Emission properties of pristine and oxidatively degraded polyfluorene type polymers
NASA Astrophysics Data System (ADS)
Gamerith, Stefan; Gadermaier, Christoph; Scherf, Ullrich; List, Emil J. W.
2004-05-01
We present a detailed and comprehensive picture of the photophysics including device applications within the polyfluorene family of conjugated polymers. First, the photophysics of pristine polyfluorenes in solution and film is outlined, including a discussion of the so-called -phase, which is characterised by a more planar ground state configuration. Particular attention is also dedicated to the occurence of low energy emission bands, which often deteriorate the initially blue emission of polyfluorenes, especially in electroluminescent devices. Although the origin of these emission features has been the object of a controversial discussion, strong evidence for our current ascription to emissive on-chain fluorenone defects is given also in contrast to previous assignments to aggregates, excimers, or exciplexes. According to the current attribution fluorenone-containing polyfluorenes can be described as a guest host system. Following this picture the photoexcitation dynamics from the fs to the ms regime is outlined. Finally, polymer light emitting diodes (PLEDs) based on polyfluorene-type emitters are discussed, especially related to their degradation mechanisms and possible remedies provided by chemistry to reduce the oxidative degradation of polyfluorene-based PLEDs.
Functionalized polyfluorenes for use in optoelectronic devices
Chichak, Kelly Scott [Clifton Park, NY; Lewis, Larry Neil [Scotia, NY; Cella, James Anthony [Clifton Park, NY; Shiang, Joseph John [Niskayuna, NY
2011-11-01
The present invention relates to process comprising reacting a polyfluorenes comprising at least one structural group of formula I ##STR00001## with an iridium (III) compound of formula II ##STR00002## The invention also relates to the polyfluorenes, which are products of the reaction, and the use of the polyfluorenes in optoelectronic devices.
Inkjet Printing of Organic Light-Emitting Diodes Based on Alcohol-Soluble Polyfluorenes
NASA Astrophysics Data System (ADS)
Odod, A. V.; Gadirov, R. M.; Solodova, T. A.; Kurtsevich, A. E.; Il'gach, D. M.; Yakimanskii, A. V.; Burtman, V.; Kopylova, T. N.
2018-04-01
Ink compositions for inkjet printing based on poly(9.9-dioctylfluorene) and its alcohol-soluble analog are created. Current-voltage, brightness-voltage, and spectral characteristics are compared for one- and twolayer polymer structures of organic light-emitting diodes. It is shown that the efficiency of the alcohol-soluble polyfluorene analog is higher compared to poly(9.9-dioctylfluorene), and the possibility of viscosity optimization is higher compared to aromatic chlorinated solvents.
High work function transparent middle electrode for organic tandem solar cells
NASA Astrophysics Data System (ADS)
Moet, D. J. D.; de Bruyn, P.; Blom, P. W. M.
2010-04-01
The use of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in combination with ZnO as middle electrode in solution-processed organic tandem solar cells requires a pH modification of the PEDOT:PSS dispersion. We demonstrate that this neutralization leads to a reduced work function of PEDOT:PSS, which does not affect the performance of polythiophene:fullerene solar cells, but results in a lower open-circuit voltage of devices based on a polyfluorene derivative with a higher ionization potential. The introduction of a thin layer of a perfluorinated ionomer recovers the anode work function and gives an open-circuit voltage of 1.92 V for a double junction polyfluorene-based solar cell.
2,5-linked polyfluorenes for optoelectronic devices
Cella, James Anthony; Shiang, Joseph John; Shanklin, Elliott West; Smigelski, Paul Michael
2010-06-08
Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
2,5-linked polyfluorenes for optoelectronic devices
Cella, James Anthony [Clifton Park, NY; Shiang, Joseph John [Niskayuna, NY; Shanklin, Elliott West [Altamont, NY; Smigelski, Jr, Paul Michael
2011-06-28
Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
2,5-linked polyfluorenes for optoelectronic devices
Cella, James Anthony [Clifton Park, NY; Shiang, Joseph John [Niskayuna, NY; Shanklin, Elliott West [Altamont, NY; Smigelski, Paul Michael [Scotia, NY
2009-12-22
Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
2,5-linked polyfluorenes for optoelectronic devices
Cella, James Anthony [Clifton Park, NY; Shiang, Joseph John [Niskayuna, NY; Shanklin, Elliott West [Altamont, NY; Smigelski, Jr., Paul Michael
2011-11-08
Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
Madsen, Mikael; Christensen, Rasmus S; Krissanaprasit, Abhichart; Bakke, Mette R; Riber, Camilla F; Nielsen, Karina S; Zelikin, Alexander N; Gothelf, Kurt V
2017-08-04
Conjugated polymers have been intensively studied due to their unique optical and electronic properties combined with their physical flexibility and scalable bottom up synthesis. Although the bulk qualities of conjugated polymers have been extensively utilized in research and industry, the ability to handle and manipulate conjugated polymers at the nanoscale lacks significantly behind. Here, the toolbox for controlled manipulation of conjugated polymers was expanded through the synthesis of a polyfluorene-DNA graft-type polymer (poly(F-DNA)). The polymer possesses the characteristics associated with the conjugated polyfluorene backbone, but the protruding single-stranded DNA provides the material with an exceptional addressability. This study demonstrates controlled single-molecule patterning of poly(F-DNA), as well as energy transfer between two different polymer-DNA conjugates. Finally, highly efficient DNA-directed quenching of polyfluorene fluorescence was shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stolz, Sebastian; Lemmer, Uli; Hernandez-Sosa, Gerardo; Mankel, Eric
2018-03-14
We investigate three amine-based polymers, polyethylenimine and two amino-functionalized polyfluorenes, as electron injection layers (EILs) in organic light-emitting diodes (OLEDs) and find correlations between the molecular structure of the polymers, the electronic alignment at the emitter/EIL interface, and the resulting device performance. X-ray photoelectron spectroscopy measurements of the emitter/EIL interface indicate that all three EIL polymers induce an upward shift of the Fermi level in the emitting layer close to the interface similar to n-type doping. The absolute value of this Fermi level shift, which can be explained by an electron transfer from the EIL polymers into the emitting layer, correlates with the number of nitrogen-containing groups in the side chains of the polymers. Whereas polyethylenimine (PEI) and one of the investigated polyfluorenes (PFCON-C) have six such groups per monomer unit, the second investigated polyfluorene (PFN) only possesses two. Consequently, we measure Fermi level shifts of 0.5-0.7 eV for PEI and PFCON-C and only 0.2 eV for PFN. As a result of these Fermi level shifts, the energetic barrier for electron injection is significantly lowered and OLEDs which comprise PEI or PFCON-C as an EIL exhibit a more than twofold higher luminous efficacy than OLEDs with PFN.
Functionalized polyfluorenes for use in optoelectronic devices
Chichak, Kelly Scott [Clifton Park, NY; Lewis, Larry Neil [Scotia, NY; Cella, James Anthony [Clifton Park, NY; Shiang, Joseph John [Niskayuna, NY
2011-11-08
The present invention relates to process comprising reacting a polyfluorenes comprising at least one structural group of formula I ##STR00001## with an iridium (III) compound of formula II ##STR00002## wherein R.sup.1 and R.sup.2 are independently alkyl, substituted alkyl, aryl, substituted aryl or a combination thereof; R.sup.5is H or CHO; R.sup.3 and R.sup.4 are independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl or a combination thereof; R.sup.11 and R.sup.12 taken together form a substituted or unsubstituted monocyclic or bicyclic heteroaromatic ring; R.sup.13 is independently at each occurrence halo, nitro, hydroxy, amino, alkyl, aryl, arylalkyl, alkoxy, substituted alkoxy, substituted alkyl, substituted aryl, or substituted arylalkyl; Ar is aryl, heteroaryl, substituted aryl, substituted heteroaryl, or a combination thereof; X is selected from a direct bond, alky, substituted alkyl, and combinations thereof; Y is CHO or NH.sub.2; Z is CHO or NH.sub.2 where Z does not equal Y; and p is 0, 1 or 2. The invention also relates to the polyfluorenes, which are products of the reaction, and the use of the polyfluorenes in optoelectronic devices.
Degradation of polyfluorene-type polymers: interface and bulk-related defects
NASA Astrophysics Data System (ADS)
Gamerith, Stefan; Gadermaier, Christoph; Nothofer, Heinz G.; Scherf, Ullrich; List, Emil J.
2004-09-01
The origin of a broad low-energy photo-luminescence (PL) and electro-luminescence (EL) band emerging upon oxidative degradation of hihgly emissive polyfluorenes (PFs) has recently been identified as the emission from on-chain keto defects acting as exciton and/or charge traps. In this work we compare several polyfluorenes with respect to their stability upon thermal degradation, and their stability upon fabrication and operation of PF-based polymer light emitting devices (PLEDs). We show that in addition to the keto emission a second type of defect emission, which is related to the deposition of the metal electrode, can also affect the color purity of PF-PLEDs. Investigated materials are a poly(9,9 dialkylfluorene) with hexahydrofarnesyl sidechains (PF111/12) a poly(9,9 dialkylfluorene) with ethyl-hexyl sidechains (PF 2/6) and two different slightly branched spiro-PFs with and without triphenylamine endcappers, respetively. We find significant differences in the spectral stability of the polymers which may on the one hand be explained by a difference of the chemical stability of the polymers but to some extent must be explained withiin the picture of excited energy migration. Regarding a comparison of the polymers, the end-capped spiro-type PF shows an overall improved performance compared to the other investigated polymers provided that the evaporation process of the metal cathode of an PLED is well controlled to avoid the formation of emissive defects at the interface.
Kahveci, Zehra; Martínez-Tomé, Maria José; Mallavia, Ricardo; Mateo, C Reyes
2017-01-11
This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.
Near band gap luminescence in hybrid organic-inorganic structures based on sputtered GaN nanorods.
Forsberg, Mathias; Serban, Elena Alexandra; Hsiao, Ching-Lien; Junaid, Muhammad; Birch, Jens; Pozina, Galia
2017-04-26
Novel hybrid organic-inorganic nanostructures fabricated to utilize non-radiative resonant energy transfer mechanism are considered to be extremely attractive for a variety of light emitters for down converting of ultaviolet light and for photovoltaic applications since they can be much more efficient compared to devices grown with common design. Organic-inorganic hybrid structures based on green polyfluorene (F8BT) and GaN (0001) nanorods grown by magnetron sputtering on Si (111) substrates are studied. In such nanorods, stacking faults can form periodic polymorphic quantum wells characterized by bright luminescence. In difference to GaN exciton emission, the recombination rate for the stacking fault related emission increases in the presence of polyfluorene film, which can be understood in terms of Förster interaction mechanism. From comparison of dynamic properties of the stacking fault related luminescence in the hybrid structures and in the bare GaN nanorods, the pumping efficiency of non-radiative resonant energy transfer in hybrids was estimated to be as high as 35% at low temperatures.
NASA Astrophysics Data System (ADS)
Shaw-Stewart, James; Mattle, Thomas; Lippert, Thomas; Nagel, Matthias; Nüesch, Frank; Wokaun, Alexander
2013-08-01
Laser-induced forward transfer (LIFT) has already been used to fabricate various types of organic light-emitting diodes (OLEDs), and the process itself has been optimised and refined considerably since OLED pixels were first demonstrated. In particular, a dynamic release layer (DRL) of triazene polymer has been used, the environmental pressure has been reduced down to a medium vacuum, and the donor receiver gap has been controlled with the use of spacers. Insight into the LIFT process's effect upon OLED pixel performance is presented here, obtained through optimisation of three-colour polyfluorene-based OLEDs. A marked dependence of the pixel morphology quality on the cathode metal is observed, and the laser transfer fluence dependence is also analysed. The pixel device performances are compared to conventionally fabricated devices, and cathode effects have been looked at in detail. The silver cathode pixels show more heterogeneous pixel morphologies, and a correspondingly poorer efficiency characteristics. The aluminium cathode pixels have greater green electroluminescent emission than both the silver cathode pixels and the conventionally fabricated aluminium devices, and the green emission has a fluence dependence for silver cathode pixels.
Chowdhury, Sayan Roy; Mukherjee, Sudip; Das, Sourav
2017-01-01
The accumulation of fluorescent hydroxyquinoline-affixed polyfluorene (PF-HQ) nanoparticles and their utility for multi-color bio-imaging and drug delivery for cancer treatment are reported. The formation of nanoparticles (PF-HQ) containing hydrophobic pockets via three-dimensional growth of a polymeric backbone in a higher water fraction (THF : H2O = 1 : 9) was observed. The nanoparticles showed incredible dual-state optical and fluorescence properties, which were further explored in multi-color cell imaging in both cancer and normal cells. The cell viability assay in various normal cells confirmed the biocompatible nature of PF-HQ, which was further supported by an ex vivo (chick chorioallantoic membrane assay) model. This encouraged us to fabricate PF-HQ-based new drug delivery systems (DDS: PF-HQ–DOX) upon conjugation with the FDA-approved anti-cancer drug doxorubicin (DOX) by filling the hydrophobic pockets of the polymer nanoparticles. The enhanced anti-cancer activity of the DDS (PF-HQ–DOX) compared with that of free DOX was observed in mouse melanoma cancer cells (B16F10) and a subcutaneous mouse (C57BL6/J) melanoma tumor model upon administration of PF-HQ–DOX. Ex vivo biodistribution studies using a fluorescence quantification method demonstrated the enhanced accumulation of DOX in tumor tissues in the PF-HQ–DOX-treated group compared to that of the free drug, signifying the drug delivery efficacy of the delivery system by a passive targeting manner. Based on the above biological data (in vitro and in the pre-clinical model), these robust and versatile fluorescent hydroxyquinoline-affixed polyfluorene (PF-HQ) nanoparticles could be effectively utilized for multifunctional biomedical applications (as they are biocompatible and can be used for bio-imaging and as a drug delivery vehicle). PMID:29568419
Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul
2015-01-01
ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506 PMID:27546983
Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.
Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro
2018-06-01
This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.
Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee
2009-01-14
The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.
Synthesis and Crystal Structure of Highly Strained [4]Cyclofluorene: Green-Emitting Fluorophore.
Liu, Yu-Yu; Lin, Jin-Yi; Bo, Yi-Fan; Xie, Ling-Hai; Yi, Ming-Dong; Zhang, Xin-Wen; Zhang, Hong-Mei; Loh, Teck-Peng; Huang, Wei
2016-01-15
[4]Cyclo-9,9-dipropyl-2,7-fluorene ([4]CF) with the strain energy of 79.8 kcal/mol is synthesized in high quantum yield. Impressively, hoop-shaped [4]CF exhibits a green fluorescence emission around 512 nm offering a new explanation for the green band (g-band) in polyfluorenes. The solution-processed [4]CF-based organic light emitting diode (OLED) has also been fabricated with the a stronger green band emission. Strained semiconductors offer a promising approach to fabricating multifunctional optoelectronic materials in organic electronics and biomedicine.
Disorder induced spin coherence in polyfluorene thin film semiconductors
NASA Astrophysics Data System (ADS)
Miller, Richard G.; van Schooten, Kipp; Malissa, Hans; Waters, David P.; Lupton, John M.; Boehme, Christoph
2014-03-01
Charge carrier spins in polymeric organic semiconductors significantly influence magneto-optoelectronic properties of these materials. In particular, spin relaxation times influence magnetoresistance and electroluminescence. We have studied the role of structural and electronic disorder in polaron spin-relaxation times. As a model polymer, we used polyfluorene, which can exist in two distinct morphologies: an amorphous (glassy) and an ordered (beta) phase. The phases can be controlled in thin films by preparation parameters and verified by photoluminescence spectroscopy. We conducted pulsed electrically detected magnetic resonance (pEDMR) measurements to determine spin-dephasing times by transient current measurements under bipolar charge carrier injection conditions and a forward bias. The measurements showed that, contrary to intuition, spin-dephasing times increase with material disorder. We attribute this behavior to a reduction in hyperfine field strength for carriers in the glassy phase due to increased structural disorder in the hydrogenated side chains, leading to longer spin coherence times. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.
Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics.
Xie, Ling-Hai; Yang, Su-Hui; Lin, Jin-Yi; Yi, Ming-Dong; Huang, Wei
2013-10-13
Nanotechnology not only opens up the realm of nanoelectronics and nanophotonics, but also upgrades organic thin-film electronics and optoelectronics. In this review, we introduce polymer semiconductors and plastic electronics briefly, followed by various top-down and bottom-up nano approaches to organic electronics. Subsequently, we highlight the progress in polyfluorene-based nanoparticles and nanowires (nanofibres), their tunable optoelectronic properties as well as their applications in polymer light-emitting devices, solar cells, field-effect transistors, photodetectors, lasers, optical waveguides and others. Finally, an outlook is given with regard to four-element complex devices via organic nanotechnology and molecular manufacturing that will spread to areas such as organic mechatronics in the framework of robotic-directed science and technology.
Derenskyi, Vladimir; Gomulya, Widianta; Talsma, Wytse; Salazar-Rios, Jorge Mario; Fritsch, Martin; Nirmalraj, Peter; Riel, Heike; Allard, Sybille; Scherf, Ullrich; Loi, Maria A
2017-06-01
In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self-assembly of the selected s-SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s-SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s-SWNT purity. Field-effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self-assembly of the SWNTs/thiolated-polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm 2 V -1 s -1 ), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Era, Masanao; Shironita, Yu; Soda, Koichi
2018-03-01
Using the squeezed out technique, we successfully prepared PbBr-based layered perovskite Langmuir-Blodgett (LB) films, which have π-conjugated materials as an organic layer (i.e., a phenylenevinylene oligomer, a dithienylethene derivative, and a π-conjugated polyfluorene derivative). The mixed monolayers of π-conjugated materials and octadecylammonium bromide were spread on an aqueous subphase containing saturated PbBr2. During pressing, octadecylammonium molecules were squeezed from the mixed monolayer, and the squeezed ammonium molecules formed the PbBr-based layered perovskite structure at the air-aqueous subphase interface. The monolayers with the PbBr-based layered perovskite structure could be deposited on fused quartz substrates by the LB technique. In addition to the preparation procedure, the structural and optical properties of the layered perovskite LB films and their formation mechanism are reported in this paper.
Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.
Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei
2013-11-13
Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.
On the polarization of the green emission of polyfluorenes
NASA Astrophysics Data System (ADS)
Yang, X. H.; Neher, D.; Spitz, C.; Zojer, E.; Brédas, J. L.; Güntner, R.; Scherf, U.
2003-10-01
An experimental and theoretical study of the anisotropic optical properties of polyfluorenes (PFs) bearing ketonic defects is presented. Polarized emission experiments performed on photooxidized aligned PF layers indicate that the transition dipole of the "green" CT π-π* transition of the keto-defect is oriented parallel to the chain direction. It is further observed that the polarization ratio of the green emission is slightly smaller than that of the blue emission component originating from undisturbed chains. Quantum mechanical calculations have been performed to support these observations. It is shown that the transition dipole moment of the CT π-π* transition of the defect is slightly misaligned with respect to the π-π* transition of the undisturbed PF chain, and that the angle between both depends on the chain conformation. For the most probably 5/2 helical conformation, this angle is, however, smaller than 5°. Further, polarized PL spectroscopy with polarized excitation has been performed to determine the extent of energy migration prior to emission from the keto-defect. For excitation at 380 nm, the polarization ratio of the green emission is essentially independent of the excitation polarization, indicating almost complete depolarization of the excitation before it is captured at a defect site. In contrast to this, energy migration after direct excitation of the keto-defect is inefficient or even absent.
Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors
Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei
2013-01-01
Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455
Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao
2016-01-01
ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.
Emulsion based cast booster - a priming system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, R.N.; Mishra, A.K.
2005-07-01
This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiatedmore » with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.« less
A Recipe for Soft Fluidic Elastomer Robots
Marchese, Andrew D.; Katzschmann, Robert K.
2015-01-01
Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes. PMID:27625913
A Recipe for Soft Fluidic Elastomer Robots.
Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela
2015-03-01
This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.
Das, Dipjyoti; Gopikrishna, Peddaboodi; Singh, Ashish; Dey, Anamika; Iyer, Parameswar Krishnan
2016-03-14
Fabrication of efficient blue and white polymer light-emitting diodes (PLEDs) using a well charge balanced, core modified polyfluorene derivative, poly[2,7-(9,9'-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)] (PFONPN01), is presented. The excellent film forming properties as observed from the morphological study and the enhanced electron transport properties due to the inclusion of the NPN unit in the PFO main chain resulted in improved device properties. Bright blue light was observed from single layer PLEDs with PFONPN01 as an emissive layer (EML) as well as from double layer PLEDs using tris-(8-hydroxyquinoline) aluminum (Alq3) as an electron transporting layer (ETL) and LiF/Al as a cathode. The effect of ETL thickness on the device performance was studied by varying the Alq3 thickness (5 nm, 10 nm and 20 nm) and the device with an ETL thickness of 20 nm was found to exhibit the maximum brightness value of 11 662 cd m(-2) with a maximum luminous efficiency of 4.87 cd A(-1). Further, by using this highly electroluminescent blue PFONPN01 as a host and a narrow band gap, yellow emitting small molecule, dithiophene benzothiadiazole (DBT), as a guest at three different concentrations (0.2%, 0.4% and 0.6%), WPLEDs with the ITO/PEDOT:PSS/emissive layer/Alq3(20 nm)/LiF/Al configuration were fabricated and maximum brightness values of 8025 cd m(-2), 9565 cd m(-2) and 10 180 cd m(-2) were achieved respectively. 0.4% DBT in PFONPN01 was found to give white light with Commission International de l'Echairage (CIE) coordinates of (0.31, 0.38), a maximum luminous efficiency of 6.54 cd A(-1) and a color-rendering index (CRI) value of 70.
NASA Astrophysics Data System (ADS)
Singh, Rupinder
2018-02-01
Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.
NASA Astrophysics Data System (ADS)
Humeniuk, Alexander; Mitrić, Roland
2017-12-01
A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.
Influence of S. mutans on base-metal dental casting alloy toxicity.
McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P
2013-01-01
We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p < 0.0001) and cell metabolic activity (p < 0.0001), and significantly increased cell toxicity (p < 0.0001) and inflammatory cytokine expression (p < 0.0001). S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.
Very High Cycle Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy DZ4
Nie, Baohua; Zhao, Zihua; Liu, Shu; Chen, Dongchu; Ouyang, Yongzhong; Hu, Zhudong; Fan, Touwen; Sun, Haibo
2018-01-01
The effect of casting pores on the very high cycle fatigue (VHCF) behavior of a directionally solidified (DS) Ni-base superalloy DZ4 is investigated. Casting and hot isostatic pressing (HIP) specimens were subjected to very high cycle fatigue loading in an ambient atmosphere. The results demonstrated that the continuously descending S-N curves were exhibited for both the casting and HIP specimens. Due to the elimination of the casting pores, the HIP samples had better fatigue properties than the casting samples. The subsurface crack initiated from the casting pore in the casting specimens at low stress amplitudes, whereas fatigue crack initiated from crystallographic facet decohesion for the HIP specimens. When considering the casting pores as initial cracks, there exists a critical stress intensity threshold ranged from 1.1 to 1.3 MPam, below which fatigue cracks may not initiate from the casting pores. Furthermore, the effect of the casting pores on the fatigue limit is estimated based on a modified El Haddad model, which is in good agreement with the experimental results. Fatigue life for both the casting and HIP specimens is well predicted using the Fatigue Indicator Parameter (FIP) model. PMID:29320429
Bae, Donald S; Lynch, Hayley; Jamieson, Katherine; Yu-Moe, C Winnie; Roussin, Christopher
2017-09-06
The purpose of this investigation was to characterize the clinical efficacy and cost-effectiveness of simulation training aimed at reducing cast-saw injuries. Third-year orthopaedic residents underwent simulation-based instruction on distal radial fracture reduction, casting, and cast removal using an oscillating saw. The analysis compared incidences of cast-saw injuries and associated costs before and after the implementation of the simulation curriculum. Actual and potential costs associated with cast-saw injuries included wound care, extra clinical visits, and potential total payment (indemnity and expense payments). Curriculum costs were calculated through time-derived, activity-based accounting methods. The researchers compared the costs of cast-saw injuries and the simulation curriculum to determine overall savings and return on investment. In the 2.5 years prior to simulation, cast-saw injuries occurred in approximately 4.3 per 100 casts cut by orthopaedic residents. For the 2.5-year period post-simulation, the injury rate decreased significantly to approximately 0.7 per 100 casts cut (p = 0.002). The total cost to implement the casting simulation was $2,465.31 per 6-month resident rotation. On the basis of historical data related to cast-saw burns (n = 6), total payments ranged from $2,995 to $25,000 per claim. The anticipated savings from averted cast-saw injuries and associated medicolegal payments in the 2.5 years post-simulation was $27,131, representing an 11-to-1 return on investment. Simulation-based training for orthopaedic surgical residents was effective in reducing cast-saw injuries and had a high theoretical return on investment. These results support further investment in simulation-based training as cost-effective means of improving patient safety and clinical outcomes. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Rough case-based reasoning system for continues casting
NASA Astrophysics Data System (ADS)
Su, Wenbin; Lei, Zhufeng
2018-04-01
The continuous casting occupies a pivotal position in the iron and steel industry. The rough set theory and the CBR (case based reasoning, CBR) were combined in the research and implementation for the quality assurance of continuous casting billet to improve the efficiency and accuracy in determining the processing parameters. According to the continuous casting case, the object-oriented method was applied to express the continuous casting cases. The weights of the attributes were calculated by the algorithm which was based on the rough set theory and the retrieval mechanism for the continuous casting cases was designed. Some cases were adopted to test the retrieval mechanism, by analyzing the results, the law of the influence of the retrieval attributes on determining the processing parameters was revealed. A comprehensive evaluation model was established by using the attribute recognition theory. According to the features of the defects, different methods were adopted to describe the quality condition of the continuous casting billet. By using the system, the knowledge was not only inherited but also applied to adjust the processing parameters through the case based reasoning method as to assure the quality of the continuous casting and improve the intelligent level of the continuous casting.
Three-dimensional microstructure simulation of Ni-based superalloy investment castings
NASA Astrophysics Data System (ADS)
Pan, Dong; Xu, Qingyan; Liu, Baicheng
2011-05-01
An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.
Caste- and ethnicity-based inequalities in HIV/AIDS-related knowledge gap: a case of Nepal.
Atteraya, Madhu; Kimm, HeeJin; Song, In Han
2015-05-01
Caste- and ethnicity-based inequalities are major obstacles to achieving health equity. The authors investigated whether there is any association between caste- and ethnicity-based inequalities and HIV-related knowledge within caste and ethnic populations. They used the 2011 Nepal Demographic and Health Survey, a nationally represented cross-sectional study data set. The study sample consisted of 11,273 women between 15 and 49 years of age. Univariate and logistic regression models were used to examine the relationship between caste- and ethnicity-based inequalities and HIV-related knowledge. The study sample was divided into high Hindu caste (47.9 percent), "untouchable" caste (18.4 percent), and indigenous populations (33.7 percent). Within the study sample, the high-caste population was found to have the greatest knowledge of the means by which HIV is prevented and transmitted. After controlling for socioeconomic and demographic characteristics, untouchables were the least knowledgeable. The odds ratio for incomplete knowledge about transmission among indigenous populations was 1.27 times higher than that for high Hindu castes, but there was no significant difference in knowledge of preventive measures. The findings suggest the existence of a prevailing HIV knowledge gap. This in turn suggests that appropriate steps need to be implemented to convey complete knowledge to underprivileged populations.
The effects of different types of investments on the alpha-case layer of titanium castings.
Guilin, Yu; Nan, Li; Yousheng, Li; Yining, Wang
2007-03-01
Different types of investments affect the formation of the alpha-case (alpha-case) layer on titanium castings. This alpha-case layer may possibly alter the mechanical properties of cast titanium, which may influence the fabrication of removable and fixed prostheses. The formation mechanism for the alpha-case layer is not clear. The aim of this study was to evaluate the effect of 3 types of investments on the microstructure, composition, and microhardness of the alpha-case layer on titanium castings. Fifteen wax columns with a diameter of 5 mm and a length of 40 mm were divided into 3 groups of 5 patterns each. Patterns were invested using 3 types of investment materials, respectively, and were cast in pure titanium. The 3 types of materials tested were SiO(2)-, Al(2)O(3)-, and MgO-based investments. All specimens were sectioned and prepared for metallographic observation. The microstructure and composition of the surface reaction layer of titanium castings were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The surface microhardness (VHN) for all specimens was measured using a hardness testing machine, and a mean value for each group was calculated. The alpha-case layer on titanium castings invested with SiO(2)-, Al(2)O(3)-, and MgO-based investments consisted of 3 layers-namely, the oxide layer, alloy layer, and hardening layer. In this study, the oxide layer and alloy layer were called the reaction layer. The thickness of the reaction layer for titanium castings using SiO(2)-, Al(2)O(3)-, and MgO-based investments was approximately 80 microm, 50 microm, and 14 microm, respectively. The surface microhardness of titanium castings made with SiO(2)-based investments was the highest, and that with MgO-based investments was the lowest. The type of investment affects the microstructure and microhardness of the alpha-case layer of titanium castings. Based on the thickness of the surface reaction layer and the surface microhardness of titanium castings, MgO-based investment materials may be the best choice for casting these materials.
ERIC Educational Resources Information Center
Kapoor, Dip
2007-01-01
Despite the constitutional ban on the practice of untouchability and caste-based discrimination, this article elaborates on a gendered-caste-based discriminatory reality in rural India, the difficulties of enforcing legal remedies, and on related human rights praxis to address gendered-caste atrocities by drawing on the experiences of a Canadian…
Dai, F F; Liu, Y; Xu, T M; Chen, G
2018-04-18
To explore a cone beam computed tomography (CBCT)-independent method for mandibular digital dental cast superimposition to evaluate three-dimensional (3D) mandibular tooth movement after orthodontic treatment in adults, and to evaluate the accuracy of this method. Fifteen post-extraction orthodontic treatment adults from the Department of Orthodontics, Peking University School and Hospital of Stomatology were included. All the patients had four first premolars extracted, and were treated with straight wire appliance. The pre- and post-treatment plaster dental casts and craniofacial CBCT scans were obtained. The plaster dental casts were transferred to digital dental casts by 3D laser scanning, and lateral cephalograms were created from the craniofacial CBCT scans by orthogonal projection. The lateral cephalogram-based mandibular digital dental cast superimposition was achieved by sequential maxillary dental cast superimposition registered on the palatal stable region, occlusal transfer, and adjustment of mandibular rotation and translation obtained from lateral cephalogram superimposition. The accuracy of the lateral cephalogram-based mandibular digital dental cast superimposition method was evaluated with the CBCT-based mandibular digital dental cast superimposition method as the standard reference. After mandibular digital dental cast superimposition using both methods, 3D coordinate system was established, and 3D displacements of the lower bilateral first molars, canines and central incisors were measured. Differences between the two superimposition methods in tooth displacement measurements were assessed using the paired t-test with the level of statistical significance set at P<0.05. No significant differences were found between the lateral cephalogram-based and CBCT-based mandibular digital dental cast superimposition methods in 3D displacements of the lower first molars, and sagittal and vertical displacements of the canines and central incisors; transverse displacements of the canines and central incisors differed by (0.3±0.5) mm with statistical significance. The lateral cephalogram-based mandibular digital dental cast superimposition method has the similar accuracy as the CBCT-based mandibular digital dental cast superimposition method in 3D evaluation of mandibular orthodontic tooth displacement, except for minor differences for the transverse displacements of anterior teeth. This method is applicable to adult patients with conventional orthodontic treatment records, especially the previous precious orthodontic data in the absence of CBCT scans.
Ye, Hongqiang; Ma, Qijun; Hou, Yuezhong; Li, Man; Zhou, Yongsheng
2017-12-01
Digital techniques are not clinically applied for 1-piece maxillary prostheses containing an obturator and removable partial denture retained by the remaining teeth because of the difficulty in obtaining sufficiently accurate 3-dimensional (3D) images. The purpose of this pilot clinical study was to generate 3D digital casts of maxillary defects, including the defective region and the maxillary dentition, based on multisource data registration and to evaluate their effectiveness. Twelve participants with maxillary defects were selected. The maxillofacial region was scanned with spiral computer tomography (CT), and the maxillary arch and palate were scanned using an intraoral optical scanner. The 3D images from the CT and intraoral scanner were registered and merged to form a 3D digital cast of the maxillary defect containing the anatomic structures needed for the maxillary prosthesis. This included the defect cavity, maxillary dentition, and palate. Traditional silicone impressions were also made, and stone casts were poured. The accuracy of the digital cast in comparison with that of the stone cast was evaluated by measuring the distance between 4 anatomic landmarks. Differences and consistencies were assessed using paired Student t tests and the intraclass correlation coefficient (ICC). In 3 participants, physical resin casts were produced by rapid prototyping from digital casts. Based on the resin casts, maxillary prostheses were fabricated by using conventional methods and then evaluated in the participants to assess the clinical applicability of the digital casts. Digital casts of the maxillary defects were generated and contained all the anatomic details needed for the maxillary prosthesis. Comparing the digital and stone casts, a paired Student t test indicated that differences in the linear distances between landmarks were not statistically significant (P>.05). High ICC values (0.977 to 0.998) for the interlandmark distances further indicated the high degree of consistency between the digital and stone casts. The maxillary prostheses showed good clinical effectiveness, indicating that the corresponding digital casts met the requirements for clinical application. Based on multisource data from spiral CT and the intraoral scanner, 3D digital casts of maxillary defects were generated using the registration technique. These casts were consistent with conventional stone casts in terms of accuracy and were suitable for clinical use. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Obtaining of High Cr Content Cast Iron Materials
NASA Astrophysics Data System (ADS)
Florea, C.; Bejinariu, C.; Carcea, I.; Cimpoesu, N.; Chicet, D. L.; Savin, C.
2017-06-01
We have obtained, through the classic casting process, 3 highly chromium-based experimental alloys proposed for replacing the FC 250 classical cast iron in braking applications. Casting was carried out in an induction furnace and cast into moulds made of KALHARTZ 8500 resin casting mixture and HARTER hardener at SC RanCon SRL Iasi. It is known that the microstructure of the cast iron is a combination of martensite with a small amount of residual austenite after the heat treatment of the ingot. In the case of high-alloy chromium alloys, the performance of the material is due to the presence of M7C3 carbides distributed in the iron matrix Resistance to machining and deformation is based on alloy composition and microstructure, while abrasion resistance will depend on properties and wear conditions.
Organic electronic devices via interface engineering
NASA Astrophysics Data System (ADS)
Xu, Qianfei
This dissertation focuses on interface engineering and its influence on organic electronic devices. A comprehensive review of interface studies in organic electronic devices is presented in Chapter 1. By interface engineering at the cathode contact, an ultra-high efficiency green polymer light emitting diode is demonstrated in Chapter 2. The interface modification turns out to be solution processable by using calcium acetylacetonate, donated by Ca(acac)2. The device structure is Induim Tin Oxide (ITO)/3,4-polyethylenedioxythiophene-polystyrene-sulfonate (PEDOT)/Green polyfluorene/Ca(acac) 2/Al. Based on this structure, we obtained device efficiencies as high as 28 cd/A at 2650 cd/m2, which is about a 3 times improvement over previous devices. The mechanism of this nano-layer has been studied by I-L-V measurements, photovoltaic measurements, XPS/UPS studies, impedance measurements as well as transient EL studies. The interfacial layer plays a crucial role for the efficiency improvement. It is believed to work as a hole blocking layer as well as an electron injection layer. Meanwhile, a systematic study on ITO electrodes is also carried out in Chapter 4. By engineering the interface at ITO electrode, the device lifetime has been improved. In Chapter 5, very bright white emission PLEDs are fabricated based on blue polyfluorene (PF) doped with 1 wt% 6, 8, 15, 17-tetraphyenyl-1.18, 4.5, 9.10, 13.14-tetrabenzoheptacene (TBH). The maximum luminance exceeds 20,000 cd/m2. The maximum luminance efficiency is 3.55 cd/A at 4228 cd/m2 while the maximum power efficiency is 1.6 lm/W at 310 cd/m2. The white color is achieved by an incomplete energy transfer from blue PF to TBH. The devices show super stable CIE coordinates as a function of current density. The interface engineering is also applied to memory devices. In Chapter 6, a novel nonvolatile memory device is fabricated by inserting a buffer layer at the anode contact. Devices with the structure of Cu/Buffer-layer/organic layer/Cu show very attractive electrical bi-stability. The switching mechanism is believed to origin from by the different copper ion concentrations in the organic layer. This opens up a promising way to achieve high-performance organic electronic devices.
Hartmann, Nicolai F; Pramanik, Rajib; Dowgiallo, Anne-Marie; Ihly, Rachelle; Blackburn, Jeffrey L; Doorn, Stephen K
2016-12-27
Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood. Here, we present the results of a combined pump-probe and photoluminescence imaging study of polyfluorene (PFO)-wrapped (6,5) and (7,5) SWCNTs that provide additional insight into the role played by polymer structures in defining exciton transport. Pump-probe measurements suggest exciton transport occurs over larger length scales in films composed of PFO-wrapped (7,5) SWCNTs, compared to those prepared from PFO-bpy-wrapped (6,5) SWCNTs. To explore the role the difference in polymer structure may play as a possible origin of differing transport behaviors, we performed a photoluminescence imaging study of individual polymer-wrapped (6,5) and (7,5) SWCNTs. The PFO-bpy-wrapped (6,5) SWCNTs showed more uniform intensity distributions along their lengths, in contrast to the PFO-wrapped (7,5) SWCNTs, which showed irregular, discontinuous intensity distributions. These differences likely originate from differences in surface coverage and suggest the PFO wrapping on (7,5) nanotubes produces a more open surface structure than is available with the PFO-bpy wrapping of (6,5) nanotubes. The open structure likely leads to improved intertube coupling that enhances exciton transport within the (7,5) films, consistent with the results of our pump-probe measurements.
Caste-, work-, and descent-based discrimination as a determinant of health in social epidemiology.
Patil, Rajan R
2014-01-01
Social epidemiology explores health in the context of broad social determinants of health, where the boundary lines between health and politics appear increasingly blurred. Social determinants of health such as caste, discrimination, and social exclusion are inherently political in nature, hence it becomes imperative to look at health through a broader perspective of political philosophy, ideology, and caste that imposes enormous obstacles to a person's full attainment of civil, political, economic, social, and cultural rights. Caste is descent based and hereditary in nature. It is a characteristic determined by one's birth into a particular caste, irrespective of the faith practiced by the individual. Caste denotes a system of rigid social stratification into ranked groups defined by descent and occupation. Under various caste systems throughout the world, caste divisions also dominate in housing, marriage, and general social interaction divisions that are reinforced through the practice and threat of social ostracism, economic boycotts, and even physical violence-all of which undermine health equality.
NASA Astrophysics Data System (ADS)
Yuan, Chen; Jones, Sam; Blackburn, Stuart
2012-12-01
Investment casting is a time-consuming, labour intensive process, which produces complex, high value-added components for a variety of specialised industries. Current environmental and economic pressures have resulted in a need for the industry to improve current casting quality, reduce manufacturing costs and explore new markets for the process. Alumino-silicate based refractories are commonly used as both filler and stucco materials for ceramic shell production. A new ceramic material, norite, is now being produced based on ferrous aluminosilicate chemistry, having many potential advantages when used for the production of shell molds for casting aluminum alloy. This paper details the results of a direct comparison made between the properties of a ceramic shell system produced with norite refractories and a typical standard refractory shell system commonly used in casting industry. A range of mechanical and physical properties of the systems was measured, and a full-scale industrial casting trial was also carried out. The unique properties of the norite shell system make it a promising alternative for casting aluminum based alloys in the investment foundry.
NASA Astrophysics Data System (ADS)
Ludwig, Andreas; Wu, Menghuai; Kharicha, Abdellah
2015-11-01
Macrosegregations, namely compositional inhomogeneities at a scale much larger than the microstructure, are typically classified according to their metallurgical appearance. In ingot castings, they are known as `A' and `V' segregation, negative cone segregation, and positive secondary pipe segregation. There exists `inverse' segregation at casting surfaces and `centerline' segregation in continuously cast slabs and blooms. Macrosegregation forms if a relative motion between the solute-enriched or -depleted melt and dendritic solid structures occurs. It is known that there are four basic mechanisms for the occurrence of macrosegregation. In the recent years, the numerical description of the combination of these mechanisms has become possible and so a tool has emerged which can be effectively used to get a deeper understanding into the process details which are responsible for the formation of the above-mentioned different macrosegregation appearances. Based on the most sophisticated numerical models, we consequently associate the four basic formation mechanisms with the physical phenomena happening during (i) DC-casting of copper-based alloys, (ii) DC-casting of aluminum-based alloys, (iii) continuous casting of steel, and (iv) ingot casting of steel.
Detection of canine astrovirus in dogs with diarrhea in Japan.
Takano, Tomomi; Takashina, Midori; Doki, Tomoyoshi; Hohdatsu, Tsutomu
2015-06-01
Canine astrovirus (CAstV) is the causative agent of gastroenteritis in dogs. We collected rectal swabs from dogs with or without diarrhea symptoms in Japan and examined the feces for the presence of CAstV by RT-PCR with primers based on a conserved region of the ORF1b gene. The ORF1b gene of CAstV was not detected in the 42 dogs without clinical illness but was present in three pups out of the 31 dogs with diarrhea symptoms. Based on the full-length capsid protein, the CAstV KU-D4-12 strain that we detected in this study shared high homology with the novel virulent CAstV VM-2011 strain.
Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...
2014-12-22
Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl 3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length L D =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less
Hartmann, Nicolai F.; Pramanik, Rajib; Dowgiallo, Anne-Marie; ...
2016-12-06
Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood. We present the results of a combined pump-probe and photoluminescence imaging study of polyfluorene (PFO)-wrapped (6,5) and (7,5) SWCNTs that provide additional insight into the role played by polymer structures in defining exciton transport. The pump-probe measurementsmore » suggest exciton transport occurs over larger length scales in films composed of PFO-wrapped (7,5) SWCNTs, compared to those prepared from PFO-bpy-wrapped (6,5) SWCNTs. To explore the role the difference in polymer structure may play as a possible origin of differing transport behaviors, we performed a photoluminescence imaging study of individual polymer-wrapped (6,5) and (7,5) SWCNTs. The PFO-bpy-wrapped (6,5) SWCNTs showed more uniform intensity distributions along their lengths, in contrast to the PFO-wrapped (7,5) SWCNTs, which showed irregular, discontinuous intensity distributions. These differences likely originate from differences in surface coverage and suggest the PFO wrapping on (7,5) nanotubes produces a more open surface structure than is available with the PFO-bpy wrapping of (6,5) nanotubes. Furthermore, the open structure likely leads to improved intertube coupling that enhances exciton transport within the (7,5) films, consistent with the results of our pump-probe measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Nicolai F.; Pramanik, Rajib; Dowgiallo, Anne-Marie
Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood. We present the results of a combined pump-probe and photoluminescence imaging study of polyfluorene (PFO)-wrapped (6,5) and (7,5) SWCNTs that provide additional insight into the role played by polymer structures in defining exciton transport. The pump-probe measurementsmore » suggest exciton transport occurs over larger length scales in films composed of PFO-wrapped (7,5) SWCNTs, compared to those prepared from PFO-bpy-wrapped (6,5) SWCNTs. To explore the role the difference in polymer structure may play as a possible origin of differing transport behaviors, we performed a photoluminescence imaging study of individual polymer-wrapped (6,5) and (7,5) SWCNTs. The PFO-bpy-wrapped (6,5) SWCNTs showed more uniform intensity distributions along their lengths, in contrast to the PFO-wrapped (7,5) SWCNTs, which showed irregular, discontinuous intensity distributions. These differences likely originate from differences in surface coverage and suggest the PFO wrapping on (7,5) nanotubes produces a more open surface structure than is available with the PFO-bpy wrapping of (6,5) nanotubes. Furthermore, the open structure likely leads to improved intertube coupling that enhances exciton transport within the (7,5) films, consistent with the results of our pump-probe measurements.« less
Effect of Casting Material on the Cast Pressure After Sequential Cast Splitting.
Roberts, Aaron; Shaw, K Aaron; Boomsma, Shawn E; Cameron, Craig D
2017-01-01
Circumferential casting is a vital component of nonoperative fracture management. These casts are commonly valved to release pressure and decrease the risk of complications from swelling. However, little information exists regarding the effect of different casting supplies on the pressure within the cast. Seventy-five long-arm casts were performed on human volunteers, divided between 5 experimental groups with 15 casts in each groups. Testing groups consisted of 2 groups with a plaster short-arm cast overwrapped with fiberglass to a long arm with either cotton or synthetic cast padding. The 3 remaining groups included fiberglass long-arm casts with cotton, synthetic, or waterproof cast padding. A pediatric blood pressure cuff bladder was placed within the cast and inflated to 100 mm Hg. After inflation, the cast was sequentially released with pressure reading preformed after each stage. Order of release consisted of cast bivalve, cast padding release, and cotton stockinet release. After release, the cast was overwrapped with a loose elastic bandage. Difference in pressure readings were compared based upon the cast material. Pressures within the cast were found to decrease with sequential release of cast. The cast type had no effect of change in pressure. Post hoc testing demonstrated that the type of cast padding significantly affected the cast pressures with waterproof padding demonstrating the highest pressure readings at all time-points in the study, followed by synthetic padding. Cotton padding had the lowest pressure readings at all time-points. Type of cast padding significantly influences the amount of pressure within a long-arm cast, even after bivalving the cast and cutting the cast padding. Cotton cast padding allows for the greatest change in pressure. Cotton padding demonstrates the greatest change in pressure within a long-arm cast after undergoing bivalve. Synthetic and waterproof cast padding should not be used in the setting of an acute fracture to accommodate swelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasoyinu, Yemi; Griffin, John A.
2014-03-31
With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their longmore » freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.« less
Kohrt, Brandon A.; Speckman, Rebecca A.; Kunz, Richard D.; Baldwin, Jennifer L.; Upadhaya, Nawaraj; Acharya, Nanda Raj; Sharma, Vidya Dev; Nepal, Mahendra K.; Worthman, Carol M.
