loss of Cement-Bone Interlock in Successful Total Knee Arthroplasties?

    PubMed

    Cyndari, Karen I; Goodheart, Jacklyn R; Miller, Mark A; Oest, Megan E; Damron, Timothy A; Mann, Kenneth A

    2017-07-01

    Loss of mechanical interlock between cement and bone with in vivo service has been recently quantified for functioning, nonrevised, cemented total knee arthroplasties (TKAs). The cause of interlocking trabecular resorption is not known. The goal of this study is to quantify the distribution of PE debris at the cement-bone interface and determine if polyethylene (PE) debris is locally associated with loss of interlock. Fresh, nonrevised, postmortem-retrieved TKAs (n = 8) were obtained en bloc. Laboratory-prepared constructs (n = 2) served as negative controls. The intact cement-bone interface of each proximal tibia was embedded in Spurr's resin, sectioned, and imaged under polarized light to identify birefringent PE particles. PE wear particle number density was quantified at the cement-bone interface and distal to the interface, and then compared with local loss of cement-bone interlock. The average PE particle number density for postmortem-retrieved TKAs ranged from 8.6 (1.3) to 24.9 (3.1) particles/mm 2 (standard error) but was weakly correlated with years in service. The average particle number density was twice as high as distal (>5mm) to the interface compared to at the interface. The local loss of interlock at the interface was not related to the presence, absence, or particle density of PE. PE debris can migrate extensively along the cement-bone interface of well-fixed tibial components. However, the amount of local bone loss at the cement-bone interface was not correlated with the amount of PE debris at the interface, suggesting that the observed loss of trabecular interlock in these well-fixed TKAs may be due to alternative factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Radiative human body cooling by nanoporous polyethylene textile.

    PubMed

    Hsu, Po-Chun; Song, Alex Y; Catrysse, Peter B; Liu, Chong; Peng, Yucan; Xie, Jin; Fan, Shanhui; Cui, Yi

    2016-09-02

    Thermal management through personal heating and cooling is a strategy by which to expand indoor temperature setpoint range for large energy saving. We show that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution (50 to 1000 nanometers). We processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability. We developed a device to simulate skin temperature that shows temperatures 2.7° and 2.0°C lower when covered with nanoPE cloth and with processed nanoPE cloth, respectively, than when covered with cotton. Our processed nanoPE is an effective and scalable textile for personal thermal management. Copyright © 2016, American Association for the Advancement of Science.

  10. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Nie, Jianlong; Jin, Baosheng; Shao, Shanshan; Xiao, Guomin

    2015-09-01

    Catalytic co-pyrolysis of black-liquor lignin and waste plastics (polyethylene, PE; polypropylene PP; polystyrene, PS) was conducted in a fluidized bed. The effects of temperature, plastic to lignin ratio, catalyst and plastic types on product distributions were studied. Both aromatic and olefin yields increased with increasing PE proportion. Petrochemical yield of co-pyrolysis of PE and lignin was LOSA-1 > spent FCC > Gamma-Al2O3 > sand. The petrochemical yield with LOSA-1 is 43.9% which is more than two times of that without catalyst. The feedstock for co-pyrolysis with lignin is polystyrene > polyethylene > polypropylene. Catalytic co-pyrolysis of black-liquor lignin with PS produced the maximum aromatic yield (55.3%), while co-pyrolysis with PE produced the maximum olefin yield (13%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Modification of graphene oxide with amphiphilic double-crystalline block copolymer polyethylene-b-poly(ethylene oxide) with assistance of supercritical CO2 and its further functionalization.

    PubMed

    Zheng, Xiaoli; Xu, Qun; He, Linghao; Yu, Ning; Wang, Shanshan; Chen, Zhimin; Fu, JianWei

    2011-05-19

    Graphene oxide (GO) sheets were noncovalently modified with an amphiphilic double-crystalline block copolymer, polyethylene-b-poly(ethylene oxide) (PE-b-PEO) with assistance of supercritical CO(2) (SC CO(2)) in this work. The resulting PE-b-PEO/GO nanohybrids were characterized by transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. Distinct morphologies of PE-b-PEO decorating on the surface of GO were obtained in different solvent systems and at different SC CO(2) pressures. We found that the solvent system and the SC CO(2) have significant influence on the crystallization, aggregation, or assembly behaviors of PE-b-PEO molecular chains on the GO sheets. The formation mechanism of the distinct nanohybrid structures is attributed to a relevant easy heteronucleation and the limited crystal growth of the block polymer on the surface of GO. The resulting modified GO sheets could find a broad spectrum of applications not only in producing graphene-based nanocomposites but also being used as a template to fabricate multifunctional structures due to the unique properties of PE-b-PEO. As a proof-of-concept, we further decorated the GO sheets with the as-prepared Au nanoparticles (Au NPs) and CdTe nanoparticles (CdTe NPs) with PE-b-PEO as the interlinker. Using the thiol-terminated PE-b-PEO as an interlinker, Au NPs can be densely assembled on the surface of GO via robust Au-S bonds. Furthermore, the photoluminescence quenching of CdTe NPs was more notable for PE-b-PEO/GO-CdTe hybrid compared to the GO-CdTe hybrid, suggesting that the electron transfer from the CdTe NPs to the GO sheets was enhanced with the PE-b-PEO interlinker. The availability of these affordable graphene-based multifunctional structures and their fundamental properties will open up new opportunities for nanoscience and nanotechnology and accelerate their applications. © 2011 American Chemical Society

  12. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms.

    PubMed

    Yang, Jun; Yang, Yu; Wu, Wei-Min; Zhao, Jiao; Jiang, Lei

    2014-12-02

    Polyethylene (PE) has been considered nonbiodegradable for decades. Although the biodegradation of PE by bacterial cultures has been occasionally described, valid evidence of PE biodegradation has remained limited in the literature. We found that waxworms, or Indian mealmoths (the larvae of Plodia interpunctella), were capable of chewing and eating PE films. Two bacterial strains capable of degrading PE were isolated from this worm's gut, Enterobacter asburiae YT1 and Bacillus sp. YP1. Over a 28-day incubation period of the two strains on PE films, viable biofilms formed, and the PE films' hydrophobicity decreased. Obvious damage, including pits and cavities (0.3-0.4 μm in depth), was observed on the surfaces of the PE films using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The formation of carbonyl groups was verified using X-ray photoelectron spectroscopy (XPS) and microattenuated total reflectance/Fourier transform infrared (micro-ATR/FTIR) imaging microscope. Suspension cultures of YT1 and YP1 (10(8) cells/mL) were able to degrade approximately 6.1 ± 0.3% and 10.7 ± 0.2% of the PE films (100 mg), respectively, over a 60-day incubation period. The molecular weights of the residual PE films were lower, and the release of 12 water-soluble daughter products was also detected. The results demonstrated the presence of PE-degrading bacteria in the guts of waxworms and provided promising evidence for the biodegradation of PE in the environment.

  13. UV induced surface modification on improving the cytocompatibility of metallocene polyethylene.

    PubMed

    Jaganathan, Saravana K; Prasath, Mani M

    2018-01-01

    Demand for medical implants is rising day by day as the world becomes the place for more diseased and older people. Accordingly, in this research, metallocene polyethylene (mPE), a commonly used polymer was treated with UV rays for improving its biocompatibility. Scanning electron microscopy (SEM) images confirmed the formation of crests and troughs, which depicts the improvement of surface roughness of mPE substrates caused by UV etching. Accordingly, the contact angle measurements revealed that the wettability of mPE-2.5 J/cm2 (68.09º) and mPE-5 J/cm2 (57.93º) samples were found to be increased compared to untreated mPE (86.84º) indicating better hydrophilicity. Further, the UV treated surface exhibited enhanced blood compatibility as determined in APTT (untreated mPE- 55.3 ± 2.5 s, mPE-2.5 J/cm2 - 76.7 ± 4.1 s and mPE-5 J/cm2 - 112.3 ± 2 s) and PT (untreated mPE - 24.7 ± 1.5 s, mPE- 2.5 J/cm2 - 34.3 ± 1.1 s and mPE-5 J/cm2 - 43 ± 2 s) assay. Moreover, the treated mPE-2.5 J/cm2 (4.88%) and mPE-5 J/cm2 (1.79%) showed decreased hemolytic percentage compared to untreated mPE (15.40%) indicating better safety to red blood cells. Interestingly, the changes in physicochemical properties of mPE are directly proportional to the dosage of the UV rays. UV modified mPE surfaces were found to be more compatible as identified through MTT assay, photomicrograph and SEM images of the seeded 3T3 cell population. Hence UV-modified surface of mPE may be successfully exploited for medical implants.

  14. Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome.

    PubMed

    Brandon, Anja Malawi; Gao, Shu-Hong; Tian, Renmao; Ning, Daliang; Yang, Shan-Shan; Zhou, Jizhong; Wu, Wei-Min; Criddle, Craig S

    2018-06-05

    Recent studies have demonstrated the ability for polystyrene (PS) degradation within the gut of mealworms ( Tenebrio molitor). To determine whether plastics may be broadly susceptible to biodegradation within mealworms, we evaluated the fate of polyethylene (PE) and mixtures (PE + PS). We find that PE biodegrades at comparable rates to PS. Mass balances indicate conversion of up 49.0 ± 1.4% of the ingested PE into a putative gas fraction (CO 2 ). The molecular weights ( M n ) of egested polymer residues decreased by 40.1 ± 8.5% in PE-fed mealworms and by 12.8 ± 3.1% in PS-fed mealworms. NMR and FTIR analyses revealed chemical modifications consistent with degradation and partial oxidation of the polymer. Mixtures likewise degraded. Our results are consistent with a nonspecific degradation mechanism. Analysis of the gut microbiome by next-generation sequencing revealed two OTUs ( Citrobacter sp. and Kosakonia sp.) strongly associated with both PE and PS as well as OTUs unique to each plastic. Our results suggest that adaptability of the mealworm gut microbiome enables degradation of chemically dissimilar plastics.

  15. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.

    PubMed

    Guzik, Maciej W; Kenny, Shane T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh P; Nikodinovic-Runic, Jasmina; Murray, Michael; O'Connor, Kevin E

    2014-05-01

    A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.

  16. Effect of POLYURETHANE/NANO-SiO2 Composites Coating on Thermo-Mechanical Properties of Polyethylene Film

    NASA Astrophysics Data System (ADS)

    Ching, Yern Chee; Yaacob, Iskandar Idris

    2011-06-01

    Polyethylene (PE) film was coated with polyurethane/nanosilica composite layer using rod Mayer process. The polyurethane/nanosilica system was prepared by dispersing nanosilica powder into solvent borne polyurethane (PU) binder under vigorous stirring. The silica nanoparticle used has an average diameter of 16 nm, and their weight fraction were varied from 0 % to 14 %. Two different thicknesses of the PU/nanosilica coating layer were fabricated which were about 4 μm and 8 μm. The structure and thermal mechanical features of the nanocomposite coated PE film were characterized by scanning electron microscope (SEM), dynamic mechanical analyzer (DMA), thermogravimetric analyzer (TGA) as well as tensile tests. The results showed that thin layer coating of the PU/nanosilica composite reduced tensile strength of PE substrate slightly. However, the nanocomposite coating of up to 8 μm reduced the elongation % of PE substrate significantly. PU/nanosilica composite coating layer increased the tensile modulus and stiffness of PE substrate. There was no influence of the PU/nanosilica composite coating to the thermal degradation rate of PE film.

  17. ESCA Study of Poly (Vinylidene Fluoride) Tetrafluoroethylene - Ethylene Copolymer and Polyethylene Exposed to Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of poly(vinylidene fluoride) (PVDF), tetrafluoroethylene-ethylene copolymer (TFE/ET) and polyethylene (PE) exposed to atomic oxygen (O(P-3)), in or out of the glow of a radio-frequency O2 plasma, were compared. ESCA spectra of PE films exposed to (O(P-3)) in low Earth orbit (LEO) on the STS-8 Space Shuttle were also examined. Apart from O(P-3)-induced surface recession (etching), the various polymer films exhibited surface oxidation, which proceeded towards equilibrium saturation oxygen levels. The maximum surface oxygen uptakes for in-glow or out-of-glow exposures were in the order: PE greater than TFE/ET greater than PVDF; for PE itself, the oxygen uptakes were in the order: in glow greater than out of glow greater than LEO. Given prior ESCA data on poly(vinyl fluoride) and polytetrafluoroethylene films exposed to O(P-3), the extent of surface oxidation is seen to decrease regularly with increase in fluorine substitution in a family of ethylene-type polymers. (Keywords: ESCA; poly(vinylidene fluoride); tetrafluoroethylene ethylene copolymer; polyethylene; atomic oxygen; radio-frequency oxygen plasma; low Earth orbit)

  18. Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki

    2017-10-01

    Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.

  19. Graphite/Ultra-High Modulus Polyethylene Hybrid Fiber Composites with Epoxy and Polyethylene Matrices for Cosmic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of the most significant technical challenges in long-duration space missions is that of protecting the crew from harmful radiation. Protection against such radiation on a manned Mars mission will be of vital importance both during transit and while on the surface of the planet. The development of multifunctional materials that serve as integral structural members of the space vehicle and provide the necessary radiation shielding for the crew would be both mission enabling and cost effective. Additionally, combining shielding and structure could reduce total vehicle mass. Hybrid laminated composite materials having both ultramodulus polyethylene (PE) and graphite fibers in epoxy and PE matrices could meet such mission requirements. PE fibers have excellent physical properties, including the highest specific strength of any known fiber. Moreover, the high hydrogen (H) content of polyethylene makes the material an excellent shielding material for cosmic radiation. When such materials are incorporated into an epoxy or PE matrix a very effective shielding material is expected. Boron (B) may be added to the matrix resin or used as a coating to further increase the shielding effectiveness due to B s ability to slow thermal neutrons. These materials may also serve as micrometeorites shields due to PE s high impact energy absorption properties. It should be noted that such materials can be fabricated by existing equipment and methods. It is the objective of this work therefore to: (a) perform preliminary analysis of the radiation transport within these materials; (b) fabricate panels for mechanical property testing before and after radiation exposure. Preliminary determination on the effectiveness of the combinations of material components on both shielding and structural efficiency will be made.

  20. Wear performance of neat and vitamin E blended highly cross-linked PE under severe conditions: The combined effect of accelerated ageing and third body particles during wear test.

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-12-01

    The objective of this study is to evaluate the effects of third-body particles on the in vitro wear behaviour of three different sets of polyethylene acetabular cups after prolonged testing in a hip simulator and accelerated ageing. Vitamin E-blended, cross-linked polyethylene (XLPE_VE), cross-linked polyethylene (XLPE) and conventional polyethylene (STD_PE) acetabular cups were simulator tested for two million cycles under severe conditions (i.e. by adding third-body particles to the bovine calf serum lubricant). Micro-Fourier Transform Infrared and micro-Raman spectroscopic analyses, differential scanning calorimetry, and crosslink density measurements were used to characterize the samples at a molecular level. The STD_PE cups had twice mass loss than the XLPE_VE components and four times than the XLPE samples; statistically significant differences were found between the mass losses of the three sets of cups. The observed wear trend was justified on the basis of the differences in cross-link density among the samples (XLPE>XLPE_VE>STD_PE). FTIR crystallinity profiles, bulk DSC crystallinity and surface micro-Raman crystallinity seemed to have a similar behaviour upon testing: all of them (as well as the all-trans and ortho-trans contents) revealed the most significant changes in XLPE and XLPE_VE samples. The more severe third-body wear testing conditions determined more noticeable changes in all spectroscopic markers with respect to previous tests. Unexpectedly, traces of bulk oxidation were found in both STD_PE (unirradiated) and XLPE (remelting-stabilized), which were expected to be stable to oxidation; on the contrary, XLPE_VE demonstrated a high oxidative stability in the present, highly demanding conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Landfill Liners and Covers: Properties and Application to Army Landfills.

    DTIC Science & Technology

    1984-06-01

    polymers, TPE can be seamed by heat techniques. Materials such as thermoplastic EPDM and nitrile rubber /PVC blends are still being tested to determine their...such as polyethylene (PE), polyvinyl chloride (PVC), butyl rubber , ethylene propylene diene monomer ( EPDM ), chlorinated polyethylene (CPE), and others...chlorosulfonated polyethy- lene (CSPE), chlorinated polyethylene (CPE), butyl rubber , ethylene propylene S rubber ( EPDM ), neoprene, high-density polyethylene

  2. Fibers based on polyethylene with silicon and silicon carbide nanoparticles

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Krutikova, A. A.; Kovaleva, A. N.; Rychagov, O. V.; Ischenko, A. A.

    2017-12-01

    In the paper, fibrous materials based on polyethylene with nanosized silicon and silicon carbide obtained by the plasma chemical method have been obtained. The concentration of nanosilicon nanoparticles was 0.1-1.5%. Fibers absorb UV radiation in the range 200-400 nm. The size of silicon nanoparticles and dispersion in fibers are estimated by X-ray diffraction. It is shown that silicon nanoparticles exert no effect on the formation of the internal structure of the PE matrix. The degree of crystallinity, melting and crystallization temperatures remain constant. The surface properties of films are investigated by triboelectric methods and by determining the wetting angle. The surface properties of composite films do not differ from the properties of PE films with the concentration of nanoparticles from 0.1 to 1.0%. At a 1.5% content of n-SiC, the microrelief of the surface changes, and the friction coefficient of the films increases. The resulting films are recommended for application as a UV protective coating.

  3. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    PubMed

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  4. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture.

    PubMed

    Zhao, Jun; Chen, Min; Wang, Xiaoyan; Zhao, Xiaodong; Wang, Zhenwen; Dang, Zhi-Min; Ma, Lan; Hu, Guo-Hua; Chen, Fenghua

    2013-06-26

    In this paper, the triple shape memory effects (SMEs) observed in chemically cross-linked polyethylene (PE)/polypropylene (PP) blends with cocontinuous architecture are systematically investigated. The cocontinuous window of typical immiscible PE/PP blends is the volume fraction of PE (v(PE)) of ca. 30-70 vol %. This architecture can be stabilized by chemical cross-linking. Different initiators, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane (DHBP), dicumylperoxide (DCP) coupled with divinylbenzene (DVB) (DCP-DVB), and their mixture (DHBP/DCP-DVB), are used for the cross-linking. According to the differential scanning calorimetry (DSC) measurements and gel fraction calculations, DHBP produces the best cross-linking and DCP-DVB the worst, and the mixture, DHBP/DCP-DVB, is in between. The chemical cross-linking causes lower melting temperature (Tm) and smaller melting enthalpy (ΔHm). The prepared triple shape memory polymers (SMPs) by cocontinuous immiscible PE/PP blends with v(PE) of 50 vol % show pronounced triple SMEs in the dynamic mechanical thermal analysis (DMTA) and visual observation. This new strategy of chemically cross-linked immiscible blends with cocontinuous architecture can be used to design and prepare new SMPs with triple SMEs.

  5. Efficacy of UV-C irradiation for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films.

    PubMed

    Ha, Jae-Won; Back, Kyeong-Hwan; Kim, Yoon-Hee; Kang, Dong-Hyun

    2016-08-01

    In this study, the efficacy of using UV-C light to inactivate sliced cheese inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and, packaged with 0.07 mm films of polyethylene terephthalate (PET), polyvinylchloride (PVC), polypropylene (PP), and polyethylene (PE) was investigated. The results show that compared with PET and PVC, PP and PE films showed significantly reduced levels of the three pathogens compared to inoculated but non-treated controls. Therefore, PP and PE films of different thicknesses (0.07 mm, 0.10 mm, and 0.13 mm) were then evaluated for pathogen reduction of inoculated sliced cheese samples. Compared with 0.10 and 0.13 mm, 0.07 mm thick PP and PE films did not show statistically significant reductions compared to non-packaged treated samples. Moreover, there were no statistically significant differences between the efficacy of PP and PE films. These results suggest that adjusted PP or PE film packaging in conjunction with UV-C radiation can be applied to control foodborne pathogens in the dairy industry. Copyright © 2016. Published by Elsevier Ltd.

  6. A study of the polyethylene membrane used in diffusion chambers for radon gas concentration measurements

    NASA Astrophysics Data System (ADS)

    Leung, S. Y. Y.; Nikezic, D.; Leung, J. K. C.; Yu, K. N.

    2007-10-01

    Solid-state nuclear track detectors (SSNTDs) in diffusion chambers have been routinely used for long-term measurements of radon gas concentrations. In usual practice, a filter is added across the top of the diffusion chamber to stop the progeny from entering. Thoron can also be deterred from entering the diffusion chamber by using a polyethylene (PE) membrane. However, the thickness of the PE membrane is rarely specified in the literature. In this paper, we will present our experimental results for a radon exposure that the number of alpha-particle tracks registered by the LR 115 SSNTD in a Karlsruhe diffusion chamber covered with one layer of PE membrane is actually enhanced. This is explained by enhanced deposition of radon progeny on the outside surface of the PE membrane and the insufficient thickness of the PE membrane to stop the alpha particles emitted from these deposited radon progeny to reach the SSNTD. We will present the PE thickness which can stop the alpha particles emitted from the deposited radon or thoron progeny. For the "twin diffusion chambers method", one of the diffusion chambers is covered with PE membranes. The optimal number of thickness of PE membranes will be determined, which allows the largest amount of radon gas to diffuse into the diffusion chamber while at the same time screening out the largest amount of thoron gas.

  7. Highly crosslinked polyethylene: a safe alternative to conventional polyethylene for dual mobility cup mobile component. A biomechanical validation.

    PubMed

    Malatray, Matthieu; Roux, Jean-Paul; Gunst, Stanislas; Pibarot, Vincent; Wegrzyn, Julien

    2017-03-01

    Dual mobility cup (DMC) consists of a cobalt-chromium (CoCr) alloy cup articulated with a polyethylene (PE) mobile component capturing the femoral head in force using a snap-fit technique. This biomechanical study was the first to evaluate and compare the generation of cracks in the retentive area of DMC mobile components made of highly crosslinked PE (XLPE) or conventional ultra-high molecular weight PE (UHMWPE). Eighty mobile components designed for a 52-mm diameter Symbol® DMC (Dedienne Santé, Mauguio, France) and a 28-mm diameter femoral head were analyzed. Four groups of 20 mobile components were constituted according to the PE material: raw UHMWPE, sterilized UHMWPE, annealed XLPE and remelted XLPE. Ten mobile components in each group were impacted with a 28-mm diameter CoCr femoral head using a snap-fit technique. The occurrence, location and area of the cracks in the retentive area were investigated using micro-CT (Skyscan 1176®, Bruker, Aarsellar, Belgium) with a 35 μm nominal isotropic voxel size by two observers blinded to the PE material and impaction or not of the mobile components. Compared to conventional UHMWPE, the femoral head snap-fit did not generate more or wider cracks in the retentive area of annealed or remelted XLPE mobile components. This biomechanical study suggests that XLPE in DMC could be a safe alternative to conventional UHMWPE regarding the generation of cracks in the retentive area related to the femoral head snap-fit.

  8. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics.

    PubMed

    Xu, Baile; Liu, Fei; Brookes, Philip C; Xu, Jianming

    2018-06-01

    Microplastics and sulfamethoxazole coexist ubiquitously in the marine environment, and microplastics tend to sorb organic pollutants from the surrounding environment. Here, the sorption kinetics and isotherms of sulfamethoxazole on polyethylene (PE) microplastics closely fitted a pseudo-second-order model (R 2  = 0.98) and linear model (R 2  = 0.99), respectively, indicating that the sorption process was partition-dominant interaction. The main binding mechanism was possibly the van der Waals interaction for hydrophilic sulfamethoxazole onto hydrophobic PE microplastics. The effects of pH, dissolved organic matter and salinity on sorption behavior were also studied. The sorption behavior of sulfamethoxazole on PE microplastics was not significantly influenced by pH and salinity, probably because the electrostatic repulsion played a minor role. In addition, the negligible effect of dissolved organic matter was attributed to the greater affinity of sulfamethoxazole to PE microplastics than to dissolved organic matter. Our results demonstrated that PE microplastics may serve as a carrier for sulfamethoxazole in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Comparison study of PE epitaxy on carbon nanotubes and graphene oxide and PE/graphene oxide as amphiphilic molecular structure for solvent separation

    NASA Astrophysics Data System (ADS)

    He, Linghao; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Fu, Jianwei

    2012-03-01

    Carbon nanotubes (CNTs) and graphene nanosheets, as one-dimensional and two-dimensional carbon-based nanomaterials respectively, have different abilities to induce the polymer crystallization. In this study, hybrid materials, polyethylene (PE) decorating on CNTs and graphene oxide (GO), were prepared by a facile and efficient method using supercritical carbon dioxide (SC CO2) as anti-solvent. And the morphology and crystallization behavior of PE on CNTs and GO were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide angle X-ray diffraction, and differential scanning calorimetry. Although both CNTs and GO could act as nucleating agents to induce PE epitaxial growth, CNTs were decorated by PE lamellar crystals forming nanohybrid "shish-kebab" (NHSK) structure, whereas GO sheets were only decorated with petal-like PE crystals. The varying morphologies of the nanohybrids depend on the PE epitaxy and the interactions between polymer chains and substrates. High surface curvature and the perfect ordered crystal structure of CNTs make PE crystals periodically grow on CNTs. While PE crystals grow and form multiple orientation-lamellae on GO due to the lattice matching and complex interactions between PE chains and GO. In addition, our experimental results show an interesting and evident stratification phenomenon for the PE/GO hybrid material, implying that GO decorated by PE have a screening function for the solvents. We anticipate that this work can widen the area of functionalization of carbon-based nanomaterials with a controlled means by an environmentally benign method, which are important for the functional design in nanodevice applications.

  10. Time-of-flight secondary ion mass spectrometry (ToF-SIMS)-based analysis and imaging of polyethylene microplastics formation during sea surf simulation.

    PubMed

    Jungnickel, H; Pund, R; Tentschert, J; Reichardt, P; Laux, P; Harbach, H; Luch, A

    2016-09-01

    Plastic particles smaller than 5mm, so called microplastics have the capability to accumulate in rivers, lakes and the marine environment and therefore have begun to be considered in eco-toxicology and human health risk assessment. Environmental microplastic contaminants may originate from consumer products like body wash, tooth pastes and cosmetic products, but also from degradation of plastic waste; they represent a potential but unpredictable threat to aquatic organisms and possibly also to humans. We investigated exemplarily for polyethylene (PE), the most abundant constituent of microplastic particles in the environment, whether such fragments could be produced from larger pellets (2mm×6mm). So far only few analytical methods exist to identify microplastic particles smaller than 10μm, especially no imaging mass spectrometry technique. We used at first time-of-flight secondary ion mass spectrometry (ToF-SIMS) for analysis and imaging of small PE-microplastic particles directly in the model system Ottawa sand during exposure to sea surf simulation. As a prerequisite, a method for identification of PE was established by identification of characteristic ions for PE out of an analysis of grinded polymer samples. The method was applied onto Ottawa sand in order to investigate the influence of simulated environmental conditions on particle transformation. A severe degradation of the primary PE pellet surface, associated with the transformation of larger particles into smaller ones already after 14days of sea surf simulation, was observed. Within the subsequent period of 14days to 1month of exposure the number of detected smallest-sized particles increased significantly (50%) while the second smallest fraction increased even further to 350%. Results were verified using artificially degraded PE pellets and Ottawa sand. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. New plastic recycling technology

    EPA Science Inventory

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  12. Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes.

    PubMed

    Ling, Yichuan; Tian, Yu; Wang, Xi; Wang, Jamie C; Knox, Javon M; Perez-Orive, Fernando; Du, Yijun; Tan, Lei; Hanson, Kenneth; Ma, Biwu; Gao, Hanwei

    2016-10-01

    Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr 3 ) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr 3 films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m -2 and 4%: a new benchmark of device performance for all-inorganic PeLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thermal Management in Nanofiber-Based Face Mask

    DOE PAGES

    Yang, Ankun; Cai, Lili; Zhang, Rufan; ...

    2017-05-15

    Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here in this paper, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM 2.5) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. Wemore » further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.« less

  14. Thermal Management in Nanofiber-Based Face Mask.

    PubMed

    Yang, Ankun; Cai, Lili; Zhang, Rufan; Wang, Jiangyan; Hsu, Po-Chun; Wang, Hongxia; Zhou, Guangmin; Xu, Jinwei; Cui, Yi

    2017-06-14

    Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM 2.5 ) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. We further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.

  15. Thermal Management in Nanofiber-Based Face Mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ankun; Cai, Lili; Zhang, Rufan

    Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here in this paper, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM 2.5) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. Wemore » further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.« less

  16. The influence of early radiolucent lines appearing on femoral head penetration into HXLPE cemented sockets.

    PubMed

    Morita, Daigo; Seki, Taisuke; Higuchi, Yoshitoshi; Takegami, Yasuhiko; Amano, Takafumi; Ishiguro, Naoki

    2018-04-01

    This study investigates differences in femoral head penetration between highly cross-linked polyethylene (HXLPE) cemented sockets both with and without radiolucent lines (RLLs) in the early postoperative phase and at 5 years follow-up. There were 35 patients (37 hips), mean age of 66.8 years, who underwent total hip arthroplasty (THA) using highly HXLPE cemented sockets. They were divided into 2 groups based on postoperative the early appearance of RLLs. Femoral head penetrations on both anteroposterior- and Lauenstein-view radiographs were evaluated, and the mean polyethylene (PE) wear rate was calculated based on femoral head penetrations between 2 and 5 years. Femoral head penetrations in the proximal direction were 0.075 mm and 0.150 mm in the RLL and non-RLL groups at 1 year postoperatively ( p = 0.019). At 5 years measured penetration was 0.107 mm and 0.125 mm in the RLL and non-RLL groups, respectively ( p = 0.320). The mean PE wear rates in anteroposterior-view were 0.008 mm/year and 0.003 mm/year in the RLL and non-RLL groups ( p = 0.390) and those in Lauenstein-view were 0.010 mm/year and 0.005 mm/year, respectively ( p = 0.239). In the RLL group, the PE bedding-in was less compared with those in the non-RLL group. Additionally, the mean PE wear rate in the RLL group tended to be higher than that in the non-RLL group. The distribution of stress loading through the cement may differ according to whether early RLLs appear.

  17. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.

    PubMed

    Borreani, Giorgio; Tabacco, Ernesto

    2015-01-01

    The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization

    DOE PAGES

    Neti, Venkata S.; Das, Sadananda; Brown, Suree; ...

    2017-08-29

    Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less

  19. Plasticized chitosan/polyolefin films produced by extrusion.

    PubMed

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neti, Venkata S.; Das, Sadananda; Brown, Suree

    Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less

  1. Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neti, Venkata S.; Das, Sadananda; Brown, Suree

    Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g- U/kg of adsorbent) in laboratory screeningmore » tests using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. The modest capacity in 21- days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less

  2. Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment.

    PubMed

    Zhao, Tianyi; Zhang, Dongmei; Yu, Cunming; Jiang, Lei

    2016-09-14

    Low cost, eco-friendly, and easily scaled-up processes are needed to fabricate efficient oil/water separation materials, especially those useful in harsh environments such as highly acidic, alkaline, and salty environments, to deal with serious oil spills and industrial organic pollutants. Herein, a highly efficient oil/water separation mesh with durable chemical stability was fabricated by simply scratching and pricking a conventional polyethylene (PE) film. Multiscaled morphologies were obtained by this scratching and pricking process and provided the mesh with a special wettability performance termed superhydrophobicity, superoleophilicity, and low water adhesion, while the inert chemical properties of PE delivered chemical etching resistance to the fabricated mesh. In addition to a highly efficient oil/corrosive liquid separation, the fabricated PE mesh was also reusable and exhibited ultrafast oil/water separation solely by gravity. The easy operation, chemical durability, reusability, and efficiency of the novel PE mesh give it high potential for use in industrial and consumer applications.

  3. [Supramacroparticulate polyethylene in inflammation of synovial-like interface membranes: Characterization and suggested nomenclature].

    PubMed

    Krenn, V; Hopf, F; Thomas, P; Thomsen, M; Usbeck, S; Boettner, F; Müller, S; Saberi, D; Hügle, T; Huber, M; Scheuber, L; Hopf, J C; Kretzer, J P

    2016-03-01

    The identification of particles of prosthesis material components in the histopathological diagnosis of synovialitis is of great importance in the evaluation of implant failure. In histopathological particle algorithms, polyethylene (PE) particles with a maximum length of less than 100 µm are designated with the term macroparticles; however, a systematic investigation and characterization are lacking. In SLIM knee specimens (n = 24) a minimum value of 210 µm and a maximum value of 2100 µm were measured; the mathematical mean length varied between 235 µm and 1416 µm. In SLIM hip specimens (n = 11) the minimum value was 290 µm and the maximum value was 1806 µm; the mean length varied between 353 and 1726 µm. Because of this conspicuous size, and to distinguish from PE macroparticles, the designation PE supra-macroparticulate is suggested. This new terminology acknowledges the fact that these PE particles are visible under magnification (e.g., × 12.5) and also macroscopically. The particles were also indirectly proven as there were completely separate and optically clear, column-shaped cavities corresponding to the shape of the PE particles (PE vacuoles). The life of the prosthesis is highly variable at between 12 and 300 months. In all cases loosening of the prosthesis, misalignment of the PE components, and/or damage to the PE inlay occurred. The cause and existence of these supra-macroparticulate PE particles (more than 100 µm) is still unclear. A mechanical malfunction seems probable and should be discussed. In prostheses with short lives the proof of supra-macroparticulate PE in SLIM could be a sign of an early mechanical problem. In the wider histopathological particle algorithm supra-macroparticulate PE was considered to fall in the category of macroparticles and should be considered in the histopathological diagnosis of implant failure.

  4. Catalytic thermal cracking of post-consumer waste plastics to fuels: Part 1 - Kinetics and optimization

    USDA-ARS?s Scientific Manuscript database

    Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...

  5. Polyethylene nano crystalsomes formed at a curved liquid/liquid interface.

    PubMed

    Wang, Wenda; Staub, Mark C; Zhou, Tian; Smith, Derrick M; Qi, Hao; Laird, Eric D; Cheng, Shan; Li, Christopher Y

    2017-12-21

    Crystallization is incommensurate with nanoscale curved space due to the lack of three dimensional translational symmetry of the latter. Herein, we report the formation of single-crystal-like, nanosized polyethylene (PE) capsules using a miniemulsion solution crystallization method. The miniemulsion was formed at elevated temperatures using PE organic solution as the oil phase and sodium dodecyl sulfate as the surfactant. Subsequently, cooling the system stepwisely for controlled crystallization led to the formation of hollow, nanosized PE crystalline capsules, which are named as crystalsomes since they mimic the classical self-assembled structures such as liposome, polymersome and colloidosome. We show that the formation of the nanosized PE crystalsomes is driven by controlled crystallization at the curved liquid/liquid interface of the miniemulson droplet. The morphology, structure and mechanical properties of the PE crystalsomes were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic force spectroscopy. Electron diffraction showed the single-crystal-like nature of the crystalsomes. The incommensurateness between the nanocurved interface and the crystalline packing led to reduced crystallinity and crystallite size of the PE crystalsome, as observed from the X-ray diffraction measurements. Moreover, directly quenching the emulsion below the spinodal line led to the formation of hierarchical porous PE crystalsomes due to the coupling of the PE crystallization and liquid/liquid phase separation. We anticipate that this unique crystalsome represents a new type of nanostructure that might be used as nanodrug carriers and ultrasound contrast agents.

  6. Wetting of Functionalized Polyethylene Film Having Ionizable Organic Acids and Bases at the Polymer-Water Interface: Relations between Functional Group Polarity, Extent of Ionization, and Contact Angle with Water.

    DTIC Science & Technology

    1988-03-01

    functional grouos in the interface contribute independently to the interfacial free energy is inaccurate, but leads to a tractable and physically reasonable...nonpolar, non -ionizable groups. As a limiting case, we consider a system *. containing only one type of polar and one type of nonpolar group (eq 9) with A...groups (protonition or deprotonation): these equations apply to both non - ionizable groups and to PE-CO 2H and PE-NR 2H + . Assuming that Figure 3

  7. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.

    PubMed

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike

    2015-12-04

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  8. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    PubMed Central

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike

    2015-01-01

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232

  9. Slow crack growth test method for polyethylene gas pipes. Volume 1. Topical report, December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leis, B.; Ahmad, J.; Forte, T.

    1992-12-01

    In spite of the excellent performance record of polyethylene (PE) pipes used for gas distribution, a small number of leaks occur in distribution systems each year because of slow growth of cracks through pipe walls. The Slow Crack Growth Test (SCG) has been developed as a key element in a methodology for the assessment of the performance of polyethylene gas distribution systems to resist such leaks. This tropical report describes work conducted in the first part of the research directed at the initial development of the SCG test, including a critical evaluation of the applicability of the SCG test asmore » an element in PE gas pipe system performance methodology. Results of extensive experiments and analysis are reported. The results show that the SCG test should be very useful in performance assessment.« less

  10. SECURING CONTAINERIZED HAZARDOUS WASTES WITH WELDED POLYETHYLENE ENCAPSULATES

    EPA Science Inventory

    Full-scale encapsulation of 208-liter (55-gal) drums was studied as a means for managing corroding containers of hazardous wastes in the field and rendering them suitable for transport and safe deposit within a final disposal site such as a landfill. Polyethylene (PE) receivers w...

  11. Reinforcing effects of different fibers on denture base resin based on the fiber type, concentration, and combination.

    PubMed

    Yu, Sang-Hui; Lee, Yoon; Oh, Seunghan; Cho, Hye-Won; Oda, Yutaka; Bae, Ji-Myung

    2012-01-01

    The aim of this study was to evaluate the reinforcing effects of three types of fibers at various concentrations and in different combinations on flexural properties of denture base resin. Glass (GL), polyaromatic polyamide (PA) and ultra-high molecular weight polyethylene (PE) fibers were added to heat-polymerized denture base resin with volume concentrations of 2.6%, 5.3%, and 7.9%, respectively. In addition, hybrid fiber-reinforced composite (FRC) combined with either two or three types of fibers were fabricated. The flexural strength, modulus and toughness of each group were measured with a universal testing machine at a crosshead speed of 5 mm/min. In the single fiber-reinforced composite groups, the 5.3% GL and 7.9% GL had the highest flexural strength and modulus; 5.3% PE was had the highest toughness. Hybrid FRC such as GL/PE, which showed the highest toughness and the flexural strength, was considered to be useful in preventing denture fractures clinically.

  12. Effects of Gravity on Ignition and Combustion Characteristics of Externally Heated Polyethylene Film

    NASA Astrophysics Data System (ADS)

    Ikeda, Mitsumasa

    2018-04-01

    The objective of this research is to investigate the effects of gravity on the ignition and the combustion characteristics of the Polyethylene (PE) film by outer heating. Combustion experiments of PE film were carried out in a normal gravity field and the microgravity field. In the microgravity experiments, it was carried out in 50 m-class drop facility. Here it can be realized 10- 4G microgravity field in about 2.5-3.0 second. The PE film is heated by the inserted high-temperature chamber. In the experiments, the PE was used film type. The chamber temperature was fixed at 900 K and 1000 K. In the case of microgravity field, the ignition delay period has become about 50 percent shorter than that in the case of the normal gravitational field. In the normal gravity field, since the PE surface layer is cooled by natural convection, the ignition delay period is considered to be longer than that in the microgravity field. The combustion time in the normal gravity was about 0.8 sec. In the microgravity field, the combustion time was more than 2 sec, and it could not be measured during the free fall period.

  13. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  14. Performance of passive sampling with low-density polyethylene membranes for the estimation of freely dissolved DDx concentrations in lake environments.

    PubMed

    Borrelli, Raffaella; Tcaciuc, A Patricia; Verginelli, Iason; Baciocchi, Renato; Guzzella, Licia; Cesti, Pietro; Zaninetta, Luciano; Gschwend, Philip M

    2018-06-01

    Laboratory and field studies were used to evaluate the performance of low-density polyethylene (PE) passive samplers for assessing the freely dissolved concentrations of DDT and its degradates (DDD and DDE, together referred to as DDx) in an Italian lake environment. We tested commercially available 25 μm thick PE sheets as well as specially synthesized, 10 μm thick PE films which equilibrated with their surroundings more quickly. We measured PE-water partitioning coefficients (K pew ) of the 10 μm thick PE films, finding good correspondence with previously reported values for thicker PE. Use of the 10 μm PE for ex situ sampling of a lake sediment containing DDx in laboratory tumbling experiments showed repeatability of ±15% (= standard deviation/mean). Next, we deployed replicate 10 μm and 25 μm PE samplers (N = 4 for 10 d and for 30 d) in the water and sediment of a lake located in northern Italy; the results showed dissolved DDx concentrations in the picogram/L range in porewater and the bottom water. Values deduced from 10 μm thick PE films compared well (95% of all comparison pairs matched within a factor of 5) with those obtained using PE films of 25 μm thickness when dissolved DDx concentrations were estimated using performance reference compound (PRC) corrections, whether left at the bed-water interface for 10 or 30 days. These results demonstrated the potential of this sampling method to provide estimation of the truly dissolved DDx concentrations, and thereby the mobile and bio-available fractions in both surface waters and sediment beds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers.

    PubMed

    Thompson, Jay M; Hsieh, Ching-Hong; Luthy, Richard G

    2015-02-17

    Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired CPE without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness.

  16. [Research progress of polyethylene inserts wear measurement and evaluation in total knee arthroplasty].

    PubMed

    Zhao, Feng; Wang, Chuan; Fan, Yubo

    2015-01-01

    Wear of polyethylene (PE) tibial inserts is a significant cause of implant failure of total knee arthroplasty (TKA). PE inserts wear measurement and evaluation is the key in TKA researches. There are many methods to measure insert wear. Qualitative methods such as observation are used to determine the wear and its type. Quantitative methods such as gravimetric analysis, coordinate measuring machines (CMM) and micro-computed tomography (micro-CT) are used to measure the mass, volume and geometry of wear. In this paper, the principle, characteristics and research progress of main insert wear evaluation method were introduced and the problems and disadvantages were analyzed.

  17. Mechanical Properties Studies of Components Formulation for Mixing Process Contain of Polypropylene, Polyethylene, and Aluminium Powder

    NASA Astrophysics Data System (ADS)

    Hamsi, A.; Dinzi, R.

    2017-03-01

    Certain powder and others components can induce toxic reactions if not properly handled in the mixing stage. During handling, the small particles can become airborne and be trapped in the lungs, another concern is inhomogeneities in the mixing process. Uniform quantities of the particles of the components are needed in all portions of the mixture. This paper reports the results of mechanical properties studies of mixing three components formulation for mixing process. Contain of Polyethylene (PE), Polyprophylene (PP) and Aluminium Powder. Powder mixer, Autodesk mold flow and computer based on excell method was carried out to study the influence of each formulation component on the flow %, PE 20% and Aluminium powder 2%. Macroscopic optic and macro photo was carried out to identify the homogenity of mixing, tensile test for identify the strength of component after mixing. Finally the optimal tensile test with composition PP 785,PE 20% and Aluminium powder 2% at speed 52 rpm, temperature 1500C, the tensile strength 20,92 N/mm2. At temperature 1600C, speed 100 rpm the optimum tensile strength 17,91 N/mm2. The result of simulation autodesk mold flow adviser the filling time 6 seconds. Otherwise on manual hot hidraulic press the time of filling 10 seconds.

  18. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    PubMed

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  19. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment

    PubMed Central

    Tan, Wensheng; Wang, Xiao

    2017-01-01

    Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force. PMID:29278367

  20. Correlation between free-volume parameters and physical properties of polyethylene-nitrile rubber blend

    NASA Astrophysics Data System (ADS)

    Gomaa, E.; Mostafa, N.; Mohsen, M.; Mohammed, M.

    2004-10-01

    Positron annihilation lifetime spectroscopy (PALS) was used to study the immiscibility of a polar nitrile rubber (NBR) that had been blended with pure and waste, low- and high-density polyethylene (PE). The effect of the weight percent of the rubber added to the PE was also investigated. It was found that a complicated variation (positive and negative) in both free-volume parameters (τ3 and I 3) from the values of the initial polymers forms an immiscible blend. These results are supported by a significant broadening in the free-volume hole size distributions. This has been interpreted in terms of interfacial spaces created between the boundaries of the two phases. Furthermore, a correlation was established between the free-volume parameters (τ3 and I 3) and the electrical and mechanical properties of the before mentioned polymer blends as a function of the weight percent of waste PE.

  1. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment.

    PubMed

    Liu, Huixia; Jiang, Yingjie; Tan, Wensheng; Wang, Xiao

    2017-12-26

    Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.

  2. Characterization and inventory of PBDD/F emissions from deca-BDE, polyethylene (PE) and metal blends during the pyrolysis process.

    PubMed

    Mei, Jun; Wang, Xiuji; Xiao, Xiao; Cai, Ying; Tang, Yuhui; Chen, Pei

    2017-04-01

    The thermal treatment of waste electrical and electronic equipment (WEEE) is regarded as the largest potential contributor to the environmental release of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs). Herein, the pyrolysis of decabromodiphenyl ether (deca-BDE), polyethylene (PE) and metal blends was conducted to investigate the emission characteristics of PBDD/Fs at different thermal treatment conditions. The total yield of polybrominated dibenzo-p-dioxins (PBDDs) was less than that of polybrominated dibenzofurans (PBDFs) during the pyrolysis of the PE matrix and metal blends. 2,3,7,8-TBDF and 1,2,3,7,8-PBDF were the dominant congeners emitted from the pyrolysis. Temperature, presence of oxygen and type of added metal were the critical influencing factors for the PBDD/F formation rates and speciation in the pyrolysis process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella.

    PubMed

    Bombelli, Paolo; Howe, Christopher J; Bertocchini, Federica

    2017-04-24

    Plastics are synthetic polymers derived from fossil oil and largely resistant to biodegradation. Polyethylene (PE) and polypropylene (PP) represent ∼92% of total plastic production. PE is largely utilized in packaging, representing ∼40% of total demand for plastic products (www.plasticseurope.org) with over a trillion plastic bags used every year [1]. Plastic production has increased exponentially in the past 50 years (Figure S1A in Supplemental Information, published with this article online). In the 27 EU countries plus Norway and Switzerland up to 38% of plastic is discarded in landfills, with the rest utilized for recycling (26%) and energy recovery (36%) via combustion (www.plasticseurope.org), carrying a heavy environmental impact. Therefore, new solutions for plastic degradation are urgently needed. We report the fast bio-degradation of PE by larvae of the wax moth Galleria mellonella, producing ethylene glycol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Degradation of sustainable mulch materials in two types of soil under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Villena, Jaime; González, Sara; Moreno, Carmen; Aceituno, Patricia; Campos, Juan; Meco, Ramón; María Moreno, Marta

    2017-04-01

    Mulching is a technique used in cultivation worldwide, especially for vegetable crops, for reducing weed growth, minimising or eliminating soil erosion, and often for enhancing total yields. Manufactured plastic films, mainly polyethylene (PE), have been widely used for this purpose due to their excellent mechanical properties, light weight and relatively low prices in recent years. However, the use of PE is associated with serious environmental problems related to its petrochemical origin and its long shelf-life, which causes a waste problem in our crop fields. For this reason, the use of biodegradable mulch materials (biopolymers and papers) as alternative to PE is increasing nowadays, especially in organic farming. However, these materials can suffer an undesirable early degradation (and therefore not fulfilling their function successfully), greatly resulting from the type of soil. For this reason, this study aimed to analyse the degradation pattern of different mulch materials buried in two types of soils, clay and sand, under laboratory conditions (25°C, dark surroundings, constant humidity). The mulch materials used were: 1) black polyethylene (15 µm); black biopolymers (15 µm): 2) maize starch-based, 3) potato starch-based, 4) polylactic acid-based, 5) black paper, 85 g/m2. Periodically (every 15-20 days), the weight and surface loss of the different materials were recorded. The results indicate that mulch degradation was earlier and higher in the clay soil, especially in the paper and in the potato starch-based materials, followed by the maize starch-based mulch, while polylactic acid-based suffered the least and the latest degradation. Keywords: mulch, biodegradable, biopolymer, paper, degradation. Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  5. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Hussein, M.

    2018-06-01

    The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.

  6. Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance.

    PubMed

    Xiong, Ming; Tang, Haolin; Wang, Yadong; Pan, Mu

    2014-01-30

    With the widely use in portable electronic devices and electric vehicles, the safety of lithium-ion battery has raised serious concerns, in which the thermal stability of separator plays an essential role in preventing thermal runaway reactions. The novelty of this work is to coat commercialized polyethylene (PE) separator and trilayer polypropylene/polyethylene/polypropylene (PP/PE/PP) separator with ethylcellulose (EC), a thermally stable and renewable biomass. The formation of the EC layer with high porosity is through a simple dipping and extracting process. The effects of the EC layer on thermal shrinkage, electrolyte wettability and cell performance are investigated. After coating, the thermal shrinkage of PE separator at shutdown and meltdown point is reduced from 20% to 9% and 42% to 23% respectively, while the drop of OCV under increasing temperature is also postponed from 130°C to 160°C. The electrolyte wettability of pristine trilayer PP/PE/PP separator is greatly improved, leading to increased capacity retention from 28% to 99% of the cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Study on Protection Mechanism of 30CrMnMo-UHMWPE Composite Armor

    PubMed Central

    Zhou, Yu; Li, Guoju; Fan, Qunbo; Wang, Yangwei; Zheng, Haiyang; Tan, Lin; Xu, Xuan

    2017-01-01

    The penetration of a 30CrMnMo ultra-high molecular weight polyethylene armor by a high-speed fragment was investigated via experiments and simulations. Analysis of the projectile revealed that the nose (of the projectile) is in the non-equilibrium state at the initial stage of penetration, and the low-speed regions undergo plastic deformation. Subsequently, the nose-tail velocities of the projectile were virtually identical and fluctuated together. In addition, the effective combination of the steel plate and polyethylene (PE) laminate resulted in energy absorption by the PE just before the projectile nose impacts the laminate. This early absorption plays a positive role in the ballistic performance of the composite armor. Further analysis of the internal energy and mass loss revealed that the PE laminate absorbs energy via the continuous and stable failure of PE fibers during the initial stages of penetration, and absorbs energy via deformation until complete penetration occurs. The energy absorbed by the laminate accounts for 68% of the total energy absorption, indicating that the laminate plays a major role in energy absorption during the penetration process. PMID:28772764

  8. Mechanical and thermal properties of short-coirfiber-reinforced natural rubber/polyethylene composites

    NASA Astrophysics Data System (ADS)

    Xu, Zh. H.; Kong, Zh. N.

    2014-07-01

    Natural rubber (NR) and polyethylene (PE) composites were compounded with chemically treated coir fibers by using a heated two-roll mill. Two chemical treatments of the fibers — by silane and sodium hydroxide — were carried out to improve the interfacial adhesion between them and the polyethylene matrix. The mechanical properties of the composites obtained were evaluated and compared with those made from a neat polymer and untreated fibers. The mechanical properties of the composites, such as the tensile strength, Young's modulus, and the elongation at break, were examined, and their shrinkage and flame retardant characteristics were measured. From these experiments, the effect of plasma treatment on the mechanical-physical behavior of coconut-fiberreinforced NR/PE composites was identified. In addition, their thermal characteristics were evaluated, and the results showed a slight decrease in them with increasing content of coir fibers.

  9. Microbial Dynamics during Aerobic Exposure of Corn Silage Stored under Oxygen Barrier or Polyethylene Films▿

    PubMed Central

    Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio

    2011-01-01

    The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm3 m−2 per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log10 CFU g−1, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure. PMID:21821764

  10. Fabrication of Tunable Submicro- or Nano-structured Polyethylene Materials form Immiscible Blends with Cellulose Acetate Butyrate

    USDA-ARS?s Scientific Manuscript database

    Low density polyethylene (LDPE) was prepared into micro- or submicro-spheres or nanofibers via melt blending or extrusion of cellulose acetate butyrate (CAB)/LDPE immiscible blends and subsequent removal of the CAB matrix. The sizes of the PE spheres or fibers can be successfully controlled by varyi...

  11. AuNP-PE interface/phase and its effects on the tensile behaviour of AuNP-PE composites

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Wang, Ruijie; Wang, Chengyuan; Yu, Xiaozhu

    2018-06-01

    A comprehensive study was conducted for a gold nanoparticle (AuNP)-polyethylene (PE) composite. Molecular dynamic (MD) simulations were employed to construct the AuNP-PE systems, achieve their constitutive relations, and measure their tensile properties. Specifically, the AuNP-PE interface/phase was studied via the mass density profile, and its effect was evaluated by comparing the composite with a pure PE matrix. These research studies were followed by the study of the fracture mechanisms and the size and volume fraction effects of AuNPs. Efforts were also made to reveal the underlying physics of the MD simulations. In the present work, an AuNP-PE interface and a densified PE interphase were achieved due to the AuNP-PE van der Waals interaction. Such an interface/phase is found to enhance the Young's modulus and yield stress but decrease the fracture strength and strain.

  12. Emissions from prescribed burning of timber slash piles in Oregon

    NASA Astrophysics Data System (ADS)

    Aurell, Johanna; Gullett, Brian K.; Tabor, Dennis; Yonker, Nick

    2017-02-01

    Emissions from burning piles of post-harvest timber slash (Douglas-fir) in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5), black carbon, ultraviolet absorbing PM, elemental/organic carbon, filter-based metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins/dibenzofurans (PCDD/PCDF), and volatile organic compounds (VOCs) were sampled to determine emission factors, the amount of pollutant formed per amount of biomass burned. The effect on emissions from covering the piles with polyethylene (PE) sheets to prevent fuel wetting versus uncovered piles was also determined. Results showed that the uncovered ("wet") piles burned with lower combustion efficiency and higher emission factors for VOCs, PM2.5, PCDD/PCDF, and PAHs. Removal of the PE prior to ignition, variation of PE size, and changing PE thickness resulted in no statistical distinction between emissions. Results suggest that dry piles, whether covered with PE or not, exhibited statistically significant lower emissions than wet piles due to better combustion efficiency.

  13. Veneer-reinforced particleboard for exterior structural composition board

    Treesearch

    Chung-Yun Hse; Todd F. Shupe; Hui Pan; Fu Feng

    2012-01-01

    Two experiments were performed to determine the physical and mechanical characteristics of panels consisting of a veneer face and a particleboard core composed of mixed wood particles/powdered-recycled polyethylene (PE) bag waste (MWP) using urea-formaldehyde (UF) resin as a binder. The addition of 25 percent powdered-recycled PE bag waste to the MWP panels did not...

  14. Postharvest storage quality of grapefruit placed in polyethylene bags with or without micro-perforation

    USDA-ARS?s Scientific Manuscript database

    Washed ‘Marsh’ white grapefruit were placed in polyethylene (PE) bags (1 mil) with or without micro-perforation holes (representing 0.002% of the bag surface) and evaluated for juice quality, firmness, and the development of decay and disorders during storage for 30, 60, or 90 days at 50oF. Each tre...

  15. Melt Miscibility in Block Copolymers Containing Polyethylene and Substituted Polynorbornenes

    NASA Astrophysics Data System (ADS)

    Mulhearn, William; Register, Richard

    Very few polymer species exist with a sufficiently weak repulsive interaction against polyethylene (PE), characterized by a low Flory parameter χ or interaction energy density X, to be useful for preparing PE-containing block copolymers with disordered melts at high molecular weights. Most suitably miscible polymers are chemically similar to PE, such as copolymers of ethylene with a minority content of an α-olefin, and so are only marginally useful for property modification due to similar physical properties like the glass transition temperature (Tg) . However, the family of polymers consisting of substituted norbornenes prepared via ring-opening metathesis polymerization (ROMP) and subsequent hydrogenation is unique in that many of its members exhibit very low X against PE (comparable with the interaction energy between poly(ethylene-alt-propylene) and PE), and some of these also exhibit high Tg. The miscibility between PE and a substituted, hydrogenated ROMP polynobornene, or between two dissimilar hydrogenated polynorbornenes, is a strong function of the substituent appended to the norbornene monomer. The mixing thermodynamics of this polymer series are irregular, in that the interaction energies do not follow X = (δ1 - δ2)2 where δ is the solubility parameter. However, other systematic trends do apply and we develop a set of mixing rules to quantitatively describe the experimental miscibility behavior. We also investigate statistical copolymerization of two norbornene monomers as a means to continuously tune miscibility with a homopolymer of a third monomer.

  16. Preparation and release study of Triclosan in polyethylene/Triclosan anti-bacterial blend.

    PubMed

    Kamalipour, Jamshid; Masoomi, Mahmood; Khonakdar, Hossein Ali; Razavi, Seyed Mohammad Reza

    2016-09-01

    In this study, medium density polyethylene (MDPE) incorporated with Triclosan antibacterial substance has been prepared and Triclosan release rate was investigated. The crystallinity level and matrix polarity, as two significant parameters in antibacterial release control, were studied. Triclosan, a well-established widespread antibacterial agent, was incorporated into medium density polyethylene (MDPE) and Maleic anhydride grafted polyethylene (PE-g-MA) was used to change the polarity of the MDPE matrix. A masterbatch of 10wt% Triclosan incorporated with the MDPE and various PE-g-MA concentrations were prepared using an internal mixer. Then the masterbatch was diluted in the MDPE matrix to produce compounds with 0.1, 0.5, and1wt% Triclosan via twin screw extruder. The compounds were molded by compression molding method and then were cooled in three different cooling rate methods: isothermal cooling (I), quenching (Q),and moderate 5-10°C/min cooling rate (M). Cooling rate effects on crystallinity level were investigated applying sample density measurement. UV-vis absorption spectroscopy was used to probe the release of Triclosan. Antibacterial properties of the compounds against Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were measured. The results showed that by addition of PE-g-MA, Triclosan release rate was increased. It was confirmed that the sample crystallinity was decreased by the cooling rate enhancement. The results also showed that quenched samples indicated higher release of Triclosan. Cooling rate reduction and raising the polarity increased the release of Triclosan and improved the antibacterial properties of the compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery

    PubMed Central

    Sawant, Rupa R.; Sriraman, Shravan Kumar; Navarro, Gemma; Biswas, Swati; Dalvi, Riddhi A.; Torchilin, Vladimir P.

