Science.gov

Sample records for polymer aging processes

  1. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1989-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen, and switching means such as a photoelectric switch for turning off the heater during dark periods.

  2. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1990-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen and switching means such as a photoelectric switch for turning off the heater during dark periods.

  3. A Course in Polymer Processing.

    ERIC Educational Resources Information Center

    Soong, David S.

    1985-01-01

    A special-topics course in polymer processing has acquired regular course status. Course goals, content (including such new topics as polymer applications in microelectronics), and selected term projects are described. (JN)

  4. Processing polymers with cyclodextrins

    NASA Astrophysics Data System (ADS)

    Williamson, Brandon Robert

    Cyclodextrins (CDs) are cyclic starch molecules that have the unique ability to include a variety of small molecules and polymers inside their cavities, forming "Inclusion Complexes" (ICs). While much work has been done to understand the formation and behavior of these ICs, far less is known about the fundamental property changes that can occur when CD is used to alter polymer chain morphology. The goal of my graduate research has been to discover different ways to improve upon existing polymer properties through CD processing, as well as explore the possibility of creating a novel type of IC using non-traditional forms of cyclodextrin. Poly(ε-caprolactone) (PCL) was processed with alpha-CD to form an IC. The cyclodextrin was then stripped away to yield a PCL with elongated, unentangled, and constrained polymer chains, a process referred to as coalescence. The physical and rheological property changes resulting from this coalescence were then examined. It was found that reorganizing PCL in this manner resulted in an increase in the melt crystallization temperature of up to 25°C. Coalescence also decreased the tan delta of the material and increased the average hardness and Young's modulus by 33 and 53%, respectively. Non-stoichiometric ICs (NS-ICs), or ICs with at least parts of some polymer chains uncovered, were formed between poly (methyl methacrylate) (PMMA) and gamma-CD as well as a synthesized poly(ε-caprolactone)-poly(propylene glycol)-poly(ε-caprolactone) (PCL-PPG-PCL) triblock copolymer and beta-CD. The property changes of the non-complexed polymer chains were then studied. The PMMA/gamma-CD NS-IC samples were determined to be extremely heterogeneous, however glass transition temperature increases of up to 27°C above that of as-received PMMA were observed. Diffraction data for the PMMA NS-ICs suggests slight crystallinity at partial coverage, with a similar crystal structure to that of the fully covered IC. XRD, DSC and FTIR data revealed an almost

  5. Ending Aging in Super Glassy Polymer Membranes

    SciTech Connect

    Lau, CH; Nguyen, PT; Hill, MR; Thornton, AW; Konstas, K; Doherty, CM; Mulder, RJ; Bourgeois, L; Liu, ACY; Sprouster, DJ; Sullivan, JP; Bastow, TJ; Hill, AJ; Gin, DL; Noble, RD

    2014-04-16

    Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N-2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

  6. Temperature, Humidity, And Polymer Aging

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.

    1988-01-01

    Report presents analysis of experimental data on electrical resistivity of polymer (polyvinyl butyral) as function of temperature and relative humidity. Resulting theoretical expression for electrical resistivity resembles generally accepted empirical law for the corrosion rate.

  7. Viscoelastic and aging characteristics of polymers

    SciTech Connect

    Feng, W W

    1984-04-01

    This paper concerns the time dependent mechanical properties for incompressible polymer-like materials subjected to finite deformations. There are two parts: the viscoelastic effects and the aging characteristics. A method for determining these mechanical properties is presented in detail.

  8. Noncollinear wave mixing for measurement of dynamic processes in polymers: physical ageing in thermoplastics and epoxy cure.

    PubMed

    Demčenko, A; Koissin, V; Korneev, V A

    2014-02-01

    Elastic wave mixing using an immersion method has shown effective monitoring and scanning capabilities when applied to thermoplastic ageing, epoxy curing, and non-destructive testing. In water, excitation and reception of waves do not require physical contact between the tools and the specimen, making the acquisition of high-resolution C-scans possible. The nonlinear material parameters exhibit a much higher sensitivity to the specimen state compared to linear ones. Thus, the nonlinear data for polymethyl methacrylate (PMMA) have a 40% difference between zones of "young" and "aged" material, while the linear data show no difference at all. Methodology and logistics of the immersion wave-mixing method are discussed in detail. Monitoring of epoxy curing has also revealed a good sensitivity of the method to this complex process including several characteristic stages, such as the time of maximal viscosity, the gel time, and the vitrification time. These stages are independently verified in separate rheometry measurements. The presented method allows for a number of possibilities: wave-mode and frequency separations, elimination of surrounding medium influence, "steering" (scanning) a scattered wave, controlling the location of the intersection volume, single-sided or double-sided measurements, and operation in detector mode.

  9. Molding process for imidazopyrrolone polymers

    NASA Technical Reports Server (NTRS)

    Johnson, C. L. (Inventor)

    1973-01-01

    A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.

  10. Aging Effects in Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Chistos C.; McManus, Hugh L.

    1999-01-01

    Simulation of composites degradation due to aging are described. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. Aging effects at the laminate, ply, and micro levels are evaluated, to determine failure of any kind. The results obtained show substantial ply stress built up as a result of aging accompanied by comparable laminate strength degradation in matrix dominated composite strengths.

  11. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  12. Accelerated aging of polymer composite bridge materials

    NASA Astrophysics Data System (ADS)

    Carlson, Nancy M.; Blackwood, Larry G.; Torres, Lucinda L.; Rodriguez, Julio G.; Yoder, Timothy S.