2013-01-01
Background The causes of ethnic and caste-based disparities in mental health are poorly understood. Aim To identify mediators underlying caste-based disparities in mental health in Nepal. Subjects and methods A mixed methods ethnographic and epidemiological study of 307 adults (Dalit/Nepali, n=75; high caste Brahman and Chhetri, n=232) assessed with Nepali versions of Beck Depression (BDI) and Anxiety (BAI) Inventories. Results One third (33.7%) of participants were classified as depressed: Dalit/Nepali 50.0%, high caste 28.4%. One quarter (27.7%) of participants were classified as anxious: Dalit/Nepali 50.7%, high caste 20.3%. Ethnographic research identified four potential mediators: stressful life events, owning few livestock, no household income, and lack of social support. The direct effect of caste was 1.08 (95% CI -1.10—3.27) on depression score and 4.76 (95% CI 2.33—7.19) on anxiety score. All four variables had significant indirect (mediation) effects on anxiety, and all but social support had significant indirect effects on depression. Conclusion Caste-based disparities in mental health in rural Nepal are statistically mediated by poverty, lack of social support, and stressful life events. Interventions should target these areas to alleviate the excess mental health burden born by Dalit/Nepali women and men. PMID:19381985
Kohrt, Brandon A; Speckman, Rebecca A; Kunz, Richard D; Baldwin, Jennifer L; Upadhaya, Nawaraj; Acharya, Nanda Raj; Sharma, Vidya Dev; Nepal, Mahendra K; Worthman, Carol M
2009-01-01
The causes of ethnic and caste-based disparities in mental health are poorly understood. The study aimed to identify mediators underlying caste-based disparities in mental health in Nepal. A mixed methods ethnographic and epidemiological study of 307 adults (Dalit/Nepali, n=75; high caste Brahman and Chhetri, n=232) was assessed with Nepali versions of Beck Depression (BDI) and Anxiety (BAI) Inventories. One-third (33.7%) of participants were classified as depressed: Dalit/Nepali 50.0%, high caste 28.4%. One quarter (27.7%) of participants were classified as anxious: Dalit/Nepali 50.7%, high caste 20.3%. Ethnographic research identified four potential mediators: Stressful life events, owning few livestock, no household income, and lack of social support. The direct effect of caste was 1.08 (95% CI -1.10-3.27) on depression score and 4.76 (95% CI 2.33-7.19) on anxiety score. All four variables had significant indirect (mediation) effects on anxiety, and all but social support had significant indirect effects on depression. Caste-based disparities in mental health in rural Nepal are statistically mediated by poverty, lack of social support, and stressful life events. Interventions should target these areas to alleviate the excess mental health burden born by Dalit/Nepali women and men.
NASA Astrophysics Data System (ADS)
Das, D.; Gopikrishna, P.; Singh, A.; Dey, A.; Iyer, P. K.
2016-04-01
Polymer light emitting diodes (PLEDs) with a device configuration of ITO/PEDOT:PSS/PFONPN01 [Poly [2,7-(9,9’-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)]/LiF/Al have been fabricated by varying the emissive layer (EML) thickness (40/65/80/130 nm) and the influence of EML thickness on the electrical characteristics of PLED has been studied. PLED can be modelled as a simple combination of resistors and capacitors. The impedance spectroscopy analysis showed that the devices with different EML thickness had different values of parallel resistance (RP) and the parallel capacitance (CP). The impedance of the devices is found to increase with increasing EML thickness resulting in an increase in the driving voltage. The device with an emissive layer thickness of 80nm, spin coated from a solution of concentration 15 mg/mL is found to give the best device performance with a maximum brightness value of 5226 cd/m2.
Caste development and reproduction: a genome-wide analysis of hallmarks of insect eusociality
Cristino, A S; Nunes, F M F; Lobo, C H; Bitondi, M M G; Simões, Z L P; Da Fontoura Costa, L; Lattorff, H M G; Moritz, R F A; Evans, J D; Hartfelder, K
2006-01-01
The honey bee queen and worker castes are a model system for developmental plasticity. We used established expressed sequence tag information for a Gene Ontology based annotation of genes that are differentially expressed during caste development. Metabolic regulation emerged as a major theme, with a caste-specific difference in the expression of oxidoreductases vs. hydrolases. Motif searches in upstream regions revealed group-specific motifs, providing an entry point to cis-regulatory network studies on caste genes. For genes putatively involved in reproduction, meiosis-associated factors came out as highly conserved, whereas some determinants of embryonic axes either do not have clear orthologs (bag of marbles, gurken, torso), or appear to be lacking (trunk) in the bee genome. Our results are the outcome of a first genome-based initiative to provide an annotated framework for trends in gene regulation during female caste differentiation (representing developmental plasticity) and reproduction. PMID:17069641
Awareness Programs and Change in Taste-Based Caste Prejudice
Banerjee, Ritwik; Datta Gupta, Nabanita
2015-01-01
Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution - the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste. PMID:25902290
Cold Cracking During Direct-Chill Casting
NASA Astrophysics Data System (ADS)
Eskin, D. G.; Lalpoor, M.; Katgerman, L.
Cold cracking phenomenon is the least studied, yet very important defect occurring during direct chill casting. The spontaneous nature of this defect makes its systematic study almost impossible, and the computer simulation of the thermomechanical behavior of the ingot during its cooling after the end of solidification requires constitutive parameters of high-strength aluminum alloys in the as-cast condition, which are not readily available. In this paper we describe constitutive behavior of high strength 7xxx series aluminum alloys in the as-cast condition based on experimentally measured tensile properties at different strain rates and temperatures, plane strain fracture toughness at different temperatures, and thermal contraction. In addition, fracture and structure of the specimens and real cold-cracked billets are examined. As a result a fracture-mechanics-based criterion of cold cracking is suggested based on the critical crack length, and is validated upon pilot-scale billet casting.
Awareness programs and change in taste-based caste prejudice.
Banerjee, Ritwik; Datta Gupta, Nabanita
2015-01-01
Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution--the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste.
TiC-Fe-Based Composite Coating Prepared by Self-Propagating High-Temperature Synthesis
NASA Astrophysics Data System (ADS)
He, Shen; Fan, Xi'an; Chang, Qingming; Xiao, Lixiang
2017-06-01
TiC-Fe-based composite coatings were prepared in situ by self-propagating high-temperature synthesis combined with vacuum expendable pattern casting process. The band-like TiC phase embedded in a continuous Fe binder. There were no obvious defects and impurities at the interface between coatings and matrices. Fe presented consecutively in the coating zones and substrate zones without interruption and the microhardness in the cross-sectional area of the coating-matrix reduces continuously from the coating to the matrix area, indicating a good metallurgical bonding between the coatings and matrices. The effect of casting temperature on the microstructure and hardness of TiC-Fe-based composite coating was investigated in detail. The TiC particles formed at low casting temperature were nearly spherical in shape, and the size of TiC particles increased with increasing casting temperature due to more agglomeration. The hardness of the coatings increased first and then decreased with increasing casting temperature, and reached the highest value of 68 HRC when the casting temperature was 1773 K (1500 °C), which was twice more than that of the matrix.
2016-12-10
will be 2 x failure (critical) depth. G. INSPECTION REQUIREMENTS Either the No- Bake sand or Investment process is selected based on which... Bake sand and the Investment Casting Handbook by the Investment Casting Institute has the tolerance values for investment castings. Typically there
Feasibility of producing cast-refractory metal-fiber superalloy composites
NASA Technical Reports Server (NTRS)
Mcintyre, R. D.
1973-01-01
A study was conducted to evaluate the feasibility of direct casting as a practical method for producing cast superalloy tungsten or columbium alloy fiber composites while retaining a high percentage of fiber strength. Fourteen nickel base, four cobalt, and three iron based matrices were surveyed for their degree of reaction with the metal fibers. Some stress-rupture results were obtained at temperatures of 760, 816, 871, and 1093 C for a few composite systems. The feasibility of producing acceptable composites of some cast nickel, cobalt, and iron matrix alloys with tungsten or columbium alloy fibers was demonstrated.
Possibility of reconstruction of dental plaster cast from 3D digital study models
2013-01-01
Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330
Evaluation of three variables affecting the casting of base metal alloys.
Wight, T A; Grisius, R J; Gaugler, R W
1980-04-01
All the vented samples with sprue widths of 2 mm or more were defect free, whereas the corresponding unvented samples had extensive voids and porosity in all but one casting. All castings with a sprue width of 1 mm were defective regardless of whether or not vents were used. The thickness of the investment above the pattern had no effect on casting results.
High-Throughput Physiologically Based Toxicokinetic Models for ToxCast Chemicals
Physiologically based toxicokinetic (PBTK) models aid in predicting exposure doses needed to create tissue concentrations equivalent to those identified as bioactive by ToxCast. We have implemented four empirical and physiologically-based toxicokinetic (TK) models within a new R ...
The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.
Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G
1998-11-01
To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.
Effect of casting geometry on mechanical properties of two nickel-base superalloys
NASA Technical Reports Server (NTRS)
Johnston, J. R.; Dreshfield, R. L.; Collins, H. E.
1976-01-01
An investigation was performed to determine mechanical properties of two rhenium-free modifications of alloy TRW, and to evaluate the suitability of the alloy for use in a small integrally cast turbine rotor. The two alloys were initially developed using stress rupture properties of specimens machined from solid gas turbine blades. Properties in this investigation were determined from cast to size bars and bars cut from 3.8 by 7.6 by 17.8 cm blocks. Specimens machined from blocks had inferior tensile strength and always had markedly poorer rupture lives than cast to size bars. At 1,000 C the cast to size bars had shorter rupture lives than those machined from blades. Alloy R generally had better properties than alloy S in the conditions evaluated. The results show the importance of casting geometry on mechanical properties of nickel base superalloys and suggest that the geometry of a component can be simulated when developing alloys for that component.
Preliminary Study into Shell Mold Casting of Nominal 60-Nitinol Alloy
The present study was initiated to determine the feasibility of shell mold casting nominal 60- Nitinol into suitable EOD (Explosive Ordnance Disposal...surface finish and definition and property response of cast alloy. Based upon the results, 60- Nitinol appears quite suited to shell molding and a...concern lies in the casting porosity associated with the relatively large liquid-to-solid shrinkage of nominal 60- Nitinol .
Silicon-based Porous Ceramics via Freeze Casting of Preceramic Polymers
NASA Astrophysics Data System (ADS)
Naviroj, Maninpat
Freeze casting is a technique for processing porous materials that has drawn significant attention for its effectiveness in producing a variety of tailorable pore structures for ceramics, metals, and polymers. With freeze casting, pores are generated based on a solidification process where ice crystals act as a sacrificial template which can eventually be sublimated to create pores. While the majority of freeze-casting studies have been performed using conventional ceramic suspensions, this work explores an alternative processing route by freeze casting with preceramic polymer solutions. Significant differences exist between freeze casting of a particulate suspension and a polymeric solution. These changes affect the processing method, solidification behavior, and pore structure, thereby introducing new challenges and possibilities for the freeze-casting technique. The first part of this study explored the processing requirements involved with freeze casting of preceramic polymers, along with methods to control the resulting pore structure. Solvent choice, freezing front velocity, and polymer concentration were used as processing variables to manipulate the pore structures. A total of seven organic solvents were freeze cast with a polymethylsiloxane preceramic polymer to produce ceramics with isotropic, dendritic, prismatic, and lamellar pore morphologies. Changes in freezing front velocity and polymer concentration were shown to influence pore size, shape, and connectivity. Differences between suspension- and solution-based samples freeze cast under equivalent conditions were also investigated. Certain solidification microstructures were strongly affected by the presence of suspended particles, creating differences between pore structures generated from the same solvents. Additionally, processing of solution-based samples were found to be the more facile technique. Compressive strength and water permeability of dendritic and lamellar structures were analyzed to determine functional differences between the pore structures. Results show that dendritic structures were up to 30 times stronger, while lamellar structures provided higher permeability constants. A change in freezing front velocity was shown to significantly affect permeability but not compressive strength. Finally, improved pore alignment along the freezing direction was achieved by controlling the nucleation and growth of solvent crystals through the use of a grain-selection template. Dendritic samples freeze cast with a template showed substantial increase in pore alignment, as determined by image analysis and permeability tests, with the permeability constant increasing by up to 6-fold when compared to a control sample.
Influence of the casting processing route on the corrosion behavior of dental alloys.
Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello
2014-12-01
Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.
Processing of IN-718 Lattice Block Castings
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.
2002-01-01
Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.
ICAM Manufacturing Cost/Design Guide. Volume 3. Airframes. User’s Manual.
1983-01-01
COST-DRIVER EFFECT 17 -413H Investment Cast 17 - 4PH Investment Cast 2 2 - U) *oo 0±0.01 ±0.02 ±0.03 0±0.01 ±0.02 ±0.03 356iA356 Aluminum 356/A356...B +20% CAST B +50% 17 - 4PH CRES DORC BASE INVESTMENT D OR C WITH 10% B +20% CAST D OR C WITH 50% B +30% B +60% NOTE: X-Ray Grade A Is an Impractical...per QQ-A-601 (sand castings) - 357 per MIL-A-21180 (sand castings) a Steel - 17 - 4PH CRES per AMS-5342, 5343, and 5344 or * company equivalent
Adaptive significance of the Indian caste system: an ecological perspective.
Gadgil, M; Malhotra, K C
1983-01-01
Indian society is an agglomeration of several thousand endogamous groups or castes each with a restricted geographical range and a hereditarily determined mode of subsistence. These reproductively isolated castes may be compared to biological species, and the society thought of as a biological community with each caste having its specific ecological niche. In this paper we examine the ecological-niche relationships of castes which are directly dependent on natural resources. Evidence is presented to show that castes living together in the same region had so organized their pattern of resource use as to avoid excessive intercaste competition for limiting resources. Furthermore, territorial division of the total range of the caste regulated intra-caste competition. Hence, a particular plant or animal resource in a given locality was used almost exclusively by a given lineage within a caste generation after generation. This favoured the cultural evolution of traditions ensuring sustainable use of natural resources. This must have contributed significantly to the stability of Indian caste society over several thousand years. The collapse of the base of natural resources and increasing monetarization of the economy has, however, destroyed the earlier complementarity between the different castes and led to increasing conflicts between them in recent years.
NASA Astrophysics Data System (ADS)
Sheng, L. Y.; Du, B. N.; Guo, J. T.
2017-01-01
NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.
Analysis of Mold Friction in a Continuous Casting Using Wavelet Transform
NASA Astrophysics Data System (ADS)
Ma, Yong; Fang, Bohan; Ding, Qiqi; Wang, Fangyin
2018-04-01
Mold friction (MDF) is an important parameter reflecting the lubrication condition between the initial shell and the mold during continuous casting. In this article, based on practical MDF from the slab continuous casting driven by a mechanical vibration device, the characteristics of friction were analyzed by continuous wavelet transform (CWT) and discrete wavelet transform (DWT) in different casting conditions, such as normal casting, level fluctuation, and alarming of the temperature measurement system. The results show that the CWT of friction accurately captures the subtle changes in friction force, such as the periodic characteristic of MDF during normal casting and the disordered feature of MDF during level fluctuation. Most important, the results capture the occurrence of abnormal casting and display the friction frequency characteristics at this abnormal time. In addition, in this article, there are some abnormal casting conditions, and the friction signal is stable until there is a sudden large change when abnormal casting, such as split breakout and submerged entry nozzle breakage, occurs. The DWT has a good ability to capture the friction characteristics for such abnormal situations. In particular, the potential abnormal features of MDF were presented in advance, which provides strong support for identifying abnormal casting and even preventing abnormal casting.
2011-01-01
Background In the Indian context, a household's caste characteristics are most relevant for identifying its poverty and vulnerability status. Inadequate provision of public health care, the near-absence of health insurance and increasing dependence on the private health sector have impoverished the poor and the marginalised, especially the scheduled tribe population. This study examines caste-based inequalities in households' out-of-pocket health expenditure in the south Indian state of Kerala and provides evidence on the consequent financial burden inflicted upon households in different caste groups. Methods Using data from a 2003-2004 panel survey in Kottathara Panchayat that collected detailed information on health care consumption from 543 households, we analysed inequality in per capita out-of-pocket health expenditure across castes by considering households' health care needs and types of care utilised. We used multivariate regression to measure the caste-based inequality in health expenditure. To assess health expenditure burden, we analysed households incurring high health expenses and their sources of finance for meeting health expenses. Results The per capita health expenditures reported by four caste groups accord with their status in the caste hierarchy. This was confirmed by multivariate analysis after controlling for health care needs and influential confounders. Households with high health care needs are more disadvantaged in terms of spending on health care. Households with high health care needs are generally at higher risk of spending heavily on health care. Hospitalisation expenditure was found to have the most impoverishing impacts, especially on backward caste households. Conclusion Caste-based inequality in household health expenditure reflects unequal access to quality health care by different caste groups. Households with high health care needs and chronic health care needs are most affected by this inequality. Households in the most marginalised castes and with high health care need require protection against impoverishing health expenditures. Special emphasis must be given to funding hospitalisation, as this expenditure puts households most at risk in terms of mobilising monetary resources. However, designing protection instruments requires deeper understanding of how the uncovered financial burden of out-patient and hospitalisation expenditure creates negative consequences and of the relative magnitude of this burden on households. PMID:21214941
25. Detail of cast iron lamp post base with fluted ...
25. Detail of cast iron lamp post base with fluted wooded post at top, located at north end of bridge. VIEW NORTHEAST - Chelsea Street Bridge & Draw Tender's House, Spanning Chelsea River, Boston, Suffolk County, MA
U.S. Geological Survey's ShakeCast: A cloud-based future
Wald, David J.; Lin, Kuo-Wan; Turner, Loren; Bekiri, Nebi
2014-01-01
When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap portrays the extent of potentially damaging shaking. In turn, the ShakeCast system, a freely-available, post-earthquake situational awareness application, automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. ShakeCast is particularly suitable for earthquake planning and response purposes by Departments of Transportation (DOTs), critical facility and lifeline utilities, large businesses, engineering and financial services, and loss and risk modelers. Recent important developments to the ShakeCast system and its user base are described. The newly-released Version 3 of the ShakeCast system encompasses advancements in seismology, earthquake engineering, and information technology applicable to the legacy ShakeCast installation (Version 2). In particular, this upgrade includes a full statistical fragility analysis framework for general assessment of structures as part of the near real-time system, direct access to additional earthquake-specific USGS products besides ShakeMap (PAGER, DYFI?, tectonic summary, etc.), significant improvements in the graphical user interface, including a console view for operations centers, and custom, user-defined hazard and loss modules. The release also introduces a new adaption option to port ShakeCast to the "cloud". Employing Amazon Web Services (AWS), users now have a low-cost alternative to local hosting, by fully offloading hardware, software, and communication obligations to the cloud. Other advantages of the "ShakeCast Cloud" strategy include (1) Reliability and robustness of offsite operations, (2) Scalability naturally accommodated, (3), Serviceability, problems reduced due to software and hardware uniformity, (4) Testability, freely available for new users, (5) Remotely supported, allowing expert-facilitated maintenance, (6) Adoptability, simplified with disk images, and (7) Security, built in at the very high level associated with AWS. The ShakeCast user base continues to expand and broaden. For example, Caltrans, the prototypical ShakeCast user and development supporter, has been providing guidance to other DOTs on the use of the National Bridge Inventory (NBI) database to implement fully-functional ShakeCast systems in their states. A long-term goal underway is to further "connect the DOTs" via a Transportation Pooled Fund (TPF) with participating state DOTs. We also review some of the many other users and uses of ShakeCast. Lastly, on the hazard input front, we detail related ShakeMap improvements and ongoing advancements in estimating the likelihood of shaking-induced secondary hazards at structures, facilities, bridges, and along roadways due to landslides and liquefaction, and implemented within the ShakeCast framework.
10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR ...
10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR STOREFRONT, SHOWING MANUFACTURER'S STAMP: IOWA IRON WOKS CO. DUBUQUE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA
Capillarity theory for the fly-casting mechanism
Trizac, Emmanuel; Levy, Yaakov; Wolynes, Peter G.
2010-01-01
Biomolecular folding and function are often coupled. During molecular recognition events, one of the binding partners may transiently or partially unfold, allowing more rapid access to a binding site. We describe a simple model for this fly-casting mechanism based on the capillarity approximation and polymer chain statistics. The model shows that fly casting is most effective when the protein unfolding barrier is small and the part of the chain which extends toward the target is relatively rigid. These features are often seen in known examples of fly casting in protein–DNA binding. Simulations of protein–DNA binding based on well-funneled native-topology models with electrostatic forces confirm the trends of the analytical theory. PMID:20133683
Indigenous lunar construction materials
NASA Technical Reports Server (NTRS)
Rogers, Wayne; Sture, Stein
1991-01-01
The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.
Energy Consumption of Die Casting Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerald Brevick; clark Mount-Campbell; Carroll Mobley
2004-03-15
Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting formmore » of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.« less
Development of the manufacture of billets based on high-strength aluminum alloys
NASA Astrophysics Data System (ADS)
Korostelev, V. F.; Denisov, M. S.; Bol'shakov, A. E.; Van Khieu, Chan
2017-09-01
When pressure is applied upon casting as a factor of external impact on melt, the problems related mainly to filling of molds are solved; however, some casting defects cannot be avoided. The experimental results demonstrate that complete compensation of shrinkage under pressure can be achieved by compressing of casting by 8-10% prior to beginning of solidification and by 2-3% during the transition of a metal from the liquid to the solid state. It is mentioned that the procedure based on compressing a liquid metal can be efficiently applied for manufacture of high-strength aluminum alloy castings. The selection of engineering parameters is substantiated. Examples of castings made of V95 alloy according to the developed procedure are given. In addition, the article discusses the problems related to designing of engineering and special-purpose equipment, software, and control automation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Mirmiran, Seyed; Glaspie, Christopher
Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during castingmore » can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.« less
Preliminary study of oxide-dispersion-strengthened B-1900 prepared by mechanical alloys
NASA Technical Reports Server (NTRS)
Glasgow, T. K.; Quatinetz, M.
1975-01-01
An experimental oxide dispersion strengthened (ODS) alloy based on the B-1900 composition was produced by the mechanical alloying process. Without optimization of the processing for the alloy or the alloy for the processing, recrystallization of the extruded product to large elongated grains was achieved. Materials having grain length-width ratios of 3 and 5.5 were tested in tension and stress-rupture. The ODS B-1900 exhibited tensile strength similar to that of cast B-1900. Its stress-rupture life was lower than that of cast B-1900 at 760 C. At 1095 C the ODS B-1900 with the higher grain length-width ratio (5.5) had stress-rupture life superior to that of cast B-1900. It was concluded that, with optimization, oxide dispersion strengthening of B-1900 and other complex cast nickel-base alloys has potential for improving high temperature properties over those of the cast alloy counterparts.
A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation
NASA Astrophysics Data System (ADS)
Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.
2017-02-01
Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lonergan, Mark
Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been themore » polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.« less
NASA Astrophysics Data System (ADS)
Sun, Zhizhong; Niu, Xiaoping; Hu, Henry
In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.
Current injection and transport in polyfluorene
NASA Astrophysics Data System (ADS)
Yang, Chieh-Kai; Yang, Chia-Ming; Liao, Hua-Hsien; Horng, Sheng-Fu; Meng, Hsin-Fei
2007-08-01
A comprehensive numerical model is established for the electrical processes in a sandwich organic semiconductor device with high carrier injection barrier. The charge injection at the anode interface with 0.8eV energy barrier is dominated by the hopping among the gap states of the semiconductor caused by disorders. The Ohmic behavior at low voltage is demonstrated to be not due to the background doping but the filaments formed by conductive clusters. In bipolar devices with low work function cathode it is shown that near the anode the electron traps significantly enhance hole injection through Fowler-Nordheim tunneling, resulting in rapid increases of the hole carrier and current in comparison with the hole-only devices.
DETAIL VIEW OF BASE OF CAST IRON TOWER SHOWING THE ...
DETAIL VIEW OF BASE OF CAST IRON TOWER SHOWING THE FABRICATING MARK OF STARBUCK IRON WORKS, TROY, NY - Bidwell Bar Suspension Bridge & Stone Toll House, Near Lake Oroville (moved from fork of Feather River), Oroville, Butte County, CA
Robustness of Ability Estimation to Multidimensionality in CAST with Implications to Test Assembly
ERIC Educational Resources Information Center
Zhang, Yanwei; Nandakumar, Ratna
2006-01-01
Computer Adaptive Sequential Testing (CAST) is a test delivery model that combines features of the traditional conventional paper-and-pencil testing and item-based computerized adaptive testing (CAT). The basic structure of CAST is a panel composed of multiple testlets adaptively administered to examinees at different stages. Current applications…
Species-specific predictive models of developmental toxicity using the ToxCast chemical library
EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...
Development of an Optimization Methodology for the Aluminum Alloy Wheel Casting Process
NASA Astrophysics Data System (ADS)
Duan, Jianglan; Reilly, Carl; Maijer, Daan M.; Cockcroft, Steve L.; Phillion, Andre B.
2015-08-01
An optimization methodology has been developed for the aluminum alloy wheel casting process. The methodology is focused on improving the timing of cooling processes in a die to achieve improved casting quality. This methodology utilizes (1) a casting process model, which was developed within the commercial finite element package, ABAQUS™—ABAQUS is a trademark of Dassault Systèms; (2) a Python-based results extraction procedure; and (3) a numerical optimization module from the open-source Python library, Scipy. To achieve optimal casting quality, a set of constraints have been defined to ensure directional solidification, and an objective function, based on the solidification cooling rates, has been defined to either maximize, or target a specific, cooling rate. The methodology has been applied to a series of casting and die geometries with different cooling system configurations, including a 2-D axisymmetric wheel and die assembly generated from a full-scale prototype wheel. The results show that, with properly defined constraint and objective functions, solidification conditions can be improved and optimal cooling conditions can be achieved leading to process productivity and product quality improvements.
Numerical simulation of the casting process of titanium tooth crowns and bridges.
Wu, M; Augthun, M; Wagner, I; Sahm, P R; Spiekermann, H
2001-06-01
The objectives of this paper were to simulate the casting process of titanium tooth crowns and bridges; to predict and control porosity defect. A casting simulation software, MAGMASOFT, was used. The geometry of the crowns with fine details of the occlusal surface were digitized by means of laser measuring technique, then converted and read in the simulation software. Both mold filling and solidification were simulated, the shrinkage porosity was predicted by a "feeding criterion", and the gas pore sensitivity was studied based on the mold filling and solidification simulations. Two types of dental prostheses (a single-crown casting and a three-unit-bridge) with various sprue designs were numerically "poured", and only one optimal design for each prosthesis was recommended for real casting trial. With the numerically optimized design, real titanium dental prostheses (five replicas for each) were made on a centrifugal casting machine. All the castings endured radiographic examination, and no porosity was detected in the cast prostheses. It indicates that the numerical simulation is an efficient tool for dental casting design and porosity control. Copyright 2001 Kluwer Academic Publishers
NASA Astrophysics Data System (ADS)
Qin, Fangcheng; Li, Yongtang; Ju, Li
2017-03-01
Hot compression tests of sand casting and centrifugal casting Q235B flange blanks were performed at strain rate range of 0.01-5 s-1 and temperature range of 850-1,150 °C. The evolutions of microstructure and texture were revealed. The constitutive models based on Arrhenius constitutive modeling were proposed by considering the effects of strain on material constants. The results show that recrystallization in centrifugal casting Q235B is more apparent than that in sand casting, resulting in the finer grains and lower flow stress for centrifugal casting Q235B. The intensities of textures slightly weaken with the increase of temperature. At 1,050 °C and 5 s-1, the textures of sand casting are characterized by strong {001}<100> and {001}<110>, which are related with severe deformation, while the textures of centrifugal casting are composed of {110}<110> and {111}<112>, which are related with dynamic recovery and shear deformation. A good agreement between the predicted and experimental flow stress is achieved and demonstrates that the proposed constitutive models are reliable.
Development of a new casting method to fabricate U–Zr alloy containing minor actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong Hwan Kim; Hoon Song; Hyung Tae Kim
2014-01-01
Metal fuel slugs of U–Zr alloys for a sodium-cooled fast reactor (SFR) have conventionally been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents, such as Am, are problematic in a conventional injection casting method. As an alternative fabrication method, low pressure gravity casting has been developed. Casting soundness, microstructural characteristics, alloying composition, density, and fuel losses were evaluated for the following as-cast fuel slugs: U–10 wt% Zr, U–10 wt% Zr–5 wt% RE, and U–10 wt% Zr–5 wt% RE–5 wt% Mn. The U and Zr contents were uniform throughout the matrix, and impurities such as oxyen,more » carbon, and nitrogen satisfied the specification of total impurities less than 2,000 ppm. The appearance of the fuel slugs was generally sound, and the internal integrity was shown to be satisfactory based on gamma-ray radiography. In a volatile surrogate casting test, the U–Zr–RE–Mn fuel slug showed that nearly all of the manganese was retained when casting was done under an inert atmosphere.« less
Wald, David J.; Lin, Kuo-wan; Kircher, C.A.; Jaiswal, Kishor; Luco, Nicolas; Turner, L.; Slosky, Daniel
2017-01-01
The ShakeCast system is an openly available, near real-time post-earthquake information management system. ShakeCast is widely used by public and private emergency planners and responders, lifeline utility operators and transportation engineers to automatically receive and process ShakeMap products for situational awareness, inspection priority, or damage assessment of their own infrastructure or building portfolios. The success of ShakeCast to date and its broad, critical-user base mandates improved software usability and functionality, including improved engineering-based damage and loss functions. In order to make the software more accessible to novice users—while still utilizing advanced users’ technical and engineering background—we have developed a “ShakeCast Workbook”, a well documented, Excel spreadsheet-based user interface that allows users to input notification and inventory data and export XML files requisite for operating the ShakeCast system. Users will be able to select structure based on a minimum set of user-specified facility (building location, size, height, use, construction age, etc.). “Expert” users will be able to import user-modified structural response properties into facility inventory associated with the HAZUS Advanced Engineering Building Modules (AEBM). The goal of the ShakeCast system is to provide simplified real-time potential impact and inspection metrics (i.e., green, yellow, orange and red priority ratings) to allow users to institute customized earthquake response protocols. Previously, fragilities were approximated using individual ShakeMap intensity measures (IMs, specifically PGA and 0.3 and 1s spectral accelerations) for each facility but we are now performing capacity-spectrum damage state calculations using a more robust characterization of spectral deamnd.We are also developing methods for the direct import of ShakeMap’s multi-period spectra in lieu of the assumed three-domain design spectrum (at 0.3s for constant acceleration; 1s or 3s for constant velocity and constant displacement at very long response periods). As part of ongoing ShakeCast research and development, we will also explore the use of ShakeMap IM uncertainty estimates and evaluate the assumption of employing multiple response spectral damping values rather than the single 5%-damped value currently employed. Developing and incorporating advanced fragility assignments into the ShakeCast Workbook requires related software modifications and database improvements; these enhancements are part of an extensive rewrite of the ShakeCast application.
Chemical-Gene Interactions from ToxCast Bioactivity Data ...
Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. To evaluate the information gained from the ToxCast project, a ToxCast bioactivity network was created comprising ToxCast chemical-gene interactions based on assay data and compared to a chemical-gene association network from literature. The literature network was compiled from PubMed articles, excluding ToxCast publications, mapped to genes and chemicals. Genes were identified by curated associations available from NCBI while chemicals were identified by PubChem submissions. The frequencies of chemical-gene associations from the literature network were log-scaled and then compared to the ToxCast bioactivity network. In total, 140 times more chemical-gene associations were present in the ToxCast network in comparison to the literature-derived network highlighting the vast increase in chemical-gene interactions putatively elucidated by the ToxCast research program. There were 165 associations found in the literature network that were reproduced by ToxCast bioactivity data, and 336 associations in the literature network were not reproduced by the ToxCast bioactivity network. The literature network relies on the assumption that chemical-gene associations represent a true chemical-gene inte
Repair welding of cast iron coated electrodes
NASA Astrophysics Data System (ADS)
Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.
2017-08-01
Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.
Novel technologies for the lost foam casting process
NASA Astrophysics Data System (ADS)
Jiang, Wenming; Fan, Zitian
2018-03-01
Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.
NASA Astrophysics Data System (ADS)
Schmid, Markus; Merzbacher, Sarah; Brzoska, Nicola; Müller, Kerstin; Jesdinszki, Marius
2017-11-01
In the present study the effects of the addition of montmorillonite (MMT) nanoplatelets on whey protein isolate (WPI)-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT-nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast-films and coatings were prepared by dispersing 0 % (reference sample), 3 %, 6 %, 9 % (w/w protein) MMT, or, depending on the protein concentration, also 12 % and 15 % (w/w protein) MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15 % (w/w protein) MMT into 10 % (w/w dispersion) WPI-based cast-films or coatings, the oxygen permeability (OP) was reduced by 91 % for glycerol-plasticized and 84 % for sorbitol-plasticized coatings, water vapor transmission rate (WVTR) was reduced by 58 % for sorbitol-plasticized cast-films. Due to the addition of MMT- nanofillers the Young’s modulus and tensile strength improved by 315 % and 129 %, respectively, whereas elongation at break declined by 77 % for glycerol-plasticized cast-films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast-films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast-films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high nanofiller-loadings. These results suggest that the addition of natural MMT- nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of multilayer flexible packaging films.
Advanced rotary engine components utilizing fiber reinforced Mg castings
NASA Technical Reports Server (NTRS)
Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.
1986-01-01
Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.
An objective assessment of safety to drive in an upper limb cast.
Stevenson, H L; Peterson, N; Talbot, C; Dalal, S; Watts, A C; Trail, I A
2013-03-01
Patients managed with upper limb cast immobilization often seek advice about driving. There is very little published data to assist in decision making, and advice given varies between healthcare professionals. There are no specific guidelines available from the UK Drivers and Vehicles Licensing Agency, police, or insurance companies. Evidence-based guidelines would enable clinicians to standardize the advice given to patients. Six individuals (three male, three female; mean age 36 years, range 27-43 years) were assessed by a mobility occupational therapist and driving standards agency examiner while completing a formal driving test in six different types of upper limb casts (above-elbow, below-elbow neutral, and below-elbow cast incorporating the thumb [Bennett's cast]) on both left and right sides. Of the 36 tests, participants passed 31 tests, suggesting that most people were able to safely drive with upper limb cast immobilization. However, driving in a left above-elbow cast was considered unsafe.
NASA Technical Reports Server (NTRS)
2001-01-01
Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.
AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prof. Alan W. Camb; Prof. Anthony Rollett
2001-08-31
To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied inmore » carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.« less
Influence of Ni Interlayer on Microstructure and Mechanical Properties of Mg/Al Bimetallic Castings
NASA Astrophysics Data System (ADS)
Liu, Ning; Liu, Canchun; Liang, Chunyong; Zhang, Yongguang
2018-05-01
Dissimilar joining of magnesium and aluminum using a compound casting process was investigated in the present work. For the first time, a Ni interlayer prepared by plasma spraying was inserted between the two base metals to improve the interfacial characteristics. Examination of the interfacial regions using scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and X-ray diffraction revealed the formation of a three-layered interface between Mg and Al without the interlayer. The thickness of the interface was approximately 600 μm when the casting was performed at 700 °C and increased with increasing casting temperature. However, with the addition of the Ni interlayer, the Al-Mg reaction was successfully prevented, and metallurgical bonding between the Ni interlayer and two base metals was achieved at a casting temperature of 700 °C. Upon increasing this temperature, Mg-Ni and Al-Ni intermetallics were generated at the separate interfaces. The shear strength of the Mg/Al bimetallic castings with the Ni interlayer was substantially improved compared with that of the direct Mg/Al joint, with a maximum value of 25.4 MPa achieved at 700 °C. Fracture occurred mainly along the Mg/Ni interface for the Mg/Ni/Al multilayer structure castings.
NASA Astrophysics Data System (ADS)
Guo, Long; Zhang, Xingzhong
2018-03-01
Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.
Patil, Abhijit; Singh, Kishan; Sahoo, Sukant; Suvarna, Suraj; Kumar, Prince; Singh, Anupam
2013-01-01
Objective: The aims of the study are to assess the marginal accuracy of base metal and titanium alloy casting and to evaluate the effect of repeated ceramic firing on the marginal accuracy of base metal and titanium alloy castings. Materials and Methods: Twenty metal copings were fabricated with each casting material. Specimens were divided into 4 groups of 10 each representing base metal alloys castings without (Group A) and with metal shoulder margin (Group B), titanium castings without (Group C) and with metal shoulder margin (Group D). The measurement of fit of the metal copings was carried out before the ceramic firing at four different points and the same was followed after porcelain build-up. Results: Significant difference was found when Ni–Cr alloy samples were compared with Grade II titanium samples both before and after ceramic firings. The titanium castings with metal shoulder margin showed highest microgap among all the materials tested. Conclusions: Based on the results that were found and within the limitations of the study design, it can be concluded that there is marginal discrepancy in the copings made from Ni–Cr and Grade II titanium. This marginal discrepancy increased after ceramic firing cycles for both Ni–Cr and Grade II titanium. The comparative statistical analysis for copings with metal-collar showed maximum discrepancy for Group D. The comparative statistical analysis for copings without metal-collar showed maximum discrepancy for Group C. PMID:24926205
Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangirala, Mani
The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynesmore » 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were validated with solidification simulation analysis and the casting met NDT inspection and acceptance criteria. Heat treated and sectioned to extract trepan samples at different locations comparing with cast on coupons test data. Material properties requisite for design, such as tensile, creep/rupture, LCF, Fracture Toughness, Charpy V-notch chemical analysis testing were carried out. The test results will be presented in the final report. The typical Haynes 282 large size Steam Turbine production casting from Order to Delivery foundry schedule with the activity break up is shown in Figures 107 and 108. • From Purchase Order placement to Casting pouring ~ 26 weeks. 1. Sales and commercial review 3 2. Engineering Drawings/models review 4 3. Pattern and core box manufacturing 6 4. Casting process engineering review 4 5. FEM and solidification simulation analysis 4 6. Gating & Feeder Attachments, Ceramic tiling 2 7. Molding and coremaking production scheduling 6 8. Melting planning and schedule 3 9. Pouring, cooling and shake out 2 • From Pouring to casting Delivery ~ 29 weeks 10. Shot blast and riser cutting, gates removal 3 11. Homogenizing , solutionizing HT furnace prep 4 12. Grinding, Fettling 2 13. Aging HT Cycle, cooling 2 14. VT and LPT NDT inspections 2 15. Radiographic inspection 4 16. Mechanical testing, Chemical analysis test certs 4 17. Casting weld repair upgrades and Aging PWHT 4 18. NDT after weld repairs and casting upgrades 3 19. Casting Final Inspection and test certifications 3 20. Package and delivery 2 Hence the Total Lead time from P.O to Casting delivery is approximately 55 weeks. The Task 4.2 and Task 4.3 activities and reporting completed.« less
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-01-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
NASA Astrophysics Data System (ADS)
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-12-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.
ERIC Educational Resources Information Center
Chauhan, Chandra Pal Singh
2008-01-01
This paper analyses the policy of reservation for lower castes in India. This policy is similar to that of affirmative action in the United States. The paper provides a brief overview of the caste system and discusses the types of groups that are eligible for reservation, based on data from government reports. The stance of this paper is that…
The U.S. EPA’s ToxCast research project was developed to address the need for high-throughput testing of chemicals and a pathway-based approach to hazard screening. Phase I of ToxCast tested over 300 unique compounds (mostly pesticides and antimicrobials). With the addition of Ph...
The Stemina devTOX quickPredict platform (STM) is a human pluripotent H9 stem cell-based assay that predicts developmental toxicants. Using the STM model, we screened 1065 ToxCast chemicals and entered the data into the ToxCast data analysis pipeline. Model performance was 83.3% ...
Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...
Recent Advances in Conjugated Polymer Materials for Disease Diagnosis.
Lv, Fengting; Qiu, Tian; Liu, Libing; Ying, Jianming; Wang, Shu
2016-02-10
The extraordinary optical amplification and light-harvesting properties of conjugated polymers impart sensing systems with higher sensitivity, which meets the primary demands of early cancer diagnosis. Recent advances in the detection of DNA methylation and mutation with polyfluorene derivatives based fluorescence resonance energy transfer (FRET) as a means to modulate fluorescent responses attest to the great promise of conjugated polymers as powerful tools for the clinical diagnosis of diseases. To facilitate the ever-changing needs of diagnosis, the development of detection approaches and FRET signal analysis are highlighted in this review. Due to their exceptional brightness, excellent photostability, and low or absent toxicity, conjugated polymers are verified as superior materials for in-vivo imaging, and provide feasibility for future clinical molecular-imaging applications. The integration of conjugated polymers with clinical research has shown profound effects on diagnosis for the early detection of disease-related biomarkers, as well as in-vivo imaging, which leads to a multidisciplinary scientific field with perspectives in both basic research and application issues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distal limb cast sores in horses: risk factors and early detection using thermography.
Levet, T; Martens, A; Devisscher, L; Duchateau, L; Bogaert, L; Vlaminck, L
2009-01-01
There is a lack of evidence-based data on the prevalence, outcome and risk factors of distal limb cast sores, and no objective tool has been described for the early detection of cast sores. To investigate the prevalence, location, outcome and risk factors of cast sores after application of a distal limb cast and to determine whether static thermography of the cast is a valuable tool for the assessment of sores. A prospective study was conducted on horses treated with a distal limb cast. At each cast removal, cast sores were graded as superficial sores (SS), deep dermal sores (DS) or full thickness skin ulcerations (FS). In several cases, a thermographic evaluation of the cast was performed immediately prior to removal and differences in temperature (AT) between the coolest point of the cast and 2 cast regions predisposed for sore development (dorsoproximal mc/mtIII and palmar/plantar fetlock) were calculated. Mean +/- s.d. total casting time of 70 horses was 31 +/- 18 days. Overall, 57 legs (81%) developed at least SS. Twenty-four legs (34%) ultimately developed DS and one horse had an FS. Multivariable analysis showed that the severity of sores was positively associated with increasing age (OR: 1.111, P = 0.028), a normal (vs. swollen) limb (OR: 3387, P = 0.023) and an increase in total casting time (OR per week: 1.363, P = 0.002). The thermographic evaluation (35 casts) revealed that the severity of sores was positively associated with increasing deltaT (OR: 2.100, P = 0.0005). The optimal cut-off values for the presence of SS and DS were set at, respectively, deltaT = 23 and 43 degrees C. Distal limb cast is a safe coaptation technique with increasing risk of developing sores with time. Thermography is a valuable and rapid clinical tool to monitor the development of cast sores.
Krug, Klaus-Peter; Knauber, Andreas W; Nothdurft, Frank P
2015-03-01
The aim of this study was to investigate the fracture behavior of metal-ceramic bridges with frameworks from cobalt-chromium-molybdenum (CoCrMo), which are manufactured using conventional casting or a new computer-aided design/computer-aided manufacturing (CAD/CAM) milling and sintering technique. A total of 32 metal-ceramic fixed dental prostheses (FDPs), which are based on a nonprecious metal framework, was produced using a conventional casting process (n = 16) or a new CAD/CAM milling and sintering process (n = 16). Eight unveneered frameworks were manufactured using each of the techniques. After thermal and mechanical aging of half of the restorations, all samples were subjected to a static loading test in a universal testing machine, in which acoustic emission monitoring was performed. Three different critical forces were revealed: the fracture force (F max), the force at the first reduction in force (F decr1), and the force at the critical acoustic event (F acoust1). With the exception of the veneered restorations with cast or sintered metal frameworks without artificial aging, which presented a statistically significant but slightly different F max, no statistically significant differences between cast and CAD/CAM sintered and milled FDPs were detected. Thermal and mechanical loading did not significantly affect the resulting forces. Cast and CAD/CAM milled and sintered metal-ceramic bridges were determined to be comparable with respect to the fracture behavior. FDPs based on CAD/CAM milled and sintered frameworks may be an applicable and less technique-sensitive alternative to frameworks that are based on conventionally cast frameworks.
Memon, Sarfaraz
2014-12-01
A stable centric occlusal position that shows no evidence of occlusal disease should not be altered. Confirmative restorative dentistry deals with making restorations that are in harmony with existing jaw relations. Conventional techniques for construction have been unsuccessful in producing a prosthesis that can be inserted without minor intraoral occlusal adjustment. This study was conducted to evaluate the benefits of the double casting technique with FGP over the conventional casting technique. Ten patients with root canal treated maxillary molar were selected for the fabrication of metal crown. Two techniques, one involving the conventional fabrication and other using functionally generated path with double casting were used to fabricate the prosthesis. A comparison based on various parameters which was done between the two techniques. The change in the height of castings for the double casting group was less compared to the conventional group and was highly statistically significant (P < 0.001). The time taken for occlusal correction was significantly lower in double casting group than the conventional group (P < 0.001). The patient satisfaction (before occlusal correction) indicated better satisfaction for double casting group compared to conventional (P < 0.01). The functionally generated path with double casting technique resulted in castings which had better dimensional accuracy, less occlusal correction and better patient satisfaction compared to the conventional castings.
Tannamala, Pavan Kumar; Azhagarasan, Nagarasampatti Sivaprakasam; Shankar, K Chitra
2013-01-01
Conventional casting techniques following the manufacturers' recommendations are time consuming. Accelerated casting techniques have been reported, but their accuracy with base metal alloys has not been adequately studied. We measured the vertical marginal gap of nickel-chromium copings made by conventional and accelerated casting techniques and determined the clinical acceptability of the cast copings in this study. Experimental design, in vitro study, lab settings. Ten copings each were cast by conventional and accelerated casting techniques. All copings were identical, only their mold preparation schedules differed. Microscopic measurements were recorded at ×80 magnification on the perpendicular to the axial wall at four predetermined sites. The marginal gap values were evaluated by paired t test. The mean marginal gap by conventional technique (34.02 μm) is approximately 10 μm lesser than that of accelerated casting technique (44.62 μm). As the P value is less than 0.0001, there is highly significant difference between the two techniques with regard to vertical marginal gap. The accelerated casting technique is time saving and the marginal gap measured was within the clinically acceptable limits and could be an alternative to time-consuming conventional techniques.