    2012-01-01

    A low molecular weight polyethyleneimine (PEI 1.8 kDa) was modified with dioleoylphosphatidylethanolamine (PE) to form the PEI-PE conjugate investigated as a transfection vector. The optimized PEI-PE/pDNA complexes at an N/P ratio of 16 had a particle size of 225 nm, a surface charge of +31 mV, and protected the pDNA from the action of DNase I. The PEI-PE conjugate had a critical micelle concentration (CMC) of about 34 μg/ml and exhibited no toxicity compared to a high molecular weight PEI (PEI 25 kDa) as tested with B16-F10 melanoma cells. The B16-F10 cells transfected with PEI-PE/pEGFP complexes showed protein expression levels higher than with PEI-1.8 or PEI-25 vectors. Complexes prepared with YOYO 1-labeled pEGFP confirmed the enhanced delivery of the plasmid with PEI-PE compared to PEI-1.8 and PEI-25. The PEI-PE/pDNA complexes were also mixed with various amounts of micelle-forming material, polyethylene glycol (PEG)-PE to improve biocompatibility. The resulting particles exhibited a neutral surface charge, resistance to salt-induced aggregation, and good transfection activity in the presence of serum in complete media. The use of the low-pH-degradable PEG-hydrazone-PE produced particles with transfection activity sensitive to changes in pH consistent with the relatively acidic tumor environment. PMID:22365809

  18. [Atraumatic dislocation in mobile-bearing total knee arthroplasty: two case reports].

    PubMed

    Schuh, A; Hönle, W

    2007-10-01

    Atraumatic dislocation following total knee arthroplasty (TKA) is a rare condition. Severe complications after dislocation are lesion of the vascular-nerve bundle, compartment syndrome or amputation. The benefit of TKA with mobile-bearing are an improvement of the range of motion and better articulation. In comparison to fixed-bearing TKA there is the risk of dislocation or breakage of the polyethylene insert. We present two cases with dislocation following TKA with mobile-bearing. In both cases preoperatively there was a significant weakening of the function of the quadriceps muscle. During revision of the TKA severe damage with multiple scratches of the polyethylene onlay could be detected. The damage of the PE onlay could especially be found at the tibial aspect. Follow-up showed an uneventful course after conversion to fixed-bearing polyethylen component. In cases of dislocation following TKA with mobile-bearing operative revision is recommended to exchange the damaged PE onlay and prevent increased wear. TKA with mobile-bearing should be reserved only for cases with a good quadriceps muscle function.

  19. UV Grafting Modification of Polyethylene Separator for Liion Battery

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoyuan; Li, Hua; Zhang, Zhiqiang; Chang, Hiunam; Jiang, Li; Liu, Hezhou

    Polyethylene (PE) separator was modified by UV grafting methyl acrylate (MA) and nano-SiO2 composite layer. The structure of functional group and morphology of the separator were analyzed by Fourier transform infrared spectrum (FT-IR) and scanning electron microscope (SEM). The wetting behavior and the heat resistance of the separator were also investigated by contact angle test and thermal shrinkage test respectively. The results show that MA/nano-SiO2 composite layer is successfully grafted onto the PE separator, and the addition of the DI water and butanol can make the nano-SiO2 dispersed better and lead to a microporous structure of the grafting layer. The grafted separator has a better wettability and heat resistance than the pristine one.

  20. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  1. Measurement and Modeling of Ecosystem Risk and Recovery for In Situ Treatment of Contaminated Sediments

    DTIC Science & Technology

    2011-02-01

    µECD Gas chromatography - micro electron capture detector HPAH high molecular weight polyaromatic hydrocarbon HOC Hydrophobic organic compound IR...hydrocarbon PCB Polychlorinated biphenyl PE Polyethylene PED Polyethylene devices PFC Perfluorinated chemical POM Polyoxymethylene PRC...Performance reference compound RMSE Root Mean Squared Error SPME Solid Phase Micro Extraction SERDP Strategic Environmental Research and Development

  2. Elastomer modified polypropylene–polyethylene blends as matrices for wood flour–plastic composites

    Treesearch

    Craig Clemons

    2010-01-01

    Blends of polyethylene (PE) and polypropylene (PP) could potentially be used as matrices for wood–plastic composites (WPCs). The mechanical performance and morphology of both the unfilled blends and wood-filled composites with various elastomers and coupling agents were investigated. Blending of the plastics resulted in either small domains of the minor phase in a...

  3. New plastic recycling technology | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy degradation processes. This news column provides a digest of recent technical reports relating to clean technology and environmental policy,

  4. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques).

    PubMed

    Bakhshizadeh, Somayeh; Taghizadeh, Akbar; Janmohammadi, Hossein; Alijani, Sadegh

    2014-01-01

    The nutritive value of pistachio epicarp (PE) was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30%) and low in neutral detergent fiber (26.20%). Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g(-1)DM. As a whole, adding polyethylene glycol (PEG) to PE increased (p < 0.05) gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  5. LCA of an ice cream cup of polyethylene coated paper: how does the choice of the end-of-life affect the results?

    PubMed

    Buccino, Carla; Ferrara, Carmen; Malvano, Carmela; De Feo, Giovanni

    2017-11-07

    This study presents an evaluation of the environmental performance of an ice cream cup made of polyethylene (PE)/paper laminate using a life cycle assessment approach 'from cradle to grave'. Two opposite alternative disposal scenarios, as well as their intermediate combinations, were considered: 100% incineration and 100% landfilling. The environmental impacts were calculated using the EPD 2013 evaluation method since the study was developed in an Environmental Product Declaration perspective as well as the method ReCiPe 2008 H at the endpoint level. PE/paper laminate production was the most impactful process since it provided the highest contribution to total impacts in four of six impact categories considered. Ice cream cup production was the second impactful process. The 100% incineration scenario provided negligible contribution to life cycle total impact for all impact categories; while considering the landfilling scenario, the percentage contributions to the total impact provided by the end-of-life phase increased considerably, until to be comparable to the contributions provided by the production processes of the PE/paper laminate and the ice cream cup. The obtained results highlighted that different disposal scenarios can affect significantly the conclusions of a study. At the endpoint level, incineration was more environmentally sound than landfilling for all the ReCiPe damage categories.

  6. Reconstruction of the Interface of Oxidatively Functionalized Polyethylene (PE-CO2H) and Derivatives on Heating. Revision.

    DTIC Science & Technology

    1987-03-01

    contact angle with water frin the initial va: e 蕫b to the final value ’:,)3@, follows KinetiCs tnat suggest trit -no polar functional groups lisappear...PE-CO 2H in contact with liquiJs such as water and perfluorodecalin suggest that reconstruction is driven initially by ;iinimization of the...distance from the polymer- water interface can exchange ions with bulk water . Thermally reconstructed PE-CO2H is thus a new type of thin-film ion

  7. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    NASA Astrophysics Data System (ADS)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification. Electronic supplementary information (ESI) available: SEM micrographs of porous PE with and without maleated PE, X-ray micro-computed tomogram of porous extruded PE, FTIR spectra of GO, XPS wide spectra of untreated and GO immobilized PE and Raman spectra of PE and GO. See DOI: 10.1039/c6nr01356b

  8. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis.

    PubMed

    Harding, K G; Dennis, J S; von Blottnitz, H; Harrison, S T L

    2007-05-31

    Polymers based on olefins have wide commercial applicability. However, they are made from non-renewable resources and are characterised by difficulty in disposal where recycle and re-use is not feasible. Poly-beta-hydroxybutyric acid (PHB) provides one example of a polymer made from renewable resources. Before motivating its widespread use, the advantages of a renewable polymer must be weighed against the environmental aspects of its production. Previous studies relating the environmental impacts of petroleum-based and bio-plastics have centred on the impact categories of global warming and fossil fuel depletion. Cradle-to-grave studies report equivalent or reduced global warming impacts, in comparison to equivalent polyolefin processes. This stems from a perceived CO(2) neutral status of the renewable resource. Indeed, no previous work has reported the results of a life cycle assessment (LCA) giving the environmental impacts in all major categories. This study investigates a cradle-to-gate LCA of PHB production taking into account net CO(2) generation and all major impact categories. It compares the findings with similar studies of polypropylene (PP) and polyethylene (PE). It is found that, in all of the life cycle categories, PHB is superior to PP. Energy requirements are slightly lower than previously observed and significantly lower than those for polyolefin production. PE impacts are lower than PHB values in acidification and eutrophication.

  9. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC).

    PubMed

    Majewsky, Marius; Bitter, Hajo; Eiche, Elisabeth; Horn, Harald

    2016-10-15

    Microplastics are increasingly detected in the environment and the consequences on water resources and ecosystems are not clear to date. The present study provides a cost-effective and straightforward method to determine the mass concentrations of polymer types using thermal analysis. Characteristic endothermic phase transition temperatures were determined for seven plastic polymer types using TGA-DSC. Based on that, extracts from wastewater samples were analyzed. Results showed that among the studied polymers, only PE and PP could be clearly identified, while the phase transition signals of the other polymers largely overlap each other. Subsequently, calibration curves were run for PE and PP for qualitative measurements. 240 and 1540mg/m(3) of solid material (12µm to 1mm) was extracted from two wastewater effluent samples of a municipal WWTP of which 34% (81mg/m(3)) and 17% (257mg/m(3)) could be assigned to PE, while PP was not detected in any of the samples. The presented application of TGA-DSC provides a complementary or alternative method to FT-IR analyses for the determination of PE and PP in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Differential bacterial load on components of total knee prosthesis in patients with prosthetic joint infection.

    PubMed

    Holinka, Johannes; Pilz, Magdalena; Hirschl, Alexander M; Graninger, Wolfgang; Windhager, Reinhard; Presterl, Elisabeth

    2012-10-01

    The purpose of our study was to evaluate and quantify the bacterial adherence on different components of total knee prosthesis with the sonication culture method. Explanted components of all patients with presumptive prosthetic or implant infection were treated by sonication separately in sterile containers to dislodge the adherent bacteria from the surfaces and cultured. The bacterial load of the different knee components (femur, tibia, PE-inlay and patella) was evaluated by counting of colony-forming units (CFU) dislodged from the components surfaces using the sonication culture method. Overall, 27 patients had positive sonication cultures of explanted total knee prostheses. Microorganisms were detected from 88 of 100 explanted components. Twenty femoral components were culture positive and 7 negative, 23 tibial components as well as 23 polyethylene (PE) platforms had positive microorganism detection from the surface. Staphylococcus epidermidis adhered to the highest number of components whereas Staphylococcus aureus yielded the highest load of CFU in the sonication cultures. Although not significant, PE-inlays and tibial components were most often affected. The highest CFU count was detected in polyethylene components. The sonication culture method is a reliable method to detect bacteria from the components. Additionally, the results demonstrate that bacterial adherence is not affecting a single component of knee prosthesis only. Thus, in septic revision surgery partial prosthetic exchange or exchange of single polyethylene components alone may be not sufficient.

  11. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites.

    PubMed

    Hsiao, An-En; Tsai, Shu-Ya; Hsu, Mei-Wen; Chang, Shinn-Jen

    2012-05-06

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV-vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs.

  12. Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality

    NASA Astrophysics Data System (ADS)

    Requejo, B. A.; Pajarito, B. B.

    2017-05-01

    Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.

  13. Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation

    NASA Astrophysics Data System (ADS)

    Li, Yajie; Pu, Hongting

    2018-04-01

    Polypropylene (PP)/polyethylene (PE) multilayer separators with cellular-like submicron pore structure for lithium-ion battery are efficiently fabricated by the combination of multilayer coextrusion (MC) and thermal induced phase separation (TIPS). The as-prepared separators, referred to as MC-TIPS PP/PE, not only show efficacious thermal shutdown function and wider shutdown temperature window, but also exhibit higher thermal stability than the commercial separator with trilayer construction of PP and PE (Celgard® 2325). The dimensional shrinkage of MC-TIPS PP/PE can be negligible until 160 °C. In addition, compared to the commercial separator, MC-TIPS PP/PE exhibits higher porosity and electrolyte uptake, leading to higher ionic conductivity and better battery performances. The above-mentioned fascinating characteristics with the convenient preparation process make MC-TIPS PP/PE a promising candidate for the application as high performance lithium-ion battery separators.

  14. Highly sensitive surface-scanning detector for the direct bacterial detection using magnetoelastic (ME) biosensors

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhe; Horikawa, Shin; Chen, I.-Hsuan; Du, Songtao; Wikle, Howard C.; Suh, Sang-Jin; Chin, Bryan A.

    2017-05-01

    This paper demonstrates a highly sensitive surface-scanning detector used for magnetoelastic (ME) biosensors for the detection of Salmonella on the surface of a polyethylene (PE) food preparation surface. The design and fabrication methods of the new planar spiral coil are introduced. Different concentrations of Salmonella were measured on the surface of a PE board. The efficacy of Salmonella capture and detection is discussed.

  15. Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Cai, Lu; Lv, Wenzhen; Zhu, Hong; Xu, Qun

    2016-07-01

    The mechanism of the adsorption of pyrene-polyethylene (Py-PE) onto ultrathin single-walled carbon nanotube (SWNT) was studied by using all-atom molecular dynamics (MD) simulations. We found that solvent polarity and pyrene group are two critical factors in the Py-PE decoration on ultrathin SWNT. Combined MD simulations with free energy calculations, our results indicate that larger solvent polarity can decrease the contribution of conformation entropy, but contributes little to the interaction energy, moreover, larger SWNT diameter can decrease the contribution of conformation entropy but lead to the increasing of the interaction energy. In polar organic solvent (N, N-Dimethylacetamide), the pyrene group plays a key role in the adsorption of Py-PE onto ultrathin SWNT, not only facilitates the spontaneous adsorption of Py-PE onto ultrathin SWNT, but also helps to form compact structure between themselves in the final adsorption states. While in aqueous solution, pyrene group no longer works as an anchor, but still affects a lot to the final adsorption conformation. Our present work provides detailed theoretical clue to understand the noncovalent interaction between aromatic segment appended polymer and ultrathin SWNT, and helps to explore the potential application of ultrathin SWNT in the fields of hybrid material, biomedical and electronic materials.

  16. Relationship between morphological change and crystalline phase transitions of polyethylene-poly(ethylene oxide) diblock copolymers, revealed by the temperature-dependent synchrotron WAXD/SAXS and infrared/Raman spectral measurements.

    PubMed

    Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki

    2009-02-26

    The phase transition behaviors of low-molecular-weight polyethylene-poly(ethylene oxide) (PE-b-PEO) diblock copolymers with the monomeric units of PE/PEO = 17/40 and 39/86 have been successfully investigated through the temperature-dependent measurements of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), infrared and Raman spectra, as well as thermal analysis. These diblock copolymers had been believed to show only order-to-disorder transition of lamellar morphology in a wide temperature region, but it has been found here for the first time that this copolymer clearly exhibits the three stages of transitions among lamella, gyroid, cylinder, and spherical phases in the heating and cooling processes. The WAXD and IR/Raman spectral measurements allowed us to relate these morphological changes to the microscopic changes in the aggregation states of PEO and PE segments. In the low-temperature region the PEO segments form the monoclinic crystal of (7/2) helical chain conformation and the PE segments of planar-zigzag form take the orthorhombic crystalline phase. These crystalline lamellae of PEO and PE segments are alternately stacked with the long period of 165 Angstroms. In a higher temperature region, where the PEO crystalline parts are on the way of melting but the PE parts are still in the orthorhombic phase, the gyroid morphology is detected in the SAXS data. By heating further, the gyroid morphology changes to the hexagonally packed cylindrical morphology, where the orthorhombic phase of PE segments is gradually disordered because of thermally activated molecular motion and finally transforms to the pseudohexagonal or rotator phase. Once the PE segments are perfectly melted, the higher-order structure changes from the cylinder to the spherical morphology. These morphological transitions might relate to the thermally activated motions of two short chain segments of the diblock copolymer, although the details of the transition mechanism are unclear at the present stage.

  17. Thermally induced conformational changes in polyethylene studied by two-dimensional near-infrared infrared hetero-spectral correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Noda, Isao; Ozaki, Yukihiro

    2008-07-01

    The amount of nonplanar gauche bonds was monitored as a function of increasing temperature in three different polyethylene (PE) samples by means of mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The hetero-spectral two-dimensional (2D) correlation analysis was carried out between the NIR spectral region of 4365-4235 cm -1 and the well-established MIR spectral region of 1375-1265 cm -1, where bands due to nonplanar conformer are detected. This approach allowed us to identify the NIR band at 4265 cm -1, which behaves in a way similar to MIR bands originating from conformational-defect sequences. By combining the result of our current study and that of our previous report obtained on different types of PE, it is suggested that the NIR band originates from conformational-defect sequences in PE. This finding opens up a unique and useful way to study the state of conformational disorder in PE crystal by NIR spectroscopy, monitoring the intensity of the NIR band at 4265 cm -1. The use of NIR spectroscopy allows researchers to directly probe the degree in the formation of conformational-defect sequences in thick, real-world PE samples that cannot be studied by conventional MIR spectroscopy. The 2D correlation spectroscopy analysis among the MIR CH 2 wagging conformational-defect-mode bands on linear low-density PE (LLDPE) and low-density PE (LDPE) revealed the formation of nonplanar conformer represented by the band at 1368 cm -1 proceeds prior to those by other band at 1308 cm -1. This result agrees well with our previous finding on high-density PE (HDPE). We therefore propose with strong confidence that the bands at 1368 and 1308 cm -1 arise from different conformational-defect sequences, even though both of the bands have been proposed to arise from the same conformer of gtg' ( kink) + gtg sequence.

  18. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility.

    PubMed

    Novotná, Zdenka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdenka; Hubáček, Tomáš; Ruml, Tomáš; Švorčík, Václav

    2017-02-01

    We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. Copyright © 2016. Published by Elsevier B.V.

  19. Examination of the suitability of alpha-tocopherol as a stabilizer for ultra-high molecular weight polyethylene used for articulating surfaces in joint endoprostheses.

    PubMed

    Wolf, C; Krivec, T; Blassnig, J; Lederer, K; Schneider, W

    2002-02-01

    The lifetime of articulating surfaces in joint endoprostheses made of ultra-high molecular weight polyethylene (UHMW-PE), especially of UHMW-PE-cups of hip-endoprostheses, is usually limited to 10-15 years due to material failure as a result of oxidation of the UHMW-PE in vivo. In this study the suitability of the natural antioxidant alpha-tocopherol (vitamin E) as a stabilizer for UHMW-PE in these applications was investigated. Specimens with 0.1%, 0.2%, 0.4% and 0.8% w/w alpha-tocopherol as well as unstabilized samples were sintered and sterilized with gamma-rays at 25 kGy in accordance with standard processing methods of cups for total hip-endoprostheses. These specimens were aged in pure oxygen at 70 degrees C and 5 bar as well as in aqueous H2O2 at 50 degrees C. The degree of oxidation was observed by means of FTIR-spectroscopy, DSC analysis and mechanical testing. The FTIR-measurements showed that alpha-tocopherol can prolong the lifetime of UHMW-PE in an oxidative environment by a factor of more than 2.5. In the mechanical tests no embrittlement could be observed with the stabilized samples. A comparison with the standard antioxidant system Irganox 1010/Irgafos 168 (Ciba-Geigy, Switzerland) was carried out and revealed that alpha-tocopherol can even exceed the stabilization effect of this widely-used antioxidant system.

  20. Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block.

    PubMed

    Fan, Bin; Liu, Lei; Li, Jun-Huan; Ke, Xi-Xian; Xu, Jun-Ting; Du, Bin-Yang; Fan, Zhi-Qiang

    2016-01-07

    Crystallization-driven self-assembly of polyethylene-b-poly(tert-butylacrylate) (PE-b-PtBA) block copolymers (BCPs) in N,N-dimethyl formamide (DMF) was studied. It is found that all three PE-b-PtBA BCPs used in this work can self-assemble into one-dimensional crystalline cylindrical micelles. When the BCP solution is cooled to crystallization temperature (Tc) from 130 °C, the seed micelles may be produced via two competitive processes in the initial period: stepwise micellization/crystallization and simultaneous crystallization/micellization. Subsequently, the seed micelles can undergo growth driven by the epitaxial crystallization of the unimers. The lengths of both the seed micelles and the grown micelles are longer for the BCP with a longer PtBA block at a higher Tc. Quasi-living growth of the PE-b-PtBA crystalline cylindrical micelles is achieved at a higher Tc. A longer PtBA block evidently retards the attachment of unimers to the crystalline micelles, leading to a slower growth rate.

  1. Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites.

    PubMed

    Wang, Zhenwen; Zhao, Jun; Chen, Min; Yang, Minhao; Tang, Luyang; Dang, Zhi-Min; Chen, Fenghua; Huang, Miaoming; Dong, Xia

    2014-11-26

    In this work, electrically and thermally actuated triple shape memory polymers (SMPs) of chemically cross-linked polycyclooctene (PCO)-multiwalled carbon nanotube (MWCNT)/polyethylene (PE) nanocomposites with co-continuous structure and selective distribution of fillers in PCO phase are prepared. We systematically studied not only the microstructure including morphology and fillers' selective distribution in one phase of the PCO/PE blends, but also the macroscopic properties including thermal, mechanical, and electrical properties. The co-continuous window of the immiscible PCO/PE blends is found to be the volume fraction of PCO (vPCO) of ca. 40-70 vol %. The selective distribution of fillers in one phase of co-continuous blends is obtained by a masterbatch technique. The prepared triple SMP materials show pronounced triple shape memory effects (SMEs) on the dynamic mechanical thermal analysis (DMTA) and the visual observation by both thermal and electric actuations. Such polyolefin samples with well-defined microstructure, electrical actuation, and triple SMEs might have potential applications as, for example, multiple autochoke elements for engines, self-adjusting orthodontic wires, and ophthalmic devices.

  2. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    NASA Astrophysics Data System (ADS)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation damage from sterilization. The higher energy transfer for proton compared to gamma irradiation greatly accelerated the radiation damage. Radiation damage increased linearly with dose over the range of doses examined. These results were consistent with findings from earlier researchers of gamma irradiation of polyethylene.

  3. Development of a Remote External Repair Tool for Damaged or Defective Polyethylene Pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth H. Green; Willie E. Rochefort; Nick Wannenmacher

    2006-06-30

    Current procedures for repairing polyethylene (PE) gas pipe require excavation, isolation, and removal of the damaged section of pipe followed by fusing a new section of pipe into place. These techniques are costly and very disruptive. An alternative repair method was developed at Timberline Tool with support from Oregon State University (OSU) and funding by the U. S. Department of Energy National Energy Technology Laboratory (DOE/NETL). This project was undertaken to design, develop and test a tool and method for repairing damaged PE pipe remotely and externally in situ without squeezing off the flow of gas, eliminating the need formore » large-scale excavations. Through an iterative design and development approach, a final engineered prototype was developed that utilizes a unique thermo-chemical and mechanical process to apply a permanent external patch to repair small nicks, gouges and punctures under line pressure. The project identified several technical challenges during the design and development process. The repair tool must be capable of being installed under live conditions and operate in an 18-inch keyhole. This would eliminate the need for extensive excavations thus reducing the cost of the repair. Initially, the tool must be able to control the leak by encapsulating the pipe and apply slight pressure at the site of damage. Finally, the repair method must be permanent at typical operating pressures. The overall results of the project have established a permanent external repair method for use on damaged PE gas pipe in a safe and cost-effective manner. The engineered prototype was subjected to comprehensive testing and evaluation to validate the performance. Using the new repair tool, samples of 4-inch PE pipe with simulated damage were successfully repaired under line pressure to the satisfaction of DOE/NETL and the following natural gas companies: Northwest Natural; Sempra Energy, Southwest Gas Corporation, Questar, and Nicor. However, initial results of accelerated age testing on repaired pipe samples showed that the high density polyethylene (HDPE) pipe patch material developed a small crack at the high stress areas surrounding the patched hole within the first 48 hours of hot water testing, indicating that the patch material has a 25-year lifespan. Based on these results, further research is continuing to develop a stronger repair patch for a satisfactory 50-year patch system. Additional tests were also conducted to evaluate whether any of the critical performance properties of the PE pipe were reduced or compromised by the repair technique. This testing validated a satisfactory 50-year patch system for the pipe.« less

  4. Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method

    PubMed Central

    Dang, Baokang; Chen, Yipeng; Shen, Xiaoping; Chen, Bo; Sun, Qingfeng; Jin, Chunde

    2017-01-01

    A polyethylene/wood-fiber composite loaded with nano-ZnO was prepared by a facile hot-press method and was used for the photocatalytic degradation of organic compounds as well as for microwave absorption. ZnO nanoparticles with an average size of 29 nm and polyethylene (PE) powders were dispersed on the wood fibers’ surface through a viscous cationic polyacrylamide (CPAM) solution. The reflection loss (RL) value of the resulting composite was −21 dB, with a thickness of 3.5 mm in the frequency of 17.17 GHz. The PE/ZnO/wood-fiber (PZW) composite exhibited superior photocatalytic activity (84% methyl orange degradation within 300 min) under UV light irradiation. ZnO nanoparticels (NPs) increased the storage modulus of the PZW composite, and the damping factor was transferred to the higher temperature region. The PZW composite exhibited the maximum flexural strength of 58 MPa and a modulus of elasticity (MOE) of 9625 MPa. Meanwhile, it also displayed dimensional stability (thickness swelling value of 9%). PMID:29099777

  5. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  6. Numerical-experimental investigation of PE/EVA foam injection molded parts

    NASA Astrophysics Data System (ADS)

    Spina, Roberto

    The main objective of the presented work is to propose a robust framework to test foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of a new foam material based on numerical and experimental results. The research purpose is to assess parameters influencing several aspects, such as foam morphology and compression behavior, using useful suggestions from finite element analysis. The investigated polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the numerical models and the parameters of the injection molding process.

  7. Cost-effective computational method for radiation heat transfer in semi-crystalline polymers

    NASA Astrophysics Data System (ADS)

    Boztepe, Sinan; Gilblas, Rémi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2018-05-01

    This paper introduces a cost-effective numerical model for infrared (IR) heating of semi-crystalline polymers. For the numerical and experimental studies presented here semi-crystalline polyethylene (PE) was used. The optical properties of PE were experimentally analyzed under varying temperature and the obtained results were used as input in the numerical studies. The model was built based on optically homogeneous medium assumption whereas the strong variation in the thermo-optical properties of semi-crystalline PE under heating was taken into account. Thus, the change in the amount radiative energy absorbed by the PE medium was introduced in the model induced by its temperature-dependent thermo-optical properties. The computational study was carried out considering an iterative closed-loop computation, where the absorbed radiation was computed using an in-house developed radiation heat transfer algorithm -RAYHEAT- and the computed results was transferred into the commercial software -COMSOL Multiphysics- for solving transient heat transfer problem to predict temperature field. The predicted temperature field was used to iterate the thermo-optical properties of PE that varies under heating. In order to analyze the accuracy of the numerical model experimental analyses were carried out performing IR-thermographic measurements during the heating of the PE plate. The applicability of the model in terms of computational cost, number of numerical input and accuracy was highlighted.

  8. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina.

    PubMed

    Ramos, Laura; Berenstein, Giselle; Hughes, Enrique A; Zalts, Anita; Montserrat, Javier M

    2015-08-01

    Horticulture makes intensive use of soil and extensive use of polyethylene (PE) sheeting and pesticides, producing an environment where the dynamics between soil and plastics can affect pesticide fate. We have determined that the presence of plastic residues in the horticultural soil of small production units equals 10% of the soil area, being meso and macro-sections the predominant fragment sizes. All soil samples were taken from different plots located in Cuartel V, Moreno district, in the suburbs of Buenos Aires city, Argentina. Laboratory experiments were conducted to see the relations among pesticide, soil and PE film. Endosulfan recovery from LDPE films (25μm and 100μm) was studied, observing evidence that indicated migration to the inside of the plastic matrix. To further analyze the dynamics of pesticide migration to soil and atmosphere, experiments using chlorpyrifos, procymidone and trifluralin were performed in soil-plastic-atmosphere microenvironments, showing that up to 24h significant amounts of pesticides moved away from the PE film. To determine whether PE residues could act as potential pesticide collector in soil, column elution experiments were done using chlorpyrifos, procymidone and trifluralin. Results showed an important pesticide accumulation in the mulch film (584μg-2284μg pesticide/g plastic) compared to soil (13μg-32μg pesticide/g soil). Finally, chemical and photochemical degradation of deltamethrin adsorbed in PE film was studied, finding a protective effect on hydrolysis but no protective effect on photodegradation. We believe that a deeper understanding of the dynamics among soil, plastic and pesticides in horticultural productive systems may contribute to alert for the implications of PE use for plastic sheeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. EB-promoted recycling of waste tire rubber with polyolefins

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Bárány, Tamás; Czvikovszky, Tibor

    2012-09-01

    Despite the fact that more and more methods and solutions are used in the recycling of polymers, there are still some problems, especially in the recycling of cross-linked materials such as rubber. Usually the biggest problem is the lack of compatibility between the cross-linked rubber and the thermoplastic matrix. In this study we applied ground tire rubber (GTR) as recycled material. The GTR was embedded into polyethylene (PE) and polyethylene/ethylene-vinyl acetate copolymer (PE/EVA) matrices. In order to increase the compatibility of the components electron beam (EB) irradiation was applied. The results showed that the irradiation has a beneficial effect on the polymer-GTR interfacial connection. The EB treatment increased not only the tensile strength but also the elongation at break. The irradiation had also positive effect on the impact strength properties.

  10. Ultra high molecular weight polyethylene: Optical features at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    D'Alessandro, G.; Paiella, A.; Coppolecchia, A.; Castellano, M. G.; Colantoni, I.; de Bernardis, P.; Lamagna, L.; Masi, S.

    2018-05-01

    The next generation of experiments for the measurement of the Cosmic Microwave Background (CMB) requires more and more the use of advanced materials, with specific physical and structural properties. An example is the material used for receiver's cryostat windows and internal lenses. The large throughput of current CMB experiments requires a large diameter (of the order of 0.5 m) of these parts, resulting in heavy structural and optical requirements on the material to be used. Ultra High Molecular Weight (UHMW) polyethylene (PE) features high resistance to traction and good transmissivity in the frequency range of interest. In this paper, we discuss the possibility of using UHMW PE for windows and lenses in experiments working at millimeter wavelengths, by measuring its optical properties: emissivity, transmission and refraction index. Our measurements show that the material is well suited to this purpose.

  11. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites

    PubMed Central

    2012-01-01

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV–vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs. PMID:22559082

  12. Soil Quality and Colloid Transport under Biodegradable Mulches

    NASA Astrophysics Data System (ADS)

    Sintim, Henry; Bandopadhyay, Sreejata; Ghimire, Shuresh; Flury, Markus; Bary, Andy; Schaeffer, Sean; DeBruyn, Jennifer; Miles, Carol; Inglis, Debra

    2016-04-01

    Polyethylene (PE) mulch is commonly used in agriculture to increase water use efficiency, to control weeds, manage plant diseases, and maintain a favorable micro-climate for plant growth. However, producers need to retrieve and safely dispose PE mulch after usage, which creates enormous amounts of plastic waste. Substituting PE mulch with biodegradable plastic mulches could alleviate disposal needs. However, repeated applications of biodegradable mulches, which are incorporated into the soil after the growing season, may cause deterioration of soil quality through breakdown of mulches into colloidal fragments, which can be transported through soil. Findings from year 1 of a 5-year field experiment will be presented.

  13. The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5- triphenylbenzene.

    PubMed

    Tomsej, Tomas; Horak, Jiri; Tomsejova, Sarka; Krpec, Kamil; Klanova, Jana; Dej, Milan; Hopan, Frantisek

    2018-04-01

    The aim of this study was to simulate a banned but widely spread practice of co-combustion of plastic with wood in a small residential boiler and to quantify its impact on emissions of gaseous pollutants, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and 1,3,5-triphenylbenzene (135TPB), a new tracer of polyethylene plastic combustion. Supermarket polyethylene shopping bags (PE) and polyethylene terephthalate bottles (PET) were burnt as supplementary fuels with beech logs (BL) in an old-type 20 kW over-fire boiler both at a nominal and reduced heat output. An impact of co-combustion was more pronounced at the nominal heat output: an increase in emissions of PM, total organic carbon (TOC), toxic equivalent (TEQ) of 7 carcinogenic PAHs (c-PAHs) and a higher ratio of c-PAHs TEQ in particulate phase was observed during co-combustion of both plastics. 135TPB was found in emissions from both plastics both at a nominal and reduced output. In contrast to findings reported in the literature, 135TPB was a dominant compound detected by mass spectrometry on m/z 306 exclusively in emissions from co-combustion of PE. Surprisingly, six other even more abundant compounds of unknown identity were found on this m/z in emissions from co-combustion of PET. One of these unknown compounds was identified as p-quaterphenyl (pQ). Principal component analysis revealed strong correlation among 135TPB, pQ and five unknown compounds. pQ seems to be suitable tracers of polyethylene terephthalate plastic co-combustion, while 135TPB proved its suitability to be an all-purpose tracer of polyethylene plastics combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions.

    PubMed

    Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng

    2016-06-01

    Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment.

  15. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions

    PubMed Central

    Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng

    2016-01-01

    Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment. PMID:27386559

  16. Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae.

    PubMed

    Mazurais, D; Ernande, B; Quazuguel, P; Severe, A; Huelvan, C; Madec, L; Mouchel, O; Soudant, P; Robbens, J; Huvet, A; Zambonino-Infante, J

    2015-12-01

    Microplastics are present in marine habitats worldwide and may be ingested by low trophic organisms such as fish larvae, with uncertain physiological consequences. The present study aims at assessing the impact of polyethylene (PE 10-45 μM) microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Fish were fed an inert diet including 0, 10(4) and 10(5) fluorescent microbeads per gram from 7 until 43 days post-hatching (dph). Microbeads were detected in the gastrointestinal tract in all fish fed diet incorporating PE. Our data revealed an efficient elimination of PE beads from the gut since no fluorescent was observed in the larvae after 48 h depuration. While the mortality rate increased significantly with the amount of microbeads scored per larvae at 14 and 20 dph, only ingestion of the highest concentration slightly impacted mortality rates. Larval growth and inflammatory response through Interleukine-1-beta (IL-1β) gene expression were not found to be affected while cytochrome-P450-1A1 (cyp1a1) expression level was significantly positively correlated with the number of microbeads scored per larva at 20 dph. Overall, these results suggest that ingestion of PE microbeads had limited impact on sea bass larvae possibly due to their high potential of egestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. In Vivo Wear Performance of Cobalt-Chromium Versus Oxidized Zirconium Femoral Total Knee Replacements.

    PubMed

    Gascoyne, Trevor C; Teeter, Matthew G; Guenther, Leah E; Burnell, Colin D; Bohm, Eric R; Naudie, Douglas R

    2016-01-01

    This study examines the damage and wear on the polyethylene (PE) inserts from 52 retrieved Genesis II total knee replacements to identify differences in tribological performance between matched pairs of cobalt-chromium (CoCr) and oxidized zirconium (OxZr) femoral components. Observer damage scoring and microcomputed tomography were used to quantify PE damage and wear, respectively. No significant differences were found between CoCr and OxZr groups in terms of PE insert damage, surface penetration, or wear. No severe damage such as cracking or delamination was noted on any of the 52 PE inserts. Observer damage scoring did not correlate with penetrative or volumetric PE wear. The more costly OxZr femoral component does not demonstrate clear tribological benefit over the standard CoCr component in the short term with this total knee replacement design. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Nanosized cancer cell-targeted polymeric immunomicelles loaded with superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sawant, Rishikesh M.; Sawant, Rupa R.; Gultepe, Evin; Nagesha, Dattatri; Papahadjopoulos-Sternberg, Brigitte; Sridhar, Srinivas; Torchilin, Vladimir P.

    2009-10-01

    Stable 30-50 nm polymeric polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles entrapping superparamagnetic iron oxide nanoparticles (SPION) have been prepared. At similar concentrations of SPION, the SPION-micelles had significantly better magnetic resonance imaging (MRI) T2 relaxation signal compared to `plain' SPION. Freeze-fracture electron microscopy confirmed SPION entrapment in the lipid core of the PEG-PE micelles. To enhance the targeting capability of these micelles, their surface was modified with the cancer cell-specific anti-nucleosome monoclonal antibody 2C5 (mAb 2C5). Such mAb 2C5-SPION immunomicelles demonstrated specific binding with cancer cells in vitro and were able to bring more SPION to the cancer cells thus demonstrating the potential to be used as targeted MRI contrast agents for tumor imaging.

  19. TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E

    2008-11-12

    Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. Themore » glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.« less

  20. Innovative edible packaging from mango kernel starch for the shelf life extension of red chili powder.

    PubMed

    Nawab, Anjum; Alam, Feroz; Haq, Mohammad Abdul; Haider, Mohammad Samee; Lutfi, Zubala; Kamaluddin, Sheikh; Hasnain, Abid

    2018-07-15

    In this study mango kernel starch (MKS) based heat sealable pouches were developed for packing of red chili powder. The films were prepared by casting technique using glycerol, sorbitol and 1:1 mixture of glycerol and sorbitol and were sealed. All films showed better heat sealing capacity but glycerol films plasticized exhibited higher seal strength than their counterparts. The red chili powder was packed in the MKS film pouches while commercially available polyethylene (PE) film was used as control. The pungency and color of red chili powder was monitored during six months storage at 40°C. The capsaicinoid content was extracted from the red chili with acetonitrile and evaluated quantitatively using spectrophotometric method. The extractable color was measured by ASTA method using acetone. The results showed significant differences in color and pungency of chili packed in MKS and PE pouches. The highest reduction in capsaicinoid content (pungency) of chili powder was observed in PE pouch (25.9%) while lowest was observed in MKS pouch containing sorbitol (15.7%). Similarly color loss was also highest in chili packed in PE pouch while lowest in MKS-sorbitol pouch. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Pegylation of Magnetically Oriented Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    King, Valencia; Parker, Margaret; Howard, Kathleen P.

    2000-01-01

    We report NMR data for magnetically oriented phospholipid bilayers which have been doped with a lipid derivatized with a polyethylene glycol polymer headgroup to stabilize samples against aggregation. 13C, 31P, and 2H NMR data indicate that the incorporation of PEG2000-PE (1% molar to DMPC) does not interfere with the orientation properties of bicelles prepared at 25% w/v with or without the presence of lanthanide. Bicelles prepared at 10% w/v are also shown to orient when PEG2000-PE is added. The addition of PEG2000-PE to cholesterol-containing, lanthanide-flipped bicelles is shown to inhibit sample phase separation and improve spectral quality. Furthermore, the addition of PEG2000-PE to high w/v bicelles (40% w/v) is demonstrated to lead to an increase in overall sample order.

  2. Site-specific immunosuppression using a new formulation of topical cyclosporine A with polyethylene glycol-8 glyceryl caprylate/caprate.

    PubMed

    Tran, H S; Malli, D; Chrzanowski, F A; Puc, M M; Matthews, M S; Hewitt, C W

    1999-05-15

    Dermal application of immunosuppressants can be an effective means of achieving site-specific immunosuppression (SITE) on skin allografts in burn wound management and in the treatment of various immune skin disorders. We have previously reported success with topical cyclosporine A (tCsA) in the treatment of skin allograft rejection in rats. Using a new tCsA formulation with a penetration enhancer (PE), polyethylene glycol-8 (PEG-8) glyceryl caprylate/caprate (Labrasol, Gattefossé, St. Priest, France), in a trinary drug delivery system, we hypothesized that we would induce SITE and significantly delay rejection of dual skin allografts in rats. Dual rat skin allografts from Lewis x Brown-Norway (LBN) donors were grafted to Lewis (Lew) recipients. Experimental animals (EXP, n = 7) received a 10-day course of systemic cyclosporine (sCsA, 8 mg/kg/day) followed by topical application. One of the two allografts on each experimental animal received tCsA/PE application (5 mg/kg/day) until sacrifice (tCsA/PE-treated). The other allograft received vehicle only (vehicle-treated). Allogeneic controls (ALLO-CON, n = 9) received no sCsA or tCsA. First signs of rejection were determined based on the initial observation of erythema, hair loss, flakiness, and/or scabs. The mean time to rejection for ALLO-CON allografts was 6.3 +/- 0.7 days (t test, P = 0.0013); for vehicle-treated allografts, 12.3 +/- 3.8 days (paired t test, P = 0.0146); and for tCsA/PE-treated allografts, 25.6 +/- 5.4 days. The disparity of days to rejection between dual allografts in the ALLO-CON group was 0.0 +/- 0.0 day and that between the tCsA/PE- and vehicle-treated dual allografts was 13.3 +/- 3.9 days (t test, P = 0.0016). A new formulation of tCsA in a trinary drug delivery system is successful at delaying the onset of rejection in dual skin allografts in rats by SITE, and PEG-8 glyceryl caprylate/caprate may represent a potentially effective transdermal penetration enhancer. Copyright 1999 Academic Press.

  3. Direct liquefaction of plastics and coprocessing of coal with plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, G.P.; Feng, Z.; Mahajan, V.

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In themore » coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.« less

  4. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    PubMed

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  5. The effect of netting solidity ratio and inclined angle on the hydrodynamic characteristics of knotless polyethylene netting

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Hu, Fuxiang; Xu, Liuxiong; Dong, Shuchuang; Zhou, Cheng; Wang, Xuefang

    2017-10-01

    Knotless polyethylene (PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity ratios were assessed in a flume tank under various attack angles of netting from 0° (parallel to flow) to 90° (perpendicular to flow) and current speeds from 40 cm s-1 to 130 cm s-1. It was found that the drag coefficient was related to Reynolds number, solidity ratio and attack angle of netting. The solidity ratio was positively related with drag coefficient for netting panel perpendicular to flow, whereas when setting the netting panel parallel to the flow the opposite result was obtained. For netting panels placed at an angle to the flow, the lift coefficient reached the maximum at an attack angle of 50° and then decreased as the attack angle further increased. The solidity ratio had a dual influence on drag coefficient of inclined netting panels. Compared to result in the literature, the normal drag coefficient of knotless PE netting measured in this study is larger than that of nylon netting or Dyneema netting.

  6. A review of nondestructive examination technology for polyethylene pipe in nuclear power plant

    NASA Astrophysics Data System (ADS)

    Zheng, Jinyang; Zhang, Yue; Hou, Dongsheng; Qin, Yinkang; Guo, Weican; Zhang, Chuck; Shi, Jianfeng

    2018-05-01

    Polyethylene (PE) pipe, particularly high-density polyethylene (HDPE) pipe, has been successfully utilized to transport cooling water for both non-safety- and safety-related applications in nuclear power plant (NPP). Though ASME Code Case N755, which is the first code case related to NPP HDPE pipe, requires a thorough nondestructive examination (NDE) of HDPE joints. However, no executable regulations presently exist because of the lack of a feasible NDE technique for HDPE pipe in NPP. This work presents a review of current developments in NDE technology for both HDPE pipe in NPP with a diameter of less than 400 mm and that of a larger size. For the former category, phased array ultrasonic technique is proven effective for inspecting typical defects in HDPE pipe, and is thus used in Chinese national standards GB/T 29460 and GB/T 29461. A defect-recognition technique is developed based on pattern recognition, and a safety assessment principle is summarized from the database of destructive testing. On the other hand, recent research and practical studies reveal that in current ultrasonic-inspection technology, the absence of effective ultrasonic inspection for large size was lack of consideration of the viscoelasticity effect of PE on acoustic wave propagation in current ultrasonic inspection technology. Furthermore, main technical problems were analyzed in the paper to achieve an effective ultrasonic test method in accordance to the safety and efficiency requirements of related regulations and standards. Finally, the development trend and challenges of NDE test technology for HDPE in NPP are discussed.

  7. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents.

    PubMed

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-06-14

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents.

  8. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes.

    PubMed

    Velzeboer, I; Kwadijk, C J A F; Koelmans, A A

    2014-05-06

    The presence of microplastic and carbon-based nanoparticles in the environment may have implications for the fate and effects of traditional hydrophobic chemicals. Here we present parameters for the sorption of 17 CB congeners to 10-180 μm sized polyethylene (micro-PE), 70 nm polystyrene (nano-PS), multiwalled carbon nanotubes (MWCNT), fullerene (C60), and a natural sediment in the environmentally relevant 10(-5)-10(-1) μg L(-1) concentration range. Effects of salinity and sediment organic matter fouling were assessed by measuring the isotherms in fresh- and seawater, with and without sediment present. Sorption to the "bulk" sorbents sediment organic matter (OM) and micro-PE occurred through linear hydrophobic partitioning with OM and micro-PE having similar sorption affinity. Sorption to MWCNT and nano-PS was nonlinear. PCB sorption to MWCNT and C60 was 3-4 orders of magnitude stronger than to OM and micro-PE. Sorption to nano-PS was 1-2 orders of magnitude stronger than to micro-PE, which was attributed to the higher aromaticity and surface-volume ratio of nano-PS. Organic matter effects varied among sorbents, with the largest OM fouling effect observed for the high surface sorbents MWCNT and nano-PS. Salinity decreased sorption for sediment and MWCNT but increased sorption for the polymers nano-PS and micro-PE. The exceptionally strong sorption of (planar) PCBs to C60, MWCNT, and nano-PS may imply increased hazards upon membrane transfer of these particles.

  9. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility.

    PubMed

    Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit

    2018-05-01

    A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.

  10. Bioinspired polydimethylsiloxane-based composites with high shear resistance against wet tissue.

    PubMed

    Fischer, Sarah C L; Levy, Oren; Kroner, Elmar; Hensel, René; Karp, Jeffrey M; Arzt, Eduard

    2016-08-01

    Patterned microstructures represent a potential approach for improving current wound closure strategies. Microstructures can be fabricated by multiple techniques including replica molding of soft polymer-based materials. However, polymeric microstructures often lack the required shear resistance with tissue needed for wound closure. In this work, scalable microstructures made from composites based on polydimethylsiloxane (PDMS) were explored to enhance the shear resistance with wet tissue. To achieve suitable mechanical properties, PDMS was reinforced by incorporation of polyethylene (PE) particles into the pre-polymer and by coating PE particle reinforced substrates with parylene. The reinforced microstructures showed a 6-fold enhancement, the coated structures even a 13-fold enhancement in Young׳s modulus over pure PDMS. Shear tests of mushroom-shaped microstructures (diameter 450µm, length 1mm) against chicken muscle tissue demonstrate first correlations that will be useful for future design of wound closure or stabilization implants. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Acid-Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The Usefulness of Contact Angle in Following the Ionization of Surface Functionality

    DTIC Science & Technology

    1985-08-01

    1 -ethyl- 3 -( 3 - dimethylaminopropyl )car- bodiimide hydrochloride (Sigma) and glycine (2-3H) (New England Nuclear as a 15.0...of N-hydroxysuc- *cinimide and 0.5 g of 1 -ethyl- 3 -( 3 - dimethylaminopropyl )carbodiimide hydrochloride for 12 hours to produce PE-CO-N-hydroxysuccinimide...and/or Dist 1 Special I- S,N 0102- LF. 014.6601 SECURITY CLASSIFICATION Of THIS PAGIrm( en Date Entered) / . ~ * .! - 3 - Introduction. In

  12. Synthesis and Characterization of Polyethylene/Starch Nanocomposites: A Spherical Starch-Supported Catalyst and In Situ Ethylene Polymerization.

    PubMed

    Zhanga, Hao; Xi, Shixia; Wang, Shuwei; Liu, Jingsheng; Yoon, Keun-Byoung; Lee, Dong-Ho; Zhang, Hexin; Zhang, Xuequan

    2017-01-01

    In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.

  13. Wear Scar Similarities between Retrieved and Simulator-Tested Polyethylene TKR Components: An Artificial Neural Network Approach

    PubMed Central

    2016-01-01

    The aim of this study was to determine how representative wear scars of simulator-tested polyethylene (PE) inserts compare with retrieved PE inserts from total knee replacement (TKR). By means of a nonparametric self-organizing feature map (SOFM), wear scar images of 21 postmortem- and 54 revision-retrieved components were compared with six simulator-tested components that were tested either in displacement or in load control according to ISO protocols. The SOFM network was then trained with the wear scar images of postmortem-retrieved components since those are considered well-functioning at the time of retrieval. Based on this training process, eleven clusters were established, suggesting considerable variability among wear scars despite an uncomplicated loading history inside their hosts. The remaining components (revision-retrieved and simulator-tested) were then assigned to these established clusters. Six out of five simulator components were clustered together, suggesting that the network was able to identify similarities in loading history. However, the simulator-tested components ended up in a cluster at the fringe of the map containing only 10.8% of retrieved components. This may suggest that current ISO testing protocols were not fully representative of this TKR population, and protocols that better resemble patients' gait after TKR containing activities other than walking may be warranted. PMID:27597955

  14. Combating oil spill problem using plastic waste.

    PubMed

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-01

    Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Plastic Pipe Failure, Risk, and Threat Analysis

    DOT National Transportation Integrated Search

    2009-04-29

    The three primary failure modes that may be exhibited by polyethylene (PE) gas pipe materials were described in detail. The modes are: ductile rupture, slow crack growth (SCG), and rapid crack propagation (RCP). Short term mechanical tests were evalu...

  16. The Effect of Microplastic on the Uptake of Chemicals by the Lugworm Arenicola marina (L.) under Environmentally Relevant Exposure Conditions

    PubMed Central

    2017-01-01

    It has been hypothesized that ingestion of microplastic increases exposure of aquatic organisms to hydrophobic contaminants. To date, most laboratory studies investigated chemical transfer from ingested microplastic without taking other exposure pathways into account. Therefore, we studied the effect of polyethylene (PE) microplastic in sediment on PCB uptake by Arenicola marina as a model species, quantifying uptake fluxes from all natural exposure pathways. PCB concentrations in sediment, biota lipids (Clip) and porewater measured with passive samplers were used to derive lipid-normalized bioaccumulation metrics Clip, Biota sediment accumulation factor (BSAF), Bioaccumulation factor (BAF) and the Biota plastic accumulation factor (BPAF). Small effects of PE addition were detected suggesting slightly increased or decreased bioaccumulation. However, the differences decreased in magnitude dependent on the metric used to assess bioaccumulation, in the order: Clip > BSAF > BPAF > BAF, and were nonsignificant for BAF. The fact that BAF, that is, normalization of Clip on porewater concentration, largely removed all effects of PE, shows that PE did not act as a measurable vector of PCBs. Biodynamic model analysis confirmed that PE ingestion contributed marginally to bioaccumulation. This work confirmed model-based predictions on the limited relevance of microplastic for bioaccumulation under environmentally realistic conditions, and illustrated the importance of assessing exposure through all media in microplastic bioaccumulation studies. PMID:28682597

  17. The Effect of Microplastic on the Uptake of Chemicals by the Lugworm Arenicola marina (L.) under Environmentally Relevant Exposure Conditions.

    PubMed

    Besseling, Ellen; Foekema, Edwin M; van den Heuvel-Greve, Martine J; Koelmans, Albert A

    2017-08-01

    It has been hypothesized that ingestion of microplastic increases exposure of aquatic organisms to hydrophobic contaminants. To date, most laboratory studies investigated chemical transfer from ingested microplastic without taking other exposure pathways into account. Therefore, we studied the effect of polyethylene (PE) microplastic in sediment on PCB uptake by Arenicola marina as a model species, quantifying uptake fluxes from all natural exposure pathways. PCB concentrations in sediment, biota lipids (C lip ) and porewater measured with passive samplers were used to derive lipid-normalized bioaccumulation metrics C lip , Biota sediment accumulation factor (BSAF), Bioaccumulation factor (BAF) and the Biota plastic accumulation factor (BPAF). Small effects of PE addition were detected suggesting slightly increased or decreased bioaccumulation. However, the differences decreased in magnitude dependent on the metric used to assess bioaccumulation, in the order: C lip > BSAF > BPAF > BAF, and were nonsignificant for BAF. The fact that BAF, that is, normalization of C lip on porewater concentration, largely removed all effects of PE, shows that PE did not act as a measurable vector of PCBs. Biodynamic model analysis confirmed that PE ingestion contributed marginally to bioaccumulation. This work confirmed model-based predictions on the limited relevance of microplastic for bioaccumulation under environmentally realistic conditions, and illustrated the importance of assessing exposure through all media in microplastic bioaccumulation studies.

  18. First-principle simulations of electronic structure in semicrystalline polyethylene

    NASA Astrophysics Data System (ADS)

    Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.

    2017-05-01

    In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.

  19. How to polymerize ethylene in a highly controlled fashion?

    PubMed

    Kempe, Rhett

    2007-01-01

    Very fast, reversible, polyethylene (PE) chain transfer or complex-catalysed "Aufbaureaktion" describes a "living" chain-growing process on a main-group metal or zinc atom; this process is catalysed by an organo-transition-metal or lanthanide complex. PE chains are transferred very fast between the two metal sites and chain growth takes place through ethylene insertion into the transition-metal- or lanthanide-carbon bond-coordinative chain-transfer polymerisation (CCTP). The transferred chains "rest" at the main-group or zinc centre, at which chain-termination processes like beta-H transfer/elimination are of low significance. Such protocols can be used to synthesise very narrowly distributed PE materials (M(w)/M(n)<1.1 up to a molecular weight of about 4000 g mol(-1)) with differently functionalised end groups. Higher molecular-weight polymers can be obtained with a slightly increased M(w)/M(n), since diffusion control and precipitation of the polymers influences the chain-transfer process. Recently, a few transition-metal- or lanthanide-based catalyst systems that catalyse such a highly reversible chain-growing process have been described. They are summarised and compared within this contribution.

  20. A comparison of the efficacy of various antioxidants on the oxidative stability of irradiated polyethylene.

    PubMed

    Hope, Natalie; Bellare, Anuj

    2015-03-01

    Ultrahigh-molecular-weight polyethylene (UHMWPE) is subjected to radiation crosslinking to form highly crosslinked polyethylene (HXLPE), which has improved wear resistance. First-generation HXLPE was subjected to thermal treatment to reduce or quench free radicals that can induce long-term oxidative degeneration. Most recently, antioxidants have been added to HXLPE to induce oxidative resistance rather than by thermal treatment. However, antioxidants can interfere with the efficiency of radiation crosslinking. We sought to identify (1) which antioxidant from among those tested (vitamin E, β-carotene, butylated hydroxytoluene, or pentaerythritol tetrakis [methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate]) causes the least reduction of crosslinking; (2) which promotes the greatest oxidative stability; and (3) which had the lowest ratio of oxidation index to crosslink density. Medical-grade polyethylene (PE) resin was blended with 0.1 weight % of the following stabilizers: alpha tocopherol (vitamin E), β-carotene, butylated hydroxytoluene (BHT), and pentaerythritol tetrakis [methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (a hindered phenol antioxidant [HPAO]). These blends were compression-molded into sheets and subjected to electron beam irradiation to a dose of 100 kGy. Equilibrium swelling experiments were conducted to calculate crosslink density. Each PE was subjected to accelerated aging for a period of 2 weeks and Fourier transform infrared spectroscopy was used to measure the maximum oxidation. Statistical analysis was conducted using analysis of variance with Fisher's protected least significant difference in which a p value of < 0.05 was used to define a significant difference. The least reduction of crosslinking in antioxidant-containing HXLPE was observed with HPAO, which had a crosslink density (n = 6) of 0.167 (effect size [ES] = 0.87; 95% confidence interval [CI], 0.162-0.173) mol/dm(3) compared with 0.139 (ES = 1.57; 95% CI, 0.132-0.146) mol/dm(3) (p = 0.020) for BHT, 0.131 (ES = 1.77; 95% CI, 0.123-0.139) mol/dm(3) (p = 0.004) for β-carotene, and 0.130 (ES = 1.79; 95% CI, 0.124-0.136) mol/dm(3) (p = 0.003) for vitamin E, whereas pure HXLPE had a crosslink density of 0.203 (95% CI, 0.170-0.235) mol/dm(3) (p = 0.005). BHT-PE had an oxidation index of 0.21 (ES = 13.14; 95% CI, 0.19-0.22) followed by HPAO-PE, vitamin E-PE and β-carotene-PE, which had oxidation indices of 0.28 (ES = 9.68; 95% CI, 0.28-0.29), 0.29 (ES = 9.59; 95% CI, 0.27-0.30), and 0.35 (ES = 6.68; 95% CI, 0.34-0.37), respectively (p < 0.001 for all groups). BHT-PE had the lowest ratio of oxidation index to crosslink density of the materials tested (1.49, ES = 1.94; 95% CI, 1.32-1.66) followed by HPAO-PE (1.70, ES = 1.52; 95% CI, 1.61-1.80), vitamin E-PE (2.21, ES = 0.52; 95% CI, 2.05-2.38), and β-carotene-PE (2.69, ES = -0.43; 95% CI, 2.46-2.93) compared with control PE (2.47, 95% CI, 2.07-2.88) with β-carotene (p = 0.208) and vitamin E (p = 0.129) not being different from the control. BHT-modified HXLPE was found in this study to have the lowest oxidation index as well as the lowest ratio of oxidation index to crosslink density compared with vitamin E, HPAO, and β-carotene-modified HXLPEs. More comprehensive studies are required such as wear testing using joint simulators as well as biocompatibility studies before BHT-modified HXLPE can be considered for clinical use. BHT is a synthetic antioxidant commonly used in the polymer industry to prevent long-term oxidative degradation and has been approved by the FDA for use in cosmetics and foodstuffs. It may be an attractive potential stabilizer for HXLPE in total joint replacements.

  1. [Simultaneous determination of 33 primary aromatic amines in polystyrene and polyethylene masterbatches for foods by ultra-performance liquid chromatography-tandem mass spectrometry

    PubMed

    Man, Zhengyin; Wang, Quanlin; Li, Hesheng; Zhang, Aizhi; Shen, Jian

    2015-03-01

    A comprehensive analytical method based on ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) has been developed for the simultaneous determination of 33 primary aromatic amines (PAAs) in polystyrene (PS) and polyethylene (PE) masterbatches for foods. The PS masterbatches were dissolved with dichloromethane, and methanol was added to precipitate after extraction by ultrasound extraction. Then the extract was purified by passing through a carbon graphite solid phase extraction column. The PE masterbatches were swelled and extracted with dichloromethane by ultrasound. The purified PS solution and PE extract were concentrated, and diluted to 2 mL with methanol-water (1:9, v/v), and filtered through the membranes of 0.22 µm before UPLC-MS/MS analysis. The analytes were separated on a BEH Phenyl column (100 mm x 2.1 mm, 1.7 µm), eluted by gradient with 0.07% (v/v) formic acid in methanol-water (1:9, v/v). The PAAs were detected by UPLC-MS/MS under multiple reaction monitoring (MRM) mode and quantified by the internal standard method. The separation conditions, fragment voltages and collision energies were optimized. The impacts of extraction times, extraction solvents and concentration methods on recoveries were studied. The limits of detection for the 33 primary aromatic amines were 6-10 µg/kg, and the limits of quantitation were 20-30 µg/kg. The mean recoveries of the two different masterbatch products at three spiked levels of 20, 100, 200 µg/kg were 61.3%-119.8%, and the relative standard deviations were 1.4%-14.8%. The experimental results indicated that the method is simple, rapid, sensitive, accurate, and can meet the related requirements for determination.

  2. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical

    PubMed Central

    Shen, Roger; Kim, Jane J; Yao, Mingyi; Elbayoumi, Tamer A

    2016-01-01

    Berberine (Brb) is an active alkaloid occurring in various common plant species, with well-recognized potential for cancer therapy. Brb not only augments the efficacy of antineoplastic chemotherapy and radiotherapy but also exhibits direct antimitotic and proapoptotic actions, along with distinct antiangiogenic and antimetastatic activities in a variety of tumors. Despite its low systemic toxicity, several pharmaceutical challenges limit the application of Brb in cancer therapy (ie, extremely low solubility and permeability, very poor pharmacokinetics (PKs), and oral bioavailability). Among lipid-based nanocarriers investigated recently for Brb, stealth amphiphilic micelles of polymeric phospholipid conjugates were studied here as a promising strategy to improve Brb delivery to tumors. Specifically, physicochemically stable micelles made of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (PEG-PE) mixed with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-succinate ester of vitamin E), in a 3:1 M ratio, increased Brb solubilization by 300%. Our PEG-PE/TPGS-mixed micelles firmly retained the incorporated Brb, displaying extended-release profile in simulated media, with up to 30-fold projected improvement in simulated PKs of Brb. Owing to the markedly better uptake of Brb-containing mixed micelles in vitro, our Brb-mixed micelles nanoformulation significantly amplified apoptosis and overall cytotoxic effectiveness against monolayer and spheroid cultures of human prostate carcinomas (16- to 18-fold lower half-maximal inhibitory concentration values in PC3 and LNPaC, respectively), compared to free Brb. Mixed PEG-PE/TPGS micelles represent a promising delivery platform for the sparingly soluble anticancer agent, Brb, encouraging further pharmaceutical development of this drug for cancer therapy. PMID:27217747

  3. Effects of prosthetic materials on the host immune response: evaluation of polymethyl-methacrylate (PMMA), polyethylene (PE), and polystyrene (PS) particles.

    PubMed

    Frick, Chris; Dietz, Andrew C; Merritt, Katharine; Umbreit, Thomas H; Tomazic-Jezic, Vesna J

    2006-01-01

    The main causes for the long-term prosthetic implants' failure are the body's reaction to the implanted material or mechanical stress on the device resulting in the formation of wear particles. Particulate wear debris attracts macrophages, and depending on the chemical composition of the material and particle size, various levels of inflammatory response may occur. While transient inflammation is common, development of chronic inflammation may have serious consequences, leading to implant failure. Such a process may also cause systemic changes to immune functions and long-term effects on the host immune responses. In this study, we evaluated the effects of polystyrene (PS), polyethylene (PE), and polymethylmethacrylate (PMMA) particles on macrophage function and the generation of T-cell responses. Particles of various diameters were injected intraperitoneally into Balb/c mice, and immune functions were examined at 3, 10, and 21 days after the injection. The intensity of phagocytosis by peritoneal exudate cells (PECs) and the proliferative response of spleen cells from treated mice were evaluated. Enumeration of PECs revealed an increase in the total number of cells. Mice injected with PS or PE particles had a higher percentage of cells containing particles than PMMA-injected mice. Macrophages with PS or PE particles tended to adhere to and/or infiltrate peritoneal fibro-fatty tissues surrounding the spleen and pancreas, while the PMMA-carrying macrophages infiltrated the spleen, resulting in an increase of spleen size and "weight. The spleen cell proliferation assay revealed only mild and transient effects on the mitogen response in both PE and PS particle-injected mice. However, in the PMMA-injected mice we observed a lasting increase of the Con A response and a decrease of the LPS response. In vitro exposure of PECs from untreated mice showed a dose-response pattern in nitric oxide (NO) and TNFalpha production. While exposure to either PMMA or PE induced comparable levels of NO, exposure to PMMA induced a markedly higher production of TNFalpha than exposure to PE. The results indicate that particulate biomaterials may, in addition to the initial activation of phagocytes, significantly affect immune functions and compromise the host response to other antigenic stimuli.

  4. Combustion of char from plastic wastes pyrolysis

    NASA Astrophysics Data System (ADS)

    Saptoadi, Harwin; Rohmat, Tri Agung; Sutoyo

    2016-06-01

    A popular method to recycle plastic wastes is pyrolysis, where oil, gas and char can be produced. These products can be utilized as fuels because they are basically hydrocarbons. The research investigates char properties, including their performance as fuel briquettes. There are 13 char samples from PE (Polyethylene) pyrolyzed at temperatures of around 450 °C, with and without a catalyst. Some of the samples were obtained from PE mixed with other types, such as Polystyrene (PS), Polypropylene (PP), Polyethylene Terephthalate (PET), and Others. Char properties, such as moisture, ash, volatile matter, and fixed carbon contents, are revealed from the proximate analysis, whereas calorific values were measured with a bomb calorimeter. Briquettes are made by mixing 4 g of char with 0.5 - 1 g binder. Briquettes are hollow cylinders with an outer and inner diameter of around 1.75 cm and 0.25 cm, respectively. Combustion is carried out in a furnace with wall temperatures of about 230°C and a constant air velocity of 0.7 m/s. Five out of 13 char briquettes are not feasible because they melt during combustion. Briquettes made from 100% PE wastes burn in substantially shorter duration than those from mixed plastic wastes. Char #1 and #5 are excellent due to their highest energy release, whereas #10 show the worst performance.

  5. Au-nanoparticles grafted on plasma treated PE

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.

    2010-03-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  6. Reconstruction of gas distribution pipelines in MOZG in Poland using PE and PA pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowicz, W.; Podziemski, T.; Kramek, E.

    1996-12-31

    MOZG--Warsaw Regional Gas Distribution Company was established in 1856. Now it is one of six gas distribution companies in Poland. Due to steadily increasing safety demands, some of the pipelines will need reconstruction. The majority of the substandard piping is located in urban areas. The company wanted to gain experiences in applying reconstruction technologies using two different plastic materials polyethylene and polyamide. They also wanted to assess the technical and economic practicalities of performing relining processes. A PE project--large diameter polyethylene relining (450 mm) conducted in Warsaw in 1994/95 and PA projects--relining using polyamide pipes, projects conducted in Radom andmore » in Warsaw during 1993 and 1994 are the most interesting and representative for this kind of works. Thanks to the experience obtained whilst carrying out these projects, reconstruction of old gas pipelines has become routine. Now they often use polyethylene relining of smaller diameters and they continue both construction and reconstruction of gas network using PA pipes. This paper presents the accumulated knowledge showing the advantages and disadvantages of applied methods. It describes project design and implementation with details and reports on the necessary preparation work, on site job organization and the most common problems arising during the construction works.« less

  7. Effects of 1 MeV electrons on the deformation mechanisms of polyethylene/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Yang, Jianqun; Zhang, Xiaodong; Liu, Chaoming; Li, Xingji; Li, Hongxia; Ma, Guoliang; Tian, Feng

    2017-10-01

    Polymer nano-composites, especially in polyethylene (PE)/carbon nanotube (CNT) composites can be employed as radiation shielding and structural materials in space. When the PE/CNT composites are used in space, it is easy to suffer from radiation damage caused by charged particles. However, few studies about deformation mechanisms of the composites exposed to electron become available so far. In this paper, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) with MWCNT loadings concentrations of 0.1 wt%. The structural evolution during uniaxial tensile deformation of the LDPE/0.1% MWCNT composites before and after 1 MeV electrons were investigated by means of a small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). Experimental results show that 1 MeV electrons obviously increase the ultimate tensile strength of the LDPE/MWCNT composites. From SAXS and WAXD analyses, it is shown that 1 MeV electrons inhibit the disintegration and the rotation of the lamellae, and slow down the formation of the new crystals. It is concluded that the intense interaction between MWCNTs and LDPE matrix and the crosslinking strengthening generated by 1 MeV electrons is the dominant reason for the changes of the deformation behaviors of LDPE.

  8. The preparation of nanosized polyethylene particles via novel heterogeneous non-metallocene catalyst (m-CH3PhO)TiCl3/CNTs/AlEt3

    NASA Astrophysics Data System (ADS)

    Wang, J.; Guo, J. P.; Yi, J. J.; Huang, Q. G.; Li, H. M.; Li, Y. F.; Gao, K. J.; Yang, W. T.

    2014-08-01

    This paper reports the preparation of coral-shaped topological morphology nascent polyethylene (PE) particles promoted by the novel heterogeneous non-metallocene catalyst (m-CH3PhO)TiCl3/carbon nanotubes (CNTs), with AlEt3 used as a cocatalyst. Scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM) and inductively coupled plasma (ICP) emission spectroscopy were used to determine the morphology of the catalyst particles and the content of (m-CH3PhO)TiCl3. The carbon nanotube surface was treated with Grignard Reagent prior to reacting with (m-CH3PhO)TiCl3. The catalyst system could effectively catalyze ethylene polymerization and ethylene with 1- hexene copolymerization, the catalytic activity could reach up to 5.8 kg/((gTi)h). Morphology of the obtained polymer particles by SEM and HR-TEM technique revealed that the nascent polyethylene particles looked like coral shape in micro-size. The multiwalled carbon nanotubes (MWCNTs) supported catalysts polymerized ethylene to form polymer nanocomposite in situ. The microscopic examination of this nanocomposite revealed that carbon nanoparticles in PE matrix had a good distribution and the cryogenically fractured surface was ductile-like when polymerization time was 2 min.

  9. Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish (Danio rerio).

    PubMed

    Khan, Farhan R; Syberg, Kristian; Shashoua, Yvonne; Bury, Nicolas R

    2015-11-01

    This study aimed to determine whether the uptake and localization of Ag in zebrafish was affected by the presence of polyethylene microplastic beads (PE MPBs). Zebrafish were exposed to 1 μg Ag L(-1) (radiolabelled with (110m)Ag) for 4 and 24 h in the presence or absence of PE MPBs (10, 100 or 1000 MPBs mL(-1)), and one treatment in which MPBs (1000 MPBs mL(-1)) were incubated with Ag to promote adsorption. The presence of MPBs, at any of the tested doses, had no effect on the uptake or localization of Ag. However, exposure to the Ag-incubated MPBs (∽75% of the Ag bound to MPBs) significantly reduced Ag uptake at both time points and also significantly increased the proportion of intestinal Ag. This study demonstrates that microplastics can alter the bioavailability and uptake route of a metal contaminant in a model fish species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Moore's curve structuring of ferromagnetic composite PE-NiFe absorbers

    NASA Astrophysics Data System (ADS)

    Fernez, N.; Arbaoui, Y.; Maalouf, A.; Chevalier, A.; Agaciak, P.; Burgnies, L.; Queffelec, P.; Laur, V.; Lheurette, É.

    2018-02-01

    A ferromagnetic material involving nickel-iron particles embedded in a polyethylene matrix is synthesized and electrically characterized between 1 and 12 GHz. These measurements show the combination of electric and magnetic activity along with significant loss terms. We take benefit of these properties for the design of broadband electromagnetic absorbers. To this aim, we use a fractal structuring based on Moore curves. The advantage of etching patterns over metallic ones is clearly evidenced, and several pattern absorbers identified by their Moore's order iteration are designed and analyzed under oblique incidence.

  11. Space Radiation Dosimetry to Evaluate the Effect of Polyethylene Shielding in the Russian Segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Aiko; Casolino, Marco; Larsson, Oscar; Ito, Tsuyoshi; Yasuda, Nakahiro; Kitajo, Keiichi; Shimada, Ken; Takeda, Kazuo; Tsuda, Shuichi; Sato, Tatsuhiko

    As a part of the Alteino Long Term Cosmic Ray measurements on board the International Space Station (ALTCRISS) project, the shielding effect of polyethylene (PE) were evaluated in the Russian segment of the ISS, using active and passive dosimeter systems covered with or without PE shielding. For the passive dosimeter system, PADLES (Passive Dosimeter for Life-Science and Experiments in Space) was used in the project, which consists of a Thermo-Luminescent Dosimeters (TLD) and CR-39 Plastic Nuclear Track Detectors (PNTDs) attached to a radiator. Not only CR-39 PNTD itself but also a tissue equivalent material, NAN-JAERI, were employed as the radiator in order to investigate whether CR-39 PNTD can be used as a surrogate of tissue equivalent material in space dosimetry or not. The agreements between the doses measured by PADLES with CR-39 PNTD and NAN-JAERI radiators were quite satisfactorily, indicating the tissue-equivalent dose can be measured by conventional PADLES even though CR-39 PNTD is not perfect tissue-equivalent material. It was found that the shielding effect of PE varies with location inside the spacecraft: it became less significant with an increase of the mean thickness of the wall. This tendency was also verified by Monte Carlo simulation using the PHITS code. Throughout the flight experiments, in a series of four phases in the ALTCRISS project from December 2005 to October 2007, we assessed the ability of PE to decrease radiation doses in Low Earth Orbit(LEO).

  12. Atmospheric volatilization and distribution of (Z)- and (E)-1,3-dichloropropene in field beds with and without plastic covers.

    PubMed

    Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse

    2004-01-01

    The fumigant 1,3-dichloropropene (1,3-D) is considered to be a potential replacement for methyl bromide when methyl bromide is phased out in 2005. This study on surface emissions and subsurface diffusion of 1,3-D in a Florida sandy soil was conducted in field beds with or without plastic covers. After injection of the commercial fumigant Telone II by conventional chisels to field beds at 30cm depth which were covered with polyethylene film (PE), virtually impermeable film, or no cover (bare), (Z)- and (E)-1,3-D rapidly diffused upward. Twenty hours after injection, majority of (Z)- and (E)-1,3-D had moved upward from 30 cm depth to the layer of 5-20 cm depth. Downward movement of the two isomers in the beds with or without a plastic cover was not significant. (Z)-1,3-D diffused more rapidly than (E)-1,3-D. Virtually impermeable films (VIF) had a good capacity to retain (Z)- and (E)-1,3-D in soil pore air space. Vapor concentrations of the two isomers in the shallow subsurface of the field bed covered with VIF were greater than that in the two beds covered with polyethylene film (PE) or no cover (bare). In addition, VIF cover provided more uniform distribution of (Z)- and (E)-1,3-D in shallow subsurface than PE cover or no cover. Virtually impermeable film also had a better capability to retard surface emissions of the two isomers from soil in field beds than PE cover or no cover.

  13. Nanostructure and thermal properties of melt compounded PE/clay nanocomposites filled with an organosilylated montmorillonite

    NASA Astrophysics Data System (ADS)

    Scarfato, Paola; Incarnato, Loredana; Di Maio, Luciano; Dittrich, Bettina; Niebergall, Ute; Böhning, Martin; Schartel, Bernhard

    2015-12-01

    In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.

  14. Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors

    PubMed Central

    Kanbur, Yasin; Irimia-Vladu, Mihai; Głowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Günther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; Erten-Ela, Sule; Schwödiauer, Reinhard; Sitter, Helmut; Küçükyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar

    2012-01-01

    We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm2/Vs. Devices with pentacene showed a mobility of 0.16 cm2/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of ∼0.3 cm2/Vs. These devices demonstrate low hysteresis and operational stability over at least several months. Grazing-angle infrared spectroscopy of evaporated thin films shows that the structure of the polyethylene is similar to solution-cast films. We report also on the morphological and dielectric properties of these films. Our experiments demonstrate that polyethylene is a stable dielectric supporting both hole and electron channels. PMID:23483783

  15. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.

  16. Micro X-Ray Computed Tomography Mass Loss Assessment of Different UHMWPE: A Hip Joint Simulator Study on Standard vs. Cross-Linked Polyethylene

    PubMed Central

    Zanini, Filippo; Carmignato, Simone

    2017-01-01

    More than 60.000 hip arthroplasty are performed every year in Italy. Although Ultra-High-Molecular-Weight-Polyethylene remains the most used material as acetabular cup, wear of this material induces over time in vivo a foreign-body response and consequently osteolysis, pain, and the need of implant revision. Furthermore, oxidative wear of the polyethylene provoke several and severe failures. To solve these problems, highly cross-linked polyethylene and Vitamin-E-stabilized polyethylene were introduced in the last years. In in vitro experiments, various efforts have been made to compare the wear behavior of standard PE and vitamin-E infused liners. In this study we compared the in vitro wear behavior of two different configurations of cross-linked polyethylene (with and without the add of Vitamin E) vs. the standard polyethylene acetabular cups. The aim of the present study was to validate a micro X-ray computed tomography technique to assess the wear of different commercially available, polyethylene’s acetabular cups after wear simulation; in particular, the gravimetric method was used to provide reference wear values. The agreement between the two methods is documented in this paper. PMID:28107468

  17. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents

    PubMed Central

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-01-01

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents. PMID:28773592

  18. Effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on biomaterial-associated staphylococcal infection in mice.

    PubMed

    Rózalska, B; Ljungh, A; Paziak-Domańska, B; Rudnicka, W

    1996-01-01

    Staphylococcal infections are a major complication in the usage of biomaterials. Different modifications of polymers have been made to reduce the incidence of such infections. We studied the effects of modifying heparinized polyethylene (H-PE) with mouse recombinant granulocyte-macrophage stimulating factor (rGM-CSF). The elimination of staphylococci (Staphylococcus aureus, S. epidermidis) from the peritoneum of mice implanted with rGM-CSF-coated H-PE was slightly more effective than the elimination of the bacteria from the peritoneum of animals implanted with uncoated H-PE. Most interestingly, the number of staphylococci present in the biofilms covering rGM-CSF-coated implants were significantly lower than the number of bacteria detected on the surface of H-PE not coated with rGM-CSF. In vitro, rGM-CSF restored the anti-bacterial potency of the phagocytes, which had been reduced by surface contact with H-PE. The results suggest that modification of biomaterials with rGM-CSF could be one way of preventing staphylococcal infections; especially in neutropenic disorders, which constitute the highest risk factor for foreign body-associated infections.

  19. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    NASA Astrophysics Data System (ADS)

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (<1.0 km /s ) the simulations show enhanced energy reflection relative to the continuum predictions. Furthermore, the simulations show an effect not captured by the continuum theory: the size of amorphous regions is important. The theory assumes a sharp (discontinuous) interface between two bulk phases and a sharp change in thermodynamic and hydrodynamic quantities at the shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can be applied to tune shock attenuation for particular applications.

  20. New CO2 adsorbent containing aminated poly(glycidyl methacrylate) grafted onto irradiated PE-PP nonwoven sheet

    NASA Astrophysics Data System (ADS)

    Mahmoud Nasef, Mohamed; Abbasi, Ali; Ting, T. M.

    2014-10-01

    A new CO2 adsorbent containing triethylamine (TEA) was prepared by radiation induced grafting of glycidyl methacrylate (GMA) onto polyethylene coated polypropylene (PE-PP) non-woven sheet followed by amination reaction. The degree of grafting (DOG%) was controlled by variation of monomer concentration and absorbed dose. The incorporation of aminated poly(GMA) was investigated by Fourier transform infrared (FTIR) and scanning electron microscope (SEM). The adsorbent with DOG of 350% and amination yield of 60% exhibited CO2 adsorption capacity of 4.52 mol/kg at ambient temperature and pressure.

  1. Co-processing of agricultural plastic waste and switchgrass via tail gas reactive pyrolysis

    USDA-ARS?s Scientific Manuscript database

    Mixtures of agricultural plastic waste in the form of polyethylene hay bale covers (PE) (4-37%) and switchgrass were investigated using the US Department of Agriculture’s tail gas reactive pyrolysis (TGRP) at different temperatures (400-570 deg C). TGRP of switchgrass and plastic mixtures significan...

  2. Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications

    PubMed Central

    Balaji, Arunpandian; Jaganathan, Saravana Kumar; Supriyanto, Eko; Muhamad, Ida Idayu; Khudzari, Ahmad Zahran Md

    2015-01-01

    Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants. PMID:26425089

  3. Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications.

    PubMed

    Balaji, Arunpandian; Jaganathan, Saravana Kumar; Supriyanto, Eko; Muhamad, Ida Idayu; Khudzari, Ahmad Zahran Md

    2015-01-01

    Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.

  4. Cross-linked compared with historical polyethylene in THA: an 8-year clinical study.

    PubMed

    Geerdink, Carel H; Grimm, Bernd; Vencken, Wendy; Heyligers, Ide C; Tonino, Alphons J

    2009-04-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening in THA. Increasing wear resistance of polyethylene (PE) occurs by increasing the cross-link density and early reports document low wear rates with such implants. To confirm longer-term reductions in wear we compared cross-linked polyethylene (irradiation in nitrogen, annealing) with historical polyethylene (irradiation in air) in a prospective, randomized clinical study involving 48 patients who underwent THAs with a minimum followup of 7 years (mean, 8 years; range, 7-9 years). The insert material was the only variable. The Harris hip score, radiographic signs of osteolysis, and polyethylene wear were recorded annually. Twenty-three historical and 17 moderately cross-linked polyethylene inserts were analyzed (five patients died, three were lost to followup). At 8 years, the wear rate was lower for cross-linked polyethylene (0.088 +/- 0.03 mm/year) than for the historical polyethylene (0.142 +/- 0.07 mm/year). This reduction (38%) did not diminish with time (33% at 5 years). Acetabular cyst formation was less frequent (39% versus 12%), affected fewer DeLee and Charnley zones (17% versus 4%), and was less severe for the cross-linked polyethylene. The only revision was for an aseptically loose cup in the historical polyethylene group. Moderately cross-linked polyethylene maintained its wear advantage with time and produced less osteolysis, showing no signs of aging at mid-term followup. Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  5. Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators.

    PubMed

    Yoo, Youngmin; Kim, Byung Gon; Pak, Kwanyong; Han, Sung Jae; Song, Heon-Sik; Choi, Jang Wook; Im, Sung Gap

    2015-08-26

    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting.

  6. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    PubMed Central

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  7. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    PubMed

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables. © 2016 Institute of Food Technologists®

  8. Coarse-grained modeling of polyethylene melts: Effect on dynamics

    DOE PAGES

    Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya; ...

    2017-05-23

    The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less

  9. Coarse-grained modeling of polyethylene melts: Effect on dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya

    The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less

  10. An investigation on morphology and mechanical properties of HDPE/nanoclay/nanoCaCO{sub 3} ternary nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garmabi, Hamid, E-mail: garmabi@aut.ac.ir; Tabari, Seyed Emad Alavi; Javadi, Azizeh

    Ternary Nanocomposites of high-density polyethylene (HDPE) containing two types of nano particles, a layered organoclay (Closite 15A) and a spherical nano Calcium Carbonate (CaCO{sub 3}), with various compositions were prepared using melt mixing. Maleic anhydride grafted polyethylene (MA-g-PE) was used to enhance the dispersion of nanofillers and better interface adhesion. Three different levels of nanoclay (1, 3, 5 wt. %), CaCO{sub 3} (6, 8, 10 wt. %) and MA-g-PE (3, 6, 9 wt. %) were used. The mixing was done in two steps: First a concentrated masterbatch of nanoparticles in HPDE and MA-g-PE was prepared using an internal mixer andmore » then melt-mixing of nanocomposites was done in a lab scale co-rotating twin screw extruder. The morphology of samples was studied using Scanning Electron Microscopy (SEM) and mechanical properties were evaluated using tensile and impact tests. According to the SEM micrographs, nanofillers were well dispersed in the HDPE matrix and XRD patterns showed the intercalation of nanoclay layers too. Generally using the layered nanoclay can enhance the tensile modulus while the use of spherical nano CaCO{sub 3} results into improved toughness. It was found that co-incorporation of these two types of nanofillers, leads to improve the stiffness and minimize the reduction of impact strength, simultaneously.« less

  11. Migration and head penetration of Vitamin-E diffused cemented polyethylene cup compared to standard cemented cup in total hip arthroplasty: study protocol for a randomised, double-blind, controlled trial (E1 HIP).

    PubMed

    Sköldenberg, Olof; Rysinska, Agata; Chammout, Ghazi; Salemyr, Mats; Muren, Olle; Bodén, Henrik; Eisler, Thomas

    2016-07-07

    In vitro, Vitamin-E-diffused, highly cross-linked polyethylene (PE) has been shown to have superior wear resistance and improved mechanical properties when compared to those of standard highly cross-linked PE liners used in total hip arthroplasty (THA). The aim of the study is to evaluate the safety of a new cemented acetabular cup with Vitamin-E-doped PE regarding migration, head penetration and clinical results. In this single-centre, double-blinded, randomised controlled trial, we will include 50 patients with primary hip osteoarthritis scheduled for THA and randomise them in a 1:1 ratio to a cemented cup with either argon gas-sterilised PE (control group) or Vitamin-E-diffused PE (vitamin-e group). All patients and the assessor of the primary outcome will be blinded and the same uncemented stem will be used for all participants. The primary end point will be proximal migration of the cup at 2 years after surgery measured with radiostereometry. Secondary end points include proximal migration at other follow-ups, total migration, femoral head penetration, clinical outcome scores and hip-related complications. Patients will be followed up at 3 months and at 1, 2, 5 and 10 years postoperatively. Results will be analysed using 95% CIs for the effect size. A regression model will also be used to adjust for stratification factors. The ethical committee at Karolinska Institutet has approved the study. The first results from the study will be disseminated to the medical community via presentations and publications in relevant medical journals when the last patient included has been followed up for 2 years. NCT02254980. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Migration and head penetration of Vitamin-E diffused cemented polyethylene cup compared to standard cemented cup in total hip arthroplasty: study protocol for a randomised, double-blind, controlled trial (E1 HIP)

    PubMed Central

    Sköldenberg, Olof; Rysinska, Agata; Chammout, Ghazi; Salemyr, Mats; Muren, Olle; Bodén, Henrik; Eisler, Thomas

    2016-01-01

    Introduction In vitro, Vitamin-E-diffused, highly cross-linked polyethylene (PE) has been shown to have superior wear resistance and improved mechanical properties when compared to those of standard highly cross-linked PE liners used in total hip arthroplasty (THA). The aim of the study is to evaluate the safety of a new cemented acetabular cup with Vitamin-E-doped PE regarding migration, head penetration and clinical results. Methods and analysis In this single-centre, double-blinded, randomised controlled trial, we will include 50 patients with primary hip osteoarthritis scheduled for THA and randomise them in a 1:1 ratio to a cemented cup with either argon gas-sterilised PE (control group) or Vitamin-E-diffused PE (vitamin-e group). All patients and the assessor of the primary outcome will be blinded and the same uncemented stem will be used for all participants. The primary end point will be proximal migration of the cup at 2 years after surgery measured with radiostereometry. Secondary end points include proximal migration at other follow-ups, total migration, femoral head penetration, clinical outcome scores and hip-related complications. Patients will be followed up at 3 months and at 1, 2, 5 and 10 years postoperatively. Results Results will be analysed using 95% CIs for the effect size. A regression model will also be used to adjust for stratification factors. Ethics and dissemination The ethical committee at Karolinska Institutet has approved the study. The first results from the study will be disseminated to the medical community via presentations and publications in relevant medical journals when the last patient included has been followed up for 2 years. Trial registration number NCT02254980. PMID:27388352

  13. Determination of volatile organic compounds (VOCs) from wrapping films and wrapped PDO Italian cheeses by using HS-SPME and GC/MS.

    PubMed

    Panseri, Sara; Chiesa, Luca Maria; Zecconi, Alfonso; Soncini, Gabriella; De Noni, Ivano

    2014-06-25

    Nowadays food wrapping assures attractive presentation and simplifies self-service shopping. Polyvinylchloride (PVC)- and polyethylene (PE)-based cling-films are widely used worldwide for wrapping cheeses. For this purpose, films used in retail possess suitable technical properties such as clinginess and unrolling capacity, that are achieved by using specific plasticizers during their manufacturing process. In the present study, the main VOCs of three cling-films (either PVC-based or PE-based) for retail use were characterized by means of Solid-Phase Micro-Extraction and GC/MS. In addition, the effects of cling film type and contact time on the migration of VOCs from the films to four different PDO Italian cheeses during cold storage under light or dark were also investigated. Among the VOCs isolated from cling-films, PVC released 2-ethylhexanol and triacetin. These compounds can likely be considered as a "non-intentionally added substance". These same compounds were also detected in cheeses wrapped in PVC films with the highest concentration found after 20 days storage. The PE cling-film was shown to possess a simpler VOC profile, lacking some molecules peculiar to PVC films. The same conclusions can be drawn for cheeses wrapped in the PE cling-film. Other VOCs found in wrapped cheeses were likely to have been released either by direct transfer from the materials used for the manufacture of cling-films or from contamination of the films. Overall, HS-SPME is shown to be a rapid and solvent free technique to screen the VOCs profile of cling-films, and to detect VOCs migration from cling-films to cheese under real retail storage conditions.

  14. Evaluation of fatigue crack behavior in electron beam irradiated polyethylene pipes

    NASA Astrophysics Data System (ADS)

    Pokharel, Pashupati; Jian, Wei; Choi, Sunwoong

    2016-09-01

    A cracked round bar (CRB) fatigue test was employed to determine the slow crack growth (SCG) behavior of samples from high density polyethylene (HDPE) pipes using PE4710 resin. The structure property relationships of fatigue failure of polyethylene CRB specimens which have undergone various degree of electron beam (EB) irradiation were investigated by observing fatigue failure strength and the corresponding fracture surface morphology. Tensile test of these HDPE specimens showed improvements in modulus and yield strength while the failure strain decreased with increasing EB irradiation. The CRB fatigue test of HDPE pipe showed remarkable effect of EB irradiation on number of cycles to failure. The slopes of the stress-cycles to failure curve were similar for 0-100 kGy; however, significantly higher slope was observed for 500 kGy EB irradiated pipe. Also, the cycle to fatigue failure was seen to decrease as with EB irradiation in the high stress range, ∆σ=(16 MPa to 10.8 MPa); however, 500 kGy EB irradiated samples showed longer cycles to failure than the un-irradiated specimens at the stress range below 9.9 MPa and the corresponding initial stress intensity factor (∆KI,0)=0.712 MPa m1/2. The fracture surface morphology indicated that the cross-linked network in 500 kGy EB irradiated PE pipe can endure low dynamic load more effectively than the parent pipe.

  15. Synthesis, Development, and Testing of High-Surface-Area Polymer-Based Adsorbents for the Selective Recovery of Uranium from Seawater

    DOE PAGES

    Oyola, Yatsandra; Janke, Christopher J.; Dai, Sheng

    2016-02-29

    The ocean contains uranium with an approximate concentration of 3.34 ppb, which can serve as an incredible supply source to sustain nuclear energy in the United States. Unfortunately, technology currently available to recover uranium from seawater is not efficient enough and mining uranium on land is still more economical. For this study, we have developed polymer-based adsorbents with high uranium adsorption capacities by grafting amidoxime onto high-surface-area polyethylene (PE) fibers. Various process conditions have been screened, in combination with developing a rapid testing protocol (<24 h), to optimize the process. These adsorbents are synthesized through radiation-induced grafting of acrylonitrile (AN)more » and methacrylic acid (MAA) onto PE fibers, followed by the conversion of nitriles to amidoximes and basic conditioning. In addition, the uranium adsorption capacity, measured in units of g U/kg ads, is greatly increased by reducing the diameter of the PE fiber or changing its morphology. An increase in the surface area of the PE polymer fiber allows for more grafting sites that are positioned in more-accessible locations, thereby increasing access to grafted molecules that would normally be located in the interior of a fiber with a larger diameter. Polymer fibers with hollow morphologies are able to adsorb beyond 1 order of magnitude more uranium from simulated seawater than current commercially available adsorbents. Finally, several high-surface-area fibers were tested in natural seawater and were able to extract 5–7 times more uranium than any adsorbent reported to date.« less

  16. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors

    PubMed Central

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong

    2016-01-01

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately −16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy. PMID:26625203

  17. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors.

    PubMed

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2016-01-19

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.

  18. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    PubMed

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-07

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).

  19. Analysis of polyethylene wear in plain radiographs

    PubMed Central

    2009-01-01

    Background and purpose Two-dimensional computerized radiographic techniques are frequently used to measure in vivo polyethylene (PE) wear after total hip arthroplasty (THA), and several variables in the clinical set-up may influence the amount of wear that is measured. We compared the repeatability and concurrent validity of linear PE wear on plain radiographs using the same software but a different number of radiographs. Methods We used either 1, 2, or 6 anteroposterior (AP) hip radiographs of 11 patients from a clinical THA series with 12 years of follow-up, and measured the PE wear with the software PolyWare 3D Pro. Repeatability within and concurrent validity between the different numbers of radiograph strategies were assessed using limits of agreement (LOAs) and bias. Results Observed median wear (range) in mm was 3.4 (1.6–4.6), 2.3 (0.7–4.9), and 4.0 (2.6–6.2) for the 1-, 2-, and 6-radiograph strategies. For repeatability, no bias (p > 0.41) was observed. LOAs around the bias were ± 0.6, ± 0.4, and ± 1.2 mm for the 1-, 2-, and 6-radiograph strategies. For concurrent validity, a bias (± LOA) between all pairwise comparisons was observed (p < 0.02) with 0.8 mm (± 2.5) between the 1- and 2-radiograph strategies, 1.0 mm (± 2.2) between the 1- and 6-radiograph strategies, and 1.8 mm (± 1.2) between the 2- and 6-radiograph strategies. Interpretation The number of radiographs used for wear measurement with a shadow-casting analysis method on plain AP radiographs influences the amount of linear wear measured. Results of PE wear obtained with PolyWare in studies using a different number of radiographs are not comparable. PMID:19995318

  20. The Survival of Total Knee Arthroplasty: Current Data from Registries on Tribology: Review Article.

    PubMed

    Civinini, Roberto; Carulli, Christian; Matassi, Fabrizio; Lepri, Andrea Cozzi; Sirleo, Luigi; Innocenti, Massimo

    2017-02-01

    Polyethylene (PE) wear is a major contributor to implant loosening following total knee arthroplasty (TKA), and advanced bearings in TKA are being investigated with hopes of reducing or eliminate wear-related loosening. Currently, information on knee tribology is available from national joint registries and may be the best tools to evaluate the efficacy and safety of design innovations in joint arthroplasty. We performed a review of national joint registries trying to answer the following questions: "Which is the main factor directly related to revisions rate in TKA?" and "Are there new bearing options better than conventional ones?" A review was performed of all published annual reports of National Joint Registers, as well as of the literature. The search was carried out using and comparing the National Joint Registers. Current data from registries for total knee arthroplasty indicates that age is the major factor affecting the outcome of primary total knee replacement. The 10-year cumulative revision rate for non-cross-linked PE was 5.8% and for XLPE it was 3.5%. The effect of cross-linked polyethylene was more evident in the younger patients. The survival of the oxidized zirconium (OxZr) femoral component appears better when compared to a similar age group of patients with conventional group of prostheses. Our review suggests that the revision rates are half for the OxZr components compared to conventional CoCr femoral components. Age is the most relevant single factor related to revision rate. Cross-linked PE has a statistical lower revision rate at 10 years compared to conventional PE and, in the OxZr group, the revision rate is 2 times lower than Co-Cr in the same group of age.

  1. Using performance reference compound-corrected polyethylene passive samplers and caged bivalves to measure hydrophobic contaminants of concern in urban coastal seawaters.

    PubMed

    Joyce, Abigail S; Pirogovsky, Mallory S; Adams, Rachel G; Lao, Wenjian; Tsukada, David; Cash, Curtis L; Haw, James F; Maruya, Keith A

    2015-05-01

    Low-density polyethylene (PE) passive samplers containing performance reference compounds (PRCs) were deployed at multiple depths in two urban coastal marine locations to estimate dissolved concentrations of hydrophobic organic contaminants (HOCs), including dichlorodiphenyltrichloroethane (DDT) and its metabolites, polychlorinated biphenyl (PCB) congeners, and polybrominated flame retardants. PE samplers pre-loaded with PRCs were deployed at the surface, mid-column, and near bottom at sites representing the nearshore continental shelf off southern California (Santa Monica Bay, USA) and a mega commercial port (Los Angeles Harbor). After correcting for fractional equilibration using PRCs, concentrations ranged up to 100 pg L(-1) for PCBs and polybrominated diphenyl ethers (PBDEs), 500 pg L(-1) for DDMU and 300 pg L(-1) for DDNU, and to 1000 pg L(-1) for p,p'-DDE. Seawater concentrations of DDTs and PCBs increased with depth, suggesting that bed sediments serve as the source of water column HOCs in Santa Monica Bay. In contrast, no discernable pattern between surface and near-bottom concentrations in Los Angeles Harbor was observed, which were also several-fold lower (DDTs: 45-300 pg L(-1), PCBs: 5-50 pg L(-1)) than those in Santa Monica Bay (DDTs: 2-1100 pg L(-1), PCBs: 2-250 pg L(-1)). Accumulation by mussels co-deployed with the PE samplers at select sites was strongly correlated with PE-estimated seawater concentrations, providing further evidence that these samplers are a viable alternative for monitoring of HOC exposure. Fractional equilibration observed with the PRCs increased with decreasing PRC molar volume indicating the importance of target compound physicochemical properties when estimating water column concentrations using passive samplers in situ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimizing fumigation efficiency by doubling drip line number and using low permeability film in raised-bed production systems

    USDA-ARS?s Scientific Manuscript database

    Southern California strawberries are planted in raised-beds covered by polyethylene (PE) film and typically are irrigated with two drip lines placed near the bed surface. To control soil-borne pests, fumigants are commonly applied through the drip lines prior to transplanting strawberries, but effic...

  3. Improving fumigation efficiency by increasing drip-tape number and using low permeability film in raised-bed production systems

    USDA-ARS?s Scientific Manuscript database

    Drip fumigation is commonly used for controlling soilborne pests in raised-bed strawberry production systems in California. However, the high emission loss and poor pest control indicate that the current fumigation practice with two drip tapes and polyethylene film (PE) covering need to be improved....

  4. Passive Sampling to Measure Baseline Dissolved Persistent Organic Pollutant Concentrations in the Water Column of the Palos Verdes Shelf Superfund Site

    EPA Science Inventory

    Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Pre-calibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were...

  5. Preparation and encapsulation of white/yellow dual colored suspensions for electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Han, Jingjing; Li, Xiaoxu; Feng, Yaqing; Zhang, Bao

    2014-11-01

    C.I. Pigment Yellow 181 (PY181) composite particles encapsulated by polyethylene (PE) were prepared by dispersion polymerization method, and C.I. Pigment Yellow 110 (PY110) composite particles encapsulated by polystyrene (PS) with mini-emulsion polymerization method were achieved, respectively. The modified pigments were characterized by fourier transform infrared spectroscopy, scanning electron microscope and transmission electron microscope. Compared with the PE-coated PY 181 pigments, the PS-coated PY-110 particles had a narrow particle size distribution, regular spherical and average particle size of 450 nm. Suspension 1 and suspension 3 were prepared by the two composite particles dispersed in isopar M. A chromatic electrophoretic display cell consisting of yellow particles was successfully fabricated using dispersions of yellow ink particles in a mixed dielectric solvent with white particles as contrast. The response behavior and the contrast ratio to the electric voltage were also examined. The contrast ratio of pigments modified by polystyrene was 1.48, as well as the response time was 2 s, which were better than those of pigments modified by polyethylene.

  6. Development of an iron chelating polyethylene film for active packaging applications.

    PubMed

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2012-02-29

    Metal-promoted oxidation reactions are a major cause of food quality deterioration. Active packaging offers novel approaches to controlling such oxidation for the purpose of extending shelf life. Herein, we report modification of the surface of polyethylene (PE) films to possess metal chelating activity. Metal chelating carboxylic acids were introduced to the film surface using cross-linking agents [polyethylenimine (PEI) or ethylenediamine (ED)] to increase the number of available carboxylic acids. ATR-FTIR, contact angle, dye assay, and iron chelating assay were used to characterize changes in surface chemistry after each functionalization step. The chelator poly(acrylic acid) (PAA) was attached to the surface at a density of 9.12 ± 0.71 nmol carboxyl groups/cm², and exhibited an iron chelating activity. The results indicate that PAA-modified PE films might have a higher affinity to Fe³⁺ than Fe²⁺ with the optimum binding pH at 5.0. Such inexpensive active packaging materials are promising in food industry for the preservation of liquid and semiliquid food products and have application in heavy metal chelation therapy for biomedical materials as well.

  7. Preparing high-adhesion silver coating on APTMS modified polyethylene with excellent anti-bacterial performance

    NASA Astrophysics Data System (ADS)

    Li, Wenfei; Chen, Yunxiang; Wu, Song; Zhang, Jian; Wang, Hao; Zeng, Dawen; Xie, Changsheng

    2018-04-01

    Silver coating as a broad-spectrum antimicrobial agent was considered to alleviate the inflammation caused by intrauterine device (IUD) in endometrium. In this work, to avoid the damage of silver coating and ensure its antibacterial properties, 3-aminopropyltrimethoxysilane (APTMS) was introduced to modify the polyethylene (PE) substrate for the purpose of improving the adhesion of the silver coating. From the 90° peel test, it could be found that the adhesive strength of silver coating on the APTMS modified PE substrate was nearly 23 times stronger than the silver coating on substrate without surface modification. The dramatically enhanced adhesive strength could be attributed to the formation of continuous chemical bonds between the silver coatings and substrates after surface modification, which had been confirmed by the XPS. Moreover, the standard antibacterial test revealed that the silver coated samples against Staphylococcus aureus (S. aureus) exhibit excellent antibacterial efficacy. Considering the largely enhanced adhesion and the effective antibacterial property, it is reasonable to believe that the silver coating could be considered as a potential candidate for the antibacterial agent in IUD.

  8. Preparation of flexible TiO2 photoelectrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ren; Wang, Hsiu-Hsuan; Lin, Chia-Feng; Su, Chaochin

    2014-09-01

    Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 photoelectrodes on indium tin oxide (ITO) coated polymer substrates have drawn great attention due to its lightweight, flexibility and advantages in commercial applications. However, the thermal instability of polymer substrates limits the process temperature to below 150 °C. In order to assure high and firm interparticle connection between TiO2 nanocrystals (TiO2-NC) and polymer substrates, the post-treatment of flexible TiO2 photoelectrodes (F-TiO2-PE) by mechanical compression was employed. In this work, Degussa P25 TiO2-NC was mixed with tert-butyl alcohol and DI-water to form TiO2 paste. F-TiO2-PE was then prepared by coating the TiO2 paste onto ITO coated polyethylene terephthalate (PET) substrate using doctor blade followed by low temperature sintering at 120 °C for 2 hours. To study the effect of mechanical compression, we applied 50 and 100 kg/cm2 pressure on TiO2/PET to complete the fabrication of F-TiO2-PE. The surface morphology of F-TiO2-PE was characterized using scanning electron microscopy. The resultant F-TiO2-PE sample exhibited a smooth, crack-free structure indicating the great improvement in the interparticle connection of TiO2-NC. Increase of compression pressure could lead to the increase of DSSC photoconversion efficiency. The best photoconversion efficiency of 4.19 % (open circuit voltage (Voc) = 0.79 V, short-circuit photocurrent density (Jsc) = 7.75 mA/cm2, fill factor (FF) = 0.68) was obtained for the F-TiO2-PE device, which showed great enhancement compared with the F-TiO2-PE cell without compression treatment. The effect of compression in DSSC performance was vindicated by the electrochemical impedance spectroscopy measurement.

  9. Design and feasibility of a multi-detector neutron spectrometer for radiation protection applications based on thermoluminescent 6LiF:Ti,Mg (TLD-600) detectors

    NASA Astrophysics Data System (ADS)

    Lis, M.; Gómez-Ros, J. M.; Bedogni, R.; Delgado, A.

    2008-01-01

    The design of a neutron detector with spectrometric capability based on thermoluminescent (TL) 6LiF:Ti,Mg (TLD-600) dosimeters located along three perpendicular axis within a single polyethylene (PE) sphere has been analyzed. The neutron response functions have been calculated in the energy range from 10 -8 to 100 MeV with the Monte Carlo (MC) code MCNPX 2.5 and their shape and behaviour have been used to discuss a suitable configuration for an actual instrument. The feasibility of such a device has been preliminary evaluated by the simulation of exposure to 241Am-Be, bare 252Cf and Fe-PE moderated 252Cf sources. The expected accuracy in the evaluation of energy quantities has been evaluated using the unfolding code FRUIT. The obtained results together with additional calculations performed using MAXED and GRAVEL codes show the spectrometric capability of the proposed design for radiation protection applications, especially in the range 1 keV-20 MeV.

  10. [Polyethylene abrasion: cause or consequence of an endoprosthesis loosening? Investigations of firm and loosened hip implants].

    PubMed

    Busse, B; Niecke, M; Püschel, K; Delling, G; Katzer, A; Hahn, M

    2007-01-01

    Periprosthetic tissue was analysed by the combination of different investigation techniques without destruction. The localisation and geometry of polyethylene abrasion particles were determined quantitatively to differentiate between abrasion due to function and abrasion due to implant loosening. Non-polyethylene particles from implant components which contaminate the tissue were micro-analytically measured. The results will help us to understand loosening mechanisms and thus lead to implant optimisations. A non-destructive particle analysis using highly sensitive proton-induced X-ray emission (PIXE) was developed to achieve a better histological allocation. Five autopsy cases with firmly fitting hip endoprosthesis (2 x Endo-Modell Mark III, 1 x St. Georg Mark II, LINK, Germany; 2 x Spongiosa Metal II, ESKA, Germany) were prepared as ground tissue specimens. Wear investigations were accomplished with a combined application of different microscopic techniques and microanalysis. The abrasion due to implant loosening was histologically evaluated on 293 loosened cup implants (St. Georg Mark II, LINK, Germany). Wear particles are heterogeneously distributed in the soft tissue. In cases of cemented prostheses, cement particles are dominating whereas metal particles could rarely be detected. The concentration of the alloy constituent cobalt (Co) is increased in the mineralised bone tissue. The measured co-depositions depend on the localisation and/or lifetime of an implant. Functional polyethylene (PE) abrasion needs to be differentiated from PE abrasion of another genesis (loosening, impingement) morphologically and by different tissue reactions. In the past a reduction of abrasion was targeted primarily by the optimisation of the bearing surfaces and tribology. The interpretation of our findings indicates that different mechanisms of origin in terms of tissue contamination with wear debris and the alloy should be included in the improvement of implants or implantation techniques.

  11. Tolerance-like innate immunity and spleen injury: a novel discovery via the weekly administrations and consecutive injections of PEGylated emulsions

    PubMed Central

    Wang, Long; Wang, Chunling; Jiao, Jiao; Su, Yuqing; Cheng, Xiaobo; Huang, Zhenjun; Liu, Xinrong; Deng, Yihui

    2014-01-01

    There has been an increasing interest in the study of the innate immune system in recent years. However, few studies have focused on whether innate immunity can acquire tolerance. Therefore, in this study, we investigated tolerance in the innate immune system via the consecutive weekly and daily injections of emulsions modified with polyethylene glycol (PEG), referred to as PEGylated emulsions (PE). The effects of these injections of PE on pharmacokinetics and biodistribution were studied in normal and macrophage-depleted rats. Additionally, we evaluated the antigenic specificity of immunologic tolerance. Immunologic tolerance against PE developed after 21 days of consecutive daily injections or the fourth week of PE administration. Compared with a single administration, it was observed that the tolerant rats had a lower rate of PE clearance from the blood, which was independent of the stress response. In addition, weekly PE injections caused injury to the spleen. Furthermore, the rats tolerant to PEs with the methoxy group (–OCH3) of PEG, failed to respond to the PEs with a different terminal group of PEG or to non-PEG emulsions. Innate immunity tolerance was induced by PE, regardless of the mode of administration. Further study of this mechanism suggested that monocytes play an essential role in the suppression of innate immunity. These findings provide novel insights into the understanding of the innate immune system. PMID:25120362

  12. Nanostructure and thermal properties of melt compounded PE/clay nanocomposites filled with an organosilylated montmorillonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarfato, Paola, E-mail: pscarfato@unisa.it; BAM - Federal Institute for Materials Research and Testing, 7.5 Technical Properties of Polymeric Materials, Unter den Eichen 87 - 12205 Berlin; Incarnato, Loredana

    In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction.more » Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.« less

  13. Development and blood compatibility assessment of electrospun polyvinyl alcohol blended with metallocene polyethylene and plectranthus amboinicus (PVA/mPE/PA) for bone tissue engineering.

    PubMed

    Qi, Jie; Zhang, Huang; Wang, Yingzhou; Mani, Mohan Prasath; Jaganathan, Saravana Kumar

    2018-01-01

    Currently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions. In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites. The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs). The prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.

  14. Thermal Reduction of NOx with Recycled Plastics.

    PubMed

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z; Gore, Jeff; Vyazovkin, Sergey; Boyron, Olivier; Altarawneh, Mohammednoor

    2017-07-05

    This study develops technology for mitigation of NO x formed in thermal processes using recycled plastics such as polyethylene (PE). Experiments involve sample characterization, and thermogravimetric decomposition of PE under controlled atmospheres, with NO x concentration relevant to industrial applications. TGA-Fourier transform infrared (FTIR) spectroscopy and NO x chemiluminescence serve to obtain the removal efficiency of NO x by fragments of pyrolyzing PE. Typical NO x removal efficiency amounts to 80%. We apply the isoconversional method to derive the kinetic parameters, and observe an increasing dependency of activation energy on the reaction progress. The activation energies of the process span 135 kJ/mol to 226 kJ/mol, and 188 kJ/mol to 268 kJ/mol, for neat and recycled PE, respectively, and the so-called compensation effect accounts for the natural logarithmic pre-exponential ln (A/min -1 ) factors of ca. 19-35 and 28-41, in the same order, depending on the PE conversion in the experimental interval of between 5 and 95%. The observed delay in thermal events of recycled PE reflects different types of PE in the plastic, as measurements of intrinsic viscosity indicate that, the recycled PE comprises longer linear chains. The present evaluation of isoconversional activation energies affords accurate kinetic modeling of both isothermal and nonisothermal decomposition of PE in NO x -doped atmosphere. Subsequent investigations will focus on the effect of mass transfer and the presence of oxygen, as reburning of NO x in large-scale combustors take place at higher temperatures than those included in the current study.

  15. Anti-icing Behavior of Thermally Sprayed Polymer Coatings

    NASA Astrophysics Data System (ADS)

    Koivuluoto, Heli; Stenroos, Christian; Kylmälahti, Mikko; Apostol, Marian; Kiilakoski, Jarkko; Vuoristo, Petri

    2017-01-01

    Surface engineering shows an increasing potential to provide a sustainable approach to icing problems. Currently, several passive anti-ice properties adoptable to coatings are known, but further research is required to proceed for practical applications. This is due to the fact that icing reduces safety, operational tempo, productivity and reliability of logistics, industry and infrastructure. An icing wind tunnel and a centrifugal ice adhesion test equipment can be used to evaluate and develop anti-icing and icephobic coatings for a potential use in various arctic environments, e.g., in wind power generation, oil drilling, mining and logistic industries. The present study deals with evaluation of icing properties of flame-sprayed polyethylene (PE)-based polymer coatings. In the laboratory-scale icing tests, thermally sprayed polymer coatings showed low ice adhesion compared with metals such as aluminum and stainless steel. The ice adhesion strength of the flame-sprayed PE coating was found to have approximately seven times lower ice adhesion values compared with metallic aluminum, indicating a very promising anti-icing behavior.

  16. GENERALISATION OF RADIATOR DESIGN TECHNIQUES FOR PERSONAL NEUTRON DOSEMETERS BY UNFOLDING METHOD.

    PubMed

    Oda, K; Nakayama, T; Umetani, K; Kajihara, M; Yamauchi, T

    2016-09-01

    A novel technique for designing a radiator suitable for personal neutron dosemeter based on plastic track detector was discussed. A multi-layer structure has been proposed in the previous report, where the thicknesses of plural polyethylene (PE) layers and insensitive ones were determined by iterative calculations of double integral. In order to arrange this procedure and make it more systematic, unfolding calculation has been employed to estimate an ideal radiator containing an arbitrary hydrogen concentration. In the second step, realistic materials replaced it with consideration of minimisation of the layer number and commercial availability. A radiator consisting of three layers of PE, Upilex and Kapton sheets was finally designed, for which a deviation in the energy dependence between 0.1 and 20 MeV could be controlled within 18 %. An applicability of fluorescent nuclear track detector element has also been discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials

    PubMed Central

    Ye, Jinghua; Hong, Tao; Wu, Yuanyuan; Wu, Li; Liao, Yinhong; Zhu, Huacheng; Yang, Yang; Huang, Kama

    2017-01-01

    Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE) and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials. PMID:28772457

  18. Piezoresistive effect observed in flexible amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.

    2018-05-01

    Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.

  19. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.

  20. Passive Sampling Provides Evidence for Neward Bay as a Source of Polychlorinated Dibenzo-p-Dioxins and Furans to the New York/New Jersey, USA, Atmosphere

    EPA Science Inventory

    Freely dissolved and gas phase polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were measured in the water column and atmosphere at five locations within Newark Bay (New Jersey, USA) from May 2008 to August 2009 with polyethylene (PE) passive ...

  1. Oxidation and biodegradation of polyethylene films containing pro-oxidantadditives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation

    USDA-ARS?s Scientific Manuscript database

    Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation on the oxidation and biodegradation of linear low density poly (ethylene) PE-LLD films containing pro-oxidant were examined. To achieve oxidation and degradation, films were first exposed to the sunlight for 93 days du...

  2. New shielding material development for compact accelerator-driven neutron source

    NASA Astrophysics Data System (ADS)

    Hu, Guang; Hu, Huasi; Wang, Sheng; Han, Hetong; Otake, Y.; Pan, Ziheng; Taketani, A.; Ota, H.; Hashiguchi, Takao; Yan, Mingfei

    2017-04-01

    The Compact Accelerator-driven Neutron Source (CANS), especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE), PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.

  3. New perspectives in plastic biodegradation.

    PubMed

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A discrimination model in waste plastics sorting using NIR hyperspectral imaging system.

    PubMed

    Zheng, Yan; Bai, Jiarui; Xu, Jingna; Li, Xiayang; Zhang, Yimin

    2018-02-01

    Classification of plastics is important in the recycling industry. A plastic identification model in the near infrared spectroscopy wavelength range 1000-2500 nm is proposed for the characterization and sorting of waste plastics using acrylonitrile butadiene styrene (ABS), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The model is built by the feature wavelengths of standard samples applying the principle component analysis (PCA), and the accuracy, property and cross-validation of the model were analyzed. The model just contains a simple equation, center of mass coordinates, and radial distance, with which it is easy to develop classification and sorting software. A hyperspectral imaging system (HIS) with the identification model verified its practical application by using the unknown plastics. Results showed that the identification accuracy of unknown samples is 100%. All results suggested that the discrimination model was potential to an on-line characterization and sorting platform of waste plastics based on HIS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes.

    PubMed

    Mural, Prasanna Kumar S; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-21

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.

  6. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials.

    PubMed

    Moritz, Miriam M; Flemming, Hans-Curt; Wingender, Jost

    2010-06-01

    Drinking water biofilms were grown on coupons of plumbing materials, including ethylene-propylene-diene-monomer (EPDM) rubber, silane cross-linked polyethylene (PE-X b), electron-ray cross-linked PE (PE-X c) and copper under constant flow-through of cold tap water. After 14 days, the biofilms were spiked with Pseudomonas aeruginosa, Legionella pneumophila and Enterobacter nimipressuralis (10(6) cells/mL each). The test bacteria were environmental isolates from contamination events in drinking water systems. After static incubation for 24 h, water flow was resumed and continued for 4 weeks. Total cell count and heterotrophic plate count (HPC) of biofilms were monitored, and P. aeruginosa, L. pneumophila and E. nimipressuralis were quantified, using standard culture-based methods or culture-independent fluorescence in situ hybridization (FISH). After 14 days total cell counts and HPC values were highest on EPDM followed by the plastic materials and copper. P. aeruginosa and L. pneumophila became incorporated into drinking water biofilms and were capable to persist in biofilms on EPDM and PE-X materials for several weeks, while copper biofilms were colonized only by L. pneumophila in low culturable numbers. E. nimipressuralis was not detected in any of the biofilms. Application of the FISH method often yielded orders of magnitude higher levels of P. aeruginosa and L. pneumophila than culture methods. These observations indicate that drinking water biofilms grown under cold water conditions on domestic plumbing materials, especially EPDM and PE-X in the present study, can be a reservoir for P. aeruginosa and L. pneumophila that persist in these habitats mostly in a viable but non-culturable state.

  7. Superior accuracy of model-based radiostereometric analysis for measurement of polyethylene wear

    PubMed Central

    Stilling, M.; Kold, S.; de Raedt, S.; Andersen, N. T.; Rahbek, O.; Søballe, K.

    2012-01-01

    Objectives The accuracy and precision of two new methods of model-based radiostereometric analysis (RSA) were hypothesised to be superior to a plain radiograph method in the assessment of polyethylene (PE) wear. Methods A phantom device was constructed to simulate three-dimensional (3D) PE wear. Images were obtained consecutively for each simulated wear position for each modality. Three commercially available packages were evaluated: model-based RSA using laser-scanned cup models (MB-RSA), model-based RSA using computer-generated elementary geometrical shape models (EGS-RSA), and PolyWare. Precision (95% repeatability limits) and accuracy (Root Mean Square Errors) for two-dimensional (2D) and 3D wear measurements were assessed. Results The precision for 2D wear measures was 0.078 mm, 0.102 mm, and 0.076 mm for EGS-RSA, MB-RSA, and PolyWare, respectively. For the 3D wear measures the precision was 0.185 mm, 0.189 mm, and 0.244 mm for EGS-RSA, MB-RSA, and PolyWare respectively. Repeatability was similar for all methods within the same dimension, when compared between 2D and 3D (all p > 0.28). For the 2D RSA methods, accuracy was below 0.055 mm and at least 0.335 mm for PolyWare. For 3D measurements, accuracy was 0.1 mm, 0.2 mm, and 0.3 mm for EGS-RSA, MB-RSA and PolyWare respectively. PolyWare was less accurate compared with RSA methods (p = 0.036). No difference was observed between the RSA methods (p = 0.10). Conclusions For all methods, precision and accuracy were better in 2D, with RSA methods being superior in accuracy. Although less accurate and precise, 3D RSA defines the clinically relevant wear pattern (multidirectional). PolyWare is a good and low-cost alternative to RSA, despite being less accurate and requiring a larger sample size. PMID:23610688

  8. The "neutron channel design"—A method for gaining the desired neutrons

    NASA Astrophysics Data System (ADS)

    Hu, G.; Hu, H. S.; Wang, S.; Pan, Z. H.; Jia, Q. G.; Yan, M. F.