Developing ShakeCast statistical fragility analysis framework for rapid post-earthquake assessment
Lin, K.-W.; Wald, D.J.
2012-01-01
When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap estimates the extent of potentially damaging shaking and provides overall information regarding the affected areas. The USGS ShakeCast system is a freely-available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. We describe notable improvements of the ShakeMap and the ShakeCast applications. We present a design for comprehensive fragility implementation, integrating spatially-varying ground-motion uncertainties into fragility curves for ShakeCast operations. For each facility, an overall inspection priority (or damage assessment) is assigned on the basis of combined component-based fragility curves using pre-defined logic. While regular ShakeCast users receive overall inspection priority designations for each facility, engineers can access the full fragility analyses for further evaluation.
NASA Astrophysics Data System (ADS)
Klose, Christian; Demminger, Christian; Maier, Hans Jürgen
The inherent magnetic properties of lightweight alloys based on magnesium and cobalt offer a novel way in order to measure mechanical loads throughout the entire structural component using the magnetoelastic effect. Because the solubility of cobalt in the magnesium matrix is negligible, the magnetic properties mainly originate from Co-rich precipitates. Thus, the size and distribution of Co-containing phases within the alloy's microstructure wields a major influence on the amplitude of the load-sensitive properties which can be measured by employing the harmonic analysis of eddy-current signals. In this study, Mg-Co-based alloys are produced by several casting methods which allow the application of different cooling rates, e.g. gravity die casting and high-pressure die casting. The differences between the manufactured alloys' micro- and phase structures are compared depending on the applied cooling rate and the superior magnetic and mechanical properties of the high-pressure die cast material are demonstrated.
Evaluation of Uranium-235 Measurement Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Lavender, Curt A.; Dibert, Mark W.
2017-05-23
Monolithic U-Mo fuel plates are rolled to final fuel element form from the original cast ingot, and thus any inhomogeneities in 235U distribution present in the cast ingot are maintained, and potentially exaggerated, in the final fuel foil. The tolerance for inhomogeneities in the 235U concentration in the final fuel element foil is very low. A near-real-time, nondestructive technique to evaluate the 235U distribution in the cast ingot is required in order to provide feedback to the casting process. Based on the technical analysis herein, gamma spectroscopy has been recommended to provide a near-real-time measure of the 235U distribution inmore » U-Mo cast plates.« less
Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; ...
2014-08-29
Here, the oxidation behavior of SiMo cast iron, Ni-resist D 5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H 2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo castmore » iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less
The effect of investment type on the fit of cast titanium crowns.
Mori, T; Jean-Louis, M; Yabugami, M; Togaya, T
1994-12-01
In order to determine the best laboratory procedure for titanium crown casting, a set of thermal expansion measurements and casting experiments were carried out using a casting machine (argon arc, pressure difference type) and three different investments, two conventional SiO2 based investments and a new Al2O3/MgO based investment. The thermal expansion measurements involved a cycle of heating and cooling. The relatively low mould temperatures recommended (200 degrees C) or chosen (350 degrees C) for the conventional investments provided zero or negative mould expansion for the compensation of metal shrinkage. Crowns made from these investments exhibited heavy reaction with the mould, and the common cleaning method of sand blasting appeared to be essential. This cleaning process, however, was not adequate for the assessment of casting accuracy as the short sand blasting time (15 s) rapidly altered the fit of the crowns. The metal reacted little with the new investment and the best compensation (0.15 mm discrepancy) for the metal shrinkage, as assessed 'as cast', was achieved when the investment was heated to 950 degrees C and then cooled to the recommended mould temperature (600 degrees C).
NASA Astrophysics Data System (ADS)
Jiang, Bo; Wu, Meng; Sun, He; Wang, Zhilin; Zhao, Zhigang; Liu, Yazheng
2018-01-01
The austenite growth behavior of non-quenched and tempered steels (casted by continuous casting and molding casting processes) was studied. The austenite grain size of steel B casted by continuous casting process is smaller than that of steel A casted by molding casting process at the same heating parameters. The abnormal austenite growth temperature of the steels A and B are 950 °C and 1000 °C, respectively. Based on the results, the models for the austenite grain growth below and above the abnormal austenite growth temperature of the investigated steels were established. The dispersedly distributed fine particles MnS in steel B is the key factor refining the austenite grain by pinning the migration of austenite grain boundary. The elongated inclusions MnS are ineffective in preventing the austenite grain growth at high heating temperature. For the non-quenched and tempered steel, the continuous casting process should be adopted and the inclusion MnS should be elliptical, smaller in size and distributed uniformly in order to refine the final microstructure and also improve the mechanical properties.
Glovebox Advanced Casting System Casting Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielding, Randall Sidney
2016-03-01
Casting optimization in the GACS included three broad areas; casting of U-10Zr pins, incorporation of an integral FCCI barrier, and development of a permanent crucible coating. U-10Zr casting was improved over last year’s results by modifying the crucible design to minimize contact with the colder mold. Through these modifications casting of a three pin batch was successful. Incorporation of an integral FCCI barrier also was optimized through furnace chamber pressure changes during the casting cycle to reduce gas pressures in the mold cavities which led to three full length pins being cast which incorporated FCCI barriers of three different thicknesses.more » Permanent crucible coatings were tested against a base case; 1500°C for 10 minutes in a U-20Pu-10Zr molten alloy. None of the candidate coating materials showed evidence of failure upon initial visual examination. In all areas of work a large amount of characterization will be needed to fully determine the effects of the optimization activities. The characterization activities and future work will occur next year.« less
Thin Gauge Twin-Roll Casting, Process Capabilities and Product Quality
NASA Astrophysics Data System (ADS)
Daaland, O.; Espedal, A. B.; Nedreberg, M. L.; Alvestad, I.
Traditionally industrial twin roll casters have been operated at gauges 6-10 mm, depending on the type of caster and the final product requirements. Over the past few years it has become apparent that a significant increase in productivity can be achieved when the casting gauge is reduced. Hydro Aluminium embarked on an extensive research and development, thin gauge casting programme, in the beginning of the 1990's and this paper presents some results from a five year lasting project (joint programme between Hydro Aluminium a.s. and Lauener Engineering). Based on more than 400 casting trials the major benefits and limitations of casting at reduced gauge and increased speed are outlined. Important aspects related to process development and product quality are discussed including: productivity and limitations, surface defects, microstructural characteristics, cooling rates and dendrite structure, segregation behaviour and mechanical properties after thermo-mechanical processing. Results for casting of several alloys are given. Additionally, numerical modelling results of the strip casting process are included.
Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur
2013-12-01
Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (P<.001). In contrast, the technique used for casting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting technique was not significant (P=.119). A high level of castability (98.5% on average) was achieved overall. The frequency of casting failures as a function of alloy type and casting method was determined. Failure was defined as a castability index score of <100%. Three of 28 possible comparisons between alloy and casting combinations were statistically significant. The results suggested that casting technique affects the castability index of alloys. Radiographic analysis detected large porosities in regions near the edge of the castability pattern and infrequently adjacent to noncast segments. All castings acquired traces of elements found in the casting crucibles. The grain size for each dental casting alloy was generally finer for specimens produced by the induction/vacuum-pressure method. The difference was substantial for JO and L. This study demonstrated a relation between casting techniques and some physical properties of metal ceramic casting alloys. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Shahid, Mohammad Kamran; Punwar, Shahid; Boulind, Caroline; Bannister, Gordon
2013-01-01
Acute avulsion fractures of the base of the fifth metatarsal are common and are treated in a variety of ways. The aims of this study were to compare pain, functional outcome, and time taken off work after treatment with a walking boot or a short-leg cast. Of 39 patients with acute avulsion fractures of the base of the fifth metatarsal, 23 were treated with a short-leg cast and 16 with a walking boot, according to the preference of the consultant present at outpatient clinic. Functional outcome was assessed by the Visual Analogue Scale Foot and Ankle Questionnaire (VAS FA), pain, and other complaints on presentation and at 3, 6, 9, and 12 weeks after injury. The VAS FA scores were compared between the 2 groups by a paired Student t test. The mean time to return to the level of pain and function before injury was approximately 9 weeks after treatment in the walking boot group and 12 weeks with a short-leg cast. Patients with walking boots reported less pain between 3 and 12 weeks than did those with short-leg casts after 6 (P = .06), 9 (P = .020), and 12 weeks (P = .33). Function was significantly better with Aircast walking boots after 3 (P = .006), 6 (P = .002), and 9 weeks (P = .002) but not after 12 weeks (P = .09). Patients returned to their preinjury level of driving after 6 weeks with walking boots and 12 weeks with short-leg casts (P = .006). Employed patients took a mean of 35.8 days off work (range, 28-42 days), fewer with boots (31.5 days) than with short-leg casts (39.2 days). The walking boot was better treatment than a short-leg cast for avulsion fractures of the base of the fifth metatarsal. Patients had an improved combined level of pain and function 3 weeks earlier, at 9 weeks post injury, when managed in a walking boot. Level II, prospective comparative series.
Issues of poor rural self-employed women.
Jumani, U
1994-01-01
Most Indian women are low income and self-employed, but women's studies have not focused on this large population. In order to fill in the gap in the literature on women's employment in India, a study was conducted in 1985 among 800 women from 5 "talukas" in Ahmedabad district. This article describes the common social and economic issues faced by poor, rural, self-employed women. Most of the sample belong to lower caste groups. The caste system contributed largely to their poverty, exploitation, and lack of access to facilities. The Harijans are treated the worst and many villages consider them untouchables. The Vaghris and the Dehgam are considered low caste but not untouchables. These groups are not treated much better than the Harijans. Relations between various castes are often strained. In many villages access to information about government programs is controlled by the Sarpanch and Talati and denied to the lower castes. Women's division of labor is determined by caste. The response to the demands of survival among low-income women is to adopt a "contingency" approach to life. These women are mobile, travel with few belongings, and seek shelter anywhere. Children are not sent to school. Many are untrained even in a caste-based occupation. The poor are generally landless and without assets. Work skills are acquired from family or neighbors. Women and poor people lack access to loans and lack awareness of detailed procedures. Cash payment does not usually go to women. Women work in caste-based occupations in addition to two or three seasonal agricultural labor jobs. Development programs do not address the current situation of the poor.
Anderson, J.W.; Miley, F.; Pritchard, W.C.
1962-02-27
A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)
Zhou, Qin; Wang, Zhenzhen; Chen, Jun; Song, Jun; Chen, Lu; Lu, Yi
2016-01-01
For reasons of convenience and economy, attempts have been made to transform traditional dental gypsum casts into 3-dimensional (3D) digital casts. Different scanning devices have been developed to generate digital casts; however, each has its own limitations and disadvantages. The purpose of this study was to develop an advanced method for the 3D reproduction of dental casts by using a high-speed grating projection system and noncontact reverse engineering (RE) software and to evaluate the accuracy of the method. The methods consisted of 3 main steps: the scanning and acquisition of 3D dental cast data with a high-resolution grating projection system, the reconstruction and measurement of digital casts with RE software, and the evaluation of the accuracy of this method using 20 dental gypsum casts. The common anatomic landmarks were measured directly on the gypsum casts with a Vernier caliper and on the 3D digital casts with the Geomagic software measurement tool. Data were statistically assessed with the t test. The grating projection system had a rapid scanning speed, and smooth 3D dental casts were obtained. The mean differences between the gypsum and 3D measurements were approximately 0.05 mm, and no statistically significant differences were found between the 2 methods (P>.05), except for the measurements of the incisor tooth width and maxillary arch length. A method for the 3D reconstruction of dental casts was developed by using a grating projection system and RE software. The accuracy of the casts generated using the grating projection system was comparable with that of the gypsum casts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aikin, Jr., Robert M.
This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerousmore » defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic characterization are compared to the initial design.« less
NASA Technical Reports Server (NTRS)
Cooper, K. G.; Wells, D.
2000-01-01
Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.
The ToxCast Chemical Landscape - Paving the Road to 21st ...
The ToxCast high-throughput screening (HTS) program within the U.S. Environmental Protection Agency (EPA) was launched in 2007. Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay endpoints. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in public release of screening data at the end of 2013. Concurrently, a larger EPA library of 3726 chemicals (including the Phase II chemicals) was undergoing screening in the cross-federal agency Tox21 HTS project. Four years later, Phase III of EPA’s ToxCast program is actively screening a diverse library consisting of more than 3800 chemicals, 96% of which are also undergoing Tox21 screening. The majority of ToxCast studies, to date, have focused on using HTS results to build biologically based models for predicting in vivo toxicity endpoints. The focus of the present article, in contrast, is on the EPA chemical library underpinning these efforts. A history of the phased construction of EPA’s ToxCast library is presented, considering factors influencing chemical selection as well as the various quality measures implemented. Next, Chemical Abstracts Service Registry Numbers (CASRN), which were used to compile initial chemical nominations for ToxCast testing, are used to assess overlaps of the current ToxCast library with important toxicity, regulatory, and exposure inventories. Lastly, ToxCast chemicals are described in terms of generaliz
A GridPix-based X-ray detector for the CAST experiment
NASA Astrophysics Data System (ADS)
Krieger, C.; Kaminski, J.; Lupberger, M.; Desch, K.
2017-09-01
The CAST experiment has been searching for axions and axion-like particles for more than 10 years. The continuous improvements in the detector designs have increased the physics reach of the experiment far beyond what was originally conceived. As part of this development, a new detector based on a GridPix readout had been developed in 2014 and was mounted on the CAST experiment during the end of the data taking period of 2014 and the complete period in 2015. We report on the detector design, its advantages and the performance during both periods.
Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.Evans, M.V., Sawyer, M.E., Isaacs, K.K, and Wambaugh, J.With the development of efficient high-throughput (HT) in ...
Effect of particle Alignment on mechanical properties of neat cellulose nanocrystal films
Alexander B. Reising; Robert J. Moon; Jeffrey P. Youngblood
2012-01-01
Shear-based film casting methods were used to cast neat films from wood-based cellulose nanocrystal (CNC) suspensions. The degree of CNC alignment in dried films was characterized using the Hermans order parameter (S), and the film elastic modulus (E), ultimate tensile strength (σf ), elongation at failure (εf...
Rowe, Philip
2013-01-01
Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit. PMID:24348164
Safari, Mohammad Reza; Rowe, Philip; McFadyen, Angus; Buis, Arjan
2013-01-01
Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit.
Single underwater image enhancement based on color cast removal and visibility restoration
NASA Astrophysics Data System (ADS)
Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian
2016-05-01
Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.
Ye, Ye; Jiao, Ting; Zhu, Jiarui; Sun, Jian
2018-01-24
The purpose of the study was to evaluate the adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by the selective laser melting (SLM) technique. Twenty pairs of edentulous casts were randomly and evenly divided into two groups, and manufacturing of the Co-Cr alloy maxillary complete denture base was conducted either by the SLM technique or by the conventional method. The base-cast sets were transversally sectioned into three sections at the distal canines, mesial of the first molars and the posterior palatal zone. The gap between the metal base and cast was measured in these three sections with a stereoscopic microscope, and the data were analysed using t tests. A total of five specimens of 5 mm diameter were fabricated with the Co-Cr alloy by SLM and the traditional casting technology. A scanning electron microscope (SEM) was used to evaluate the differences in microstructure between these specimens. There was no statistical difference between the three sections in all four groups (P > 0.05). At the region of the canines, the clearance value for the SLM Co-Cr alloy group was larger than that of the conventional method group (P < 0.05). At the mesial of the first molar region and the posterior palatal zone, there was no statistical difference between the gaps observed in the two groups (P > 0.05). The SLM Co-Cr alloy has a denser microstructure behaviour and less casting defect than the cast Co-Cr alloy. The SLM technique showed initial feasibility for the manufacture of dental bases of complete dentures, but large sample studies are needed to prove its reliability in clinical applications. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures are appropriate for clinical use.
Robbiano, Valentina; Paternò, Giuseppe M; La Mattina, Antonino A; Motti, Silvia G; Lanzani, Guglielmo; Scotognella, Francesco; Barillaro, Giuseppe
2018-05-22
Silicon photonics would strongly benefit from monolithically integrated low-threshold silicon-based laser operating at room temperature, representing today the main challenge toward low-cost and power-efficient electronic-photonic integrated circuits. Here we demonstrate low-threshold lasing from fully transparent nanostructured porous silicon (PSi) monolithic microcavities (MCs) infiltrated with a polyfluorene derivative, namely, poly(9,9-di- n-octylfluorenyl-2,7-diyl) (PFO). The PFO-infiltrated PSiMCs support single-mode blue lasing at the resonance wavelength of 466 nm, with a line width of ∼1.3 nm and lasing threshold of 5 nJ (15 μJ/cm 2 ), a value that is at the state of the art of PFO lasers. Furthermore, time-resolved photoluminescence shows a significant shortening (∼57%) of PFO emission lifetime in the PSiMCs, with respect to nonresonant PSi reference structures, confirming a dramatic variation of the radiative decay rate due to a Purcell effect. Our results, given also that blue lasing is a worst case for silicon photonics, are highly appealing for the development of low-cost, low-threshold silicon-based lasers with wavelengths tunable from visible to the near-infrared region by simple infiltration of suitable emitting polymers in monolithically integrated nanostructured PSiMCs.
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; ...
2018-04-25
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
NASA Astrophysics Data System (ADS)
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando
2018-06-01
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
NASA Astrophysics Data System (ADS)
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando
2018-04-01
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less
An in vitro study of coronal leakage after intraradicular preparation of cast-dowel space.
Pappen, A F; Bravo, M; Gonzalez-Lopez, S; Gonzalez-Rodriguez, M P
2005-09-01
Coronal leakage can produce contamination of periapical tissues, resulting in endodontic failure. The purpose of this in vitro study was to evaluate the ability of 2 sealers to prevent coronal leakage in canals filled with gutta-percha and prepared for cast dowels but without coronal sealing. The crowns of 60 extracted single-rooted teeth were amputated. The root canals were prepared corono-apically and filled with gutta-percha cones and 1 of 2 different endodontic sealers: a resin-based sealer (AH Plus) and a calcium hydroxide-based sealer (Sealapex). Specimens were then stored in water for 7 days to allow the sealers to set. The specimens were prepared in 1 of 2 ways: no preparation for cast dowel or preparation of cast-dowel space (n=15). External surfaces of the roots were sealed with cyanoacrylate cement. The teeth were thermal cycled at 5 degrees and 55 degrees C in water baths (dwell time=30 seconds) for 500 cycles. Specimens were then submerged in 2% methylene blue colorant for 24 hours. Microleakage was measured according to the percentage of area stained with the colorant. Effects of each factor (cast-dowel preparation and type of sealant) on microleakage were analyzed by the Student t test (alpha=.05). The AH Plus and Sealapex sealers with cast-dowel preparation resulted in significantly (P<.001) more leakage compared to sealers with no dowel preparation. Cast dowel-space preparation had a negative influence on the sealing ability of the remnant root-canal filling material.
Anisotropic membranes for gas separation
Gollan, A.Z.
1987-07-21
A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7--25 C and then air dried at ambient temperature, typically 10--30 C. 2 figs.
Wooding, Stephen; Ostler, Christopher; Prasad, B V Ravi; Watkins, W Scott; Sung, Sandy; Bamshad, Mike; Jorde, Lynn B
2004-08-01
Genetic, ethnographic, and historical evidence suggests that the Hindu castes have been highly endogamous for several thousand years and that, when movement between castes does occur, it typically consists of females joining castes of higher social status. However, little is known about migration rates in these populations or the extent to which migration occurs between caste groups of low, middle, and high social status. To investigate these aspects of migration, we analyzed the largest collection of genetic markers collected to date in Hindu caste populations. These data included 45 newly typed autosomal short tandem repeat polymorphisms (STRPs), 411 bp of mitochondrial DNA sequence, and 43 Y-chromosomal single-nucleotide polymorphisms that were assayed in more than 200 individuals of known caste status sampled in Andrah Pradesh, in South India. Application of recently developed likelihood-based analyses to this dataset enabled us to obtain genetically derived estimates of intercaste migration rates. STRPs indicated migration rates of 1-2% per generation between high-, middle-, and low-status caste groups. We also found support for the hypothesis that rates of gene flow differ between maternally and paternally inherited genes. Migration rates were substantially higher in maternally than in paternally inherited markers. In addition, while prevailing patterns of migration involved movement between castes of similar rank, paternally inherited markers in the low-status castes were most likely to move into high-status castes. Our findings support earlier evidence that the caste system has been a significant, long-term source of population structuring in South Indian Hindu populations, and that patterns of migration differ between males and females. Copyright 2004 Springer-Verlag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasoyinu, Yemi
2014-03-31
Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloymore » systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.« less
Multidisciplinary approach to improve the quality of below-knee plaster casting.
Williams, John Teudar; Kedrzycki, Marta; Shenava, Yathish
2018-01-01
In our trauma unit, we noted a high rate of incorrectly applied below-knee casts for ankle fractures, in some cases requiring reapplication. This caused significant discomfort and inconvenience for patients and additional burden on plaster-room services. Our aim was to improve the quality of plaster casts and reduce the proportion that needed to be reapplied. Our criteria for plaster cast quality were based on the British Orthopaedic Association Casting Standards (2015) and included neutral (plantargrade) ankle position, adequacy of fracture reduction and rate of cast reapplication. Baseline data collection was performed over a 2-month period by two independent reviewers. After distributing findings and presenting to relevant departments, practical casting sessions with orthopaedic technicians were arranged for the multidisciplinary team responsible for casting. This was later supplemented by new casting guidelines in clinical areas and available online. Postintervention data collection was performed over two separate cycles to assess the effect and permanence of intervention. Data from the preintervention period (n=29) showed median ankle position was 32° plantarflexion (PF), with nine (31%) inadequate reductions and six (20%) backslabs reapplied. Following Plan-Do-Study-Act (PDSA) 1, ankle position was significantly improved (median 25° PF), there were fewer inadequate reductions (12%; 2/17) and a lower rate of reapplication (0%; 0/17). After PDSA 2 (n=16), median ankle position was 21° PF, there was one (6%) inadequate reduction and two (12%) reapplications of casts. Following implementation of plaster training sessions for accident and emergency and junior orthopaedic staff, in addition to publishing guidance and new protocol, there has been a sustained improvement in the quality of below-knee backslabs and fewer cast reapplications. These findings justify continuation and expansion of the current programme to include other commonly applied plaster casts.
Canavese, Federico; Rousset, Marie; Mansour, Mounira; Samba, Antoine; Dimeglio, Alain
2016-02-01
Infantile and juvenile scoliosis, among different types of spinal deformity, is still a challenge for pediatric orthopedic surgeons. The ideal treatment of infantile and juvenile scoliosis has not yet been identified as both clinicians and surgeons still face multiple challenges, including preservation of the thoracic spine, thoracic cage, lung growth and cardiac function without reducing spinal motion. Elongation, derotation, flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three dimensional correction concept. This cast offers three-dimensional correction and can control the evolution of the deformity in some cases. Spinal growth can be guided by EDF casting as it can influence the initially curved spine to grow straighter. This article aimed to provide a comprehensive review of how infantile and juvenile scoliosis can affect normal spine and thorax and how these deformities can be treated with serial EDF casting technique. A current literature review is mandatory in order to understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in young and very young patients.
Roll Casting of Aluminum Alloy Clad Strip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, R.; Tsuge, H.; Haga, T.
2011-01-17
Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connectedmore » when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.« less
Labronici, Pedro José; Ferreira, Leonardo Termis; Dos Santos Filho, Fernando Claudino; Pires, Robinson Esteves Santos; Gomes, Davi Coutinho Fonseca Fernandes; da Silva, Luiz Henrique Penteado; Gameiro, Vinicius Schott
2017-02-01
Several so-called casting indices are available for objective evaluation of plaster cast quality. The present study sought to investigate four of these indices (gap index, padding index, Canterbury index, and three-point index) as compared to a reference standard (cast index) for evaluation of plaster cast quality after closed reduction of pediatric displaced distal forearm fractures. Forty-three radiographs from patients with displaced distal forearm fractures requiring manipulation were reviewed. Accuracy, sensitivity, specificity, false-positive probability, false-negative probability, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio were calculated for each of the tested indices. Comparison among indices revealed diagnostic agreement in only 4.7% of cases. The strongest correlation with the cast index was found for the gap index, with a Spearman correlation coefficient of 0.94. The gap index also displayed the best agreement with the cast index, with both indices yielding the same result in 79.1% of assessments. When seeking to assess plaster cast quality, the cast index and gap index should be calculated; if both indices agree, a decision on quality can be made. If the cast and gap indices disagree, the padding index can be calculated as a tiebreaker, and the decision based on the most frequent of the three results. Calculation of the three-point index and Canterbury index appears unnecessary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of cast creep occurring during simulated clubfoot correction
Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald, F
2016-01-01
The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster-of-Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster-of-Paris (2.0 degrees), then the semi-rigid fiberglass (1.0 degrees), and then the rigid fiberglass (0.4 degrees). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi—linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care. PMID:23636764
Design of experiments to optimize an in vitro cast to predict human nasal drug deposition.
Shah, Samir A; Dickens, Colin J; Ward, David J; Banaszek, Anna A; George, Chris; Horodnik, Walter
2014-02-01
Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature. The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments. We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results. We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition studies using radiolabeled formulations, this cast could show that radiolabel deposition represents drug deposition. Our methods could also be used to optimize settings for other casts.
Grebner, Christoph; Becker, Johannes; Weber, Daniel; Bellinger, Daniel; Tafipolski, Maxim; Brückner, Charlotte; Engels, Bernd
2014-09-15
The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry-adapted perturbation theory-based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)-accelerated TeraChem program is available. The program is available on request. Copyright © 2014 Wiley Periodicals, Inc.
EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...
NASA Astrophysics Data System (ADS)
Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.
2014-05-01
HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.
An Informatics Based Approach to Reduce the Grain Size of Cast Hadfield Steel
NASA Astrophysics Data System (ADS)
Dey, Swati; Pathak, Shankha; Sheoran, Sumit; Kela, Damodar H.; Datta, Shubhabrata
2016-04-01
Materials Informatics concept using computational intelligence based approaches are employed to bring out the significant alloying additions to achieve grain refinement in cast Hadfield steel. Castings of Hadfield steels used for railway crossings, requires fine grained austenitic structure. Maintaining proper grain size of this component is very crucial in order to achieve the desired properties and service life. This work studies the important variables affecting the grain size of such steels which includes the compositional and processing variables. The computational findings and prior knowledge is used to design the alloy, which is subjected to a few trials to validate the findings.
NASA Astrophysics Data System (ADS)
Lin, K.; Wald, D. J.
2007-12-01
ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users" facilities, sends notifications of potential damage to responsible parties, and generates facility damage maps and other Web-based products for emergency managers and responders. ShakeMap, a tool used to portray the extent of potentially damaging shaking following an earthquake, provides overall information regarding the affected areas. When a potentially damaging earthquake occurs, utility and other lifeline managers, emergency responders, and other critical users have an urgent need for information about the impact on their particular facilities so they can make appropriate decisions and take quick actions to ensure safety and restore system functionality. To this end, ShakeCast estimates the potential damage to a user's widely distributed facilities by comparing the complex shaking distribution with the potentially highly variable damageability of their inventory to provide a simple, hierarchical list and maps showing structures or facilities most likely impacted. All ShakeMap and ShakeCast files and products are non-propriety to simplify interfacing with existing users" response tools and to encourage user-made enhancement to the software. ShakeCast uses standard RSS and HTTP requests to communicate with the USGS Web servers that host ShakeMaps, which are widely-distributed and heavily mirrored. The RSS approach allows ShakeCast users to initiate and receive selected ShakeMap products and information on software updates. To assess facility damage estimates, ShakeCast users can combine measured or estimated ground motion parameters with damage relationships that can be pre-computed, use one of these ground motion parameters as input, and produce a multi-state discrete output of damage likelihood. Presently three common approaches are being used to provide users with an indication of damage: HAZUS-based, intensity-based, and customized damage functions. Intensity-based thresholds are for locations with poorly established damage relationships; custom damage levels are for advanced ShakeCast users such as Caltrans which produces its own set of damage functions that correspond to the specific details of each California bridge or overpass in its jurisdiction. For users whose portfolio of structures is comprised of common, standard designs, ShakeCast offers a simplified structural damage-state estimation capability adapted from the HAZUS-MH earthquake module (NIBS and FEMA, 2003). Currently the simplified fragility settings consist of 128 combinations of HAZUS model building types, construction materials, building heights, and building-code eras.
Serious infectious complications related to extremity cast/splint placement in children.
Delasobera, B Elizabeth; Place, Rick; Howell, John; Davis, Jonathan E
2011-07-01
Extremity injuries necessitating splinting or casting are commonly seen in the emergency department (ED) setting. Subsequently, it is not uncommon for patients to present to the ED with complaints related to an extremity cast or splint. To present a literature-based approach to the identification and initial management of patients with possible infectious cast/splint complications in the ED setting. We present two cases of serious infectious complications arising from extremity cast/splint placement seen in a single pediatric ED: a case of toxic shock syndrome in an 8-year-old child, and a case of necrotizing fasciitis resulting in upper extremity amputation in a 3-year-old child. A wide spectrum of potential extremity cast/splint infectious complications may be seen, which include limb- or life-threatening infections such as toxic shock syndrome and necrotizing fasciitis. Simply considering these diagnoses, and removing the cast or splint to carefully inspect the affected extremity, are potential keys to early identification and optimal outcome of cast/splint complications. It is also prudent to maintain particular vigilance when treating a patient with a water-exposed cast, which may lead to moist padding, skin breakdown, and potential infection. In patients with suspected serious infections, aggressive fluid management and antibiotic therapy should be initiated and appropriate surgical consultation obtained without delay. Copyright © 2011 Elsevier Inc. All rights reserved.
Thanseem, Ismail; Thangaraj, Kumarasamy; Chaubey, Gyaneshwer; Singh, Vijay Kumar; Bhaskar, Lakkakula V K S; Reddy, B Mohan; Reddy, Alla G; Singh, Lalji
2006-08-07
India is a country with enormous social and cultural diversity due to its positioning on the crossroads of many historic and pre-historic human migrations. The hierarchical caste system in the Hindu society dominates the social structure of the Indian populations. The origin of the caste system in India is a matter of debate with many linguists and anthropologists suggesting that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago. Previous genetic studies based on Indian populations failed to achieve a consensus in this regard. We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southern India, compared the results with available data from the Indian subcontinent and tried to reconstruct the evolutionary history of Indian caste and tribal populations. No significant difference was observed in the mitochondrial DNA between Indian tribal and caste populations, except for the presence of a higher frequency of west Eurasian-specific haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes. The present study suggests that the vast majority (> 98%) of the Indian maternal gene pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform. Invasions after the late Pleistocene settlement might have been mostly male-mediated. However, Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this already developed caste-like class structure within the tribes.
Thanseem, Ismail; Thangaraj, Kumarasamy; Chaubey, Gyaneshwer; Singh, Vijay Kumar; Bhaskar, Lakkakula VKS; Reddy, B Mohan; Reddy, Alla G; Singh, Lalji
2006-01-01
Background India is a country with enormous social and cultural diversity due to its positioning on the crossroads of many historic and pre-historic human migrations. The hierarchical caste system in the Hindu society dominates the social structure of the Indian populations. The origin of the caste system in India is a matter of debate with many linguists and anthropologists suggesting that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago. Previous genetic studies based on Indian populations failed to achieve a consensus in this regard. We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southern India, compared the results with available data from the Indian subcontinent and tried to reconstruct the evolutionary history of Indian caste and tribal populations. Results No significant difference was observed in the mitochondrial DNA between Indian tribal and caste populations, except for the presence of a higher frequency of west Eurasian-specific haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes. Conclusion The present study suggests that the vast majority (>98%) of the Indian maternal gene pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform. Invasions after the late Pleistocene settlement might have been mostly male-mediated. However, Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this already developed caste-like class structure within the tribes. PMID:16893451
Trivedi, Madhukar H; Wisniewski, Stephen R; Morris, David W; Fava, Maurizio; Kurian, Benji T; Gollan, Jackie K; Nierenberg, Andrew A; Warden, Diane; Gaynes, Bradley N; Luther, James F; Rush, A John
2011-06-01
US Food and Drug Administration (FDA) warnings recommend monitoring negative symptoms associated with the initiation of antidepressant medications as these symptoms may interfere with full recovery and pose safety concerns. There is currently no brief, reliable rating instrument for assessing treatment-emergent, negative symptoms. We evaluated the psychometric properties of 2 versions of the newly developed 17-item Concise Associated Symptom Tracking (CAST) scale, the CAST Clinician Rating (CAST-C) and CAST Self-Rated (CAST-SR), which are brief instruments designed to measure the 5 relevant associated symptom domains (irritability, anxiety, mania, insomnia, and panic). The study enrolled 265 outpatients with major depressive disorder (MDD), from July 2007 through February 2008, into an 8-week, open-label trial with a selective serotonin reuptake inhibitor. Diagnosis of MDD was determined by the Psychiatric Diagnostic Screening questionnaire and an MDD checklist based on DSM-IV-TR criteria. Suicidality (suicidal ideation with associated behaviors) is 1 of 9 symptoms of MDD (depressed mood, loss of interest, appetite or weight change, sleep disturbance, reduced concentration or indecisiveness, fatigue or decreased energy, psychomotor agitation or retardation, feelings of worthlessness or excessive guilt). Psychometric evaluations were conducted on both versions of the CAST. Cronbach α was .80 (CAST-C) and .81 (CAST-SR). Factor analysis identified 5 factors for each scale: (1) irritability, (2) anxiety, (3) mania, (4) insomnia, and (5) panic. When the item that cross-loaded on 2 factors was eliminated, the 16-item solution had a better goodness of fit (CAST-C: 0.90 vs 0.87; CAST-SR: 0.88 vs 0.84). Cronbach α for the 16-item versions was .77 (CAST-C) and .78 (CAST-SR). The 5 associated CAST symptom domains correlated well with other standard measures of these domains. The 16-item CAST-C and CAST-SR demonstrated excellent psychometric properties. These are potentially useful measures for monitoring treatment-emergent negative symptoms associated with antidepressants, as recommended by the FDA. Clinicaltrials.gov Identifier: NCT00532103. © Copyright 2011 Physicians Postgraduate Press, Inc.
The Burn Rate of Calcium Sulfate Dihydrate-Aluminum Thermites.
Govender, Desania Raquel; Focke, Walter Wilhelm; Tichapondwa, Shepherd Masimba; Cloete, William Edward
2018-05-29
The energetics of cast calcium sulfate dihydrate-aluminium thermites was investigated. The casts were prepared form water slurries with a solids content of xxx wt-%. The base case thermite comprised 60 wt-% calcium sulfate dihydrate as the oxidiser with 40 wt-% aluminium as fuel. The heat of hydration of the base case was 59 ± 8 kJkg-1 and the setting time was zzz min. The compressive strength reached 2.9 ± 0.2 MPa after three days drying in ambient air. The open air burn rate was 12.0 ± 1.6 mm s-1 and a maximum surface temperature of 1370 ± 64 °C was recorded with a pyrometer. Bomb calorimetry indicated an energy output of 8.0 ± 1.1 MJ kg-1, slightly lower than predicted by the EKVI thermodynamic simulation. Substitution of 10 wt-% of the oxidant with copper sulfate pentahydrate significantly decreased the setting time of the casts to about yyy min. The density of the castings was varied by either adding hollow sodium borosilicate glass spheres or by adding excess water during the casting process. The addition of the hollow glass spheres caused a decrease in the burning rate. The burning rate of the base case was not affected materially by the addition of excess water. However, it did increase the burning rate of the copper sulfate pentahydrate-modified thermite. Dehydration of the casts by thermal treatments at either 155 °C or 200 °C also led to significant increases in the burning rate.
A molecular concept of caste in insect societies.
Sumner, Seirian; Bell, Emily; Taylor, Daisy
2018-02-01
The term 'caste' is used to describe the division of reproductive labour that defines eusocial insect societies. The definition of 'caste' has been debated over the last 50 years, specifically with respect to the simplest insect societies; this raises the question of whether a simple categorisation of social behaviour by reproductive state alone is helpful. Gene-level analyses of behaviours of individuals in hymenopteran social insect societies now provide a new empirical base-line for defining caste and understanding the evolution and maintenance of a reproductive division of labour. We review this literature to identify a set of potential molecular signatures that, combined with behavioural, morphological and physiological data, help define caste more precisely; these signatures vary with the type of society, and are likely to be influenced by ecology, life-history, and stage in the colony cycle. We conclude that genomic approaches provide us with additional ways to help quantify and categorise caste, and behaviour in general. Copyright © 2017 Elsevier Inc. All rights reserved.
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses
Pei, Zhipu; Ju, Dongying
2017-01-01
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779
Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.
Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae
2010-05-01
A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.
Shock Initiation Characteristics of an Aluminized DNAN/RDX Melt-Cast Explosive
NASA Astrophysics Data System (ADS)
Cao, Tong-Tang; Zhou, Lin; Zhang, Xiang-Rong; Zhang, Wei; Miao, Fei-Chao
2017-10-01
Shock sensitivity is one of the key parameters for newly developed, 2,4-dinitroanisole (DNAN)-based, melt-cast explosives. For this paper, a series of shock initiation experiments were conducted using a one-dimensional Lagrangian system with a manganin piezoresistive pressure gauge technique to evaluate the shock sensitivity of an aluminized DNAN/cyclotrimethylenetrinitramine (RDX) melt-cast explosive. This study fully investigated the effects of particle size distributions in both RDX and aluminum, as well as the RDX's crystal quality on the shock sensitivity of the aluminized DNAN/RDX melt-cast explosive. Ultimately, the shock sensitivity of the aluminized DNAN/RDX melt-cast explosives increases when the particle size decreases in both RDX and aluminum. Additionally, shock sensitivity increases when the RDX's crystal quality decreases. In order to simulate these effects, an Ignition and Growth (I&G) reactive flow model was calibrated. This calibrated I&G model was able to predict the shock initiation characteristics of the aluminized DNAN/RDX melt-cast explosive.
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.
Pei, Zhipu; Ju, Dongying
2017-04-17
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.
NASA Astrophysics Data System (ADS)
Zeng, Y. D.; Wang, F.
2018-02-01
In this paper, we propose an experimental model for forming an air gap at the casting/mold interface during the solidification process of the casting, with the size and formation time of the air gap able to be precisely and manually controlled. Based on this model, experiments of gravity casting were performed, and on the basis of the measured temperatures at different locations inside the casting and the mold, the inverse analysis method of heat transfer was applied to solve for the heat-transfer coefficient at the casting/mold interface during the solidification process. Furthermore, the impacts of the width and formation time of the air gap on the interface heat-transfer coefficient (IHTC) were analyzed. The results indicate that the experimental model succeeds in forming an air gap having a certain width at any moment during solidification of the casting, thus allowing us to conveniently and accurately study the impact of the air gap on IHTC using the model. In addition, the casting/mold IHTC is found to first rapidly decrease as the air gap forms and then slowly decrease as the solidification process continues. Moreover, as the width of the air gap and the formation time of the air gap increase, the IHTC decreases.
Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan
2013-07-01
Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order tomore » prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.« less
Caste and maternal health care service use among rural Hindu women in Maitha, Uttar Pradesh, India.
Saroha, Ekta; Altarac, Maja; Sibley, Lynn M
2008-01-01
The objective of this study was to examine the association between caste and maternal health care service use among rural Hindu women in India. We analyzed data from the Morbidity and Performance Assessment, a population-based cross-sectional study, for 482 Hindu women who were pregnant during January 1998 to January 1999 in Maitha, Uttar Pradesh, India. Maternal health care service use among both upper and lower caste women was very low. Upper caste women were almost three times more likely to use antenatal care (odds ratio [OR] = 2.72; 95% confidence interval [CI], 1.40-5.30), tetanus toxoid (OR = 2.50; 95% CI, 1.48-4.21), and contraceptives (OR = 2.66; 95% CI, 1.28-5.54) and almost five times (OR = 4.77; 95% CI, 1.81-12.54) more likely to have a trained birth attendant compared to the lower caste women. Caste was a significant determinant of tetanus toxoid use and trained birth attendant even after adjusting for sociodemographic factors. Besides caste, maternal literacy was the one sociodemographic factor that was significantly associated with the use of all maternal health care services. Information dissemination and awareness generation can improve the use of subsidized maternal health care services among women of all caste groups.
NASA Astrophysics Data System (ADS)
Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana
2018-03-01
The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.
Schmid, Markus
2013-01-01
Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI) in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased. PMID:28811434
Campbell, Christian X; Thomaidis, Dimitrios
2014-05-13
A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.
Effect of pressure difference on the quality of titanium casting.
Watanabe, I; Watkins, J H; Nakajima, H; Atsuta, M; Okabe, T
1997-03-01
In casting titanium using a two-compartment casting machine, Herø et al. (1993) reported that the pressure difference between the melting chamber and the mold chamber affected the soundness of the castings. This study tested the hypothesis that differences in pressure produce castings with various amounts of porosity and different mechanical properties values. Plastic dumbbell-shaped patterns were invested with an alumina-based, phosphate-bonded investment material. Both chambers of the casting machine were evacuated to 6 x 10(-2) torr; the argon pressure difference was then adjusted to either 50, 150, 300, or 450 torr. The porosity of the cast specimens was determined by x-ray radiography and quantitative image analysis. Tensile strength and elongation were measured by means of a universal testing machine at a strain rate of 1.7 x 10(-4)/s. The fractured surfaces were examined by SEM. Changes in Vickers hardness with depth from the cast surface were measured on polished cross-sections of the specimens. Raising the argon pressure difference to 300 and 450 torr caused a significant increase in internal porosity and a resultant decrease in the engineering tensile strength and elongation. The highest tensile strength (approximately 540 MPa), elongation (approximately 10%), bulk hardness (HV50g 209), and lowest porosity level (approximately 0.8%) occurred in the specimens cast at 150 torr. Turbulence of the metal during casting was thought to be responsible for the increase in porosity levels with the increase in argon pressure difference. By choosing an argon pressure difference (around 150 torr) suitable for this geometry, we could produce castings which have adequate mechanical properties and low porosity levels.
Schelkle, Korwin M; Becht, Steffy; Faraji, Shirin; Petzoldt, Martin; Müllen, Klaus; Buckup, Tiago; Dreuw, Andreas; Motzkus, Marcus; Hamburger, Manuel
2015-01-01
The synthesis of highly efficient two-photon uncaging groups and their potential use in functional conjugated polymers for post-polymerization modification are reported. Careful structural design of the employed nitrophenethyl caging groups allows to efficiently induce bond scission by a two-photon process through a combination of exceptionally high two-photon absorption cross-sections and high reaction quantum yields. Furthermore, π-conjugated polyfluorenes are functionalized with these photocleavable side groups and it is possible to alter their emission properties and solubility behavior by simple light irradiation. Cleavage of side groups leads to a turn-on of the fluorescence while solubility of the π-conjugated materials is drastically reduced. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermoelectric figure of merit of polymeric systems for low-power generators
NASA Astrophysics Data System (ADS)
Cigarini, Luigi; Ruini, Alice; Catellani, Alessandra; Calzolari, Arrigo
2017-10-01
The request of thermoelectric materials for low-power and flexible applications fosters the investigation of the intrinsic electron and thermal transport of conducting polymeric chains, which are building blocks of the complex variety of organic composites proposed in experimental samples. Using calculations from first principles and the Landauer approach for both electron and phonon carriers, we study the thermoelectric figure of merit zT of three representative and largely used polymer chains, namely poly(3,4-ethylenedioxythiophene), polyaniline and polyfluorene. Our results provide an upper-limit estimate of zT, due to the intrinsic electronic and vibrational properties of the selected compounds, and pave the way to a microscopic understanding of the mechanisms that affect their electronic and transport characteristics in terms of structural distortions and chemical doping.
INTERIOR VIEW, LOOKING EAST, TOWARD BASE OF CUPOLA WITH AN ...
INTERIOR VIEW, LOOKING EAST, TOWARD BASE OF CUPOLA WITH AN IRON POUR IN PROCESS AS CUPOLA TENDERS, BENNY GOODMAN AND ALAN REVER, USING A ROD TO CLEAN OUT THE TAP HOLE ('RODDING THE HOLE') TO KEEP THE MOLTEN METAL FLOWING FREELY FROM THE IRON BOXES AT THE CUPOLA BASE INTO THE IRON TROUGH FOR LADLE TRANSFER TO THE MIXER AND PIPE CASTING OPERATIONS. ACIPCO'S CUPOLA (150 INCH IN DIAMETER AND 72 FEET IN HEIGHT) PRODUCED IRON THAT IS FURTHER REFINED FOR CASTING OPERATIONS. NATURAL GAS IS USED TO RESTART THE CUPOLA AFTER WHICH IT RUNS CONTINUOUSLY USING FURNACE GASES, PRODUCING AN AVERAGE OF 100 TONS OF MOLTEN METAL PER HOUR. - American Cast Iron Pipe Company, Cupola Area, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL
ERIC Educational Resources Information Center
Charles County Board of Education, La Plata, MD. Office of Special Education.
The document outlines procedures for implementing Project CAST (Community and School Together), a community-based career education program for secondary special education students in Charles County, Maryland. Initial sections discuss the role of a learning coordinator, (including relevant travel reimbursement and mileage forms) and an overview of…
Lin, Kuo-Wan; Wald, David J.
2008-01-01
ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users? facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.
Sculpture, detail view of cast iron lamps, with scale (note: ...
Sculpture, detail view of cast iron lamps, with scale (note: "'J.L. Mott, Ironworks, NY" stamp on the base) - National Park Seminary, Bounded by Capitol Beltway (I-495), Linden Lane, Woodstove Avenue, & Smith Drive, Silver Spring, Montgomery County, MD
Ashma, R; Kashyap, V K
2003-01-01
The formation of caste groups among the Hindu community and the practice of endogamy exert a great impact on the genetic structure and diversity of the Indian population. Allele frequency data of 15 microsatellite loci clearly portray the genetic diversity and relatedness among four socio-culturally advanced caste groups: Brahmin, Bhumihar, Rajput and Kayasth of Caucasoid ethnicity of Bihar. The study seeks to understand the impact of the man-made caste system on the genetic profile of the four major caste groups of Bihar. Computation of average heterozygosity, most frequent allele, allele diversity and coefficient of gene differentiation (Gst), along with genetic distance (DA)and principal coordinate analysis were performed to assess intra-population and inter-population diversity. The average Gst value for all the loci was 0.012 +/- 0.0033, and the level of average heterozygosity was approximately 75.5%, indicating genetic similarity and intra-population diversity. Genetic distance (DA) values and the phylogenetic tree along with other higher caste groups of India indicate the relative distance between them. The present study clearly depicts the genetic profile of these caste groups, their inherent closeness in the past, and the impact of the imposed caste system that later restricted the gene flow. The study highlights the status of Bhumihar and Kayasth in the Hindu caste system. The former was found clustering with the Brahmin group (as expected, since Bhumihar is known to be a subclass of Brahmin), whereas the distance between the Brahmin and Kayasth caste groups was found to be large. North-eastern Indian Mongoloids form a separate cluster.
Sixty Years of Casting Research
NASA Astrophysics Data System (ADS)
Campbell, John
2015-11-01
The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.
Anisotropic membranes for gas separation
Gollan, Arye Z.
1987-01-01
A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.
Vart, Priya; Jaglan, Ajay; Shafique, Kashif
2015-06-05
Caste is one of the traditional measures of social segregation in India and differs from other indicators as it is both, endogamous and hereditary. Evidence suggests that belonging to lower castes exposes one to social inequalities and affects health adversely. We examined the association of caste with childhood anemia in India and explored the effect modifying role of adult education and household wealth. A cross-sectional analysis of National Family Health Survey (NFHS) data of 43,484 children aged 6-59 months was performed. Poisson regression analysis was conducted to study the association between caste and childhood anemia accounting for various maternal, child, and household related variables. Caste was categorized as "other caste" (least disadvantageous), "other backward caste", "scheduled tribe" and "scheduled caste" (most disadvantageous). Anemia was defined as mild (hemoglobin level 7-11 g/dL), moderate (hemoglobin level 5-7 g/dL) and severe (hemoglobin level <5 g/dL). We found that children in scheduled caste had higher risk of having anemia [mild anemia: RR = 1.10, 95% CI = 1.05-1.15; moderate anemia: RR = 1.19, 95% CI = 1.14-1.24; severe anemia: RR = 1.87, 95% CI = 1.51-2.31] after accounting for child, maternal and household covariates including adult education and household wealth. The interaction of caste with adult education and household wealth was not statistically significant for any level of anemia. Sensitivity analyses for children born to mothers of age ≥ 18 years at first child birth and body mass index (BMI) ≥ 18.5 kg/m(2), resulted in similar findings. Caste is an independent determinant of childhood anemia in India. The level of adult education and household wealth did not modify the association between caste and childhood anemia. The findings may be used for countering childhood anemia and it may be beneficial to target future public health actions towards disadvantageous castes in India.
Numerical simulation of the casting process of titanium removable partial denture frameworks.
Wu, Menghuai; Wagner, Ingo; Sahm, Peter R; Augthun, Michael
2002-03-01
The objective of this work was to study the filling incompleteness and porosity defects in titanium removal partial denture frameworks by means of numerical simulation. Two frameworks, one for lower jaw and one for upper jaw, were chosen according to dentists' recommendation to be simulated. Geometry of the frameworks were laser-digitized and converted into a simulation software (MAGMASOFT). Both mold filling and solidification of the castings with different sprue designs (e.g. tree, ball, and runner-bar) were numerically calculated. The shrinkage porosity was quantitatively predicted by a feeding criterion, the potential filling defect and gas pore sensitivity were estimated based on the filling and solidification results. A satisfactory sprue design with process parameters was finally recommended for real casting trials (four replica for each frameworks). All the frameworks were successfully cast. Through X-ray radiographic inspections it was found that all the castings were acceptably sound except for only one case in which gas bubbles were detected in the grasp region of the frame. It is concluded that numerical simulation aids to achieve understanding of the casting process and defect formation in titanium frameworks, hence to minimize the risk of producing defect casting by improving the sprue design and process parameters.
Stress-strain relationship and seismic performance of cast-in-situ phosphogypsum.
Zhang, Yichao; Dai, Shaobin; Weng, Wanlin; Huang, Jun; Su, Ying; Cai, Yue
2017-06-16
Phosphogypsum is a waste by-product during the production of phosphoric acid. It not only occupies landfill, but also pollutes the environment, which becomes an important factor restricting the sustainable development of the phosphate fertilizer industry. Research into cast-in-situ phosphogypsum will greatly promote the comprehensive utilization of stored phosphogypsum. The aim of this study was to clarify the mechanical properties of phosphogypsum. Stress-strain relationships of cast-in-situ phosphogypsum were investigated through axial compressive experiments, and seismic performance of cast-in-situ phosphogypsum walls and aerated-concrete masonry walls were simulated based on the experimental results and using finite element analysis. The results showed that the stress-strain relationship fitted into a polynomial equation. Moreover, the displacement ductility index and the energy dissipation index of cast-in-situ phosphogypsum wall were 6.587 and 3.425, respectively. The stress-strain relationship for earthquake-resistant performance of cast-in-situ phosphogypsum walls is better than that of aerated-concrete masonry walls. The curve of stress-strain relationship and the evaluation of earthquake-resistant performance provide theoretical support for the application of cast-in-situ phosphogypsum in building walls.
Cao, Yu; Brady, Gerald J; Gui, Hui; Rutherglen, Chris; Arnold, Michael S; Zhou, Chongwu
2016-07-26
In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 μA/μm, transconductance as high as 310 μS/μm, and superior current saturation with normalized output resistance greater than 100 kΩ·μm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics.
Living with diabetes: lay narratives as idioms of distress among the low-caste Dalit of Nepal.
Thapa, Tirtha B
2014-01-01
Among the Dalit community in Nepal, people consistently describe their diabetes in relation to stress caused by social inequality and social marginalization. Drawing on the illness narratives of 30 people from this community, I argue that through linking diabetes with stress as a result of caste-based discrimination, respondents use diabetes as an 'idiom of distress.' Respondents report that discrimination based on caste creates and aggravates their dire financial circumstances, resulting in the prolonged stress that causes and interacts with diabetes. Suffering with diabetes, and its ensuing financial struggles and accompanying stress, has for some led to suicidal thoughts and the preference of death to living with diabetes.
Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method
NASA Astrophysics Data System (ADS)
Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.
2018-06-01
Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, S.; Soda, H.; McLean, A.
2000-01-01
A ternary eutectic alloy with a composition of 57.2 pct Bi, 24.8 pct In, and 18 pct Sn was continuously cast into wire of 2 mm diameter with casting speeds of 14 and 79 mm/min using the Ohno Continuous Casting (OCC) process. The microstructures obtained were compared with those of statically cast specimens. Extensive segregation of massive Bi blocks, Bi complex structures, and tin-rich dendrites was found in specimens that were statically cast. Decomposition of {radical}Sn by a eutectoid reaction was confirmed based on microstructural evidence. Ternary eutectic alloy with a cooling rate of approximately 1 C/min formed a doublemore » binary eutectic. The double binary eutectic consisted of regions of BiIn and decomposed {radical}Sn in the form of a dendrite cell structure and regions of Bi and decomposed {radical}Sn in the form of a complex-regular cell. The Bi complex-regular cells, which are a ternary eutectic constituent, existed either along the boundaries of the BiIn-decomposed {radical}Sn dendrite cells or at the front of elongated dendrite cell structures. In the continuously cast wires, primary Sn dendrites coupled with a small Bi phase were uniformly distributed within the Bi-In alloy matrix. Neither massive Bi phase, Bi complex-regular cells, no BiIn eutectic dendrite cells were observed, resulting in a more uniform microstructure in contrast to the heavily segregated structures of the statically cast specimens.« less
Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong
2016-03-09
In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.
Microstructure formation and fracturing characteristics of grey cast iron repaired using laser.
Yi, Peng; Xu, Pengyun; Fan, Changfeng; Yang, Guanghui; Liu, Dan; Shi, Yongjun
2014-01-01
The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased.
Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser
Liu, Dan; Shi, Yongjun
2014-01-01
The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230
Solidification Based Grain Refinement in Steels
2011-09-27
project (Tasks 7-9). An industrial trial on an investment casting was done using rare earth silicide additions in a furnace prior to pouring (Task 7...an investment casting was done using rare earth silicide additions in a furnace prior to pounng (la.sk 7). Some of the test parts had a finer...poured at the end of a six casting batch. One test tree with no RE addition was poured. Before the second test tree was poured, sufficient RE silicide was
Flynn, Mark A; Morin, David; Park, Sung-Yeon; Stana, Alexandru
2015-01-01
Past research has examined portrayals of risk behavior in various media, including television, advertising, and film. To address an underexplored area, this study analyzed drinking, smoking, and sexual activities in MTV reality programming popular among adolescent viewers from 2004 to 2011. Cast members' demographic attributes were also examined in relation to their risk behaviors. Results demonstrated that drinking and casual sexual behaviors were pervasive among cast members. Smoking and more intense sexual behaviors were also present, but to a smaller degree. Men and young adult cast members were more likely to engage in risk behaviors than women and teenage cast members. Also, ethnic/racial minority characters were shown drinking more often than were White cast members. Interpretations of these findings are discussed based in social cognitive theory and the concept of super peers. Implications for future research are provided.
Computation material science of structural-phase transformation in casting aluminium alloys
NASA Astrophysics Data System (ADS)
Golod, V. M.; Dobosh, L. Yu
2017-04-01
Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.
NASA Astrophysics Data System (ADS)
Li, Hu-Tian; Zhao, Pizhi; Yang, Rongdong; Patel, Jayesh B.; Chen, Xiangfu; Fan, Zhongyun
2017-10-01
Melt-conditioned, direct-chill (MC-DC) casting is an emerging technology to manipulate the solidification process by melt conditioning via intensive shearing in the sump during DC casting to tailor the solidification microstructure and defect formation. When using MC-DC casting technology in an industrial scale DC cast billet of an A4032 aluminum alloy, significant grain refinement and uniform microstructure can be achieved in the primary α-Al phase with fine secondary dendritic arm spacing (SDAS). Improved macrosegregation is quantitatively characterized and correlated with the suppression of channel segregation. The mechanisms for the prevention of channel segregation are attributed to the increased local cooling rate in the liquid-solid phase region in the sump and the formation of fine equiaxed dendritic grains under intensive melt shearing during MC-DC casting. A critical cooling rate has been identified to be around 0.5 to 1 K/s (°C/s) for the channel segregation to happen in the investigated alloy based on quantitative metallographic results of SDAS. Reduction and refinement of microporosity is attributed to the improved permeability in the liquid-solid phase region estimated by the Kozeny-Carman relationship. The potential improvement in the mechanical properties achievable in MC-DC cast billets is indicated by the finer and more uniform forging streamline in the forgings of MC-DC cast billet.
Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure
Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors ...
Modeling limb-bud dysmorphogenesis in a predictive virtual embryo model
ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational methods that integrate knowledge of biological systems and in vivo toxicities (www.epa.gov/ncct/toxcast/). Many ToxCast assays assess signaling pathways and c...
ERIC Educational Resources Information Center
Arrasjid, Dorine A.
1980-01-01
Describes an art project, based on the work of artist Chew Teng Beng, in the molding of wet paper on a plaster cast to create embossed paper designs. The values of such a project are outlined, including a note that its tactile approach makes it suitable to visually handicapped students. (SJL)
US EPA’s ToxCast research program evaluates bioactivity for thousands of chemicals utilizing high-throughput screening assays to inform chemical testing decisions. Vala Sciences provides high content, multiplexed assays that utilize quantitative cell-based digital image analysis....
Identifying Structural Alerts Based on Zebrafish Developmental Morphological Toxicity (TDS)
Zebrafish constitute a powerful alternative animal model for chemical hazard evaluation. To provide an in vivo complement to high-throughput screening data from the ToxCast program, zebrafish developmental toxicity screens were conducted on the ToxCast Phase I (Padilla et al., 20...
13. Bottom floor, tower interior showing concrete floor and cast ...
13. Bottom floor, tower interior showing concrete floor and cast iron bases for oil butts (oil butts removed when lighthouse lamp was converted to electric power.) - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI
Zhang, Zutai; Tamaki, Yukimichi; Hotta, Yasuhiro; Miyazaki, Takashi
2006-07-01
For titanium casting, most commercial investments for titanium recommend casting at a low mold temperature to reduce oxidation. However, the thermal expansion values of the molds at low casting temperatures may be insufficient. The purpose of the current study was to investigate the possibility of obtaining accurate titanium crown casts using wax pattern fabricated by a CAD/CAM system with a non-expanded mold. Three types of experimental magnesia-based investments (A, B and C) were made and their properties were evaluated for dental use. Two kinds of wax patterns for full-coverage coping crowns (S-0: cement space of 0 microm; S-20: cement space of 20 microm) were fabricated using a commercial CAD/CAM system. A traditional method (TM) using inlay wax was performed for comparison. The investment for titanium casting was decided from the fundamental data of experimental investments. Titanium crowns were replaced on the stone die and the thickness of the cement layer was evaluated. There were no significant differences for the setting time and setting expansion among the experimental investments, but the aluminous cement content played a role in hardening and contracting the mold. The fit of the titanium crowns differed significantly between the TM and the CAD/CAM system. The ranges of thickness obtained from the TM, S-0 and S-20 were 20.78-357.88 microm, 25.12-107.46 microm and 17.84-58.92 microm, respectively. High quality titanium crown casting was obtained using a combination of wax patterns fabricated by a CAD/CAM system and a non-expanded MgO-based investment.
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Reilly, Carl; Li, Luoxing; Cockcroft, Steve; Yao, Lu
2014-07-01
The interfacial heat transfer coefficient (IHTC) is required for the accurate simulation of heat transfer in castings especially for near net-shape processes. The large number of factors influencing heat transfer renders quantification by theoretical means a challenge. Likewise experimental methods applied directly to temperature data collected from castings are also a challenge to interpret because of the transient nature of many casting processes. Inverse methods offer a solution and have been applied successfully to predict the IHTC in many cases. However, most inverse approaches thus far focus on use of in-mold temperature data, which may be a challenge to obtain in cases where the molds are water-cooled. Methods based on temperature data from the casting have the potential to be used however; the latent heat released during the solidification of the molten metal complicates the associated IHTC calculations. Furthermore, there are limits on the maximum distance the thermocouples can be placed from the interface under analysis. An inverse conduction based method have been developed, verified and applied successfully to temperature data collected from within an aluminum casting in proximity to the mold. A modified specific heat method was used to account for latent heat evolution in which the rate of change of fraction solid with temperature was held constant. An analysis conducted with the inverse model suggests that the thermocouples must be placed no more than 2 mm from the interface. The IHTC values calculated for an aluminum alloy casting were shown to vary from 1,200 to 6,200 Wm-2 K-1. Additionally, the characteristics of the time-varying IHTC have also been discussed.
Transport of triplet excitons along continuous 100 nm polyfluorene chains
Xi, Liang; Bird, Matthew; Mauro, Gina; ...
2014-12-03
Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trappedmore » triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (<40 polymer repeat units (PRU)) chains, where NMR determinations are accurate. The results find no evidence for traps or barriers to transport of triplets, and places limits on the possible presence of defects as impenetrable barriers to less than one per 300 PRU. The present results present a paradigm different from the current consensus, derived from observations of singlet excitons, that conjugated chains are divided into “segments,” perhaps by some kind of defects. For the present pF chains, the segmentation either does not apply to triplet excitons or is transient so that the defects are healed or surmounted in times much shorter than 1 µs. Triplets on chains without end trap groups transfer to chains with end traps on a slower time scale. Rate constants for these bimolecular triplet transfer reactions were found to increase with the length of the accepting chain, as did rate constants for triplet transfer to the chains from small molecules like biphenyl. As a result, a second set of polyfluorenes with 2-butyloctyl side chains was found to have a much lower completeness of end capping.« less
Triplet Transport to and Trapping by Acceptor End Groups on Conjugated Polyfluorene Chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreearunothai, P.; Miller, J.; Estrada, A.
2011-08-31
Triplet excited states created in polyfluorene (pF) molecules having average lengths up to 170 repeat units were transported to and captured by trap groups at the ends in less {approx}40 ns. Almost all of the triplets attached to the chains reached the trap groups, ruling out the presence of substantial numbers of defects that prevent transport. The transport yields a diffusion coefficient D of at least 3 x 10{sup -4} cm{sup 2} s{sup -1}, which is 30 times typical molecular diffusion and close to a value for triplet transport reported by Keller (J. Am. Chem. Soc.2011, 133, 11289-11298). The tripletmore » states were created in solution by pulse radiolysis; time resolution was limited by the rate of attachment of triplets to the pF chains. Naphthylimide (NI) or anthraquinone (AQ) groups attached to the ends of the chains acted as traps for the triplets, although AQ would not have been expected to serve as a trap on the basis of triplet energies of the separate molecules. The depths of the NI and AQ triplet traps were determined by intermolecular triplet transfer equilibria and temperature dependence. The trap depths are shallow, just a few times thermal energy for both, so a small fraction of the triplets reside in the pF chains in equilibrium with the end-trapped triplets. Trapping by AQ appears to arise from charge transfer interactions between the pF chains and the electron-accepting AQ groups. Absorption bands of the end-trapped triplet states are similar in peak wavelength (760 nm) and shape to the 760 nm bands of triplets in the pF chains but have reduced intensities. When an electron donor, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), is added to the solution, it reacts with the end-trapped triplets to remove the 760 nm bands and to make the trapping irreversible. New bands created upon reaction with TMPD may be due to charge transfer states.« less
McCaughey, Conor; Tsakiropoulos, Panos
2018-06-07
The Nb-silicide-based alloy of near eutectic composition (at.%) Nb-21.1Si-8.3Ti-5.4Mo-4W-0.7Hf (alloy CM1) was studied in the cast and heat-treated (1500 °C/100 h) conditions. The alloy was produced in the form of buttons and bars using three different methods, namely arc-melting, arc-melting and suction casting, and optical floating zone (OFZ) melting. In the former two cases the alloy solidified in water-cooled copper crucibles. Buttons and suction-cast bars of different size, respectively of 10 g and 600 g weight and 6 mm and 8 mm diameter, were produced. The OFZ bars were grown at three different growth rates of 12, 60 and 150 mm/h. It was confirmed that the type of Nb₅Si₃ formed in the cast microstructures depended on the solidification conditions. The primary phase in the alloy CM1 was the βNb₅Si₃. The transformation of βNb₅Si₃ to αNb₅Si₃ had occurred in the as cast large size button and the OFZ bars grown at the three different growth rates, and after the heat treatment of the small size button and the suction-cast bars of the alloy. This transformation was accompanied by subgrain formation in Nb₅Si₃ and the precipitation of Nb ss in the large size as cast button and only by the precipitation of Nb ss in the cast OFZ bars. Subgrains and precipitation of Nb ss in αNb₅Si₃ was observed in the small size button and suction-cast bars after the heat treatment. Subgrains formed in αNb₅Si₃ after the heat treatment of the OFZ bars. The partitioning of solutes and in particular of Mo and Ti was key to this phase transformation. Subgrain formation was not necessary for precipitation of Nb ss in αNb₅Si₃, but the partitioning of solutes was essential for this precipitation.
Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz
2017-07-01
Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The manufacture of the substructure shows that the proposed ES allows the improvement of the design process while reducing the manufacturing time. Copyright © 2017 Elsevier B.V. All rights reserved.
Caste load and the evolution of reproductive skew.
Holman, Luke
2014-01-01
Reproductive skew theory seeks to explain how reproduction is divided among group members in animal societies. Existing theory is framed almost entirely in terms of selection, though nonadaptive processes must also play some role in the evolution of reproductive skew. Here I propose that a genetic correlation between helper fecundity and breeder fecundity may frequently constrain the evolution of reproductive skew. This constraint is part of a wider phenomenon that I term "caste load," which is defined as the decline in mean fitness caused by caste-specific selection pressures, that is, differential selection on breeding and nonbreeding individuals. I elaborate the caste load hypothesis using quantitative and population genetic arguments and individual-based simulations. Although selection can sometimes erode genetic correlations and resolve caste load, this may be constrained when mutations have similar pleiotropic effects on breeder and helper traits. I document evidence for caste load, identify putative genomic adaptations to it, and suggest future research directions. The models highlight the value of considering adaptation within the boundaries imposed by genetic architecture and incidentally reaffirm that monogamy promotes the evolutionary transition to eusociality.
Microstructure and Porosity of Laser Welds in Cast Ti-6Al-4V with Addition of Boron
NASA Astrophysics Data System (ADS)
Tolvanen, Sakari; Pederson, Robert; Klement, Uta
2018-03-01
Addition of small amounts of boron to cast Ti-6Al-4V alloy has shown to render a finer microstructure and improved mechanical properties. For such an improved alloy to be widely applicable for large aerospace structural components, successful welding of such castings is essential. In the present work, the microstructure and porosity of laser welds in a standard grade cast Ti-6Al-4V alloy as well as two modified alloy versions with different boron concentrations have been investigated. Prior-β grain reconstruction revealed the prior-β grain structure in the weld zones. In fusion zones of the welds, boron was found to refine the grain size significantly and rendered narrow elongated grains. TiB particles in the prior-β grain boundaries in the cast base material restricted grain growth in the heat-affected zone. The TiB particles that existed in the as cast alloys decreased in size in the fusion zones of welds. The hardness in the weld zones was higher than in the base material and boron did not have a significant effect on hardness of the weld zones. The fusion zones were smaller in the boron-modified alloys as compared with Ti-6Al-4V without boron. Computed tomography X-ray investigations of the laser welds showed that pores in the FZ of the boron modified alloys were confined to the lower part of the welds, suggesting that boron addition influences melt pool flow.
Kannan, C; Ramanujam, R
2017-07-01
In this research work, a comparative evaluation on the mechanical and microstructural characteristics of aluminium based single and hybrid reinforced nanocomposites was carried out. The manufacture of a single reinforced nanocomposite was conducted with the distribution of 2 wt.% nano alumina particles (avg. particle size 30-50 nm) in the molten aluminium alloy of grade AA 7075; while the hybrid reinforced nanocomposites were produced with of 4 wt.% silicon carbide (avg. particle size 5-10 µm) and 2 wt.%, 4 wt.% nano alumina particles. Three numbers of single reinforced nanocomposites were manufactured through stir casting with reinforcements preheated to different temperatures viz. 400 °C, 500 °C, and 600 °C. The stir cast procedure was extended to fabricate two hybrid reinforced nanocomposites with reinforcements preheated to 500 °C prior to their inclusion. A single reinforced nanocomposite was also developed by squeeze casting with a pressure of 101 MPa. Mechanical and physical properties such as density, hardness, ultimate tensile strength, and impact strength were evaluated on all the developed composites. The microstructural observation was carried out using optical and scanning electron microscopy. On comparison with base alloy, an improvement of 63.7% and 81.1% in brinell hardness was observed for single and hybrid reinforced nanocomposites respectively. About 16% higher ultimate tensile strength was noticed with the squeeze cast single reinforced nanocomposite over the stir cast.
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)
2018-01-01
Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.
High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project
The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research pr...
NASA Astrophysics Data System (ADS)
Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar
2017-08-01
Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.
Jei, J Brintha; Mohan, Jayashree
2014-03-01
The periodontal health of abutment teeth and the durability of fixed partial denture depends on the marginal adaptation of the prosthesis. Any discrepancy in the marginal area leads to dissolution of luting agent and plaque accumulation. This study was done with the aim of evaluating the accuracy of marginal fit of four unit crown and bridge made up of Ni-Cr and Cr-Co alloys under induction and centrifugal casting. They were compared to cast fixed partial denture (FPD) and soldered FPD. For the purpose of this study a metal model was fabricated. A total of 40 samples (4-unit crown and bridge) were prepared in which 20 Cr-Co samples and 20 Ni-Cr samples were fabricated. Within these 20 samples of each group 10 samples were prepared by induction casting technique and other 10 samples with centrifugal casting technique. The cast FPD samples obtained were seated on the model and the samples were then measured with travelling microscope having precision of 0.001 cm. Sectioning of samples was done between the two pontics and measurements were made, then the soldering was made with torch soldering unit. The marginal discrepancy of soldered samples was measured and all findings were statistically analysed. The results revealed minimal marginal discrepancy with Cr-Co samples when compared to Ni-Cr samples done under induction casting technique. When compared to cast FPD samples, the soldered group showed reduced marginal discrepancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Sil; Barker, Erin; Cheng, Guang
2016-01-06
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to themore » experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results. This indicates that the developed 3D extrinsic modeling method may be used to examine the influence of various aspects of pore sizes/distributions as well as intrinsic properties (i.e., matrix properties) on the ductility/fracture of Mg castings.« less
The fractography of casting alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G.W.
1994-10-01
Several types of casting alloys were fractured using various loading modes (uniaxial tension, bending, impact, and torsion, and cyclic stressing), and the corresponding mechanical properties were determined. The unetched and etched fracture surfaces and the microstructures were examined using conventional techniques. The types of casting alloys that were the subjects f these investigations include gray iron, ductile iron, cast steel, and aluminum-base alloys (A380, A356, and 319). The fractographic studies have yielded these generalizations regarding the topography of the fracture surfaces. In the case of low-ductility alloys such as gray iron and the aluminum-base alloys, the tensile edge of amore » fracture surface produced by a stress system with a strong bending-moment component has a highly irregular contour, whereas the compressive edge of the fracture surface is quite straight and parallel to the bend axis. On the other hand, the periphery of a fracture surface produced by uniaxial tension has a completely irregular contour. The fracture surface produced by cyclic loading of a gray iron does not display any macroscopic evidence (such as a thumb nail) of the loading mode. However, the fracture surface of each of the other casting alloys displays clear, macroscopic evidence of failure induced by fatigue. The aluminum-base alloys fracture completely within the interdendritic region of the microstructure when subjected to monotonic loading by uniaxial tension or bending, whereas a fatigue crack propagates predominantly through the primary crystals of the microstructure.« less
Koike, Mari; Hummel, Susan K; Ball, John D; Okabe, Toru
2012-06-01
Although pure titanium is known to have good biocompatibility, a titanium alloy with better strength is needed for fabricating clinically acceptable, partial removable dental prosthesis (RDP) frameworks. The mechanical properties of an experimental Ti-5Al-5Cu alloy cast with a 2-step investment technique were examined for RDP framework applications. Patterns for tests for various properties and denture frameworks for a preliminary trial casting were invested with a 2-step coating method using 2 types of mold materials: a less reactive spinel compound (Al(2)O(3)·MgO) and a less expensive SiO(2)-based material. The yield and tensile strength (n=5), modulus of elasticity (n=5), elongation (n=5), and hardness (n=8) of the cast Ti-5Al-5Cu alloy were determined. The external appearance and internal porosities of the preliminary trial castings of denture frameworks (n=2) were examined with a conventional dental radiographic unit. Cast Ti-6Al-4V alloy and commercially pure titanium (CP Ti) were used as controls. The data for the mechanical properties were statistically analyzed with 1-way ANOVA (α=.05). The yield strength of the cast Ti-5Al-5Cu alloy was 851 MPa and the hardness was 356 HV. These properties were comparable to those of the cast Ti-6Al-4V and were higher than those of CP Ti (P<.05). One of the acrylic resin-retention areas of the Ti-5Al-5Cu frameworks was found to have been incompletely cast. The cast biocompatible experimental Ti-5Al-5Cu alloy exhibited high strength when cast with a 2-step coating method. With a dedicated study to determine the effect of sprue design on the quality of castings, biocompatible Ti-5Al-5Cu RDP frameworks for a clinical trial can be produced. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.
Richard, Ann M; Judson, Richard S; Houck, Keith A; Grulke, Christopher M; Volarath, Patra; Thillainadarajah, Inthirany; Yang, Chihae; Rathman, James; Martin, Matthew T; Wambaugh, John F; Knudsen, Thomas B; Kancherla, Jayaram; Mansouri, Kamel; Patlewicz, Grace; Williams, Antony J; Little, Stephen B; Crofton, Kevin M; Thomas, Russell S
2016-08-15
The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or defined by toxicity "alerts") to strategically support data mining and predictive toxicology modeling moving forward.
NASA Astrophysics Data System (ADS)
Deguchi, T.; Kim, H. J.; Ikeda, T.
2017-05-01
The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.
Modeling the Homogenization Kinetics of As-Cast U-10wt% Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Joshi, Vineet; Hu, Shenyang Y.
2016-01-15
Low-enriched U-22at% Mo (U-10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U-10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding ofmore » the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.« less
NASA Astrophysics Data System (ADS)
Watanuki, Keiichi; Kojima, Kazuyuki
The environment in which Japanese industry has achieved great respect is changing tremendously due to the globalization of world economies, while Asian countries are undergoing economic and technical development as well as benefiting from the advances in information technology. For example, in the design of custom-made casting products, a designer who lacks knowledge of casting may not be able to produce a good design. In order to obtain a good design and manufacturing result, it is necessary to equip the designer and manufacturer with a support system related to casting design, or a so-called knowledge transfer and creation system. This paper proposes a new virtual reality based knowledge acquisition and job training system for casting design, which is composed of the explicit and tacit knowledge transfer systems using synchronized multimedia and the knowledge internalization system using portable virtual environment. In our proposed system, the education content is displayed in the immersive virtual environment, whereby a trainee may experience work in the virtual site operation. Provided that the trainee has gained explicit and tacit knowledge of casting through the multimedia-based knowledge transfer system, the immersive virtual environment catalyzes the internalization of knowledge and also enables the trainee to gain tacit knowledge before undergoing on-the-job training at a real-time operation site.
Zhao, Qiang; Zhang, Chuanqi; Liu, Shujuan; Liu, Yahong; Zhang, Kenneth Yin; Zhou, Xiaobo; Jiang, Jiayang; Xu, Wenjuan; Yang, Tianshe; Huang, Wei
2015-01-01
It is of paramount importance to develop new probes that can selectively, sensitively, accurately and rapidly detect fluoride in aqueous media and biological systems, because F- is found to be closely related to many health and environmental concerns. Herein, a dual-emissive conjugated polyelectrolyte P1 containing phosphorescent iridium(III) complex was designed and synthesized, which can form ultrasmall polymer dots (Pdots) in aqueous media. The F--responsive tert-butyldiphenylsilyl moiety was introduced into iridium(III) complex as the signaling unit for sensing F− with the quenched phosphorescence. Thus, the dual-emissive Pdots can rapidly and accurately detect F− in aqueous media and live cells as a ratiometric probe by measuring the change in the ratio of the F−-sensitive red phosphorescence from iridium(III) complex to the F−-insensitive blue fluorescence from polyfluorene. Moreover, the interaction of Pdots with F− also changes its emission lifetime, and the lifetime-based detection of F− in live cells has been realized through photoluminescence lifetime imaging microscopy for the first time. Both the ratiometric luminescence and lifetime imaging have been demonstrated to be resistant to external influences, such as the probe’s concentration and excitation power. This study provides a new perspective for the design of promising Pdots-based probes for biological applications. PMID:26552859
Constructivist Learning of Anatomy: Gaining Knowledge by Creating Anatomical Casts
ERIC Educational Resources Information Center
Hermiz, David J.; O'Sullivan, Daniel J.; Lujan, Heidi L.; DiCarlo, Stephen E.
2011-01-01
Educators are encouraged to provide inquiry-based, collaborative, and problem solving activities that enhance learning and promote curiosity, skepticism, objectivity, and the use of scientific reasoning. Making anatomical casts or models by injecting solidifying substances into organs is an example of a constructivist activity for achieving these…
Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets....
An Evaluation of 25 Selected ToxCast Chemicals in Medium-Throughput Assays to Detect Genotoxicity
ABSTRACTToxCast is a multi-year effort to develop a cost-effective approach for the US EPA to prioritize chemicals for toxicity testing. Initial evaluation of more than 500 high-throughput (HT) microwell-based assays without metabolic activation showed that most lacked high speci...
BLAST FURNACE CAST HOUSE EMISSION CONTROL TECHNOLOGY ASSESSMENT
The study describes the state-of-the-art of controlling fumes escaping from blast furnace cast houses. Background information is based on: a study of existing literature; visits to blast furnaces in the U.S., Japan, and Europe; meetings with an ad hoc group of experienced blast f...
Cloud-Based Speech Technology for Assistive Technology Applications (CloudCAST).
Cunningham, Stuart; Green, Phil; Christensen, Heidi; Atria, José Joaquín; Coy, André; Malavasi, Massimiliano; Desideri, Lorenzo; Rudzicz, Frank
2017-01-01
The CloudCAST platform provides a series of speech recognition services that can be integrated into assistive technology applications. The platform and the services provided by the public API are described. Several exemplar applications have been developed to demonstrate the platform to potential developers and users.
The EPA ToxCast program is using in vitro assay data and chemical descriptors to build predictive models for in vivo toxicity endpoints. In vitro assays measure activity of chemicals against molecular targets such as enzymes and receptors (measured in cell-free and cell-based sys...
Phase I of U.S. Environmental Protection Agency’s ToxCastTM research project is building on three rich data tiers: 309 unique, structurally diverse chemicals (predominantly pesticides), activity and concentration response data from approximately 500 in vitro (cell-based and cell-...
Taguchi, Y-H
2018-05-08
Even though coexistence of multiple phenotypes sharing the same genomic background is interesting, it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression and methylation profiles because of the lack of suitable methodology that can address this problem properly. A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene expression and methylation profiles even when a small number of samples is available. PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes associated with differential expression and methylation between castes were identified, and analysis of enrichment of Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint. Biologically relevant genes, shown to be associated with significant differential gene expression and methylation between castes, were identified here for the first time. The identification of these genes may help understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same genomic conditions.
NASA Astrophysics Data System (ADS)
Tregnago, G.; Fléchon, C.; Choudhary, S.; Gozalvez, C.; Mateo-Alonso, A.; Cacialli, F.
2014-10-01
Electronic processes at the heterojunction between chemically different organic semiconductors are of special significance for devices such as light-emitting diodes (LEDs) and photovoltaic diodes. Here, we report the formation of an exciplex state at the heterojunction of an electron-transporting material, a functionalized hexaazatrinaphthylene, and a hole-transporting material, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB). The energetics of the exciplex state leads to a spectral shift of ˜1 eV between the exciton and the exciplex peak energies (at 2.58 eV and 1.58 eV, respectively). LEDs incorporating such bulk heterojunctions display complete quenching of the exciton luminescence, and a nearly pure near-infrared electroluminescence arising from the exciplex (at ˜1.52 eV) with >98% of the emission at wavelengths above 700 nm at any operational voltage.
Hsieh, Hui-Ching; Chen, Jung-Yao; Lee, Wen-Ya; Bera, Debaditya; Chen, Wen-Chang
2018-03-01
Stretchable light-emitting polymers are important for wearable electronics; however, the development of intrinsic stretchable light-emitting materials with great performance under large applied strain is the most critical challenge. Herein, this study demonstrates the fabrication of stretchable fluorescent poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)]/acrylonitrile butadiene rubber (PFN/NBR) blend nanofibers using the uniaxial electrospinning technique. The physical interaction of PFN with NBR and the geometrical confinement of nanofibers are employed to reduce PFN aggregation, leading to the high photoluminescence quantum yield of 35.7%. Such fiber mat film shows stable blue emission at the 50% strain for 200 stretching/release cycles, which has potential applications in smart textiles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photophysics of charge transfer in a polyfluorene/violanthrone blend
NASA Astrophysics Data System (ADS)
Cabanillas-Gonzalez, J.; Virgili, T.; Lanzani, G.; Yeates, S.; Ariu, M.; Nelson, J.; Bradley, D. D. C.
2005-01-01
We present a study of the photophysical and photovoltaic properties of blends of violanthrone in poly[9, 9-bis (2-ethylhexyl)-fluorene-2, 7-diyl ] (PF2/6) . Photoluminescence quenching and photocurrent measurements show moderate efficiencies for charge generation, characteristic of such polymer/dye blends. Pump-probe measurements on blend films suggest that while ˜47% of the total exciton population dissociates within 4ps of photoexcitation, only ˜32% subsequently results in the formation of dye anions. We attribute the discrepancy to the likely formation of complex species with long lifetimes, such as stabilized interface charge pairs or exciplexes. This conclusion is supported by the appearance of a long lifetime component of 2.4ns in the dynamics of the photoinduced absorption signal associated to polarons in photoinduced absorption bands centered at 560nm .
NASA Astrophysics Data System (ADS)
Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji
2018-03-01
This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.
Groves, Chris; Kimber, Robin G E; Walker, Alison B
2010-10-14
In this letter we evaluate the accuracy of the first reaction method (FRM) as commonly used to reduce the computational complexity of mesoscale Monte Carlo simulations of geminate recombination and the performance of organic photovoltaic devices. A wide range of carrier mobilities, degrees of energetic disorder, and applied electric field are considered. For the ranges of energetic disorder relevant for most polyfluorene, polythiophene, and alkoxy poly(phenylene vinylene) materials used in organic photovoltaics, the geminate separation efficiency predicted by the FRM agrees with the exact model to better than 2%. We additionally comment on the effects of equilibration on low-field geminate separation efficiency, and in doing so emphasize the importance of the energy at which geminate carriers are created upon their subsequent behavior.
NASA Astrophysics Data System (ADS)
Rothe, C.; Pålsson, L. O.; Monkman, A. P.
2002-12-01
The luminescence emitted from pure and benzil-doped thin films of the conjugated polymer polyfluorene [PF2/6] are compared. The prompt fluorescence from the first singlet-excited state of the polymer is quenched by 90% in the presence of 10% per weight benzil. In addition to the prompt fluorescence, time-resolved spectroscopy at low temperature also allows the detection of phosphorescence and delayed fluorescence from the host polymer. Again the delayed fluorescence is strongly quenched but the phosphorescence is enhanced in doped samples. An explanation of the results is given in terms of singlet energy transfer from the host to benzil and triplet energy transfer from the dopant back to PF2/6. We have applied this to enable better understanding of the photophysics in PF2/6 doped with a platinum porphyrin complex.
Comparison and Analysis of Toxcast Data with In Vivo Data for ...
The ToxCast program has generated a great wealth of in vitro high throughput screening (HTS) data on a large number of compounds, providing a unique resource of information on the bioactivity of these compounds. However, analysis of these data are ongoing, and interpretation and use of the ToxCast data such as for safety assessment of food related compounds remains undetermined. To fill this gap, we conducted a case study of 2 food-related compounds to better understand the ToxCast data and its potential use in chemical safety assessment by comparison between ToxCast and traditional, in vivo toxicology data using the Risk21 approach. Risk21 is an exposure driven flexible risk assessment framework developed by ILSI HESI. Prior work (Karmaus et. al., 2016) looking at all food-relevant compounds in ToxCast showed that food contact substances had high bioactivity in ToxCast assays. To better understand these chemicals based on their indirect food use, exposure and availability of traditional toxicology data, two compounds, dibutyltin dichloride and sodium pyrithione, were selected from a list of the food contact substances with the greatest activity in ToxCast. Exposure and hazard data were compiled and analyzed for both compounds. Comparison between in vitro HTS and in vivo data for sodium pyrithione showed that concentrations that elicited bioactivity in ToxCast assays corresponded to low- and no- observed adverse effect doses in animals. For dibutyltin dichlori
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhlouf M. Makhlouf; Diran Apelian
The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS asmore » a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.« less
Stress ratio effects in fatigue of lost foam cast aluminum alloy 356
NASA Astrophysics Data System (ADS)
Palmer, David E.
Lost foam casting is a highly versatile metalcasting process that offers significant benefits in terms of design flexibility, energy consumption, and environmental impact. In the present work, the fatigue behavior of lost foam cast aluminum alloy 356, in conditions T6 and T7, was investigated, under both zero and non-zero mean stress conditions, with either as-cast or machined surface finish. Scanning electron microscopy was used to identify and measure the defect from which fatigue fracture initiated. Based on the results, the applicability of nine different fatigue mean stress equations was compared. The widely-used Goodman equation was found to be highly non-conservative, while the Stulen, Topper-Sandor, and Walker equations performed reasonably well. Each of these three equations includes a material-dependent term for stress ratio sensitivity. The stress ratio sensitivity was found to be affected by heat treatment, with the T6 condition having greater sensitivity than the T7 condition. The surface condition (as-cast vs. machined) did not significantly affect the stress ratio sensitivity. The fatigue life of as-cast specimens was found to be approximately 60--70% lower than that of machined specimens at the same equivalent stress. This reduction could not be attributed to pore size alone, and is suspected to be due to the greater concentration of pyrolysis products at the as-cast surface. Directions for future work, including improved testing methods and some possible methods of improving the properties of lost foam castings, are discussed.
Accuracy of Small Base Metal Dental Castings,
1980-07-10
onre r puf~ eece an dif bydo:k itse Base metal al oy, c s ii.ing c ucyicatin nesmncatn ecnqe an.DISRBTOTTMN in( sten te hiquestatetrdISoc20itifrntrmRpr...34alternatives" to conventional dental golds. Determination and evaluation of composition , structure, physical and chemical properties, biologic features...maxillary right first molar was made from an industrial grade silicone . Then the tooth was machined to receive a full crown cast restoration. The tapered
Cast iron-base alloy for cylinder/regenerator housing
NASA Technical Reports Server (NTRS)
Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.
1985-01-01
NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.
Thermomechanical and bithermal fatigue behavior of cast B1900 + Hf and wrought Haynes 188
NASA Technical Reports Server (NTRS)
Halford, G. R.; Verrilli, M. J.; Kalluri, S.; Ritzert, F. J.; Duckert, R. E.; Holland, F. A.
1992-01-01
A thermomechanical fatigue (TMF) high-temperature life prediction method has been evaluated using the experimental data. Bithermal fatigue (BTF), bithermal creep-fatigue (BTC-F), and TMF experiments were performed using two aerospace structural alloys, cast B1900 + Hf and wrought Haynes 188. The method which is based on the total strain version of strain range partitioning and unified cyclic constitutive modeling requires, as an input, information on the flow and failure behavior of the material of interest. Bithermal temperatures of 483 and 871 C were used for the cast B1900 + Hf nickel-base alloy and 316 and 760 C for the wrought Haynes 188 cobalt-base alloy. Maximum and minimum temperatures were also used in both TMF and BTF tests. Comparisons were made between the results of these tests and isothermal tensile and fatigue test data obtained previously. Qualitative correlations were observed between tensile and isothermal fatigue tests.
NASA Astrophysics Data System (ADS)
Ouyang, Shenshen; Wang, Tao; Zhong, Longgang; Wang, Shunli; Wang, Sheng
2018-06-01
Bulk poly( m-phenylene isophthalamide) (PMIA) can achieve flexibility upon dissolution by a LiCl/dimethylacetamide co-solvent, but remains hydrophobic despite the occasional emergence of cis amide groups providing a weak negative charge. In this study, based on the significant surface differences between PMIA membranes processed by nanofiber electrospinning and casting, a series of chemical analyses, in-situ Au nanoparticle depositions, and dye-adsorption experiments revealed that more cis-configuration amide groups appeared on the surface of the electrospun PMIA membrane than on that of the cast membrane. Based on this surface difference, a strategy was proposed to improve the dyeing properties of PMIA by reversibly changing the cis/trans configurations of electrospun and cast membranes. The reversible chain-segment switch mechanism is a novel method for tuning the macroscale properties of polymer materials based on inherent molecular characteristics.
NASA Astrophysics Data System (ADS)
Ouyang, Shenshen; Wang, Tao; Zhong, Longgang; Wang, Shunli; Wang, Sheng
2018-05-01
Bulk poly(m-phenylene isophthalamide) (PMIA) can achieve flexibility upon dissolution by a LiCl/dimethylacetamide co-solvent, but remains hydrophobic despite the occasional emergence of cis amide groups providing a weak negative charge. In this study, based on the significant surface differences between PMIA membranes processed by nanofiber electrospinning and casting, a series of chemical analyses, in-situ Au nanoparticle depositions, and dye-adsorption experiments revealed that more cis-configuration amide groups appeared on the surface of the electrospun PMIA membrane than on that of the cast membrane. Based on this surface difference, a strategy was proposed to improve the dyeing properties of PMIA by reversibly changing the cis/trans configurations of electrospun and cast membranes. The reversible chain-segment switch mechanism is a novel method for tuning the macroscale properties of polymer materials based on inherent molecular characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuyucak, Selcuk; Li, Delin
2013-12-31
Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steelmore » casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using the lip pouring method. It was observed again that gating designs greatly influenced the melt filling velocity and the number of inclusion defects. The radial choked gating showed improvements in casting cleanliness and yield over the other gatings, even though no mold filters were used in the gating system.« less
Matsuda, Yasuhiro; Yanagida, Hiroaki; Ide, Takako; Matsumura, Hideo; Tanoue, Naomi
2010-06-01
The shear bond strength of an auto-polymerizing poly(methyl methacrylate) denture base resin material to cast titanium and cobalt-chromium alloy treated with six conditioning methods was investigated. Disk specimens (10 mm in diameter and 2.5 mm in thickness) were cast from pure titanium and cobalt-chromium alloy. The specimens were wet ground to a final surface finish of 600 grit, air dried, and treated with the following bonding systems: 1) air abraded with 50-70-microm-grain alumina (SAN); 2) air abraded with 50-70-microm-grain alumina + conditioned with Alloy Primer (ALP); 3) air abraded with 50-70-microm-grain alumina + conditioned with AZ Primer (AZP); 4) air abraded with 50-70-microm-grain alumina + conditioned with Estenia Opaque Primer (EOP); 5) air abraded with 50-70-microm-grain alumina + conditioned with Metal Link Primer (MLP), and 6) treated with ROCATEC system (ROC). A denture base material (Palapress Vario) was then applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. The strengths decreased after thermocycling in all combinations. Among the treatment methods assessed, groups 2 and 4 showed significantly (p < 0.05) enhanced shear bond strengths for both metals. In group 4, the strength in MPa (n = 7) after thermocycling for cobalt-chromium alloy was 38.3, which was statistically (p < 0.05) higher than that for cast titanium (34.7). Air abrasion followed by the application of two primers containing a hydrophobic phosphate monomer (MDP) effectively improved the strength of the bond of denture base material to cast titanium and cobalt-chromium alloy.
Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S. M.; Xiao, X.; Faber, K. T.
Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Harshith, H. S.; Hemanth, Joel
2018-04-01
This research work aims at developing and mechanical characterization of aluminium (LM13) based metal matrix composite reinforced with varying percentage of fused SiO2 (3%,6%,9%,12%). The mechanical properties are completely dependent on the microstructural parameters of the system. Also the microstructure further depends on the cooling rates during solidification process. Various Chills like Silicon carbide, Mild steel, Copper were used during the casting process to increase the rate of solidification, which enhances the mechanical properties of the composite. The chill casted specimens were subjected to tensile and hardness tests followed by microstructure studies. A casting produced using mild steel chill exhibited higher young's modulus and was found to be maximum at 9% reinforcement. Finer microstructure and better UTS were seen for specimen's casted using copper chills, whereas silicon carbide and mild steel chills gave rise to very coarse structure with reduced UTS values compared to copper chills.
Casting Simulation of an Austrian Bronze Age Sword Hilt
NASA Astrophysics Data System (ADS)
Pola, Annalisa; Mödlinger, Marianne; Piccardo, Paolo; Montesano, Lorenzo
2015-07-01
Bronze Age swords with a metal hilt can be considered the peak of Bronze Age casting technologies. To reconstruct the casting techniques used more than 3000 years ago, a metal hilted sword of the Schalenknauf type from Lower Austria was studied with the aid of macroscopic analyses and simulation of mold filling and casting solidification. A three-dimensional model of the hilt was created based on optical scanner measurements performed on a hilt recently discovered during archaeological excavations. Three different configurations of the gating system were considered, two on the pommel disk and one on the knob, and the effect of its location on the formation of casting defects was investigated. Three-dimensional computed tomography was used to detect internal defects, such as gas and shrinkage porosity, which were then compared with those calculated by simulation. The best match between actual and predicted hilt quality demonstrated the location of the gating system, which turned out to be on the pommel disk.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis.
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-12-18
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-01-01
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois. PMID:26716089
Effect of Casting Defect on Mechanical Properties of 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Kim, Jong-Yup; Lee, Joon-Hyun; Nahm, Seung-Hoon
Damage and integrity evaluation techniques should be developed steadily in order to ensure the reliability and the economic efficiency of gas turbine engines. Casting defects may exist in most casting components of gas turbine engines, and the defects could give serious effect on mechanical properties and fracture toughness. Therefore, it is very important to understand the effect of casting defects on the above properties in order to predict the safety and life of components. In this study, specimens with internal casting defects, made from 17-4PH stainless steel, were prepared and evaluated and characterized based on the volume fraction of defects. The relation between mechanical properties such as tensile, low cycle fatigue and fracture toughness and volume fraction of defect has been investigated. As a result of the analysis, the mechanical properties of 17-4PH decreased as the defect volume fraction increased with very good linearity. The mechanical properties also showed an inversely proportional relationship to electrical resistivity.
Compositional redistribution during casting of Hg sub 0.8 Cd sub 0.2 Te alloys
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Perry, G. L. E.; Szofran, F. R.; Lehoczky, S. L.
1986-01-01
A series of Hg(0.8)Cd(0.2)Te ingots was cast both vertically and horizontally under well-defined thermal conditions by using a two-zone furnace with isothermal heat-pipe liners. The main objective of the experiments was to establish correlations between casting parameters and compositional redistribution and to develop ground-based data for a proposed flight experiment of casting of Hg(1-x)Cd(x)Te alloys under reduced gravity conditions. The compositional variations along the axial and radial directions were determined by precision density measurements, infrared transmission spectra, and X-ray energy dispersion spectrometry. Comparison between the experimental results and a numerical simulation of the solidification process of Hg(0.8)Cd(0.2)Te is described.
NASA Astrophysics Data System (ADS)
Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.
2015-06-01
The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.
Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H
2011-07-01
An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.
The Effects of Casting Porosity on the Tensile Behavior of Investment Cast 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Susan, D. F.; Crenshaw, T. B.; Gearhart, J. S.
2015-08-01
The effect of casting porosity on the mechanical behavior of investment cast 17-4PH stainless steel was studied as well as the effect of heat treatment on the alloy's sensitivity to casting defects. Interdendritic porosity, formed during solidification and shrinkage of the alloy, reduces the yield strength and ultimate tensile strength roughly in proportion to the reduction in load bearing cross-section. The effects of casting porosity on ductility (% strain, % reduction in area) are more severe, in agreement with research on other alloy systems. In this study, 10% porosity reduced the ductility of 17-4PH stainless steel by almost 80% for the high-strength H925 condition. Tensile testing at -10°C (263 K) further reduces the alloy ductility with and without pores present. In the lower strength H1100 condition, the ductility is higher than the H925 condition, as expected, and somewhat less sensitive to porosity. By measuring the area % porosity on the fracture surface of tensile specimens, the trend in failure strain versus area % porosity was obtained and analyzed using two methods: an empirical approach to determine an index of defect susceptibility with a logarithmic fit and an analytical approach based on the constitutive stress-strain behavior and critical strain concentration in the vicinity of the casting voids. The applicability of the second method depends on the amount of non-uniform strain (necking) and, as such, the softer H1100 material did not correlate well to the model. The behavior of 17-4PH was compared to previous work on cast Al alloys, Mg alloys, and other cast materials.
Cheminformatics approaches and structure-based rules are being used to evaluate and explore the ToxCast chemical landscape and associated high-throughput screening (HTS) data. We have shown that the library provides comprehensive coverage of the knowledge domains and target inven...
The USEPA’s ToxCast program is developing a novel approach to chemical toxicity testing using high-throughput screening (HTS) assays to rapidly test thousands of chemicals against hundreds of in vitro molecular targets. This approach is based on the premise that in vitro HTS bioa...
Forecasting Exposure in Order to Use High Throughput Hazard Data in a Risk-based Context (WC9)
The ToxCast program and Tox21 consortium have evaluated over 8000 chemicals using in vitro high-throughput screening (HTS) to identify potential hazards. Complementary exposure science needed to assess risk, and the U.S. Environmental Protection Agency (EPA)’s ExpoCast initiative...
Weathered antlers as a source of DNA
Roy G. Lopez; Paul Beier
2012-01-01
We tested antlers of Coues white-tailed (Odocoileus virginianus couesi) and mule deer (O. hemionus) in various stages of natural decomposition to determine the degree of weathering that cast antlers could endure and still yield usable DNA. Based on physical characteristics, we partitioned antlers into 7 weathering categories ranging from freshly cast (class 1) to...
Evaluation of 1066 ToxCast Chemicals in a human stem cell assay for developmental toxicity (SOT)
To increase the diversity of assays used to assess potential developmental toxicity, the ToxCast chemical library was screened in the Stemina devTOX quickPREDICT assay using human embryonic stem (hES) cells. A model for predicting teratogenicity was based on a training set of 23 ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are Based on a 95 Percent Reduction Requirement Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are Based on a 95 Percent Reduction Requirement Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...
High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling
The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are Based on a 95 Percent Reduction Requirement Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...
In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...
In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...
Modeling and Predicting Cancer from ToxCast Phase I Data
The ToxCast program is generating a diverse collection of in vitro cell free and cell based HTS data to be used for predictive modeling of in vivo toxicity. We are using this in vitro data, plus corresponding in vivo data from ToxRefDB, to develop models for prediction and priori...
Analysis of surface scale on the Ni-based superalloy CMSX-10N and proposed mechanism of formation
NASA Astrophysics Data System (ADS)
Simmonds, S.; D'Souza, N.; Ryder, K. S.; Dong, H.
2012-01-01
There is a continuing demand to raise the operating temperature of jet engine turbine blades to meet the need for higher turbine entry temperatures (TET) in order to increase thermal efficiency and thrust. Modern, high-pressure turbine blades are made from Ni-based superalloys in single-crystal form via the investment casting process. One important post-cast surface defect, known as 'surface scale', has been investigated on the alloy CMSX-10N. This is an area of distinct discolouration of the aerofoil seen after casting. Auger electron and X-ray photoelectron spectroscopy analysis were carried out on both scaled and un-scaled areas. In the scaled region, a thin layer (~800nm) of Ni oxide is evident. In the un-scaled regions there is a thicker Al2O3 layer. It is shown that, as the blade cools during casting, differential thermal contraction of mould and alloy causes the solid blade to 'detach' from the mould in these scaled areas. The formation of Ni Oxides is facilitated by this separation.
Integrated modeling and heat treatment simulation of austempered ductile iron
NASA Astrophysics Data System (ADS)
Hepp, E.; Hurevich, V.; Schäfer, W.
2012-07-01
The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knaapila, M.; Lyons, B.P.; Foreman, J.P.
We report on an experimental study of the self-organization and phase behavior of hairy-rod {pi}-conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] - i.e., poly[2,7-(9,9-bis(2-ethylhexyl)fluorene] (PF2/6) - as a function of molecular weight (M{sub n}). The results have been compared to those of phenomenological theory. Samples for which M{sub n}=3-147 kg/mol were used. First, the stiffness of PF2/6, the assumption of the theory, has been probed by small-angle neutron scattering in solution. Thermogravimetry has been used to show that PF2/6 is thermally stable over the conditions studied. Second, the existence of nematic and hexagonal phases has been phenomenologically identified for lower and highermore » M{sub n} (LMW, M{sub n}
Critical Role of the Sorting Polymer in Carbon Nanotube-Based Minority Carrier Devices.
Mallajosyula, Arun T; Nie, Wanyi; Gupta, Gautam; Blackburn, Jeffrey L; Doorn, Stephen K; Mohite, Aditya D
2016-12-27
A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFO may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFO|C 60 and C 60 -only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C 60 -only devices. In addition, with a relatively higher contribution to photocurrent from the PFO-C 60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C 60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. These results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev
2014-08-26
Adding a small amount of a processing additive to the casting solution of photoactive organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, the effects of the processing additive diiodooctane (DIO) on the morphology of the established blend of PBDTTT-C-T polymer and the fullerene derivative PC71BM used for OPVs are investigated, starting in the casting solution and tracing the effects in spun-cast thin filmsmore » by using neutron/X-ray scattering, neutron reflectometry, and other characterization techniques. The results reveal that DIO has no observable effect on the structures of PBDTTT-C-T and PC71BM in solution; however, in the spun-cast films, it significantly promotes their molecular ordering and phase segregation, resulting in improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation due to changes in concentration resulting from evaporation of the solvent and additive during film formation. Such information may help improve the rational design of ternary blends to more consistently achieve improved PCE for OPVs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev
2014-01-01
Adding a small amount of a processing additive to the casting solution of organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, we investigate the effects of the processing additive diiodooctane (DIO) on the morphology of OPV blend of PBDTTT-C-T and fullerene derivative, PC71BM in a casting solution and in spun-cast thin films by using neutron/x-ray scattering, neutron reflectometry and other characterization techniques. Themore » results reveal that DIO has no effect on the solution structures of PBDTTT-C-T and PC71BM. In the spun-cast films, however, DIO is found to promote significantly the molecular ordering of PBDTTT-C-T and PC71BM, and phase segregation, resulting in the improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation as a solvent and due to evaporationg during the film formation. Such information may enable improved rational design of ternary blends to more consistently achieve improved PCE for OPVs.« less
Ahlers, M Oliver; Edelhoff, Daniel; Jakstat, Holger A
2018-06-21
The benefit from positioning the maxillary casts with the aid of face-bows has been questioned in the past. Therefore, the aim of this study was to investigate the reliability and validity of arbitrary face-bow transfers compared to a process solely based on the orientation by means of average values. For optimized validity, the study was conducted using a controlled, randomized, anonymized, and blinded patient simulator study design. Thirty-eight undergraduate dental students were randomly divided into two groups; both groups were applied to both methods, in opposite sequences. Investigated methods were the transfer of casts using an arbitrary face-bow in comparison to the transfer using average values based on Bonwill's triangle and the Balkwill angle. The "patient" used in this study was a patient simulator. All casts were transferred to the same individual articulator, and all the transferred casts were made using type IV special hard stone plaster; for the attachment into the articulator, type II plaster was used. A blinded evaluation was performed based on three-dimensional measurements of three reference points. The results are presented three-dimensionally in scatterplots. Statistical analysis indicated a significantly smaller variance (Student's t test, p < 0.05) for the transfer using a face-bow, applicable for all three reference points. The use of an arbitrary face-bow significantly improves the transfer reliability and hence the validity. To simulate the patient situation in an individual articulator correctly, casts should be transferred at least by means of an arbitrary face-bow.
Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications
NASA Astrophysics Data System (ADS)
Jablonski, Paul D.; Hawk, Jeffery A.; Cowen, Christopher J.; Maziasz, Philip J.
2012-02-01
The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760°C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.
CAD/CAM produces dentures with improved fit.
Steinmassl, Otto; Dumfahrt, Herbert; Grunert, Ingrid; Steinmassl, Patricia-Anca
2018-02-22
Resin polymerisation shrinkage reduces the congruence of the denture base with denture-bearing tissues and thereby decreases the retention of conventionally fabricated dentures. CAD/CAM denture manufacturing is a subtractive process, and polymerisation shrinkage is not an issue anymore. Therefore, CAD/CAM dentures are assumed to show a higher denture base congruence than conventionally fabricated dentures. It has been the aim of this study to test this hypothesis. CAD/CAM dentures provided by four different manufacturers (AvaDent, Merz Dental, Whole You, Wieland/Ivoclar) were generated from ten different master casts. Ten conventional dentures (pack and press, long-term heat polymerisation) made from the same master casts served as control group. The master casts and all denture bases were scanned and matched digitally. The absolute incongruences were measured using a 2-mm mesh. Conventionally fabricated dentures showed a mean deviation of 0.105 mm, SD = 0.019 from the master cast. All CAD/CAM dentures showed lower mean incongruences. From all CAD/CAM dentures, AvaDent Digital Dentures showed the highest congruence with the master cast surface with a mean deviation of 0.058 mm, SD = 0.005. Wieland Digital Dentures showed a mean deviation of 0.068 mm, SD = 0.005, Whole You Nexteeth prostheses showed a mean deviation of 0.074 mm, SD = 0.011 and Baltic Denture System prostheses showed a mean deviation of 0.086 mm, SD = 0.012. CAD/CAM produces dentures with better fit than conventional dentures. The present study explains the clinically observed enhanced retention and lower traumatic ulcer-frequency in CAD/CAM dentures.
NASA Astrophysics Data System (ADS)
Kazanskiy, D. A.; Grin, E. A.; Klimov, A. N.; Berestevich, A. I.
2017-10-01
Russian experience in the production of large-sized cast blades and vanes for industrial gas turbines is analyzed for the past decades. It is noted that the production of small- and medium-sized blades and vanes made of Russian alloys using technologies for aviation, marine, and gas-pumping turbines cannot be scaled for industrial gas turbines. It is shown that, in order to provide manufacturability under large-scale casting from domestic nickel alloys, it is necessary to solve complex problems in changing their chemical composition, to develop new casting technologies and to optimize the heat treatment modes. An experience of PAO NPO Saturn in manufacturing the blades and vanes made of ChS88U-VI and IN738-LC foundry nickel alloys for the turbines of the GTE-110 gas turbine unit is considered in detail. Potentialities for achieving adopted target parameters for the mechanical properties of working blades cast from ChS88UM-VI modified alloy are established. For the blades made of IN738-LC alloy manufactured using the existing foundry technology, a complete compliance with the requirements of normative and technical documentation has been established. Currently, in Russia, the basis of the fleet of gas turbine plants is composed by foreign turbines, and, for the implementation of the import substitution program, one can use the positive experience of PAO NPO Saturn in casting blades from IN738-LC alloy based on a reverse engineering technique. A preliminary complex of studies of the original manufacturer's blades should be carried out, involving, first of all, the determination of geometric size using modern measurement methods as well as the studies on the chemical compositions of the used materials (base metal and protective coatings). Further, verifying the constructed calculation models based on the obtained data, one could choose available domestic materials that would meet the operating conditions of the blades according to their heat resistance and corrosion resistance.
Castillo-de-Oyagüe, Raquel; Sánchez-Turrión, Andrés; López-Lozano, José-Francisco; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria-Jesús
2012-07-01
This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range.
Hill, J F
1980-08-01
The purpose of this study was to compare the clinical acceptability of polymacon spin-cast to polymacon lathe-cut hydrophilic contact lenses. Ten patients successfully wearing polymacon spin-cast lenses were studied. Each patient had one eye refitted with polymacon lathe-cut lenses. Comparison of the two types of lenses was then made. Objective evaluation included centration, movement, visual acuity, and over-refraction. Subjective criteria were based on patient comfort and stability and quality of vision. Results indicate that lathe-cut lenses can be just as clinically satisfactory as the spincast ones.
Cast-in-place, ambiently-dried, silica-based, high-temperature insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Eric Jianfeng; Thompson, Travis; Salvador, James R.
A novel sol-gel chemistry approach was developed to enable the simple integration of a cast-in-place, ambiently-dried insulation into high temperature applications. The insulation was silica based, synthesized using methyltrimethoxysilane (MTMS) as the precursor. MTMS created a unique silica microstructure that was mechanically robust, macroporous, and superhydrophobic. To allow for casting into and around small, orthogonal features, zirconia fibers were added to increase stiffness and minimize contraction that could otherwise cause cracking during drying. Radiative heat transport was reduced by adding titania powder as an opacifier. To assess relevance to high temperature thermoelectric generator technology, a comprehensive set of materials characterizationsmore » were conducted. The silica gel was thermally stable, retained superhydrophobicity with a water contact angle > 150° , and showed a high electrical resistance > 1 GΩ, regardless of heating temperature (up to 600 °C in Ar for 4 h). In addition, it exhibited a Young's modulus ~3.7 MPa in room temperature and a low thermal conductivity < 0.08 W/m.K before and after heat treatment. Thus, based on the simplicity of the manufacturing process and optimized material properties, we believe this technology can act as an effective cast-in-place thermal insulation (CTI) for thermoelectric generators and myriad other applications requiring improved thermal efficiency.« less
Cast-in-place, ambiently-dried, silica-based, high-temperature insulation
Cheng, Eric Jianfeng; Thompson, Travis; Salvador, James R.; ...
2017-02-03
A novel sol-gel chemistry approach was developed to enable the simple integration of a cast-in-place, ambiently-dried insulation into high temperature applications. The insulation was silica based, synthesized using methyltrimethoxysilane (MTMS) as the precursor. MTMS created a unique silica microstructure that was mechanically robust, macroporous, and superhydrophobic. To allow for casting into and around small, orthogonal features, zirconia fibers were added to increase stiffness and minimize contraction that could otherwise cause cracking during drying. Radiative heat transport was reduced by adding titania powder as an opacifier. To assess relevance to high temperature thermoelectric generator technology, a comprehensive set of materials characterizationsmore » were conducted. The silica gel was thermally stable, retained superhydrophobicity with a water contact angle > 150° , and showed a high electrical resistance > 1 GΩ, regardless of heating temperature (up to 600 °C in Ar for 4 h). In addition, it exhibited a Young's modulus ~3.7 MPa in room temperature and a low thermal conductivity < 0.08 W/m.K before and after heat treatment. Thus, based on the simplicity of the manufacturing process and optimized material properties, we believe this technology can act as an effective cast-in-place thermal insulation (CTI) for thermoelectric generators and myriad other applications requiring improved thermal efficiency.« less
Inter-Individual Variability in High-Throughput Risk ...
We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have little or no existing TK data. Chemicals are prioritized based on model estimates of hazard and exposure, to decide which chemicals should be first in line for further study. Hazard may be estimated with in vitro HT screening assays, e.g., U.S. EPA’s ToxCast program. Bioactive ToxCast concentrations can be extrapolated to doses that produce equivalent concentrations in body tissues using a reverse TK approach in which generic TK models are parameterized with 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. Here we draw physiological parameters from realistic estimates of distributions of demographic and anthropometric quantities in the modern U.S. population, based on the most recent CDC NHANES data. A Monte Carlo approach, accounting for the correlation structure in physiological parameters, is used to estimate ToxCast equivalent doses for the most sensitive portion of the population. To quantify risk, ToxCast equivalent doses are compared to estimates of exposure rates based on Bayesian inferences drawn from NHANES urinary analyte biomonitoring data. The inclusion
ToxCast Profiling in a Human Stem Cell Assay for ...
Standard practice for assessing disruptions in embryogenesis involves testing pregnant animals of two species, typically rats and rabbits, exposed during major organogenesis and evaluated just prior to term. Under this design the major manifestations of developmental toxicity are observed as one or more apical endpoints including intrauterine death, fetal growth retardation, structural malformations and variations. Alternative approaches to traditional developmental toxicity testing have been proposed in the form of in vitro data (e.g., embryonic stem cells, zebrafish embryos, HTS assays) and in silico models (e.g., computational toxicology). To increase the diversity of assays used to assess developmental toxicity in EPA’s ToxCast program, we tested the chemicals in Stemina’s metabolomics-based platform that utilizes the commecrially available H9 human embryonic stem cell line. The devTOXqP dataset for ToxCast of high-quality based on replicate samples and model performance (82% balanced accuracy, 0.71 sensitivity and 1.00 specificity). To date, 136 ToxCast chemicals (12.8% of 1065 tested) were positive in this platform; 48 triggered the biomarker signal without any change in hESC viability and 88 triggered activity concurrent with effects on cell viability. Work is in progress to complete the STM dataset entry into the TCPL, compare data with results from zFish and mESC platforms, profile bioactivity (ToxCastDB), endpoints (ToxRefDB), chemotypes (DSSTox)
NASA Astrophysics Data System (ADS)
Dou, Ruifeng; Phillion, A. B.
2016-08-01
Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.
Canavese, Federico; Botnari, Alexei; Dimeglio, Alain; Samba, Antoine; Pereira, Bruno; Gerst, Adeline; Granier, Marie; Rousset, Marie; Dubousset, Jean
2016-02-01
Juvenile scoliosis (JS), among different types of spinal deformity, remains still a challenge for orthopedic surgeons. Elongation, derotation and flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three-dimensional correction concept. The primary objective of the present study was to measure changes on plain radiographs of patients with JS treated with EDF plaster technique. The second aim was to evaluate the effectiveness of the EDF plaster technique realized under general anesthesia (GA) and neuromuscular blocking drugs, i.e. curare, on the radiological curve correction. A retrospective comparative case series study was performed in which were included forty-four skeletally immature patients. Three patient groups were selected. Group 1: EDF cast applied with patients awaken and no anesthesia; Group 2: EDF cast applied under GA without neuromuscular blocking drugs; Group 3: EDF cast applied under GA with neuromuscular blocking drugs. All the patients were treated with two serial EDF casts by 2 months and a half each. All measurements were taken from the radiographic exams. Cobb's angle; RVAD and Nash and Moe grade of rotation were assessed before and after applying the cast. Thirty-four (77.3 %) patients were followed up at least 24 months after removal of last EDF cast. Eighteen patients (3 males, 15 females) were included in Group 1, 12 (2 males, 10 females) in Group 2 and 14 (5 males, 9 females) in Group 3. Serial EDF casting was more effective at initial curve reduction and in preventing curve progression when applied under GA with neuromuscular blocking drugs, i.e. curare. RVAD and Nash and Moe score improved significantly in all groups of patients treated according to principles of EDF technique. During follow-up period, six patients required surgery in Group 1 (6/18; 33.3 %), 3 patients required surgery in Group 2 (3/12; 25 %) and 2 patients underwent surgery in Group 3 (2/14; 15 %). Preliminary results show EDF casting is effective in controlling the curve in both frontal (Cobb's angle) and transverse plane (rib vertebral angle and apical vertebral rotation degree).
NASA Astrophysics Data System (ADS)
Eisenmann, David J.
In the design of exhaust manifolds for internal combustion engines the materials used must exhibit resistance to corrosion at high temperatures while maintaining a stable microstructure. Cast iron has been used for manifolds for many years by auto manufacturers due to a combination of suitable mechanical properties, low cost, and ease of casting. Over time cast iron is susceptible to microstructural changes, corrosion, and oxidation which can result in failure due to fatigue. This thesis seeks to answer the question: "Can observed microstructural changes and measured high temperature fatigue life in cast iron alloys be used to develop a predictive model for fatigue life?" the importance of this question lies in the fact that there is little data for the behavior of cast iron alloys at high temperature. For this study two different types of cast iron, 50HS and HSM will be examined. Of particular concern for the high Si+C cast irons (and Mo in the case of the HSM cast iron) are subsurface microstructural changes that result due to heat treatment including (1) decarburization, (2) ferrite formation, (3) graphitization, (4) internal oxidation of the Si, (5) high temperature fatigue resistance, and (6) creep potential. Initial results obtained include microstructure examination after being exposed to high temperatures, grain size, nodule size, and hardness measurements. The initial examinations concluded that both cast irons performed fairly similarly, although the microstructure of the HSM samples did show slightly better resistance to high temperature as compared to that of the 50HS. Follow on work involved high temperature fatigue testing of these two materials in order to better determine if the newer alloy, HSM is a better choice for exhaust manifolds. Correlations between fatigue performance and microstructure were made and discussed, with the results examined in light of current and proposed models for predicting fatigue performance based on computational methods, to see if any suitable models exist that might be used to assist in designing with these cast alloys.
Casting Characteristics of High Cerium Content Aluminum Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, D; Rios, O R; Sims, Z C
This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems formore » melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.« less
2005-07-21
or solution-based methods such as spin casting or drop casting,’ 1ś self-assembly,1922 Langmuir - Blodgett techniques,23 or electrochemical methods...and Langmuir - exist. Molecules containing a perylene diimide core have Blodgett techniques.’ 8 In many situations, the molecules also been proposed for...remain soluble in the W. J. Langmuir 1996, 12, 2169. absence of other ionic species. These systems represent (35) Antonietti, M.; Conrad, J. Angew
Cast Fe-base cylinder/regenerator housing alloy
NASA Technical Reports Server (NTRS)
Larson, F.; Kindlimann, L.
1980-01-01
The development of an iron-base alloy that can meet the requirements of automotive Stirling engine cylinders and regenerator housings is described. Alloy requirements are as follows: a cast alloy, stress for 5000-hr rupture life of 200 MPa (29 ksi) at 775 C (1427 F), oxidation/corrosion resistance comparable to that of N-155, compatibility with hydrogen, and an alloy cost less than or equal to that of 19-9DL. The preliminary screening and evaluation of ten alloys are described.
Sixty-five chemicals in the ToxCast high-throughput screening (HTS) dataset have been linked to cleft palate based on data from ToxRefDB (rat or rabbit prenatal developmental toxicity studies) or from literature reports. These compounds are structurally diverse and thus likely to...
High quality chemical structure inventories provide the foundation of the U.S. EPA’s ToxCast and Tox21 projects, which are employing high-throughput technologies to screen thousands of chemicals in hundreds of biochemical and cell-based assays, probing a wide diversity of targets...
US EPA’s ToxCast program has screened thousands of chemicals in hundreds of mammalian-based HTS assays for biological activity suggestive of potential toxic effects. These data are being used to prioritize toxicity testing to focus on chemicals likely to lead to adverse health ef...
Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar
2013-01-01
Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.
Consani, Rafael Leonardo Xediek; Domitti, Saide Sarckis; Consani, Simonides
2002-09-01
The pressure of final closure may be released when the flask is removed from the mechanical or pneumatic press and placed in the spring clamp. This release in pressure may result in dimensional changes that distort the denture base. The purpose of this study was to investigate differences between the dimensional stability of standardized simulated denture bases processed by traditional moist heat-polymerization and those processed by use of a new tension system. A metal master die was fabricated to simulate an edentulous maxillary arch without irregularities in the alveolar ridge walls. A silicone mold of this metallic die was prepared, and 40 stone casts were formed from the mold with type III dental stone. The casts were randomly assigned to 4 test groups (A-D) of 10 specimens each. A uniform denture base pattern was made on each stone cast with a 1.5-mm thickness of base-plate wax, measured with a caliper. The patterns were invested for traditional hot water processing. A polymethyl methacrylate dough was prepared and packed for processing. The flasks in groups A and B were closed with the traditional pressure technique and placed in spring clamps after final closure. The flasks in groups C and D were pressed between the metallic plates of the new tension system after the final closure. The group A and C flasks were immediately immersed in the water processing unit at room temperature (25 degrees +/- 2 degrees C). The unit was programmed to raise the temperature to 74 degrees C over 1 hour, and then maintained the temperature at 74 degrees C for 8 hours. The group B and D flasks were bench stored at room temperature (25 degrees +/- 2 degrees C) for 6 hours and were then subjected to the same moist heat polymerization conditions as groups A and C. All processed dentures were bench cooled for 3 hours. After recovery from the flasks, the base-cast sets were transversally sectioned into 3 parts (corresponding to 3 zones): (1) distal of the canines, (2) mesial of the first molars, and (3) mesial of the posterior palate). These areas had been previously established and standardized by use of a pattern denture in the sawing device to determine the sections in each base-cast set. Base-cast gaps were measured at 5 predetermined points on each section with an optical micrometer that had a tolerance of 0.001 mm. Collected data were analyzed with analysis of variance and Tukey's test. Denture bases processed with the new tension system exhibited significantly better base adaptation than those processed with traditional acrylic resin packing. Immediately after polymerization (Groups A and C), mean dimensional change values were 0.213 +/- 0.055 mm for the traditional packing technique and 0.173 +/- 0.050 mm for new tension system. After delayed polymerization (Groups B and D), the values were 0.216 +/- 0.074 mm for the traditional packing technique and 0.164 +/- 0.032 mm for new tension system. With both techniques, dimensional changes in the posterior palatal zone were greater (conventional = 0.286 +/- 0.038 mm; new system = 0.214 +/- 0.024 mm) than those elsewhere on the base-cast set. Within the limitations of this study, the new tension packing system was associated with decreased dimensional changes in the simulated maxillary denture bases processed with heat-polymerization.
Improving the performance of doped pi-conjugated polymers for use in organic light-emitting diodes
Gross; Muller; Nothofer; Scherf; Neher; Brauchle; Meerholz
2000-06-08
Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays. Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected by the cathode into the lowest unoccupied molecular orbital of the adjacent molecules (simultaneously, holes are injected by the anode into the highest occupied molecular orbital). The two types of carriers migrate towards each other and a fraction of them recombine to form excitons, some of which decay radiatively to the ground state by spontaneous emission. Doped pi-conjugated polymer layers improve the injection of holes in OLED devices; this is thought to result from the more favourable work function of these injection layers compared with the more commonly used layer material (indium tin oxide). Here we demonstrate that by increasing the doping level of such polymers, the barrier to hole injection can be continuously reduced. The use of combinatorial devices allows us to quickly screen for the optimum doping level. We apply this concept in OLED devices with hole-limited electroluminescence (such as polyfluorene-based systems), finding that it is possible to significantly reduce the operating voltage while improving the light output and efficiency.
NASA Astrophysics Data System (ADS)
Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi
2014-02-01
The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Littleton, Harry; Griffin, John
2011-07-31
This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy savingmore » estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).« less
Kingwell, Callum J.; Wcislo, William T.; Robinson, Gene E.
2017-01-01
Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages. PMID:28053060
Jones, Beryl M; Kingwell, Callum J; Wcislo, William T; Robinson, Gene E
2017-01-11
Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages. © 2017 The Author(s).
Use of High Throughput Screening Data in IARC Monograph ...
Purpose: Evaluation of carcinogenic mechanisms serves a critical role in IARC monograph evaluations, and can lead to “upgrade” or “downgrade” of the carcinogenicity conclusions based on human and animal evidence alone. Three recent IARC monograph Working Groups (110, 112, and 113) pioneered analysis of high throughput in vitro screening data from the U.S. Environmental Protection Agency’s ToxCast program in evaluations of carcinogenic mechanisms. Methods: For monograph 110, ToxCast assay data across multiple nuclear receptors were used to test the hypothesis that PFOA acts exclusively through the PPAR family of receptors, with activity profiles compared to several prototypical nuclear receptor-activating compounds. For monographs 112 and 113, ToxCast assays were systematically evaluated and used as an additional data stream in the overall evaluation of the mechanistic evidence. Specifically, ToxCast assays were mapped to 10 “key characteristics of carcinogens” recently identified by an IARC expert group, and chemicals’ bioactivity profiles were evaluated both in absolute terms (number of relevant assays positive for bioactivity) and relative terms (ranking with respect to other compounds evaluated by IARC, using the ToxPi methodology). Results: PFOA activates multiple nuclear receptors in addition to the PPAR family in the ToxCast assays. ToxCast assays offered substantial coverage for 5 of the 10 “key characteristics,” with the greates
Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication
NASA Technical Reports Server (NTRS)
Smashey, Russell W. (Inventor)
2001-01-01
An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.
Fan, Chunhai; Wang, Shu; Hong, Janice W.; Bazan, Guillermo C.; Plaxco, Kevin W.; Heeger, Alan J.
2003-01-01
Gold nanoparticles quench the fluorescence of cationic polyfluorene with Stern–Volmer constants (KSV) approaching 1011 M—1, several orders of magnitude larger than any previously reported conjugated polymer–quencher pair and 9–10 orders of magnitude larger than small molecule dye–quencher pairs. The dependence of KSV on ionic strength, charge and conjugation length of the polymer, and the dimensions (and thus optical properties) of the nanoparticles suggests that three factors account for this extraordinary efficiency: (i) amplification of the quenching via rapid internal energy or electron transfer, (ii) electrostatic interactions between the cationic polymer and anionic nanoparticles, and (iii) the ability of gold nanoparticles to quench via efficient energy transfer. As a result of this extraordinarily high KSV, quenching can be observed even at subpicomolar concentrations of nanoparticles, suggesting that the combination of conjugated polymers with these nanomaterials can potentially lead to improved sensitivity in optical biosensors. PMID:12750470
NASA Astrophysics Data System (ADS)
Yi, Jianpeng; Huang, Jinjin; Liu, Chengfang; Lai, Wen-Yong; Huang, Wei
2017-01-01
We have demonstrated amplified spontaneous emission (ASE) restoration and threshold reduction by introducing a novel water/alcohol soluble conjugated macroelectrolyte, tris(4-(7-(9,9-di(hexyl-1-N,N-diethanolamino)-9H-fluoren-2-yl)-9,9-di(hexyl-1-N,N-diethanolamino)-9H-fluoren-2-yl)phenyl)amine (TPAOH), serving as an interfacial layer between the gain media layer, dioctyl substituted polyfluorene (PFO), and the Ag electrode layer. By optimizing the film thickness of TPAOH, enhanced ASE performance has been achieved with the lowest threshold of 21 μJ/cm2, demonstrating 3.5-fold reduction from 74 μJ/cm2. Atomic force microscopy results showed good compatibility between the TPAOH film and the PFO layer. The results suggest a facile and low-cost solution-processing interfacial technique to construct efficient organic semiconductor lasers in the presence of metallic electrodes.
Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko
2016-02-01
There is a strong demand for biomedical Co-Cr-based cast alloys with enhanced mechanical properties for use in dental applications. We present a design strategy for development of Co-Cr-based cast alloys with very high strength, comparable to that of wrought Co-Cr alloys, without loss of ductility. The strategy consists of simultaneous doping of nitrogen and carbon, accompanied by increasing of the Cr content to increase the nitrogen solubility. The strategy was verified by preparing Co-33Cr-9W-0.35N-(0.01-0.31)C (mass%) alloys. We determined the carbon concentration dependence of the microstructures and their mechanical properties. Metal ion release of the alloys in an aqueous solution of 0.6% sodium chloride (NaCl) and 1% lactic acid was also evaluated to ensure their corrosion resistance. As a result of the nitrogen doping, the formation of a brittle σ-phase, a chromium-rich intermetallic compound, was significantly suppressed. Adding carbon to the alloys resulted in finer-grained microstructures and carbide precipitation; accordingly, the strength increased with increasing carbon concentration. The tensile ductility, on the other hand, increased with increasing carbon concentration only up to a point, reaching a maximum at a carbon concentration of ∼0.1mass% and decreasing with further carbon doping. However, the alloy with 0.31mass% of carbon exhibited 14% elongation and also possessed very high strength (725MPa in 0.2% proof stress). The addition of carbon did not significantly degrade the corrosion resistance. The results show that our strategy realizes a novel high-strength Co-Cr-based cast alloy that can be produced for advanced dental applications using a conventional casting procedure. The present study suggested a novel alloy design concept for realizing high-strength Co-Cr-based cast alloys. The proposed strategy is beneficial from the practical point of view because it uses conventional casting approach-a simpler, more cost-effective, industrially friendly manufacturing process than other manufacturing processes such as thermomechanical processing or powder metallurgy. The developed alloys showed the excellent strength-ductility balance and significantly high strength comparable to that of wrought Co-Cr-Mo alloys, while maintaining acceptable ductility and good corrosion resistance. We described the relationship between microstructures and mechanical and corrosion prosperities of the developed alloys; this provides the fundamental aspect of the proposed strategy and will be helpful for further investigations or industrial realization of the proposed strategy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.
2017-06-01
With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.
The Simulation of Magnesium Wheel Low Pressure Die Casting Based on PAM-CAST™
NASA Astrophysics Data System (ADS)
Peng, Yinghong; Wang, Yingchun; Li, Dayong; Zeng, Xiaoqin
2004-06-01
Magnesium is the lightest metal commonly used in engineering, with various excellent characteristics such as high strength and electromagnetic interference shielding capability. Particularly, the usage of magnesium in automotive industry can meet better the need to reduce fuel consumption and CO2 emissions. Nowadays, most current magnesium components in automobiles are made by die casting. In this paper, commercial software for die casting, PAM-CAST™, was utilized to simulate the low pressure die casting process of magnesium wheel. Through calculating temperature field and velocity field during filling and solidification stages, the evolution of temperature distribution and liquid fraction was analyzed. Then, the potential defects including the gas entrapments in the middle of the spokes, shrinkages between the rim and the spokes were forecasted. The analytical results revealed that the mold geometry and die casting parameters should be improved in order to get the sound magnesium wheel. The reasons leading to these defects were also analyzed and the solutions to eliminate them were put forward. Furthermore, through reducing the pouring velocity, the air gas entrapments and partial shrinkages were eliminated effectively.
Cast erosion from the cleaning of debris after the use of a cast trimmer.
Hansen, Paul A; Beatty, Mark W
2017-02-01
Whether using tap water to rinse off debris will make a clinical difference to the surface detail of a gypsum cast is unknown. In addition, how best to remove debris from the cast is unknown. The purpose of this in vitro study was to evaluate the efficiency of different methods of cleaning a gypsum cast after trimming and the effect of short-term exposure to tap water on the surface quality of the cast. A die fitting American National Standards Institute/American Dental Association specification 25 (International Standards Organization specification 6873) for dental gypsum products was embedded in a Dentoform with the machined lines positioned at the same level as the occlusal surface of the posterior teeth. A flat plate was used to ensure that the plane of occlusion for the die was at the same position as the posterior teeth. Forty polyvinyl siloxane impressions of the Dentoform were made and poured with vacuum-mixed improved Type IV dental stone. Each cast was inspected for the accurate reproduction of the lines. The base of the 2-stage pour was trimmed with a cast trimmer with water, and surface debris was removed by rinsing by hand under tap water for 10 seconds, by brushing the cast with a soft toothbrush for 10 seconds, or by resoaking the cast and using a soft camel hair brush in slurry water for 10 seconds. The amount of debris was evaluated on a scale of 1 to 4, and the quality of the 20-μm line was evaluated on a scale of 1 to 4 under ×15 magnification. The nonparametric Kruskal-Wallis ranks test was used to identify significant differences among the different cleaning methods (α=.05). Results of the Kruskal-Wallis and Kruskal-Wallis Z-value tests demonstrated that all cleaning methods produced cleaner casts than were observed for uncleansed controls (P<.001), but no differences in debris removal were found among the different cleaning methods (.065≤P≤.901). The ability to see the quality of a 20-μm line (P=.974) was not statistically different among the groups. Rinsing the cast under flowing tap water and brushing, or hand washing under flowing tap water, or using a soft camel hair brush in slurry water for 10 seconds had no noticeable effects on the quality of a 20-μm line, and all 3 methods resulted in a clean cast. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.
Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloymore » optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.« less
Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.
Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru
2005-05-01
It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.
Nemeth, Banne; van Adrichem, Raymond A.; van Hylckama Vlieg, Astrid; Bucciarelli, Paolo; Martinelli, Ida; Baglin, Trevor; Rosendaal, Frits R.; le Cessie, Saskia; Cannegieter, Suzanne C.
2015-01-01
Background Guidelines and clinical practice vary considerably with respect to thrombosis prophylaxis during plaster cast immobilization of the lower extremity. Identifying patients at high risk for the development of venous thromboembolism (VTE) would provide a basis for considering individual thromboprophylaxis use and planning treatment studies. The aims of this study were (1) to investigate the predictive value of genetic and environmental risk factors, levels of coagulation factors, and other biomarkers for the occurrence of VTE after cast immobilization of the lower extremity and (2) to develop a clinical prediction tool for the prediction of VTE in plaster cast patients. Methods and Findings We used data from a large population-based case–control study (MEGA study, 4,446 cases with VTE, 6,118 controls without) designed to identify risk factors for a first VTE. Cases were recruited from six anticoagulation clinics in the Netherlands between 1999 and 2004; controls were their partners or individuals identified via random digit dialing. Identification of predictor variables to be included in the model was based on reported associations in the literature or on a relative risk (odds ratio) > 1.2 and p ≤ 0.25 in the univariate analysis of all participants. Using multivariate logistic regression, a full prediction model was created. In addition to the full model (all variables), a restricted model (minimum number of predictors with a maximum predictive value) and a clinical model (environmental risk factors only, no blood draw or assays required) were created. To determine the discriminatory power in patients with cast immobilization (n = 230), the area under the curve (AUC) was calculated by means of a receiver operating characteristic. Validation was performed in two other case–control studies of the etiology of VTE: (1) the THE-VTE study, a two-center, population-based case–control study (conducted in Leiden, the Netherlands, and Cambridge, United Kingdom) with 784 cases and 523 controls included between March 2003 and December 2008 and (2) the Milan study, a population-based case–control study with 2,117 cases and 2,088 controls selected between December 1993 and December 2010 at the Thrombosis Center, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, Milan, Italy. The full model consisted of 32 predictors, including three genetic factors and six biomarkers. For this model, an AUC of 0.85 (95% CI 0.77–0.92) was found in individuals with plaster cast immobilization of the lower extremity. The AUC for the restricted model (containing 11 predictors, including two genetic factors and one biomarker) was 0.84 (95% CI 0.77–0.92). The clinical model (consisting of 14 environmental predictors) resulted in an AUC of 0.77 (95% CI 0.66–0.87). The clinical model was converted into a risk score, the L-TRiP(cast) score (Leiden–Thrombosis Risk Prediction for patients with cast immobilization score), which showed an AUC of 0.76 (95% CI 0.66–0.86). Validation in the THE-VTE study data resulted in an AUC of 0.77 (95% CI 0.58–0.96) for the L-TRiP(cast) score. Validation in the Milan study resulted in an AUC of 0.93 (95% CI 0.86–1.00) for the full model, an AUC of 0.92 (95% CI 0.76–0.87) for the restricted model, and an AUC of 0.96 (95% CI 0.92–0.99) for the clinical model. The L-TRiP(cast) score resulted in an AUC of 0.95 (95% CI 0.91–0.99). Major limitations of this study were that information on thromboprophylaxis was not available for patients who had plaster cast immobilization of the lower extremity and that blood was drawn 3 mo after the thrombotic event. Conclusions These results show that information on environmental risk factors, coagulation factors, and genetic determinants in patients with plaster casts leads to high accuracy in the prediction of VTE risk. In daily practice, the clinical model may be the preferred model as its factors are most easy to determine, while the model still has good predictive performance. These results may provide guidance for thromboprophylaxis and form the basis for a management study. PMID:26554832
Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting
NASA Astrophysics Data System (ADS)
Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu
2017-09-01
In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.
Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.
Shah, Falgun; Greene, Nigel
2014-01-21
The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds.
Skibinska, A; Lee, A; Wylie, M; Smyth, V J; Welsh, M D; Todd, D
2015-01-01
The development of an indirect enzyme-linked immunosorbent assay (ELISA) for the serological diagnosis of Group B chicken astrovirus (CAstV) infections is described. The test was based on the use of an affinity-purified capsid antigen, specific to CAstV isolate 11672, produced as a glutathione-S-transferase N-terminal fusion protein by a recombinant baculovirus. Strongly positive ELISA signals were elicited against experimentally produced antisera raised to CAstVs from Group B (subgroups i and ii) but were negative for antisera raised to a Group A CAstV. Using a panel of 240 selected serum samples, 99% agreement was observed when the results obtained by ELISA were compared to those from an indirect immunofluorescence test for CAstV 11672. The ELISA test was applied to 68 serum sets comprising 1864 samples, which were obtained from parent and grandparent flocks originating mainly in the UK. Of the 52 sets containing ELISA-positive samples, 24 sets had >75% samples positive and nine sets had <25% samples positive and were regarded as having high and low seropositivities, respectively. Of the 1864 serum samples tested 1090 (58.5%) were ELISA positive and of these, 234 sera (21.5%) produced strongly positive signals, whereas moderately positive and weakly positive signals were produced by 562 (51.5%) and 294 (27%) sera. When used for flock screening purposes, this ELISA test can be used to (i) investigate the occurrence of first-time CAstV infections of parent flocks during lay and the possible adverse effects caused by vertically transmitted CAstV infections on broiler hatchability and performance and (ii) diagnose Group B CAstV infections within specific pathogen free flocks.
Comparing maximum intercuspal contacts of virtual dental patients and mounted dental casts.