    2016-12-01

    The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the "neutron channel design", is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA) combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS). One layer polyethylene (PE) moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  9. Radiation Shielding System Using a Composite of Carbon Nanotubes Loaded with Electropolymers

    NASA Technical Reports Server (NTRS)

    McKay, Chris; Chen, Bin

    2012-01-01

    Single-wall carbon nanotubes (SWCNTs) coated with a hydrogen-rich, electrically conducting polymer such as polyethylene, receive and dissipate a portion of incoming radiation pulse energy to electrical signals that are transmitted along the CNT axes, and are received at energy-dissipating terminals. In this innovation, an array of highly aligned nanowires is grown using a strong electric field or another suitable orientation procedure. Polyethylene (PE), polymethymlethacrylate (PMMA), or other electrically conducting polymer is spin-coated onto the SWCNTs with an average thickness of a few hundred nanometers to a few tenths of micrometers to form a PE/SWCNT composite. Alternatively, the polymer is spin-coated onto the nanowire array or an anodized alumina membrane (AAM) to form a PE/metal core shell structure, or PE can be electropolymerized using the SWCNTs or the metal nanowires as an electrode to form a PE/SWCNT core shell structure. The core shell structures can be extruded as anisotropic fibers. A monomer can be polymerized in the presence of SWCNTs to form highly cross-linked PE/SWCNT films. Alternatively, Pb colloid solution can be impregnated into a three-dimensional PE/SWCNT nanostructure to form a PW/SWCNT/Pb composite structure. A face-centered cubic (FCC) arrangement provides up to 12 interconnection channels connected to each core, with transverse channel dimensions up to 20 nm, with adequate mechanical compressive strength, and with an associated electrical conductivity of around 3 Seimens/cm for currents ranging from 0.01 to 10 mA. This threedimensional nanostructure is used as a host material to house appropriate radiation shielding material such as hydrogen- rich polymer/CNT structures, metal nanoparticles, and nanowires. Thicknesses of this material required to attenuate 10 percent, 50 percent, and 90 percent of an incident beam (gamma, X-ray, ultraviolet, neutron, proton, and electron) at energies in the range of 0 440 MeV are being determined, for example, by measuring fluence rate reduction. For example, a radiation field arrives first at an exposed surface of the innovation and produces an associated first electric field within the metal-like fingers of the three-dimensional nanostructure. This field is intensified near the exposed tips of the fingers, and this intensified field generates an intensified second electric field near the adjacent exposed tips of the coated CNSs. This generates an associated electrical current in the CNSs, and the associated electropolymer coating. The current is received by the second substrate transport component and is transported to the dissipation mechanism located contiguously to the second substrate.

  10. Determination of oleamide and erucamide in polyethylene films by pressurised fluid extraction and gas chromatography.

    PubMed

    Garrido-López, Alvaro; Esquiu, Vanesa; Tena, María Teresa

    2006-08-18

    A pressurized fluid extraction (PFE) and gas chromatography-flame ionization detection (GC-FID) method is proposed to determine the slip agents in polyethylene (PE) films. The study of PFE variables was performed using a fractional factorial design (FFD) for screening and a central composite design (CCD) for optimizing the main variables obtained from the Pareto charts. The variables that were studied include temperature, static time, percentage of cyclohexane and the number of extraction cycles. The final condition selected was pure isopropanol (two times) at 105 degrees C for 16min. The recovery of spiked oleamide and erucamide was around 100%. The repeatability of the method was between 9.6% for oleamide and 8% for erucamide, expressed as relative standard deviation. Finally, the method was applied to determine oleamide and erucamide in several polyethylene films and the results were statistically equal to those obtained by pyrolysis and gas-phase chemiluminescence (CL).

  11. Toll-like receptors-2 and 4 are overexpressed in an experimental model of particle-induced osteolysis.

    PubMed

    Valladares, Roberto D; Nich, Christophe; Zwingenberger, Stefan; Li, Chenguang; Swank, Katherine R; Gibon, Emmanuel; Rao, Allison J; Yao, Zhenyu; Goodman, Stuart B

    2014-09-01

    Aseptic loosening secondary to particle-associated periprosthetic osteolysis remains a major cause of failure of total joint replacements (TJR) in the mid- and long term. As sentinels of the innate immune system, macrophages are central to the recognition and initiation of the inflammatory cascade, which results in the activation of bone resorbing osteoclasts. Toll-like receptors (TLRs) are involved in the recognition of pathogen-associated molecular patterns and danger-associated molecular patterns. Experimentally, polymethylmethacrylate and polyethylene (PE) particles have been shown to activate macrophages via the TLR pathway. The specific TLRs involved in PE particle-induced osteolysis remain largely unknown. We hypothesized that TLR-2, -4, and -9 mediated responses play a critical role in the development of PE wear particle-induced osteolysis in the murine calvarium model. To test this hypothesis, we first demonstrated that PE particles caused observable osteolysis, visible by microCT and bone histomorphometry when the particles were applied to the calvarium of C57BL/6 mice. The number of TRAP positive osteoclasts was significantly greater in the PE-treated group when compared to the control group without particles. Finally, using immunohistochemistry, TLR-2 and TLR-4 were highly expressed in PE particle-induced osteolytic lesions, whereas TLR-9 was downregulated. TLR-2 and -4 may represent novel therapeutic targets for prevention of wear particle-induced osteolysis and accompanying TJR failure. © 2013 Wiley Periodicals, Inc.

  12. A high performance ceramic-polymer separator for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru

    2016-01-01

    A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.

  13. Packing of poly(tetrafluoroethylene) in the liquid state: Molecular dynamics simulation and theory

    NASA Astrophysics Data System (ADS)

    Tsige, Mesfin; Curro, John G.; Grest, Gary S.

    2008-12-01

    Molecular dynamics simulations and polymer reference interaction site model theory calculations were carried out on the C48F98 oligomer of poly(tetrafluoroethylene) (PTFE) at 500 and 600 K. The exp-6 force field of Borodin, Smith, and Bedrov, was used in both the simulation and theory. The agreement between theory and simulation was equivalent to earlier studies on polyolefin melts. The intermolecular pair correlation functions of PTFE were shifted to larger distances relative to polyethylene (PE) due to the difference in the van der Waals radii of F and H atoms. A similar shift to lower wave vectors was found in the structure factor of PTFE relative to PE.

  14. Exploring the Disappearing Ocean Micro Plastic Mystery: New Insights from Dissolved Organic Carbon photo production

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Zhao, S.; Li, D.; Stubbins, A.

    2017-12-01

    Emerging as a novel planetary threat, plastic waste, dominated by millimeter-sized plastic (microplastic), is omnipresent in the oceans, posing broad environmental threats. However, only 1% of the microplastic waste exported from the land is found in the ocean. Most of the lost fraction is in the form of microplastics. The fate of these buoyant plastic fragments is a fundamental gap in our understanding of the fate and impact of plastics in marine ecosystems. To date, an effective sink for the lost microplastics has not been found. In this study, dissolved organic carbon (DOC) photo-production from the three dominant forms of ocean microplastics was assessed. These plastics were: 1) Polyethylene (PE) both for postconsumer samples and pure standard samples; 2) polypropylene (PP); and, expanded polystyrene (EPS). In addition, a Neustonic microplastic samples from the North Pacific Gyre were irradiated. These real-world samples were dominated by PE ( 80%). All samples were placed in seawater, in quartz flasks, and irradiated in a solar simulator for 2 months. During irradiation, DOC photo-production from PP, EPS, and the PE standard was exponential, while DOC photo-production from postconsumer PE and the Neustonic samples was linear. Scanning electron microscopy indicated surface ablation and micro-fragmentation during the irradiation of the three plastics that showed exponential DOC production (PP, EPS and standard PE), suggesting the increase in photo-reactivity of these plastics was a result of an increase in their surface to volume ratios and therefore their per-unit mass light exposure. Based on DOC production, the half-life of the microplastics ranged from 0.26 years for EPS to 86 years for PE, suggesting sunlight is a major removal term for buoyant oceanic microplastics. With respect to the broader carbon cycle, we conservatively estimate that plastic photodegradation releases 6 to 17 thousand metric tons of radiocarbon dead DOC to the surface ocean each year.

  15. Simultaneous improvement in ionic conductivity and flexibility of solid polymer electrolytes for thin film lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ji, Jianying

    Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide. This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity. A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of polymers, blended with poly(ethylene oxide)(PEO). The results indicated that the s-SPE with 55 wt% of SPI possesses a fully amorphous uniform structure having low Tg, in contrast with crystalline PEO-based SPE having discernable Tg and Tm. The conductivity and elasticity are both significantly improved with SPI involvement. Remarkably, this film has been elongated up to 100% without loss of ionic conductivity and 700% without mechanical damage.

  16. PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity.

    PubMed

    Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G

    2017-06-01

    A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control the external surface characteristics and formulation stability. The formulations showed significantly higher toxicity in comparison to "free" DOX, explained by formulation internalization. For each cell line tested, sensitive and ADR resistant, a different formulation structure was found most efficient. The potential of PEG-PE/clay-DOX formulations to improve DOX administration efficacy was demonstrated and should be further explored and implemented for other cancer drugs and cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Effects of silane on the properties of wood-plastic composites with polyethylene-polypropylene blends as matrices

    Treesearch

    Craig M. Clemons; Ronald C. Sabo; Michael L. Kaland; Kolby C. Hirth

    2011-01-01

    The influence of 3-(trimethoxysilyl)propyl methacrylate and benzoyl peroxide on gel content, crystallinity, and mechanical performance of unfilled PP-PE blends, and their composites with wood was investigated. All materials were compounded in a twin screw extruder and then injection molded. Specimens were then exposed to high-humidity and elevated temperature in a...

  18. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    PubMed Central

    Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk

    2014-01-01

    Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265

  19. Migration assessment and the 'threshold of toxicological concern' applied to the safe design of an acrylic adhesive for food-contact laminates.

    PubMed

    Canellas, Elena; Vera, Paula; Nerín, Cristina

    2017-10-01

    The suitability of an acrylic adhesive used on food packaging was studied. Six potential migrants were identified using GC-MS and UPLC-QTOF. Five compounds were intentionally added (2-butoxyethanol and 2,4,7,9-tetramethyl-5-decyne-4,7-diol 10 (TMDD) and TMDD ethoxylates). One of the compounds identified as 2-(12-(methacryloyloxy) dodecyl)malonic acid was a non -intentionally added substance (NIAS), which could be a methyl metacrylate derivative. A migration study from multilayers containing paper-adhesive-film was carried out. The films used were polyethylene (PE), polypropylene, polyethylene terephthalate, polylactic acid (PLA) and Ecovio F2223®, which is a mixture of biodegradable polyester with PLA. All the non-volatile compounds, including the identified NIAS, migrated into the dry food simulant Tenax ®. Five surfactants based on TMDD were found to migrate from all laminates into Tenax at levels from 0.05 to 0.6 mg kg -1 . The results showed that the lowest migration (0.01 mg kg -1 for 2-(12-(methacryloyloxy)dodecyl)malonic acid to 0.07 for TMDD mg kg -1 ) occurred when the compounds passed through PLA, demonstrating its functional barrier properties to these compounds. In contrast, PE showed the worst barrier properties to these compounds. To evaluate the migration results, the threshold of toxicological concern strategy was applied. The migration values of the surfactant identified were above 0.09 mg kg -1 . Thus, it was decided to remove this surfactant from the formulation.

  20. Electrospun Polyaniline/Polyethylene Oxide Nanofiber Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.

    2003-01-01

    We report on the observation of field effect transistor (FET) behavior in electrospun camphorsulfonic acid doped polyaniline(PANi)/polyethylene oxide(PE0) nanofibers. Saturation channel currents are observed at surprisingly low source/drain voltages. The hole mobility in the depletion regime is 1.4 x 10(exp -4) sq cm/V s while the 1-D charge density (at zero gate bias) is calculated to be approximately 1 hole per 50 two-ring repeat units of polyaniline, consistent with the rather high channel conductivity (approx. 10(exp -3) S/cm). Reducing or eliminating the PEO content in the fiber is expected to enhance device parameters. Electrospinning is thus proposed as a simple method of fabricating 1-D polymer FET's.

  1. Methods for Assessment of Biodegradability of Plastic Films in Soil †

    PubMed Central

    Yabannavar, Asha V.; Bartha, Richard

    1994-01-01

    Traditional and novel techniques were tested and compared for their usefulness in evaluating biodegrad-ability claims made for newly formulated “degradable” plastic film products. Photosensitized polyethylene (PE), starch-PE, extensively plasticized polyvinyl chloride (PVC), and polypropylene (PP) films were incorporated into aerobic soil. Biodegradation was measured for 3 months under generally favorable conditions. Carbon dioxide evolution, residual weight recovery, and loss of tensile strength measurements were supplemented, for some films, by gas chromatographic measurements of plasticizer loss and gel permeation chromatographic (GPC) measurement of polymer molecular size distribution. Six- and 12-week sunlight exposures of photosensitized PE films resulted in extensive photochemical damage that failed to promote subsequent mineralization in soil. An 8% starch-PE film and the plasticized PVC film evolved significant amounts of CO2 in biodegradation tests and lost residual weight and tensile strength, but GPC measurements demonstrated that all these changes were confined to the additives and the PE and PVC polymers were not degraded. Carbon dioxide evolution was found to be a useful screening tool for plastic film biodegradation, but for films with additives, polymer biodegradation needs to be confirmed by GPC. Photochemical cross-linking of polymer strands reduces solubility and may interfere with GPC measurements of polymer degradation. PMID:16349408

  2. Tracking human footprints in Antarctica through passive sampling of polycyclic aromatic hydrocarbons in inland lakes.

    PubMed

    Yao, Yao; Meng, Xiang-Zhou; Wu, Chen-Chou; Bao, Lian-Jun; Wang, Feng; Wu, Feng-Chang; Zeng, Eddy Y

    2016-06-01

    Freely dissolved polycyclic aromatic hydrocarbons (PAHs) were monitored in seven inland lakes of Antarctica by a polyethylene (PE)-based passive sampling technique, with the objective of tracking human footprints. The measured concentrations of PAHs were in the range of 14-360 ng L(-1) with the highest values concentrated around the Russian Progress II Station, indicating the significance of human activities to the loading of PAHs in Antarctica. The concentrations of PAHs in the inland lakes were in the upper part of the PAHs levels in aquatic environments from remote and background regions across the globe. The composition profiles of PAHs indicated that PAHs in the inland lakes were derived mainly from local oil spills, which was corroborated by a large number of fuel spillage reports from ship and plane crash incidents in Antarctica during recent years. Clearly, local human activities, rather than long-range transport, are the dominant sources of PAH contamination to the inland lakes. Finally, the present study demonstrates the efficacy of PE-based passive samplers for investigating PAHs in the aquatic environment of Antarctica under complex field conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Polyethylene recycling: Waste policy scenario analysis for the EU-27.

    PubMed

    Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter

    2015-08-01

    This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ammonia gas permeability of meat packaging materials.

    PubMed

    Karim, Faris; Hijaz, Faraj; Kastner, Curtis L; Smith, J Scott

    2011-03-01

    Meat products are packaged in polymer films designed to protect the product from exterior contaminants such as light, humidity, and harmful chemicals. Unfortunately, there is almost no data on ammonia permeability of packaging films. We investigated ammonia permeability of common meat packaging films: low-density polyethylene (LDPE; 2.2 mil), multilayer polyolefin (MLP; 3 mil), and vacuum (V-PA/PE; 3 mil, 0.6 mil polyamide/2.4 mil polyethylene). The films were fabricated into 10 × 5 cm pouches and filled with 50 mL deionized water. Pouches were placed in a plexiglass enclosure in a freezer and exposed to 50, 100, 250, or 500 ppm ammonia gas for 6, 12, 24, and 48 h at -17 ± 3 °C and 21 ± 3 °C. At freezing temperatures, no ammonia residues were detected and no differences in pH were found in the water. At room temperature, ammonia levels and pH of the water increased significantly (P < 0.05) with increasing exposure times and ammonia concentrations. Average ammonia levels in the water were 7.77 ppm for MLP, 5.94 ppm for LDPE, and 0.89 ppm for V-PA/PE at 500 ppm exposure for 48 h at 21 ± 3 °C. Average pH values were 8.64 for MLP, 8.38 for LDPE, and 7.23 for V-PA/PE (unexposed ranged from 5.49 to 6.44) at 500 ppm exposure for 48 h. The results showed that temperature influenced ammonia permeability. Meat packaging materials have low ammonia permeability and protect meat products exposed to ammonia leaks during frozen storage.

  5. Influence of gamma-irradiation sterilization and temperature on the fracture toughness of ultra-high-molecular-weight polyethylene.

    PubMed

    Pascaud, R S; Evans, W T; McCullagh, P J; FitzPatrick, D P

    1997-05-01

    Surface damage of the tibial plateau components of knee prostheses made from medical grade ultra-high-molecular-weight polyethylene (UHMW-PE) has been attributed to delamination wear caused by a fatigue fracture mechanism. It has been proposed that factors such as component design and method of sterilization contribute to such failure mechanisms. Understanding the fracture behaviour of UHMW-PE is therefore critical in optimizing the in vivo life-span of total joint components. The elastic-plastic fracture toughness parameter J was consequently determined for a commercial UHMW-PE at ambient and body temperatures, before and after gamma-irradiation sterilization in air at a minimum dose of 29 kGy. Both ductile stability theory and experimental data suggest that cracks propagate in a stable manner, although stability is affected by the sterilization process. Sterilization with gamma-irradiation results in a loss in fracture toughness JIc of 50% and a decrease in tearing modulus (Tm) of 30%. This dramatic reduction could result in a 50% decrease in the residual strength of the components, maximum permissible crack size under service loading and service life (assuming flaws such as fusion defects exist). The time required for a crack to grow from its original size to the maximum permissible size could be decreased by 30%, resulting in earlier failure. In terms of the design of joint replacement components the critical factor to envisage is the design stress level, which should be halved to account for the irradiation process. A scanning electron microscope study reveals that the material fails in layers parallel to the fracture surface.

  6. Rheology at the Interface and the Role of the Interphase in Reactive Functionalized Multilayer Polymers in Coextrusion Process

    NASA Astrophysics Data System (ADS)

    Lamnawar, Khalid; Maazouz, Abderrahim

    2008-07-01

    Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances regarding the stability of compatible and incompatible polymers have, during the last decades, been made using a mechanical approach. However, few research efforts have been dedicated to the physicochemical affinity between the neighboring layers. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers. Polyamide (PA6)/polyethylene grafted with glycidyl methacrylate (PE-GMA) was used as a reactive system and PE/PA6 as a non reactive one. Two grades of polyamide (PA6) were used in order to change the viscosity and elasticity ratios between PE (or PE-GMA) and PA6. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to an interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations from previous work which the interphase effect can be probed, an experimental strategy was here formulated to optimize the process by listing the parameters that controlled the stability of the reactive multilayer flows. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters (viscosity, elasticity and layer ratios) and the physicochemical affinity at the polymer/polymer interface.

  7. Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea.

    PubMed

    Silva, A J; Hirasawa, J S; Varesche, M B; Foresti, E; Zaiat, M

    2006-04-01

    This paper reports on the adhesion of sulfate-reducing bacteria (SRB) and methanogenic archaea on polyurethane foam (PU), vegetal carbon (VC), low-density polyethylene (PE) and alumina-based ceramics (CE). Anaerobic differential reactors fed with a sulfate-rich synthetic wastewater were used to evaluate the formation of a biofilm. The PU presented the highest specific biomass concentration throughout the experiment, achieving 872 mg TVS/g support, while 84 mg TVS/g support was the maximum value obtained for the other materials. FISH results showed that bacterial cells rather than archaeal cells were predominant on the biofilms. These cells, detected with EUB338 probe, accounted for 76.2% (+/-1.6%), 79.7% (+/-1.3%), 84.4% (+/-1.4%) and 60.2% (+/-1.0%) in PU, VC, PE and CE, respectively, of the 4'6-diamidino-2-phenylindole (DAPI)-stained cells. From these percentages, 44.8% (+/-2.1%), 55.4% (+/-1.2%), 32.7% (+/-1.4%) and 18.1% (+/-1.1%), respectively, represented the SRB group. Archaeal cells, detected with ARC915 probe, accounted for 33.1% (+/-1.6%), 25.4% (+/-1.3%), 22.6% (+/-1.1%) and 41.9% (+/-1.0%) in PU, VC, PE and CE, respectively, of the DAPI-stained cells. Sulfate reduction efficiencies of 39% and 45% and mean chemical oxygen demand (COD) removal efficiencies of 86% and 90% were achieved for PU and VC, respectively. The other two supports, PE and CE, provided mean COD removal efficiencies of 84% and 86%, respectively. However, no sulfate reduction was observed with these supports.

  8. Heterogeneous chain dynamics and aggregate lifetimes in precise acid-containing polyethylenes: Experiments and simulations

    DOE PAGES

    Middleton, L. Robert; Tarver, Jacob D.; Cordaro, Joseph; ...

    2016-11-10

    Melt state dynamics for a series of strictly linear polyethylenes with precisely spaced associating functional groups were investigated. The periodic pendant acrylic acid groups form hydrogen-bonded acid aggregates within the polyethylene (PE) matrix. The dynamics of these nanoscale heterogeneous morphologies were investigated from picosecond to nanosecond timescales by both quasi-elastic neutron scattering (QENS) measurements and fully atomistic molecular dynamics (MD) simulations. Two dynamic processes were observed. The faster dynamic processes which occur at the picosecond timescales are compositionally insensitive and indicative of spatially restricted local motions. The slower dynamic processes are highly composition dependent and indicate the structural relaxation ofmore » the polymer backbone. Higher acid contents, or shorter PE spacers between pendant acid groups, slow the structural relaxation timescale and increase the stretching parameter (β) of the structural relaxation. Additionally, the dynamics of specific hydrogen atom positions along the backbone correlate structural heterogeneity imposed by the associating acid groups with a mobility gradient along the polymer backbone. At time intervals (<2 ns), the mean-squared displacements for the four methylene groups closest to the acid groups are up to 10 times smaller than those of methylene groups further from the acid groups. At longer timescales acid aggregates rearrange and the chain dynamics of the slow, near-aggregate regions and the faster bridge regions converge, implying a characteristic timescale for the passage of chains between aggregates. As a result, the characterization of the nanoscale chain dynamics in these associating polymer systems both provides validation of simulation force fields and provides understanding of heterogeneous chain dynamics in associating polymers.« less

  9. Comparative Study Of Various Grades Of Polyethylene By Differential Scanning Calorimetry (DSC) Correlated With Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jumeau, Richard; Bourson, Patrice; Ferriol, Michel; Lahure, François; Ducos, Franck; Ligneron, Jérôme

    2011-05-01

    Polyethylene (PE) is a very important material. In 2008, almost 30% of the world plastics production was dedicated to this polymer (70 million tons) [1]. It is a consumer polymer because of its moderate cost of manufacturing and its physical and mechanical properties compatible with various applications in everyday life. Indeed, PE is generally easily processable. It possesses an excellent electric insulation and shock resistance combined with a very good chemical and biological inertia [2]. For each application, there is a particular grade, i.e. a polyethylene with well defined rheological properties. Therefore, it is essential to know how to differentiate these different grades by suitable methods of characterization. Differential Scanning Calorimetry (DSC) is one of the techniques usually used for this purpose. The knowledge of characteristic temperatures such as melting, cold crystallization or glass transition gives information on the viscosity and thus, on the grade of the polymer. DSC also allows the detection of defects, (for example, presence of unmelted pieces). However DSC is a tedious method for on-line quality control, limiting its scope. The determination of the polymer structure represents a major challenge in the industrial world of polymers. Raman spectroscopy, another technique of polymer analysis, is nowadays growing fast because of the advantages it presents. It is a non-destructive method, capable of also giving useful information about the morphology of the polymer. This technique can be perfectly used in industry by means of adapted sensors and devices with more and more reduced dimensions [3]. That technique is used to obtain the characteristic temperatures of PE and information on the polymer structure. The purpose of this article is to establish the correlation between the viscosity of a polymer and its characteristic temperatures obtained by DSC and subsequent possibilities of quality control in industry. These measurements are correlated with others obtained by Raman spectroscopy, to get additional details concerning the structure and transitions of the material, the final goal being to use these results in on-line analysis.

  10. Study of the degradation of mulch materials in vegetable crops for organic farming

    NASA Astrophysics Data System (ADS)

    María Moreno, Marta; Mancebo, Ignacio; Moreno, Carmen; Villena, Jaime; Meco, Ramón

    2014-05-01

    Mulching is the most common technique used worldwide by vegetable growers in protected cultivation. For this purpose, several plastic materials have been used, with polyethylene (PE) being the most widespread. However, PE is produced from petroleum derivatives, it is not degradable, and thus pollutes the environment for periods much longer than the crop duration (Martín-Closas and Pelacho, 2011), which are very important negative aspects especially for organic farmers. A large portion of plastic films is left on the field or burnt uncontrollably by the farmers, with the associated negative consequences to the environment (Moreno and Moreno, 2008). Therefore, the best solution is to find a material with a lifetime similar to the crop duration time that can be later incorporated by the agricultural system through a biodegradation process (Martín-Closas and Pelacho, 2011). In this context, various biodegradable materials have been considered as alternatives in the last few years, including oxo-biodegradable films, biopolymer mulches, different types of papers, and crop residues (Kasirajan and Ngouajio, 2012). In this work we evaluate the evolution of different properties related to mulch degradation in both the buried and the superficial (exposed) part of mulch materials of different composition (standard black PE, papers and black biodegradable plastics) in summer vegetable crops under organic management in Castilla-La Mancha (Central Spain). As results, it is remarkable the early deterioration suffered by the buried part of the papers, disappearing completely in the soil at the end of the crop cycles and therefore indicating the total incorporation of these materials to the soil once the crop has finished. In the case of the degradation of the exposed mulch, small differences between crops were observed. In general, all the materials were less degraded under the plants than when receiving directly the solar radiation. As conclusion, biodegradable mulches degrade early but once they have fulfilled their functions, appearing as a good alternative to PE, especially in organic farming. Project INIA RTA2011-00104-C04-03. References: Kasirajan, S.; Ngouajio, M. 2012. Polyethylene and biodegradable mulches for agricultural applications: a review. Agron. Sustain. Dev. 32: 501-529. Martín-Closas, L.; Pelacho, A.M. 2011. Agronomic potential of biopolymer films. p. 277-299. In: Biopolymers. New materials for sustainable films and coating. John Wiley & Sons, New York. Moreno, M.M.; Moreno A. 2008. Effect of different biodegradable and polyethylene mulches on productivity and soil thermal and biological properties in a tomato crop. Sci. Hort. 116(3): 256-263.

  11. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms.

    PubMed

    Jung, Melissa R; Horgen, F David; Orski, Sara V; Rodriguez C, Viviana; Beers, Kathryn L; Balazs, George H; Jones, T Todd; Work, Thierry M; Brignac, Kayla C; Royer, Sarah-Jeanne; Hyrenbach, K David; Jensen, Brenda A; Lynch, Jennifer M

    2018-02-01

    Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1-6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon. Published by Elsevier Ltd.

  12. Experimental understanding of the viscosity reduction ability of TLCPs with different PEs

    NASA Astrophysics Data System (ADS)

    Tang, Youhong; Zuo, Min; Gao, Ping

    2014-08-01

    In this study, two thermotropic liquid crystalline polyesters (TLCPs) synthesized by polycondensation of p-hydroxybenzoic acid /hydroquinone/ poly dicarboxylic acid were used as viscosity reduction agents for polyethylene (PE). The TLCPs had different thermal, rheological and other physical properties that were quantitatively characterized. The two TLCPs were blended with high density PE (HDPE) and high molecular mass PE (HMMPE) by simple twin screw extrusion under the same weight ratio of 1.0 wt% and were each rheologically characterized at 190°C. The TLCPs acted as processing modifiers for the PEs and the bulk viscosity of the blends decreased dramatically. However, the viscosity reduction ability was not identical: one TLCP had obviously higher viscosity reduction ability on the HDPE, with a maximum viscosity reduction ratio of 68.1%, whereas the other TLCP had higher viscosity reduction ability on the HMMPE, with a maximum viscosity reduction ratio of 98.7%. Proposed explanations for these differences are evaluated.

  13. Pervasive plastisphere: First record of plastics in egagropiles (Posidonia spheroids).

    PubMed

    Pietrelli, Loris; Di Gennaro, Alessia; Menegoni, Patrizia; Lecce, Francesca; Poeta, Gianluca; Acosta, Alicia T R; Battisti, Corrado; Iannilli, Valentina

    2017-10-01

    The ability of Posidonia oceanica spheroids (egagropiles, EG) to incorporate plastics was investigated along the central Italy coast. Plastics were found in the 52.84% of the egagropiles collected (n = 685). The more represented size of plastics has range within 1-1.5 cm, comparable to the size of natural fibres. Comparing plastics occurring both in EG and in surrounding sand, Polyethylene, Polyester and Nylon were the most abundant polymers in EG, while PSE, PE, PP and PET were the most represented in sand. In particular PE and PP were significantly more represented in sand, while PE, Nylon, Polyester and microfibers (as pills) were more represented in EG. Within plastics found in EG, 26.9% were microfibers as small pills (<1 cm), mainly composed of polyamide, polyester, cotton and PET mixing. These microfibers might be produced by discharges from washing machines and currently represents an emerging pollutant with widespread distribution in marine and freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    PubMed

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. To be, or not to be biodegradable… that is the question for the bio-based plastics.

    PubMed

    Prieto, Auxiliadora

    2016-09-01

    Global warming, market and production capacity are being the key drivers for selecting the main players for the next decades in the market of bio-based plastics. The drop-in bio-based polymers such as the bio-based polyethylene terephtalate (PET) or polyethylene (PE), chemically identical to their petrochemical counterparts but having a component of biological origin, are in the top of the list. They are followed by new polymers such as PHA and PLA with a significant market growth rate since 2014 with projections to 2020. Research will provide improved strains designed through synthetic and systems biology approaches; furthermore, the use of low-cost substrates will contribute to the widespread application of these bio- based polymers. The durability of plastics is not considered anymore as a virtue, and interesting bioprospecting strategies to isolate microorganisms for assimilating the recalcitrant plastics will pave the way for in vivo strategies for plastic mineralization. In this context, waste management of bio-based plastic will be one of the most important issues in the near future in terms of the circular economy. There is a clear need for standardized labelling and sorting instructions, which should be regulated in a coordinated way by policymakers and material producers. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Electron beam irradiation induced compatibilization of immiscible polyethylene/ethylene vinyl acetate (PE/EVA) blends: Mechanical properties and morphology stability

    NASA Astrophysics Data System (ADS)

    Entezam, Mehdi; Aghjeh, Mir Karim Razavi; Ghaffari, Mehdi

    2017-02-01

    Gel content, mechanical properties and morphology of immiscible PE/EVA blends irradiated by high energy electron beam were studied. The results of gel content measurements showed that the capability of cross-linking of the blend samples increased with an increase of the EVA composition. Also, the gel content for most compositions of the blends displayed a positive deviation from the additive rule. The results of mechanical properties showed that the tensile strength and elongation at break of the samples increased and decreased, respectively, with irradiation dose. On the other hand, the mechanical properties of the irradiated blends also depicted a positive deviation from additive rule contrary to the un-irradiated blends. A synergistic effect observed for the mechanical properties improvement of the irradiated blends and it was attributed to the probable formation of the PE-graft-EVA copolymers at the interface of the blends during the irradiation process. A theoretical analysis revealed that irradiation induced synergistic effect was more significant for EVA-rich blends with weaker interfacial interaction as compared to PE-rich blends. The morphological analysis indicated that the blend morphology was not affected obviously, whereas it was stabilized by irradiation.

  17. Characterization of the Mechanical Properties of Electrorheological Fluids Made of Starch and Silicone Fluid

    NASA Astrophysics Data System (ADS)

    Vieira, Sheila Lopes; de Arruda, Antonio Celso Fonseca

    In the majority of published articles on the topic, ER fluids have been studied as if they were viscous liquids. In this work, electrorheological fluids were characterized as solids and their mechanical properties were determined. The results infer that ER materials are controllably resistant to compression, tensile and shear stress, in this order of magnitude. More precisely, fluids made of starch have elasticity modulus similar to that of rubber, they have tensile strength 103 to 5×104 times lower than that of low density polyethylene (LDPE), static yield stress 4×104 to 8×105 times lower than that of acrylonitrile-butadiene-styrene terpolymer (ABS) and fatigue life similar to some polymers like polyethylene(PE) and polypropylene (PP).

  18. Investigation of compression behavior of PE/EVA foam injection molded parts

    NASA Astrophysics Data System (ADS)

    Spina, Roberto

    2017-10-01

    The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.

  19. Technical reference for the use of the slow crack growth test for modeling and predicting the long-term performance of polyethylene gas pipes. Final report, March 1987-May 1992. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanninen, M.F.; O'Donoghue, P.E.; Popelar, C.F.

    1993-02-01

    The project was undertaken for the purposes of quantifying the Battelle slow crack growth (SCG) test for predicting long-term performance of polyethylene gas distribution pipes, and of demonstrating the applicability of the methodology for use by the gas industry for accelerated characterization testing, thereby bringing the SCG test development effort to a closure. The work has revealed that the Battelle SCG test, and the linear fracture mechanics interpretation that it currently utilizes, is valid for a class of PE materials. The long-term performance of these materials in various operating conditions can therefore be effectively predicted.

  20. Enforcement of food packaging legislation.

    PubMed

    van Lierop, J B

    1997-01-01

    A survey of the results of the analysis of samples of packaging materials, obtained from the Dutch market during the last 5 years is presented. The diethylether extracts of food contact polymers were analysed by GC-MS according to the Dutch testing system. Lists of the identified constituents in the extracts of polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthlate (PET) and polyvinylchloride (PVC) are given. More than 50 constituents were identified in the more than 1000 samples investigated. An estimation of the quantities of the extracted constituents has been made. In PVC the following compounds were present in relatively large quantities (10 times the height of the internal standards): diethylhexyladipate, dinonylphthalate, and other phthalates. However 68% of the extracts contained no peaks higher than the internal standards.

  1. Neutral dipole-dipole dimers: A new field in science

    NASA Astrophysics Data System (ADS)

    Kosower, Edward M.; Borz, Galina

    2018-03-01

    Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate for decreasing the polarity of the acid (PA). Another possibility might be N-methylacylamides of which we have noted N-methylacetamide (NMA). We had found that NMA in a polar solvent on AgX was very acrobatic, forming first a 310-helix, an α-helix, a π-helix and a planar form in succession. In sharp contrast, we discovered that NMA forms a dimer (NMAD) and becomes immiscible with the water present on the PE surface. One may vary the acyl group and even include functional groups. Another aspect of the surface behavior of water is the formation of oligomers and polyoligomers. We will show a diagram that explains the formation of polyoligomers from oligomers and their ultimate formation of oligomers with apposed dipoles. This Scope summary should make it easier to follow the description of the varied phenomena found for the PE-water system.

  2. The role of inserted polymers in polymeric insulation materials: insights from QM/MD simulations.

    PubMed

    Li, Chunyang; Zhao, Hong; Zhang, Hui; Wang, Ying; Wu, Zhijian; Han, Baozhong

    2018-02-28

    In this study, we performed a quantum chemical molecular dynamics (QM/MD) simulation to investigate the space charge accumulation process in copolymers of polyethylene (PE) with ethylene acrylic acid (EAA), ethylene vinyl acetate (EVA), styrene-ethylene-butadiene-styrene (SEBS), and black carbon (BC). We predicted that BC, especially branched BC, would possess the highest electron affinity and is identified as the most promising filler in power cable insulation. Following incorporations of 0-4 high-energy electrons into the composites, branched BC exhibited the highest stability and almost all electrons were trapped by it. Therefore, PE was protected efficiently and BC can be considered as an efficient filler for high voltage cables and an inhibitor of tree formation. On the contrary, although EAA, EVA, and SEBS can trap high-energy electrons, the latter can be supersaturated in composites of EAA, EVA, and SEBS with PE. The inserted polymers was unavoidably destroyed following C-H and C-O bond cleavage, which results from the interactions and charge transfer between PE and inserted polymers. The content effects of -COOH, benzene, and -OCOCH 3 groups on the electron trapping, mobility and stability of PE were also investigated systematically. We hope this knowledge gained from this work will be helpful in understanding the role of inserted polymers and the growth mechanisms of electrical treeing in high voltage cable insulation.

  3. Effects of biofouling on the sinking behavior of microplastics

    NASA Astrophysics Data System (ADS)

    Kaiser, David; Kowalski, Nicole; Waniek, Joanna J.

    2017-12-01

    Although plastic is ubiquitous in marine systems, our current knowledge of transport mechanisms is limited. Much of the plastic entering the ocean sinks; this is intuitively obvious for polymers such as polystyrene (PS), which have a greater density than seawater, but lower density polymers like polyethylene (PE) also occur in sediments. Biofouling can cause large plastic objects to sink, but this phenomenon has not been described for microplastics <5 mm. We incubated PS and PE microplastic particles in estuarine and coastal waters to determine how biofouling changes their sinking behavior. Sinking velocities of PS increased by 16% in estuarine water (salinity 9.8) and 81% in marine water (salinity 36) after 6 weeks of incubation. Thereafter sinking velocities decreased due to lower water temperatures and reduced light availability. Biofouling did not cause PE to sink during the 14 weeks of incubation in estuarine water, but PE started to sink after six weeks in coastal water when sufficiently colonized by blue mussels Mytilus edulis, and its velocity continued to increase until the end of the incubation period. Sinking velocities of these PE pellets were similar irrespective of salinity (10 vs. 36). Biofilm composition differed between estuarine and coastal stations, presumably accounting for differences in sinking behavior. We demonstrate that biofouling enhances microplastic deposition to marine sediments, and our findings should improve microplastic transport models.

  4. Comparative experiments for in vivo fibroplasia and biological stability of four porous polymers intended for use in the Seoul-type keratoprosthesis

    PubMed Central

    Kim, M K; Lee, J L; Wee, W R; Lee, J H

    2002-01-01

    Aims: To evaluate in vivo fibroplasia and biological stability of porous polymers intended for use in the Seoul-type keratoprosthesis (S-KPro). Methods: Four porous polymers (polypropylene, two kinds of polyethylene terephthalate (PE70 and PE50), and polyurethane) were investigated. Discs of polymers were inserted into the corneal stroma of rabbits for a 2 and 5 month period. Corneal oedema and neovascularisation were evaluated. The fibroplasia and collagen deposition were examined under light and transmission electron microscopy. S-KPros, whose skirt was made of four types of polymer, were implanted into the rabbits' eyes. The retention time and complications were evaluated. Results: Neovascularisation and corneal oedema were found in all of the disc inserted eyes, but the corneal oedema subsided within 2 months in most of the eyes. The mean number of fibroblasts increased significantly in polypropylene and PE50 disc inserted eyes compared with polyurethane disc inserted eyes. Plentiful collagen deposition was also found in both polypropylene and PE50 disc inserted eyes. Mean retention time in the polypropylene SK-Pro implanted eyes was longer than that of the other eyes (20.7 weeks). The PE70 skirt induced corneal melting around the prosthesis. Conclusion: Polypropylene encourages fibroblast ingrowth and shows good biological stability when used as a skirt material in S-KPro. PMID:12084755

  5. Transfer of Campylobacter jejuni from raw to cooked chicken via wood and plastic cutting boards.

    PubMed

    Tang, J Y H; Nishibuchi, M; Nakaguchi, Y; Ghazali, F M; Saleha, A A; Son, R

    2011-06-01

    We quantified Campylobacter jejuni transferred from naturally contaminated raw chicken fillets and skins to similar cooked chicken parts via standard rubberwood (RW) and polyethylene cutting boards (PE). RW and PE cutting boards (2.5 × 2.5 cm(2)) were constructed. RW surfaces were smooth and even, whereas PE was uneven. Scoring with scalpel blades produced crevices on RW and flaked patches on the PE boards. Raw chicken breast fillets or skin pieces (10 g) naturally contaminated with Camp. jejuni were used to contaminate the cutting boards (6.25 cm(2)). These were then briefly covered with pieces of cooked chicken. Campylobacter jejuni on raw chicken, the boards, and cooked chicken pieces were counted using a combined most-probable-number (MPN)-PCR method. The type of cutting board (RW, PE; unscored and scored) and temperature of cooked chicken fillets and skins were examined. Unscored PE and RW boards were not significantly different in regards to the mean transfer of Camp. jejuni from raw samples to the boards. The mean transfer of Camp. jejuni from scored RW was significantly higher than from scored PE. When the chicken fillets were held at room temperature, the mean transfer of Camp. jejuni from scored RW and PE was found to be 44.9 and 40.3%, respectively.   RW and PE cutting boards are potential vehicles for Camp. jejuni to contaminate cooked chicken. Although cooked chicken maintained at high temperatures reduced cross-contamination via contaminated boards, a risk was still present. Contamination of cooked chicken by Camp. jejuni from raw chicken via a cutting board is influenced by features of the board (material, changes caused by scoring) and chicken (types of chicken parts and temperature of the cooked chicken). © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. [The role of plastic shock absorbers in dental implantation].

    PubMed

    Szücs, A; Divinyi, T; Belina, K; Vörös, G

    1999-01-01

    The mechanical behaviour of different plastics (PE, PP, PI, PA, ABS, POM) was examined by static and dynamic loading. Detection of microdeformations and photoelastic stress analysis served as the examination method. According to the results, polyethylene is unsuitable, however the other plastics, with clauses, are suitable as shock absorbers. Apart from the mechanical investigation photoelastic stress analysis also revealed the benefit of osseointegration in force transmission to the bone.

  7. Structural and magnetic characterization of copper sulfonated phthalocyanine grafted onto treated polyethylene

    NASA Astrophysics Data System (ADS)

    Reznickova, A.; Kolska, Z.; Orendac, M.; Cizmar, E.; Sajdl, P.; Svorcik, V.

    2016-08-01

    This study focuses on high density polyethylene (HDPE) activated by Ar plasma treatment, subsequently grafted with copper sulfonated phthalocyanine (CuPc) especially pointing out to the surface and magnetic properties of those composites. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, zeta potential and by electron spin resonance (ESR). XPS analysis confirmed the successful grafting of phthalocyanine. The highest absorption was found for the sample grafted with bCuPc for 1 h. Electrokinetic analysis also confirmed the plasma treatment and also subsequent CuPc grafting influence significantly the surface chemistry and charge. These results correspond well with XPS determination. ESR studies confirmed the presence of CuPc grafted on HDPE. It was found, that grafting is mediated by magnetically inactive functional groups, rather than radicals. Magnetic properties of CuPc do not seem to change significantly after grafting CuPc on polyethylene surface.

  8. Measuring and Modeling Organochlorine Pesticide Response to Activated Carbon Amendment in Tidal Sediment Mesocosms.

    PubMed

    Thompson, Jay M; Hsieh, Ching-Hong; Hoelen, Thomas P; Weston, Donald P; Luthy, Richard G

    2016-05-03

    Activated carbon (AC) sediment amendment for hydrophobic organic contaminants (HOCs) is attracting increasing regulatory and industrial interest. However, mechanistic and well-vetted models are needed. Here, we conduct an 18 month field mesocosm trial at a site containing dichlorodiphenyltrichloroethane (DDT) and chlordane. Different AC applications were applied and, for the first time, a recently published mass transfer model was field tested under varying experimental conditions. AC treatment was effective in reducing DDT and chlordane concentration in polyethylene (PE) samplers, and contaminant extractability by Arenicola brasiliensis digestive fluids. A substantial AC particle size effect was observed. For example, chlordane concentration in PE was reduced by 93% 6 months post-treatment in the powdered AC (PAC) mesocosm, compared with 71% in the granular AC (GAC) mesocosm. Extractability of sediment-associated DDT and chlordane by A. brasiliensis digestive fluids was reduced by at least a factor of 10 in all AC treatments. The model reproduced the relative effects of varying experimental conditions (particle size, dose, mixing time) on concentrations in polyethylene passive samplers well, in most cases within 25% of experimental observations. Although uncertainties such as the effect of long-term AC fouling by organic matter remain, the study findings support the use of the model to assess long-term implications of AC amendment.

  9. Dynamics in entangled polyethylene melts using coarse-grained models

    NASA Astrophysics Data System (ADS)

    Peters, Brandon L.; Grest, Gary S.; Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora

    Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion on multiple length scales. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using polyethylene (PE) as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion (iBi) with 2-6 methyl groups per CG bead from all fully atomistic melt simulations for short chains. While the iBi methods produces non-bonded potentials which give excellent agreement for the atomistic and CG pair correlation functions, the pressure P = 100-500MPa for the CG model. Correcting for potential so P 0 leads to non-bonded models with slightly smaller effective diameter and much deeper minimum. However, both the pressure and non-pressure corrected CG models give similar results for mean squared displacement (MSD) and the stress auto correlation function G(t) for PE melts above the melting point. The time rescaling factor between CG and atomistic models is found to be nearly the same for both CG models. Transferability of potential for different temperatures was tested by comparing the MSD and G(t) for potentials generated at different temperatures.

  10. Effects of application methods of metam sodium and plastic covers on horizontal and vertical distributions of methyl isothiocyanate in bedded field plots.

    PubMed

    Ou, Li-Tse; Thomas, John E; Allen, L Hartwell; Vu, Joseph C; Dickson, Donald W

    2006-08-01

    This study was conducted to examine the effects of three application methods of metam sodium (broadcast, single irrigation drip tape delivery, and double irrigation drip tape delivery) and two plastic covers (polyethylene film and virtually impermeable film) on volatilization and on horizontal and vertical distributions of the biologically active product of metam sodium, methyl isothiocyanate (MITC), in field plots in a Florida sandy soil. Volatilization of MITC from field beds lasted for about 20 hours after completion of metam sodium application regardless of application methods. Virtually impermeable film (VIF) was a better barrier to reduce volatilization loss than polyethylene film (PE). Since water was not applied during broadcast application, MITC was mainly retained in the shallow soil layer (0- to 20-cm depth) and downward movement of MITC was limited to about 30 cm. Large values of standard deviation indicated that initial spatial distribution of MITC in the root zone (10- and 20-cm depths) of the two broadcast applied beds covered with PE or VIF was variable. Twice more water was delivered through the single drip tape than through individual tapes of double drip tape treatments during drip application of metam sodium. More water from the single drip tape likely facilitated downward movement of MITC to at least 60-cm depth, but MITC did not penetrate to this depth in the double drip tape beds. On the other hand, horizontal distribution of MITC in the root zone (10- and 20-cm depths) in the double drip tape beds was more uniform than in the single drip tape beds. More MITC was retained in the subsurface of the VIF-covered beds regardless of application methods than in the PE-covered beds.

  11. Recovery of polypropylene and polyethylene from packaging plastic wastes without contamination of chlorinated plastic films by the combination process of wet gravity separation and ozonation.

    PubMed

    Reddy, Mallampati Srinivasa; Okuda, Tetsuji; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2011-08-01

    Wet gravity separation technique has been regularly practiced to separate the polypropylene (PP) and polyethylene (PE) (light plastic films) from chlorinated plastic films (CP films) (heavy plastic films). The CP films including poly vinyl chloride (PVC) and poly vinylidene chloride (PVDC) would float in water even though its density is more than 1.0g/cm(3). This is because films are twisted in which air is sometimes entrapped inside the twisted CP films in real existing recycling plant. The present research improves the current process in separating the PP and PE from plastic packaging waste (PPW), by reducing entrapped air and by increasing the hydrophilicity of the CP films surface with ozonation. The present research also measures the hydrophilicity of the CP films. In ozonation process mixing of artificial films up to 10min reduces the contact angle from 78° to 62°, and also increases the hydrophilicity of CP films. The previous studies also performed show that the artificial PVDC films easily settle down by the same. The effect of ozonation after the wet gravity separation on light PPW films obtained from an actual PPW recycling plant was also evaluated. Although actual light PPW films contained 1.3% of CP films however in present case all the CP films were removed from the PPW films as a settled fraction in the combination process of ozonation and wet gravity separation. The combination process of ozonation and wet gravity separation is the more beneficial process in recovering of high purity PP and PE films from the PPW films. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation.

    PubMed

    Auta, H S; Emenike, C U; Fauziah, S H

    2017-12-01

    The continuous accumulation of microplastics in the environment poses ecological threats and has been an increasing problem worldwide. In this study, eight bacterial strains were isolated from mangrove sediment in Peninsular Malaysia to mitigate the environmental impact of microplastics and develop a clean-up option. The bacterial isolates were screened for their potential to degrade UV-treated microplastics from polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Only two isolates, namely, Bacillus cereus and Bacillus gottheilii, grew on a synthetic medium containing different microplastic polymers as the sole carbon source. A shake flask experiment was carried out to further evaluate the biodegradability potential of the isolates. Degradation was monitored by recording the weight loss of microplastics and the growth pattern of the isolates in the mineral medium. The biodegradation extent was validated by assessment of the morphological and structural changes through scanning electron microscopy and Fourier transform infrared spectroscopy analyses. The calculated weight loss percentages of the microplastic particles by B. cereus after 40 days were 1.6%, 6.6%, and 7.4% for PE, PET, and PS, respectively. B. gottheilii recorded weight loss percentages of 6.2%, 3.0%, 3.6%, and 5.8% for PE, PET, PP, and PS, respectively. The designated isolates degraded the microplastic material and exhibited potential for remediation of microplastic-contaminated environment. Biodegradation tests must be conducted to characterize the varied responses of microbes toward pollutants, such as microplastics. Hence, a novel approach for biodegradation of microplastics must be developed to help mitigate the environmental impact of plastics and microplastic polymers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Qiu, Yiping

    2015-05-01

    Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O2 gas for different periods of time. The influence of gas type on the plasma-polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of -COO than the comparable He/O2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O2 plasma treated ones with other conditions unchanged. supported by the Fundamental Research Funds for the Central Universities of China (Nos. JUSRP1044 and JUSRP1045), National Natural Science Foundation of China (Nos. 51203062 and 51302110), and the Cooperative Innovation Fund, Project of Jiangsu Province, China (Nos. BY2012064, BY2013015-31 and BY2013015-32)

  14. Combating oil spill problem using plastic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleem, Junaid, E-mail: junaidupm@gmail.com; Ning, Chao; Barford, John

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plasticmore » waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.« less

  15. Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.

    2008-01-01

    Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1< or equals Z< or equals 28 range is represented by O'Neill's (2004) model. To compute the transmission coefficient for GCR ions at LEO, O'Neill's model is coupled with the angular dependent LaRC cutoff model. The trapped protons/electrons component of LEO environment is represented by a LaRC-developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment resulting from interaction of GCR ions with upper atmosphere is modeled through extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to generic PE.

  16. Users' guide on socket heat fusion joining of polyethylene gas pipes. Volume 1. Topical report, September 1989-September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimputkar, S.M.; McCoy, J.K.; Stets, J.A.

    1991-03-01

    The integrity of a pipeline system is determined by its weakest links which may be the joints. Heat fusion is the most common method for joining gas distribution polyethylene (PE) piping. There are procedural, thermal, and mechanical aspects of making fusion joints. Acceptable procedural aspects, such as heater calibration and cleanliness, can be assured by rigorous training and certification of the operators. Thermal and mechanical aspects consist of specifying joining conditions such as the heater temperature, heating time, and joining pressure. In the absence of procedural errors, the strength of a fusion joint should depend on the pipe material, pipemore » dimensions, and the thermal and mechanical joining conditions. Socket heat fusion was studied both experimentally and analytically to determine how the strength of the joint varied with the conditions under which it was made. The standard tensile impact test was modified to test socket fusion joint samples in shear. The developed shear impact energy test data were found to be reliable measures of strength if the setups for conditions were meticulously identical. A parameter, termed the socket joining parameter, was found to characterize the joining conditions. It is a strong function of melt volume at the end of the heating phase, and physically, it is polyethylene transported parallel to the axis during insertion. The results for three resins are presented in the form of three nomographs. The nomographs may be used to select the required heater temperature or the heating time, for a given ambient temperature and a PE resin, to ensure a structurally sound socket heat fusion joint.« less

  17. Technical reference on socket heat fusion joining of polyethylene gas pipes. Volume 2. Topical Report, September 1989-September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimputkar, S.M.; McCoy, J.K.; Stets, J.A.

    1991-03-01

    The integrity of a pipeline system is determined by its weakest links which may be the joints. Heat fusion is the most common method for joining gas distribution polyethylene (PE) piping. There are procedural, thermal, and mechanical aspects of making fusion joints. Acceptable procedural aspects, such as heater calibration and cleanliness, can be assured by rigorous training and certification of the operators. Thermal and mechanical aspects consist of specifying joining conditions such as the heater temperature, heating time, and joining pressure. In the absence of procedural errors, the strength of a fusion joint should depend on the pipe material, pipemore » dimensions, and the thermal and mechanical joining conditions. Socket heat fusion was studied both experimentally and analytically to determine how the strength of the joint varied with the conditions under which it was made. The standard tensile impact test was modified to test socket fusion joint samples in shear. The developed shear impact energy test data were found to be reliable measures of strength if the setup conditions were meticulously identical. A parameter, termed the socket joining parameter, was found to characterize the joining conditions. It is a strong function of melt volume at the end of the heating phase, and, physically, it is polyethylene transported parallel to the axis during insertion. The results for three resins are presented in the form of three nomographs. The nomographs may be used to select the required heater temperature or the heating time, for a given ambient temperature and a PE resin, to ensure a structurally sound socket heat fusion joint.« less

  18. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes.

    PubMed

    Marini, M; De Niederhausern, S; Iseppi, R; Bondi, M; Sabia, C; Toselli, M; Pilati, F

    2007-04-01

    Silver-doped organic-inorganic hybrid coatings were prepared starting from tetraethoxysilane- and triethoxysilane-terminated poly(ethylene glycol)-block-polyethylene by the sol-gel process. They were applied as a thin layer (0.6-1.1 microm) to polyethylene (PE) and poly(vinyl chloride) (PVC) films and the antibacterial activity of the coated films was tested against Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. The effect of several factors (such as organic-inorganic ratio, type of catalyst, time of post-curing, silver ion concentration, etc.) was investigated. Measurements at different contact times showed a rapid decrease of the viable count for both tested strains. The highest antibacterial activity [more than 6 log reduction within 6 h starting from 106 colony-forming units (cfu) mL-1] was obtained for samples with an organic-inorganic weight ratio of 80:20 and 5 wt % silver salt with respect to the coating. For the coatings prepared by an acid-catalyzed process, a high level of permanence of the antibacterial activity of the coated films was demonstrated by repeatedly washing the samples in warm water or by immersion in physiological saline solution at 37 degrees C for 3 days. The release of silver ions per square meter of coating is very similar to that previously observed for polyamides filled with metallic silver nanoparticles; however, when compared on the basis of Ag content, the concentration of silver ions released from the coating is much higher than that released from 1 mm thick specimens of polyamide (PA) filled with silver nanoparticles. Transparency and good adhesion of the coating to PE and PVC plastic substrates without any previous surface treatment are further interesting features.

  19. Micro-wear features on unique 100-Mrad cups: two retrieved cups compared to hip simulator wear study.

    PubMed

    Yamamoto, Kengo; Masaoka, Toshinori; Manaka, Masakazu; Oonishi, Hironobu; Clarke, Ian; Shoji, Hiromu; Kawanabe, Keiichi; Imakiire, Atsuhiro

    2004-04-01

    We studied the micro-wear phenomena of unique, extensively cross-linked polyethylene cups (cross-linked with 1,000 kGy-irradiation) that had been used briefly in Japan. Two retrievals (at 15 years) came from the Japanese "SOM" hip system (implanted 1971-78). These were compared to a set of 0 kGy and 500-1,500 kGy cups run in our hip simulator. The polyethylene cups that had not been cross-linked had the greatest wear. The worn areas had a burnished appearance and were clearly separated from the unworn region by a distinct ridge-line. The worn areas had lost all machine tracks, showed a large amount of UHMWPE 'flow', and long PE fibrils. The associated surface rippling was degraded. These features were considered synonymous with severe polyethylene wear. In contrast, the worn areas in the very cross-linked cups had a visibly matte surface and no ridge-line. Micro-examination showed that the machine tracks were still present. Ripple formations were less obvious than in the cups that were not cross-linked, polyethylene surface fibrils were scarcer and all the fibrils were much smaller than in the cups that were not crosslinked. Our two retrieved cups and the simulator cups confirmed the greater wear-resistance of very cross-linked polyethylene. It should also be noted that the SOM cup design and processing were unique and differed greatly from that of modern polyethylene cups.

  20. Use of Impervious Covers and Carbon Adsorption for the Control of Leachate Production in Municipal Landfills.

    DTIC Science & Technology

    1979-05-01

    polyethylene (PE), polyvinyl chloride (PVC), butyl rubber , Hyalon (a registered trademark of Dupont), ethylene propylene diene monomer ( EPDM ), chlorinated...studies are explained in part by the following factors: age of the landfill and corresponding state of stabilization; composition of the solid waste, the...an active anaerobic population of methane formers. The removal of organics resulted in a more rapid stabilization or " aging " of the experimental

  1. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene.

    PubMed

    Kiran Ciliz, Nilgun; Ekinci, Ekrem; Snape, Colin E

    2004-01-01

    A comparison of waste and virgin polypropylene (PP) plastics under slow pyrolysis conditions is presented. Moreover, mixtures of waste PP with wastes of polyethylene (PE) and polystyrene (PS) were pyrolyzed under the same operating conditions. Not only the impact of waste on degradation products but also impacts of the variations in the mixing ratio were investigated. The thermogravimetric weight loss curves and their derivatives of virgin and waste PP showed differences due to the impurities which are dirt and food residues. The liquid yield distribution concerning the aliphatic, mono-aromatic and poly-aromatic compounds varies as the ratio of PP waste increases in the waste plastic mixtures. In addition to this, the alkene/alkane ratio of gas products shows variations depending on the mixing ratio of wastes.

  2. Effect of containers on the quality of Chemlali olive oil during storage.

    PubMed

    Gargouri, Boutheina; Zribi, Akram; Bouaziz, Mohamed

    2015-04-01

    This study is undertaken to determine the storage stability of Chemlali extra-virgin olive oil (EVOO) in different containers such as clear and dark glass bottles, polyethylene (PE) and tin containers. The different oil samples were stored under light at room temperature. Quality parameters monitored during a 6-month-storage period included: acidity, peroxide value (PV), spectrophotometric indices (K232 and K270), chlorophyll and carotene pigments, fatty acids and sterol compositions, total phenols, Rancimat induction time as well as sensory evaluation. Tin containers and dark glass bottles recorded the lowest oxidation values. In addition, oil packed in tin containers and dark glass bottles showed better physicochemical and organoleptic characteristics than that stored in clear glass bottles and PE containers. A significant decrease (p < 0.05) in the antioxidant contents (carotenes, chlorophylls and total phenols) was observed in the oil stored in the clear glass bottles and PE containers. Such results proved that the storage of oil in tin containers and dark glass bottles appeared most adequate, and showed a gradual loss of quality during storage, especially in PE containers and clear glass bottles. This study has shown that the best packaging materials for the commercial packing of Chemlali extra-virgin olive oil are tin containers and dark glass bottles.