Delong, Ralph; Ko, Ching-Chang; Anderson, Gary C; Hodges, James S; Douglas, W H
2002-12-01
Quantitative measures of occlusal contacts are of paramount importance in the study of chewing dysfunction. A tool is needed to identify and quantify occlusal parameters without occlusal interference caused by the technique of analysis. This laboratory simulation study compared occlusal contacts constructed from 3-dimensional images of dental casts and interocclusal records with contacts found by use of conventional methods. Dental casts of 10 completely dentate adults were mounted in a semi-adjustable Denar articulator. Maximum intercuspal contacts were marked on the casts using red film. Intercuspal records made with an experimental vinyl polysiloxane impression material recorded maximum intercuspation. Three-dimensional virtual models of the casts and interocclusal records were made using custom software and an optical scanner. Contacts were calculated between virtual casts aligned manually (CM), aligned with interocclusal records scanned seated on the mandibular casts (C1) or scanned independently (C2), and directly from virtual interocclusal records (IR). Sensitivity and specificity calculations used the marked contacts as the standard. Contact parameters were compared between method pairs. Statistical comparisons used analysis of variance and the Tukey-Kramer post hoc test (P=<.05). Sensitivities (range 0.76-0.89) did not differ significantly among the 4 methods (P=.14); however, specificities (range 0.89-0.98) were significantly lower for IR (P=.0001). Contact parameters of methods CM, C1, and C2 differed significantly from those of method IR (P<.02). The ranking based on method pair comparisons was C2/C1 > CM/C1 = CM/C2 > C2/IR > CM/IR > C1/IR, where ">" means "closer than." Within the limits of this study, occlusal contacts calculated from aligned virtual casts accurately reproduce articulator contacts.
Effect of sociocultural cleavage on genetic differentiation: a study from North India.
Khan, Faisal; Pandey, Atul Kumar; Borkar, Meenal; Tripathi, Manorma; Talwar, Sudha; Bisen, P S; Agrawal, Suraksha
2008-06-01
Indian populations possess an exclusive genetic profile primarily due to the many migratory events, which caused an extensive range of genetic diversity, and also due to stringent and austere sociocultural barriers that structure these populations into different endogamous groups. In the present study we attempt to explore the genetic relationships between various endogamous North Indian populations and to determine the effect of stringent social regulations on their gene pool. Twenty STR markers were genotyped in 1,800 random North Indians from 9 endogamous populations belonging to upper-caste and middle-caste Hindus and Muslims. All nine populations had high allelic diversity (176 alleles) and average observed heterozygosity (0.742 +/- 0.06), suggesting strong intrapopulation diversity. The average F(ST) value over all loci was as low as 0.0084. However, within-group F(ST) and genetic distance analysis showed that populations of the same group were genetically closer to each other. The genetic distance of Muslims from middle castes (F(ST) = 0.0090; DA = 0.0266) was significantly higher than that of Muslims from upper castes (F(ST) = 0.0050; DA = 0.0148). Phylogenetic trees (neighbor-joining and maximum-likelihood) show the basal cluster pattern of three clusters corresponding to Muslims, upper-caste, and middle-caste populations, with Muslims clustered with upper-caste populations. Based on the results, we conclude that the extensive gene flow through a series of migrations and invasions has created an enormous amount of genetic diversity. The interpopulation differences are minimal but have a definite pattern, in which populations of different socioreligious groups have more genetic similarity within the same group and are genetically more distant from populations of other groups. Finally, North Indian Muslims show a differential genetic relationship with upper- and middle-caste populations.
NASA Astrophysics Data System (ADS)
Zolotorevskii, V. S.; Pozdnyakov, A. V.; Churyumov, A. Yu.
2012-11-01
A calculation-experimental study is carried out to improve the concept of searching for new alloying systems in order to develop new casting alloys using mathematical simulation methods in combination with thermodynamic calculations. The results show the high effectiveness of the applied methods. The real possibility of selecting the promising compositions with the required set of casting and mechanical properties is exemplified by alloys with thermally hardened Al-Cu and Al-Cu-Mg matrices, as well as poorly soluble additives that form eutectic components using mainly the calculation study methods and the minimum number of experiments.
Development of low-cost directionally-solidified turbine blades
NASA Technical Reports Server (NTRS)
Hoppin, G. S., III; Fujii, M.; Sink, L. W.
1980-01-01
A low-cost directionally solidified (DS) casting of turbine blades of high stress rupture is discussed. The process uses an exothermically heated mold; a newly designed solid blade was cast for the high-pressure turbine of the TFE731-3 turbofan engine. Ni-based alloys Mar-M 247 and Mar-M 200 + Hf were used. The solid DS blade replaced a conventionally cast IN100 component; a 40% cost saving is expected, with a 2.4% reduction in the takeoff specific fuel consumption. The DS Mar-M 247 blade has been selected for production in the TFE731-3B-100, and advanced version of the TFE731-3.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions Factors for Open Molding and Centrifugal Casting § 63.5796 What are the organic HAP emissions... factors. Equations are available for each open molding operation and centrifugal casting operation and... incorporated in the facility's air emissions permit and are based on actual facility HAP emissions test data...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emissions Factors for Open Molding and Centrifugal Casting § 63.5796 What are the organic HAP emissions... factors. Equations are available for each open molding operation and centrifugal casting operation and... incorporated in the facility's air emissions permit and are based on actual facility HAP emissions test data...
VIEW OF GUN EMPLACEMENT AND THE TABLELIKE CAST CONCRETE STRUCTURE ...
VIEW OF GUN EMPLACEMENT AND THE TABLE-LIKE CAST CONCRETE STRUCTURE SHOWING THE SPALLED AREA ON ITS EAST SIDE (LEFT) WHERE THE SECOND PROJECTING ARM WAS BROKEN OFF. NOTE THE SLOPED CONCRETE PAD IN THE BACKGROUND. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI
Code of Federal Regulations, 2014 CFR
2014-07-01
... Organic Hap Emissions Factors for Open Molding and Centrifugal Casting § 63.5796 What are the organic HAP... emissions factors. Equations are available for each open molding operation and centrifugal casting operation... incorporated in the facility's air emissions permit and are based on actual facility HAP emissions test data...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Organic Hap Emissions Factors for Open Molding and Centrifugal Casting § 63.5796 What are the organic HAP... emissions factors. Equations are available for each open molding operation and centrifugal casting operation... incorporated in the facility's air emissions permit and are based on actual facility HAP emissions test data...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Organic Hap Emissions Factors for Open Molding and Centrifugal Casting § 63.5796 What are the organic HAP... emissions factors. Equations are available for each open molding operation and centrifugal casting operation... incorporated in the facility's air emissions permit and are based on actual facility HAP emissions test data...
ToxRefDB - Release user-friendly web-based tool for mining ToxRefDB
The updated URL link is for a table of NCCT ToxCast public datasets. The next to last row of the table has the link for the US EPA ToxCast ToxRefDB Data Release October 2014. ToxRefDB provides detailed chemical toxicity data in a publically accessible searchable format. ToxRefD...
Solidification Based Grain Refinement in Steels
2009-07-24
pearlite (See Figure 1). No evidence of the as-cast austenite dendrite structure was observed. The gating system for this sample resides at the thermal...possible nucleating compounds. 3) Extend grain refinement theory and solidification knowledge through experimental data. 4) Determine structure ...refine the structure of a casting through heat treatment. The energy required for grain refining via thermomechanical processes or heat treatment
Do Caste and Class Define Inequality? Revisiting Education in a Kerala Village
ERIC Educational Resources Information Center
Scaria, Suma
2014-01-01
Is there a strong correlation between caste and class in access to education, especially higher education? This is the broader question addressed by the study in the context of Kerala, the southernmost state in India, with impressive conventional indicators in education. Micro-level insights based on the study of a village in Kerala show that old…
NASA Astrophysics Data System (ADS)
Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.
2018-05-01
During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.
20170312 - Adverse Outcome Pathway (AOP) framework for ...
Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi
Adverse Outcome Pathway (AOP) framework for embryonic ...
Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi
Microstructure of As-cast Co-Cr-Mo Alloy Prepared by Investment Casting
NASA Astrophysics Data System (ADS)
Park, Jong Bum; Jung, Kyung-Hwan; Kim, Kang Min; Son, Yong; Lee, Jung-Il; Ryu, Jeong Ho
2018-04-01
The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by an investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants owing to its high strength, good corrosion resistance, and excellent biocompatibility. This work focuses on the resulting microstructures arising from normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an γ-Co (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as M23C6 carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the σ phase, were also detected, and their presence could be linked to the manufacturing process and environment.
Detonation initiation of heterogeneous melt-cast high explosives
NASA Astrophysics Data System (ADS)
Chuzeville, V.; Baudin, G.; Lefrançois, A.; Genetier, M.; Barbarin, Y.; Jacquet, L.; Lhopitault, J.-L.; Peix, J.; Boulanger, R.; Catoire, L.
2017-01-01
2,4,6-trinitrotoluene (TNT) is widely used in conventional and insensitive munitions as a fusible binder, commonly melt-cast with other explosives such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) or 3-nitro-1,2,4-triazol-one (NTO). In this paper, we study the shock-to-detonation transition phenomenon in two melt-cast high explosives (HE). We have performed plate impact tests on wedge samples to measure run-distance and time-to-detonation in order to establish the Pop-plot relation for several melt-cast HE. Highlighting the existence of the single curve buildup, we propose a two phase model based on a Zeldovich, Von-Neumann, Döring (ZND) approach where the deflagration fronts grow from the explosive grain boundaries. Knowing the grain size distribution, we calculate the deflagration velocities of the explosive charges as a function of shock pressure and explore the possible grain fragmentation.
Control system of water flow and casting speed in continuous steel casting
NASA Astrophysics Data System (ADS)
Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Chioncel, C.
2017-05-01
This paper presents the results of research based on real data taken from the installation process at Arcelor Mittal Hunedoara. Using Matlab Simulink an intelligent system is made that takes in data from the process and makes real time adjustments in the rate of flow of the cooling water and the speed of casting that eliminates fissures in the poured material from the secondary cooling of steel. Using Matlab Simulink simulation environment allowed for qualitative analysis for various real world situations. Thus, compared to the old method of approach for the problem of cracks forming in the crust of the steel in the continuous casting, this new method, proposed and developed, brings safety and precision in this complex process, thus removing any doubt on the existence or non-existence of cracks and takes the necessary steps to prevent and correct them.
Mechanical properties and grindability of dental cast Ti-Nb alloys.
Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu
2003-09-01
Aiming at developing a dental titanium alloy with better mechanical properties and machinability than unalloyed titanium, a series of Ti-Nb alloys with Nb concentrations up to 30% was made. They were cast into magnesia-based molds using a dental casting machine and the mechanical properties and grindability of the castings were examined. The hardness of the alloys with Nb concentrations of 5% and above was significantly higher than that of titanium. The yield strength and tensile strength of the alloys with Nb concentrations of 10% and above were significantly higher than those of titanium, while the elongation was significantly lower. A small addition of niobium to titanium did not contribute to improving the grindability of titanium. The Ti-30% Nb alloy exhibited significantly better grindability at low grinding speed with higher hardness, strength, and Young's modulus than titanium, presumably due to precipitation of the omega phase in the beta matrix.
NASA Astrophysics Data System (ADS)
Akopyan, T. K.; Padalko, A. G.; Belov, N. A.; Karpova, Zh. A.
2017-11-01
The effect of barothermal treatment by hot isostatic pressing (HIP) on the structure and the properties of castings of a promising high-strength cast aluminum alloy, namely, nikalin ATs6N4 based on the Al‒Zn-Mg-Cu-Ni system, has been studied using two barothermal treatment regimes different in isothermal holding temperature. It is shown that the casting porosity substantially decreases after barothermal treatment; eutectic phase Al3Ni particles are additionally refined during exposure to the barothermal treatment temperature: the higher the HIP temperature, the more substantial the refinement. The improvement of the casting structure after HIP increases their mechanical properties. It is found, in particular, that the plasticity of the alloy in the state of the maximum hardening increases by a factor of more than 8 as compared to the initial state (from 0.82 to 6.9%).
Gene differentiation among ten endogamous groups of West Bengal, India.
Chakraborty, R; Walter, H; Mukherjee, B N; Malhotra, K C; Sauber, P; Banerjee, S; Roy, M
1986-11-01
Ten endogamous populations of West Bengal, India have been surveyed for genetic variation in 12 systems. These populations encompass all social ranks in the caste hierarchy and cover almost the entire geographic area of the state. Gene diversity analysis suggests that these groups exhibit significant allele frequency variation at all but three loci. The overall genetic difference is not, however, in accord with the classification based on caste. Two low-ranking scheduled caste groups are, in fact, in close proximity with the high-caste ones, suggesting evidence of past generations of gene flow among them. Three different clusters of groups emerge from the present data, providing support for the anthropologic assertion that in Bengal Proto-Australoid, Caucasoid, and Mongoloid racial elements generally coexist. However, these three components are not uniformly present in all groups. Geographic separation of the groups is a strong determinant of the gene differentiation that exists among these populations.
Plastic flow and microstructure of cast nickel aluminides at 1273 K
NASA Astrophysics Data System (ADS)
Schneibel, J. H.; Porter, W. D.; Horton, J. A.
1987-12-01
Chill-cast nickel aluminides based on Ni3Al were compression-tested in vacuum at 1273 K at strain rates ranging from 10-5 s-1 to 10-1 s-1. As the strain rate increases, the propensity for intergranular cracking increases. The ductile-to-brittle transition strain rate (DBTS) of as-cast Ni-22.5Al-0.5Hf-0.1B (at. pct) is approximately 10-1 s-1. Homogenization lowers this value by three orders of magnitude, to 10-4 s-1 (a homogenized specimen disintegrated completely at a rate of 10-3 s-1). The fine-grained structure of the as-cast alloy plays an important role in its relatively high DBTS. A hafnium-free alloy, Ni-24A1-0.1B, on the other hand, shows only a weak dependence of the DBTS on prior homogenization, and possible reasons for this finding are discussed.
Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.
Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J
1975-03-01
Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.
Ni{sub 3}Al technology transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikka, V.K.; Viswanathan, S.; Santella, M.L.
1997-04-01
Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, wire, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for: (1) high-strength castable composition for many applications that have been identified; (2) castability (mold type, fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) workability of cast or powder metallurgy product to sheet, bar, andmore » wire. The four issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes the work completed to address some of these issues during FY 1996.« less
Costa, Vania; Tu, Hong Anh; Wells, David; Weir, Mark; Holubowich, Corinne; Walter, Melissa
2017-01-01
Background Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. Results We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00–0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01–0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval −0.11–0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Conclusions Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients. PMID:28989556
2017-01-01
Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00-0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01-0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval -0.11-0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients.
NASA Astrophysics Data System (ADS)
Cho, Soo Haeng; Park, Sung Bin; Lee, Jong Hyeon; Hur, Jin Mok; Lee, Han Soo
2011-05-01
In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li 2O molten salt at 650 °C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 °C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, NiO, and (Al,Nb,Ti)O 2; those of as cast and heat treated high Si/low Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.
Soft cast versus rigid cast for treatment of distal radius buckle fractures in children.
Witney-Lagen, Caroline; Smith, Christine; Walsh, Graham
2013-04-01
Buckle fractures are extremely common and their optimum management is still under debate. This study aimed to ascertain whether buckle fractures of the distal radius can be safely and effectively treated in soft cast with only a single orthopaedic outpatient clinic appointment. A total of 232 children with buckle fractures of the distal radius were included in the study. 111 children with 112 distal radius fractures were treated in full rigid cast and 121 children with 123 fractures were treated with soft cast. The rigid cast children attended outpatient clinic for removal of cast at 3 weeks. Soft casts were removed by parents unwinding the cast at home after 3 weeks. Follow-up was conducted prospectively by telephone questionnaire at an average of 6 weeks post-injury. Outcome data were available for 117 children treated in soft cast and for 102 children treated in rigid cast. The most common mechanism of injury was a fall sustained from standing or running, followed by falls from bikes and then trampoline accidents. Overall, both groups recovered well. Overall satisfaction with the outcome of treatment was 97.4% in soft cast and 95.2% in rigid cast. Casts were reported as comfortable by 95.7% in soft cast and 93.3% in rigid cast. Cast changes were required for 6.8% of soft casts and 11.5% of rigid casts. The most frequent cause for changing rigid casts was getting the cast wet. None of the improved scores seen in the soft cast group were statistically significant. No re-fractures were seen in either group. Nearly all (94.9%) children in soft cast did bathe, shower or swim in their cast. Parents of both groups preferred treatment with soft cast (p < 0.001). Reasons given for preferring the soft cast included the ability to get the cast wet, avoidance of the plaster saw and not having to take time off work to attend a follow-up visit for cast removal. Buckle fractures of the distal radius can be safely and effectively treated in soft cast with only a single orthopaedic outpatient clinic appointment. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charlot, L.A.; Westerman, R.E.
A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allowsmore » its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt.« less
A Novel Marker Based Method to Teeth Alignment in MRI
NASA Astrophysics Data System (ADS)
Luukinen, Jean-Marc; Aalto, Daniel; Malinen, Jarmo; Niikuni, Naoko; Saunavaara, Jani; Jääsaari, Päivi; Ojalammi, Antti; Parkkola, Riitta; Soukka, Tero; Happonen, Risto-Pekka
2018-04-01
Magnetic resonance imaging (MRI) can precisely capture the anatomy of the vocal tract. However, the crowns of teeth are not visible in standard MRI scans. In this study, a marker-based teeth alignment method is presented and evaluated. Ten patients undergoing orthognathic surgery were enrolled. Supraglottal airways were imaged preoperatively using structural MRI. MRI visible markers were developed, and they were attached to maxillary teeth and corresponding locations on the dental casts. Repeated measurements of intermarker distances in MRI and in a replica model was compared using linear regression analysis. Dental cast MRI and corresponding caliper measurements did not differ significantly. In contrast, the marker locations in vivo differed somewhat from the dental cast measurements likely due to marker placement inaccuracies. The markers were clearly visible in MRI and allowed for dental models to be aligned to head and neck MRI scans.
Heat Transfer Measurements during DC Casting of Aluminium Part I: Measurement Technique
NASA Astrophysics Data System (ADS)
Bakken, J. A.; Bergström, T.
A method for determination of surface heat transfer to the cooling water and mould based on in-situ temperature measurements in the DC cast ingot has been developed. Three or more steel mantled coaxial thermocouples (0.5 mm diam.) are mounted on a wire frame called a "harp". Allowing the "harp" to freeze into the solid ingots during the casting time-temperature plots T1 (t), T2(t), T3 (t) are obtained for three moving points positioned typically 3, 7 and 11 mm from the ingot surface. From these measurements surface temperature, heat flux and heat transfer coefficients are computed as functions of vertical distance. The computer program is based on steady-state two-dimensional heat balances with convective terms for two fixed volume elements: one around thermocouple T1 and one surface element. A special numerical smoothing procedure is incorporated. The heat of solidification is taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallajosyula, Arun T.; Nie, Wanyi; Gupta, Gautam
A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFOmore » may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFO|C 60 and C 60-only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C 60-only devices. In addition, with a relatively higher contribution to photocurrent from the PFO-C 60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C 60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. Lastly, these results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.« less
Incidence and etiology of unplanned cast changes for fractures in the pediatric population.
DiPaola, Matthew J; Abzug, Joshua M; Pizzutillo, Peter D; Herman, Martin J
2014-09-01
The majority of pediatric fractures are treated in casts due to the child's ability to heal rapidly and remodel. Unplanned cast changes are a time and economic burden with potentially adverse effects on fracture management. The purpose of this study is to document the incidence, etiology, and complications related to unplanned cast changes. A prospective study was conducted over a 6-month period to determine the incidence of unplanned cast changes. All casts applied were nonwaterproof. Data collected include the reason for cast placement, type of cast placed, duration of wear before the unplanned change, reason for the unplanned change, experience level of the original cast applicator, and cast-related complications. A total of 1135 casts were placed with 58% placed by a resident, 38% by a cast technician, 2% by a physician's assistant, and 2% by an attending physician. Sixty casts (5.3%) required an unplanned change including 19 short-arm casts, 18 short-leg casts, 17 long-arm casts, 4 thumb spica casts, and 2 long-leg casts. The average duration from cast application until the unplanned change was 13 days. Twenty-eight (47%) were changed for wetness, 20 (33%) for wear/breakage, 2 (3%) for skin irritation, and 10 (17%) for other reasons including objects in the cast and patient self-removal. Two patients had superficial skin infections requiring oral antibiotics. No fracture reductions were lost secondary to an unplanned cast change. The need for an unplanned cast change did not correlate with the level of experience of the applicator. Most unplanned cast changes were the result of patient nonadherence to instructions and not related to cast application technique. Improved patient and family education regarding cast care may reduce the frequency of unplanned cast changes, thus reducing an economic and time burden on the health care system. Level II--prognostic study.
Zinelis, S
2000-11-01
Porosity is a frequently observed casting defect in dental titanium alloys. This study evaluated the effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium (cp Ti) castings. Eight groups (A-H) of 16 rectangular wax patterns each (30 mm in length, 3 mm in width, and 1 mm in depth) were prepared. The wax patterns were invested with a magnesia-based material and cast with cp Ti (grade II). Groups A, C, E, and G were cast under a pressure of 1 atm, and groups B, D, F, and H were cast under a pressure of 0.5 atm of He, Ar, Kr, and Xe, respectively. The extent of the porosity of the cast specimens was determined radiographically and quantified by image analysis. Three specimens of each group and 3 cylinders of the as-received cp Ti used as a reference were embedded in resin and studied metallographically after grinding, polishing, and chemical etching. These surfaces were used for determination of the Vickers hardness (VHN) as well. Eight specimens from each group were fractured in the tensile mode, and the 0.2% yield strength, fracture stress, and percentage elongation were calculated. Porosity was analyzed with 2-way ANOVA and the Newman-Keuls multiple range test. VHN measurements and tensile properties for specimen groups were compared with 1-way ANOVA and the Newman-Keuls multiple range test (95% significance level). The porosity levels per group were (%): A = 5.50 +/- 4.34, B = 0.77 +/- 1.27, C = 2.44 +/- 3.68, D = 0.06 +/- 0.12, E-H = 0. Two-way ANOVA showed that there was no detectable interaction (P<.05) between gas type and applied pressure. Metallographic examination revealed no differences in microstructure among the groups studied. A finer grain size was observed in all cast groups compared with the original cp Ti. The VHN of the as-received cp Ti was significantly greater than all the cast groups tested. Groups cast under He showed the highest VHN, yield strength, and fracture stress. No significant differences were found in percentage elongation values among the groups. Porosity and mechanical properties of cp Ti castings are dependent on the gas type and pressure, whereas the microstructure remains unaffected.
Use of freeze-casting in advanced burner reactor fuel design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, A. L.; Yablinsky, C. A.; Allen, T. R.
2012-07-01
This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by thatmore » fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)« less
Plane-Based Sampling for Ray Casting Algorithm in Sequential Medical Images
Lin, Lili; Chen, Shengyong; Shao, Yan; Gu, Zichun
2013-01-01
This paper proposes a plane-based sampling method to improve the traditional Ray Casting Algorithm (RCA) for the fast reconstruction of a three-dimensional biomedical model from sequential images. In the novel method, the optical properties of all sampling points depend on the intersection points when a ray travels through an equidistant parallel plan cluster of the volume dataset. The results show that the method improves the rendering speed at over three times compared with the conventional algorithm and the image quality is well guaranteed. PMID:23424608
Difazio, Rachel L; Harris, Marie; Feldman, Lanna; Mahan, Susan T
2017-12-01
Cast immobilization remains the mainstay of pediatric orthopaedic care, yet little is known about the incidence of cast-related skin complications in children treated with cast immobilization. The purposes of this quality improvement project were to: (1) establish a baseline rate of cast-related skin complications in children treated with cast immobilization, (2) identify trends in children who experienced cast-related skin complications, (3) design an intervention aimed at decreasing the rate of cast-related skin complications, and (4) determine the effectiveness of the intervention. A prospective interrupted time-series design was used to determine the incidence of cast-related skin complications overtime and compare the rates of skin complications before and after an intervention designed to decrease the incidence of cast-related heel complications. All consecutive patients who were treated with cast immobilization from September 2012 to September 2014 were included. A cast-related skin complications data collection tool was used to capture all cast-related skin complications. A high rate of heel events was noted in our preliminary analysis and an intervention was designed to decrease the rate of cast-related skin complications, including the addition of padding during casting and respective provider education. The estimated cast-related skin events rate for all patients was 8.9 per 1000 casts applied. The rate for the total preintervention sample was 13.6 per 1000 casts which decreased to 6.6 in the postintervention sample. When examining the heel-only group, the rate was 17.1 per 1000 lower extremity casts applied in the preintervention group and 6.8 in the postintervention group. Incorporating padding to the heel of lower extremity cast was an effective intervention in decreasing the incidence of cast-related skin complications in patients treated with cast immobilization. Level II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klueh, R L; Maziasz, P J; Vitek, J M
2006-09-23
Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additionalmore » elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr-Mo-V-Nb combination in COST CB2. To explore this question, nine more casting test blocks, four 3Cr steels and five 11Cr steels were purchased, and microstructure and mechanical properties studies similar to those described above for the first iteration of test blocks were conducted. Experimental results from the second iteration indicated that 11 Cr steels with excellent properties are possible. The 11Cr-1.5Mo-V-Nb steels were superior to 11Cr-2W-V-Ta steels, and it appears the former class of steels can be developed to have tensile and creep properties exceeding those of COST CB2. The W-Nb combination in an 11Cr-2W-V-Nb steel had tensile and short-time creep properties at 650 C better than the 11Cr-1.5Mo-V-Nb steels, although long-time low-stress properties may not be as good because of Laves phase formation. Based on the results, the next step in the development of improved casting steels involves acquisition of 11Cr-1.5Mo-V-Nb-N-B-C and 11Cr-2W-V-Nb-N-B-C steels on which long-term creep-rupture tests (>10,000 h) be conducted. For better oxidation and corrosion resistance, development of 11Cr steels, as opposed to a 9Cr steels, such as COST CB2, are important for future turbine designs that envision operating temperatures of 650 C.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are Based on a 95 Percent Reduction Requirement 5 Table 5 to Subpart WWWW of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...
Sánchez-Turrión, Andrés; López-Lozano, José F.; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria J.
2012-01-01
Objectives. This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Study Design. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. Results. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Conclusions. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range. Key words:Dental alloy, laser sintering, implant-supported prostheses, vertical discrepancy, vertical misfit. PMID:22322524
Accuracy and eligibility of CBCT to digitize dental plaster casts.
Becker, Kathrin; Schmücker, Ulf; Schwarz, Frank; Drescher, Dieter
2018-05-01
Software-based dental planning requires digital casts and oftentimes cone-beam computed tomography (CBCT) radiography. However, buying a dedicated model digitizing device can be expensive and might not be required. The present study aimed to assess whether digital models derived from CBCT and models digitized using a dedicated optical device are of comparable accuracy. A total of 20 plaster casts were digitized with eight CBCT and five optical model digitizers. Corresponding models were superimposed using six control points and subsequent iterative closest point matching. Median distances were calculated among all registered models. Data were pooled per scanner and model. Boxplots were generated, and the paired t test, a Friedman test, and a post-hoc Nemenyi test were employed for statistical comparison. Results were found significant at p < 0.05. All CBCT devices allowed the digitization of plaster casts, but failed to reach the accuracy of the dedicated model digitizers (p < 0.001). Median distances between CBCT and optically digitized casts were 0.064 + - 0.005 mm. Qualitative differences among the CBCT systems were detected (χ 2 = 78.07, p < 0.001), and one CBCT providing a special plaster cast digitization mode was found superior to the competitors (p < 0.05). CBCT systems failed to reach the accuracy from optical digitizers, but within the limits of the study, accuracy appeared to be sufficient for digital planning and forensic purposes. Most CBCT systems enabled digitization of plaster casts, and accuracy was found sufficient for digital planning and storage purposes.
Infiltration of Slag Film into the Grooves on a Continuous Casting Mold
NASA Astrophysics Data System (ADS)
Cho, Jung-Wook; Jeong, Hee-Tae
2013-02-01
An analytical model is developed to clarify the slag film infiltration into grooves on a copper mold during the continuous casting of steel slabs. A grooved-type casting mold was applied to investigate the infiltration of slag film into the grooves of a pitch of 0.8 mm, width of 0.7 mm, and depth of 0.6 mm at the vicinity of a meniscus. The plant trial tests were carried out at a casting speed of 5.5 m min-1. The slag film captured at a commercial thin slab casting plant showed that both the overall and the liquid film thickness were decreased exponentially as the distance from the meniscus increases. In contrast, the infiltration of slag film into the grooves had been increased with increasing distance from the meniscus. A theoretic model has been derived based on the measured profile of slag film thickness to calculate the infiltration of slag film into the grooves. It successfully reproduces the empirical observation that infiltration ratio increased sharply along casting direction, about 80 pct at 50 mm and 95 pct at 150 mm below the meniscus. In the model calculation, the infiltration of slag film increases with increasing groove width and/or surface tension of the slag. The effect of groove depth is negligible when the width to depth ratio of the groove is larger than unity. It is expected that the developed model for slag film infiltration in this study will be widely utilized to optimize the design of groove dimensions in continuous casting molds.
Perception of object motion in three-dimensional space induced by cast shadows.
Katsuyama, Narumi; Usui, Nobuo; Nose, Izuru; Taira, Masato
2011-01-01
Cast shadows can be salient depth cues in three-dimensional (3D) vision. Using a motion illusion in which a ball is perceived to roll in depth on the bottom or to flow in the front plane depending on the slope of the trajectory of its cast shadow, we investigated cortical mechanisms underlying 3D vision based on cast shadows using fMRI techniques. When modified versions of the original illusion, in which the slope of the shadow trajectory (shadow slope) was changed in 5 steps from the same one as the ball trajectory to the horizontal, were presented to participants, their perceived ball trajectory shifted gradually from rolling on the bottom to floating in the front plane as the change of the shadow slope. This observation suggests that the perception of the ball trajectory in this illusion is strongly affected by the motion of the cast shadow. In the fMRI study, cortical activity during observation of the movies of the illusion was investigated. We found that the bilateral posterior-occipital sulcus (POS) and right ventral precuneus showed activation related to the perception of the ball trajectory induced by the cast shadows in the illusion. Of these areas, it was suggested that the right POS may be involved in the inferring of the ball trajectory by the given spatial relation between the ball and the shadow. Our present results suggest that the posterior portion of the medial parietal cortex may be involved in 3D vision by cast shadows. Copyright © 2010 Elsevier Inc. All rights reserved.
Effect of surface reaction layer on grindability of cast titanium alloys.
Ohkubo, Chikahiro; Hosoi, Toshio; Ford, J Phillip; Watanabe, Ikuya
2006-03-01
The purpose of this study was to investigate the effect of the cast surface reaction layer on the grindability of titanium alloys, including free-machining titanium alloy (DT2F), and to compare the results with the grindability of two dental casting alloys (gold and Co-Cr). All titanium specimens (pure Ti, Ti-6Al-4V and DT2F) were cast using a centrifugal casting machine in magnesia-based investment molds. Two specimen sizes were used to cast the titanium metals so that the larger castings would be the same size as the smaller gold and Co-Cr alloy specimens after removal of the surface reaction layer (alpha-case). Grindability was measured as volume loss ground from a specimen for 1 min using a handpiece engine with a SiC abrasive wheel at 0.1 kgf and four circumferential wheel speeds. For the titanium and gold alloys, grindability increased as the rotational speed increased. There was no statistical difference (p>0.05) in grindability for all titanium specimens either with or without the alpha-case. Of the titanium metals tested, Ti-6 Al-4V had the greatest grindability at higher speeds, followed by DT2F and CP Ti. The grindability of the gold alloy was similar to that of Ti-6 Al-4V, whereas the Co-Cr alloy had the lowest grindability. The results of this study indicated that the alpha-case did not significantly affect the grindability of the titanium alloys. The free-machining titanium alloy had improved grindability compared to CP Ti.
Dickie, Ray A.; Mangels, John A.
1984-01-01
The method concerns forming a relatively stable slip of silicon metal particles and yttrium containing particles. In one embodiment, a casting slip of silicon metal particles is formed in water. Particles of a yttrium containing sintering aid are added to the casting slip. The yttrium containing sintering aid is a compound which has at least some solubility in water to form Y.sup.+3 ions which have a high potential for totally flocculating the silicon metal particles into a semiporous solid. A small amount of a fluoride salt is added to the casting slip which contains the yttrium containing sintering aid. The fluoride salt is one which will produce fluoride anions when dissolved in water. The small amount of the fluoride anions produced are effective to suppress the flocculation of the silicon metal particles by the Y.sup.+3 ions so that all particles remain in suspension in the casting slip and the casting slip has both an increased shelf life and can be used to cast articles having a relatively thick cross-section. The pH of the casting slip is maintained in a range from 7.5 to 9. Preferably, the fluoride salt used is one which is based on a monovalent cation such as sodium or ammonia. The steps of adding the yttrium containing sintering aid and the fluoride salt may be interchanged if desired, and the salt may be added to a solution containing the sintering aid prior to addition of the silicon metal particles.
Determining casting defects in near-net shape casting aluminum parts by computed tomography
NASA Astrophysics Data System (ADS)
Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter
2018-03-01
Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.
Dey, Bhabani P; Reamer, Richard P; Thaker, Nitin H; Thaler, Alice M
2005-01-01
The Calf Antibiotic and Sulfonamide Test (CAST), a microbial inhibition screening test, was developed for detecting antibiotics and sulfonamides in bob veal calf carcasses. The test uses Bacillus megaterium ATCC 9885 as the indicator organism and Mueller Hinton agar as the growth medium. Compared to Swab Test on Premises (STOP), developed in 1970, this screening test has higher sensitivity and the ability to detect a wider range of veterinary antimicrobial residual drugs, particularly sulfonamides, at lower concentrations. Carcasses that are tested with CAST and suspected of containing chemical residue above tolerance level are retained for confirmation. Disposition of these carcasses are determined upon laboratory result. Routine testing of bob veal calves with CAST allowed the Food Safety and Inspection Service to release most calf carcasses within 24 h post-slaughter, thus conserving shipping and handling resources. However, changes in the regulation in 1990 dictate that disposition of carcasses found to contain violative levels of sulfonamide residues should be based on laboratory findings. The analysis of the data for the years 1990-1994 and 1998 indicate that the use of CAST over the years was significant, and had a direct impact on reduction of residue violations in veal carcasses. With the use of CAST, potentially harmful antimicrobial chemicals entering the human food chain through veal meat have been minimized.
Concept of a small satellite for sub-MeV and MeV all sky survey: the CAST mission
NASA Astrophysics Data System (ADS)
Nakazawa, Kazuhiro; Takahashi, Tadayuki; Ichinohe, Yuto; Takeda, Shin'ichiro; Tajima, Hiroyasu; Kamae, Tuneyoshi; Kokubun, Motohide; Takashima, Takeshi; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Nomachi, Masaharu; Fukazawa, Yasushi; Makishima, Kazuo; Mizuno, Tsunefumi; Mitani, Takefumi; Yoshimitsu, Tetsuo; Watanabe, Shin
2012-09-01
MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.
Genetic polymorphism in leaf-cutting ants is phenotypically plastic.
Hughes, William O H; Boomsma, Jacobus J
2007-07-07
Advanced societies owe their success to an efficient division of labour that, in some social insects, is based on specialized worker phenotypes. The system of caste determination in such species is therefore critical. Here, we examine in a leaf-cutting ant (Acromyrmex echinatior) how a recently discovered genetic influence on caste determination interacts with the social environment. By removing most of one phenotype (large workers; LW) from test colonies, we increased the stimulus for larvae to develop into this caste, while for control colonies we removed a representative sample of all workers so that the stimulus was unchanged. We established the relative tendencies of genotypes to develop into LW by genotyping workers before and after the manipulation. In the control colonies, genotypes were similarly represented in the large worker caste before and after worker removal. In the test colonies, however, this relationship was significantly weaker, demonstrating that the change in environmental stimuli had altered the caste propensity of at least some genotypes. The results indicate that the genetic influence on worker caste determination acts via genotypes differing in their response thresholds to environmental cues and can be conceptualized as a set of overlapping reaction norms. A plastic genetic influence on division of labour has thus evolved convergently in two distantly related polyandrous taxa, the leaf-cutting ants and the honeybees, suggesting that it may be a common, potentially adaptive, property of complex, genetically diverse societies.
NASA Astrophysics Data System (ADS)
Fatima, Noshin; Ahmed, Muhammad M.; Karimov, Khasan S.; Ahmad, Zubair; Fariq Muhammad, Fahmi
2017-06-01
In this study, solution processed composite films of nickel phthalocyanine (NiPc) and cobalt phthalocyanine (CoPc) are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc-CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity ({S}z) are equal to (-1.83) {{M}}{{Ω }}\\cdot {{cm}}2/{mW} and (-5.365){{M}}{{Ω }}\\cdot {{cm}}2/{mW} for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity ({S}{{c}}) are equal to 0.083 {pF}\\cdot {{cm}}2/{mW} and 0.185 {pF}\\cdot {{cm}}2/{mW} for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes (i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed. Project supported by the Center for Advanced Materials (CAM), Qatar University, Qatar.
Heat Transfer Coefficient at Cast-Mold Interface During Centrifugal Casting: Calculation of Air Gap
NASA Astrophysics Data System (ADS)
Bohacek, Jan; Kharicha, Abdellah; Ludwig, Andreas; Wu, Menghuai; Karimi-Sibaki, Ebrahim
2018-06-01
During centrifugal casting, the thermal resistance at the cast-mold interface represents a main blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to form due to the shrinkage of the casting and the mold expansion, under the continuous influence of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has been determined from calculations of the air gap thickness d a based on a plane stress model taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a temperature-dependent Young's modulus. The numerical approach proposed here is rather novel and tries to offer an alternative to the empirical formulas usually used in numerical simulations for a description of a time-dependent heat transfer coefficient h. Several numerical tests were performed for different coating thicknesses d C, rotation rates Ω, and temperatures of solidus T sol. Results demonstrated that the scenario at the interface is unique for each set of parameters, hindering the possibility of employing empirical formulas without a preceding experiment being performed. Initial values of h are simply equivalent to the ratio of the coating thermal conductivity and its thickness ( 1000 Wm-2 K-1). Later, when the air gap is formed, h drops exponentially to values at least one order of magnitude smaller ( 100 Wm-2 K-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Alan A; Zhao, Ji-Cheng; Riggi, Adrienne
The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide largemore » amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.« less
Effect of porosity on ductility variation in investment cast 17-4PH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Robert D.; Kilgo, Alice C.; Grant, Richard P.
2005-02-01
The stainless steel alloy 17-4PH contains a martensitic microstructure and second phase delta ({delta}) ferrite. Strengthening of 17-4PH is attributed to Cu-rich precipitates produced during age hardening treatments at 900-1150 F (H900-H1150). For wrought 17-4PH, the effects of heat treatment and microstructure on mechanical properties are well-documented [for example, Ref. 1]. Fewer studies are available on cast 17-4PH, although it has been a popular casting alloy for high strength applications where moderate corrosion resistance is needed. Microstructural features and defects particular to castings may have adverse effects on properties, especially when the alloy is heat treated to high strength. Themore » objective of this work was to outline the effects of microstructural features specific to castings, such as shrinkage/solidification porosity, on the mechanical behavior of investment cast 17-4PH. Besides heat treatment effects, the results of metallography and SEM studies showed that the largest effect on mechanical properties is from shrinkage/solidification porosity. Figure 1a shows stress-strain curves obtained from samples machined from castings in the H925 condition. The strength levels were fairly similar but the ductility varied significantly. Figure 1b shows an example of porosity on a fracture surface from a room-temperature, quasi-static tensile test. The rounded features represent the surfaces of dendrites which did not fuse or only partially fused together during solidification. Some evidence of local areas of fracture is found on some dendrite surfaces. The shrinkage pores are due to inadequate backfilling of liquid metal and simultaneous solidification shrinkage during casting. A summary of percent elongation results is displayed in Figure 2a. It was found that higher amounts of porosity generally result in lower ductility. Note that the porosity content was measured on the fracture surfaces. The results are qualitatively similar to those found by Gokhale et al. and Surappa et al. in cast A356 Al and by Gokhale et al. for a cast Mg alloys. The quantitative fractography and metallography work by Gokhale et al. illustrated the strong preference for fracture in regions of porosity in cast material. That is, the fracture process is not correlated to the average microstructure in the material but is related to the extremes in microstructure (local regions of high void content). In the present study, image analysis on random cross-sections of several heats indicated an overall porosity content of 0.03%. In contrast, the area % porosity was as high as 16% when measured on fracture surfaces of tensile specimens using stereology techniques. The results confirm that the fracture properties of cast 17-4PH cannot be predicted based on the overall 'average' porosity content in the castings.« less
Critical role of the sorting polymer in carbon nanotube-based minority carrier devices
Mallajosyula, Arun T.; Nie, Wanyi; Gupta, Gautam; ...
2016-11-27
A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFOmore » may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFO|C 60 and C 60-only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C 60-only devices. In addition, with a relatively higher contribution to photocurrent from the PFO-C 60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C 60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. Lastly, these results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.« less
NASA Astrophysics Data System (ADS)
Xie, Wen-Xiong; Li, Jian-Sheng; Gong, Jian; Zhu, Jian-Yu; Huang, Po
2013-10-01
Based on the time-dependent coincidence method, a preliminary experiment has been performed on uranium metal castings with similar quality (about 8-10 kg) and shape (hemispherical shell) in different enrichments using neutron from Cf fast fission chamber and timing DT accelerator. Groups of related parameters can be obtained by analyzing the features of time-dependent coincidence counts between source-detector and two detectors to characterize the fission signal. These parameters have high sensitivity to the enrichment, the sensitivity coefficient (defined as (ΔR/Δm)/R¯) can reach 19.3% per kg of 235U. We can distinguish uranium castings with different enrichments to hold nuclear weapon verification.
Study of Fluid Experiment System (FES)/CAST/Holographic Ground System (HGS)
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Cummings, Rick; Jones, Brian
1992-01-01
The use of holographic and schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The HGS facility at MSFC has been primary resource in researching this capability. Consequently, scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS Crystal Growth and the casting and solidification technology (CAST) experiments that were flown on the International Microgravity Laboratory (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment worked in space. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.
Advanced single crystal for SSME turbopumps
NASA Technical Reports Server (NTRS)
Fritzemeier, L. G.
1989-01-01
The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.
Homogenizing Advanced Alloys: Thermodynamic and Kinetic Simulations Followed by Experimental Results
NASA Astrophysics Data System (ADS)
Jablonski, Paul D.; Hawk, Jeffrey A.
2017-01-01
Segregation of solute elements occurs in nearly all metal alloys during solidification. The resultant elemental partitioning can severely degrade as-cast material properties and lead to difficulties during post-processing (e.g., hot shorts and incipient melting). Many cast articles are subjected to a homogenization heat treatment in order to minimize segregation and improve their performance. Traditionally, homogenization heat treatments are based upon past practice or time-consuming trial and error experiments. Through the use of thermodynamic and kinetic modeling software, NETL has designed a systematic method to optimize homogenization heat treatments. Use of the method allows engineers and researchers to homogenize casting chemistries to levels appropriate for a given application. The method also allows for the adjustment of heat treatment schedules to fit limitations on in-house equipment (capability, reliability, etc.) while maintaining clear numeric targets for segregation reduction. In this approach, the Scheil module within Thermo-Calc is used to predict the as-cast segregation present within an alloy, and then diffusion controlled transformations is used to model homogenization kinetics as a function of time and temperature. Examples of computationally designed heat treatments and verification of their effects on segregation and properties of real castings are presented.
Structure and mechanical properties of improved cast stainless steels for nuclear applications
NASA Astrophysics Data System (ADS)
Kenik, E. A.; Busby, J. T.; Gussev, M. N.; Maziasz, P. J.; Hoelzer, D. T.; Rowcliffe, A. F.; Vitek, J. M.
2017-01-01
Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14-0.36%) and Mn (2-5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.
Shen, Yan; Yu, Baihong; Lv, Yutao; Li, Bin
2017-01-01
A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe) cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS), and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM) is compared at different nominal pressures (40~100 MPa) and temperatures (180~250 °C). With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL), the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs. PMID:29036911
Tensile Properties of Molybdenum and Tungsten from 2500 to 3700 F
NASA Technical Reports Server (NTRS)
Hall, Robert W.; Sikora, Paul F.
1959-01-01
Specimens of commercially pure sintered tungsten, arc-cast unalloyed molybdenum, and two arc-cast molybdenum-base alloys (one with 0.5 percent titanium, the other with 0.46 percent titanium and 0.07 percent zirconium) were fabricated from 1/2-inch-diameter rolled or swaged bars. All specimens were evaluated in short-time tensile tests in the as-received condition, and all except the molybdenum-titanium-zirconium alloy were tested after a 30-minute recrystallization anneal at 3800 F in a vacuum of approximately 0.1 micron. Results showed that the tungsten was considerably stronger than either the arc-cast unalloyed molybdenum or the molybdenum-base alloys over the 2500 to 3700 F temperature range. Recrystallization of swaged tungsten at 3800 F considerably reduced its tensile strength at 2500 F. However, above 3100 F, the as-swaged tungsten specimens recrystallized during testing, and had about the same strength as when recrystallized at 3800 F before evaluation. The ductility of molybdenum-base materials was very high at all test temperatures; the ductility of tungsten decreased sharply above about 3120 F.
... tubular epithelial casts; Waxy casts; Casts in the urine; Fatty casts; Red blood cell casts; White blood ... The urine sample you provide may need to be from your first morning urine. The sample needs to be ...
ERIC Educational Resources Information Center
Wright, Michael D.; And Others
1992-01-01
Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)
NASA Astrophysics Data System (ADS)
Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher; Li, Shimin; Apelian, Diran; Shyam, Amit; Allen Haynes, J.; Rodriguez, Andres F.
2018-06-01
The hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: "V"-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on the variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.
Al-TiH2 Composite Foams Magnesium Alloy
NASA Astrophysics Data System (ADS)
Prasada Rao, A. K.; Oh, Y. S.; Ain, W. Q.; A, Azhari; Basri, S. N.; Kim, N. J.