  3. Impact of Microplastic Beads and Fibers on Waterflea (Ceriodaphnia dubia) Survival, Growth, and Reproduction: Implications of Single and Mixture Exposures.

    PubMed

    Ziajahromi, Shima; Kumar, Anupama; Neale, Peta A; Leusch, Frederic D L

    2017-11-21

    There is limited knowledge regarding the adverse effects of wastewater-derived microplastics, particularly fibers, on aquatic biota. In this study, we examined the acute (48 h) and chronic (8 d) effects of microplastic polyester fibers and polyethylene (PE) beads on freshwater zooplankton Ceriodaphnia dubia. We also assessed the acute response of C. dubia to a binary mixture of microplastic beads and fibers for the first time. Acute exposure to fibers and PE beads both showed a dose-dependent effect on survival. An equitoxic binary mixture of beads and fibers resulted in a toxic unit of 1.85 indicating less than additive effects. Chronic exposure to lower concentrations did not significantly affect survival of C. dubia, but a dose-dependent effect on growth and reproduction was observed. Fibers showed greater adverse effects than PE beads. While ingestion of fibers was not observed, scanning electron microscopy showed carapace and antenna deformities after exposure to fibers, with no deformities observed after exposure to PE beads. While much of the current research has focused on microplastic beads, our study shows that microplastic fibers pose a greater risk to C. dubia, with reduced reproductive output observed at concentrations within an order of magnitude of reported environmental levels.

  4. Study of Polymer Crystallization by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jeong, Hyuncheol

    When a polymer is confined under the submicron length scale, confinement size and interfaces can significantly impact the crystallization kinetics and resulting morphology. The ability to tune the morphology of confined polymer systems is of critical importance for the development of high-performance polymer microelectronics. The wisdom from the research on confined crystallization suggests that it would be beneficial to have a processing route in which the crystallization of polymers is driven by interface and temperature effects at a nanometer-scale confinement. In practice, for atomic and small-molecular systems, physical vapor deposition (PVD) has been recognized as the most successful processing route for the precise control of the film structure at surface utilizing confinement effects. While standard PVD technologies are not generally applicable to the deposition of the chemically fragile macromolecules, the development of matrix-assisted pulsed laser evaporation (MAPLE) now enables the non-destructive PVD of high-molecular weight polymers. In this thesis work, we investigated the use of MAPLE for the precise control of the crystallization of polymer films at a molecular level. We also sought to decipher the rules governing the crystallization of confined polymers, by using MAPLE as a tool to form confined polymer systems onto substrates with a controlled temperature. We first explored the early stages of film growth and crystallization of poly(ethylene oxide) (PEO) at the substrate surface formed by MAPLE. The unique mechanism of film formation in MAPLE, the deposition of submicron-sized polymer droplets, allowed for the manifestation of confinement and substrate effects in the crystallization of MAPLE-deposited PEO. Furthermore, we also focused on the property of the amorphous PEO film formed by MAPLE, showing the dependence of polymer crystallization kinetics on the thermal history of the amorphous phase. Lastly, we probed how MAPLE processing affected the semi-crystalline structure in MAPLE-deposited polyethylene (PE) films. Depositing PE at various temperatures remarkably allowed for the tunability of the melting temperature and crystallinity of the PE films, thus manipulating the semi-crystalline structure. By comparing the structure of PE formed by different processing routes, i.e., MAPLE and melt-crystallization, we discussed how processing routes affect the development of semi-crystalline phase in polymer films.

  5. Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis).

    PubMed

    Pan, Feng; Wang, Yue; Liu, Huanglong; Wu, Min; Chu, Wenyuan; Chen, Danmei; Xiang, Yan

    2017-06-27

    The SQUAMOSA promoter binding protein-like (SPL) proteins are plant-specific transcription factors (TFs) that function in a variety of developmental processes including growth, flower development, and signal transduction. SPL proteins are encoded by a gene family, and these genes have been characterized in two model grass species, Zea mays and Oryza sativa. The SPL gene family has not been well studied in moso bamboo (Phyllostachys edulis), a woody grass species. We identified 32 putative PeSPL genes in the P. edulis genome. Phylogenetic analysis arranged the PeSPL protein sequences in eight groups. Similarly, phylogenetic analysis of the SBP-like and SBP proteins from rice and maize clustered them into eight groups analogous to those from P. edulis. Furthermore, the deduced PeSPL proteins in each group contained very similar conserved sequence motifs. Our analyses indicate that the PeSPL genes experienced a large-scale duplication event ~15 million years ago (MYA), and that divergence between the PeSPL and OsSPL genes occurred 34 MYA. The stress-response expression profiles and tissue-specificity of the putative PeSPL gene promoter regions showed that SPL genes in moso bamboo have potential biological functions in stress resistance as well as in growth and development. We therefore examined PeSPL gene expression in response to different plant hormone and drought (polyethylene glycol-6000; PEG) treatments to mimic biotic and abiotic stresses. Expression of three (PeSPL10, -12, -17), six (PeSPL1, -10, -12, -17, -20, -31), and nine (PeSPL5, -8, -9, -14, -15, -19, -20, -31, -32) genes remained relatively stable after treating with salicylic acid (SA), gibberellic acid (GA), and PEG, respectively, while the expression patterns of other genes changed. In addition, analysis of tissue-specific expression of the moso bamboo SPL genes during development showed differences in their spatiotemporal expression patterns, and many were expressed at high levels in flowers and leaves. The PeSPL genes play important roles in plant growth and development, including responses to stresses, and most of the genes are expressed in different tissues. Our study provides a comprehensive understanding of the PeSPL gene family and may enable future studies on the function and evolution of SPL genes in moso bamboo.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotman, D.

    Exxon chemical says it has made linear low-density polyethylene (LLDPE) using metallocene catalysts at its world-scale gas-phase plant in Mont Belvieu, TX. Exxon also says it has received a broad US patent that covers the use of metallocenes in gas-phase reactors that use condensing mode technology and that it plans to license the know-how. The moves, say industry experts, greatly strengthen Exxon`s position in metallocenes, particularly in pushing metallocene-based PE into commodity markets. The use of gas-phase technology {open_quotes}had to happen{close_quotes} to allow metallocene polymers to compete as commodities, says David Highfield, v.p. at Catalyst Consultants (Spring House, PA). {open_quotes}It`smore » very important and very significant in widening the scope of [metallocene] technology.{close_quotes}« less

  7. Migration of nonylphenol from food-grade plastic is toxic to the coral reef fish species Pseudochromis fridmani.

    PubMed

    Hamlin, Heather J; Marciano, Kathleen; Downs, Craig A

    2015-11-01

    Nonylphenol (NP) is a non-ionic surfactant used extensively in industrial applications, personal care products, and many plastics. We exposed marine orchid dottybacks (Pseudochromis fridmani) for 48h to either glass, Teflon, or two bags labeled as FDA food-grade polyethylene (PE1 and PE2) from different manufacturers. The PE2 bags leached high levels of NP into the contact water, which were taken up by the fish, and decreased short and long-term survival. Concentrations of NP that leached from the bags were consistent with 96h LC50 values determined in this study, indicating NP is the likely toxic agent. Despite being similarly labeled, the NP concentrations that leached from the bags and the resultant toxicity to the fish varied dramatically between manufacturers. This study highlights that some plastics, labeled as food-safe, can be highly toxic to aquatic animals, and could pose a greater threat to humans than previously realized. This study also highlights risks for aquatic animals exposed to increasing quantities of plastic waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms

    USGS Publications Warehouse

    Jung, Melissa R.; Horgen, F. David; Orski, Sara V.; Rodriguez, Viviana; Beers, Kathryn L.; Balazs, George H.; Jones, T. Todd; Work, Thierry M.; Brignac, Kayla C.; Royer, Sarah-Jeanne; Hyrenbach, David K.; Jensen, Brenda A.; Lynch, Jennifer M.

    2018-01-01

    Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1–6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon.

  9. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus).

    PubMed

    Deng, Yongfeng; Zhang, Yan; Qiao, Ruxia; Bonilla, Melvin M; Yang, Xiaoliang; Ren, Hongqiang; Lemos, Bernardo

    2018-06-08

    This study was performed to reveal the health risks of co-exposure to organophosphorus flame retardants (OPFRs) and microplastics (MPs). We exposed mice to polyethylene (PE) and polystyrene (PS) MPs and OPFRs [tris (2-chloroethy) phosphate (TCEP) and tris (1,3-dichloro-2-propyl) phosphate (TDCPP)] for 90 days. Biochemical markers and metabolomics were used to determine whether MPs could enhance the toxicity of OPFRs. Superoxide dismutase (SOD) and catalase (CAT) increased (p < 0.05) by 21% and 26% respectively in 10 μg/L TDCPP + PE group compared to TDCPP group. Lactate dehydrogenase (LDH) in TDCPP + MPs groups were higher (18%-30%) than that in TDCPP groups (p < 0.05). Acetylcholinesterase (AChE) in TCEP + PE groups were lower (10%-19%) than those in TCEP groups (p < 0.05). These results suggested that OPFR co-exposure with MPs induced more toxicity than OPFR exposure alone. Finally, in comparison to controls we observed that 29, 41, 41, 26, 40 and 37 metabolites changed significantly (p < 0.05; fold-change > 1.2) in TCEP, TCEP + PS, TCEP + PE, TDCPP, TDCPP + PS and TDCPP + PE groups, respectively. Most of these metabolites are related to pathways of amino acid and energy metabolism. Our results indicate that MPs aggravate the toxicity of OPFRs and highlight the health risks of MP co-exposure with other pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Microplastics alter composition of fungal communities in aquatic ecosystems.

    PubMed

    Kettner, Marie Therese; Rojas-Jimenez, Keilor; Oberbeckmann, Sonja; Labrenz, Matthias; Grossart, Hans-Peter

    2017-11-01

    Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Macrofouling communities and the degradation of plastic bags in the sea: an in situ experiment.

    PubMed

    Pauli, Nora-Charlotte; Petermann, Jana S; Lott, Christian; Weber, Miriam

    2017-10-01

    The increasing amount of plastic littered into the sea may provide a new substratum for benthic organisms. These marine fouling communities on plastic have not received much scientific attention. We present, to our knowledge, the first comprehensive analysis of their macroscopic community composition, their primary production and the polymer degradation comparing conventional polyethylene (PE) and a biodegradable starch-based plastic blend in coastal benthic and pelagic habitats in the Mediterranean Sea. The biomass of the fouling layer increased significantly over time and all samples became heavy enough to sink to the seafloor. The fouling communities, consisting of 21 families, were distinct between habitats, but not between polymer types. Positive primary production was measured in the pelagic, but not in the benthic habitat, suggesting that large accumulations of floating plastic could pose a source of oxygen for local ecosystems, as well as a carbon sink. Contrary to PE, the biodegradable plastic showed a significant loss of tensile strength and disintegrated over time in both habitats. These results indicate that in the marine environment, biodegradable polymers may disintegrate at higher rates than conventional polymers. This should be considered for the development of new materials, environmental risk assessment and waste management strategies.

  12. A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries.

    PubMed

    Zhu, Xiaoming; Jiang, Xiaoyu; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-11-04

    The safety concern is a critical obstacle to large-scale energy storage applications of lithium-ion batteries. A thermostable separator is one of the most effective means to construct the safe lithium-ion batteries. Herein, we demonstrate a novel ceramic (SiO2)-grafted PE separator prepared by electron beam irradiation. The separator shows similar thickness and pore structure to the bare separator, while displaying strong dimensional thermostability, as the shrinkage ratio is only 20% even at an elevated temperature of 180 °C. Besides, the separator is highly electrochemically inert, showing no adverse effect on the energy and power output of the batteries. Considering the excellent electrochemical and thermal stability, the SiO2-grafted PE separator developed in this work is greatly beneficial for constructing safer lithium-ion batteries.

  13. Microplastics in Sediment Cores from Asia and Africa as Indicators of Temporal Trends in Plastic Pollution.

    PubMed

    Matsuguma, Yukari; Takada, Hideshige; Kumata, Hidetoshi; Kanke, Hirohide; Sakurai, Shigeaki; Suzuki, Tokuma; Itoh, Maki; Okazaki, Yohei; Boonyatumanond, Ruchaya; Zakaria, Mohamad Pauzi; Weerts, Steven; Newman, Brent

    2017-08-01

    Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.

  14. Removal of phosphate using copper-loaded polymeric ligand exchanger prepared by radiation grafting of polypropylene/polyethylene (PP/PE) nonwoven fabric

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Kavaklı, Pınar Akkaş; Güven, Olgun

    2010-03-01

    A novel polymeric ligand exchanger (PLE) was prepared for the removal of phosphate ions from water. 2,2'-dipyridylamine (DPA), a bidentate ligand forming compound with high coordination capacity with a variety of metal ions was bound to glycidyl methacrylate (GMA) grafted polypropylene/polyethylene (PP/PE) nonwoven fabric synthesized by radiation-induced grafting technique. DPA attachment on epoxy ring of GMA units was tested in different solvents, i.e. methanol, ethanol, dioxane and dimethylsulfoxide (DMSO). The highest amount of modification was achieved in dioxane. In order to prepare the corresponding PLE for the removal of phosphate, DPA-immobilized fabric was loaded with Cu(II) ions. Phosphate adsorption experiments were performed in batch mode at different pH (5-9) and phosphate concentrations. The fabric was found to be effective for the removal of phosphate ions. At every stage of preparation and use, the nonwoven fabric was characterized by thermal (i.e. DSC and TGA) and spectroscopic (FTIR) methods. Competitive adsorption experiments were also carried out using two solutions with different concentration levels at pH 7 to see the effect of competing ions. Phosphate adsorption was found to be effective and selective from solutions having trace amounts of competitive anions. It is expected that the novel PLE synthesized can be used for the removal of phosphate ions in low concentrations over a large range of pH.

  15. Mutant CCL2 Protein Coating Mitigates Wear Particle-Induced Bone Loss in a Murine Continuous Polyethylene Infusion Model

    PubMed Central

    Nabeshima, Akira; Pajarinen, Jukka; Lin, Tzu-hua; Jiang, Xinyi; Gibon, Emmanuel; Córdova, Luis A.; Loi, Florence; Lu, Laura; Jämsen, Eemeli; Egashira, Kensuke; Yang, Fan; Yao, Zhenyu; Goodman, Stuart B

    2016-01-01

    Wear particle-induced osteolysis limits the long-term survivorship of total joint replacement (TJR). Monocyte/macrophages are the key cells of this adverse reaction. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) is the most important chemokine regulating trafficking of monocyte/macrophages in particle-induced inflammation. 7ND recombinant protein is a mutant of CCL2 that inhibits CCL2 signaling. We have recently developed a layer-by-layer (LBL) coating platform on implant surfaces that can release biologically active 7ND. In this study, we investigated the effect of 7ND on wear particle-induced bone loss using the murine continuous polyethylene (PE) particle infusion model with 7ND coating of a titanium rod as a local drug delivery device. PE particles were infused into hollow titanium rods with or without 7ND coating implanted in the distal femur for 4 weeks. Specific groups were also injected with RAW 264.7 as the reporter macrophages. Wear particle-induced bone loss and the effects of 7ND were evaluated by microCT, immunohistochemical staining, and bioluminescence imaging. Local delivery of 7ND using the LBL coating decreased systemic macrophage recruitment, the number of osteoclasts and wear particle-induced bone loss. The development of a novel orthopaedic implant coating with anti-CCL2 protein may be a promising strategy to mitigate peri-prosthetic osteolysis. PMID:27918885

  16. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  17. Extrusion foaming of protein-based thermoplastic and polyethylene blends

    NASA Astrophysics Data System (ADS)

    Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.

    2016-03-01

    Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.

  18. Morphology of Thermally Degraded PU and Irradiated PE

    NASA Astrophysics Data System (ADS)

    Harris, Douglas; Gillen, Kenneth; Celina, Mathias; Assink, Roger

    2001-03-01

    Several 1H and 13C NMR techniques have been applied to study the morphology and chemical structure of thermally degraded polyurethane rubber and irradiated polyethylene cable insulation. The combination of heat and presence of air results in oxidation of the hydroxyl-terminated polybutadiene/isophorone diisocyanate polyurethane and the gel content increases. The oxidation is inhomogeneous: pristine regions remain with a length scale of approximately 20 nm. The morphology and oxidation products were characterized by 1H spin diffusion with 13C detection. In addition, dynamics were probed with 1H and 2D WISE experiments. Radiation of cross-linked polyethylene cable insulation obeys anomalous aging behavior where lower temperature can result in a greater loss in ultimate tensile elongation. Annealing of the irradiated polyethylene allows significant recovery of mechanical properties. Analysis of 13C NMR data was used to study this "Lazarus effect" and the inverse temperature relationship. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500.

  19. Surface characteristics changes in polymeric material by swift ion beam

    NASA Astrophysics Data System (ADS)

    Abdul-Kader, A. M.; El-Gendy, Y. A.

    2018-03-01

    In this work, polyethylene (PE) samples were subjected to 9 MeV Cl+2 ions with fluences ranging from 1 × 1013 to 5 × 1014 ion/cm2. Rutherford back scattering spectrometry (RBS), X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy and Vicker's micro-hardness (Hv) techniques were used to investigate the compositional transformation, changes in the structure, optical and surface hardness of bombarded samples. The adhesion parameters were analyzed using the contact angle measurements. The obtained results showed that the ion irradiation caused a decrease in the crystallinity of polyethylene and increase in absorption of oxygen on the polymer surface as well. The absorption edge shifted towards the red shift as Cl-ion fluence increases. It was found that the hardness and adhesion parameters increase with increasing the ion beam fluence.

  20. Morphological characteristics of waste polyethylene/polypropylene plastics during pyrolysis and representative morphological signal characterizing pyrolysis stages.

    PubMed

    Wang, H; Chen, D; Yuan, G; Ma, X; Dai, X

    2013-02-01

    In this work, the morphological characteristics of waste polyethylene (PE)/polypropylene (PP) plastics during their pyrolysis process were investigated, and based on their basic image changing patterns representative morphological signals describing the pyrolysis stages were obtained. PE and PP granules and films were used as typical plastics for testing, and influence of impurities was also investigated. During pyrolysis experiments, photographs of the testing samples were taken sequentially with a high-speed infrared camera, and the quantitative parameters that describe the morphological characteristics of these photographs were explored using the "Image Pro Plus (v6.3)" digital image processing software. The experimental results showed that plastics pyrolysis involved four stages: melting, two stages of decomposition which are characterized with bubble formation caused by volatile evaporating, and ash deposition; and each stage was characterized with its own phase changing behaviors and morphological features. Two stages of decomposition are the key step of pyrolysis since they took up half or more of the reaction time; melting step consumed another half of reaction time in experiments when raw materials were heated up from ambient temperatures; and coke-like deposition appeared as a result of decomposition completion. Two morphological signals defined from digital image processing, namely, pixel area of the interested reaction region and bubble ratio (BR) caused by volatile evaporating were found to change regularly with pyrolysis stages. In particular, for all experimental scenarios with plastics films and granules, the BR curves always exhibited a slowly drop as melting started and then a sharp increase followed by a deep decrease corresponding to the first stage of intense decomposition, afterwards a second increase - drop section corresponding to the second stage of decomposition appeared. As ash deposition happened, the BR dropped to zero or very low values. When impurities were involved, the shape of BR curves showed that intense decomposition started earlier but morphological characteristics remained the same. In addition, compared to parameters such as pressure, the BR reflects reaction stages better and its change with pyrolysis process of PE/PP plastics with or without impurities was more intrinsically process correlated; therefore it can be adopted as a signal for pyrolysis process characterization, as well as offering guide to process improvement and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Equation of State and Damage in Polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Joshua Damon; Brown, Eric; Cady, Carl Mcelhinney

    The dynamic response of polymers differs significantly from those of metals, upon which many of the National Laboratories' deformation, damage, and failure models are based. Their moduli, yield strength, and damage characteristics are highly strain rate-, temperature-, and phase-dependent, requiring models that encompass a wide range of phenomena including some not in equilibrium. Recently, Los Alamos developed the Glassy Amorphous Polymer (GAP) 1 model [1] to address limitations in existing models of polymer deformation. GAP captures both volumetric (equation of state) and deviatoric (shear) response, including a non-equilibrium component to the former (a feature determined to be crucial in capturingmore » the low-pressure, viscoelastic response to impact loading). GAP has already been applied to polymers such as PMMA, PTFE, epoxy, and Kel-F 800, but with an emphasis on impact response as opposed to damage or failure. The current effort was launched to address this gap in predictive capability. For reasons that will be made clear, semi-crystalline polyethylene (PE) was chosen to serve as a model system for parameterization and validation. PE (-C 2H 4-)n is one of the most widely used polymers in industrial and engineering contexts, chiey due to the versatility of its mechanical response. This response can be tuned through network and chain structure, degree of crystallinity, and molecular weight. PE is found in several forms including low density (LDPE), high density (HDPE), and ultra-high molecular weight (UHMWPE). The focus here was on HDPE and UHMWPE, of pedigree described in the following section. Materials were well-characterized prior to study and are representative of semi-crystalline polymers of interest to DOE and DoD. Semi-crystalline PE undergoes a glass transition at low temperature (-35°C) and melts across a range of moderate temperatures (~80-180°C), depending on its structure. It is typically inert chemically, has low strength and high ductility, and the high strength and anisotropy of UHMWPE ber, in particular, have driven its use in engineering, impact, and armor applications. Surprisingly little is known, however, about the influence of PE's crystalline structure and associated phase transitions (including melt) on its response to dynamic compression. A broad suite of experiments was used to calibrate the GAP model for HDPE and UHMWPE. Section IV examines the effects of tensile strain on the structure and integrity of PE crystalline domains. These data were used to inform the preliminary damage model described in Section XII, whose roots lie in statistical physics and network theory. The viscoelastic and plastic components of GAP rely heavily on the stress-strain data of Section VI, which also include dynamic extrusion and Taylor anvil experiments used to validate the damage model. The thermal data of Section X provide crucial inputs to the equilibrium EOS in GAP, as well as the much broader range SESAME EOS whose construction is outlined in Section XI. Section VII details plate impact experiments characterizing the low-pressure shock locus and failure (spall) using in situ electromagnetic gauges. A previously reported \\cusp" in the principal Hugoniot near 0.5 kbar was confirmed, and a multi-wave structure was observed over a limited input stress range above the cusp. This cusp is believed due to solid-solid phase transitions associated with the crystalline domains of the polymer.« less

  2. Are periprosthetic tissue reactions observed after revision of total disc replacement comparable to the reactions observed after total hip or knee revision surgery?

    PubMed Central

    Punt, Ilona M.; Austen, Shennah; Cleutjens, Jack P.M.; Kurtz, Steven M.; ten Broeke, René H.M.; van Rhijn, Lodewijk W.; Willems, Paul C.; van Ooij, André

    2011-01-01

    Study design Comparative study. Objective To compare periprosthetic tissue reactions observed after total disc replacement (TDR), total hip arthroplasty (THA) and total knee arthroplasty (TKA) revision surgery. Summary of background data Prosthetic wear debris leading to particle disease, followed by osteolysis, is often observed after THA and TKA. Although the presence of polyethylene (PE) particles and periprosthetic inflammation after TDR has been proven recently, osteolysis is rarely observed. The clinical relevance of PE wear debris in the spine remains poorly understood. Methods Number, size and shape of PE particles, as well as quantity and type of inflammatory cells in periprosthetic tissue retrieved during Charité TDR (n=22), THA (n=10) and TKA (n=4) revision surgery were compared. Tissue samples were stained with hematoxylin/eosin and examined by using light microscopy with bright field and polarized light. Results After THA, large numbers of PE particles <6 µm were observed, which were mainly phagocytosed by macrophages. The TKA group had a broad size range with many larger PE particles and more giant cells. In TDR, the size range was similar to that observed in TKA. However, the smallest particles were the most prevalent with 75% of the particles being <6 µm, as seen in revision THA. In TDR, both macrophages and giant cells were present with a higher number of macrophages. Conclusions Both small and large PE particles are present after TDR revision surgery compatible with both THA and TKA wear patterns. The similarities between periprosthetic tissue reactions in the different groups may give more insight in the clinical relevance of PE particles and inflammatory cells in the lumbar spine. The current findings may help to improve TDR design as applied from technologies previously developed in THA and TKA with the goal of a longer survival of TDR. PMID:21336235

  3. Recyclability assessment of nano-reinforced plastic packaging.

    PubMed

    Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A

    2014-12-01

    Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more strict in material quality that urban furniture or construction products). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants.

    PubMed

    Perron, Monique M; Burgess, Robert M; Suuberg, Eric M; Cantwell, Mark G; Pennell, Kelly G

    2013-10-01

    Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan, can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling methods have been applied to assess dissolved concentrations in water and sediments primarily for legacy contaminants. Although the technology is applicable to some emerging contaminants, the use of passive samplers with emerging contaminants is limited. In the present study, the performance of 3 common passive samplers was evaluated for sampling PBDEs and triclosan. Passive sampling polymers included low-density polyethylene (PE) and polyoxymethylene (POM) sheets, and polydimethylsiloxane (PDMS)-coated solid-phase microextraction (SPME) fibers. Dissolved concentrations were calculated using measured sampler concentrations and laboratory-derived partition coefficients. Dissolved tri-, tetra-, and pentabrominated PBDE congeners were detected at several of the study sites at very low pg/L concentrations using PE and POM. Calculated dissolved water concentrations of triclosan ranged from 1.7 ng/L to 18 ng/L for POM and 8.8 ng/L to 13 ng/L for PE using performance reference compound equilibrium adjustments. Concentrations in SPME were not reported due to lack of detectable chemical in the PDMS polymer deployed. Although both PE and POM were found to effectively accumulate emerging contaminants from the water column, further research is needed to determine their utility as passive sampling devices for emerging contaminants. © 2013 SETAC.

  5. Role of hydration and water coordination in micellization of Pluronic block copolymers.

    PubMed

    Šturcová, Adriana; Schmidt, Pavel; Dybal, Jiří

    2010-12-15

    Raman, attenuated total reflectance FTIR, near-infrared spectroscopy, and DFT calculations have been used in a study of aqueous solutions of three tri-block copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) or PEO-PPO-PEO with commercial names Pluronic PE6200, PE6400 and F68. It is shown that the process of micellization as a response to increased temperature is reflected in the hydroxyl stretching region of infrared and Raman spectra, which contains information both about restructuring of water and changes of polymer chains in polymer/water aggregates. Raman spectra exhibit differences between individual Pluronics even at temperatures below the critical micellization temperature (CMT). According to the attenuated total reflection (ATR) FTIR spectra, the same five water coordination types defined by the number of donated/accepted hydrogen bonds are present in interacting water as in bulk water. It indicates that models considering mixed states of water with different hydrogen bonding environments provide appropriate descriptions of bound water both below and above the CMT. Above the CMT, aggregate hydration increases in the order PE6400 < PE6200 < F68, although that does not fully correspond to the EO/PO ratio, and points to the differences in microstructure of aggregates formed by each copolymer. This study relates nanoscale phenomena (hydrophobic and hydrophilic hydration) with the mesoscale phenomenon of micellization. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Submicroporous/microporous and compatible/incompatible multi-functional dual-layer polymer electrolytes and their interfacial characteristics with lithium metal anode

    NASA Astrophysics Data System (ADS)

    Lee, Young-Gi; Kyhm, Kwangseuk; Choi, Nam-Soon; Ryu, Kwang Sun

    A novel multi-functional dual-layer polymer electrolyte was prepared by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF 6) solution. An incompatible layer is based on a microporous polyethylene (PE) and a compatible layer, based on a poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) is sub-microporous and compatible with an electrolyte solution. The Li electrode/the dual-layer polymer electrolyte/Li[Ni 0.15Li 0.23M n0.62]O 2 cell showed stable cycle performance under prolonged cycle number. This behavior is due to the enhanced compatibility between the matrix polymer and the liquid electrolytes within the submicroporous compatible layer, which could lead to a controlled Li + deposition on the Li anode surface by forming homegeneous electrolyte zone near the anode.

  7. Design of a Hybrid Propulsion System for Orbit Raising Applications

    NASA Astrophysics Data System (ADS)

    Boman, N.; Ford, M.

    2004-10-01

    A trade off between conventional liquid apogee engines used for orbit raising applications and hybrid rocket engines (HRE) has been performed using a case study approach. Current requirements for lower cost and enhanced safety places hybrid propulsion systems in the spotlight. For evaluating and design of a hybrid rocket engine a parametric engineering code is developed, based on the combustion chamber characteristics of selected propellants. A single port cylindrical section of fuel grain is considered. Polyethylene (PE) and hydroxyl-terminated polybutadiene (HTPB) represents the fuels investigated. The engine design is optimized to minimize the propulsion system volume and mass, while keeping the system as simple as possible. It is found that the fuel grain L/D ratio boundary condition has a major impact on the overall hybrid rocket engine design.

  8. A Novel Method for Preparing Auxetic Foam from Closed-cell Polymer Foam Based on Steam Penetration and Condensation (SPC) Process.

    PubMed

    Fan, Donglei; Li, Minggang; Qiu, Jian; Xing, Haiping; Jiang, Zhiwei; Tang, Tao

    2018-05-31

    Auxetic materials are a class of materials possessing negative Poisson's ratio. Here we establish a novel method for preparing auxetic foam from closed-cell polymer foam based on steam penetration and condensation (SPC) process. Using polyethylene (PE) closed-cell foam as an example, the resultant foams treated by SPC process present negative Poisson's ratio during stretching and compression testing. The effect of steam-treated temperature and time on the conversion efficiency of negative Poisson's ratio foam is investigated, and the mechanism of SPC method for forming re-entrant structure is discussed. The results indicate that the presence of enough steam within the cells is a critical factor for the negative Poisson's ratio conversion in the SPC process. The pressure difference caused by steam condensation is the driving force for the conversion from conventional closed-cell foam to the negative Poisson's ratio foam. Furthermore, the applicability of SPC process for fabricating auxetic foam is studied by replacing PE foam by polyvinyl chloride (PVC) foam with closed-cell structure or replacing water steam by ethanol steam. The results verify the universality of SPC process for fabricating auxetic foams from conventional foams with closed-cell structure. In addition, we explored potential application of the obtained auxetic foams by SPC process in the fabrication of shape memory polymer materials.

  9. Studies on the Biotribological and Biological Behavior of Thermally Oxidized Ti6Al4V for Use in Artificial Cervical Disk

    NASA Astrophysics Data System (ADS)

    Wang, Song; Li, Junhui; Lu, Junzhe; Tyagi, Rajnesh; Liao, Zhenhua; Feng, Pingfa; Liu, Weiqiang

    2017-05-01

    The artificial cervical disk was simplified and considered as a ball-on-socket model with the material configuration of ultra-high molecular weight polyethylene and Ti6Al4V (PE-on-TC4). In order to improve the wear resistance, an optimized thermal oxidation (TO) coating was applied on TC4 component. The long-term wear behavior of the model was assessed in vitro using a wear simulator under 10 million cycles (MC) testing intervals. The biological behavior was investigated by bone marrow-derived mesenchymal stem cells (BMSCs) cell attachment and cell viability/proliferation assays, respectively. The total average wear rate for PE/TC4 pair was found to be 0.81 mg/MC, whereas the same was about 0.96 mg/MC for PE/TO pair. The wear rate of the metal has been neglected in comparison with that of the mating polymer. PE component was found to suffer severe damage characterized by scratches, fatigue cracks and arc-shaped wear grooves on the edge zone of ball. The dominant wear mechanism was abrasion for metal component while the dominant failure mechanism was a mix of plowing, fatigue and plastic deformation for polymer component. TO coating improved the cell attachment property of TC4, and the cell viability results were also quite good. TO coating protected TC4 from being plowed and avoided the release of toxic metal ions. However, this intensified the wear of PE component. Considering the biotribological and biological behavior in totality, TO coating could still be promising when applied in articulation surfaces.

  10. Passive sampling to measure baseline dissolved persistent organic pollutant concentrations in the water column of the Palos Verdes Shelf Superfund site.

    PubMed

    Fernandez, Loretta A; Lao, Wenjian; Maruya, Keith A; White, Carmen; Burgess, Robert M

    2012-11-06

    Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Precalibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were preloaded with performance reference compounds (PRCs) were codeployed for 32 d along an 11-station gradient at bottom, surface, and midwater depths. Retrieved samplers were analyzed for DDT congeners and their breakdown products (DDE, DDD, DDMU, and DDNU) and 43 PCB congeners using GC-EI- and NCI-MS. PRCs were used to calculate compound-specific fractional equilibration achieved in situ for the PE samplers, using both an exponential approach to equilibrium (EAE) and numerical integration of Fickian diffusion (NI) models. The highest observed concentrations were for p,p'-DDE, with 2200 and 990 pg/L deduced from PE and SPME, respectively. The difference in these estimates could be largely attributed to uncertainty in equilibrium partition coefficients, unaccounted for disequilibrium between samplers and water, or different time scales over which the samplers average. The concordance between PE and SPME estimated concentrations for DDE was high (R(2) = 0.95). PCBs were only detected in PE samplers, due to their much larger size. Near-bottom waters adjacent to and down current from sediments with the highest bulk concentrations exhibited aqueous concentrations of DDTs and PCBs that exceeded Ambient Water Quality Criteria (AWQC) for human and aquatic health, indicating the need for future monitoring to determine the effectiveness of remedial activities taken to reduce adverse effects of contaminated surface sediments.

  11. Diffuse Reflectance Spectroscopy of Hidden Objects. Part II: Recovery of a Target Spectrum.

    PubMed

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    In this study, we consider the reconstruction of a diffuse reflectance near-infrared spectrum of an object (target spectrum) in case the object is covered by an interfering absorbing and scattering layer. Recovery is performed using a new empirical method, which was developed in our previous study. We focus on a system, which consists of several layers of polyethylene (PE) film and underlayer objects with different spectral features. The spectral contribution of the interfering layer is modeled by a three-component two-parameter multivariate curve resolution (MCR) model, which was built and calibrated using spectrally flat objects. We show that this model is applicable to real objects with non-uniform spectra. Ultimately, the target spectrum can be reconstructed from a single spectrum of the covered target. With calculation methods, we are able to recover quite accurately the spectrum of a target even when the object is covered by 0.7 mm of PE.

  12. A novel specimen-preparing method using epoxy resin as binding material for LIBS analysis of powder samples.

    PubMed

    Shi, Linli; Lin, Qingyu; Duan, Yixiang

    2015-11-01

    In view of the inevitable preprocessing of powder samples for LIBS detection, epoxy resin glue was investigated for the first time as a binder of powder samples due to its superior property of improved performance in laser induced breakdown spectroscopy (LIBS) technique as a quantitative analytical tool. For comparative studies of the epoxy resin and traditional polyethylene (PE) pellets in soil, sample detection, the signal intensities of Fe (I) at 404.58 nm, Ca (I) at 443.57 nm, and Cr (I) at 453.52 nm, were studied and subsequently, the calibration curves for these elements were constructed using the standard samples with variable concentrations. The signal intensities of epoxy resin samples were, on average, about 2 times greater than those obtained with the traditional PE pellet samples. Meanwhile, the resin samples showed better R square values of 0.981, 0.985 and 0.979 for curves of Fe (I) 404.58 nm, Ca (I) 443.57 nm, and Cr (I) 453.52 nm, compared to the 0.974, 0.950 and 0.934, of the PE pellet samples. Furthermore, the former represented lower limits of detection (LOD) for Fe, Ca and Cr. These experimental results indicated that this proposed novel method based on epoxy resin can attach samples of properties of high homogeneity, cohesiveness, smoothness and hardness, which are conducive to system stability, testing accuracy and signal enhancement. This method can make LIBS more practical in powder sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Over 25 years survival after Charnley's total hip arthroplasty.

    PubMed

    Caton, Jacques; Prudhon, Jean Louis

    2011-02-01

    Since 1962, the low friction arthroplasty (LFA) developed by Sir John Charnley has spread widely throughout the world. Many series have reported long-term results. Polyethylene (PE) wear is well known. The average wear ratio is about 0.1 mm a year. Many factors may influence that wear process. The authors describe two different series of patients operated upon with Charnley's total hip arthroplasty (THA) using the original cemented stem and a non modular 22.2-mm head, with a cemented full polyethylene acetabular socket. Outcomes confirm excellent patient function after 25 years. They emphasise the fact that PE is the weak point of total hip arthroplasty. Function may be excellent even though PE wear is significant. In several cases, no wear at the maximum follow-up was detectable. This study confirms different publications relating long-term follow-up with LFA. During a Charnley meeting in Lyon, we published a survival curve of 85% after 25 years. Berry et al. published a 86.5% survival curve (J Bone Joint Surg Am 84:171-177, 2002). In 1995, Luc and Marcel Kerboul published a 77% survival rate after 20 years in young patients under 40 years old at the time of the surgery. In 2009, Callaghan et al. published a series of 35 years follow-up with a ratio of 78% survivorship (J Bone Joint Surg Br 91:2617-2621). Could the long-term results be improved? Through recent decades, many solutions have been introduced to improve the survivorship of THA including bearing surfaces such as alumina-on-alumina and metal-on-metal. Different problems have occurred with these solutions. LFA might be improved by working on the nature and the quality of the head. Improvements might also be obtained by working on the quality and the hardness of the acetabular socket.

  14. Effects of high energy electrons on the properties of polyethylene / multiwalled carbon nanotubes composites: Comparison of as-grown and oxygen-functionalised MWCNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, B., E-mail: krause-beate@ipfdd.de, E-mail: poe@ipfdd.de, E-mail: gohs@ipfdd.de; Pötschke, P., E-mail: krause-beate@ipfdd.de, E-mail: poe@ipfdd.de, E-mail: gohs@ipfdd.de; Gohs, U., E-mail: krause-beate@ipfdd.de, E-mail: poe@ipfdd.de, E-mail: gohs@ipfdd.de

    2014-05-15

    Polymer modification with high energy electrons (EB) is well established in different applications for many years. It is used for crosslinking, curing, degrading, grafting of polymeric materials and polymerisation of monomers. In contrast to this traditional method, electron induced reactive processing (EIReP) combines the polymer modification with high energy electrons and the melt mixing process. This novel reactive method was used to prepare polymer blends and composites. In this study, both methods were used for the preparation of polyethylene (PE)/ multiwalled carbon nanotubes (MWCNT) composites in the presence of a coupling agent. The influence of MWCNT and type of electronmore » treatment on the gel content, the thermal conductivity, rheological, and electrical properties was investigated whereby as-grown and oxidised MWCNT were used. In the presence of a coupling agent and at an absorbed dose of 40 kGy, the gel content increased from 57 % for the pure PE to 74 % or 88 % by the addition of as-grown (Baytubes® C150P) or oxidised MWCNT, respectively. In comparison to the composites containing the as-grown MWCNTs, the use of the oxidised MWCNTs led to higher melt viscosity and higher storage modulus due to higher yield of filler polymer couplings. The melt viscosity increased due to the addition of MWCNT and crosslinking of PE. The thermal conductivity increased to about 150 % and showed no dependence on the kind of MWCNT and the type of electron treatment. In contrast, the lowest value of electrical volume resistivity was found for the non-irradiated samples and after state of the art electron treatment without any influence of the type of MWCNT. In the case of EIReP, the volume resistivity increased by 2 (as-grown MWCNT) or 3 decades (oxidised MWCNT) depending on the process parameters.« less

  15. EFFECTS OF TRITIUM EXPOSURE ON UHMW-PE, PTFE, AND VESPEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E; Kirk Shanahan, K

    2006-05-31

    Samples of three polymers, Ultra-High Molecular Weight Polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, also known as Teflon{reg_sign}), and Vespel{reg_sign} polyimide were exposed to 1 atmosphere of tritium gas at ambient temperature for varying times up to 2.3 years in closed containers. Sample mass and size measurements (to calculate density), spectra-colorimetry, dynamic mechanical analysis (DMA), and Fourier-transform infrared spectroscopy (FT-IR) were employed to characterize the effects of tritium exposure on these samples. Changes of the tritium exposure gas itself were characterized at the end of exposure by measuring total pressure and by mass spectroscopic analysis of the gas composition. None of the polymersmore » exhibited significant changes of density. The color of initially white UHMW-PE and PTFE dramatically darkened to the eye and the color also significantly changed as measured by colorimetry. The bulk of UHMW-PE darkened just like the external surfaces, however the fracture surface of PTFE appeared white compared to the PTFE external surfaces. The white interior could have been formed while the sample was breaking or could reflect the extra tritium dose at the surface directly from the gas. The dynamic mechanical response of UHMW-PE was typical of radiation effects on polymers- an initial stiffening (increased storage modulus) and reduction of viscous behavior after three months exposure, followed by lowering of the storage modulus after one year exposure and longer. The storage modulus of PTFE increased through about nine months tritium exposure, then the samples became too weak to handle or test using DMA. Characterization of Vespel{reg_sign} using DMA was problematic--sample-to-sample variations were significant and no systematic change with tritium exposure could be discerned. Isotopic exchange and incorporation of tritium into UHMW-PE (exchanging for protium) and into PTFE (exchanging for fluorine) was observed by FT-IR using an attenuated total reflectance method. No significant change in the Vespel{reg_sign} infrared spectrum was observed after three months exposure. Protium significantly pressurized the UHMW-PE containers during exposure to about nine atmospheres (the initial pressure was one atmosphere of tritium). This is consistent with the well-known production of hydrogen by irradiation of polyethylene by ionizing radiation. The total pressure in the PTFE containers decreased, and a mass balance reveals that the observed decrease is consistent with the formation of small amounts of {sup 3}HF, which is condensed at ambient temperature. No significant change of pressure occurred in the Vespel{reg_sign} containers; however the composition of the gas became about 50% protium, showing that Vespel{reg_sign} interacted with the tritium gas atmosphere to some degree. The relative resistance to degradation from tritium exposure is least for PTFE, more for UHMW-PE, and the most for Vespel{reg_sign}, which is consistent with the known relative resistance of these polymers to gamma irradiation. This qualitatively agrees with the concept of equivalent effects for equivalent absorbed doses of radiation damage of polymers. Some of the changes of different polymers are qualitatively similar; however each polymer exhibited unique property changes when exposed to tritium. Information from this study that can be applied to a tritium facility is: (1) the relative resistance to tritium degradation of the three polymers studied is the same as the relative resistance to gamma irradiation in air (so relative rankings of polymer resistance to ionizing radiation can be used as a relative ranking for assessing tritium compatibility and polymer selection); and (2) all three polymers changed the gas atmosphere during tritium exposure--UHMW-PE and Vespel{reg_sign} exposed to tritium formed H{sub 2} gas (UHMW-PE much more so), and PTFE exposed to tritium formed {sup 3}HF. This observation of forming {sup 3}HF supports the general concept of minimizing chlorofluorocarbon polymers in tritium systems.« less

  16. A comparison of the technological effectiveness of dairy wastewater treatment in anaerobic UASB reactor and anaerobic reactor with an innovative design.

    PubMed

    Jedrzejewska-Cicinska, M; Kozak, K; Krzemieniewski, M

    2007-10-01

    The present research was an investigation of the influence of an innovative design of reactor filled with polyethylene (PE) granulate on model dairy wastewater treatment efficiency under anaerobic conditions compared to that obtained in a typical UASB reactor. The experiment was conducted at laboratory scale. An innovative reactor was designed with the reaction chamber inclined 30 degrees in relation to the ground with upward waste flow and was filled with PE granular material. Raw model dairy wastewater was fed to two anaerobic reactors of different design at the organic loading rate of 4 kg COD m(-3)d(-1). Throughout the experiment, a higher removal efficiency of organic compounds was observed in the reactor with an innovative design and it was higher by 7.1% on average than in the UASB reactor. The total suspended solids was lower in the wastewater treated in the anaerobic reactor with the innovative design. Applying a PE granulated filling in the chamber of the innovative reactor contributed to an even distribution of sludge biomass in the reactor, reducing washout of anaerobic sludge biomass from the reaction chamber and giving a higher organic compounds removal efficiency.

  17. Effects of packaging environments on free radicals in gamma-irradiated UHMWPE resin powder blend with vitamin E.

    PubMed

    Ridley, M D; Jahan, M S

    2009-03-15

    Ultra-high molecular weight polyethylene (UHMWPE) powder (GUR 1020) was blended with high concentration (20%) of vitamin E (alpha-Tocopherol (alpha-T)) for direct detection of alpha-T radicals in presence of PE radicals. Samples were gamma-irradiated in sealed packages filled with N(2), or in open air. Free radicals were measured in open air environment for 71 days using electron spin resonance (ESR) technique. When irradiated in air, both alpha-T and alpha-T-resin produced identical ESR signals characteristics of tochopheroxyl radicals (alpha-T-O(*)), suggesting that PE radicals are quenched by alpha-T. There was no indication of growth of oxygen-induced radicals (OIR) either. However, when alpha-T-resin was irradiated in N(2), presence of both PE and alpha-T radicals were evident in the ESR spectra. And, OIR were produced by the same samples when they were subsequently exposed to air (for 71 days). Oxidation data recorded 85 days after postirradiation aging in air using Fourier transform infra-red (FTIR) spectroscopy, however, did not show any measurable difference between samples irradiated in N(2) and air.

  18. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Keinänen, Minna M; Kekki, Tomi K; Laine, Olli; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2004-10-01

    We studied the changes in water quality and formation of biofilms occurring in a pilot-scale water distribution system with two generally used pipe materials: copper and plastic (polyethylene, PE). The formation of biofilms with time was analysed as the number of total bacteria, heterotrophic plate counts and the concentration of ATP in biofilms. At the end of the experiment (after 308 days), microbial community structure, viable biomass and gram-negative bacterial biomass were analysed via lipid biomarkers (phospholipid fatty acids and lipopolysaccharide 3-hydroxy fatty acids), and the numbers of virus-like particles and total bacteria were enumerated by SYBR Green I staining. The formation of biofilm was slower in copper pipes than in the PE pipes, but after 200 days there was no difference in microbial numbers between the pipe materials. Copper ion led to lower microbial numbers in water during the first 200 days, but thereafter there were no differences between the two pipe materials. The number of virus-like particles was lower in biofilms and in outlet water from the copper pipes than PE pipes. Pipe material influenced also the microbial and gram-negative bacterial community structure in biofilms and water.

  19. Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach - A Raman micro-spectroscopy study.

    PubMed

    Ghosal, Sutapa; Chen, Michael; Wagner, Jeff; Wang, Zhong-Min; Wall, Stephen

    2018-02-01

    Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance of chemical analysis in distinguishing between polymer and non-polymer residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Determination of mechanical behavior of nanoscale materials using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Heo, Seongjun

    It is important to understand the mechanical properties of nanometer-scale materials for use in such applications as microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). These properties are difficult to measure directly using experimental methods due to their small sizes. Computational simulations provide important insights that complement experimental data and lead to improved understanding of the mechanical properties of nanometer-scale systems. Molecular dynamics (MD) simulations, which are used to investigate the properties of materials at the atomic scale, is used in my research to determine (1) best thermostat managing way for acceptable mechanical behavior of nanoscale systems; (2) filling effect on the bending and compressive properties of carbon nanotubes (CNTs); (3) vibrational behavior of bridged and cantilevered CNT bombarded by external fluid atoms; (4) frictional behavior of filled CNT bundles and the effect of external molecules on friction; (5) effect of sliding orientations on the tribological properties of polyethylene (PE). In all the simulations the reactive empirical bond-order (REBO) potential combined with the Lennard Jones potential is applied to control inter-atomic interactions. During the MD simulations, thermostats are used to maintain the system temperature at a constant value. Tests indicate that the simulations describe the mechanical behavior of CNTs differently depending on the type of thermostat used, and the relative fraction of the system to which the thermostat is applied. The results indicate that Langevin and velocity rescaling thermostats are more reliable for temperature control than the Nose-Hoover thermostat. In examining CNT bending and compression, the simulations predict filled CNTs are more resistant to external bending and compressive forces than hollow CNTs. The mechanical properties deteriorate with increases in temperature and number of CNT wall defects. MD simulations of the vibrational behavior of bridged and cantilevered CNTs are found to match the results of continuum mechanics calculations. The principal vibration frequency of the CNT is predicted to decrease with increasing nanotube length, gas pressure, and the atomic mass of the external fluid. In studies of CNT tribology, simulations show that two layers of filled CNTs are more resistant to compressive forces and exhibit lower friction coefficients during sliding than unfilled CNTs. The friction coefficient increases with the thickness of the CNT layer due to the increase in effective friction interface. The addition of an external, molecular fluid of benzene molecules is predicted to reduce the friction coefficient of CNTs because of the lubricity of the molecules. Lastly, simulation results illustrate the effect of relative orientation on the tribological properties of polyethylene (PE) sliding surfaces. The friction coefficient of perpendicular sliding is much higher than that of parallel sliding based on the polymer chain orientation. The PE exhibits stick-slip motion during sliding regardless of the sliding orientation. In addition, the PE shows no surface morphology change due to the higher strength of the PE bonds, which is in contrast to the behavior of other polymers, such as polytetrafluoroethylene (PTFE), which exhibits bond breaking and realignment of surface chains along the sliding direction in the less favorable orientation.

  1. Biodegradability of Plastics: Challenges and Misconceptions.

    PubMed

    Kubowicz, Stephan; Booth, Andy M

    2017-11-07

    Plastics are one of the most widely used materials and, in most cases, they are designed to have long life times. Thus, plastics contain a complex blend of stabilizers that prevent them from degrading too quickly. Unfortunately, many of the most advantageous properties of plastics such as their chemical, physical and biological inertness and durability present challenges when plastic is released into the environment. Common plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) are extremely persistent in the environment, where they undergo very slow fragmentation (projected to take centuries) into small particles through photo-, physical, and biological degradation processes 1 . The fragmentation of the material into increasingly smaller pieces is an unavoidable stage of the degradation process. Ultimately, plastic materials degrade to micron-sized particles (microplastics), which are persistent in the environment and present a potential source of harm for organisms.

  2. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation.

    PubMed

    Kowalczyk, Anna; Chyc, Marek; Ryszka, Przemysław; Latowski, Dariusz

    2016-06-01

    This study presents results of research on isolation new bacteria strain Achromobacter xylosoxidans able to effect on the structure of high-density polyethylene (HDPE), polymer resistant to degradation in environment. New strain of A. xylosoxidans PE-1 was isolated from the soil and identified by analysis of the 16S ribosome subunit coding sequences. The substance to be degraded was HDPE in the form of thin foil films. The foil samples were analyzed with Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) as well as scanning electron microscope (SEM), and the results revealed degradation of chemical structure of HDPE. About 9 % loss of weight was also detected as a result of A. xylosoxidans PE-1 effect on HDPE foil. On the basis of comparative spectral analysis of the raw material before the bacteria treatment and the spectrum from a spectra database, it was assumed that the HDPE was the only source of carbon and energy for the microorganisms. No fillers or other additives used in the plastic processing were observed in HDPE before experiments. This is the first communication showing that A. xylosoxidans is able to modify chemical structure of HDPE, what was observed both on FTIR, in mass reduction of HDPE and SEM analysis. We also observed quite good growth of the bacteria also when the HDPE was the sole carbon source in the medium. These results prove that A. xylosoxidans is an organism worth applying in future HDPE biodegradation studies.

  3. Macrofouling communities and the degradation of plastic bags in the sea: an in situ experiment

    PubMed Central

    Petermann, Jana S.; Lott, Christian; Weber, Miriam

    2017-01-01

    The increasing amount of plastic littered into the sea may provide a new substratum for benthic organisms. These marine fouling communities on plastic have not received much scientific attention. We present, to our knowledge, the first comprehensive analysis of their macroscopic community composition, their primary production and the polymer degradation comparing conventional polyethylene (PE) and a biodegradable starch-based plastic blend in coastal benthic and pelagic habitats in the Mediterranean Sea. The biomass of the fouling layer increased significantly over time and all samples became heavy enough to sink to the seafloor. The fouling communities, consisting of 21 families, were distinct between habitats, but not between polymer types. Positive primary production was measured in the pelagic, but not in the benthic habitat, suggesting that large accumulations of floating plastic could pose a source of oxygen for local ecosystems, as well as a carbon sink. Contrary to PE, the biodegradable plastic showed a significant loss of tensile strength and disintegrated over time in both habitats. These results indicate that in the marine environment, biodegradable polymers may disintegrate at higher rates than conventional polymers. This should be considered for the development of new materials, environmental risk assessment and waste management strategies. PMID:29134070

  4. Evaluation of a new baseplate in reverse total shoulder arthroplasty - comparison of biomechanical testing of stability with roentgenological follow up criteria.

    PubMed

    Irlenbusch, U; Kohut, G

    2015-04-01

    To minimize notching problem associated with reversed prostheses, inferior positioning of base plate is recommended. This reduces the risk of notching, but does not eliminate it completely. Both polyethylene/PE-induced osteolysis and implant-to-bone or implant-to-implant contact may still occur, contributing to the risk of screw-breakage and resulting long-term failure. Therefore, the stability and integration of a newly developed base plate without inferior screw and inversion of bearing materials was investigated. Biomechanical assessment of primary stability of the two types of glenoid baseplate (1- and 2-pegged) was carried out according to ASTM F-2028-02 (American Society for Testing and Materials). Patients with a follow-up period of at least 2 years were clinically (n=78) and for most of them radiologically (n=61) examined. The X-rays were evaluated for loosening and scapular notching. The mean values of micromotions after 100,000 cycles showed no relevant differences between the 2-peg and the 1-peg base plates (47 μm for the 2-peg design and 43 μm for the 1-peg design), i.e. both were below the borderline for secure Osseointegration of 150 μm. Radiologically, no signs of loosening or radiolucent lines/RLL were found for both base plates. The mean incidence of inferior scapular notching was 23.6% (42 mm glenoid sphere: 15.8%). Only grade 1 and grade 2 notching was observed. Additionally as result of absence of PE-induced osteolysis shape, size, borderline and location of notching differed from those observed with conventional reverse total shoulder arthroplasty bearing materials. In combination with modified inferior operating technique, the newly designed implant has the potential to reduce the incidence of scapular notching and to avoid both PE-induced osteolysis and metal-screw contact. The new design did not compromise stability of the base plate in any way during the investigation period, as demonstrated both by the data from the biomechanical investigation and also by the radiological follow-up. Level III, case-control study. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassouf, Amine, E-mail: amine.kassouf@agroparistech.fr; INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy; AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris

    2014-11-15

    Highlights: • An innovative technique, MIR-ICA, was applied to plastic packaging separation. • This study was carried out on PE, PP, PS, PET and PLA plastic packaging materials. • ICA was applied to discriminate plastics and 100% separation rates were obtained. • Analyses performed on two spectrometers proved the reproducibility of the method. • MIR-ICA is a simple and fast technique allowing plastic identification/classification. - Abstract: Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energymore » recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions.« less

  6. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics.

    PubMed

    Shan, Jiajia; Zhao, Junbo; Liu, Lifen; Zhang, Yituo; Wang, Xue; Wu, Fengchang

    2018-07-01

    Hyperspectral imaging technology has been investigated as a possible way to detect microplastics contamination in soil directly and efficiently in this study. Hyperspectral images with wavelength range between 400 and 1000 nm were obtained from soil samples containing different materials including microplastics, fresh leaves, wilted leaves, rocks and dry branches. Supervised classification algorithms such as support vector machine (SVM), mahalanobis distance (MD) and maximum likelihood (ML) algorithms were used to identify microplastics from the other materials in hyperspectral images. To investigate the effect of particle size and color, white polyethylene (PE) and black PE particles extracted from soil with two different particle size ranges (1-5 mm and 0.5-1 mm) were studied in this work. The results showed that SVM was the most applicable method for detecting white PE in soil, with the precision of 84% and 77% for PE particles in size ranges of 1-5 mm and 0.5-1 mm respectively. The precision of black PE detection achieved by SVM were 58% and 76% for particles of 1-5 mm and 0.5-1 mm respectively. Six kinds of household polymers including drink bottle, bottle cap, rubber, packing bag, clothes hanger and plastic clip were used to validate the developed method, and the classification precision of polymers were obtained from 79% to 100% and 86%-99% for microplastics particle 1-5 mm and 0.5-1 mm respectively. The results indicate that hyperspectral imaging technology is a potential technique to determine and visualize the microplastics with particle size from 0.5 to 5 mm on soil surface directly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The effect of modified atmospheres and packaging on patulin production in apples.

    PubMed

    Moodley, R S; Govinden, R; Odhav, B

    2002-05-01

    This study was undertaken to determine the effectiveness of modified atmospheres and packaging materials on the growth of Penicillium expansum and patulin production in apples. Granny Smith apples were surface sterilized with 76% ethanol and inoculated with 0.1 ml of a 1.1 x 10(7) spore/ml P. expansum spore suspension. The apples were packaged either in polyethylene (PE) or polypropylene (PP) and treated with three different gas combinations, viz., 58% CO2/42% N2, 48% CO2/52% N2, and 88% CO2/12% N2, and were then incubated for 14 days at 25 degrees C. Fungal growth was monitored every 2 to 4 days by measuring radial growth from the point of inoculation. After the 14th day, apples were pulped, and patulin was extracted, purified, and quantified by high-performance liquid chromatography. PP did not inhibit fungal growth in any of the atmospheres tested, and it only inhibited patulin production in atmospheric gas and 58% CO2/42% N2. PE was very effective and inhibited fungal growth by four- or fivefold, depending on the modified atmosphere. Patulin production in PE-packaged apples was almost completely inhibited by all three gas combinations. Gas chromatographic analysis of the PE-packaged samples before and after the incubation period showed that CO2 levels dropped and N2 levels increased for all of the atmospheres tested. Our studies showed conclusively that PE is an excellent packaging material for the storage of apples since it inhibited the growth of P. expansum, thereby allowing <3.2 microg/ml of patulin to be produced, regardless of gaseous environment.