2016-02-01
The work presented here in describes the synthesis of aluminum based titanium-hydride particulate composite by casting method and its foaming behavior of magnesium alloy. Results obtained indicate that the Al-10TiH2 composite can be synthesized successfully by casting method. Further, results also reveal that closed-cell magnesium alloy foam can be synthesized by using Al-10TiH2 composite as a foaming agent.
Predicting hepatotoxicity using ToxCast in vitro bioactivity and ...
Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors then used supervised machine learning to predict their hepatotoxic effects.Results: A set of 677 chemicals were represented by 711 in vitro bioactivity descriptors (from ToxCast assays), 4,376 chemical structure descriptors (from QikProp, OpenBabel, PADEL, and PubChem), and three hepatotoxicity categories (from animal studies). Hepatotoxicants were defined by rat liver histopathology observed after chronic chemical testing and grouped into hypertrophy (161), injury (101) and proliferative lesions (99). Classifiers were built using six machine learning algorithms: linear discriminant analysis (LDA), Naïve Bayes (NB), support vector classification (SVM), classification and regression trees (CART), k-nearest neighbors (KNN) and an ensemble of classifiers (ENSMB). Classifiers of hepatotoxicity were built using chemical structure, ToxCast bioactivity, and a hybrid representation. Predictive performance was evaluated using 10-fold cross-validation testing and in-loop, filter-based, feature subset selection. Hybrid classifiers had the best balanced accuracy for predicting hypertrophy (0.78±0.08), injury (0.73±0.10) and proliferative lesions (0.72±0.09). Though chemical and bioactivity class
[Registration technology for mandibular angle osteotomy based on augmented reality].
Zhu, Ming; Chai, Gang; Zhang, Yan; Ma, Xiao-Fei; Yu, Zhe-Yuan; Zhu, Yi-Jia
2010-12-01
To establish an effective path to register the operative plan to the real model of mandible made by rapid prototyping (RP) technology. Computerize tomography (CT) was performed on 20 patients to create 3D images, and computer aided operation planning information can be merged with the 3D images. Then dental cast was used to fix the signal which can be recognized by the software. The dental cast was transformed to 3D data with a laser scanner and a programmer that run on a personal computer named Rapidform matching the dental cast and the mandible image to generate the virtual image. Then the registration was achieved by video monitoring system. By using this technology, the virtual image of mandible and the cutting planes both can overlay the real model of mandible made by RP. This study found an effective way for registration by using dental cast, and this way might be a powerful option for the registration of augmented reality. Supported by Program for Innovation Research Team of Shanghai Municipal Education Commission.
NASA Astrophysics Data System (ADS)
Steele-MacInnis, M.; Barkoff, D. W.; Ashley, K.
2017-12-01
Thermobarometry of metasomatic rocks is commonly challenging, owing to the high variance of hydrothermal mineral assemblages, thermodynamic disequilibrium and overprinting by subsequent hydrothermal episodes. Here, we estimate formation pressures of a Cu-Fe-sulfide-bearing andradite-diopside skarn deposit at Casting Copper (Yerington district, NV) using Raman spectroscopy and elastic modeling of apatite inclusions in garnet. Andradite garnet from the Casting Copper skarn contains inclusions of hydroxyl-fluorapatite, calcite, hematite, magnetite, and ilmenite. Raman spectroscopy reveals that the apatite inclusions are predominantly under tension of -23 to -123 MPa at ambient conditions. Elastic modeling of apatite-in-garnet suggest entrapment occurred at 10 to 115 MPa, assuming a trapping temperature of 400 °C, which is consistent with paleodepth estimates of 2-3 km. These results provide independent constraints on the conditions of hydrothermal skarn formation at Casting Copper, and suggest that this approach may be applied to other, less-constrained skarn systems.
Grindability of cast Ti-Hf alloys.
Kikuchi, Masafumi; Takahashi, Masatoshi; Sato, Hideki; Okuno, Osamu; Nunn, Martha E; Okabe, Toru
2006-04-01
As part of our systematic studies characterizing the properties of titanium alloys, we investigated the grindability of a series of cast Ti-Hf alloys. Alloy buttons with hafnium concentrations up to 40 mass% were made using an argon-arc melting furnace. Each button was cast into a magnesia-based mold using a dental titanium casting machine; three specimens were made for each metal. Prior to testing, the hardened surface layer was removed. The specimens were ground at five different speeds for 1 min at 0.98 N using a carborundum wheel on an electric dental handpiece. Grindability was evaluated as the volume of metal removed per minute (grinding rate) and the volume ratio of metal removed compared to the wheel material lost (grinding ratio). The data were analyzed using ANOVA. A trend of increasing grindability was found with increasing amounts of hafnium, although there was no statistical difference in the grindability with increasing hafnium contents. We also found that hafnium may be used to harden or strengthen titanium without deteriorating the grindability.
Modeling of Dendritic Evolution of Continuously Cast Steel Billet with Cellular Automaton
NASA Astrophysics Data System (ADS)
Wang, Weiling; Ji, Cheng; Luo, Sen; Zhu, Miaoyong
2018-02-01
In order to predict the dendritic evolution during the continuous steel casting process, a simple mechanism to connect the heat transfer at the macroscopic scale and the dendritic growth at the microscopic scale was proposed in the present work. As the core of the across-scale simulation, a two-dimensional cell automaton (CA) model with a decentered square algorithm was developed and parallelized. Apart from nucleation undercooling and probability, a temperature gradient was introduced to deal with the columnar-to-equiaxed transition (CET) by considering its variation during continuous casting. Based on the thermal history, the dendritic evolution in a 4 mm × 40 mm region near the centerline of a SWRH82B steel billet was predicted. The influences of the secondary cooling intensity, superheat, and casting speed on the dendritic structure of the billet were investigated in detail. The results show that the predicted equiaxed dendritic solidification of Fe-5.3Si alloy and columnar dendritic solidification of Fe-0.45C alloy are consistent with in situ experimental results [Yasuda et al. Int J Cast Metals Res 22:15-21 (2009); Yasuda et al. ISIJ Int 51:402-408 (2011)]. Moreover, the predicted dendritic arm spacing and CET location agree well with the actual results in the billet. The primary dendrite arm spacing of columnar dendrites decreases with increasing secondary cooling intensity, or decreasing superheat and casting speed. Meanwhile, the CET is promoted as the secondary cooling intensity and superheat decrease. However, the CET is not influenced by the casting speed, owing to the adjusting of the flow rate of secondary spray water. Compared with the superheat and casting speed, the secondary cooling intensity can influence the cooling rate and temperature gradient in deeper locations, and accordingly exerts a more significant influence on the equiaxed dendritic structure.
Davis, Rosemary H; Valadez, Joseph J
2014-12-01
Second-stage sampling techniques, including spatial segmentation, are widely used in community health surveys when reliable household sampling frames are not available. In India, an unresearched technique for household selection is used in eight states, which samples the house with the last marriage or birth as the starting point. Users question whether this last-birth or last-marriage (LBLM) approach introduces bias affecting survey results. We conducted two simultaneous population-based surveys. One used segmentation sampling; the other used LBLM. LBLM sampling required modification before assessment was possible and a more systematic approach was tested using last birth only. We compared coverage proportions produced by the two independent samples for six malaria indicators and demographic variables (education, wealth and caste). We then measured the level of agreement between the caste of the selected participant and the caste of the health worker making the selection. No significant difference between methods was found for the point estimates of six malaria indicators, education, caste or wealth of the survey participants (range of P: 0.06 to >0.99). A poor level of agreement occurred between the caste of the health worker used in household selection and the caste of the final participant, (Κ = 0.185), revealing little association between the two, and thereby indicating that caste was not a source of bias. Although LBLM was not testable, a systematic last-birth approach was tested. If documented concerns of last-birth sampling are addressed, this new method could offer an acceptable alternative to segmentation in India. However, inter-state caste variation could affect this result. Therefore, additional assessment of last birth is required before wider implementation is recommended. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2013; all rights reserved.
Macrovoid Defect Growth during Evaporative Casting of Polymeric Membranes
NASA Technical Reports Server (NTRS)
Greenberg, A. R.; Khare, V. P.; Zartman, J.; Krantz, W. B.; Todd, P.
2003-01-01
Macrovoid (MV) formation is a significant problem in evaporatively cast polymeric membranes. MVs are large, elongated or teardrop-shaped pores (10-50 micron) that can impair membrane structural integrity. Although MVs have been extensively studied, there is no general agreement on the mechanisms governing MV growth. Recently, our research group has formulated the solutocapillary convection (SC) hypothesis, which contends that MV growth involves three principal forces: a Marangoni force generated by surface tension gradients within the MV interface, a viscous drag force, and a gravitationally induced body force. Two sets of complementary experiments were conducted to test the SC hypothesis. Ground-based videomicroscopy flow-visualization (VMFV) was utilized to measure the flow velocities at the MV-casting solution interface and deep within the casting solution. The measurements were performed with casting solutions containing 10 wt% cellulose acetate (CA), 30 wt% H2O, 60 wt% acetone, and 200- ppm TiO2 particles for flow visualization, and the surface tension was controlled by surfactant addition. Qualitatively, the experiments indicated that MV growth occurs in three distinct phases: (1) a very rapid initial growth period, (2) a much slower growth phase, and (3) absorption of selected MVs into the expanding demixed region. The presence of tracer particles inside the MVs suggests the presence of a convective flow, which transfers the particles from the bulk solution to the MV interior. Although the VMFV experiments did not establish any surfactant effect on the interfacial velocities, a statistically significant effect on the MV number density was observed. In the second set of experiments, membranes were cast aboard a KC-135 aircraft under 0-g and 2-g conditions. Despite careful attention to the design and fabrication of the membrane casting apparatus (MCA), several problems were encountered, the most significant of which was the contamination of the casting solution by the activated carbon particles used for solvent absorption.
The effects of below-elbow immobilization on driving performance.
Jones, Evan M; Barrow, Aaron E; Skordas, Nic J; Green, David P; Cho, Mickey S
2017-02-01
There is limited research to guide physicians and patients in deciding whether it is safe to drive while wearing various forms of upper extremity immobilization. The purpose of this study is to evaluate the effect of below-elbow removable splints and fiberglass casts on automobile driving performance. 20 healthy subjects completed 10 runs through a closed, cone-marked driving course while wearing a randomized sequence of four different types of immobilization on each extremity (short arm thumb spica fiberglass cast, short arm fiberglass cast, short arm thumb spica splint, and short arm wrist splint). The first and last driving runs were without immobilization and served as controls. Performance was measured based on evaluation by a certified driving instructor (pass/fail scoring), cones hit, run time, and subject-perceived driving difficulty (1-10 analogue scoring). The greatest number of instructor-scored failures occurred while immobilized in right arm spica casts (n=6; p=0.02) and left arm spica casts (n=5; p=0.049). The right arm spica cast had the highest subject-perceived difficulty (5.2±1.9; p<0.001). All forms of immobilization had significantly increased perceived difficulty compared to control, except for the left short arm splint (2.5±1.6; p>0.05). There was no significant difference in number of cones hit or driving time between control runs and runs with any type of immobilization. Drivers should use caution when wearing any of the forms of upper extremity immobilization tested in this study. All forms of immobilization, with exception of the left short arm splint significantly increased perceived driving difficulty. However, only the fiberglass spica casts (both left and right arm), significantly increased drive run failures due to loss of vehicle control. We recommend against driving when wearing a below-elbow fiberglass spica cast on either extremity. Copyright © 2016. Published by Elsevier Ltd.
Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús
2013-09-01
The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toutain, Pierre-Louis; Bousquet-Mélou, Alain; Damborg, Peter; Ferran, Aude A; Mevius, Dik; Pelligand, Ludovic; Veldman, Kees T; Lees, Peter
2017-01-01
VetCAST is the EUCAST sub-committee for Veterinary Antimicrobial Susceptibility Testing. Its remit is to define clinical breakpoints (CBPs) for antimicrobial drugs (AMDs) used in veterinary medicine in Europe. This position paper outlines the procedures and reviews scientific options to solve challenges for the determination of specific CBPs for animal species, drug substances and disease conditions. VetCAST will adopt EUCAST approaches: the initial step will be data assessment; then procedures for decisions on the CBP; and finally the release of recommendations for CBP implementation. The principal challenges anticipated by VetCAST are those associated with the differing modalities of AMD administration, including mass medication, specific long-acting product formulations or local administration. Specific challenges comprise mastitis treatment in dairy cattle, the range of species and within species breed considerations and several other variable factors not relevant to human medicine. Each CBP will be based on consideration of: (i) an epidemiological cut-off value (ECOFF) - the highest MIC that defines the upper end of the wild-type MIC distribution; (ii) a PK/PD breakpoint obtained from pre-clinical pharmacokinetic data [this PK/PD break-point is the highest possible MIC for which a given percentage of animals in the target population achieves a critical value for the selected PK/PD index ( f AUC/MIC or f T > MIC)] and (iii) when possible, a clinical cut-off, that is the relationship between MIC and clinical cure. For the latter, VetCAST acknowledges the paucity of such data in veterinary medicine. When a CBP cannot be established, VetCAST will recommend use of ECOFF as surrogate. For decision steps, VetCAST will follow EUCAST procedures involving transparency, consensus and independence. VetCAST will ensure freely available dissemination of information, concerning standards, guidelines, ECOFF, PK/PD breakpoints, CBPs and other relevant information for AST implementation. Finally, after establishing a CBP, VetCAST will promulgate expert comments and/or recommendations associated with CBPs to facilitate their sound implementation in a clinical setting.
Toutain, Pierre-Louis; Bousquet-Mélou, Alain; Damborg, Peter; Ferran, Aude A.; Mevius, Dik; Pelligand, Ludovic; Veldman, Kees T.; Lees, Peter
2017-01-01
VetCAST is the EUCAST sub-committee for Veterinary Antimicrobial Susceptibility Testing. Its remit is to define clinical breakpoints (CBPs) for antimicrobial drugs (AMDs) used in veterinary medicine in Europe. This position paper outlines the procedures and reviews scientific options to solve challenges for the determination of specific CBPs for animal species, drug substances and disease conditions. VetCAST will adopt EUCAST approaches: the initial step will be data assessment; then procedures for decisions on the CBP; and finally the release of recommendations for CBP implementation. The principal challenges anticipated by VetCAST are those associated with the differing modalities of AMD administration, including mass medication, specific long-acting product formulations or local administration. Specific challenges comprise mastitis treatment in dairy cattle, the range of species and within species breed considerations and several other variable factors not relevant to human medicine. Each CBP will be based on consideration of: (i) an epidemiological cut-off value (ECOFF) – the highest MIC that defines the upper end of the wild-type MIC distribution; (ii) a PK/PD breakpoint obtained from pre-clinical pharmacokinetic data [this PK/PD break-point is the highest possible MIC for which a given percentage of animals in the target population achieves a critical value for the selected PK/PD index (fAUC/MIC or fT > MIC)] and (iii) when possible, a clinical cut-off, that is the relationship between MIC and clinical cure. For the latter, VetCAST acknowledges the paucity of such data in veterinary medicine. When a CBP cannot be established, VetCAST will recommend use of ECOFF as surrogate. For decision steps, VetCAST will follow EUCAST procedures involving transparency, consensus and independence. VetCAST will ensure freely available dissemination of information, concerning standards, guidelines, ECOFF, PK/PD breakpoints, CBPs and other relevant information for AST implementation. Finally, after establishing a CBP, VetCAST will promulgate expert comments and/or recommendations associated with CBPs to facilitate their sound implementation in a clinical setting. PMID:29326661
Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800 deg C
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Scheuermann, Coulson M.
1987-01-01
A promising iron-base cast alloy is being developed as part of the DOE/NASA Stirling Engine Systems Project under contract DEN 3-282 with the United Technologies Research Center. This report presents the results of a study at the Lewis Research Center of the alloy's creep-rupture properties. The alloy was tested under a variety of conditions and was found to exhibit the normal 3-stage creep response. The alloy compared favorably with others being used or under consideration for the automotive Stirling engine cylinder/regenerator housing.
Low cycle fatigue properties of MAR-M-246 Hf in hydrogen. [a cast nickel-base alloy
NASA Technical Reports Server (NTRS)
Warren, J. R.
1979-01-01
The transverse, low cycle fatigue properties were determined for directionally solidified and single crystal samples of a cast nickel-base alloy proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. The test temperature was 760 C (1400F) and the pressure of the gaseous hydrogen was 34.5 MPa (5000 psig). Low cycle fatique life was established by strain controlled testing using smooth specimens and a servohydraulic closed-loop test machine modified with a high pressure environmental chamber. Results and conclusions are discussed.
mtDNA variation in caste populations of Andhra Pradesh, India.
Bamshad, M; Fraley, A E; Crawford, M H; Cann, R L; Busi, B R; Naidu, J M; Jorde, L B
1996-02-01
Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p < 0.002). The effects of social structure on mtDNA variation are much greater than those on variation measured by traditional markers. Explanations for this discordance include (1) the higher resolving power of mtDNA, (2) sex-dependent gene flow, (3) differences in male and female effective population sizes, and (4) elements of the kinship structure. Thirty distinct haplotypes are found in Africans, 17 in Asians, and 13 in Europeans. Mean nucleotide diversity is 0.019, 0.014, 0.009, and 0.007 for Africans, Indians, Asians, and Europeans, respectively. These populations are highly structured geographically (GST = 0.15; p < 0.001). The caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.
NASA Astrophysics Data System (ADS)
Szablewski, Daniel
The research presented in this work is focused on making a link between casting microstructural, mechanical and machining properties for 319 Al-Si sand cast components. In order to achieve this, a unique Machinability Test Block (MTB) is designed to simulate the Nemak V6 Al-Si engine block solidification behavior. This MTB is then utilized to cast structures with in-situ nano-alumina particle master alloy additions that are Mg based, as well as independent in-situ Mg additions, and Sr additions to the MTB. The Universal Metallurgical Simulator and Analyzer (UMSA) Technology Platform is utilized for characterization of each cast structure at different Secondary Dendrite Arm Spacing (SDAS) levels. The rapid quench method and Jominy testing is used to assess the capability of the nano-alumina master alloy to modify the microstructure at different SDAS levels. Mechanical property assessment of the MTB is done at different SDAS levels on cast structures with master alloy additions described above. Weibull and Quality Index statistical analysis tools are then utilized to assess the mechanical properties. The MTB is also used to study single pass high speed face milling and bi-metallic cutting operations where the Al-Si hypoeutectic structure is combined with hypereutectoid Al-Si liners and cast iron cylinder liners. These studies are utilized to aid the implementation of Al-Si liners into the Nemak V6 engine block and bi-metallic cutting of the head decks. Machining behavior is also quantified for the investigated microstructures, and the Silicon Modification Level (SiML) is utilized for microstructural analysis as it relates to the machining behavior.
Three-dimensional accuracy of different correction methods for cast implant bars
Kwon, Ji-Yung; Kim, Chang-Whe; Lim, Young-Jun; Kwon, Ho-Beom
2014-01-01
PURPOSE The aim of the present study was to evaluate the accuracy of three techniques for correction of cast implant bars. MATERIALS AND METHODS Thirty cast implant bars were fabricated on a metal master model. All cast implant bars were sectioned at 5 mm from the left gold cylinder using a disk of 0.3 mm thickness, and then each group of ten specimens was corrected by gas-air torch soldering, laser welding, and additional casting technique. Three dimensional evaluation including horizontal, vertical, and twisting measurements was based on measurement and comparison of (1) gap distances of the right abutment replica-gold cylinder interface at buccal, distal, lingual side, (2) changes of bar length, and (3) axis angle changes of the right gold cylinders at the step of the post-correction measurements on the three groups with a contact and non-contact coordinate measuring machine. One-way analysis of variance (ANOVA) and paired t-test were performed at the significance level of 5%. RESULTS Gap distances of the cast implant bars after correction procedure showed no statistically significant difference among groups. Changes in bar length between pre-casting and post-correction measurement were statistically significance among groups. Axis angle changes of the right gold cylinders were not statistically significance among groups. CONCLUSION There was no statistical significance among three techniques in horizontal, vertical and axial errors. But, gas-air torch soldering technique showed the most consistent and accurate trend in the correction of implant bar error. However, Laser welding technique, showed a large mean and standard deviation in vertical and twisting measurement and might be technique-sensitive method. PMID:24605205
Thermodynamic Behavior Research Analysis of Twin-roll Casting Lead Alloy Strip Process
NASA Astrophysics Data System (ADS)
Jiang, Chengcan; Rui, Yannian
2017-03-01
The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 °C, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 °C, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.
Electronic gap sensor and method
Williams, R.S.; King, E.L.; Campbell, S.L.
1991-08-06
Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.
Electronic gap sensor and method
Williams, Robert S.; King, Edward L.; Campbell, Steven L.
1991-01-01
An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.
Method of casting articles of a bulk-solidifying amorphous alloy
Lin, X.; Johnson, W.L.; Peker, A.
1998-08-25
A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.
Method of casting articles of a bulk-solidifying amorphous alloy
Lin, Xianghong; Johnson, William L.; Peker, Atakan
1998-01-01
A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.
NASA Astrophysics Data System (ADS)
Fan, Cang; Liaw, P. K.; Wilson, T. W.; Choo, H.; Gao, Y. F.; Liu, C. T.; Proffen, Th.; Richardson, J. W.
2006-12-01
Contrary to reported results on structural relaxation inducing brittleness in amorphous alloys, the authors found that structural relaxation actually caused an increase in the strength of Zr55Cu35Al10 bulk metallic glass (BMG) without changing the plasticity. Three dimensional models were rebuilt for the as-cast and structurally relaxed BMGs by reverse Monte Carlo (RMC) simulations based on the pair distribution function (PDF) measured by neutron scattering. Only a small portion of the atom pairs was found to change to more dense packing. The concept of free volume was defined based on the PDF and RMC studies, and the mechanism of mechanical behavior was discussed.
NASA Astrophysics Data System (ADS)
Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.
2017-05-01
Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.
NASA Astrophysics Data System (ADS)
Shen, Shuwei; Zhao, Zuhua; Wang, Haili; Han, Yilin; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Ray, William; Hoehne, Brad; Xu, Ronald
2016-03-01
Appropriate surgical planning is important for improved clinical outcome and minimal complications in many surgical operations, such as a conjoined twin separation surgery. We combine 3D printing with casting and assembling to produce a solid phantom of high fidelity to help surgeons for better preparation of the conjoined twin separation surgery. 3D computer models of individual organs were reconstructed based on CT scanned data of the conjoined twins. The models were sliced, processed, and converted to an appropriate format for Fused Deposition Modeling (FDM). The skeletons of the phantom were printed directly by FDM using Acrylonitrile-Butadiene-Styrene (ABS) material, while internal soft organs were fabricated by casting silicon materials of different compositions in FDM printed molds. The skeleton and the internal organs were then assembled with appropriate fixtures to maintain their relative positional accuracies. The assembly was placed in a FMD printed shell mold of the patient body for further casting. For clear differentiation of different internal organs, CT contrast agents of different compositions were added in the silicon cast materials. The produced phantom was scanned by CT again and compared with that of the original computer models of the conjoined twins in order to verify the structural and positional fidelity. Our preliminary experiments showed that combining 3D printing with casting is an effective way to produce solid phantoms of high fidelity for the improved surgical planning in many clinical applications.
Self-assembly Morphology and Crystallinity Control of Di-block Copolymer Inspired by Spider Silk
NASA Astrophysics Data System (ADS)
Huang, Wenwen; Krishnaji, Sreevidhya; Kaplan, David; Cebe, Peggy
2012-02-01
To obtain a fuller understanding of the origin of self-assembly behavior, and thus be able to control the morphology of biomaterials with well defined amino acid sequences for tissue regeneration and drug delivery, we created a family of synthetic silk-based block copolymers inspired by the genetic sequences found in spider dragline, HABn and HBAn (n=1,2,3,6), where B = hydrophilic block, A = hydrophobic block, and H is a histidine tag. We assessed the secondary structure of water cast films by Fourier transform infrared spectroscopy (FTIR). The crystallinity was determined by Fourier self-deconvolution of amide I spectra and confirmed by wide angle X-ray diffraction (WAXD). Results indicate that we can control the self-assembled morphology and the crystallinity by varying the block length, and a minimum of 3 A-blocks are required to form beta sheet crystalline regions in water-cast spider silk block copolymers. The morphology and crystallinity can also be tuned by annealing. Thermal properties of water cast films and films annealed at 120 C were determined by differential scanning calorimetry and thermogravimetry. The sample films were also treated with 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) to obtain wholly amorphous samples, and crystallized by exposure to methanol. Using scanning and transmission electron microscopies, we observe that fibrillar networks and hollow micelles are formed in water cast and methanol cast samples, but not in samples cast from HFIP.
Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, D.; Robson, J.D.; Withers, P.J.
2015-06-15
Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al{sub 8}Mn{sub 5} in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallicmore » phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets.« less
Relationship between Defect Size and Fatigue Life Distributions in Al-7 Pct Si-Mg Alloy Castings
NASA Astrophysics Data System (ADS)
Tiryakioğlu, Murat
2009-07-01
A new method for predicting the variability in fatigue life of castings was developed by combining the size distribution for the fatigue-initiating defects and a fatigue life model based on the Paris-Erdoğan law for crack propagation. Two datasets for the fatigue-initiating defects in Al-7 pct Si-Mg alloy castings, reported previously in the literature, were used to demonstrate that (1) the size of fatigue-initiating defects follow the Gumbel distribution; (2) the crack propagation model developed previously provides respectable fits to experimental data; and (3) the method developed in the present study expresses the variability in both datasets, almost as well as the lognormal distribution and better than the Weibull distribution.
NASA Astrophysics Data System (ADS)
Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej
2016-08-01
Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.
Pieralini, Anelise R F; Benjamin, Camila M; Ribeiro, Ricardo Faria; Scaf, Gulnara; Adabo, Gelson Luis
2010-10-01
This study evaluated the effect of pattern coating with spinel-based investment Rematitan Ultra (RU) on the castability and internal porosity of commercially pure (CP) titanium invested into phosphate-bonded investments. The apparent porosity of the investment was also measured. Square patterns (15 × 15 × 0.3 mm(3)) were either coated with RU, or not and invested into the phosphate-bonded investments: Rematitan Plus (RP), Rema Exakt (RE), Castorit Super C (CA), and RU (control group). The castings were made in an Ar-arc vacuum-pressure machine. The castability area (mm(2) ) was measured by an image-analysis system (n = 10). For internal porosity, the casting (12 × 12 × 2 mm(3) ) was studied by the X-ray method, and the projected porous area percentage was measured by an image-analysis system (n = 10). The apparent porosity of the investment (n = 10) was measured in accordance with the ASTM C373-88 standard. Analysis of variance (One-way ANOVA) of castability was significant, and the Tukey test indicated that RU had the highest mean but the investing technique with coating increased the castability for all phosphate-bonded investments. The analysis of the internal porosity of the cast by the nonparametric test demonstrated that the RP, RE, and CA with coating and RP without coating did not differ from the control group (RU), while the CA and RE casts without coating were more porous. The one-way ANOVA of apparent porosity of the investment was significant, and the Tukey test showed that the means of RU (36.10%) and CA (37.22%) were higher than those of RP (25.91%) and RE (26.02%). Pattern coating with spinel-based material prior to phosphate-bonded investments can influence the castability and the internal porosity of CP Ti. © 2010 by The American College of Prosthodontists.
Shokry, Tamer E; Attia, Mazen; Mosleh, Ihab; Elhosary, Mohamed; Hamza, Tamer; Shen, Chiayi
2010-01-01
Titanium is the most biocompatible metal used for dental casting; however, there is concern about its marginal accuracy after porcelain application since this aspect has direct influence on marginal fit. The purpose of this study was to determine the effect that metal selection and the porcelain firing procedure have on the marginal accuracy of metal ceramic prostheses. Cast CP Ti, milled CP Ti, cast Ti-6Al-7Nb, and cast Ni-Cr copings (n=5) were fired with compatible porcelains (Triceram for titanium-based metals and VITA VMK 95 for Ni-Cr alloy). The Ni-Cr alloy fired with its porcelain served as the control. Photographs of metal copings placed on a master die were made. Marginal discrepancy was determined on the photographs using an image processing program at 8 predetermined locations before airborne-particle abrasion for porcelain application, after firing of the opaque layer, and after firing of the dentin layer. Repeated-measures 2-way ANOVA was used to investigate the effect of metal selection and firing stage, and paired t tests were used to determine the effect of each firing stage within each material group (alpha=.05). ANOVA showed that both metal selection and firing stage significantly influenced the measured marginal discrepancy (P<.001), and there was interaction between the 2 variables (P<.001). Student-Newman-Keuls multiple comparison tests showed that there were significant differences between any 2 metals compared, at each stage of measurement. Paired t tests showed that significant changes in marginal discrepancy occurred with opaque firing on milled CP Ti (P=.017) and cast Ti-6Al-7Nb alloy (P=.003). Titanium copings fabricated by CAD/CAM demonstrated the least marginal discrepancy among all groups, while the base metal (Ni-Cr) groups exhibited the most discrepancy of all groups tested. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Wear resistance of metals and alloys; Proceedings of the Conference, Chicago, IL, Sept. 24-30, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kingsbury, G.R.
1988-01-01
Techniques for characterizing and improving the wear properties of metals and composites are discussed in reviews and reports. Topics addressed include the use of interatomic potentials to study the relationship between abrasive wear and other mechanical properties, gas-detonation powder spraying of diamond coatings, a fluidized-bed test method for erosion resistance, the wear behavior of Al and Al-Si-Cu alloys, and abrasive wear of bronze and ZA alloys with and without lubrication. Consideration is given to continuously cast vs sand-cast Zn-Al alloys for bearings, sintered 6061 Al-alloy-based particulate composites with dry lubricants, Cu-based particulate composites, high-temperature friction and wear of X-750 andmore » X-188 superalloys for low-heat-rejection engines, a new metallurgical conception of wear-resistant steels, and the effect of matrix microstructure on the abrasion resistance of high-Cr white cast irons. Extensive graphs and micrographs are provided.« less
Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes
2012-03-01
preparation setup under the fume hood with NMP solvent, glass pipette with dispenser, and the ball milled powder mixture containing LiFePO4 , acetylene...minutes. ............................................................................. 18 Figure 12. (a) LiFePO4 slurry applied on foil current collector...and (b) LiFePO4 slurry casted with applicator and (c) LiFePO4 casted (From [15])....... 18 Figure 13. MTI disc cutter used to cut individual
View southwest of 350ton crane, showing one of four castings ...
View southwest of 350-ton crane, showing one of four castings which support a stationary, tapered steel girder structure called a "tower". This tower is located within an outer rotating framework designated as the "pintle" of the 350-ton crane. The whole crane pivots around bearing at the top of this tapered support tower. - Naval Base Philadelphia-Philadelphia Naval Shipyard, 350-Ton Hammerhead Crane, League Island, Philadelphia, Philadelphia County, PA
How to Avoid Cast Saw Complications.
Halanski, Matthew A
2016-06-01
As casts are routinely used in pediatric orthopaedics, casts saws are commonly used to remove such casts. Despite being a viewed as the "conservative" and therefore often assumed safest treatment modality, complications associated with the use of casts and cast saws occur. In this manuscript, we review the risk factors associated with cast saw injuries. Cast saw injuries are thermal or abrasive (or both) in nature. Thermal risk factors include: cast saw specifications (including a lack of attached vacuum), use of a dull blade, cutting in a concavity, too thin padding, and overly thick casting materials. Risk factors associated with abrasive injuries include: sharp blades, thin padding, and cutting over boney prominences. Because nearly all clinicians contact the skin with the blade during cast removal, appropriate "in-out technique" is critical. Such technique prevents a hot blade from remaining in contact with the skin for any significant time, diminishing the risk of burn. Similarly, using such technique prevents "dragging the blade" that may pull the skin taught, cutting it. It may be useful to teach proper technique as perforating a cast rather than cutting a cast.
[Manufacture and clinical application of 215 IPS-Empress casting ceramic restorations].
Zhao, Na; Zhou, Jian
2008-08-01
To explore the manufacture and clinical application of IPS-Empress casting ceramic restorations. The problems in manufacture and clinical operation of 215 casting ceramic restorations were analyzed. In 215 casting ceramic restorations, 12 (5.58%) casting ceramic restorations were affected by clinical design or application, 15 (6.98%) casting ceramic restorations were affected by some manufacture problems, and 14 (6.51%) casting ceramic restorations were affected by clinical try-in. Through 2-3 years' follow-up, the achievement ratio of 215 IPS-Empress casting ceramic restorations was 94.88%, and 11 casting ceramic restorations were affected by some problems. Beauty and simultaneous enamel wear are the characteristics of casting ceramic restorations. But because of its brittle, the indications should be strictly selected.
Salvaged castings and methods of salvaging castings with defective cast cooling bumps
Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles
2002-01-01
Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.
2D and 3D characterization of pore defects in die cast AM60
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhuofei; CanmetMATERIALS, 183 Longwood Road South, Hamilton L8P 0A5, Ontario Canada; Maurey, Alexandre
2016-04-15
The widespread application of die castings can be hampered due to the potential of large scale porosity to act as nucleation sites for fracture and fatigue. It is therefore important to develop robust approaches to the characterization of porosity providing parameters that can be linked to the material's mechanical properties. We have tackled this problem in a study of the AM60 die cast Mg alloy, using samples extracted from a prototype shock tower. A quantitative characterization of porosity has been undertaken, analyzing porosity in both 2D (using classical metallographic methods) and in 3D (using X-ray computed tomography (XCT)). Metallographic characterizationmore » results show that shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. Shrinkage pores are irregular with multiple arms, resulting in a form factor less than 0.4. In contrast, gas pores are generally more circular in shape yielding form factors larger than 0.6. XCT provides deeper insight into the shape of pores, although this understanding is limited by the resolution obtainable by laboratory based XCT. It also shows how 2D sectioning can produce artefacts as single complex pores are sectioned into multiple small pores. - Highlights: • Mg (e.g. AM60) die castings may contain large scale porosity that act as nucleation sites for fracture and fatigue • Quantitative characterization of porosity metallography (2D) and X-ray tomography (3D) is used • Shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. • Shrinkage pores are irregular giving a form factor < 0.4; gas pores are rounder with form factors > 0.6 • XCT enables pore visualization, although limited by the resolution obtainable by laboratory based XCT.« less
Castillo-Oyagüe, Raquel; Lynch, Christopher D; Turrión, Andrés S; López-Lozano, José F; Torres-Lagares, Daniel; Suárez-García, María-Jesús
2013-01-01
This study evaluated the marginal misfit and microleakage of cement-retained implant-supported crown copings. Single crown structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC) and (3) vacuum-cast Ni-Cr-Ti (CN). Samples of each alloy group were randomly luted in standard fashion onto machined titanium abutments using: (1) GC Fuji PLUS (FP); (2) Clearfil Esthetic Cement (CEC); (3) RelyX Unicem 2 Automix (RXU) and (4) DentoTemp (DT) (n=15 each). After 60 days of water ageing, vertical discrepancy was SEM-measured and cement microleakage was scored using a digital microscope. Misfit data were subjected to two-way ANOVA and Student-Newman-Keuls multiple comparisons tests. Kruskal-Wallis and Dunn's tests were run for microleakage analysis (α=0.05). Regardless of the cement type, LS samples exhibited the best fit, whilst CC and CN performed equally well. Despite the framework alloy and manufacturing technique, FP and DT provide comparably better fit and greater microleakage scores than did CEC and RXU, which showed no differences. DMLS of Co-Cr may be a reliable alternative to the casting of base metal alloys to obtain well-fitted implant-supported crowns, although all the groups tested were within the clinically acceptable range of vertical discrepancy. No strong correlations were found between misfit and microleakage. Notwithstanding the framework alloy, definitive resin-modified glass-ionomer (FP) and temporary acrylic/urethane-based (DT) cements demonstrated comparably better marginal fit and greater microleakage scores than did 10-methacryloxydecyl-dihydrogen phosphate-based (CEC) and self-adhesive (RXU) dual-cure resin agents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Optimization of permeability for quality improvement by using factorial design
NASA Astrophysics Data System (ADS)
Said, Rahaini Mohd; Miswan, Nor Hamizah; Juan, Ng Shu; Hussin, Nor Hafizah; Ahmad, Aminah; Kamal, Mohamad Ridzuan Mohamad
2017-05-01
Sand castings are used worldwide by the manufacturing process in Metal Casting Industry, whereby the green sand are the commonly used sand mould type in the industry of sand casting. The defects on the surface of casting product is one of the problems in the industry of sand casting. The problems that relates to the defect composition of green sand are such as blowholes, pinholes shrinkage and porosity. Our objective is to optimize the best composition of green sand in order to minimize the occurrence of defects. Sand specimen of difference parameters (Bentonite, Green Sand, Cold dust and water) were design and prepared to undergo permeability test. The 24 factorial design experiment with four factors at difference composition were runs, and the total of 16 runs experiment were conducted. The developed models based on the experimental design necessary models were obtained. The model with a high coefficient of determination (R2=0.9841) and model for predicted and actual fitted well with the experimental data. Using the Analysis of Design Expert software, we identified that bentonite and water are the main interaction effect in the experiments. The optimal settings for green sand composition are 100g silica sand, 21g bentonite, 6.5 g water and 6g coal dust. This composition gives an effect of permeability number 598.3GP.
Jarau, Stefan; van Veen, Johan W; Twele, Robert; Reichle, Christian; Gonzales, Eduardo Herrera; Aguilar, Ingrid; Francke, Wittko; Ayasse, Manfred
2010-06-01
Reproductive division of labor in advanced eusocial honey bees and stingless bees is based on the ability of totipotent female larvae to develop into either workers or queens. In nearly all species, caste is determined by larval nutrition. However, the mechanism that triggers queen development in Melipona bees is still unresolved. Several hypotheses have been proposed, ranging from the proximate (a genetic determination of caste development) to the ultimate (a model in which larvae have complete control over their own caste fate). Here, we showed that the addition of geraniol, the main compound in labial gland secretions of nurse workers, to the larval food significantly increases the number of larvae that develop into queens. Interestingly, the proportion of queens in treated brood exactly matched the value (25%) predicted by the two-locus, two-allele model of genetic queen determination, in which only females that are heterozygous at both loci are capable of developing into queens. We conclude that labial gland secretions, added to the food of some cells by nurse bees, trigger queen development, provided that the larvae are genetically predisposed towards this developmental pathway. In Melipona beecheii, geraniol acts as a primer pheromone representing the first caste determination substance identified to date.
NASA Astrophysics Data System (ADS)
Böttger, B.; Eiken, J.; Apel, M.
2009-10-01
Performing microstructure simulation of technical casting processes suffers from the strong interdependency between latent heat release due to local microstructure formation and heat diffusion on the macroscopic scale: local microstructure formation depends on the macroscopic heat fluxes and, in turn, the macroscopic temperature solution depends on the latent heat release, and therefore on the microstructure formation, in all parts of the casting. A self-consistent homoenthalpic approximation to this micro-macro problem is proposed, based on the assumption of a common enthalpy-temperature relation for the whole casting which is used for the description of latent heat production on the macroscale. This enthalpy-temperature relation is iteratively obtained by phase-field simulations on the microscale, thus taking into account the specific morphological impact on the latent heat production. This new approach is discussed and compared to other approximations for the coupling of the macroscopic heat flux to complex microstructure models. Simulations are performed for the binary alloy Al-3at%Cu, using a multiphase-field solidification model which is coupled to a thermodynamic database. Microstructure formation is simulated for several positions in a simple model plate casting, using a one-dimensional macroscopic temperature solver which can be directly coupled to the microscopic phase-field simulation tool.
NASA Astrophysics Data System (ADS)
Wu, M.; Ahmadein, M.; Kharicha, A.; Ludwig, A.; Li, J. H.; Schumacher, P.
2012-07-01
Empirical knowledge about the formation of the as-cast structure, mostly obtained before 1980s, has revealed two critical issues: one is the origin of the equiaxed crystals; one is the competing growth of the columnar and equiaxed structures, and the columnar-to-equiaxed transition (CET). Unfortunately, the application of empirical knowledge to predict and control the as-cast structure was very limited, as the flow and crystal transport were not considered. Therefore, a 5-phase mixed columnar-equiaxed solidification model was recently proposed by the current authors based on modeling the multiphase transport phenomena. The motivation of the recent work is to determine and evaluate the necessary modeling parameters, and to validate the mixed columnar-equiaxed solidification model by comparison with laboratory castings. In this regard an experimental method was recommended for in-situ determination of the nucleation parameters. Additionally, some classical experiments of the Al-Cu ingots were conducted and the as-cast structural information including distinct columnar and equiaxed zones, macrosegregation, and grain size distribution were analysed. The final simulation results exhibited good agreement with experiments in the case of high pouring temperature, whereas disagreement in the case of low pouring temperature. The reasons for the disagreement are discussed.
Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model.
Browne, Patience; Judson, Richard S; Casey, Warren M; Kleinstreuer, Nicole C; Thomas, Russell S
2015-07-21
The U.S. Environmental Protection Agency (EPA) is considering high-throughput and computational methods to evaluate the endocrine bioactivity of environmental chemicals. Here we describe a multistep, performance-based validation of new methods and demonstrate that these new tools are sufficiently robust to be used in the Endocrine Disruptor Screening Program (EDSP). Results from 18 estrogen receptor (ER) ToxCast high-throughput screening assays were integrated into a computational model that can discriminate bioactivity from assay-specific interference and cytotoxicity. Model scores range from 0 (no activity) to 1 (bioactivity of 17β-estradiol). ToxCast ER model performance was evaluated for reference chemicals, as well as results of EDSP Tier 1 screening assays in current practice. The ToxCast ER model accuracy was 86% to 93% when compared to reference chemicals and predicted results of EDSP Tier 1 guideline and other uterotrophic studies with 84% to 100% accuracy. The performance of high-throughput assays and ToxCast ER model predictions demonstrates that these methods correctly identify active and inactive reference chemicals, provide a measure of relative ER bioactivity, and rapidly identify chemicals with potential endocrine bioactivities for additional screening and testing. EPA is accepting ToxCast ER model data for 1812 chemicals as alternatives for EDSP Tier 1 ER binding, ER transactivation, and uterotrophic assays.
Dimensional control of die castings
NASA Astrophysics Data System (ADS)
Karve, Aniruddha Ajit
The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of this study will contribute to enhancement of dimensional quality and lead time compression in the die casting industry, thus making it competitive with other net shape manufacturing processes.
Evaluation and comparison of castability between an indigenous and imported Ni-Cr alloy.
Ramesh, Ganesh; Padmanabhan, T V; Ariga, Padma; Subramanian, R
2011-01-01
Since 1907 casting restorations have been in use in dentistry. Numerous companies have been manufacturing and marketing base metal alloys. Gold was a major component of casting alloys. But alloys with less than 65% gold tarnished easily and the increase in cost of gold post-1970s lead to the revival of base metal alloys such as nickel-chromium and cobalt-chromium alloys which were in use since 1930s. This study was conducted to evaluate and compare the castability between an indigenous alloy and an imported alloy, as imported base metal alloys are considered to be expensive for fabrication of crowns and bridges. This study was conducted to evaluate and compare the castability (for the accurate fabrication of crowns and bridges) between an indigenous base metal alloy-Non-ferrous Materials Technology Development Centre (NFTDC), Hyderabad (Alloy A) -and an imported base metal alloys (Alloy B). Castability measurement was obtained by counting the number of completely formed line segments surrounding the 81 squares in the pattern and later calculating the percentage values. The percentage obtained was taken as the castability value for a particular base metal alloy. The percentage of castability was determined by counting only the number of completely cast segments in a perfect casting (81 × 2 = 162), and then multiplying the resulting fraction by 100 to give the percentage completeness. The Student t-test was used. When the castability of alloys A and B was compared, the calculated value was less than the tabular value (1.171 < 2.048) leading to the conclusion that castability between alloys A and B is insignificant. Therefore we conclude that both the alloys have the same castability. Using the above-mentioned materials and following the method to test castability, we were able to derive favorable results. As the results were satisfactory, we can conclude that the castability of the indigenous alloy is on par with the imported alloy.
Lower limb intracast pressures generated by different types of immobilisation casts.
Chaudhury, Salma; Hazlerigg, Alexandra; Vusirikala, Anuhya; Nguyen, Joseph; Matthews, Stuart
2017-02-18
To determine if complete, split casts and backslabs [plaster of Paris (POP) and fiberglass] generate different intracast pressures and pain. Increased swelling within casts was modeled by a closed water system attached to an expandable bag placed directly under different types of casts applied to a healthy lower limb. Complete fiberglass and POP casts, split casts and backslabs were applied. Twenty-five milliliter aliquots of saline were injected into the system and the generated intracast pressures were measured using a sphygmomanometer. The subject was blinded to the pressure scores to avoid bias. All casts were applied to the same right limb on the same subject to avoid the effects of variations in anatomy or physiology on intracast pressures. Pain levels were evaluated using the Visual Analogue Score after each sequential saline injection. Each type of cast was reapplied four times and the measurements were repeated on four separate occasions. Sample sizes were determined by a pre-study 90% power calculation to detect a 20% difference in intracast pressures between cast groups. A significant difference between the various types of casts was noted when the saline volume was greater than 100 mL ( P = 0.009). The greatest intracast pressure was generated by complete fiberglass casts, which were significantly higher than complete POP casts or backslabs ( P = 0.018 and P = 0.008 respectively) at intracast saline volumes of 100 mL and higher. Backslabs produced a significantly lower intracast pressure compared to complete POP only once the saline volume within casts exceeded 225 mL ( P = 0.009). Intracast pressures were significantly lower in split casts ( P = 0.003). Split POP and fiberglass casts produced the lowest intracast pressures, even compared to backslabs ( P = 0.009). Complete fiberglass casts generated the highest pain levels at manometer pressures of 75 mmHg and greater ( P = 0.001). Split fiberglass casts had significantly reduced pain levels ( P = 0.001). In contrast, a split complete POP cast did not produce significantly reduced pain levels at pressures between 25-150 mmHg. There was no difference in pain generated by complete POP and backslabs at manometer pressures of 200 mmHg and lower. Fibreglass casts generate significantly higher intracast pressures and pain than POP casts. Split casts cause lower intracast pressures regardless of material, than complete casts and backslabs.