  8. Transport of persistent organic pollutants by microplastics in estuarine conditions

    NASA Astrophysics Data System (ADS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-03-01

    Microplastics represent an increasing source of anthropogenic contamination in aquatic environments, where they may also act as scavengers and transporters of persistent organic pollutants. As estuaries are amongst the most productive aquatic systems, it is important to understand sorption behaviour and transport of persistent organic pollutants (POPs) by microplastics along estuarine gradients. The effects of salinity sorption equilibrium kinetics on the distribution coefficients (Kd) of phenanthrene (Phe) and 4,4‧-DDT, onto polyvinyl chloride (PVC) and onto polyethylene (PE) were therefore investigated. A salinity gradient representing freshwater, estuarine and marine conditions, with salinities corresponding to 0 (MilliQ water, 690 μS/cm), 8.8, 17.5, 26.3 and 35 was used. Salinity had no significant effect on the time required to reach equilibrium onto PVC or PE and neither did it affect desorption rates of contaminants from plastics. Although salinity had no effect on sorption capacity of Phe onto plastics, a slight decrease in sorption capacity was observed for DDT with salinity. Salinity had little effect on sorption behaviour and POP/plastic combination was shown to be a more important factor. Transport of Phe and DDT from riverine to brackish and marine waters by plastic is therefore likely to be much more dependent on the aqueous POP concentration than on salinity. The physical characteristics of the polymer and local environmental conditions (e.g. plastic density, particle residence time in estuaries) will affect the physical transport of contaminated plastics. A transport model of POPs by microplastics under estuarine conditions is proposed. Transport of Phe and DDT by PVC and PE from fresh and brackish water toward fully marine conditions was the most likely net direction for contaminant transport and followed the order: Phe-PE >> DDT-PVC = DDT-PE >> Phe-PVC.

  9. Highly tunable porous organic polymer (POP) supports for metallocene-based ethylene polymerization

    NASA Astrophysics Data System (ADS)

    Wang, Xiong; Li, Zhenyou; Han, Xiaoyu; Han, Zhengang; Bai, Yongxiao

    2017-10-01

    Porous organic Polymers (POPs) can not only exhibit high specific surface area and pore volume, but also tunable pore size distribution. Herein, copolymers of 2-hydroxyethylmethylacrylate (HEMA) and divinylbenzene (DVB) with specific pore structure were synthesized via a dispersion polymerization strategy, and then immobilized metallocene catalysts with well-defined pore structure were obtained on the produced POP supports. The nitrogen sorption and Gel permeation chromatography (GPC) results demonstrate that the pore structure of the immobilized metallocene catalyst is highly dependent on the pore structure of the POPs, and the pore structure of metallocene catalysts or the POPs has a significant influence on the molecular chain growth of the produced polyethylene. By tuning the distribution of the active species scattered in the micro- and the narrow meso-pore range (roughly ≤4 nm), the chain growth of the polyolefin can be tailored effectively during the polymerization process, although differential scanning calorimetry (DSC) and temperature rising elution fractionation (TREF) results show that the chemical composition distributions (CCDs) of produced PE from the POPs-supported metallocene catalysts are not determined by polymerization activity or molecule chain length, but mainly by the active site species scattered in the supported catalysts. Scanning electron micrograph (SEM) shows that the produced polyethylene has highly porous fabric which consists of nanofiber and spherical beads of micron dimension.

  10. To what extent are microplastics from the open ocean weathered?

    PubMed

    Ter Halle, Alexandra; Ladirat, Lucie; Martignac, Marion; Mingotaud, Anne Françoise; Boyron, Olivier; Perez, Emile

    2017-08-01

    It is necessary to better characterize plastic marine debris in order to understand its fate in the environment and interaction with organisms, the most common type of debris being made of polyethylene (PE) and polypropylene (PP). In this work, plastic debris was collected in the North Atlantic sub-tropical gyre during the Expedition 7th Continent sea campaign and consisted mainly in PE. While the mechanisms of PE photodegradation and biodegradation in controlled laboratory conditions are well known, plastic weathering in the environment is not well understood. This is a difficult task to examine because debris comes from a variety of manufactured objects, the original compositions and properties of which vary considerably. A statistical approach was therefore used to compare four sample sets: reference PE, manufactured objects, mesoplastics (5-20 mm) and microplastics (0.3-5 mm). Infrared spectroscopy showed that the surface of all debris presented a higher oxidation state than the reference samples. Differential scanning calorimetry analysis revealed that the microplastics were more crystalline contrarily to the mesoplastics which were similar to references samples. Size exclusion chromatography showed that the molar mass decreased from the references to meso- and microplastics, revealing a clear degradation of the polymer chains. It was thus concluded that the morphology of marine microplastic was much altered and that an unambiguous shortening of the polymer chains took place even for this supposedly robust and inert polymer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    NASA Astrophysics Data System (ADS)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and biological properties which are important indicators of sustainability.

  12. Engineering and Development Support of General Decon Technology for the U.S. Army’s Installation Restoration Program. Task 7. Literature Search & Evaluation of Compatibility Testing of Waste Containment Barrier Materials

    DTIC Science & Technology

    1982-03-01

    plyethylene PVC landfill- HypalonM PE, CPE, neoprene, EPDM ,* bentqcnite ethylene propylene rubber elasticized polvoleiin 20. A94V C? (Coit" an 0*V" aid...materials include Hyralon®, butyl rubber , EPDM , CPE, neo- prene, polyethylene, polypropylene, PVC8 and elasticized polyolefin. With all of these...and animal and vegetable fats and oils (Geswein, 1975). EPDM , or etiylene propylene rubber , is a terpolymer of ethylene, propylene and a small amount

  13. Dynamic bioactive stimuli-responsive polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH < 2.3, the P2VP segments are protonated and extend, but for pH > 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH groups on PE and PTFE surfaces and --NH2 moieties present on T1 and Φ11 phages. These studies show that covalently attached T1 and Φ11 phages retain their antimicrobial activity manifested by the effective destruction of both Gram negative Escherichia coli (Φ11) phages and Gram positive Staphylococcus aureus bacteria (T1).

  14. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  15. The designing and implementation of PE teaching information resource database based on broadband network

    NASA Astrophysics Data System (ADS)

    Wang, Jian

    2017-01-01

    In order to change traditional PE teaching mode and realize the interconnection, interworking and sharing of PE teaching resources, a distance PE teaching platform based on broadband network is designed and PE teaching information resource database is set up. The designing of PE teaching information resource database takes Windows NT 4/2000Server as operating system platform, Microsoft SQL Server 7.0 as RDBMS, and takes NAS technology for data storage and flow technology for video service. The analysis of system designing and implementation shows that the dynamic PE teaching information resource sharing platform based on Web Service can realize loose coupling collaboration, realize dynamic integration and active integration and has good integration, openness and encapsulation. The distance PE teaching platform based on Web Service and the design scheme of PE teaching information resource database can effectively solve and realize the interconnection, interworking and sharing of PE teaching resources and adapt to the informatization development demands of PE teaching.

  16. Novel Ceramic-Grafted Separator with Highly Thermal Stability for Safe Lithium-Ion Batteries.

    PubMed

    Jiang, Xiaoyu; Zhu, Xiaoming; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2017-08-09

    The separator is a critical component of lithium-ion batteries (LIBs), which not only allows ionic transport while it prevents electrical contact between electrodes but also plays a key role for thermal safety performance of LIBs. However, commercial separators for LIBs are typically microporous polyolefin membranes that pose challenges for battery safety, due to shrinking and melting at elevated temperature. Here, we demonstrate a strategy to improve the thermal stability and electrolyte affinity of polyethylene (PE) separators. By simply grafting the vinylsilane coupling reagent on the surface of the PE separator by electron beam irradiation method and subsequent hydrolysis reaction into the Al 3+ solution, an ultrathin Al 2 O 3 layer is grafted on the surface of the porous polymer microframework without sacrificing the porous structure and increasing the thickness. The as-synthesized Al 2 O 3 ceramic-grafted separator (Al 2 O 3 -CGS) shows almost no shrinkage at 150 °C and decreases the contact angle of the conventional electrolyte compared with the bare PE separator. Notably, the full cells with the Al 2 O 3 -CGSs exhibit better cycling performance and rate capability and also provide stable open circuit voltage even at 170 °C, indicating its promising application in LIBs with high safety and energy density.

  17. Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Rouhi, S.

    2015-03-01

    The importance of covalent and non-covalent functionalization approaches for modification the properties of carbon nanotubes is being more widely recognized. To this end, elastic properties and buckling behavior of oxygenated CNT with atomic oxygen and hydroxyl under physical adsorption of PE (Polyethylene) and PEO (Poly (ethylene oxide)) are determined through employing the molecular dynamics (MD) simulations. The results demonstrate that non-covalent bonding of polymer on the surface of oxygenated CNT causes reductions in the variations of critical buckling load and critical strain compared to oxygenated CNTs. Critical buckling load and critical strain of oxygenated CNT/polymer are higher than those of oxygenated CNT. Also, it is demonstrated that critical buckling load and critical strain values in the case of oxygenated CNT/polymer are independent of polymer type unlike the value of Young's modulus. It is shown that variations of Young's modulus decrease as PE adsorbed on the surface of oxygenated CNT. Moreover, the presence of oxygen atom on PEO chain leads to bigger variations of Young's modulus with weight percentage of chemisorbed component, i.e. atomic oxygen and hydroxyl. It is also demonstrated that Young's modulus reduces more considerably in the presence of PEO chain compared to PE one.

  18. A simple method for the extraction and identification of light density microplastics from soil.

    PubMed

    Zhang, Shaoliang; Yang, Xiaomei; Gertsen, Hennie; Peters, Piet; Salánki, Tamás; Geissen, Violette

    2018-03-01

    This article introduces a simple and cost-saving method developed to extract, distinguish and quantify light density microplastics of polyethylene (PE) and polypropylene (PP) in soil. A floatation method using distilled water was used to extract the light density microplastics from soil samples. Microplastics and impurities were identified using a heating method (3-5s at 130°C). The number and size of particles were determined using a camera (Leica DFC 425) connected to a microscope (Leica wild M3C, Type S, simple light, 6.4×). Quantification of the microplastics was conducted using a developed model. Results showed that the floatation method was effective in extracting microplastics from soils, with recovery rates of approximately 90%. After being exposed to heat, the microplastics in the soil samples melted and were transformed into circular transparent particles while other impurities, such as organic matter and silicates were not changed by the heat. Regression analysis of microplastics weight and particle volume (a calculation based on image J software analysis) after heating showed the best fit (y=1.14x+0.46, R 2 =99%, p<0.001). Recovery rates based on the empirical model method were >80%. Results from field samples collected from North-western China prove that our method of repetitive floatation and heating can be used to extract, distinguish and quantify light density polyethylene microplastics in soils. Microplastics mass can be evaluated using the empirical model. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.

    2018-04-01

    Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, L. Robert; Tarver, Jacob D.; Cordaro, Joseph

    Melt state dynamics for a series of strictly linear polyethylenes with precisely spaced associating functional groups were investigated. The periodic pendant acrylic acid groups form hydrogen-bonded acid aggregates within the polyethylene (PE) matrix. The dynamics of these nanoscale heterogeneous morphologies were investigated from picosecond to nanosecond timescales by both quasi-elastic neutron scattering (QENS) measurements and fully atomistic molecular dynamics (MD) simulations. Two dynamic processes were observed. The faster dynamic processes which occur at the picosecond timescales are compositionally insensitive and indicative of spatially restricted local motions. The slower dynamic processes are highly composition dependent and indicate the structural relaxation ofmore » the polymer backbone. Higher acid contents, or shorter PE spacers between pendant acid groups, slow the structural relaxation timescale and increase the stretching parameter (β) of the structural relaxation. Additionally, the dynamics of specific hydrogen atom positions along the backbone correlate structural heterogeneity imposed by the associating acid groups with a mobility gradient along the polymer backbone. At time intervals (<2 ns), the mean-squared displacements for the four methylene groups closest to the acid groups are up to 10 times smaller than those of methylene groups further from the acid groups. At longer timescales acid aggregates rearrange and the chain dynamics of the slow, near-aggregate regions and the faster bridge regions converge, implying a characteristic timescale for the passage of chains between aggregates. As a result, the characterization of the nanoscale chain dynamics in these associating polymer systems both provides validation of simulation force fields and provides understanding of heterogeneous chain dynamics in associating polymers.« less

  1. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics.

    PubMed

    Wang, Wenfeng; Wang, Jun

    2018-02-01

    Concerns regarding microplastics pollution and their potential to concentrate and transport organic contaminants in aquatic environments are growing in recent years. Sorption of organic chemicals by microplastics may affect the distribution and bioavailability of the chemicals. Here sorption process of pyrene (Pyr), a frequently encountered polycyclic aromatic hydrocarbon in aquatic environments, on three types of mass-produced plastic particles (high-density polyethylene (PE), polystyrene (PS) and polyvinylchloride (PVC)), was investigated by comparative analysis of different sorption kinetic and isotherm models. Optimum kinetic and isotherm models were predicted by the linear least-squares regression method. The pseudo-second-order kinetic model was more appropriate in describing the entire sorption process (R 2  > 0.99). Sorption rates of Pyr onto microplastics were mainly controlled by intraparticle diffusion. PE exhibited the highest affinity for Pyr, followed by PS and PVC. The sorption equilibrium data were best fitted to the Langmuir isotherm (R 2  > 0.99), indicating monolayer coverage of Pyr onto the microplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Migrants from disposable gloves and residual acrylonitrile].

    PubMed

    Wakui, C; Kawamura, Y; Maitani, T

    2001-10-01

    Disposable gloves made from polyvinyl chloride with and without di(2-ethylhexyl) phthalate (PVC-DEHP, PVC-NP), polyethylene (PE), natural rubber (NR) and nitrile-butadiene rubber (NBR) were investigated with respect to evaporation residue, migrated metals, migrants and residual acrylonitrile. The evaporation residue found in n-heptane was 870-1,300 ppm from PVC-DEHP and PVC-NP, which was due to the plasticizers. Most of the PE gloves had low evaporation residue levels and migrants, except for the glove designated as antibacterial, which released copper and zinc into 4% acetic acid. For the NR and NBR gloves, the evaporation residue found in 4% acetic acid was 29-180 ppm. They also released over 10 ppm of calcium and 6 ppm of zinc into 4% acetic acid, and 1.68-8.37 ppm of zinc di-ethyldithiocarbamate and zinc di-n-butyldithiocarbamate used as vulcanization accelerators into n-heptane. The acrylonitrile content was 0.40-0.94 ppm in NBR gloves.

  3. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification.

    PubMed

    Panzarasa, Guido; Osypova, Alina; Consolati, Giovanni; Quasso, Fiorenza; Soliveri, Guido; Ribera, Javier; Schwarze, Francis W M R

    2018-01-23

    Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene- alt -maleic anhydride) (P(E- alt -MA)). Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye) for a wide pH range (from pH 2 to 12) and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E- alt -MA), the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

  4. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery.

    PubMed

    Chen, Wenju; Shi, Liyi; Wang, Zhuyi; Zhu, Jiefang; Yang, Haijun; Mao, Xufeng; Chi, Mingming; Sun, Lining; Yuan, Shuai

    2016-08-20

    The developments of high-performance lithium ion battery are eager to the separators with high ionic conductivity and thermal stability. In this work, a new way to adjust the comprehensive properties of inorganic-organic composite separator was investigated. The cellulose diacetate (CDA)-SiO2 composite coating is beneficial for improving the electrolyte wettability and the thermal stability of separators. Interestingly, the pore structure of composite coating can be regulated by the weight ratio of SiO2 precursor tetraethoxysilane (TEOS) in the coating solution. The electronic performance of lithium ion batteries assembled with modified separators are improved compared with the pristine PE separator. When weight ratio of TEOS in the coating solution was 9.4%, the composite separator shows the best comprehensive performance. Compared with the pristine PE separator, its meltdown temperature and the break-elongation at elevated temperature increased. More importantly, the discharge capacity and the capacity retention improved significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Barrier properties of PE, PP and EVA (nano)composites - The influence of filler type and concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merinska, D.; Kalendova, A.; Tesarikova, A.

    2014-05-15

    Nanocomposite materials with layered clay used as nanofiller and polyethylene (PE), polypropylene (PP) and copolymer ethylene and vinyl acetate matrix (EVA, the content of VA component 19 wt. %) were prepared by compounding the individual components in Brabender kneader. The MMT Na+ and four types of commercial products such as Nanofil N 5 and N3000, Cloisite 93A and 30B were used as nanofillers. Next to the clays microprecipitated CaHCO{sub 3}, nanosilica and Halloysite tubes were used. The quantity of all the above-mentioned (nano)fillers was 1, 3 and 5 wt. % in relation to the content of montmorillonite. The aim wasmore » to evaluate the influence of (nano)filler type and concentration on nanocomposite barrier properties. The morphology of nanocomposite samples was examined by means of XRD analysis illustrated by transmission electronic microscopy TEM. Furthermore, permeability for O{sub 2} and CO{sub 2} were observed.« less

  6. Oil sorbents from plastic wastes and polymers: A review.

    PubMed

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Prospects for application of post-consumer used plastics in food packaging.

    PubMed

    Miltz, J; Ram, A; Nir, M M

    1997-01-01

    The two most widely used polymers in packaging in recent years are polyethylene terephthalate (PET) and polyethylene (PE). The biggest fractions of these polymers are not re-utilized, in spite of the fact that they possess excellent properties even after their first application. The ban on using recycled polymers in food packaging applications and the lack of good value outlets for these materials causes them to end up in landfills. The high cost nylon, used in packaging primarily as high gas barrier laminates with PE, also finds its way to landfills. In this case, the reason is the difficulty of recycling different polymers that are incompatible. Thus, the Municipal Solid Waste (MSW) stream transferred to landfills contains many plastic packages. These packages are being blamed as a major pollutant of the environment in spite of the fact that all plastics contribute only a small percentage to the weight of the garbage in landfills. If proper and cost effective applications for the recycled polymers could be developed, the waste related to their disposal could be limited. In addition, the contribution of plastic packages to the environmental problem could be diminished. In the present paper, the possibility of sandwiching a contaminated PET layer between two layers of the virgin material was studied. The aim of the study was to determine whether such an operation could lower the migration level of contaminants from a multilayer structure (containing a recycled layer of PET) to values below the limits required by regulatory agencies. The diffusion coefficients (required to determine migration) of four organic liquids in PET were determined. As a result of the sandwiching operation, the amount of pollutant (toluene) migrating into the food simulant was reduced by two orders of magnitude. The properties of PE/nylon blends were also studied. It was found that the high gas barrier properties of nylon are preserved in the blend when proper processing conditions are used. Therefore, the recycled material could be used as a centre layer in a multilayer structure providing good gas barrier properties to this structure.

  8. A method of measuring the effective thermal conductivity of thermoplastic foams

    NASA Astrophysics Data System (ADS)

    Asséko, André Chateau Akué; Cosson, Benoit; Chaki, Salim; Duborper, Clément; Lacrampe, Marie-France; Krawczak, Patricia

    2017-10-01

    An inverse method for determining the in-plane effective thermal conductivity of porous thermoplastics was implemented by coupling infrared thermography experiments and numerical solution of heat transfer in straight fins having temperature-dependent convective heat transfer coefficient. The obtained effective thermal conductivity values were compared with previous results obtained using a numerical solution based on periodic homogenization techniques (NSHT) in which the microstructure heterogeneity of extruded polymeric polyethylene (PE) foam in which pores are filled with air with different levels of open and closed porosity was taken into account and Transient Plane Source Technique (TPS) in order to verify the accuracy of the proposed method. The new method proposed in the present study is in good agreement with both NSHT and TPS. It is also applicable to structural materials such as composites, e.g. unidirectional fiber-reinforced plastics, where heat transfer is very different according to the fiber direction (parallel or transverse to the fibers).

  9. Effect of part thickness, glass fiber and crystallinity on light scattering during laser transmission welding of thermoplastics

    NASA Astrophysics Data System (ADS)

    Xu, Xin Feng; Parkinson, Alexander; Bates, Philip J.; Zak, Gene

    2015-12-01

    It is important to understand how laser energy scatters within the transparent component in order to predict and optimize the laser transmission welding process. This paper examines the influence of part thickness, glass fiber and crystallinity levels on the distribution of laser light after transmission through amorphous polycarbonate (PC) and semi-crystalline polymers such as polyamide 6 (PA6), polypropylene (PP), and polyethylene (PE). An experimental technique based on laser-scanned lines of progressively increasing power was used to assess the transmitted energy distribution. This distribution was characterized using a two-parameter model that captures scattered and un-scattered components of the laser beam. The results clearly show how the scattering is increased by increasing the numbers of interactions between laser light and phase boundaries either by increasing the particle concentration (i.e., glass fiber level and crystallinity) or increasing part thickness.

  10. Effects of polyalkylene glycols and fatty acid soaps on properties of synthetic lubricating-cooling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stulii, A.A.

    1983-01-01

    The lack of any effect of the polyalkylene glycols on the series of properties of the fatty acid soaps was confirmed by replacing the PEG-35 in the synthetic lubricating-cooling fluid (LCF) by a polyethylene glycol with a molecular weight of 400 or 6000, a propylene oxide oligomer with a molecular weight of 700, or a copolymer of ethylene and propylene oxides (Pluronic 44, Pluriol PE-6400, Hydropol 200). Attempts to select surfactants and optimal concentrations in synthetic LCFs based on polyalkylene glycols. Indicates that of the studied soaps, those of the most interest are the triethanolamine soaps of individual C/sub 6/-C/submore » 10/ fatty acids and commercial mixed C/sub 7/-C/sub 9/ synthetic fatty acids. Finds that the polyalkylene glycols and the indicated soaps supplement each other, imparting the required set of properties to the LCF.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gesta, E.; Intelligent Insect Control, 118 Chemin des Alouettes, Castelnau-le-Lez, 34170; Skovmand, O., E-mail: osk@insectcontrol.net

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-settingmore » did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives’ ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.« less

  12. Effect of Slow External Flow on Flame Spreading over Solid Material: Opposed Spreading over Polyethylene Wire Insulation

    NASA Technical Reports Server (NTRS)

    Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.

    2001-01-01

    The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.

  13. Pollutant content in marine debris and characterization by thermal decomposition.

    PubMed

    Iñiguez, M E; Conesa, J A; Fullana, A

    2017-04-15

    Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400-500K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preparation, chemical composition and storage studies of quamachil (Pithecellobium dulce L.) aril powder.

    PubMed

    Rao, Galla Narsing; Nagender, Allani; Satyanarayana, Akula; Rao, Dubasi Govardhana

    2011-02-01

    Quamachil aril powder samples were prepared and evaluated for chemical composition and sensory quality by packing in two packaging systems during storage for six months. The protein contents were 12.4 and 15.0% in white and pink aril powders respectively. The titrable acidity of white and pink aril powders were 2.4 and 4.8% respectively. Ca and Fe contents in white aril powder samples were 60 and 12 mg/100 g where as in pink aril powder 62 and 16 mg/100 g, respectively. The anthocyanin content in pink powder decreased from 50.5 to 11.2 and 14.1 mg/100 g in samples packed in polyethylene (PE) and metalised polyester polyethylene laminated pouches respectively. Total polyphenol amount increased in both the powders irrespective of packaging material. Sorption isotherms indicated that both white and pink aril powders were hygroscopic and equilibrated at low relative humidity of 28 and 32%, respectively.

  15. Plastic debris and microplastics along the beaches of the Strait of Hormuz, Persian Gulf.

    PubMed

    Naji, Abolfazl; Esmaili, Zinat; Khan, Farhan R

    2017-01-30

    Currently little is known about the prevalence of plastics and microplastics (MPs) in the Persian Gulf. Five sampling stations were selected along the Strait of Hormuz (Iran) that exhibited different levels of industrialization and urbanization, and included a marine protected area. Debris was observed and sediments were collected for MPs extraction via fluidization/floatation methodology. The order of MP abundance (par/kg) generally reflected the level of anthropogenic activity: Bostanu (1258±291)>Gorsozan (122±23)>Khor-e-Yekshabeh (26±6)>Suru (14±4)>Khor-e-Azini (2±1). Across all sites fibers dominated (83%, 11% film, 6% fragments). FT-IR analysis showed polyethylene (PE), nylon, and PET (polyethylene terephthalate) were the commonly recovered polymers. Likely sources include beach debris, discarded fishing gear, and urban and industrial outflows that contain fibers from clothes. This study provides a 'snapshot' of MP pollution and longitudinal studies are required to fully understand plastic contamination in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Laser-induced crystallization of calcium phosphate coatings on polyethylene (PE).

    PubMed

    Feddes, Bastiaan; Vredenberg, Arjen M; Wehner, Martin; Wolke, Joop C G; Jansen, John A

    2005-05-01

    Calcium phosphate (CaP) coatings are used for obtaining a desired biological response. Usually, CaP coatings on metallic substrates are crystallized by annealing at temperatures of at least 400-600 degrees C. For polymeric substrates, this annealing is not possible due to the low melting temperatures. In this work, we present a more suitable method for obtaining crystalline coatings on polymeric substrates, namely laser crystallization. We were successful in obtaining hydroxyapatite coatings on polyethylene. Because of the UV transmission characteristics of the CaP coatings, the use of a low wavelength (157 nm) F(2) laser was necessary for this. As a result of the laser treatment, the CaP coating broke up into islands. The cracks between the islands became larger and the surface became porous with increasing laser energy. The mechanism behind the formation of this morphology did not become clear. However, the fact that crystalline CaP coatings can be obtained on polymeric substrates in an easy way, possibly allows for the development of new products.

  17. Wetting of crystalline polymer surfaces: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fan, Cun Feng; Caǧin, Tahir

    1995-11-01

    Molecular dynamics has been used to study the wetting of model polymer surfaces, the crystal surfaces of polyethylene (PE), poly(tetrafluoroethylene) (PTFE), and poly(ethylene terephthalate) (PET) by water and methylene iodide. In the simulation a liquid droplet is placed on a model surface and constant temperature, rigid body molecular dynamics is carried out while the model surface is kept fixed. A generally defined microscopic contact angle between a liquid droplet and a solid surface is quantitatively calculated from the volume of the droplet and the interfacial area between the droplet and the surface. The simulation results agree with the trend in experimental data for both water and methylene iodide. The shape of the droplets on the surface is analyzed and no obvious anisotropy of the droplets is seen in the surface plane, even though the crystal surfaces are highly oriented. The surface free energies of the model polymer surfaces are estimated from their contact angles with the two different liquid droplets.

  18. Evaluation of Standard Loose Plastic Packaging for the Management of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebriondiae)

    PubMed Central

    Hassan, Muhammad Waqar; Gulraize; Ali, Usman; Ur Rehman, Fazal; Najeeb, Hafsa; Sohail, Maryam; Irsa, Bakhtawar; Muzaffar, Zubaria; Chaudhry, Muhammad Shafiq

    2016-01-01

    Three standard foodstuff plastic packaging namely polyethylene (PE), polypropylene (PP), and polyvinylchloride (PVC) were evaluated for management of lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Resistance parameters in packaging were recorded as punctures, holes, penetrations, sealing defects, and invasions with two thicknesses and tested for two lengths of time. Damages like punctures, holes and penetrations by both insects were more in PE packaging however R. dominica made more penetrations in PP than in PE. For both insects sealing defects and invasions were predominant in PVC than in others. Thickness did not affect significantly damage types but significantly more holes and penetrations by R. dominica were in less thickness. Punctures and holes by R. dominica were more after less time period but other damages in packaging were more after more time period. However for T. castaneum all sorts of damages were seen more after more time period. Overall categorization between two insects showed R. dominica made more penetrations and T. castaneum made more invasions compared with their counterparts. Pictures were taken under camera fitted microscope to magnify punctures and holes in different packaging and thicknesses. Insect mortality due to phosphine was more in PP and PE packaging and least in PVC packaging and thickness effect was marginal. T. castaneum mortality was significantly more after 48 h than after 24 h. Damages extent in packaging and fumigation results showed PP to be the best of three packaging materials to manage these insects. PMID:27638958

  19. Morphological, rheological and mechanical characterization of polypropylene nanocomposite blends.

    PubMed

    Rosales, C; Contreras, V; Matos, M; Perera, R; Villarreal, N; García-López, D; Pastor, J M

    2008-04-01

    In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yao, E-mail: Yao.Fu@colorado.edu; Song, Jeong-Hoon, E-mail: JH.Song@colorado.edu

    Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic–continuummore » bridging.« less

  1. An evidence-based definition of lifelong premature ejaculation: report of the International Society for Sexual Medicine Ad Hoc Committee for the Definition of Premature Ejaculation.

    PubMed

    McMahon, Chris G; Althof, Stanley; Waldinger, Marcel D; Porst, Hartmut; Dean, John; Sharlip, Ira; Adaikan, P G; Becher, Edgardo; Broderick, Gregory A; Buvat, Jacques; Dabees, Khalid; Giraldi, Annamaria; Giuliano, François; Hellstrom, Wayne J G; Incrocci, Luca; Laan, Ellen; Meuleman, Eric; Perelman, Michael A; Rosen, Raymond; Rowland, David; Segraves, Robert

    2008-08-01

    To develop a contemporary, evidence-based definition of premature ejaculation (PE). There are several definitions of PE; the most commonly quoted, the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders - 4th Edition - Text Revision, and other definitions of PE, are all authority-based rather than evidence-based, and have no support from controlled clinical and/or epidemiological studies. Thus in August 2007, the International Society for Sexual Medicine (ISSM) appointed several international experts in PE to an Ad Hoc Committee for the Definition of PE. The committee met in Amsterdam in October 2007 to evaluate the strengths and weaknesses of current definitions of PE, to critically assess the evidence in support of the constructs of ejaculatory latency, ejaculatory control, sexual satisfaction and personal/interpersonal distress, and to propose a new evidence-based definition of PE. The Committee unanimously agreed that the constructs which are necessary to define PE are rapidity of ejaculation, perceived self-efficacy, and control and negative personal consequences from PE. The Committee proposed that lifelong PE be defined as a male sexual dysfunction characterized by ejaculation which always or nearly always occurs before or within about one minute of vaginal penetration, and the inability to delay ejaculation on all or nearly all vaginal penetrations, and negative personal consequences, such as distress, bother, frustration and/or the avoidance of sexual intimacy. This definition is limited to men with lifelong PE who engage in vaginal intercourse. The panel concluded that there are insufficient published objective data to propose an evidence-based definition of acquired PE. The ISSM definition of lifelong PE represents the first evidence-based definition of PE. This definition will hopefully lead to the development of new tools and patient-reported outcome measures for diagnosing and assessing the efficacy of treatment interventions, and encourage ongoing research into the true prevalence of this disorder, and the efficacy of new pharmacological and psychological treatments.

  2. An electrothermal plasma model considering polyethylene and copper ablation based on ignition experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangbo; Li, Xingwen; Hang, Yuhua; Yang, Weihong

    2018-06-01

    In order to study the characteristics of electrothermal plasma interaction with energetic materials, especially the ignition ability, a novel model considering polyethylene and copper ablation is developed, and an ignition experiment system is set up. The parameters of the plasma and the surface conditions of the energetic materials are measured in the testing. The results show the measured first peak pressure to be ~2.2 MPa, the second peak pressure to be ~3.9 MPa, and the visible flame velocity to be ~2000 m s‑1. Circular pits of the order of microns and nanometers in size are observed on the surface of the energetic materials. Further, the parameters of the plasma, including static pressure, total pressure, density, temperature, velocity, copper concentration and PE concentration, are calculated and analyzed by the established model, under discharge currents of 9 kA. The simulation is similar to those of experimental results. A shock wave is observed in the experiment and is presented in the calculations; it plays an important role in the performance of the plasma in the nozzle region, where the parameters of the plasma variation trends are very complex. With the aim of obtaining the overall performance of the plasma, the coupling characteristics of multiple parameters must be taken into account, in accordance with the developed electrothermal plasma model.

  3. How do gait frequency and serum-replacement interval affect polyethylene wear in knee-wear simulator tests?

    PubMed

    Reinders, Jörn; Sonntag, Robert; Kretzer, Jan Philippe

    2014-11-01

    Polyethylene wear (PE) is known to be a limiting factor in total joint replacements. However, a standardized wear test (e.g. ISO standard) can only replicate the complex in vivo loading condition in a simplified form. In this study, two different parameters were analyzed: (a) Bovine serum, as a substitute for synovial fluid, is typically replaced every 500,000 cycles. However, a continuous regeneration takes place in vivo. How does serum-replacement interval affect the wear rate of total knee replacements? (b) Patients with an artificial joint show reduced gait frequencies compared to standardized testing. What is the influence of a reduced frequency? Three knee wear tests were run: (a) reference test (ISO), (b) testing with a shortened lubricant replacement interval, (c) testing with reduced frequency. The wear behavior was determined based on gravimetric measurements and wear particle analysis. The results showed that the reduced test frequency only had a small effect on wear behavior. Testing with 1 Hz frequency is therefore a valid method for wear testing. However, testing with a shortened replacement interval nearly doubled the wear rate. Wear particle analysis revealed only small differences in wear particle size between the different tests. Wear particles were not linearly released within one replacement interval. The ISO standard should be revised to address the marked effects of lubricant replacement interval on wear rate.

  4. Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners.

    PubMed

    Rached, Rodrigo Nunes; de Souza, Evelise Machado; Dyer, Scott R; Ferracane, Jack Liborio

    2011-11-01

    Fractures of overdentures occur in the denture base through the abutments. The purpose of this study was to evaluate the effect of reinforcements and the space available for their placement on the dynamic and static loading capacity of a simulated implant-supported overdenture model. Rhomboidal (6 × 6 × 25 mm) test specimens (n=8), made with an acrylic resin and containing 2 metal O-ring capsules, were reinforced with braided stainless steel bar (BS), stainless steel mesh (SM), unidirectional E-glass fiber (GF), E-glass mesh (GM), woven polyethylene braids (PE), or polyaramid fibers (PA). Two distinct spaces for reinforcement placement were investigated: a 2.5 mm and a 1 mm space. Control groups consisted of nonreinforced specimens. Specimens were thermocycled (5°C and 55°C, 5,000 cycles) and then subjected to a 100,000 cyclic load regime. Unbroken specimens were then loaded until failure. The number of failures under fatigue (f) and static load (s) were compared with the Chi-Square test, while static load means were compared with the Kruskal-Wallis test (α=.05). The number of failures (f:s) of GF (0:16), PE (0:16), and PA (0:16) differed significantly from the control group (8:8) and SM (4:12) (P=.037 and P=.025, respectively). For the 2.5 mm space group, these same reinforcements also exhibited higher static load means than the control (P=.016, P=.003, and P=.003, respectively); under static load, no significant differences were detected between the reinforced groups and the control for the 1.0 mm space group (P=1.0). E-glass fibers, woven polyethylene braids, and polyaramid fibers withstood the fatigue regime and increased the flexural strength of the implant-supported overdenture model. The spaces available for reinforcement did not affect the dynamic strength or the static loading capacity of the implant-supported overdenture model. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. [Orthopedic surgical implants and allergies. Joint statement by the Implant Allergy Working Group (AK 20) of the DGOOC (German Association of Orthopedics and Orthopedic Surgery), DKG (German Contact Dermatitis Research Group) and DGAKI (German Society for Allergology and Clinical Immunology)].

    PubMed

    Thomas, P; Schuh, A; Ring, J; Thomsen, M

    2008-03-01

    Materials used in osteosynthesis or artificial joint replacement are usually well tolerated. Complaints after such operations are mostly related to infection or mechanical problems but may also be caused by allergic reactions. The latter encompass skin changes, e.g., eczema, delayed wound/bone healing, recurrent effusion, pain, or implant loosening. In contrast to the high incidence of cutaneous metal contact allergy, allergies associated with implants are a rare condition. However, epidemiological data on the incidence of implant-related allergic reactions are still missing. Typical elicitors are nickel, chromium, cobalt, and constituents of bone cement (acrylates und additives such as gentamicin or benzoyl peroxide). After exclusion of the most common differential diagnoses, allergy diagnostic procedures are primarily based on patch tests including a metal and bone cement component series. Additional analysis of periimplant tissue is recommended. However, further studies are necessary to show the significance of the histologic findings and the role of the lymphocyte transformation test (LTT). Which combinations of factors will induce allergic sensitization to implants or trigger periimplant allergic reactions in the case of preexisting cutaneous metal allergy is still unknown. Titanium-based osteosynthesis materials are recommended for metal allergic patients. In elective hip replacements, a ceramic/polyethylene (PE) articulation should be used, and in knee replacements "alternative materials". If a regular, potentially applicable CoCr/PE articulation is preferred, the patient must be well informed and must give his/her written consent.

  6. Evaluation of cumulative dose for cone‐beam computed tomography (CBCT) scans within phantoms made from different compositions using Monte Carlo simulations

    PubMed Central

    Martin, Colin J.; Sankaralingam, Marimuthu; Oomen, Kurian; Gentle, David J.

    2015-01-01

    Measurement of cumulative dose f(0,150) with a small ionization chamber within standard polymethyl methacrylate (PMMA) CT head and body phantoms, 150 mm in length, is a possible practical method for cone‐beam computed tomography (CBCT) dosimetry. This differs from evaluating cumulative dose under scatter equilibrium conditions within an infinitely long phantom f(0,∞), which is proposed by AAPM TG‐111 for CBCT dosimetry. The aim of this study was to investigate the feasibility of using f(0,150) to estimate values for f(0,∞) in long head and body phantoms made of PMMA, polyethylene (PE), and water, using beam qualities for tube potentials of 80−140 kV. The study also investigated the possibility of using 150 mm PE phantoms for assessment of f(0,∞) within long PE phantoms, the ICRU/AAPM phantom. The influence of scan parameters, composition, and length of the phantoms was investigated. The capability of f(0,150) to assess f(0,∞) has been defined as the efficiency and assessed in terms of the ratios ϵ(f(0,150)/f(0,∞)). The efficiencies were calculated using Monte Carlo simulations for an On‐Board Imager (OBI) system mounted on a TrueBeam linear accelerator. Head and body scanning protocols with beams of width 40−500 mm were used. Efficiencies ϵ(PMMA/PMMA) and ϵ(PE/PE) as a function of beam width exhibited three separate regions. For beam widths <150 mm, ϵ(PMMA/PMMA) and ϵ(PE/PE) values were greater than 90% for the head and body phantoms. The efficiency values then fell rapidly with increasing beam width before levelling off at 74% for ϵ(PMMA/PMMA) and 69% for ϵ(PE/PE) for a 500 mm beam width. The quantities ϵ(PMMA/PE) and ϵ(PMMA/Water) varied with beam width in a different manner. Values at the centers of the phantoms for narrow beams were lower and increased to a steady state for ∼100−150 mm wide beams, before declining with increasing the beam width, whereas values at the peripheries decreased steadily with beam width. Results for ϵ(PMMA/PMMA) were virtually independent of tube potential, but there was more variation for ϵ(PMMA/PE) and ϵ(PMMA/Water). f(0,150) underestimated f(0,∞) for beam widths used for CBCT scans, thus it is necessary to use long phantoms, or apply conversion factors (Cfs) to measurements with standard PMMA CT phantoms. The efficiency values have been used to derive (Cfs) to allow evaluation of f(0,∞) from measurements of f(0,150). The (Cfs) only showed a weak dependence on scan parameters and scanner type, and so may be suitable for general application. PACS number: 87.55.K‐, 87.57.Q‐, 87.57.uq. PMID:26699590

  7. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  8. Particle-induced SIRT1 downregulation promotes osteoclastogenesis and osteolysis through ER stress regulation.

    PubMed

    Zhang, Liang; Bao, Dongmei; Li, Peng; Lu, Zhidong; Pang, Long; Chen, Zhirong; Guo, Haohui; Gao, Zhihui; Jin, Qunhua

    2018-08-01

    Sirtuin 1 (SIRT1) downregulation has been found to be induced by wear particles in aseptic prosthesis loosening (APL). Osteoclastogenesis and osteoclast activation are the main pathological factors associated with APL. However, whether SIRT1 downregulation contributes to the formation and activation of osteoclasts through the induction of endoplasmic reticulum (ER) stress is unclear. To address this, an osteolysis mouse model was used in which animals were treated with the SIRT1 activator, resveratrol (RES), or an ER stress inhibitor, 4-PBA, for two weeks. Osteolysis, osteoclastogenesis, and morphologic alteration of calvariae were observed by toluidine blue, TRAP, and H&E staining. SIRT1 expression and ER stress were evaluated by western blot analysis. In vitro, mouse macrophage RAW 264.7 cells were treated with polyethylene (PE) particles alone or combined with either RES or 4-PBA, and SIRT1 expression and ER stress were measured using western blot assays. Osteoclast differentiation was determined through TRAP staining. Osteoclast activation was evaluated by culturing osteoclast cells on bone slices followed by toluidine blue staining. Mechanistically, osteoclastogenesis-related MAPK activation, NFATc1 and c-Fos expression, and NF-κB translocation were determined. Both in vivo and in vitro experimental results indicated that PE particles induced SIRT1 downregulation and enhanced ER stress. SIRT1 activator RES and ER stress inhibitor 4-PBA significantly suppressed PE particle-induced osteoclast differentiation and osteolysis. In vitro experimental results showed that 4-PBA suppressed PE particle-induced ERK1/2, p38, and JNK activation, NFATc1 and c-Fos upregulation, as well as NF-κB p65 nucleus translocation. PE particle-induced downregulation of SIRT1 enhances ER stress and promotes osteoclast proliferation and bone resorption through regulation of c-Fos, NFATc1, and the MAPK and NF-κB signaling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Recyclability assessment of nano-reinforced plastic packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez, C., E-mail: csanchez@itene.com; Hortal, M., E-mail: mhortal@itene.com; Aliaga, C., E-mail: caliaga@itene.com

    2014-12-15

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market,more » there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more strict in material quality that urban furniture or construction products)« less

  10. The development of an energy-independent personnel neutron dosimeter using CR-39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doremus, S.W.

    The addition of specialized (n,{alpha}) radiators to a standard polyethylene/CR-39 (PE/CR-39) neutron dosimetry system was evaluated for improved response to low energy neutrons. Specialized radiators consisting of poly(vinyl alcohol) complexed with boron (natural and enriched boron-10) and poly(acrylic acid) complexed with lithium (enriched lithium-6) were evaluated. The complexion of boron with poly(vinyl alcohol) was accomplished by incorporation or surface coating. The complexion of lithium with poly(acrylic acid) was exclusively performed by incorporation. The dosimeter was designed such that the specialized radiator was in contact with the CR-39 detector (i.e., the specialized radiator was sandwiched between the CR-39 detector and polyethylenemore » radiator). The neutron response of this dosimetry system was investigated using {sup 252}Cf (moderated and bare) spontaneous fission neutrons. Detectors were chemically etched and then read with a Nikon OPTIPHOT microscope. The mean response (tracks {center dot} field{sup {minus}1}) of detectors treated with specialized (n,{alpha}) radiators were evaluated against PE/CR-39 controls. The results of this investigation demonstrate that PE/CR-39 dosimeters equipped with specialized (n,{alpha}) radiators have a noticeable response to low energy neutrons that in many instances is significantly greater than that of the controls. The addition of specialized radiators to this dosimetry system did not effect (diminish) its response to fast neutrons.« less

  11. Fumigation efficacy and emission reduction using low-permeability film in orchard soil fumigation.

    PubMed

    Gao, Suduan; Sosnoskie, Lynn M; Cabrera, Jose Alfonso; Qin, Ruijun; Hanson, Bradley D; Gerik, James S; Wang, Dong; Browne, Greg T; Thomas, John E

    2016-02-01

    Many orchards use fumigation to control soilborne pests prior to replanting. Controlling emissions is mandatory to reduce air pollution in California. This research evaluated the effects of plastic film type [polyethylene (PE) or totally impermeable film (TIF)], application rate of Telone C35 [full (610 kg ha(-1) ), 2/3 or 1/3 rates] and carbonation at 207 kPa on fumigant transport (emission and in soil) and efficacy. While increasing fumigant concentrations under the tarp, TIF reduced emissions >95% (∼2% and <1% of total applied 1,3-dichloropropene and chloropicrin respectively) relative to bare soil, compared with ∼30% reduction by PE. All fumigation treatments, regardless of film type, provided good nematode control above 100 cm soil depth; however, nematode survival was high at deeper depths. Weed emergence was mostly affected by tarping and fumigant rate, with no effects from the carbonation. TIF can effectively reduce fumigant emissions. Carbonation under the studied conditions did not improve fumigant dispersion and pest control. The 2/3 rate with TIF controlled nematodes as effectively as the full rate in bare soil or under the PE film to 100 cm soil depth. However, control of nematodes in deeper soil remains a challenge for perennial crops. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  12. CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods.

    PubMed

    Huang, Fu-Chun; Chen, Yih-Far; Lee, Gwo-Bin

    2007-04-01

    This study presents a new packaging method using a polyethylene/thermoplastic elastomer (PE/TPE) film to seal an injection-molded CE chip made of either poly(methyl methacrylate) (PMMA) or polycarbonate (PC) materials. The packaging is performed at atmospheric pressure and at room temperature, which is a fast, easy, and reliable bonding method to form a sealed CE chip for chemical analysis and biomedical applications. The fabrication of PMMA and PC microfluidic channels is accomplished by using an injection-molding process, which could be mass-produced for commercial applications. In addition to microfluidic CE channels, 3-D reservoirs for storing biosamples, and CE buffers are also formed during this injection-molding process. With this approach, a commercial CE chip can be of low cost and disposable. Finally, the functionality of the mass-produced CE chip is demonstrated through its successful separation of phiX174 DNA/HaeIII markers. Experimental data show that the S/N for the CE chips using the PE/TPE film has a value of 5.34, when utilizing DNA markers with a concentration of 2 ng/microL and a CE buffer of 2% hydroxypropyl-methylcellulose (HPMC) in Tris-borate-EDTA (TBE) with 1% YO-PRO-1 fluorescent dye. Thus, the detection limit of the developed chips is improved. Lastly, the developed CE chips are used for the separation and detection of PCR products. A mixture of an amplified antibiotic gene for Streptococcus pneumoniae and phiX174 DNA/HaeIII markers was successfully separated and detected by using the proposed CE chips. Experimental data show that these DNA samples were separated within 2 min. The study proposed a promising method for the development of mass-produced CE chips.

  13. Adsorption and association of a symmetric PEO-PPO-PEO triblock copolymer on polypropylene, polyethylene, and cellulose surfaces.

    PubMed

    Li, Yan; Liu, Hongyi; Song, Junlong; Rojas, Orlando J; Hinestroza, Juan P

    2011-07-01

    The association of a symmetric polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO(19)-PPO(29)-PEO(19)) triblock copolymer adsorbed from aqueous solutions onto polypropylene (PP), polyethylene (PE), and cellulose surfaces was probed using Atomic Force Microscopy (AFM). Significant morphological differences between the polyolefin substrates (PP and PE) and the cellulose surfaces were observed after immersion of the films in the PEO(19)-PPO(29)-PEO(19) solutions. When the samples were scanned, while immersed in solutions of the triblock copolymer, it was revealed that the structures adsorbed on the polyolefin surfaces were smoothed by the adsorbed PEO(19)-PPO(29)-PEO(19). In contrast, those structures on the hydrophilic cellulose surfaces were sharpened. These observations were related to the roughness of the substrate and the energy of interaction between the surfaces and the PEO and PPO polymer segments. The interaction energy between each of the blocks and the surface was calculated using molecular dynamics simulations. It is speculated that the associative structures amply reported in aqueous solution at concentrations above the critical micelle concentration, CMC, are not necessarily preserved upon adsorption; instead, it appears that molecular arrangements of the anchor-buoy type and hemimicelles prevail. The reported data suggests that the roughness of the surface, as well as its degree of hydrophobicity, have a large influence on the nature of the resulting adsorbed layer. The reported observations are valuable in explaining the behavior of finishing additives and lubricants commonly used in textile and fiber processing, as well as the effect of the morphology of the boundary layers on friction and wear, especially in the case of symmetric triblock copolymers, which are commonly used as antifriction, antiwear additives.

  14. Combination of super chilling and high carbon dioxide concentration techniques most effectively to preserve freshness of shell eggs during long-term storage.

    PubMed

    Yanagisawa, T; Ariizumi, M; Shigematsu, Y; Kobayashi, H; Hasegawa, M; Watanabe, K

    2010-01-01

    This study was made to examine the combined effects of stored temperature and carbon dioxide atmosphere on shell egg quality. The shell eggs were packed into polyethylene terephthalate/polyethylene (PET/PE) pouches and stored at 0 degrees C (super chilling), 10 degrees C, and 20 degrees C, respectively for 90 d. The atmospheric carbon dioxide concentration was controlled to obtain the 3 concentration levels of high (about 2.0%), medium (about 0.5%), and low (below 0.01%). Changes in Haugh unit (HU) values, weakening of vitelline membranes, and generation of volatiles were analyzed to evaluate the freshness of shell eggs. Results showed that, compared with the other combinations, the technique of super chilling and high carbon dioxide concentration enabled shell eggs to be most effectively stored for 90 d, based on estimations of the statistical significances of differences in HU values, and on maintaining the initial HU values during storage. In addition, the storage of shell eggs using this combination technique was found to significantly prevent the weakening of the vitelline membrane based on the estimations of numbers of eggs without vitelline membrane breakage when eggs broke, and significantly lowered the incidence of hexanal in the yolk from exposure to the gas chromatographic-mass spectrometric analyses of volatiles. Thus, these results confirmed that the combination of super chilling and high carbon dioxide concentration was the most effective technique for preserving shell eggs during a long term of 90 d compared with other combination techniques.

  15. Most microbeads in a preliminary survey of personal care products are smaller than the typical 330µm trawl mesh size used in surface water surveys

    NASA Astrophysics Data System (ADS)

    Conkle, J. L.; Baez-Del Valle, C.; Turner, J.

    2016-02-01

    Research on plastic debris in aquatic environments, particularly the ocean, has recently exploded due to our emerging understanding of their ubiquitous presence and organismal effects. One study estimated that hundreds of thousands of tons of plastic float at our ocean surface, while another estimated that up to 12.7 million metric tons enter the ocean in a year. These studies produced reasonable estimates of oceanic loads, but research is needed to understand the sources and properties of plastics, particularly microplastics, entering the environment. In this preliminary study, polyethylene (PE) microbeads from 6 facial scrubs, 4 body washes and 3 toothpaste products were extracted and quantified by mass and particle count for the following size classes: 50, 100, 200, 300, 400, 500 and 1000µm. Within the product classes, roughly half (face scrub, 55% and body wash, 48%) to nearly all (toothpaste, 97%) of PE microbeads on a mass basis were smaller than 300µm in diameter. When examining the size distribution by particle count, the results were even more astounding. Nearly all PE microbeads were smaller than 300µm for face scrub (95%), body wash (97%) and toothpaste (100%). The 300µm particle diameter is significant, as major surveys in the published literature (Eriksen et al., 2014; Law et al, 2014) used 330µm or greater mesh size to sample plastic debris and estimate oceanic plastic loads. Therefore, these published surveys, which are some of our best estimates of plastic debris at the ocean surface, likely underestimate total environmental loads because they may exclude half of the mass and nearly all of the individual PE microbead particles that enter our waste stream and potentially surface waters after the use of personal care products.

  16. Differential effects of biologic versus bisphosphonate inhibition of wear debris-induced osteolysis assessed by longitudinal micro-CT.

    PubMed

    Tsutsumi, Ryosuke; Hock, Colleen; Bechtold, C Dustin; Proulx, Steven T; Bukata, Susan V; Ito, Hiromu; Awad, Hani A; Nakamura, Takashi; O'Keefe, Regis J; Schwarz, Edward M

    2008-10-01

    Aseptic loosening of total joint replacements is caused by wear debris-induced osteoclastic bone resorption, for which bisphosphonates (BPs) and RANK antagonists have been developed. Although BPs are effective in preventing metabolic bone loss, they are less effective for inflammatory bone loss. Because this difference has been attributed to the antiapoptotic inflammatory signals that protect osteoclasts from BP-induced apoptosis, but not RANK antagonists, we tested the hypothesis that osteoprotegerin (OPG) is more effective in preventing wear debris-induced osteolysis than zoledronic acid (ZA) or alendronate (Aln) in the murine calvaria model using in vivo micro-CT and traditional histology. Although micro-CT proved to be incompatible with titanium (Ti) particles, we were able to demonstrate a 3.2-fold increase in osteolytic volume over 10 days induced by polyethylene (PE) particles versus sham controls (0.49 +/- 0.23 mm(3) versus 0.15 +/- 0.067 mm(3); p < 0.01). Although OPG and high-dose ZA completely inhibited this PE-induced osteolysis (p < 0.001), pharmacological doses of ZA and Aln were less effective but still reached statistical significance (p < 0.05). Traditional histomorphometry of the sagital suture area of calvaria from both Ti and PE-treated mice confirmed the remarkable suppression of resorption by OPG (p < 0.001) versus the lack of effect by physiological BPs. The differences in drug effects on osteolysis were largely explained by the significant difference in osteoclast numbers observed between OPG versus BPs in both Ti- and PE-treated calvaria; and linear regression analyses that demonstrated a highly significant correlation between osteolysis volume and sagittal suture area versus osteoclast numbers (p < 0.001). (c) 2008 Orthopaedic Research Society.

  17. Effect of surface pretreatment of TiO2 films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation.

    PubMed

    Rtimi, Sami; Nesic, Jelena; Pulgarin, Cesar; Sanjines, Rosendo; Bensimon, Michael; Kiwi, John

    2015-02-06

    Evidence is presented for radio-frequency plasma pretreatment enhancing the amount and adhesion of TiO2 sputtered on polyester (PES) and on polyethylene (PE) films. Pretreatment is necessary to attain a suitable TiO2 loading leading to an acceptable Escherichia coli reduction kinetics in the dark or under light irradiation for PES-TiO2 and PE-TiO2 samples. The amount of TiO2 on the films was monitored by diffuse reflectance spectroscopy and X-ray fluorescence. X-ray electron spectroscopy shows the lack of accumulation of bacterial residues such as C, N and S during bacterial inactivation since they seem to be rapidly destroyed by TiO2 photocatalysis. Evidence was found for Ti(4+)/Ti(3+) redox catalysis occurring on PES-TiO2 and PE-TiO2 during the bacterial inactivation process. On PE-TiO2 surfaces, Fourier transform infrared spectroscopy (ATR-FTIR) provides evidence for a systematic shift of the na(CH2) stretching vibrations preceding bacterial inactivation within 60 min. The discontinuous IR-peak shifts reflect the increase in the C-H inter-bond distance leading to bond scission. The mechanism leading to E. coli loss of viability on PES-TiO2 was investigated in the dark up to complete bacterial inactivation by monitoring the damage in the bacterial outer cell by transmission electron microscopy. After 30 min, the critical step during the E. coli inactivation commences for dark disinfection on 0.1-5% wt PES-TiO2 samples. The interactions between the TiO2 aggregates and the outer lipopolysaccharide cell wall involve electrostatic effects competing with the van der Waals forces.

  18. The prevalence of premature ejaculation and its clinical characteristics in Korean men according to different definitions.

    PubMed

    Lee, S W; Lee, J H; Sung, H H; Park, H J; Park, J K; Choi, S K; Kam, S C

    2013-01-01

    This study compared the prevalence of premature ejaculation (PE) diagnosed by the PE diagnostic tool (PEDT) score, self-reporting and stopwatch-recorded intravaginal ejaculation latency time (IELT). It examined the characteristics of males diagnosed with PE by each criterion. A questionnaire survey enrolled 2081 subjects from March to October, 2010. Stopwatch-recorded IELT was measured in 1035 of the 2081 subjects. We aimed to determine whether PE has an influence on the frequency and satisfaction of sexual intercourse, the degree of libido/erectile function and the satisfaction. These factors were evaluated according to different definitions of PE to assess whether the definition used yielded differences in the data. The prevalence of PE, based on a PEDT score of ≥11, self-reporting and stopwatch-recorded IELT of ≤1 min was 11.3%, 19.5% and 3%, respectively. The prevalence of PE diagnoses based on PEDT score and self-reporting increased with age, but stopwatch-recorded IELT-based diagnoses did not. Males experiencing PE showed lower levels of libido, erectile function and frequency and satisfaction of sexual intercourse compared with non-PE males. PE males felt that they did not satisfy their partners in terms of the partners' sexual satisfaction and frequency of orgasm, in comparison with non-PE males. PE is a highly prevalent sexual dysfunction in males. Regardless of whether the PE diagnosis was made on the basis of self-reporting, PEDT score or stopwatch-recorded IELT, subjective symptoms were similar among PE males.

  19. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions.

    PubMed

    Bakir, Adil; Rowland, Steven J; Thompson, Richard C

    2014-02-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb (14)C-DDT, (14)C-phenanthrene (Phe), (14)C-perfluorooctanoic acid (PFOA) and (14)C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A new three-tier architecture design for multi-sphere neutron spectrometer with the FLUKA code

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Yang, Jian-Bo; Tuo, Xian-Guo; Liu, Zhi; Wang, Qi-Biao; Wang, Xu

    2016-07-01

    The current commercially, available Bonner sphere neutron spectrometer (BSS) has high sensitivity to neutrons below 20 MeV, which causes it to be poorly placed to measure neutrons ranging from a few MeV to 100 MeV. The paper added moderator layers and the auxiliary material layer upon 3He proportional counters with FLUKA code, with a view to improve. The results showed that the responsive peaks to neutrons below 20 MeV gradually shift to higher energy region and decrease slightly with the increasing moderator thickness. On the contrary, the response for neutrons above 20 MeV was always very low until we embed auxiliary materials such as copper (Cu), lead (Pb), tungsten (W) into moderator layers. This paper chose the most suitable auxiliary material Pb to design a three-tier architecture multi-sphere neutron spectrometer (NBSS). Through calculating and comparing, the NBSS was advantageous in terms of response for 5-100 MeV and the highest response was 35.2 times the response of polyethylene (PE) ball with the same PE thickness.

  1. Tribo-biological deposits on the articulating surfaces of metal-on-polyethylene total hip implants retrieved from patients

    PubMed Central

    Cui, Zhiwei; Tian, Yi-Xing; Yue, Wen; Yang, Lei; Li, Qunyang

    2016-01-01

    Artificial total hip arthroplasty (THA) is one of the most effective orthopaedic surgeries that has been used for decades. However, wear of the articulating surfaces is one of the key failure causes limiting the lifetime of total hip implant. In this paper, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to explore the composition and formation mechanism of the tribo-layer on the articulating surfaces of metal-on-polyethylene (MoPE) implants retrieved from patients. Results showed that, in contrast to conventional understanding, the attached tribo-layer contained not only denatured proteins but also a fraction of polymer particles. The formation of the tribo-layer was believed to relate to lubrication regime, which was supposed to be largely affected by the nature of the ultra-high-molecule-weight-polyethylene (UHMWPE). Wear and formation of tribo-layer could be minimized in elasto-hydrodynamic lubrication (EHL) regime when the UHMWPE was less stiff and have a morphology containing micro-pits; whereas the wear was more severe and tribo-layer formed in boundary lubrication. Our results and analyses suggest that enhancing interface lubrication may be more effective on reducing wear than increasing the hardness of material. This finding may shed light on the design strategy of artificial hip joints. PMID:27345704

  2. Tribo-biological deposits on the articulating surfaces of metal-on-polyethylene total hip implants retrieved from patients

    NASA Astrophysics Data System (ADS)

    Cui, Zhiwei; Tian, Yi-Xing; Yue, Wen; Yang, Lei; Li, Qunyang

    2016-06-01

    Artificial total hip arthroplasty (THA) is one of the most effective orthopaedic surgeries that has been used for decades. However, wear of the articulating surfaces is one of the key failure causes limiting the lifetime of total hip implant. In this paper, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to explore the composition and formation mechanism of the tribo-layer on the articulating surfaces of metal-on-polyethylene (MoPE) implants retrieved from patients. Results showed that, in contrast to conventional understanding, the attached tribo-layer contained not only denatured proteins but also a fraction of polymer particles. The formation of the tribo-layer was believed to relate to lubrication regime, which was supposed to be largely affected by the nature of the ultra-high-molecule-weight-polyethylene (UHMWPE). Wear and formation of tribo-layer could be minimized in elasto-hydrodynamic lubrication (EHL) regime when the UHMWPE was less stiff and have a morphology containing micro-pits; whereas the wear was more severe and tribo-layer formed in boundary lubrication. Our results and analyses suggest that enhancing interface lubrication may be more effective on reducing wear than increasing the hardness of material. This finding may shed light on the design strategy of artificial hip joints.

  3. Image Analysis to Estimate Mulch Residual on Soil

    NASA Astrophysics Data System (ADS)

    Moreno Valencia, Carmen; Moreno Valencia, Marta; Tarquis, Ana M.

    2014-05-01

    Organic farmers are currently allowed to use conventional polyethylene mulch, provided it is removed from the field at the end of the growing or harvest season. To some, such use represents a contradiction between the resource conservation goals of sustainable, organic agriculture and the waste generated from the use of polyethylene mulch. One possible solution is to use biodegradable plastic or paper as mulch, which could present an alternative to polyethylene in reducing non-recyclable waste and decreasing the environmental pollution associated with it. Determination of mulch residues on the ground is one of the basic requisites to estimate the potential of each material to degrade. Determination the extent of mulch residue on the field is an exhausting job while there is not a distinct and accurate criterion for its measurement. There are several indices for estimation the residue covers while most of them are not only laborious and time consuming but also impressed by human errors. Human vision system is fast and accurate enough in this case but the problem is that the magnitude must be stated numerically to be reported and to be used for comparison between several mulches or mulches in different times. Interpretation of the extent perceived by vision system to numerals is possible by simulation of human vision system. Machine vision comprising image processing system can afford these jobs. This study aimed to evaluate the residue of mulch materials over a crop campaign in a processing tomato (Solanum lycopersicon L.) crop in Central Spain through image analysis. The mulch materials used were standard black polyethylene (PE), two biodegradable plastic mulches (BD1 and BD2), and one paper (PP1) were compared. Meanwhile the initial appearance of most of the mulches was sort of black PE, at the end of the experiment the materials appeared somewhat discoloured, soil and/or crop residue was impregnated being very difficult to completely remove them. A digital camera (Canon PowerShot A80 - 35 mm) was used to acquire colour digital images (JPG format) under similar lighting conditions at experimental field 'El Chaparrilo' (Ciudad Real). A total of 24 photographs, 6 per mulch, were taken according to a randomized block design. Images were captured accurately covering a 1×0.5 meter frame which yielded cropped images to be 1200*1200 pixels. Image Processing Toolbox version 6.0 for MATLAB version 7.1 was used. HSV (Hue, Saturation and Value) has a good capability of representing the colours of human perception, for this reason it was chosen to analyze the image. Segmentation process was based on the histogram values of the Saturation plane as it showed a good contrast between soil and mulch. Different thresholding methods were applied to this histogram function: Otsu, Ridler-Calavard local entropy and visual threshold. Then the percentage of pixels that were black and white (i.e. mulch or soil) was used to calculate the mulch coverage factor (C-Factor). The C-Factor comparison of thresholding methods as well as the different mulch materials is shown.

  4. An evidence-based definition of lifelong premature ejaculation: report of the International Society for Sexual Medicine (ISSM) ad hoc committee for the definition of premature ejaculation.

    PubMed

    McMahon, Chris G; Althof, Stanley E; Waldinger, Marcel D; Porst, Hartmut; Dean, John; Sharlip, Ira D; Adaikan, P G; Becher, Edgardo; Broderick, Gregory A; Buvat, Jacques; Dabees, Khalid; Giraldi, Annamaria; Giuliano, François; Hellstrom, Wayne J G; Incrocci, Luca; Laan, Ellen; Meuleman, Eric; Perelman, Michael A; Rosen, Raymond C; Rowland, David L; Segraves, Robert

    2008-07-01

    The medical literature contains several definitions of premature ejaculation (PE). The most commonly quoted definition, the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition-Text Revision, and other definitions of PE are all authority based rather than evidence based, and have no support from controlled clinical and/or epidemiological studies. The aim of this article is to develop a contemporary, evidence-based definition of PE. In August 2007, the International Society for Sexual Medicine (ISSM) appointed several international experts in PE to an Ad Hoc Committee for the Definition of Premature Ejaculation. The committee met in Amsterdam in October 2007 to evaluate the strengths and weaknesses of current definitions of PE, to critique the evidence in support of the constructs of ejaculatory latency, ejaculatory control, sexual satisfaction, and personal/interpersonal distress, and to propose a new evidence-based definition of PE. The committee unanimously agreed that the constructs that are necessary to define PE are rapidity of ejaculation, perceived self-efficacy and control, and negative personal consequences from PE. The committee proposed that lifelong PE be defined as ". . . a male sexual dysfunction characterized by ejaculation which always or nearly always occurs prior to or within about one minute of vaginal penetration, and the inability to delay ejaculation on all or nearly all vaginal penetrations, and negative personal consequences, such as distress, bother, frustration and/or the avoidance of sexual intimacy." This definition is limited to men with lifelong PE who engage in vaginal intercourse. The panel concluded that there are insufficient published objective data to propose an evidence-based definition of acquired PE. The ISSM definition of lifelong PE represents the first evidence-based definition of PE. This definition will hopefully lead to the development of new tools and Patient Reported Outcome measures for diagnosing and assessing the efficacy of treatment interventions and encourage ongoing research into the true prevalence of this disorder and the efficacy of new pharmacological and psychological treatments.

  5. Comparison of stabilization by Vitamin E and 2,6-di-tert-butylphenols during polyethylene radio-thermal-oxidation

    NASA Astrophysics Data System (ADS)

    Richaud, Emmanuel

    2014-10-01

    This paper reports a compilation of data for PE+Vitamin E and 2,6-di-tert-butylphenols oxidation in radio-thermal ageing. Data unambiguously show that Vitamin E reacts with Prad and POOrad whereas 2,6-di-tert-butyl phenols only react with POOrad. Kinetic parameters of the stabilization reactions for both kinds of antioxidants were tentatively extracted from phenol depletion curves, and discussed regarding the structure of the stabilizer. They were also used for completing an existing kinetic model used for predicting the stabilization by antioxidants. This one permits to compare the efficiency of stabilizer with dose rate or sample thickness.

  6. Electroproduction of K+ Λ at JLab Hall-C

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Dalton, M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.

    2013-08-01

    A Λ hypernuclear spectroscopic experiment, JLab E05-115 was performed at JLab Hall-C in 2009 by the (e, e'K+) reaction. Data of Λ hypernuclei with mass numbers from A = 7 to A = 52 were successfully taken, and the analyses are in progress. A polyethylene (CH2) target was used as a proton target to calibrate energy scales, and to study elementary process of the p(e, e'K+) Λ, Σ0 reaction. A preliminary differential cross section of K+ Λ electro-production at low Q2 [~0.01 (GeV/c)2] and at small kaon angles is reported in the present article.

  7. Energy expenditure estimates during school physical education: Potential vs. reality?

    PubMed

    Kahan, David; McKenzie, Thomas L

    2017-02-01

    Schools are salient locations for addressing the high prevalence of overweight and obesity. Most US states require some physical education (PE) and the energy expended during PE has potential to positively affect energy balance. We previously used 2012 data to examine state policies for PE to calculate estimated student energy expenditure (EEE) under potential (i.e., recommendations followed) and existing conditions. Since then, data have been updated on both state policies and the conduct of PE. Based on updated data, we used PE frequency, duration, and intensity, student mass, and class size to calculate EEE for the delivery of PE under (a) national professional recommendations, (b) 2016 state policies, and (c) school-reported conditions. Although increased from four years ago, only 22 states currently have policies mandating specific PE minutes. EEE over 10years shows the enormous impact PE could have on energy balance. For the average recommended-size PE class, resultant annual EEE based on professional recommendations for min/week far exceeded those based on average state (n=22) policy for min/week by 44.5% for elementary, 62.7% for middle, and 59.5% for high schools. Since 2012 more states adopted policies for PE minutes than dropped them, however, EEE over 10years showed a net loss of 1200kcal/student. With no overall recent improvements in state PE policy and professional recommendations currently not being met, PE remains an underutilized public health resource for EEE. Strong policies, coupled with enhanced accountability of PE teachers and administrators, are needed to ensure PE exists in schools. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of two physical education programmes on health- and skill-related physical fitness of Albanian children.

    PubMed

    Jarani, J; Grøntved, A; Muca, F; Spahi, A; Qefalia, D; Ushtelenca, K; Kasa, A; Caporossi, D; Gallotta, M C

    2016-01-01

    This study aims to evaluate the effectiveness of two school-based physical education (PE) programmes (exercise-based and games-based) compared with traditional PE, on health- and skill-related physical fitness components in children in Tirana, Albania. Participants were 378 first-grade (6.8 years) and 389 fourth-grade (9.8 years) children attending four randomly selected schools in Tirana. Twenty-four school classes within these schools were randomly selected (stratified by school and school grade) to participate as exercise group (EG), games group (GG) and control group (CG). Both EG and GG intervention programmes were taught by professional PE teachers using station/circuit teaching framework while CG referred to traditional PE school lessons by a general teacher. All programmes ran in parallel and lasted 5 months, having the same frequency (twice weekly) and duration (45 min). Heart rate (HR) monitoring showed that intensity during PE lessons was significantly higher in the intervention groups compared with control (P < 0.001). Both PE exercise- and games programmes significantly improved several health- and skill-related fitness indicators compared with traditional PE lessons (e.g. gross motor skill summary score: 9.4 (95% CI 7.9; 10.9) for exercise vs. control and 6.5 (95% CI 5.1; 8.1) for games vs. control, cardiorespiratory fitness: 2.0 ml O2 · min(-1) · kg(-1) (95% CI 1.5; 2.4) for exercise vs. control and 1.4 ml O2 · min(-1) · kg(-1) (95% CI 1.0; 1.8) for games vs. control). Furthermore, compared to games-based PE, exercise-based PE showed more positive changes in some gross motor coordination skills outcomes, coordination skills outcomes and cardiorespiratory fitness. The results from this study show that exercise- and games-based PE represents a useful strategy for improving health- and skill-related physical fitness in Albanian elementary school children. In addition, the study shows that exercise-based PE was more effective than games-based PE in improving gross motor function and cardiorespiratory fitness.

  9. Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köpplmayr, Thomas, E-mail: tkoepplmayr@gmail.com; Mayrhofer, Elias

    In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscousmore » phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance.« less

  10. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    PubMed

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.

    PubMed

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T

    2015-02-01

    The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Public disclosure to improve physical education in an urban school district: results from a 2-year quasi-experimental study

    PubMed Central

    Vittinghoff, Eric; Linchey, Jennifer K.; Madsen, Kristine A.

    2015-01-01

    BACKGROUND Many elementary schools have policies requiring a minimum amount of physical education (PE). However, few schools comply with local/state PE policy and little is known about how to improve adherence. We evaluated changes in PE among 5th-grade classes, following participatory action research efforts to improve PE quantity and policy compliance that focused on publically disclosing PE data. METHODS Data were collected at 20 San Francisco public elementary schools in the spring of 2011 and 2013. PE schedules were collected and PE classes were directly observed (2011, N = 30 teachers; 2013, N = 33 teachers). Data on the proportion of schools meeting state PE mandates in 2011 were shared within the school district and disclosed to the general public in 2012. RESULTS From 2011 to 2013, PE increased by 11 minutes/week based on teachers’ schedules (95% CI: 3.0, 19.6) and by 14 minutes/week (95% CI: 1.9, 26.0) based on observations. The proportion of schools meeting the state PE mandate increased from 20% to 30% (p = .27). CONCLUSIONS Positive changes in PE were seen over a 2-year period following the public disclosure of data that highlighted poor PE policy compliance. Public disclosure could be a method for ensuring greater PE policy adherence. PMID:26201757

  13. Public Disclosure to Improve Physical Education in an Urban School District: Results From a 2-Year Quasi-Experimental Study.

    PubMed

    Thompson, Hannah R; Vittinghoff, Eric; Linchey, Jennifer K; Madsen, Kristine A

    2015-09-01

    Many elementary schools have policies requiring a minimum amount of physical education (PE). However, few schools comply with local/state PE policy and little is known about how to improve adherence. We evaluated changes in PE among fifth-grade classes, following participatory action research efforts to improve PE quantity and policy compliance that focused on publically disclosing PE data. Data were collected in 20 San Francisco public elementary schools in spring 2011 and 2013. PE schedules were collected and PE classes were directly observed (2011, N = 30 teachers; 2013, N = 33 teachers). Data on the proportion of schools meeting state PE mandates in 2011 were shared within the school district and disclosed to the general public in 2012. From 2011 to 2013, PE increased by 11 minutes/week based on teachers' schedules (95% CI: 3.0, 19.6) and by 14 minutes/week (95% CI: 1.9, 26.0) based on observations. The proportion of schools meeting the state PE mandate increased from 20% to 30% (p = .27). Positive changes in PE were seen over a 2-year period following the public disclosure of data that highlighted poor PE policy compliance. Public disclosure could be a method for ensuring greater PE policy adherence. © 2015, American School Health Association.

  14. Correlates of State Enactment of Elementary School Physical Education Laws

    PubMed Central

    Monnat, Shannon M.; Lounsbery, Monica A.F.; Smith, Nicole J.

    2014-01-01

    Objective To describe variation in U.S. state elementary school physical education (PE) policies and to assess associations between state PE policy enactment and education funding, academic achievement, sociodemographic disadvantage, and political characteristics. Methods U.S. state laws regarding school PE time, staffing, curriculum, fitness assessment, and moderate-to-vigorous physical activity (MVPA) in 2012 were classified as strong/specific, weak/nonspecific, or none based on codified law ratings within the Classification of Laws Associated with School Students (C.L.A.S.S.). Laws were merged with state-level data from multiple sources. Logistic regression was used to determine associations between state characteristics and PE laws (N=51). Results Laws with specific PE and MVPA time requirements and evidence-based curriculum standards were more likely in states with low academic performance and in states with sociodemographically disadvantaged populations. School day length was positively associated with enacting a PE curriculum that referenced evidence-based standards. School funding and political characteristics were not associated with PE laws. Conclusions Limited time and high-stakes testing requirements force schools to prioritize academic programs, posing barriers to state passage of specific PE laws. To facilitate PE policy enactment, it may be necessary to provide evidence of how PE policies can be implemented within existing time and staffing structures. PMID:25230368

  15. Correlates of state enactment of elementary school physical education laws.

    PubMed

    Monnat, Shannon M; Lounsbery, Monica A F; Smith, Nicole J

    2014-12-01

    To describe variation in U.S. state elementary school physical education (PE) policies and to assess associations between state PE policy enactment and education funding, academic achievement, sociodemographic disadvantage, and political characteristics. U.S. state laws regarding school PE time, staffing, curriculum, fitness assessment, and moderate-to-vigorous physical activity (MVPA) in 2012 were classified as strong/specific, weak/nonspecific, or none based on codified law ratings within the Classification of Laws Associated with School Students (C.L.A.S.S.). Laws were merged with state-level data from multiple sources. Logistic regression was used to determine associations between state characteristics and PE laws (N=51). Laws with specific PE and MVPA time requirements and evidence-based curriculum standards were more likely in states with low academic performance and in states with sociodemographically disadvantaged populations. School day length was positively associated with enacting a PE curriculum that referenced evidence-based standards. School funding and political characteristics were not associated with PE laws. Limited time and high-stake testing requirements force schools to prioritize academic programs, posing barriers to state passage of specific PE laws. To facilitate PE policy enactment, it may be necessary to provide evidence on how PE policies can be implemented within existing time and staffing structures. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Validity of premature ejaculation diagnostic tool and its association with International Index of Erectile Function-15 in Chinese men with evidence-based-defined premature ejaculation.

    PubMed

    Tang, Dong-Dong; Li, Chao; Peng, Dang-Wei; Zhang, Xian-Sheng

    2018-01-01

    The premature ejaculation diagnostic tool (PEDT) is a brief diagnostic measure to assess premature ejaculation (PE). However, there is insufficient evidence regarding its validity in the new evidence-based-defined PE. This study was performed to evaluate the validity of PEDT and its association with IIEF-15 in different types of evidence-based-defined PE. From June 2015 to January 2016, a total of 260 men complaining of PE and defined as lifelong PE (LPE)/acquired PE (APE) according to the evidence-based definition from Andrology Clinic of the First Affiliated Hospital of Anhui Medical University, along with 104 male healthy controls without PE from a medical examination center, were enrolled in this study. All individuals completed questionnaires including demographics, medical and sexual history, as well as PEDT and IIEF-15. After statistical analysis, it was found that men with PE reported higher PEDT scores (14.28 ± 3.05) and lower IIEF-15 (41.26 ± 8.20) than men without PE (PEDT: 5.32 ± 3.42, IIEF-15: 52.66 ± 6.86, P < 0.001 for both). It was suggested that a score of ≥9 indicated PE in both LPE and APE by sensitivity and specificity analyses (sensitivity: 0.875, 0.913; specificity: 0.865, 0.865, respectively). In addition, IIEF-15 were higher in men with LPE (42.64 ± 8.11) than APE (39.43 ± 7.84, P < 0.001). After adjusting for age, IIEF-15 was negatively related to PEDT in men with LPE (adjust r = -0.225, P < 0.001) and APE (adjust r = -0.378, P < 0.001). In this study, we concluded that PEDT was valid in the diagnosis of evidenced-based-defined PE. Furthermore, IIEF-15 was negatively related to PEDT in men with different types of PE.

  17. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions.

    PubMed

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M; DeBruyn, Jennifer M

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  18. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valente, Marco, E-mail: marco.valente@uniroma1.it; Tirillò, Jacopo; Quitadamo, Alessia, E-mail: alessia.quitadamo@uniroma1.it

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered bymore » the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.« less

  19. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    NASA Astrophysics Data System (ADS)

    Valente, Marco; Tirillò, Jacopo; Quitadamo, Alessia; Santulli, Carlo

    2016-05-01

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.

  20. Self-reported premature ejaculation prevalence and characteristics in Korean young males: community-based data from an internet survey.

    PubMed

    Son, Hwancheol; Song, Sang Hoon; Kim, Soo Woong; Paick, Jae-Seung

    2010-01-01

    Premature ejaculation (PE) is suspected to be the most prevalent male sexual complaint, and the prevalence of PE is considerably high also in the younger generation. We investigated the PE prevalence based on the Diagnostic and Statistical Manual of Mental Disorders (4th ed text revision; DSM-IV-TR) definition and the risk factors of PE in Korean young men via Internet survey. Subjects (n = 3980) aged from 20 to 59, who performed sexual intercourse more than once a month during the past 6 months were asked to participate in this study. Participants were asked to complete a questionnaire that consisted of questions on general, medical, and sexual history related to ejaculation. A total of 600 subjects were included in this study. PE prevalence was found to be 18.3%. Prevalences were not significantly different across age groups, after excluding subjects with erectile dysfunction (ED). Educational level, marital status and duration, average income, sexual orientation, smoking, alcohol consumption, and circumcision status showed no difference in the PE and non-PE groups. Partners perceived satisfaction rates were 45.0% in the PE group and 63.9% in the non-PE group. Significant differences were found between the PE and non-PE groups in terms of ED, obesity, and depression prevalence. However, multiple logistic regression analysis revealed that the significant risk factors of PE were age and the frequency of conversations with partners about sexual intercourse. This Internet-based study is limited because participants probably represent a selected population of Internet users with non-representative educational and socioeconomic profiles. This study is the first to report the prevalence of both self-reported PE and PE on the basis of the DSM-IV-TR definition in the Korean population. This study demonstrates that PE in Korea is as prevalent as it is in European countries and the United States.

  1. Physicochemical, nutritional, and antimicrobial properties of wine grape (cv. Merlot) pomace extract-based films.

    PubMed

    Deng, Qian; Zhao, Yanyun

    2011-04-01

    Wine grape pomace (WGP) (cv. Merlot) extract-based films were studied in terms of their physicochemical, mechanical, water barrier, nutritional, and antibacterial properties. Pomace extract (PE) was obtained by hot water extraction and had a total soluble solid of 3.6% and pH 3.65. Plant-based polysaccharides, low methoxyl pectin (LMP, 0.75% w/w), sodium alginate (SA, 0.3% w/w), or Ticafilm (TF, 2% w/w), was added into PE for film formation, respectively. Elongation at break and tensile strength were 23% and 4.04 MPa for TF-PE film, 25% and 1.12 MPa for SA-PE film, and 9.89% and 1.56 MPa for LMP-PE film. Water vapor permeability of LMP-PE and SA-PE films was 63 and 60 g mm m(-2) d(-1) kPa, respectively, lower than that of TF-PE film (70 g mm m(-2) d(-1) kPa) (P<0.05). LMP-PE film had higher water solubility, indicated by the haze percentage of water after 24 h of film immersion (52.8%) than that of TF-PE (25.7%) and SA-PE (15.9%) films, and also had higher amount of released phenolics (96.6%) than that of TF-PE (93.8%) and SA-PE (80.5%) films. PE films showed antibacterial activity against both Escherichia coli and Listeria innocua, in which approximate 5-log reductions in E. coli and 1.7- to 3.0-log reductions in L. innocua were observed at the end of 24 h incubation test compared with control. This study demonstrated the possibility of utilizing WGP extracts as natural, antimicrobial, and antioxidant promoting film-forming material for various food applications.   WGP extract-based edible films with the addition of a small amount of commercial polysaccharides showed attractive color and comparable mechanical and water barrier properties to other edible films. The films also demonstrated their potential antioxidant and antimicrobial functions. Hence, they may be used as colorful wraps or coatings for food, pharmaceutical, or other similar applications.

  2. Field evaluation of a new plastic film (vapor safe) to reduce fumigant emissions and improve distribution in soil.

    PubMed

    Qin, Ruijun; Gao, Suduan; Ajwa, Husein; Sullivan, David; Wang, Dong; Hanson, Bradley D

    2011-01-01

    Preplant soil fumigation is an important pest management practice in coastal California strawberry production regions. Potential atmospheric emissions of fumigants from field treatment, however, have drawn intensive environmental and human health concerns; increasingly stringent regulations on fumigant use have spurred research on low-emission application techniques. The objectives of this research were to determine the effects of a new low-permeability film, commonly known as totally impermeable film (TIF), on fumigant emissions and on fumigant distribution in soil. A 50/50 mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) was shank-applied at 314 kg ha in two location-separate field plots (0.4 ha each) in Ventura County, California, in fall 2009. One plot was surface-covered with standard polyethylene (PE) film, and the other was covered with TIF immediately after fumigant application. Data collection included emissions, soil-gas phase concentration profile, air concentration under the film, and soil residuals of the applied fumigants. Peak emission flux of 1,3-D and CP from the TIF field was substantially lower than from the PE field. Total through-film emission loss was 2% for 1,3-D and <1% for CP from the TIF field during a 6-d film covering period, compared with 43% for 1,3-D and 12% for CP from the PE field. However, on film-cutting, greater retention of 1,3-D in the TIF field resulted in a much higher emission surge compared with the PE field, while CP emissions were fairly low in both fields. Higher concentrations and a more uniform distribution in the soil profile for 1,3-D and CP were observed under the TIF compared with the PE film, suggesting that the TIF may allow growers to achieve satisfactory pest control with lower fumigant rates. The surging 1,3-D emissions after film-cutting could result in high exposure risks to workers and bystanders and must be addressed with additional mitigation measures. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.

  4. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    NASA Astrophysics Data System (ADS)

    Docters, E. H.; Smolko, E. E.; Suarez, C. E.

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).

  5. Using web-based video to enhance physical examination skills in medical students.

    PubMed

    Orientale, Eugene; Kosowicz, Lynn; Alerte, Anton; Pfeiffer, Carol; Harrington, Karen; Palley, Jane; Brown, Stacey; Sapieha-Yanchak, Teresa

    2008-01-01

    Physical examination (PE) skills among U.S. medical students have been shown to be deficient. This study examines the effect of a Web-based physical examination curriculum on first-year medical student PE skills. Web-based video clips, consisting of instruction in 77 elements of the physical examination, were created using Microsoft Windows Moviemaker software. Medical students' PE skills were evaluated by standardized patients before and after implementation of the Internet-based video. Following implementation of this curriculum, there was a higher level of competency (from 87% in 2002-2003 to 91% in 2004-2005), and poor performances on standardized patient PE exams substantially diminished (from a 14%-22%failure rate in 2002-2003, to 4% in 2004-2005. A significant improvement in first-year medical student performance on the adult PE occurred after implementing Web-based instructional video.

  6. Changing paradigms from a historical DSM-III and DSM-IV view toward an evidence-based definition of premature ejaculation. Part I--validity of DSM-IV-TR.

    PubMed

    Waldinger, Marcel D; Schweitzer, Dave H

    2006-07-01

    In former days, information obtained from randomized well-controlled clinical trials and epidemiological studies on premature ejaculation (PE) was not available, thereby hampering the efforts of the consecutive DSM Work Groups on Sexual Disorders to formulate an evidence-based definition of PE. The current DSM-IV-TR definition of PE is still nonevidence based. In addition, the requirement that persistent self-perceived PE, distress, and interpersonal difficulties, in absence of a quantified ejaculation time, are necessary to establish the diagnosis remains disputable. To investigate the validity and reliability of DSM and ICD diagnosis of premature ejaculation. The historical development of DSM and ICD classification of mental disorders is critically reviewed, and two studies using the DSM-IV-TR definition of PE is critically reanalyzed. Reanalysis of two studies using the DSM-IV-TR definition of PE has shown that DSM-diagnosed PE can be accompanied by long intravaginal ejaculation latency time (IELT) values. The reanalysis revealed a low positive predictive value for the DSM-IV-TR definition when used as a diagnostic test. A similar situation pertains to the American Urological Association (AUA) definition of PE, which is practically a copy of the DSM-IV-TR definition. It should be emphasized that any evidence-based definition of PE needs objectively collected patient-reported outcome (PRO) data from epidemiological studies, as well as reproducible quantifications of the IELT.

  7. Improved paramagnetic chelate for molecular imaging with MRI

    NASA Astrophysics Data System (ADS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  8. Patient-Centered Research

    PubMed Central

    Wicki, J; Perneger, TV; Junod, AF; Bounameaux, H; Perrier, A

    2000-01-01

    PURPOSE We aimed to develop a simple standardized clinical score to stratify emergency ward patients with clinically suspected PE into groups with a high, intermediate, or low probability of PE, in order to improve and simplify the diagnostic approach. METHODS Analysis of a database of 1090 consecutive patients admitted to the emergency ward for suspected PE, in whom diagnosis of PE was ruled in or out by a standard diagnostic algorithm. Logistic regression was used to predict clinical parameters associated with PE. RESULTS 296 out of 1090 patients (27%) were found to have PE. The optimal estimate of clinical probability was based on eight variables: recent surgery, previous thromboembolic event, older age, hypocapnia, hypoxemia, tachycardia, band atelectasis or elevation of a hemidiaphragm on chest X-ray. A probability score was calculated by adding points assigned to these variables. A cut-off score of 4 best identified patients with low probability of PE. 486 patients (49%) had a low clinical probability of PE (score < 4), of which 50 (10.3%) had a proven PE. The prevalence of PE was 38% in the 437 patients with an intermediate probability (score 5–8, n = 437) and 81% in the 63 patients with a high probability (score>9). CONCLUSION This clinical score, based on easily available and objective variables, provides a standardized assessment of the clinical probability of PE. Applying this score to emergency ward patients suspected of PE could allow a more efficient diagnostic process.

  9. RS3PE: Clinical and Research Development.

    PubMed

    Li, Hongbin; Altman, Roy D; Yao, Qingping

    2015-08-01

    Remitting seronegative symmetrical synovitis with pitting edema or RS3PE is a rare elderly-onset rheumatic syndrome. Although there are overlapping clinical manifestations between RS3PE, elderly-onset rheumatoid arthritis, and polymyalgia rheumatica, RS3PE has distinct characteristics. RS3PE can be associated with neoplasia and various rheumatic conditions, suggesting that it may be heterogeneous, and is considered as a paraneoplastic rheumatic disease. The pathogenesis of RS3PE may involve vascular endothelial growth factor and infection in RS3PE based upon limited data. Patients with RS3PE without concomitant malignancy respond well to small doses of glucocorticoids and carry good prognosis.

  10. Modulation of the Activity of Mycobacterium tuberculosis LipY by Its PE Domain

    PubMed Central

    Garrett, Christopher K.; Broadwell, Lindsey J.; Hayne, Cassandra K.; Neher, Saskia B.

    2015-01-01

    Mycobacterium tuberculosis harbors over 160 genes encoding PE/PPE proteins, several of which have roles in the pathogen’s virulence. A number of PE/PPE proteins are secreted via Type VII secretion systems known as the ESX secretion systems. One PE protein, LipY, has a triglyceride lipase domain in addition to its PE domain. LipY can regulate intracellular triglyceride levels and is also exported to the cell wall by one of the ESX family members, ESX-5. Upon export, LipY’s PE domain is removed by proteolytic cleavage. Studies using cells and crude extracts suggest that LipY’s PE domain not only directs its secretion by ESX-5, but also functions to inhibit its enzymatic activity. Here, we attempt to further elucidate the role of LipY’s PE domain in the regulation of its enzymatic activity. First, we established an improved purification method for several LipY variants using detergent micelles. We then used enzymatic assays to confirm that the PE domain down-regulates LipY activity. The PE domain must be attached to LipY in order to effectively inhibit it. Finally, we determined that full length LipY and the mature lipase lacking the PE domain (LipYΔPE) have similar melting temperatures. Based on our improved purification strategy and activity-based approach, we concluded that LipY’s PE domain down-regulates its enzymatic activity but does not impact the thermal stability of the enzyme. PMID:26270534

  11. New insights on premature ejaculation: a review of definition, classification, prevalence and treatment.

    PubMed

    Serefoglu, Ege C; Saitz, Theodore R

    2012-11-01

    There are ongoing debates about the definition, classification and prevalence of premature ejaculation (PE). The first evidence-based definition of PE was limited to heterosexual men with lifelong PE who engage in vaginal intercourse. Unfortunately, many patients with the complaint of PE do not meet these criteria. However, these men can be diagnosed as one of the PE subtypes, namely acquired PE, natural variable PE or premature-like ejaculatory dysfunction. Nevertheless, the validity of these subtypes has not yet been supported by evidence. The absence of a universally accepted PE definition and lack of standards for data acquisition have resulted in prevalence studies that have reported conflicting rates. The very high prevalence of 20%-30% is probably due to the vague terminology used in the definitions at the time when such surveys were conducted. Although many men may complain of PE when questioned for a population-based prevalence study, only a few of them will actively seek treatment for their complaint, even though most of these patients would define symptoms congruent with PE. The complaints of acquired PE patients may be more severe, whereas complaints of patients experiencing premature-like ejaculatory dysfunction seem to be least severe among men with various forms of PE. Although numerous treatment modalities have been proposed for management of PE, only antidepressants and topical anaesthetic creams have currently been proven to be effective. However, as none of the treatment modalities have been approved by the regulatory agencies, further studies must be carried to develop a beneficial treatment strategy for PE.

  12. Structure, viscoelasticity, and interfacial dynamics of a model polymeric bicontinuous microemulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.

    2016-01-01

    We have systematically studied the equilibrium structure and dynamics of a polymeric bicontinuous microemulsion (BμE) composed of poly(cyclohexylethylene) (PCHE), poly(ethylene) (PE), and a volumetrically symmetric PCHE–PE diblock copolymer, using dynamic mechanical spectroscopy, small angle X-ray and neutron scattering, and transmission electron microscopy. The BμE was investigated over an 80 °C temperature range, revealing a structural evolution and a rheological response not previously recognized in such systems. As the temperature is reduced below the point associated with the lamellar-disorder transition at compositions adjacent to the microemulsion channel, the interfacial area per chain of the BμE approaches that of the neat (undiluted)more » lamellar diblock copolymer. With increasing temperature, the diblock-rich interface swells through homopolymer infiltration. Time–temperature-superposed linear dynamic data obtained as a function of frequency show that the viscoelastic response of the BμE is strikingly similar to that of the fluctuating pure diblock copolymer in the disordered state, which we associate with membrane undulations and the breaking and reforming of interfaces. This work provides new insights into the structure and dynamics that characterize thermodynamically stable BμEs in the limits of relatively weak and strong segregation.« less

  13. Differential gene expression analysis of ‘Chili’ (Pyrus bretschneideri) fruit pericarp with two types of bagging treatments

    PubMed Central

    Wang, Yuling; Zhang, Xinfu; Wang, Ran; Bai, Yingxin; Liu, Chenglian; Yuan, Yongbing; Yang, Yingjie; Yang, Shaolan

    2017-01-01

    Preharvest bagging is a simple, grower-friendly and safe physical protection technique commonly applied to many fruits, and the application of different fruit bags can have various effects. To explore the molecular mechanisms underlying the fruit quality effects of different bagging treatments, digital gene expression (DGE) profiling of bagged and unbagged ‘Chili’ (Pyrus bretschneideri Rehd.) pear pericarp during development was performed. Relative to unbagged fruit, a total of 3022 and 769 differentially expressed genes (DEGs) were detected in the polyethylene (PE)-bagged and non-woven fabric-bagged fruit, respectively. DEGs annotated as photosynthesis-antenna proteins and photosynthesis metabolism pathway were upregulated in non-woven fabric-bagged fruit but downregulated in the PE-bagged fruit. Non-woven fabric bagging inhibited lignin synthesis in ‘Chili’ pear pericarp by downregulating DEGs involved in phenylpropanoid biosynthesis; consequently, the fruit lenticels in non-woven fabric-bagged fruit were smaller than those in the other treatments. The results indicate that the non-woven fabric bagging method has a positive effect on the appearance of ‘Chili’ pear fruit but neither of the two bagging treatments is conducive to the accumulation of soluble sugar. PMID:28280542

  14. Potential of far-ultraviolet absorption spectroscopy as a highly sensitive qualitative and quantitative analysis method for polymer films, part I: classification of commercial food wrap films.

    PubMed

    Sato, Harumi; Higashi, Noboru; Ikehata, Akifumi; Koide, Noriko; Ozaki, Yukihiro

    2007-07-01

    The aim of the present study is to propose a totally new technique for the utilization of far-ultraviolet (UV) spectroscopy in polymer thin film analysis. Far-UV spectra in the 120-300 nm region have been measured in situ for six kinds of commercial polymer wrap films by use of a novel type of far-UV spectrometer that does not need vacuum evaporation. These films can be straightforwardly classified into three groups, polyethylene (PE) films, polyvinyl chloride (PVC) films, and polyvinylidene chloride (PVDC) films, by using the raw spectra. The differences in the wavelength of the absorption band due to the sigma-sigma* transition of the C-C bond have been used for the classification of the six kinds of films. Using this method, it was easy to distinguish the three kinds of PE films and to separate the two kinds of PVDC films. Compared with other spectroscopic methods, the advantages of this technique include nondestructive analysis, easy spectral measurement, high sensitivity, and simple spectral analysis. The present study has demonstrated that far-UV spectroscopy is a very promising technique for polymer film analysis.

  15. Polymer Deposition from a Quasi-Vapor Phase as a New Route to Access a Wide Temperature Range for Crystallization

    NASA Astrophysics Data System (ADS)

    Jeong, Hyuncheol; Arnold, Craig; Priestley, Rodney

    Polymer crystallization is strongly governed by kinetics where crystallization temperature (Tc) plays an important role in determining materials properties. Due to the high entropic barrier required for reorganization, the long-chain molecules typically form folded-chain crystals, whose thickness and thermal stability decrease as Tc is lowered. Interesting questions remain regarding crystallization in the deeply supercooled regime. This is partially due to the difficulty in accessing the low Tc range without nucleation. For a strong crystal-former like polyethylene (PE), cooling from a melt or solution always confronts the onset of nucleation at a high Tc followed by rapid crystal growth. Here, we introduce an alternative approach to grow polymer crystals via Matrix Assisted Pulsed Laser Evaporation (MAPLE). This methodology achieves the crystallization of polymers from a quasi-vapor phase at a controlled temperature, allowing for the study of the empirical relationship between Tc and crystal structure over a wide range of Tc. With PE as a model polymer, we investigated the morphological and thermal properties of crystals grown over a wide temperature range down to 120 °C below bulk crystallization point.

  16. An evidence-based unified definition of lifelong and acquired premature ejaculation: report of the second International Society for Sexual Medicine Ad Hoc Committee for the Definition of Premature Ejaculation.

    PubMed

    Serefoglu, Ege Can; McMahon, Chris G; Waldinger, Marcel D; Althof, Stanley E; Shindel, Alan; Adaikan, Ganesh; Becher, Edgardo F; Dean, John; Giuliano, Francois; Hellstrom, Wayne J G; Giraldi, Annamaria; Glina, Sidney; Incrocci, Luca; Jannini, Emmanuele; McCabe, Marita; Parish, Sharon; Rowland, David; Segraves, R Taylor; Sharlip, Ira; Torres, Luiz Otavio

    2014-06-01

    The International Society for Sexual Medicine (ISSM) Ad Hoc Committee for the Definition of Premature Ejaculation developed the first evidence-based definition for lifelong premature ejaculation (PE) in 2007 and concluded that there were insufficient published objective data at that time to develop a definition for acquired PE. The aim of this article is to review and critique the current literature and develop a contemporary, evidence-based definition for acquired PE and/or a unified definition for both lifelong and acquired PE. In April 2013, the ISSM convened a second Ad Hoc Committee for the Definition of Premature Ejaculation in Bangalore, India. The same evidence-based systematic approach to literature search, retrieval, and evaluation used by the original committee was adopted. The committee unanimously agreed that men with lifelong and acquired PE appear to share the dimensions of short ejaculatory latency, reduced or absent perceived ejaculatory control, and the presence of negative personal consequences. Men with acquired PE are older, have higher incidences of erectile dysfunction, comorbid disease, and cardiovascular risk factors, and have a longer intravaginal ejaculation latency time (IELT) as compared with men with lifelong PE. A self-estimated or stopwatch IELT of 3 minutes was identified as a valid IELT cut-off for diagnosing acquired PE. On this basis, the committee agreed on a unified definition of both acquired and lifelong PE as a male sexual dysfunction characterized by (i) ejaculation that always or nearly always occurs prior to or within about 1 minute of vaginal penetration from the first sexual experience (lifelong PE) or a clinically significant and bothersome reduction in latency time, often to about 3 minutes or less (acquired PE); (ii) the inability to delay ejaculation on all or nearly all vaginal penetrations; and (iii) negative personal consequences, such as distress, bother, frustration, and/or the avoidance of sexual intimacy. The ISSM unified definition of lifelong and acquired PE represents the first evidence-based definition for these conditions. This definition will enable researchers to design methodologically rigorous studies to improve our understanding of acquired PE. © 2014 International Society for Sexual Medicine.

  17. Engineering Nanostructures by Decorating Magnetic Nanoparticles onto Graphene Oxide Sheets to Shield Electromagnetic Radiations.

    PubMed

    Mural, Prasanna Kumar S; Pawar, Shital Patangrao; Jayanthi, Swetha; Madras, Giridhar; Sood, Ajay K; Bose, Suryasarathi

    2015-08-05

    In this study, a minimum reflection loss of -70 dB was achieved for a 6 mm thick shield (at 17.1 GHz frequency) employing a unique approach. This was accomplished by engineering nanostructures through decoration of magnetic nanoparticles (nickel, Ni) onto graphene oxide (GO) sheets. Enhanced electromagnetic (EM) shielding was derived by selectively localizing the nanoscopic particles in a specific phase of polyethylene (PE)/poly(ethylene oxide) (PEO) blends. By introduction of a conducting inclusion (like multiwall carbon nanotubes, MWNTs) together with the engineered nanostructures (nickel-decorated GO, GO-Ni), the shielding efficiency can be enhanced significantly in contrast to physically mixing the particles in the blends. For instance, the composites showed a shielding efficiency >25 dB for a combination of MWNTs (3 wt %) and Ni nanoparticles (52 wt %) in PE/PEO blends. However, similar shielding effectiveness could be achieved for a combination of MWNTs (3 wt %) and 10 vol % of GO-Ni where in the effective concentration of Ni was only 19 wt %. The GO-Ni sheets facilitated in an efficient charge transfer as manifested from high electrical conductivity in the blends besides enhancing the permeability in the blends. It is envisioned that GO is simultaneously reduced in the process of synthesizing GO-Ni, and this facilitated in efficient charge transfer between the neighboring CNTs. More interestingly, the blends with MWNTs/GO-Ni attenuated the incoming EM radiation mostly by absorption. This study opens new avenues in designing polyolefin-based lightweight shielding materials by engineering nanostructures for numerous applications.

  18. Suppressing effect of goethite on PCDD/F and HCB emissions from plastic materials incineration.

    PubMed

    Jin, Guang-Zhu; Lee, Se-Jin; Kang, Jung-Ho; Chang, Yoon-Seok; Chang, Yoon-Young

    2008-02-01

    Polyethylene (PE) and polyvinyl chloride (PVC) are the leading plastics in total production in the world. The incineration of plastic-based materials forms many chlorinated compounds, such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). In this study the addition of goethite (alpha-FeOOH) was investigated to determine its suppressing effect on the emission of PCDD/Fs and hexachlorobenzene (HCB) during the combustion of wastes containing PE and PVC. Goethite was being considered since it acts as a dioxin-suppressing catalyst during incineration. Results showed that incorporation of goethite greatly reduced the generation of PCDD/Fs and HCB in the exhaust gas and fly ash. The concentration of PCDD/Fs in flue gas decreased by 45% for lab-scale and 52% for small incinerator combustion experiments, where the goethite ratios in feed samples were 0.54% and 0.34%, respectively. Under the same conditions, the concentration of HCB in flue gas decreased by 88% and 62%, respectively. The present study showed a possible mechanism of the suppressing effect of the goethite for PCDD/F formation. It is likely that iron chlorides react with particulate carbon to form organo-chlorine compounds and promote PCDD/F formation in the gas phase. XRD analysis of combustion ash revealed that the goethite was partially dehydrated and converted to alpha-Fe(2)O(3) and Fe(3)O(4) but no iron chlorides formation. Therefore the goethite impregnated plastics can contribute the reduction of PCDD/Fs and HCB in the exhaust gas during incineration of MSW.

  19. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation

    PubMed Central

    Kang, K-T.; Koh, Y-G.; Son, J.; Kwon, O-R.; Baek, C.; Jung, S. H.

    2016-01-01

    Objectives Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1. PMID:28094763

  20. Electrostatic Properties of PE and PTFE Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Boucher, Derrick; Calle, Carlos

    2006-01-01

    The use of an atmospheric pressure glow discharge (APGD) plasma was used at KSC to increase the hydrophilicity of spaceport materials to enhance their surface charge dissipation and prevent possible ESD in spaceport operations. Significant decreases in charge decay times were observed after tribocharging the materials using the standard KSC tribocharging test. The polarity and amount of charge transferred was dependent upon the effective work function differences between the respective materials. In this study, polyethylene (PE) and polytetrafluoroethylene (PTFE) were exposed to a He+O2 APGD. The pre and post treatment surface chemistry was analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab initio calculations were performed to correlate the experimental results with some plausible molecular and electronic structure features of the oxidation process. For the PE, significant surface oxidation was observed, as indicated by XPS showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angle from 98.9 deg to 61.2 deg. For the PTFE, no C-O bonding appeared and the surface contact angle increased indicating the APGD only succeeded in cleaning the PTFE surface without affecting the surface structure. The calculations using the PM3 and DFT methods were performed on single and multiple oligomers to simulate a wide variety of oxidation scenarios. Calculated work function results suggest that regardless of oxidation mechanism, e.g. -OH, =0 or a combination thereof, the experimentally observed levels of surface oxidation are unlikely to lead to a significant change in the electronic structure of PE and that its increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. The calculations for PTFE argue strongly against significant oxidation of that material, as confirmed by the XPS results.

  1. Investigation of organic matter migrating from polymeric pipes into drinking water under different flow manners.

    PubMed

    Zhang, Ling; Liu, Shuming; Liu, Wenjun

    2014-02-01

    Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC were released under the continuous migration tests.

  2. Influence of a Double-Lumen Extension Tube on Drug Delivery: Examples of Isosorbide Dinitrate and Diazepam

    PubMed Central

    Maiguy-Foinard, Aurélie; Blanchemain, Nicolas; Barthélémy, Christine; Odou, Pascal

    2016-01-01

    Purpose Plastic materials such as polyurethane (PUR), polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC) are widely used in double-lumen extension tubing. The purposes of our study were to 1) compare in vitro drug delivery through the double extension tubes available on the market 2) assess the plastic properties of PUR in infusion devices and their impact on drug delivery. Methods The study compared eight double-lumen extension tubes in PUR, co-extruded (PE/PVC) plastic and plasticised PVC from different manufacturers. Isosorbide dinitrate and diazepam were used as model compounds to evaluate their sorption on the internal surface of the infusion device. Control experiments were performed using norepinephrine known not to absorb to plastics. Drug concentrations delivered at the egress of extension tubes were determined over time by an analytical spectrophotometric UV-Vis method. The main characteristics of plastics were also determined. Results Significant differences in the sorption phenomenon were observed among the eight double-lumen extension tubes and between pairs of extension tubes. Mean concentrations of isosorbide dinitrate delivered at the egress of double-lumen extension tubes after a 150-minute infusion (mean values ± standard deviation in percentage of the initial concentrations in the prepared syringes) ranged between 80.53 ± 1.66 (one of the PUR tubes) and 92.84 ± 2.73 (PE/PVC tube). The same parameters measured during diazepam infusion ranged between 48.58 ± 2.88 (one of the PUR tubes) and 85.06 ± 3.94 (PE/PVC tube). The double-lumen extension tubes in PUR were either thermosetting (resin) or thermoplastic according to reference. Conclusions Clinicians must be aware of potential drug interactions with extension tube materials and so must consider their nature as well as the sterilisation method used before selecting an infusion device. PMID:27153224

  3. Modifying middle school physical education: piloting strategies to increase physical activity.

    PubMed

    Jago, Russell; McMurray, Robert G; Bassin, Stanley; Pyle, Laura; Bruecker, Steve; Jakicic, John M; Moe, Esther; Murray, Tinker; Volpe, Stella L

    2009-05-01

    Two pilot studies were conducted to examine whether 6th grade students can achieve moderate to vigorous physical activity (MVPA) from 1) activity-based physical education (AB-PE) with 585 participants and 2) a curricular-based (CB-PE) program with 1,544 participants and randomly sampled heart rates during lessons. AB-PE participants spent between 54-66% with a heart rate >140 bpm. CB-PE participants spent between 49-58% with a heart rate >140 bpm. Girls' mean heart rate was 3.7 bpm lower than the boys. PE can be readily modified so that students spend more than 50% of time in MVPA.

  4. Modifying Middle School Physical Education: Piloting Strategies to Increase Physical Activity

    PubMed Central

    Jago, Russell; McMurray, Robert G.; Bassin, Stanley; Pyle, Laura; Bruecker, Steve; Jakicic, John M.; Moe, Esther; Murray, Tinker; Volpe, Stella L.

    2009-01-01

    Two pilot studies were conducted to examine whether 6th grade students can achieve moderate to vigorous physical activity (MVPA) from 1) activity-based physical education (AB-PE) with 585 participants and 2) a curricular-based (CB-PE) program with 1,544 participants and randomly sampled heart rates during lessons. AB-PE participants spent between 54-66% with a heart rate >140 bpm. CB-PE participants spent between 49-58% with a heart rate >140 bpm. Girls' mean heart rate was 3.7 bpm lower than the boys. PE can be readily modified so that students spend more than 50% of time in MVPA. PMID:19556623

  5. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    NASA Astrophysics Data System (ADS)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  6. The algorithm of verification of welding process for plastic pipes

    NASA Astrophysics Data System (ADS)

    Rzasinski, R.

    2017-08-01

    The study analyzes the process of butt welding of PE pipes in terms of proper selection of connector parameters. The process was oriented to the elements performed as a series of types of pipes. Polymeric materials commonly referred to as polymers or plastics, synthetic materials are produced from oil products in the polyreaction compounds of low molecular weight, called monomers. During the polyreactions monomers combine to build a macromolecule material monomer named with the prefix poly polypropylene, polyethylene or polyurethane, creating particles in solid state on the order of 0,2 to 0,4 mm. Finished products from polymers of virtually any shape and size are obtained by compression molding, injection molding, extrusion, laminating, centrifugal casting, etc. Weld can only be a thermoplastic that softens at an elevated temperature, and thus can be connected via a clamp. Depending on the source and method of supplying heat include the following welding processes: welding contact, radiant welding, friction welding, dielectric welding, ultrasonic welding. The analysis will be welding contact. In connection with the development of new generation of polyethylene, and the production of pipes with increasing dimensions (diameter, wall thickness) is important to select the correct process.

  7. Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation.

    PubMed

    Jeon, Hyun Jeong; Kim, Mal Nam

    2013-02-01

    A thermophilic bacterium capable of low-molecular-weight polyethylene (LMWPE) degradation was isolated from a compost sample, and was identified as Chelatococcus sp. E1, through sequencing of the 16S rRNA gene. LMWPE was prepared by thermal degradation of commercial PE in a strict nitrogen atmosphere. LMWPE with a weight-average-molecular-weight (Mw) in the range of 1,700-23,700 was noticeably mineralized into CO(2) by the bacterium. The biodegradability of LMWPE decreased as the Mw increased. The low molecular weight fraction of LMWPE decreased significantly as a result of the degradation process, and thereby both the number-average-molecular-weight and Mw increased after biodegradation. The polydispersity of LMWPE was either narrowed or widened, depending on the initial Mw of LMWPE, due to the preferential elimination of the low molecular weight fraction, in comparison to the high molecular weight portion. LMWPE free from an extremely low molecular weight fraction was also mineralized by the strain at a remarkable rate, and FTIR peaks assignable to C-O stretching appeared as a result of microbial action. The FTIR peaks corresponding to alkenes also became more intense, indicating that dehydrogenations occurred concomitantly with microbial induced oxidation.

  8. Sorption of pharmaceuticals and personal care products to polyethylene debris.

    PubMed

    Wu, Chenxi; Zhang, Kai; Huang, Xiaolong; Liu, Jiantong

    2016-05-01

    Presence of plastic debris in marine and freshwater ecosystems is increasingly reported. Previous research suggested plastic debris had a strong affiliation for many pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and heavy metals. In this study, the sorption behavior of pharmaceuticals and personal care products (PPCPs), including carbamazepine (CBZ), 4-methylbenzylidene camphor (4MBC), triclosan (TCS), and 17α-ethinyl estradiol (EE2), to polyethylene (PE) debris (250 to 280 μm) was investigated. The estimated linear sorption coefficients (K d) are 191.4, 311.5, 5140, and 53,225 L/kg for CBZ, EE2, TCS, and 4MBC, and are related to their hydrophobicities. Increase of salinity from 0.05 to 3.5 % did not affect the sorption of 4MBC, CBZ, and EE2 but enhanced the sorption of TCS, likely due to the salting-out effect. Increase of dissolved organic matter (DOM) content using Aldrich humic acid (HA) as a proxy reduced the sorption of 4MBC, EE2, and TCS, all of which show a relatively strong affiliation to HA. Results from this work suggest that microplastics may play an important role in the fate and transport of PPCPs, especially for those hydrophobic ones.

  9. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method.

    PubMed

    Dümichen, Erik; Barthel, Anne-Kathrin; Braun, Ulrike; Bannick, Claus G; Brand, Kathrin; Jekel, Martin; Senz, Rainer

    2015-11-15

    Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Concentrations and congener profiles of chlorinated paraffins in domestic polymeric products in China.

    PubMed

    Wang, Chu; Gao, Wei; Liang, Yong; Wang, Yawei; Jiang, Guibin

    2018-03-21

    Chlorinated paraffins (CPs) are widely used in domestic polymeric products as plasticizers and fire retardants. In this study, concentrations and congener profiles of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) were investigated in domestic polymeric products, including plastics, rubber and food packaging in China. The average concentrations of SCCPs in polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE) and food packaging were 234, 3968, 150 and 188 ng/g, respectively and the corresponding average concentrations of MCCPs in these samples were 37.4, 2537, 208 and 644 ng/g, respectively. The concentrations of CPs in rubber and polyvinylchloride (PVC) were significantly higher than in other matrices. The highest concentrations of SCCPs and MCCPs were found in a PVC cable sheath with 191 mg/g and 145 mg/g, respectively. Congener group profiles analysis indicated C 11 - and C 13 -congener groups were predominant in carbon homologues of SCCPs, and C 14 -congener groups were predominant in MCCPs. High levels of SCCPs and MCCPs in domestic polymeric products implied that they might be a significant source to the environment and human exposure. Copyright © 2018. Published by Elsevier Ltd.

  11. Rate of loss of simazine, terbuthylazine, isoproturon, and methabenzthiazuron during soil solarization.

    PubMed

    Navarro, Simón; Bermejo, Salvador; Vela, Nuria; Hernández, Joaquín

    2009-07-22

    This paper reports the use of solar heating by polyethylene mulching for decontamination of a silty clay-loam soil polluted with herbicides. Soil solarization, a natural and hydrothermal method commonly used for disinfesting soils, was tested during the summer season on a Hipercalcic Calcisol located in Murcia (southeast Spain) for dissipation of s-triazine (simazine and terbuthylazine) and phenylurea (isoproturon and methabenzthiazuron) herbicides using low-density (LD) and high-density (HD) polyethylene (PE) film as a cover. A well-established influence of the film was observed on the dissipation of all herbicides from the soil, although the density (0.92-0.95 g/cm(3)) of the film used (LDPE and HDPE) was not significant in terms of the rate of loss. In all cases, a quick depletion during the first 2 weeks was observed, mainly for terbuthylazine. The first-order model satisfactorily explained the dissipation process, but the Hoerl and biexponential equations were more appropriate, mainly for simazine, isoproturon, and methabenzthiazuron. In all cases, herbicides disappeared at faster rates in solarized soils (DT(50) = 4-29 days) than in nonmulched soils (DT(50) = 11-35 days), especially for terbuthylazine and isoproturon.

  12. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy.

    PubMed

    Fries, Elke; Dekiff, Jens H; Willmeyer, Jana; Nuelle, Marie-Theres; Ebert, Martin; Remy, Dominique

    2013-10-01

    Any assessment of plastic contamination in the marine environment requires knowledge of the polymer type and the additive content of microplastics. Sequential pyrolysis-gas chromatography coupled to mass spectrometry (Pyr-GC/MS) was applied to simultaneously identify polymer types of microplastic particles and associated organic plastic additives (OPAs). In addition, a scanning electron microscope equipped with an energy-dispersive X-ray microanalyser was used to identify the inorganic plastic additives (IPAs) contained in these particles. A total of ten particles, which were optically identified as potentially being plastics, were extracted from two sediment samples collected from Norderney, a North Sea island, by density separation in sodium chloride. The weights of these blue, white and transparent fragments varied between 10 and 350 μg. Polymer types were identified by comparing the resulting pyrograms with those obtained from the pyrolysis of selected standard polymers. The particles consisted of polyethylene (PE), polypropylene, polystyrene, polyamide, chlorinated PE and chlorosulfonated PE. The polymers contained diethylhexyl phthalate, dibutyl phthalate, diethyl phthalate, diisobutyl phthalate, dimethyl phthalate, benzaldehyde and 2,4-di-tert-butylphenol. Sequential Py-GC/MS was found to be an appropriate tool for identifying marine microplastics for polymer types and OPAs. The IPAs identified were titanium dioxide nanoparticles (TiO2-NPs), barium, sulphur and zinc. When polymer-TiO2 composites are degraded in the marine environment, TiO2-NPs are probably released. Thus, marine microplastics may act as a TiO2-NP source, which has not yet been considered.

  13. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions

    PubMed Central

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M.; DeBruyn, Jennifer M.

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability. PMID:29755440

  14. Multiple patterns of polymer gels in microspheres due to the interplay among phase separation, wetting, and gelation.

    PubMed

    Yanagisawa, Miho; Nigorikawa, Shinpei; Sakaue, Takahiro; Fujiwara, Kei; Tokita, Masayuki

    2014-11-11

    We report the spontaneous patterning of polymer microgels by confining a polymer blend within microspheres. A poly(ethylene glycol) (PEG) and gelatin solution was confined inside water-in-oil (W/O) microdroplets coated with a layer of zwitterionic lipids: dioleoylphosphatidylethanolamine (PE) and dioleoylphosphatidylcholine (PC). The droplet confinement affected the kinetics of the phase separation, wetting, and gelation after a temperature quench, which determined the final microgel pattern. The gelatin-rich phase completely wetted to the PE membrane and formed a hollow microcapsule as a stable state in the PE droplets. Gelation during phase separation varied the relation between the droplet size and thickness of the capsule wall. In the case of the PC droplets, phase separation was completed only for the smaller droplets, wherein the microgel partially wetted the PC membrane and had a hemisphere shape. In addition, the temperature decrease below the gelation point increased the interfacial tension between the PEG/gelatin phases and triggered a dewetting transition. Interestingly, the accompanying shape deformation to minimize the interfacial area was only observed for the smaller PC droplets. The critical size decreased as the gelatin concentration increased, indicating the role of the gel elasticity as an inhibitor of the deformation. Furthermore, variously patterned microgels with spherically asymmetric shapes, such as discs and stars, were produced as kinetically trapped states by regulating the incubation time, polymer composition, and droplet size. These findings demonstrate a way to regulate the complex shapes of microgels using the interplay among phase separation, wetting, and gelation of confined polymer blends in microdroplets.