Riser Feeding Evaluation Method for Metal Castings Using Numerical Analysis
NASA Astrophysics Data System (ADS)
Ahmad, Nadiah
One of the design aspects that continues to create a challenge for casting designers is the optimum design of casting feeders (risers). As liquid metal solidifies, the metal shrinks and forms cavities inside the casting. In order to avoid shrinkage cavities, risers are added to the casting shape to supply additional molten metal when shrinkage occurs during solidification. The shrinkage cavities in the casting are compensated by controlling the cooling rate to promote directional solidification. This control can be achieved by designing the casting such that the cooling begins at the sections that are farthest away from the risers and ends at the risers. Therefore, the risers will solidify last and feed the casting with the molten metal. As a result, the shrinkage cavities formed during solidification are in the risers which are later removed from the casting. Since casting designers have to usually go through iterative processes of validating the casting designs which are very costly due to expensive simulation processes or manual trials and errors on actual casting processes, this study investigates more efficient methods that will help casting designers utilize their casting experiences systematically to develop good initial casting designs. The objective is to reduce the casting design method iterations; therefore, reducing the cost involved in that design processes. The aim of this research aims at finding a method that can help casting designers design effective risers used in sand casting process of aluminum-silicon alloys by utilizing the analysis of solidification simulation. The analysis focuses on studying the significance of pressure distribution of the liquid metal at the early stage of casting solidification, when heat transfer and convective fluid flow are taken into account in the solidification simulation. The mathematical model of casting solidification was solved using the finite volume method (FVM). This study focuses to improve our understanding of the feeding behavior in aluminum-silicon alloys and the effective feeding by considering the pressure gradient distribution of the molten metal at casting dendrite coherency point. For this study, we will identify the relationship between feeding efficiency, shrinkage behavior and how the change in riser size affects the pressure gradient in the casting. This understanding will be used to help in the design of effective risers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher
Here, the hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on themore » variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.« less
Buzayan, Muaiyed; Baig, Mirza Rustum; Yunus, Norsiah
2013-01-01
This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 μm; PE, 103 μm) in terms of 3D discrepancies, irrespective of the splinting technique employed. Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.
Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher; ...
2018-02-16
Here, the hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on themore » variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.« less
The Role of Indian Caste Identity and Caste Inconsistent Norms on Status Representation
Sankaran, Sindhuja; Sekerdej, Maciek; von Hecker, Ulrich
2017-01-01
The Indian caste system is a complex social structure wherein social roles like one’s profession became ‘hereditary,’ resulting in restricted social mobility and fixed status hierarchies. Furthermore, we argue that the inherent property of caste heightens group identification with one’s caste. Highly identified group members would protect the identity of the group in situations when group norms are violated. In this paper, we were interested in examining the consequence of caste norm violation and how an individual’s status is mentally represented. High caste norms are associated with moral values while the lower caste norms are associated with immorality. We predicted a ‘black sheep effect,’ that is, when high caste individuals’ group identity (caste norm violation condition) is threatened their salient high caste identity would increase, thereby resulting in devaluing the status of their fellow in-group member if the latter is perceived as perpetrator. We presented participants with a social conflict situation of a victim and a perpetrator that is ‘Caste norm consistent’ (Lower caste individual as a perpetrator and higher caste individual as a victim) and vice versa ‘Caste norm inconsistent’ condition (higher caste individual as perpetrator and lower caste individual as a victim). Then, participants had to choose from nine pictorial depictions representing the protagonists in the story on a vertical line, with varying degrees of status distance. Results showed evidence for the black sheep effect and, furthermore, revealed that no other identity (religious, national, and regional) resulted in devaluing the status of fellow in-group member. These results help us understand the ‘black sheep’ effect in the context of moral norms and status representation and are discussed in the framework of the Indian society. PMID:28408896
The Role of Indian Caste Identity and Caste Inconsistent Norms on Status Representation.
Sankaran, Sindhuja; Sekerdej, Maciek; von Hecker, Ulrich
2017-01-01
The Indian caste system is a complex social structure wherein social roles like one's profession became 'hereditary,' resulting in restricted social mobility and fixed status hierarchies. Furthermore, we argue that the inherent property of caste heightens group identification with one's caste. Highly identified group members would protect the identity of the group in situations when group norms are violated. In this paper, we were interested in examining the consequence of caste norm violation and how an individual's status is mentally represented. High caste norms are associated with moral values while the lower caste norms are associated with immorality. We predicted a 'black sheep effect,' that is, when high caste individuals' group identity (caste norm violation condition) is threatened their salient high caste identity would increase, thereby resulting in devaluing the status of their fellow in-group member if the latter is perceived as perpetrator. We presented participants with a social conflict situation of a victim and a perpetrator that is ' Caste norm consistent' (Lower caste individual as a perpetrator and higher caste individual as a victim) and vice versa 'Caste norm inconsistent' condition (higher caste individual as perpetrator and lower caste individual as a victim). Then, participants had to choose from nine pictorial depictions representing the protagonists in the story on a vertical line, with varying degrees of status distance. Results showed evidence for the black sheep effect and, furthermore, revealed that no other identity (religious, national, and regional) resulted in devaluing the status of fellow in-group member. These results help us understand the 'black sheep' effect in the context of moral norms and status representation and are discussed in the framework of the Indian society.
Contreras, Edwin Fernando Ruiz; Henriques, Guilherme Elias Pessanha; Giolo, Suely Ruiz; Nobilo, Mauro Antonio Arruda
2002-11-01
Titanium has been suggested as a replacement for alloys currently used in single-tooth restorations and fixed partial dentures. However, difficulties in casting have resulted in incomplete margins and discrepancies in marginal fit. This study evaluated and compared the marginal fit of crowns fabricated from a commercially pure titanium (CP Ti) and from Ti-6Al-4V alloy with crowns fabricated from a Pd-Ag alloy that served as a control. Evaluations were performed before and after marginal refinement by electrical discharge machining (EDM). Forty-five bovine teeth were prepared to receive complete cast crowns. Stone and copper-plated dies were obtained from impressions. Fifteen crowns were cast with each alloy (CP Ti, Ti-6Al-4V, and Pd-Ag). Marginal fit measurements (in micrometers) were recorded at 4 reference points on each casting with a traveling microscope. Marginal refinement with EDM was conducted on the titanium-based crowns, and measurements were repeated. Data were analyzed with the Kruskal-Wallis test, paired t test, and independent t test at a 1% probability level. The Kruskal-Wallis test showed significant differences among mean values of marginal fit for the as-cast CP Ti crowns (mean [SD], 83.9 [26.1] microm) and the other groups: Ti-6Al-4V (50.8 [17.2] microm) and Pd-Ag (45.2 [10.4] microm). After EDM marginal refinement, significant differences were detected among the Ti-6Al-4V crowns (24.5 [10.9] microm) and the other 2 groups: CP Ti (50.6 [20.0] microm) and Pd-Ag (not modified by EDM). Paired t test results indicated that marginal refinement with EDM effectively improved the fit of CP Ti crowns (from 83.9 to 50.6 microm) and Ti-6Al-4V crowns (from 50.8 to 24.5 microm). However, the difference in improvement between the two groups was not significant by t test. Within the limitations of this study, despite the superior results for Ti-6Al-4V, both groups of titanium-based crowns had clinically acceptable marginal fits. After EDM marginal refinement, the fit of cast CP Ti and Ti-6Al-4V crowns improved significantly.
Casting fine grained, fully dense, strong inorganic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.
2015-11-24
Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.
Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Jon T.; Wang, Gerry; Luo, Alan
The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improvemore » the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The specific lightweight door developed in this project didn’t meet some of those requirements, but a preliminary business case study was conducted anyhow. This study considered the ratio of cost increase to mass decrease when the lightweight door is compared to a baseline steel door. The ratio was found to be in an acceptable range for some vehicle programs, especially if the number of such vehicles to be produced is equal to or slightly less than the estimated 250,000-shot life of the die set. This would allow for the investment in the dies to be spread across many parts and thereby help minimize the cost increase.« less
Method of making metal matrix composites reinforced with ceramic particulates
Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.
1989-01-01
Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.
Method of making metal matrix composites reinforced with ceramic particulates
Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.
1989-08-01
Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.
Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng
2012-04-01
To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P < 0.05]. The surfaces of titanium cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.
The Effect of Rare-Earth Metals on Cast Steels
1954-04-01
as the 1-inch section is also illustrated in Figure 23 and consists of tempered bainite and tempered martensite. Both of the control steels (AE-1...section Tempered bainite and tempered martensite 4 inch section Figure 23 Microstructure ol the Mn-Cr-Mo base control steels . Etched with... bainite 4-inch Section Figure 25—Microstructures of the MnCr-Mo + Rare Earths f B cast steels . Etched with picral, SOOX - .1 €. Figure 26
NASA Astrophysics Data System (ADS)
Belikov, S. B.; Andrienko, A. G.; Gaiduk, S. V.; Kononov, V. V.; Zamkovoi, V. E.
2008-01-01
A high-resistant corrosion-resistant nickel-based alloy has been developed for monocrystalline casting using the directional crystallization method. Its mechanical properties are close to those of aircraft alloys ZhS6K-VI and ZhS6U-VI with an equiaxial structure and ZhS26-VI with an oriented structure. The technology of producing blades for turboprop engines from the new alloy has been developed and tested.
Mechanical Testing of IN718 Lattice Block Structures
NASA Technical Reports Server (NTRS)
Krause, David L.; Whittenberger, John D.; Kantzos, Pete T.; Hebsur, Mohan G.
2002-01-01
Lattice block construction produces a flat, structurally rigid panel composed of thin ligaments of material arranged in a three-dimensional triangulated truss-like structure. Low-cost methods of producing cast metallic lattice block panels are now available that greatly expand opportunities for using this unique material system in today's high-performance structures. Additional advances are being made in NASA's Ultra Efficient Engine Technology (UEET) program to extend the lattice block concept to superalloy materials. Advantages offered by this combination include high strength, light weight, high stiffness, and elevated temperature capabilities. Recently under UEET, the nickel-based superalloy Inconel 718 (IN718) was investment cast into lattice block panels with great success. To evaluate casting quality and lattice block architecture merit, individual ligaments, and structural subelement specimens were extracted from the panels. Tensile tests, structural compression, and bending strength tests were performed on these specimens. Fatigue testing was also completed for several bend test specimens. This paper first presents metallurgical and optical microscopy analysis of the castings. This is followed by mechanical test results for the tensile ligament tests and the subelement compression and bending strength tests, as well as for the fatigue tests that were performed. These tests generally showed comparable properties to base IN718 with the same heat treatment, and they underscored the benefits offered by lattice block materials. These benefits might be extended with improved architecture such as face sheets.
Foot pressures during gait: a comparison of techniques for reducing pressure points.
Lawless, M W; Reveal, G T; Laughlin, R T
2001-07-01
Various methods have been used to redistribute plantar surface foot pressure in patients with foot ulcers. This study was conducted to determine the effectiveness of four modalities (fracture walker, fracture walker with insert, and open and closed toe total contact casts) in reducing plantar foot pressure. Ten healthy, normal volunteer subjects had an F-scan sensor (ultra thin shoe insert pressure monitor) placed under the right foot. They then ambulated on a flat surface, maintaining their normal gait. Dynamic plantar pressures were averaged over 10 steps at four different sites (plantar surface of great toe, first metatarsal head, base of fifth metatarsal, and plantar heel). All subjects repeated this sequence under five different testing conditions (barefoot, with a fracture walker, fracture walker with arch support insert, open and closed toe total contact cast). Each subject's barefoot pressures were then compared with the pressures during the different modalities. All four treatment modalities significantly reduced (p < 0.05) plantar pressure at the first metatarsal head (no method was superior). The fracture walker, fracture walker with insert, and open toe total contact cast significantly reduced pressure at the heel. Pressures at the base of the fifth metatarsal and great toe were not significantly reduced with any treatment form. The fracture walker, with and without arch support, and total contact cast can effectively reduce plantar pressure at the heel and first metatarsal head.
Generation of strip-format fibrin-based engineered heart tissue (EHT).
Schaaf, Sebastian; Eder, Alexandra; Vollert, Ingra; Stöhr, Andrea; Hansen, Arne; Eschenhagen, Thomas
2014-01-01
This protocol describes a method for casting fibrin-based engineered heart tissue (EHT) in standard 24-well culture dishes. In principle, a hydrogel tissue engineering method requires cardiomyocytes, a liquid matrix that forms a gel, a casting mold, and a device that keeps the developing tissue in place. This protocol refers to neonatal rat heart cells as the cell source; the matrix of choice is fibrin, and the tissues are generated in rectangular agarose-casting molds (12 × 3 × 3 mm) prepared in standard 24-well cell culture dishes, in which a pair of flexible silicone posts is suspended from above. A master mix of freshly isolated cells, medium, fibrinogen, and thrombin is pipetted into the casting mold and, over a period of 2 h, polymerizes and forms a fibrin cell block around two silicone posts. Silicone racks holding four pairs of silicone posts each are used to transfer the fresh fibrin cell blocks into new 24-well dishes with culture medium. Without further handling, the cells start to remodel the fibrin gel, form contacts with each other, elongate, and condense the gel to approximately ¼ of the initial volume. Spontaneous and rhythmic contractions start after 1 week. EHTs are viable and relatively stable for several weeks in this format and can be subjected to repeated measurements of contractile function and final morphological and molecular analyses.
Alex, Deepa; Shetty, Y Bharath; Miranda, Glynis Anita; Prabhu, M Bharath; Karkera, Reshma
2015-01-01
Conventional investing and casting techniques are time-consuming and usually requires 2-4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30-40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.
Braithwaite, Irene; Mackintosh, Stephen; Buchanan, Samantha; Schwarzenlander, Kerstin; De Ruyter, Bernadette
2017-02-01
We investigated popliteal venous haemodynamics of the VenaJet Jet Impulse Technology system within a below-knee fibreglass cast. Randomized controlled trial. Twenty-four healthy participants aged 18-54 had both feet placed within the Jet Impulse Technology system and were randomised for one or other leg to be within a below-knee fibreglass cast. Pacific Radiology, Lower Hutt, Wellington. The primary outcome variable was peak systolic velocity (cm/s) compared between legs with and without the cast at 60 min (after 10 min Jet Impulse Technology activation), using a mixed linear model and a non-inferiority bound of 4.8 cm/s. Secondary outcome variables were the difference in peak systolic velocity between the casted limb and the non-casted limb at baseline and 40 min after casting, and the difference in mean flow velocity (cm/s), vein diameter (mm), and total volume flow (L/min) between the casted limb and the non-casted limb at baseline, 40 and 60 min. The mean (standard deviation) peak systolic velocity was 4.6(1.5), 4.8(1.1), 28.8(16.1), and 4.3(1.2), 4.8(1.4) and 29.3(19.0) cm/s at baseline, 40 and 60 min in the casted and non-casted leg, respectively. The difference (95% confidence interval) between cast and no-cast at 60 min was -0.8 (-6.5 to 4.9) cm/s, P = 0.78. The peak systolic velocity, flow velocity and total volume flow at 40 min were not statistically significantly different from baseline for both casted and non-casted limb. In healthy volunteers, the popliteal venous haemodynamics of the Jet Impulse Technology system was similar between the legs with and without a below-knee fibreglass cast. In-cast Jet Impulse Technology may provide a non-pharmacological option for venous thromboembolism prophylaxis for lower-limb cast-immobility.
Agrawal, Amit; Hashmi, Syed W; Rao, Yogesh; Garg, Akanksha
2015-07-01
Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly.
Development of Al2O3 fiber-reinforced Al2O3-based ceramics.
Tanimoto, Yasuhiro; Nemoto, Kimiya
2004-09-01
The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.
Development of refractories and related products for steel melting, finishing, and casting
NASA Astrophysics Data System (ADS)
Smirnov, A. N.
2013-06-01
The transformation of the consumption of refractories for the production, out-of-furnace treatment, and casting of steel is considered. The main trends in developing the refractory market are shown to be a significant decrease in the specific consumption of refractories per 1 t liquid steel and the predominant application of refractories based on magnesia raw materials and fused corundum for the working layers of melting units, ladles, and tundishes. The main trend in decreasing the specific costs of refractories is the development of refractories based on alternative sources of raw materials, which are cheaper and more available for refractory manufacturers.
Cellularized Cellular Solids via Freeze-Casting.
Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M
2016-02-01
The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Depth of array micro-holes with large aspect ratio in Al based cast alloy
NASA Astrophysics Data System (ADS)
Jin, Meiling; Qu, Yingdong; Li, Rongde
2018-03-01
In order to study on the depth of array micro-holes on Al base cast alloy, micro-hole with depth of 50 mm and diameter of 0.55 mm are successfully prepared by using poor wetting between carbon and Al. Accordingly, the mold of depth is established, the results show that calculated depth of micro-hole is 53.22 mm, relative error is 6% compare with the actual measured depth, and the depth of hole exponentially increases with the increasing of distance between two micro-holes. Surface tension and metallostatic pressure of metal molten are mainly affecting factors for depth of micro-holes.
High pressure die casting of Fe-based metallic glass.
Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András
2016-10-11
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.
High pressure die casting of Fe-based metallic glass
NASA Astrophysics Data System (ADS)
Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András
2016-10-01
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.
High pressure die casting of Fe-based metallic glass
Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András
2016-01-01
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780
1988-06-30
casting. 68 Figure 1-9: Line printer representation of roll solidification. 69 Figure I1-1: Test casting model. 76 Figure 11-2: Division of test casting...writing new casting analysis and design routines. The new routines would take advantage of advanced criteria for predicting casting soundness and cast...properties and technical advances in computer hardware and software. 11 2. CONCLUSIONS UPCAST, a comprehensive software package, has been developed for
Complexation of amyloid fibrils with charged conjugated polymers.
Ghosh, Dhiman; Dutta, Paulami; Chakraborty, Chanchal; Singh, Pradeep K; Anoop, A; Jha, Narendra Nath; Jacob, Reeba S; Mondal, Mrityunjoy; Mankar, Shruti; Das, Subhadeep; Malik, Sudip; Maji, Samir K
2014-04-08
It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak
2015-12-01
Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.
NASA Astrophysics Data System (ADS)
Hofmeister, M.; Franke, M. M.; Koerner, C.; Singer, R. F.
2017-12-01
Superalloy gas turbine blades are being produced by investment casting and directional solidification. A new process, Fluidized Carbon Bed Cooling (FCBC), has been developed and is now being optimized in a prototype casting unit with 10 kg pouring weight. In early test runs with still rather simple mold cluster geometries, a reduction of the primary dendrite arm spacing of around 40 pct compared to the standard radiation cooling process (HRS) could be demonstrated. The improvement is mainly attributed to higher temperature gradients driving solidification, made possible by a functioning Dynamic Baffle. Compared to earlier development efforts in the literature, contamination of the melt and damage to the equipment are avoided using carbon-based fluidized bed materials and the so-called "counter pressure concept."
Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting
NASA Astrophysics Data System (ADS)
Migliaccio, Christopher P.; Lazarus, Nathan
2015-10-01
Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.
Melt-cast organic glasses as high-efficiency fast neutron scintillators
NASA Astrophysics Data System (ADS)
Carlson, Joseph S.; Feng, Patrick L.
2016-10-01
In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. The combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.
Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells
NASA Astrophysics Data System (ADS)
Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho
2018-03-01
Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.
Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology
Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy
2016-05-10
A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.
Biased gene expression in early honeybee larval development
2013-01-01
Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621
Watkins, WS; Thara, R; Mowry, BJ; Zhang, Y; Witherspoon, DJ; Tolpinrud, W; Bamshad, MJ; Tirupati, S; Padmavati, R; Smith, H; Nancarrow, D; Filippich, C; Jorde, LB
2008-01-01
Background Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations. Results We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77%) exceeds the estimate of variation between these geographically separated groups (RST = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data. Conclusion Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions. PMID:19077280
Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry
1990-02-20
In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.
Kioleoglou, Ioannis; Pissiotis, Argirios
2018-01-01
Background The purpose of this study was to evaluate the accuracy of fitting of an implant supported screw-retained bar made on definitive casts produced by 4 different dental stone products. Material and Methods The dental stones tested were QuickRock (Protechno), FujiRock (GC), Jade Stone (Whip Mix) and Moldasynt (Heraeus). Three external hexagon implants were placed in a polyoxymethylene block. Definitive impressions were made using monophase high viscosity polyvinylsiloxane in combination with custom trays. Then, definitive models from the different types of dental stones were fabricated. Three castable cylinders with a machined non-enganging base were cast and connected with a very small quantity of PMMA to a cast bar, which was used to verify the marginal discrepancies between the abutments and the prosthetic platforms of the implants. For that purpose special software and a camera mounted on an optical microscope were used. The gap was measured by taking 10 measurements on each abutment, after the Sheffield test was applied. Twelve definitive casts were fabricated for each gypsum product and 40 measurements were performed for each cast. Mean, minimum, and maximum values were calculated. The Shapiro-Wilk test of normality was performed. Mann-Whitney test (P<.06) was used for the statistical analysis of the measurements. Results The non-parametric Kruskal-Wallis test revealed a statistically significant effect of the stone factor on the marginal discrepancy for all Sheffield test combinations: 1. Abutment 2 when screw was fastened on abutment 1 (χ2=3, df=35.33, P<0.01), 2. Abutment 3 when the screw was fastened on abutment 1 (χ2=3, df=37.74, P<0.01), 3. Abutment 1 when the screw was fastened on abutment 3 (χ2=3, df=39.79, P<0.01), 4. Abutment 2 when the screw was fastened on abutment 3 (χ2=3, df=37.26, P<0.01). Conclusions A significant correlation exists between marginal discrepancy and different dental gypsum products used for the fabrication of definitive casts for implant supported bars. The smallest marginal discrepancy was noted on implant supported bars fabricated on definitive casts made by Type III mounting stone. The biggest marginal discrepancy was noted on implant supported bars fabricated on definitive casts made by Type V dental stone. The marginal discrepancies presented on implant supported bars fabricated on definitive casts made by two types of Type IV dental stone were not significantly different. Key words:Dental implant, passive fit, dental stones, marginal discrepancy. PMID:29721227
Effects of resistance form on attachment strength of resin-retained castings.
Wilkes, P W; Shillingburg, H T; Johnson, D L
2000-01-01
This study evaluated the effects of tooth preparation design on resistance to dislodgment of a resin-bonded fixed partial denture (RBFPD). The variations of tooth preparation tested included axial coverage, retentive grooves, and an occlusal rest. Patterns of the tooth preparation designs were prepared and cast in a base metal alloy. Retainer patterns were waxed to refractory casts of metal dies, cast, finished and then bonded to the dies. The complete assemblies were loaded to failure on an Instron mechanical testing machine, and analysis indicated that retainers with occlusal rests were the most resistant. Grooves provided no statistically significant increase in resistance to failure of the cement. Increased axial coverage did not increase resistance to dislodgment. Successful fixed partial dentures (FPDs) depend on cast retainers to resist displacement of the restoration during function. Introduction of resin-bonded restorations opened the possibility of FPDs with minimal reduction of abutments. Specific questions concerning long term success and tooth preparation designs were prominent concerns. The influence of resistance form on overall stability of a restoration was also of particular interest. Buonocore established the foundation for retention of composite resins to acid-pitted enamel. Rochette used this technology to bond perforated cast metal splints to periodontally compromised teeth. A mechanical interlock was created as composite resin engaged these perforations and sustained the cast splint to acid-etched enamel. Howe adapted this design for replacement of anterior teeth by adding porcelain to a metal ceramic framework and then bonding the framework to abutments without tooth preparations. The advantages of these procedures were their conservative nature, esthetics, and ease of rebonding after dislodgment. Livaditis and Thompson adapted the procedure proposed by Tanaka of corrosion-pitting the bonding surface of a base metal alloy. They increased the surface area to be bonded, eliminated the perforations to improve rigidity of the framework, and described tooth preparation modifications of the abutments. They suggested an occlusal rest, establishment of guide planes through axial reduction, and a proximal extension to the facial surface to resist lingual displacement. Simonson, et al., based their anterior tooth preparation design on the configuration suggested by Livaditis which included a slight chamfer finish line plus reduction of the lingual surface to provide a thicker metal framework. Barrack introduced an inlay type tooth preparation for the occlusal rest plus shallow vertical proximal grooves, and Meiers used grooves as an esthetic alternative to proximal extensions. Clinical studies and surveys have identified specific variables involved with success and failure, while in vitro studies have evaluated framework designs, bonding agents, and methods for pitting the metal surface. This study evaluated resistance of RBFPDs to dislodgment of different tooth preparation designs.
Kalavathi, M; Sachin, Bhuvana; Prasanna, B G; Shreeharsha, T V; Praveen, B; Ragher, Mallikarjuna
2016-02-01
The thermal expansion of the investment can be restricted by the metal casting ring because the thermal expansion of the ring is less than that of the investment. The ringless casting procedure is in use in clinical dentistry, though there is little scientific data to support its use in fixed partial dentures. In this study, marginal discrepancy of castings produced with the ringless casting technique and the conventional technique using the metal rings were compared. A total of 30 wax patterns were fabricated directly on a metal die. Optical stereomicroscope was used to measure the marginal discrepancy between the metal die and wax patterns. A total of 15 castings were invested using Bellavest T phosphate-bonded investment with the ringless technique and 15 were invested with the same investment with a metal ring; 30 castings were produced using a nickel-chromium ceramo-metal alloy. The internal surface of the castings was not modified and seated with finger pressure. The vertical marginal discrepancy was measured using an optical stereomicroscope at a magnification of 100x. The data obtained were statistically analyzed using students t-test (paired t-test and unpaired t-test). The castings of the ringless technique provided less vertical marginal discrepancy (240.56 ± 45.81 μ) than the castings produced with the conventional metal ring technique (281.98± 53.05 μ). The difference was statistically significant. The ringless casting technique had produced better marginal accuracy compared with conventional casting technique. Ringless casting system can be used routinely for clinical purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, A.; Chadwick, T.; Makhlouf, M.
This paper deals with the effects of various solidification variables such as cooling rate, temperature gradient, solidification rate, etc. on the microstructure and shrinkage defects in aluminum alloy (A356) castings. The effects are first predicted using commercial solidification modeling softwares and then verified experimentally. For this work, the authors are considering a rectangular bar cast in a sand mold. Simulation is performed using SIMULOR, a finite volume based casting simulation program. Microstructural variables such as dendritic arm spacing (DAS) and defects (percentage porosity) are calculated from the temperature fields, cooling rate, solidification time, etc. predicted by the computer softwares. Themore » same variables are then calculated experimentally in the foundry. The test piece is cast in a resin (Sodium Silicate) bonded sand mold and the DAS and porosity variables are calculated using Scanning Electron Microscopy and Image Analysis. The predictions from the software are compared with the experimental results. The results are presented and critically analyzed to determine the quality of the predicted results. The usefulness of the commercial solidification modeling softwares as a tool for the foundry are also discussed.« less
NASA Astrophysics Data System (ADS)
Menet, Claire; Reynaud, Pascal; Fantozzi, Gilbert; Thibault, Delphine; Laforêt, Adrien
2017-06-01
Sand cores are used to produce internal cavities of metallic cast parts with complex shapes like automotive cylinder heads. Foundry cores are granular materials made of sand grains aggregated with binder bridges. In the cold box coring process, the binder is a polyurethane resin. It is noteworthy that during the casting of the liquid metal, the polymer binder is seriously damaged. This kind of materials has been poorly investigated so far. This study aims for a better understanding of the mechanical behaviour and fracture of cores subjected to various loads and thermal ageing. Particularly, the focus is on the decoring step, which consists in removing the sand by hammering and vibration of the metallic part after casting. This major project, generated from the collaboration of the aluminum casting company Montupet, and two laboratories Centre des Matériaux (CdM) and MATEIS, includes both experimental and numerical activities in order to model the decoring step of cylinder heads based on empiric data. Here, the experimental part of the work is presented.
Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.
Li, Yubo; Dai, Shaobin; Zhang, Yichao; Huang, Jun; Su, Ying; Ma, Baoguo
2018-01-01
The mass accumulation of phosphogypsum has caused serious environmental pollution, which has become a worldwide problem. Gypsum is a kind of green building material, which is lighter, has better heat and sound insulation performance, and is easier to recycle compared to cement. The application of cast-in-situ phosphogypsum wall could consume a large amount of pollutant, and improve the efficiency of building construction. The preparation and thermal insulation performance of cast-in-situ phosphogypsum wall were investigated. The property of phosphogypsum-fly ash-lime (PFL) triad cementing materials, the adaptability of retarders and superplasticizers, and the influences of vitrified microsphere as aggregates were explored. Thus, the optimum mix was proposed. Thermal insulation performance tests and ANSYS simulation of this material was carried out. Optimal structures based on heat channels and the method of calculation determining related parameters were proposed, which achieved a 12.3% reduction in the heat transfer coefficient of the wall. With good performance, phosphogypsum could be used in cast-in-situ walls. This paper provides the theoretical basis for the preparation and energy-saving application of phosphogypsum in the walls of buildings.
An investigation of the properties of Mg-Zn-Al alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Couture, A.; Luo, A.
1998-06-05
During the past ten years, the use of magnesium castings in the automotive and electronics industries has been expanding at an impressive rate. Die casting is one of the most effective fabrication methods and has been extensively used to produce magnesium components, especially in the automotive industry. However, the number of available Mg-based alloys for die casting is very limited. Therefore, it is pressing to develop some new Mg die casting alloys with good creep resistance, acceptable castability and low cost. Mg-Zn-Al (ZA) is a promising alloy system which is able to meet the requirements. But up to now, onlymore » a small amount of research has been carried out on this system. The aim of the present work is to examine and evaluate the microstructural features, tensile properties and creep resistance in order to get a better overall understanding of alloys of this system and to identify the most promising compositions. The influence of small additions of Ca and Sr on the tensile and creep properties of ZA alloys was also investigated.« less
Structure and mechanical properties of improved cast stainless steels for nuclear applications
Kenik, Edward A.; Busby, Jeremy T.; Gussev, Maxim N.; ...
2016-10-27
Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. Here, a series of modified high-nitrogen cast steels has been developed and characterized. The steels, based on the cast equivalent of 316 composition, have increased N (0.14-0.36%) and Mn (2-5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and neutron irradiated specimens at 0.7 dpa. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganesemore » tended to decrease yield stress, but increased radiation hardening. Furthermore, the role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. We show that the modified steels, compared to reference material, exhibit significantly reduced elemental inhomogeneity and second phase formation.« less
Uniaxial alignment of triisopropylsilylethynyl pentacene via zone-casting technique.
Su, Yajun; Gao, Xiang; Liu, Jiangang; Xing, Rubo; Han, Yanchun
2013-09-14
Uniaxially aligned triisopropylsilylethynyl pentacene (TIPS-pentacene) crystals over a large area were fabricated using zone-casting technique. The array of TIPS-pentacene displayed a high orientation degree with a dichroic ratio (DR) of 0.80. The crystals were arranged with c axis perpendicular to the substrate and the long axis of the ribbon corresponded to the a axis of TIPS-pentacene. The properties of the solutions and the processing parameters were shown to influence the formation of the oriented TIPS-pentacene crystalline array. Solvent with a low boiling point (such as chloroform) favoured the orientation of the ribbon-like crystals. The concentration of the solution should be appropriate, ensuring the crystallization velocity of TIPS-pentacene matching with the receding of the meniscus. Besides, we proved that the casting speed should be large enough to induce a sufficient concentration gradient. The orientation mechanism of TIPS-pentacene was attributed to a synergy of the ordered nuclei and a match between the crystallization velocity and the casting speed. Field effect transistors (FETs) based on the oriented TIPS-pentacene crystalline array showed a mobility of 0.67 cm(2) V(-1) s(-1).
NASA Astrophysics Data System (ADS)
Poková, M.; Cieslar, M.
2014-08-01
Aluminium alloys prepared by twin-roll casting method become widely used in industry applications. Their high solid solution supersaturation and finer grains ensure better mechanical properties when compared with the direct-chill cast ones. One of the possibilities how to enhance their thermal stability is the addition of zirconium. After heat treatment Al3Zr precipitates form and these pin moving grain boundaries when the material is exposed to higher temperatures. In the present work twin-roll cast aluminium alloys based on AA3003 with and without Zr addition were annealed for 8 hours at 450 °C to enable precipitation of Al3Zr phase. Afterwards they were subjected to severe plastic deformation by equal channel angular pressing, which led to the reduction of average grain size under 1 μm. During subsequent isochronal annealing recovery and recrystallization took place. These processes were monitored by microhardness measurements, light optical microscopy and in-situ transmission electron microscopy. The addition of Zr stabilizes the grain size and increases the recrystallization temperature by 100 °C.
46 CFR 56.60-10 - Cast iron and malleable iron.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and... avoided. Cast iron and malleable iron components shall not be used at temperatures above 450 °F. Cast iron...
Mahan, Susan T; Harris, Marie S; Lierhaus, Anneliese M; Miller, Patricia E; DiFazio, Rachel L
Noise reduction headphones decrease the sound during cast removal. Their effectiveness in decreasing anxiety has not been studied. Compare pediatric patients' anxiety levels during cast removal with and without utilization of noise reduction headphones combined with use of a personal electronic device. Quality improvement project. Patients randomly assigned to noise reduction headphone group or standard care group during cast removal. Faces, Legs, Activity, Cry, and Consolability Scale and heart rate were evaluated prior to, during, and after cast removal. Data were compared across groups. Fifty patients were included; 25 per group. No difference detected between the 2 groups in Faces, Legs, Activity, Cry, and Consolability Scale score prior to (p = .05) or after cast removal (p = .30). During cast removal, the headphone group had lower FLACC Scale scores (p = .03). Baseline heart rate was lower in the headphone group prior to (p = .02) and after (p = .005) cast removal with no difference during cast removal (p = .24). Utilizing noise reduction headphones and a personal electronic device during the cast removal process decreases patient anxiety.
[Variables effecting casting accuracy of quick heating casting investments].
Takahashi, H; Nakamura, H; Iwasaki, N; Morita, N; Habu, N; Nishimura, F
1994-06-01
Recently, several new products of investments for "quick heating" have been put on the Japanese market. The total casting procedure time for this quick heating method involves only one hour; 30-minutes waiting after the start of mixing before placing the mold directly into the 700 degrees C furnace and 30-minutes heating in the furnace. The purpose of this study was to evaluate two variables effecting casting accuracy using these new investments. The effect of thickness of the casting liner inside the casting ring and the effect of waiting time before placing the mold into the 700 degrees C furnace were evaluated. A stainless-steel die with a convergence angle of 8 degrees was employed. Marginal discrepancies of the crown between the wax patterns and castings were measured. The size of the cast crown became larger when the thickness of the ring liner was thick and when the waiting time before placing the mold into the furnace was long. These results suggest that these new investments have the advantage of providing sound castings using short-time casting procedures. However, it is necessary to pay careful attention to the casting conditions for obtaining reproducible castings.
Development and Implementation of the Casting of Rods Made of Refractory Cast Alloys
NASA Astrophysics Data System (ADS)
Kabanov, I. V.; Urin, S. L.; Ivanyuk, A. S.; Nesterov, A. N.; Bogdanov, S. V.
2017-12-01
The problems of the production of a so-called casting rod blank made of a refractory casting alloy in the vacuum induction furnaces of AO Metallurgical Plant Electrostal are considered. A unique technology of casting and subsequent treatment of as-cast rod blanks made of refractory alloys is developed, tested, and optimized. As a result of the developed and performed measures for the production of metal products in the Consarc furnace, the ingot-to-product yield increases by 15% as compared to metal casting in an ISV-1.0 furnace. As a result, we have widened the range of cast alloy grades and are going to cast metals for the manufacture of blanks of other sizes and ranges of alloy an steel grades.
Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Development of CCT Diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumbley, L Scott
2011-08-20
One of the most energy intensive industries in the U.S. today is in the melting and casting of steel alloys for use in our advanced technological society. While the majority of steel castings involve low or mild carbon steel for common construction materials, highly-alloyed steels constitute a critical component of many industries due to their excellent properties. However, as the amount of alloying additions increases, the problems associated with casting these materials also increases, resulting in a large waste of energy due to inefficiency and a lack of basic information concerning these often complicated alloy systems. Superaustenitic stainless steels constitutemore » a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma (³) and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. Knowledge of the times and temperatures at which these detrimental phases form is imperative if a company is to efficiently produce castings of high quality in the minimum amount of time, using the lowest amount of energy possible, while producing the least amount of material waste. Anecdotal evidence from company representatives revealed that large castings frequently had to be scrapped due to either lower than expected corrosion resistance or extremely low fracture toughness. It was suspected that these poor corrosion and / or mechanical properties were directly related to the type, amount, and location of various intermetallic phases that formed during either the cooling cycle of the castings or subsequent heat treatments. However, no reliable data existed concerning either the time-temperature-transformation (TTT) diagrams or the continuous-cooling-transformation (CCT) diagrams of the super-austenitics. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3McuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). In this way TTT and CCT diagrams could be developed for the matrix of samples chosen. As this study consisted of basic research into the development of TTT and CCT diagrams as an aid to the US steel casting industry, there is no formal commercialization plan associated with this task other than presentations and publications via the Steel Founders Society of America to their members. The author is confident that the data contained in this report can be used by steel foundries to refine their casting procedures in such a way as to reduce the amount of waste produced and energy wasted by significantly reducing or eliminating the need for remelting or recasting of material due to unwanted, premature intermetallic formation. This development of high alloy steel CCT diagrams was predicted to result in an average energy savings of 0.05 trillion BTU's/year over a 10 year period (with full funding). With 65% of the proposed funding, current (2011) annual energy saving estimates, based on initial dissemination to the casting industry in 2011and market penetration of 97% by 2020, is 0.14 trillion BTU's/year. The reduction of scrap and improvement in casting yield will also result in a reduction of environmental emissions associated with the melting and pouring of the steel. The average annual estimate of CO2 reduction per year through 2020 is 0.003 Million Metric Tons of Carbon Equivalent (MM TCE)« less
FerriCast: a macrocyclic photocage for Fe3+.
Kennedy, Daniel P; Incarvito, Christopher D; Burdette, Shawn C
2010-02-01
The non-siderophoric Fe(3+) photocage FerriCast (4,5-dimethoxy-2-nitrophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl] methanol (2) has been prepared in high yield using an optimized two-step reaction sequence that utilizes a trimethylsilyl trifluoromethanesulfonate (TMSOTf) assisted electrophilic aromatic substitution as the key synthetic step. Spectrophotometric assessment of Fe(3+) binding to FerriCast revealed a binding stoichiometry and metal ion affinity dependent on the nature of the counterion. Exposure of FerriCast to 350 nm light initiates a photoreaction that converts FerriCast into FerriUnc (4,5-dimethoxy-2-nitrosophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl]-methanone), which binds Fe(3+) less strongly owing to resonance delocalization of the anilino lone pair into the benzophenone pi-system. The release of Fe(3+) upon photolysis of FerriCast also was evaluated using a previously reported turn-on fluorescent sensor that utilizes the same macrocyclic ligand (4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl, AT(2)12C4). In contrast to the original reports on AT(2)12C4-based Fe(3+) sensors, FerriCast does not interact with ferric iron in aqueous solution. Introduction of oxygen containing solvents (MeOH, H(2)O, DMSO, MES, and phosphate buffers) to CH(3)CN solutions of metalated FerriCast lead to rapid decomplexation as measured by UV-visible spectroscopy. Further investigations contradicted the published conclusions on the aqueous coordination chemistry of AT(2)12C4, but also confirmed the unique and unexpected selectivity of the macrocycle for Fe(3+) in nonaqueous solvents. The crystallographic analysis of [Cu(AT(2)12C4)Cl](+) provides a rare example of a bifurcated hydrogen bond, and evidence for redox chemistry with the ligand. Spectrophotometric analysis of the model ligand with redox active metal ions provide evidence for AT(2)12C4(*+), a quasi-stable species the presence of which suggests caution should be taken when evaluating the interaction of aniline-containing systems with redox active metal ions.
A Randomized Prospective Study Of The Use Of Ipads In Reducing Anxiety During Cast Room Procedures
Ko, Justine S.; Whiting, Zachariah; Nguyen, Cynthia; Liu, Raymond W; Gilmore, Allison
2016-01-01
Background Cast room procedures can be a source of anxiety for children. Various techniques, including music therapy, have been evaluated as a way to ease this anxiety. The use of iPads as a form of distraction during cast room procedures has not previously been evaluated and was the purpose of the current study. Methods 146 children and adolescents who underwent cast room procedures during June- August 2015 were randomly assigned to one of three groups: no-iPad, iPad with video, or iPad with game. Patient heart rates were measured using a pulse oximeter in the waiting room, before the procedure, during the procedure, and after the procedure. Mean values for each group were calculated at each time interval and compared both between groups and within groups over time. Results There were no significant differences in baseline (waiting room) heart rate between the no-iPad and iPad groups. When compared with the no-iPad group, there was a trend toward decreased heart rate in the video group (p=0.13) and a significant increase in heart rate in the game group (p=0.026) before the procedure. There were no significant decreases in heart rate within any of the groups when comparing the waiting room heart rates with the during procedure heart rates. There was a significant difference between the no-iPad and video groups (p=0.047) when comparing the change in heart rate from baseline to before the procedure, with a decreased heart rate observed in the video group. Conclusions The results of this study show a significant decrease in heart rate when transitioning from the waiting room to the cast room while watching videos on the iPad. iPad-based video delivery appears to decrease anxiety prior to cast room procedures. iPad-based game play is difficult to assess as elevations in heart rate prior to the procedure are presumed to be related to game play and confound the observed effect it may have on anxiety related to the procedure. PMID:27528849
Comparison of intra-oral and study cast measurements in the assessment of malocclusion.
Ovsenik, Maja; Farcnik, Franc M; Verdenik, Ivan
2004-06-01
Malocclusion assessment methods are based on registrations and measurements made on study casts, which requires that impressions be taken. In addition to being costly and time-consuming, this process can be unpleasant for very young children. Therefore, the aim of this study was to evaluate the reliability of intra-oral measurements that compute a malocclusion index score to determine malocclusion severity in the mixed dentition. The research was part of a longitudinal study in Slovenia on a sample of 530 3-year-old children. At 8 years of age (mean 8.5 years, standard deviation 0.2), a cohort of 101 children (44 boys, 57 girls) was randomly selected in a cross-sectional study. Quantitative registrations of space and occlusal anomalies were performed intra-orally as well as on study casts. Kappa (kappa) statistics were used to evaluate the agreement between clinical and study cast malocclusion assessments. Systematic bias of measurements was tested using Wilcoxon's signed rank test. The results showed complete agreement between the two measurements for anterior crossbite, anterior open bite and overjet scores (kappa = 1); excellent reliability for the buccal segment relationship (kappa = 0.93), transverse occlusion of posterior teeth (kappa = 0.87); and substantial agreement for overbite (kappa = 0.79) and midline deviation (kappa = 0.71). For the remainder of the traits the agreement was moderate: rotation of incisors (kappa = 0.58), crowding of upper incisors (kappa = 0.51), axial inclination of teeth (kappa = 0.44) and lower incisor crowding (kappa = 0.41). Intra-orally small, but statistically significant scoring of lower incisor rotation and crowding was identified. On the study casts the most favourable axial inclination was found for buccal segment occlusion. Overall classification into severity grades, based on the total malocclusion score, showed excellent agreement between the two methods (kappa = 0.89), without statistically significant bias. Malocclusion assessment, recorded and measured intra-orally, is as reliable as assessment on study casts. The proposed method can be used in screening, in epidemiological studies and in clinical orthodontic assessment.
Characterization of Novel Gel Casting System to Make Complex Shaped Aluminum Oxide (Al2O3) Parts
2016-03-01
investigated including systems based on starch , gelatin, protein, and agarose. Generally, all systems are too expensive for high-volume casting.13 While gel...was determined by measuring the resistance force in uniaxial compression. Therefore, the specimen was considered gelled when the resistance force was...used to lower the indenter tip at a rate of 30 mm/min by a distance of 6 mm while measuring the maximum resistance force during the indentation. At the
Discussion of "Investigation of Oxide Bifilms in Investment Cast Superalloy IN100 Parts I and II"*
NASA Astrophysics Data System (ADS)
Campbell, John
2017-10-01
Fuchs and Kaplan carried out experiments in an attempt to ascertain whether oxide bifilms were present in a vacuum-cast Ni-base superalloy but concluded negatively. Although this author challenged their interpretation of their findings, both parties had overlooked the presence in the alloy of boron which is now known to inhibit bifilm formation. However, even though boron can help significantly, improved filling system designs remain important if other damaging entrainment defects are to be avoided.
Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel
Anton, Donald L.; Lemkey, Franklin D.
1988-01-01
A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.
Porous ceramic scaffolds with complex architectures
NASA Astrophysics Data System (ADS)
Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.
2008-06-01
This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.
FILMING OF 'CONTACT' AT LC39 PRESS SITE
NASA Technical Reports Server (NTRS)
1997-01-01
Warner Bros.' cast and crew are filming scenes for the movie 'Contact' at Kennedy Space Center's Launch Complex 39 Press Site on January 30. The screenplay for 'Contact' is based on the best- selling novel by the late astronomer Carl Sagan. The cast includes Jodie Foster, Matthew McConaughey, John Hurt, James Woods, Tom Skerritt, David Morse, William Fichtner, Rob Lowe and Angela Bassett. Described by Warner Bros. as a science fiction drama, 'Contact' will depict humankind's first encounter with evidence of extraterrestrial life.
FILMING OF 'CONTACT' AT LC39 PRESS SITE
NASA Technical Reports Server (NTRS)
1997-01-01
Warner Bros.' cast and crew are filming scenes for the movie 'Contact' at Kennedy Space Center's Launch Complex 39 Press Site on January 29. The screenplay for 'Contact' is based on the best- selling novel by the late astronomer Carl Sagan. The cast includes Jodie Foster, Matthew McConaughey, John Hurt, James Woods, Tom Skerritt, David Morse, William Fichtner, Rob Lowe and Angela Bassett. Described by Warner Bros. as a science fiction drama, 'Contact' will depict humankind's first encounter with evidence of extraterrestrial life.