  15. Influence of different factors on the destruction of films based on polylactic acid and oxidized polyethylene

    NASA Astrophysics Data System (ADS)

    Podzorova, M. V.; Tertyshnaya, Yu. V.; Pantyukhov, P. V.; Shibryaeva, L. S.; Popov, A. A.; Nikolaeva, S.

    2016-11-01

    Influence of different environmental factors on the degradation of film samples based on polylactic acid and low density polyethylene with the addition of oxidized polyethylene was studied in this work. Different methods were used to find the relationship between degradation and ultraviolet, moisture, oxygen. It was found that the addition of oxidized polyethylene, used as a model of recycled polyethylene, promotes the degradation of blends.

  16. IN-HOME EXPOSURE THERAPY FOR VETERANS WITH POST TRAUMATIC STRESS DISORDER

    DTIC Science & Technology

    2016-10-01

    study protocol. 5 Our treatment clinicians are providing the manual-guided evidence - based PE PTSD intervention. Therapists attend a weekly PE...with PTSD confirming the noninferiority of using CVT to deliver an evidence - based treatment (EBT) for PTSD, Cognitive Processing Therapy (CPT; Resick...g. Treatment clinicians will conduct a manual-guided evidence based PTSD intervention, Prolonged Exposure Therapy (PE), with approximately 175

  17. A non-inferiority trial of Prolonged Exposure for posttraumatic stress disorder: In person versus home-based telehealth.

    PubMed

    Acierno, Ron; Knapp, Rebecca; Tuerk, Peter; Gilmore, Amanda K; Lejuez, Carl; Ruggiero, Kenneth; Muzzy, Wendy; Egede, Leonard; Hernandez-Tejada, Melba A; Foa, Edna B

    2017-02-01

    This is the first randomized controlled trial to evaluate non-inferiority of Prolonged Exposure (PE) delivered via home-based telehealth (HBT) compared to standard in-person (IP) PE. One-hundred thirty two Veterans recruited from a Southeastern Veterans Affairs Medical Center and affiliated University who met criteria for posttraumatic stress disorder (PTSD) were randomized to receive PE via HBT or PE via IP. Results indicated that PE-HBT was non-inferior to PE-IP in terms of reducing PTSD scores at post-treatment, 3 and 6 month follow-up. However, non-inferiority hypotheses for depression were only supported at 6 month follow-up. HBT has great potential to reduce patient burden associated with receiving treatment in terms of travel time, travel cost, lost work, and stigma without sacrificing efficacy. These findings indicate that telehealth treatment delivered directly into patients' homes may dramatically increase the reach of this evidence-based therapy for PTSD without diminishing effectiveness. Published by Elsevier Ltd.

  18. Dissemination and use of a participatory ergonomics guide for workplaces.

    PubMed

    Van Eerd, Dwayne; King, Trevor; Keown, Kiera; Slack, Tesha; Cole, Donald C; Irvin, Emma; Amick, Benjamin C; Bigelow, Philip

    2016-06-01

    Musculoskeletal disorders (MSDs) result in lost-time injury claims and lost productivity worldwide, placing a substantial burden on workers and workplaces. Participatory ergonomics (PE) is a popular approach to reducing MSDs; however, there are challenges to implementing PE programmes. Using evidence to overcome challenges may be helpful but the impacts of doing so are unknown. We sought to disseminate an evidence-based PE tool and to describe its use. An easy-to-use, evidence-based PE Guide was disseminated to workplace parties, who were surveyed about using the tool. The greatest barrier to using the tool was a lack of time. Reported tool use included for training purposes, sharing and integrating the tool into existing programmes. New actions related to tool use included training, defining team responsibilities and suggesting programme implementation steps. Evidence-based tools could help ergonomists overcome some challenges involved in implementing injury reduction programmes such as PE. Practitioner Summary Practitioners experience challenges implementing programmes to reduce the burden of MSDs in workplaces. Implementing participatory interventions requires multiple workplace parties to be 'on-board'. Disseminating and using evidence-based guides may help to overcome these challenges. Using evidence-based tools may help ergonomics practitioners implement PE programmes.

  19. Effect of active packaging incorporated with triclosan on bacteria adhesion.

    PubMed

    Camilloto, Geany P; Pires, Ana Clarissa S; Soares, Nilda de Fátima F; Araújo, Emiliane A; Andrade, Nélio J; Ferreira, Sukarno O

    2010-10-01

    Antimicrobial polyethylene and cellulose based films incorporated with triclosan were studied. The antimicrobial efficacy, the hydrophobicity, microscopic and the mechanical characteristics of the films, as well free energy of adhesion between bacteria and antimicrobial films were evaluated. It was observed that both polyethylene and cellulose based films incorporated with the antimicrobial were homogeneous. Furthermore, the addition of triclosan did not affect mechanical characteristics of the films (P > 0.05). However, triclosan incorporated into polyethylene films reduced its hydrophobicity while antimicrobial cellulose based films became more hydrophobic. The adhesion was thermodynamically favorable between tested bacteria and polyethylene films. On the other hand, the adhesion to triclosan cellulose based film was thermodynamically unfavorable to Staphylococcus aureus and Escherichia coli and favorable to Listeria innocua and Pseudomonas aeruginosa. Polyethylene and cellulose based films showed inhibitory effect against S. aureus and E. coli, being the inhibition halo higher for polyethylene films. This study improves the knowledge about antimicrobial films.

  20. Mental Health Providers' Decision-Making Around the Implementation of Evidence-Based Treatment for PTSD.

    PubMed

    Osei-Bonsu, Princess E; Bolton, Rendelle E; Wiltsey Stirman, Shannon; Eisen, Susan V; Herz, Lawrence; Pellowe, Maura E

    2017-04-01

    It is estimated that <15% of veterans with posttraumatic stress disorder (PTSD) have engaged in two evidence-based psychotherapies highly recommended by VA-cognitive processing therapy (CPT) and prolonged exposure (PE). CPT and PE guidelines specify which patients are appropriate, but research suggests that providers may be more selective than the guidelines. In addition, PTSD clinical guidelines encourage "shared decision-making," but there is little research on what processes providers use to make decisions about CPT/PE. Sixteen licensed psychologists and social workers from two VA medical centers working with ≥1 patient with PTSD were interviewed about patient factors considered and decision-making processes for CPT/PE use. Qualitative analyses revealed that patient readiness and comorbid conditions influenced decisions to use or refer patients with PTSD for CPT/PE. Providers reported mentally derived and instances of patient-involved decision-making around CPT/PE use. Continued efforts to assist providers in making informed and collaborative decisions about CPT/PE use are discussed.

  1. Psychotic experiences and hyper-theory-of-mind in preadolescence--a birth cohort study.

    PubMed

    Clemmensen, L; van Os, J; Drukker, M; Munkholm, A; Rimvall, M K; Væver, M; Rask, C U; Bartels-Velthuis, A A; Skovgaard, A M; Jeppesen, P

    2016-01-01

    Knowledge on the risk mechanisms of psychotic experiences (PE) is still limited. The aim of this population-based study was to explore developmental markers of PE with a particular focus on the specificity of hyper-theory-of-mind (HyperToM) as correlate of PE as opposed to correlate of any mental disorder. We assessed 1630 children from the Copenhagen Child Cohort 2000 regarding PE and HyperToM at the follow-up at 11-12 years. Mental disorders were diagnosed by clinical ratings based on standardized parent-, teacher- and self-reported psychopathology. Logistic regression analyses were performed to test the correlates of PE and HyperToM, and the specificity of correlates of PE v. correlates of any Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) mental disorder. Univariate analyses showed the following correlates of PE: familial psychiatric liability; parental mental illness during early child development; change in family composition; low family income; regulatory problems in infancy; onset of puberty; bullying; concurrent mental disorder; and HyperToM. When estimating the adjusted effects, only low family income, concurrent mental disorder, bullying and HyperToM remained significantly associated with PE. Further analyses of the specificity of these correlates with regard to outcome revealed that HyperToM was the only variable specifically associated with PE without concurrent mental disorder. Finally, HyperToM did not share any of the investigated precursors with PE. HyperToM may have a specific role in the risk trajectories of PE, being specifically associated with PE in preadolescent children, independently of other family and child risk factors associated with PE and overall psychopathology at this age.

  2. Examination of Trends and Evidence-Based Elements in State Physical Education Legislation: A Content Analysis

    ERIC Educational Resources Information Center

    Eyler, Amy A.; Brownson, Ross C.; Aytur, Semra A.; Cradock, Angie L.; Doescher, Mark; Evenson, Kelly R.; Kerr, Jacqueline; Maddock, Jay; Pluto, Delores L.; Steinman, Lesley; Tompkins, Nancy O'Hara; Troped, Philip; Schmid, Thomas L.

    2010-01-01

    Objectives: To develop a comprehensive inventory of state physical education (PE) legislation, examine trends in bill introduction, and compare bill factors. Methods: State PE legislation from January 2001 to July 2007 was identified using a legislative database. Analysis included components of evidence-based school PE from the Community Guide and…

  3. An evidence-based unified definition of lifelong and acquired premature ejaculation: report of the second international society for sexual medicine ad hoc committee for the definition of premature ejaculation.

    PubMed

    Serefoglu, Ege Can; McMahon, Chris G; Waldinger, Marcel D; Althof, Stanley E; Shindel, Alan; Adaikan, Ganesh; Becher, Edgardo F; Dean, John; Giuliano, Francois; Hellstrom, Wayne Jg; Giraldi, Annamaria; Glina, Sidney; Incrocci, Luca; Jannini, Emmanuele; McCabe, Marita; Parish, Sharon; Rowland, David; Segraves, R Taylor; Sharlip, Ira; Torres, Luiz Otavio

    2014-06-01

    The International Society for Sexual Medicine (ISSM) Ad Hoc Committee for the Definition of Premature Ejaculation developed the first evidence-based definition for lifelong premature ejaculation (PE) in 2007 and concluded that there were insufficient published objective data at that time to develop a definition for acquired PE. The aim of this article is to review and critique the current literature and develop a contemporary, evidence-based definition for acquired PE and/or a unified definition for both lifelong and acquired PE. In April 2013, the ISSM convened a second Ad Hoc Committee for the Definition of Premature Ejaculation in Bangalore, India. The same evidence-based systematic approach to literature search, retrieval, and evaluation used by the original committee was adopted. The committee unanimously agreed that men with lifelong and acquired PE appear to share the dimensions of short ejaculatory latency, reduced or absent perceived ejaculatory control, and the presence of negative personal consequences. Men with acquired PE are older, have higher incidences of erectile dysfunction, comorbid disease, and cardiovascular risk factors, and have a longer intravaginal ejaculation latency time (IELT) as compared with men with lifelong PE. A self-estimated or stopwatch IELT of 3 minutes was identified as a valid IELT cut-off for diagnosing acquired PE. On this basis, the committee agreed on a unified definition of both acquired and lifelong PE as a male sexual dysfunction characterized by (i) ejaculation that always or nearly always occurs prior to or within about 1 minute of vaginal penetration from the first sexual experience (lifelong PE) or a clinically significant and bothersome reduction in latency time, often to about 3 minutes or less (acquired PE); (ii) the inability to delay ejaculation on all or nearly all vaginal penetrations; and (iii) negative personal consequences, such as distress, bother, frustration, and/or the avoidance of sexual intimacy. The ISSM unified definition of lifelong and acquired PE represents the first evidence-based definition for these conditions. This definition will enable researchers to design methodologically rigorous studies to improve our understanding of acquired PE. Serefoglu EC, McMahon CG, Waldinger MD, Althof SE, Shindel A, Adaikan G, Becher EF, Dean J, Giuliano F, Hellstrom WJG, Giraldi A, Glina S, Incrocci L, Jannini E, McCabe M, Parish S, Rowland D, Segraves RT, Sharlip I, and Torres LO. An evidence-based unified definition of lifelong and acquired premature ejaculation: Report of the second International Society for Sexual Medicine Ad Hoc Committee for the Definition of Premature Ejaculation. Sex Med 2014;2:41-59.

  4. An Evidence-Based Unified Definition of Lifelong and Acquired Premature Ejaculation: Report of the Second International Society for Sexual Medicine Ad Hoc Committee for the Definition of Premature Ejaculation

    PubMed Central

    Serefoglu, Ege Can; McMahon, Chris G; Waldinger, Marcel D; Althof, Stanley E; Shindel, Alan; Adaikan, Ganesh; Becher, Edgardo F; Dean, John; Giuliano, Francois; Hellstrom, Wayne JG; Giraldi, Annamaria; Glina, Sidney; Incrocci, Luca; Jannini, Emmanuele; McCabe, Marita; Parish, Sharon; Rowland, David; Segraves, R Taylor; Sharlip, Ira; Torres, Luiz Otavio

    2014-01-01

    Introduction The International Society for Sexual Medicine (ISSM) Ad Hoc Committee for the Definition of Premature Ejaculation developed the first evidence-based definition for lifelong premature ejaculation (PE) in 2007 and concluded that there were insufficient published objective data at that time to develop a definition for acquired PE. Aim The aim of this article is to review and critique the current literature and develop a contemporary, evidence-based definition for acquired PE and/or a unified definition for both lifelong and acquired PE. Methods In April 2013, the ISSM convened a second Ad Hoc Committee for the Definition of Premature Ejaculation in Bangalore, India. The same evidence-based systematic approach to literature search, retrieval, and evaluation used by the original committee was adopted. Results The committee unanimously agreed that men with lifelong and acquired PE appear to share the dimensions of short ejaculatory latency, reduced or absent perceived ejaculatory control, and the presence of negative personal consequences. Men with acquired PE are older, have higher incidences of erectile dysfunction, comorbid disease, and cardiovascular risk factors, and have a longer intravaginal ejaculation latency time (IELT) as compared with men with lifelong PE. A self-estimated or stopwatch IELT of 3 minutes was identified as a valid IELT cut-off for diagnosing acquired PE. On this basis, the committee agreed on a unified definition of both acquired and lifelong PE as a male sexual dysfunction characterized by (i) ejaculation that always or nearly always occurs prior to or within about 1 minute of vaginal penetration from the first sexual experience (lifelong PE) or a clinically significant and bothersome reduction in latency time, often to about 3 minutes or less (acquired PE); (ii) the inability to delay ejaculation on all or nearly all vaginal penetrations; and (iii) negative personal consequences, such as distress, bother, frustration, and/or the avoidance of sexual intimacy. Conclusion The ISSM unified definition of lifelong and acquired PE represents the first evidence-based definition for these conditions. This definition will enable researchers to design methodologically rigorous studies to improve our understanding of acquired PE. Serefoglu EC, McMahon CG, Waldinger MD, Althof SE, Shindel A, Adaikan G, Becher EF, Dean J, Giuliano F, Hellstrom WJG, Giraldi A, Glina S, Incrocci L, Jannini E, McCabe M, Parish S, Rowland D, Segraves RT, Sharlip I, and Torres LO. An evidence-based unified definition of lifelong and acquired premature ejaculation: Report of the second International Society for Sexual Medicine Ad Hoc Committee for the Definition of Premature Ejaculation. Sex Med 2014;2:41–59. PMID:25356301

  5. From polyethylene waxes to HDPE using an α,α'-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridyl-chromium(iii) chloride pre-catalyst in ethylene polymerisation.

    PubMed

    Huang, Chuanbing; Du, Shizhen; Solan, Gregory A; Sun, Yang; Sun, Wen-Hua

    2017-05-30

    Five examples of α,α'-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridyl-chromium(iii) chlorides (aryl = 2,6-Me 2 Ph Cr1, 2,6-Et 2 Ph Cr2, 2,6-i-Pr 2 Ph Cr3, 2,4,6-Me 3 Ph Cr4, 2,6-Et 2 -4-MePh Cr5) have been synthesized by the one-pot template reaction of α,α'-dioxo-2,3:5,6-bis(pentamethylene)pyridine, CrCl 3 ·6H 2 O and the corresponding aniline. The molecular structures of Cr1 and Cr4 reveal distorted octahedral geometries with the N,N,N-ligand adopting a mer-configuration. On activation with an aluminium alkyl co-catalyst, Cr1-Cr5 exhibited high catalytic activities in ethylene polymerization and showed outstanding thermal stability operating effectively at 80 °C with activities up to 1.49 × 10 7 g of PE (mol of Cr) -1 h -1 . Significantly, the nature of the co-catalyst employed had a dramatic effect on the molecular weight of the polymeric material obtained. For example, using diethylaluminium chloride (Et 2 AlCl) in combination with Cr4 gave high density/high molecular weight polyethylene with broad molecular weight distributions (30.9-39.3). By contrast, using modified methylaluminoxane (MMAO), strictly linear polyethylene waxes of lower molecular weight and narrow molecular weight distribution (1.6-2.0) were obtained with vinyl end-groups.

  6. Periprosthetic pathology in 'at risk' ceramic-on-polyethylene total hip arthroplasty: a clinical study using MARS-MRI in 50 patients.

    PubMed

    Das, Dirk H; van der Weegen, Walter; Wullems, Jorgen A; Brakel, Koen; Sijbesma, Thea; Nelissen, Rob G

    2016-05-16

    Recent studies of metal-on-metal (MoM) total hip arthroplasty (THA) using metal-artefact-reducing-sequence software for magnetic resonance Imaging (MARS-MRI) have revealed remarkable soft tissue pathology around the hip, usually referred to as pseudotumours. Case reports describe identical pathology in non-MoM THA, but descriptive overviews of MRI abnormalities in patients with non-MoM prosthesis are scarce. A clinical study in a cohort of 50 ceramic-on-polyethylene (CoP) THA selected for high risk of peri-prosthetic pathology including 2 subgroups: (i) 40 patients with a high polyethylene (PE) wear rate (>0.2 mm per year) and 5-12 years follow-up; (ii) 10 patients with a 2 to 5 years follow-up and a documented history of persistent complaints. All patients were clinically evaluated, MARS-MRIs were completed and chrome and cobalt serum samples were taken. 17 scans were normal (34%). Periprosthetic fluid collections were seen as a bursae iliopsoas (n = 12, 24%), in the trochanter bursae (n = 4, 8%) and in the surgical tract (n = 9, 18%). 1 case demonstrated a cyst on MARS-MRI resembling a pseudotumour as seen with MoM THA (2%). Intraosseous acetabular cysts were seen in 12 cases (24%), intraosseous trochanteric cysts in 10 cases (20%). Soft tissue abnormalities after non-MoM THA are common in selected patients and can be clearly visualised with MARS-MRI. Pseudotumours as seen on MARS-MRI do occur in non-MoM hip arthroplasty but with low prevalence.

  7. Complete genome sequence of a Chinese isolate of pepper vein yellows virus and evolutionary analysis based on the CP, MP and RdRp coding regions.

    PubMed

    Liu, Maoyan; Liu, Xiangning; Li, Xun; Zhang, Deyong; Dai, Liangyin; Tang, Qianjun

    2016-03-01

    The genome sequence of pepper vein yellows virus (PeVYV) (PeVYV-HN, accession number KP326573), isolated from pepper plants (Capsicum annuum L.) grown at the Hunan Vegetables Institute (Changsha, Hunan, China), was determined by deep sequencing of small RNAs. The PeVYV-HN genome consists of 6244 nucleotides, contains six open reading frames (ORFs), and is similar to that of an isolate (AB594828) from Japan. Its genomic organization is similar to that of members of the genus Polerovirus. Sequence analysis revealed that PeVYV-HN shared 92% sequence identity with the Japanese PeVYV genome at both the nucleotide and amino acid levels. Evolutionary analysis based on the coat protein (CP), movement protein (MP), and RNA-dependent RNA polymerase (RdRP) showed that PeVYV could be divided into two major lineages corresponding to their geographical origins. The Asian isolates have a higher population expansion frequency than the African isolates. Negative selection and genetic drift (founder effect) were found to be the potential drivers of the molecular evolution of PeVYV. Moreover, recombination was not the distinct cause of PeVYV evolution. This is the first report of a complete genomic sequence of PeVYV in China.

  8. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA).

    PubMed

    Kassouf, Amine; Maalouly, Jacqueline; Rutledge, Douglas N; Chebib, Hanna; Ducruet, Violette

    2014-11-01

    Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A Profilometry-Based Dentifrice Abrasion Method for V8 Brushing Machines Part II: Comparison of RDA-PE and Radiotracer RDA Measures.

    PubMed

    Schneiderman, Eva; Colón, Ellen; White, Donald J; St John, Samuel

    2015-01-01

    The purpose of this study was to compare the abrasivity of commercial dentifrices by two techniques: the conventional gold standard radiotracer-based Radioactive Dentin Abrasivity (RDA) method; and a newly validated technique based on V8 brushing that included a profilometry-based evaluation of dentin wear. This profilometry-based method is referred to as RDA-Profilometry Equivalent, or RDA-PE. A total of 36 dentifrices were sourced from four global dentifrice markets (Asia Pacific [including China], Europe, Latin America, and North America) and tested blindly using both the standard radiotracer (RDA) method and the new profilometry method (RDA-PE), taking care to follow specific details related to specimen preparation and treatment. Commercial dentifrices tested exhibited a wide range of abrasivity, with virtually all falling well under the industry accepted upper limit of 250; that is, 2.5 times the level of abrasion measured using an ISO 11609 abrasivity reference calcium pyrophosphate as the reference control. RDA and RDA-PE comparisons were linear across the entire range of abrasivity (r2 = 0.7102) and both measures exhibited similar reproducibility with replicate assessments. RDA-PE assessments were not just linearly correlated, but were also proportional to conventional RDA measures. The linearity and proportionality of the results of the current study support that both methods (RDA or RDA-PE) provide similar results and justify a rationale for making the upper abrasivity limit of 250 apply to both RDA and RDA-PE.

  10. Three-dimensional numerical and experimental studies on transient ignition of hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Tian, Hui; Yu, Ruipeng; Zhu, Hao; Wu, Junfeng; Cai, Guobiao

    2017-11-01

    This paper presents transient simulations and experimental studies of the ignition process of the hybrid rocket motors (HRMs) using 90% hydrogen peroxide (HP) as the oxidizer and polymethyl methacrylate (PMMA) and Polyethylene (PE) as fuels. A fluid-solid coupling numerically method is established based on the conserved form of the three-dimensional unsteady Navier-Stokes (N-S) equations, considering gas fluid with chemical reactions and heat transfer between the fluid and solid region. Experiments are subsequently conducted using high-speed camera to record the ignition process. The flame propagation, chamber pressurizing process and average fuel regression rate of the numerical simulation results show good agreement with the experimental ones, which demonstrates the validity of the simulations in this study. The results also indicate that the flame propagation time is mainly affected by fluid dynamics and it increases with an increasing grain port area. The chamber pressurizing process begins when the flame propagation completes in the grain port. Furthermore, the chamber pressurizing time is about 4 times longer than the time of flame propagation.

  11. Microplastic pollution in North Yellow Sea, China: Observations on occurrence, distribution and identification.

    PubMed

    Zhu, Lin; Bai, Huaiyu; Chen, Bijuan; Sun, Xuemei; Qu, Keming; Xia, Bin

    2018-09-15

    Microplastics are emerging contaminants and have attracted widespread environmental concerns about their negative effects on the marine ecosystems. In this study, we investigated the abundances, distributions and characteristics of microplastics in surface seawater and sediments from the North Yellow Sea. The results showed that the abundance of microplastics was 545 ± 282 items/m 3 in surface seawater and 37.1 ± 42.7 items/kg dry weight in sediments, representing a medium microplastic pollution level compared with other sea areas. Small microplastics (<1 mm) made up >70% of the total microplastic numbers. Films and fibers were the dominant shapes of microplastics in both the surface seawater and sediments. Transparent microplastics were generally more common than microplastics of other colors. Based on the identification by a Fourier transform infrared microscope, polyethylene (PE) was the dominant composition of microplastics in surface seawater, while polypropylene (PP) was the most common polymer type in sediments. These results will improve our understanding of the environmental risks posed by microplastics to marine ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Transport, mechanical and global migration data of multilayer copolyamide nanocomposite films with different layouts.

    PubMed

    Scarfato, P; Garofalo, E; Di Maio, L; Incarnato, L

    2017-06-01

    Transport, mechanical and global migration data concern multilayer food packaging films with different layouts, all incorporating a layered silicate/polyamide nanocomposite as oxygen barrier layer, and a low-density polyethylene (LDPE) as moisture resistant layer in direct contact with food. The data are related to "Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging" by Garofalo et al. (2017) [1]. Nanocomposite multilayer films, with different relative layer thicknesses and clay types, were produced using a laboratory scale co-extrusion blown-film equipment and were analyzed in terms of transport to oxygen and water vapor, mechanical properties and overall migration. The results have shown that all the multilayer hybrid films, based on the copolyamide layer filled with Cloisite 30B, displayed the most significant oxygen barrier improvements and the best mechanical properties compared to the unfilled films. No significant alteration of the overall migration values was observed, as expectable [2], [3], [4]. The performance improvement was more relevant in the case of the film with the thinner nanocomposite layer.

  13. Occurrence of brominated flame retardants in black thermo cups and selected kitchen utensils purchased on the European market.

    PubMed

    Samsonek, J; Puype, F

    2013-01-01

    In order to screen for the presence of a recycled polymer waste stream from waste electric and electronic equipment (WEEE), a market survey was conducted on black plastic food-contact articles (FCA). An analytical method was applied combining X-ray fluorescence spectrometry (XRF) with thermal desorption gas chromatography coupled with mass spectrometry (thermal desorption GC-MS). Firstly, XRF spectrometry was applied to distinguish bromine-positive samples. Secondly, bromine-positive samples were submitted for identification by thermal desorption GC-MS. Generally, the bromine-positive samples contained mainly technical decabromodiphenyl ether (decaBDE). Newer types of BFRs such as tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bis(2,3-dibromopropyl), ether (TBBPA-BDBPE) and decabromodiphenylethane (DBDPE), replacing the polybrominated diphenyleters (PBDEs) and polybrominated diphenyls (PBBs), were also identified. In none of the tested samples were PBBs or hexabromocyclododecane (HBCD) found. Polymer identification was carried out using Fourier-transformed infrared spectroscopy measurement (FTIR) on all samples. The results indicate that polypropylene-polyethylene copolymers (PP-PE) and mainly styrene-based food-contact materials, such as acrylonitrile-butadiene-styrene (ABS) have the highest risk of containing BFRs.

  14. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity.

    PubMed

    Gao, Jie; Kou, Geng; Wang, Hao; Chen, Huaiwen; Li, Bohua; Lu, Ying; Zhang, Dapeng; Wang, Shuhui; Hou, Sheng; Qian, Weizhu; Dai, Jianxin; Zhao, Jian; Zhong, Yanqiang; Guo, Yajun

    2009-05-01

    The clinical use of Pseudomonas exotoxin A (PE)-based immunotoxins is limited by the toxicity and immunogenicity of PE. To overcome the limitations, we have developed PE38KDEL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles conjugated with Fab' fragments of a humanized anti-HER2 monoclonal antibody (rhuMAbHER2). The PE38KDEL-loaded nanoparticles-anti-HER2 Fab' bioconjugates (PE-NP-HER) were constructed modularly with Fab' fragments of rhuMAbHER2 covalently linked to PLGA nanoparticles containing PE38KDEL. Compared with nontargeted nanoparticles that lack anti-HER2 Fab', PE-NP-HER specifically bound to and were sequentially internalized into HER2 overexpressing breast cancer cells, which result in significant cytotoxicity in vitro. In HER2 overexpressing tumor xenograft model system, administration of PE-NP-HER showed a superior efficacy in inhibiting tumor growth compared with PE-HER referring to PE38KDEL conjugated directly to rhuMAbHER2. Moreover, PE-NP-HER was well tolerated in mice with a higher LD(50) (LD(50) of 6.86 +/- 0.47 mg/kg vs. 2.21 +/- 0.32 mg/kg for PE-NP-HER vs. PE-HER (mean +/- SD); n = 3), and had no influence on the plasma level of plasma alanine aminotransferase (ALT) of animals when injected at a dose of 1 mg/kg where PE-HER caused significant increase of serum ALT in the treated mice. Notably, PE-NP-HER was of low immunogenicity in development of anti-PE38KDEL neutralizing antibodies and was less susceptible to inactivation by anti-PE38KDEL antibodies compared with PE-HER. This novel bioconjugate, PE-NP-HER, may represent a useful strategy for cancer treatment.

  15. Pupils’ and teachers’ experiences of school-based physical education: a qualitative study

    PubMed Central

    Lewis, Kiara

    2014-01-01

    Objectives To explore pupils’ and teachers’ experiences of physical education (PE). Study design A qualitative investigation employing semistructured interviews. Self Determination Theory was used as a guiding theory and Template Analysis was used to analyse the data. Setting A secondary school in the North East of England. Participants 14 pupils (aged 13 and 14, boys and girls) with a range of self-perceived competencies regarding PE and four PE teachers of the pupils (3 male, 1 female). Primary and secondary outcomes (1) Attitudes and perceptions of PE pupils regarding their experiences of compulsory school PE lessons. (2) PE teachers’ experiences of teaching PE. Results Key results from pupils and teachers suggest pupils enjoy participation in PE when they feel competent, in control and supported by others. Feeling competent depended on (1) the activity within PE and (2) the pupils perceived physical capabilities/aptitude. Feeling in control related to (1) having a choice of activities, (2) being able to set exertion levels and (3) control over clothes worn while taking part. Relationships within pupil groups and between pupils and teachers were perceived as important. Teachers could positively influence their pupils’ enjoyment by understanding and supporting their personal goals, as opposed to dictating and controlling what they did and for how long, and by promoting a non-threatening atmosphere between pupils. Conclusions Rising obesity levels and concerns over the fitness of children and young people has returned the focus of PE to its potential as a vehicle for promoting health. This study suggests schools and PE teachers in particular can positively influence the PE experience of both boys and girls by providing more choice of activities and letting pupils make their own decisions based on their personal needs. PMID:25227625

  16. Vacuum-based surface modification of organic and metallic substrates

    NASA Astrophysics Data System (ADS)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous-containing polymer surfaces through ion implantation of trimethyl phosphine onto PE is presented. Air exposure of the resulting P-implanted PE leads to the surface selective oxidation of phosphorous moieties. P-containing hydrocarbon films are used to model the surface chemical changes of P-containing polymers exposed to AO. Results indicate that oxidized phosphorous species protect the film from AO-induced erosion. The low temperature (<150 K) oxidation of nitrided iron surfaces exposed to oxygen reveal the formation of iron oxynitride (FexNyO z, nitrosonium ions (NO+) as well as nitrite/nitrito and nitrate type species. The production of nitrite/nitrito and nitrate species is taken as evidence for the existence of oxygen insertion chemistry into the iron nitride lattice under these low temperature oxidation conditions. Upon annealing the oxidized iron nitride surface, nitrogen desorbs exclusively as nitric oxide (NO).

  17. Particulates generated from combustion of polymers (plastics).

    PubMed

    Shemwell, B E; Levendis, Y A

    2000-01-01

    This is an experimental study on the characterization of particulate (soot) emissions from burning polymers. Emissions of polystyrene (PS), polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), and polyvinyl chloride (PVC) plastics were studied. Combustion took place in a laboratory-scale, electrically heated, drop-tube furnace at temperatures of 1300 and 1500 K, in air. The nominal bulk (global) equivalence ratio, phi, was varied in the range of 0.5-1.5, and the gas residence time in the nearly isothermal radiation zone of the furnace was approximately 1 sec. The particulate emissions were size-classified at the exit of the furnace, using a multi-stage inertial particle impactor. Results showed that both the yields and the size distributions of the emitted soot were remarkably different for the five plastics burned. Soot yields increased with an increasing bulk equivalence ratio. Combustion of PS yielded the highest amounts of soot (most highly agglomerated), several times more than the rest of the polymers. More soot was emitted from PS at 1500 than at 1300 K. Substantial amounts of soot agglomerates were larger than 9 microns. At 1500 and 1300 K, 35 and 29% of the soot mass, respectively, was PM2 (2 microns or smaller). Emissions from PE and PP were remarkably similar to each other. These polymers produced very low emissions at phi < or = 0.5, but emissions increased drastically with phi, and most of the soot was very fine (70-97% of the mass was PM2, depending on phi). Emissions from the combustion of PMMA were comparatively low and were the least influenced by the bulk phi, and 79-95% of the emissions were PM2. Combustion of PVC yielded the lowest amounts of soot; moreover, only 13-34% of the mass was PM2. On a comparative basis, at 1500 K, the following ranges of particulate yields were PM2: 19-75 mg/g of PS, 8-36 mg/g of PE, 1.5-47 mg/g of PP, 11-20 mg/g of PMMA, and 2-8 mg/g of PVC, depending on phi. These comparative results demonstrate that PS produces the highest amounts of fine particulates, followed by PP, PE, and PMMA, and then PVC. Burning these materials with excess oxygen drastically reduces the particulate emissions of PE and PP, substantially reduces those of PS, and mildly reduces those of PMMA and PVC.

  18. Linker-based GnRH-PE chimeric proteins inhibit cancer growth in nude mice.

    PubMed

    Ben-Yehudah, A; Yarkoni, S; Nechushtan, A; Belostotsky, R; Lorberboum-Galski, H

    1999-04-01

    Since the number of cancer-related deaths has not decreased in recent years, major efforts are being made to find new drugs for cancer treatment. In this report we introduce the gonadotropin releasing hormone-Pseudomonas exotoxin (GnRH-PE) based chimeric proteins L-GnRH-PE66 and L-GnRH-PE40. These proteins are composed of a GnRH moiety attached to modified forms of Pseudomonas exotoxin via a polylinker (gly4ser)2. The chimeric proteins L-GnRH-PE66 and L-GnRH-PE40 have the ability to target and kill adenocarcinoma cell lines in vitro, whereas non-adenocarcinoma cell lines are not affected. We demonstrate that L-GnRH-PE66 and L-GnRH-PE40 efficiently inhibit cancer growth. Nude mice were injected subcutaneously with the SW-48 adenocarcinoma cell line to produce xenograft tumours. When the tumours were established and visible, the animals were injected with chimeric proteins for 10 days. At the end of this period, a reduction of up to 3-fold in tumor size was obtained in the treated mice, as compared with the control group, which received equivalent amounts of GnRH; the difference was even greater 13 days after termination of treatment. Thus, the chimeric proteins L-GnRH-PE66 and L-GnRH-PE40 are promising candidates for treatment of a variety of adenocarcinomas and their use in humans should be considered.

  19. Verification of a new biocompatible single-use film formulation with optimized additive content for multiple bioprocess applications.

    PubMed

    Jurkiewicz, Elke; Husemann, Ute; Greller, Gerhard; Barbaroux, Magali; Fenge, Christel

    2014-01-01

    Single-use bioprocessing bags and bioreactors gained significant importance in the industry as they offer a number of advantages over traditional stainless steel solutions. However, there is continued concern that the plastic materials might release potentially toxic substances negatively impacting cell growth and product titers, or even compromise drug safety when using single-use bags for intermediate or drug substance storage. In this study, we have focused on the in vitro detection of potentially cytotoxic leachables originating from the recently developed new polyethylene (PE) multilayer film called S80. This new film was developed to guarantee biocompatibility for multiple bioprocess applications, for example, storage of process fluids, mixing, and cell culture bioreactors. For this purpose, we examined a protein-free cell culture medium that had been used to extract leachables from freshly gamma-irradiated sample bags in a standardized cell culture assay. We investigated sample bags from films generated to establish the operating ranges of the film extrusion process. Further, we studied sample bags of different age after gamma-irradiation and finally, we performed extended media extraction trials at cold room conditions using sample bags. In contrast to a nonoptimized film formulation, our data demonstrate no cytotoxic effect of the S80 polymer film formulation under any of the investigated conditions. The S80 film formulation is based on an optimized PE polymer composition and additive package. Full traceability alongside specifications and controls of all critical raw materials, and process controls of the manufacturing process, that is, film extrusion and gamma-irradiation, have been established to ensure lot-to-lot consistency. © 2014 American Institute of Chemical Engineers.

  20. The evolution of and challenges for industrial radiation processing—2012

    NASA Astrophysics Data System (ADS)

    Berejka, A. J.; Cleland, M. R.; Walo, M.

    2014-01-01

    The evolution of industrial radiation processing is traced from Roentgen's discovery of X-radiation in 1895 by following the development of high current, electron beam accelerators (EB) throughout the twentieth century. Although Becquerel soon followed Roentgen with his discovery of what became to be known as radioactivity, electrical sources for ionizing radiation dominate industrial processing with there being more than ten times as many industrial installations using high current EB equipment than the facilities relying upon large concentrations of radioactive isotopes. In the 1950s, the discovery that ionizing radiation would enhance the value of what has become the world's largest volume commodity plastic, polyethylene (PE), opened the way for full scale commercial use of high current EB equipment. While the crosslinking of the PE insulation on wire became one of the first major industrial applications, other uses of EB processing soon followed. In the 1970s, low-energy, self-shielded EB equipment made the surface curing of inks, coatings and adhesives more industrially viable. In the early part of the twenty-first century, new market applications involving the low-energy EB surface decontamination of packaging materials emerged. This new area poses challenges for the metrology needed to control industrial processes, in that there is limited EB penetration into what have been used as dosimeters by industry. Major industrial use of radiation process is now over 50 years old. Because of the diversity of end-uses and the fact that the use of ionizing radiation in industry is a process technique, it is hard to quantify the value-added to numerous commercial products that benefit from this energy efficient process. It may be in excess of a trillion Euros in value-added to articles of commerce. In this milieu, there are some broad-based opportunities for research which are noted.

  1. RADIOLYTIC GAS PRODUCTION RATES OF POLYMERS EXPOSED TO TRITIUM GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E.

    Data from previous reports on studies of polymers exposed to tritium gas is further analyzed to estimate rates of radiolytic gas production. Also, graphs of gas release during tritium exposure from ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon®), and Vespel® polyimide are re-plotted as moles of gas as a function of time, which is consistent with a later study of tritium effects on various formulations of the elastomer ethylene-propylene-diene monomer (EPDM). These gas production rate estimates may be useful while considering using these polymers in tritium processing systems. These rates are valid at least formore » the longest exposure times for each material, two years for UHMW-PE, PTFE, and Vespel®, and fourteen months for filled and unfilled EPDM. Note that the production “rate” for Vespel® is a quantity of H{sub 2} produced during a single exposure to tritium, independent of length of time. The larger production rate per unit mass for unfilled EPDM results from the lack of filler- the carbon black in filled EPDM does not produce H{sub 2} or HT. This is one aspect of how inert fillers reduce the effects of ionizing radiation on polymers.« less

  2. Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.

    PubMed

    Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E

    2012-05-15

    Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

  3. Dose assessment in contrast enhanced digital mammography using simple phantoms simulating standard model breasts.

    PubMed

    Bouwman, R W; van Engen, R E; Young, K C; Veldkamp, W J H; Dance, D R

    2015-01-07

    Slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE) slabs are used to simulate standard model breasts for the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT). These phantoms are optimized for the energy spectra used in DM and DBT, which normally have a lower average energy than used in contrast enhanced digital mammography (CEDM). In this study we have investigated whether these phantoms can be used for the evaluation of AGD with the high energy x-ray spectra used in CEDM. For this purpose the calculated values of the incident air kerma for dosimetry phantoms and standard model breasts were compared in a zero degree projection with the use of an anti scatter grid. It was found that the difference in incident air kerma compared to standard model breasts ranges between -10% to +4% for PMMA slabs and between 6% and 15% for PMMA-PE slabs. The estimated systematic error in the measured AGD for both sets of phantoms were considered to be sufficiently small for the evaluation of AGD in quality control procedures for CEDM. However, the systematic error can be substantial if AGD values from different phantoms are compared.

  4. A dual-mode textile for human body radiative heating and cooling

    DOE PAGES

    Hsu, Po -Chun; Liu, Chong; Song, Alex Y.; ...

    2017-11-10

    Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textilemore » without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. As a result, numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast.« less

  5. Effects of pipe materials on chlorine-resistant biofilm formation under long-term high chlorine level.

    PubMed

    Zhu, Zebing; Wu, Chenguang; Zhong, Dan; Yuan, Yixing; Shan, Lili; Zhang, Jie

    2014-07-01

    Drinking water distribution systems are composed of various pipe materials and may harbor biofilms even in the continuous presence of disinfectants. Biofilms formation on five pipe materials (copper (Cu), polyethylene (PE), stainless steel (STS), cast iron (CI), and concrete-coated polycarbonate (CP)) within drinking water containing 1.20 mg/L free chlorine, was investigated by flow cytometry, heterotrophic plate counts, and denaturing gradient gel electrophoresis analysis. Results showed that the biofilms formation varied in pipe materials. The biofilm formed on CP initially emerged the highest biomass in 12 days, but CI presented the significantly highest biomass after 28 days, and Cu showed the lowest bacterial numbers before 120 days, while STS expressed the lowest bacterial numbers after 159 days. In the biofilm community structure, Moraxella osloensis and Sphingomonas sp. were observed in all the pipe materials while Bacillus sp. was detected except in the CP pipe and Stenotrophomonas maltophila was found from three pipe materials (Cu, PE, and STS). Other bacteria were only found from one or two pipe materials. It is noteworthy that there are 11 opportunistic pathogens in the 17 classified bacterial strains. This research has afforded crucial information regarding the influence of pipe materials on chlorine-resistant biofilm formation.

  6. A dual-mode textile for human body radiative heating and cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Po -Chun; Liu, Chong; Song, Alex Y.

    Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textilemore » without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. As a result, numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast.« less

  7. In vivo cleansing efficacy of biodegradable exfoliating beads assessed by skin bioengineering techniques.

    PubMed

    Kitsongsermthon, J; Duangweang, K; Kreepoke, J; Tansirikongkol, A

    2017-11-01

    The plastic microbeads, used in many cleansers, will be banned in cosmetic and personal care products within 2017 since they are non-degradable and can disturb the living organisms in water reservoirs. Various choices of biodegradable beads are commercially available, but their efficacy has not been proven yet. This study aimed to compare the cleansing efficacy in dirt and sebum removal aspects of three types of exfoliating beads. The gel scrubs with polyethylene (PE) beads, mannan beads or wax beads, were formulated and evaluated for their stability. The in vivo evaluation was done in 38 healthy volunteers and the skin irritation, efficacy for dirt and sebum removal were measured by Mexameter ® , Colorimeter ® , and Sebumeter ® , respectively. The selected gel scrubs did not cause an irritation in any volunteers. The differences in dirt residues between before and after scrubbing were not statistically significant among three gel scrubs and the similar result was also reported in the sebum removal study. All gel scrubs demonstrated the comparable cleansing efficacy in term of dirt and sebum removal. Thus, mannan beads and wax beads may be replaced non-biodegradable PE beads to achieve the similar cleansing effect. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Quality changes of fresh-cut kohlrabi sticks under modified atmosphere packaging.

    PubMed

    Escalona, V H; Aguayo, E; Artés, F

    2007-06-01

    The aim of this study was to determine the effect of different gas compositions on quality attributes and shelf life of kohlrabi sticks stored in modified atmosphere up to 14 d at 0 degrees C. Two commercial films were tested: oriented polypropylene (OPP) and amide-polyethylene (amide-PE). As a control, a microperforated OPP film was used. In order to study the changes in metabolic activity by minimal processing, the respiration rate and ethylene production at 0 degrees C were monitored for both intact stems and sticks. Changes in color, chemical parameters, sugars and organic acid contents, and sensorial quality of kohlrabi sticks were evaluated. An initial ethylene production of sticks was 13-fold higher than that of intact stems; meanwhile CO(2) production was 2-fold higher. However after 4 d of storage, a similar respiration rate for stems and sticks was found. Also the ethylene production of sticks and stems was steady around 15 to 20 nL/kg(/)h after 10 d. Kohlrabi sticks showed a little change in chemical parameters and very low weight losses during cold storage. Sticks under an equilibrium atmosphere of 7 kPa O(2) and 9 kPa CO(2) at 0 degrees C reached by amide-PE kept an acceptable sensorial quality for 14 d.

  9. A dual-mode textile for human body radiative heating and cooling

    PubMed Central

    Hsu, Po-Chun; Liu, Chong; Song, Alex Y.; Zhang, Ze; Peng, Yucan; Xie, Jin; Liu, Kai; Wu, Chun-Lan; Catrysse, Peter B.; Cai, Lili; Zhai, Shang; Majumdar, Arun; Fan, Shanhui; Cui, Yi

    2017-01-01

    Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textile without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. Numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast. PMID:29296678

  10. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Suharto, Yustian; Lee, Yongho; Yu, Ji-Sang; Choi, Wonchang; Kim, Ki Jae

    2018-02-01

    Finding an alternative to glass fiber (GF) separators is a crucial factor for the fast commercialization of sodium-ion batteries (SIBs), because GF separators are too thick for use in SIBs, thereby decreasing the volumetric and gravimetric energy density. Here we propose a microporous composite separator prepared by introducing a polymeric coating layer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP co-polymer) with ZrO2 nanoparticles to a polyethylene (PE) separator. The coated separator efficiently enhances the cell performance of SIBs. The ZrO2 nanoparticles, finely dispersed on the polymeric coating layer, induce the formation of many micropores on the polymeric coating layer, suggesting that micropore formation on the coating layer renders the composite separator more open in structure. An ethylene carbonate/propylene carbonate liquid electrolyte for SIBs is not absorbed by PE separators even after 1 h of electrolyte droplet testing, while the proposed separator with many micropores is completely wetted by the electrolyte. Sodium ion migration across the composite separator is therefore effectively enhanced by the formation of ion transfer pathways, which improve ionic conductivity. As a result, the microporous composite separator affords stable cycle performances and excellent specific capacity retention (95.8%) after 50 cycles, comparable to those offered by a SIB with a GF separator.

  11. Recycling of plastic wastes with poly (ethylene-co-methacrylic acid) copolymer as compatibilizer and their conversion into high-end product.

    PubMed

    Rajasekaran, Divya; Maji, Pradip K

    2018-04-01

    This paper deals with the utilization of plastic wastes to a useful product. The major plastic pollutants that are considered to be in maximum use i.e. PET bottle and PE bags have been taken for consideration for recycling. As these two plastic wastes are not compatible, poly (ethylene-co-methacrylic acid) copolymer has been used as compatibilizer to process these two plastic wastes. Effect of dose of poly (ethylene-co-methacrylic acid) copolymer as compatibilizer has been studied here. It has been shown that only 3 wt% of poly (ethylene-co-methacrylic acid) copolymer is sufficient to make 3:1 mass ratio of PET bottle and polyethylene bags compatible. Compatibility has been examined through mechanical testing, thermal and morphological analysis. After analysing the property of recyclates, better mechanical and thermal property has been observed. Almost 500% of tensile property has been improved by addition of 3 wt% of poly (ethylene-co-methacrylic acid) copolymer in 3:1 mass ratio blend of PET bottle and PE bags than that of pristine blend. Morphological analysis by FESEM and AFM has also confirmed the compatibility of the blend. Experimental data showed better performance than available recycling process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Infrared-optical transmission and reflection measurements on loose powders

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Korder, S.; Arduini-Schuster, M. C.; Caps, R.; Fricke, J.

    1993-09-01

    A method is described to determine quantitatively the infrared-optical properties of loose powder beds via directional-hemispherical transmission and reflection measurements. Instead of the integration of the powders into a potassium bromide (KBr) or a paraffin oil matrix, which would drastically alter the scattering behavior, the powders are placed onto supporting layers of polyethylene (PE) and KBr. A commercial spectrometer is supplemented by an external optics, which enables measurements on horizontally arranged samples. For data evaluation we use a solution of the equation of radiative transfer in the 3-flux approximation under boundary conditions adapted to the PE or KBr/powder system. A comparison with Kubelka-Munk's theory and Schuster's 2-flux approximation is performed, which shows that 3-flux approximation yields results closest to the exact solution. Equations are developed, which correct transmission and reflection of the samples for the influence of the supporting layer and calculate the specific extinction and the albedo of the powder and thus enables us to separate scattering and absorption part of the extinction spectrum. Measurements on TiO2 powder are presented, which show the influence of preparation techniques and data evaluation with different methods to obtain the albedo. The specific extinction of various TiO2 powders is presented.

  13. Automated surface-scanning detection of pathogenic bacteria on fresh produce

    NASA Astrophysics Data System (ADS)

    Horikawa, Shin; Du, Songtao; Liu, Yuzhe; Chen, I.-Hsuan; Xi, Jianguo; Crumpler, Michael S.; Sirois, Donald L.; Best, Steve R.; Wikle, Howard C.; Chin, Bryan A.

    2017-05-01

    This paper investigates the effects of surface-scanning detector position on the resonant frequency and signal amplitude of a wireless magnetoelastic (ME) biosensor for direct pathogen detection on solid surfaces. The experiments were conducted on the surface of a flat polyethylene (PE) plate as a model study. An ME biosensor (1 mm × 0.2 mm × 30 μm) was placed on the PE surface, and a surface-scanning detector was brought close and aligned to the sensor for wireless resonant frequency measurement. The position of the detector was accurately controlled by using a motorized three-axis translation system (i.e., controlled X, Y, and Z positions). The results showed that the resonant frequency variations of the sensor were -125 to +150 Hz for X and Y detector displacements of +/-600 μm and Z displacements of +100 to +500 μm. These resonant frequency variations were small compared to the sensor's initial resonant frequency (< 0.007% of 2.2 MHz initial resonant frequency) measured at the detector home position, indicating high accuracy of the measurement. In addition, the signal amplitude was, as anticipated, found to decrease exponentially with increasing detection distance (i.e., Z distance). Finally, additional experiments were conducted on the surface of cucumbers. Similar results were obtained.

  14. Emissions of amides (N,N-dimethylformamide and formamide) and other obnoxious volatile organic compounds from different mattress textile products.

    PubMed

    Kim, Ki-Hyun; Pandey, Sudhir K; Kim, Yong-Hyun; Sohn, Jong Ryeul; Oh, J-M

    2015-04-01

    The emission rates of N,N-dimethylformamide (DMF), formamide (FAd), and certain hazardous volatile organic compounds (VOCs) were measured from seventeen mattress textile samples with four different raw material types: polyurethane (PU: n=3), polyester/polyethylene (PE: n=7), ethylene vinyl acetate (EV: n=3), and polyvinyl chloride (PC: n=4). To simulate the emissions in a heated room during winter season, measurements were made under temperature-controlled conditions, i.e., 50°C by using a mini-chamber system made of a midget impinger. Comparison of the data indicates that the patterns were greatly distinguished between DMF and FAd. PU products yielded the highest mean emission rates of DMF (2940 μg m(-2)h(-1): n=3) followed by PE (325 μg m(-2)h(-1): n=7), although its emission was not seen from other materials (EV and PC). In contrast, the pattern of FAd emission was moderately reversed from that of DMF: EV>PC>PE>PU. The results of our analysis confirm that most materials used for mattress production have the strong potential to emit either DMF or FAd in relatively large quantities while in use in children׳s care facilities, especially in winter months. Moreover, it was also observed that an increase in temperature (25°C to 50°C) had a significant impact on the emission rate of FAd and other hazardous VOCs. In addition to the aforementioned amides, the study revealed significant emissions of a number of hazardous VOCs, such as aromatic and carbonyl compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Correlation of quantitative histopathological morphology and quantitative radiological analysis during aseptic loosening of hip endoprostheses.

    PubMed

    Bertz, S; Kriegsmann, J; Eckardt, A; Delank, K-S; Drees, P; Hansen, T; Otto, M

    2006-01-01

    Aseptic hip prosthesis loosening is the most important long-term complication in total hip arthroplasty. Polyethylene (PE) wear is the dominant etiologic factor in aseptic loosening, which together with other factors induces mechanisms resulting in bone loss, and finally in implant loosening. The single-shot radiograph analysis (EBRA, abbreviation for the German term "Einzel-Bild-Röntgenanalyse") is a computerized method for early radiological prediction of aseptic loosening. In this study, EBRA parameters were correlated with histomorphological parameters of the periprosthetic membrane. Periprosthetic membranes obtained from 19 patients during revision surgery of loosened ABG I-type total hip pros-theses were analyzed histologically and morphometrically. The pre-existing EBRA parameters, the thickness of the PE debris lay-er and the dimension of inclination and anteversion, were compared with the density of macrophages and giant cells. Addi-tionally, the semiquantitatively determined density of lymphocytes, plasma cells, giant cells and the size of the necrotic areas were correlated with the EBRA results. All periprosthetic membranes were classified as debris-induced type membranes. We found a positive correlation between the number of giant cells and the thickness of the PE debris layer. There was no significant correlation between the number of macrophages or all semiquantitative parameters and EBRA parameters. The number of giant cells decreased with implant duration. The morphometrically measured number of foreign body giant cells more closely reflects the results of the EBRA. The semiquantitative estimation of giant cell density could not substitute for the morphometrical analysis. The density of macrophages, lymphocytes, plasma cells and the size of necrotic areas did not correlate with the EBRA parameters, indicating that there is no correlation with aseptic loosening.

  16. The CCC2000 Birth Cohort Study of Register-Based Family History of Mental Disorders and Psychotic Experiences in Offspring

    PubMed Central

    Jeppesen, Pia; Larsen, Janne Tidselbak; Clemmensen, Lars; Munkholm, Anja; Rimvall, Martin Kristian; Rask, Charlotte Ulrikka; van Os, Jim; Petersen, Liselotte; Skovgaard, Anne Mette

    2015-01-01

    Psychotic experiences (PE) in individuals of the general population are hypothesized to mark the early expression of the pathology underlying psychosis. This notion of PE as an intermediate phenotype is based on the premise that PE share genetic liability with psychosis. We examined whether PE in childhood was predicted by a family history of mental disorder with psychosis rather than a family history of nonpsychotic mental disorder and whether this association differed by severity of PE. The study examined data on 1632 children from a general population birth cohort assessed at age 11–12 years by use of a semistructured interview covering 22 psychotic symptoms. The Danish national registers were linked to describe the complete family history of hospital-based psychiatric diagnoses. Uni- and multivariable logistic regressions were used to test whether a family history of any mental disorder with psychosis, or of nonpsychotic mental disorder, vs no diagnoses was associated with increased risk of PE in offspring (hierarchical exposure variable). The occurrence of PE in offspring was significantly associated with a history of psychosis among the first-degree relatives (adjusted relative risk [RR] = 3.29, 95% CI: 1.82–5.93). The risk increased for combined hallucinations and delusions (adjusted RR = 5.90, 95% CI: 2.64–13.16). A history of nonpsychotic mental disorders in first-degree relatives did not contribute to the risk of PE in offspring nor did any mental disorder among second-degree relatives. Our findings support the notion of PE as a vulnerability marker of transdiagnostic psychosis. The effect of psychosis in first-degree relatives may operate through shared genetic and environmental factors. PMID:25452427

  17. Lifestyle Factors and Premature Ejaculation: Are Physical Exercise, Alcohol Consumption, and Body Mass Index Associated With Premature Ejaculation and Comorbid Erectile Problems?

    PubMed

    Ventus, Daniel; Jern, Patrick

    2016-10-01

    Premature ejaculation (PE) is a common sexual problem in men, but its etiology remains uncertain. Lifestyle factors have long been hypothesized to be associated with sexual problems in general and have been proposed as risk factors for PE. To explore associations among physical exercise, alcohol use, body mass index, PE, and erectile dysfunction. A population-based sample of Finnish men and a sample of Finnish men diagnosed with PE were surveyed for statistical comparisons. Participants using selective serotonin reuptake inhibitors or other medications known to affect symptoms of PE were excluded from analyses. Self-report questionnaires: Multiple Indicators of Premature Ejaculation, International Index of Erectile Function-5, Alcohol Use Disorders Identification Test, and Godin Leisure-Time Exercise Questionnaire. The clinical sample reported lower levels of physical exercise (mean = 27.53, SD = 21.01, n = 69) than the population-based sample (mean = 34.68, SD = 22.82, n = 863, t930 = 2.52, P = .012), and the effect size was large (d = 0.85). There was a small negative correlation between levels of physical exercise and symptoms of PE (r = -0.09, P < .01, n = 863) in the population-based sample. The association between physical exercise and PE remained significant after controlling for effects of age, erectile dysfunction, alcohol use, and body mass index. If future studies show that the direction of causality of this association is such that physical activity alleviates PE symptoms, then including physical activity in PE treatment interventions could be a promising addition to treatment regimes. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  18. Integrating multiple ‘omics’ analyses identifies serological protein biomarkers for preeclampsia

    PubMed Central

    2013-01-01

    Background Preeclampsia (PE) is a pregnancy-related vascular disorder which is the leading cause of maternal morbidity and mortality. We sought to identify novel serological protein markers to diagnose PE with a multi-’omics’ based discovery approach. Methods Seven previous placental expression studies were combined for a multiplex analysis, and in parallel, two-dimensional gel electrophoresis was performed to compare serum proteomes in PE and control subjects. The combined biomarker candidates were validated with available ELISA assays using gestational age-matched PE (n=32) and control (n=32) samples. With the validated biomarkers, a genetic algorithm was then used to construct and optimize biomarker panels in PE assessment. Results In addition to the previously identified biomarkers, the angiogenic and antiangiogenic factors (soluble fms-like tyrosine kinase (sFlt-1) and placental growth factor (PIGF)), we found 3 up-regulated and 6 down-regulated biomakers in PE sera. Two optimal biomarker panels were developed for early and late onset PE assessment, respectively. Conclusions Both early and late onset PE diagnostic panels, constructed with our PE biomarkers, were superior over sFlt-1/PIGF ratio in PE discrimination. The functional significance of these PE biomarkers and their associated pathways were analyzed which may provide new insights into the pathogenesis of PE. PMID:24195779

  19. Optimized smith waterman processor design for breast cancer early diagnosis

    NASA Astrophysics Data System (ADS)

    Nurdin, D. S.; Isa, M. N.; Ismail, R. C.; Ahmad, M. I.

    2017-09-01

    This paper presents an optimized design of Processing Element (PE) of Systolic Array (SA) which implements affine gap penalty Smith Waterman (SW) algorithm on the Xilinx Virtex-6 XC6VLX75T Field Programmable Gate Array (FPGA) for Deoxyribonucleic Acid (DNA) sequence alignment. The PE optimization aims to reduce PE logic resources to increase number of PEs in FPGA for higher degree of parallelism during alignment matrix computations. This is useful for aligning long DNA-based disease sequence such as Breast Cancer (BC) for early diagnosis. The optimized PE architecture has the smallest PE area with 15 slices in a PE and 776 PEs implemented in the Virtex - 6 FPGA.

  20. Fractionation and characterization of particles simulating wear of total joint replacement (TJR) following ASTM standards.

    PubMed

    Saha, Subrata; Musib, Mrinal

    2011-01-01

    Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.

Top