    1999-05-01

    Accelerated aging research on samples of composite materials and candidate UV protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory. Durability results and sensor data form test with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  13. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  14. Process for preparing polymer reinforced silica aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Capadona, Lynn A. (Inventor)

    2011-01-01

    Process for preparing polymer-reinforced silica aerogels which comprises a one-pot reaction of at least one alkoxy silane in the presence of effective amounts of a polymer precursor to obtain a silica reaction product, the reaction product is gelled and subsequently subjected to conditions that promotes polymerization of the precursor and then supercritically dried to obtain the polymer-reinforced monolithic silica aerogels.

  15. Molecular Processing of Polymers with Cyclodextrins

    NASA Astrophysics Data System (ADS)

    Tonelli, Alan E.

    We summarize our recent studies employing the cyclic starch derivatives called cyclodextrins (CDs) to both nanostructure and functionalize polymers. Two important structural characteristics of CDs are taken advantage of to achieve these goals. First the ability of CDs to form noncovalent inclusion complexes (ICs) with a variety of guest molecules, including many polymers, by threading and inclusion into their relatively hydrophobic interior cavities, which are roughly cylindrical with diameters of ˜ 0.5 - 1.0 nm. α-, β-, and γ-CD contain six, seven, and eight α-1,4-linked glucose units, respectively. Warm water washing of polymer-CD-ICs containing polymer guests insoluble in water or treatment with amylase enzymes serves to remove the host CDs and results in the coalescence of the guest polymers into solid samples. When guest polymers are coalesced from the CD-ICs by removing their host CDs, they are observed to solidify with structures, morphologies, and even conformations that are distinct from bulk samples made from their solutions and melts. Molecularly mixed, intimate blends of two or more polymers that are normally immiscible can be obtained from their common CD-ICs, and the phase segregation of incompatible blocks can be controlled (suppressed or increased) in CD-IC coalesced block copolymers. In addition, additives may be more effectively delivered to polymers in the form of their crystalline CD-ICs or soluble CD-rotaxanes. Secondly, the many hydroxyl groups attached to the exterior rims of CDs, in addition to conferring water solubility, provide an opportunity to covalently bond them to polymers either during their syntheses or via postpolymerization reactions. Polymers containing CDs in their backbones or attached to their side chains are observed to more readily accept and retain additives, such as dyes and fragrances. Processing with CDs can serve to both nanostructure and functionalize polymers, leading to greater understanding of their behaviors

  16. Accelerated optical polymer aging studies for LED luminaire applications

    NASA Astrophysics Data System (ADS)

    Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard

    2013-09-01

    There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.

  17. A novel polymer extrusion micropelletization process

    NASA Astrophysics Data System (ADS)

    Aquite, William

    Polymer micropellets provide a variety of potential applications for different processes in the polymer industry. Conventional pellets are in the size range of 2.5 mm to 5 mm, while micropellets are at least ten times smaller, in the size range of 50 μm to 1000 μm. The potential benefits to a processor using micropellets include: high surface to volume ratio, high bulk density, fast and even melting rates in extrusion, improved dry flow properties, faster injection molding cycles, and consequently lower energy consumption during processing. More specialized sintering processes that require polymer powders, such as selective sintering techniques, microporous plastics parts manufacturing, and other powder sintering methods would benefit from the production of polymer micropellets since these exhibit the advantages of pellets yet have a lower average size. This work focuses on the study of a technique developed at the Polymer Engineering Center. The technique uses a microcapillary die for the production of micropellets by causing instabilities in extruded polymer threads deformed using an air stream. Tuning of process conditions allow the development of surface disturbances that promote breakup of the threads into pellets, which are subsequently cooled and collected. Although micropellets with high sphericity and a narrow size distribution can be produced using this technique, minimal changes in process conditions also lead to the production of lenticular pellets as well as pellets, fibers and threads with a wide range of size and shape distributions. This work shows how changing processing conditions achieve a variety of shapes and sizes of micropellets, broadening its application for the production of powders from a variety of polymer resins. Different approaches were used, including dimensional analysis and numerical simulation of the micropelletization process. This research reveals the influence of non-linear viscoelastic effects on the dispersion of a polymer

  18. Polymer micromold and fabrication process

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ahre, Paul E.; Dupuy, Peter C.

    1997-01-01

    A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.

  19. Polymer micromold and fabrication process

    SciTech Connect

    Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.

    1997-08-19

    A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.

  20. Effect of alternative aging and accident simulations on polymer properties

    SciTech Connect

    Bustard, L.D.; Chenion, J.; Carlin, F.; Alba, C.; Gaussens, G.; LeMeur, M.

    1984-01-01

    The response of eighteen US and French polymer materials to variations in aging and accident simulation techniques has been determined by this experimental program. This information will provide a partial data base by which to judge appropriate simulation practices. The overall research goal was to determine whether some aging and accident simulation techniques are better suited for qualification activities than other alternative simulation techniques.

  1. Polymer-organoclay nanocomposites by melt processing

    NASA Astrophysics Data System (ADS)

    Cui, Lili

    2009-12-01

    Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefin-organoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the

  2. Automatic Processing of Reactive Polymers

    NASA Technical Reports Server (NTRS)

    Roylance, D.

    1985-01-01

    A series of process modeling computer codes were examined. The codes use finite element techniques to determine the time-dependent process parameters operative during nonisothermal reactive flows such as can occur in reaction injection molding or composites fabrication. The use of these analytical codes to perform experimental control functions is examined; since the models can determine the state of all variables everywhere in the system, they can be used in a manner similar to currently available experimental probes. A small but well instrumented reaction vessel in which fiber-reinforced plaques are cured using computer control and data acquisition was used. The finite element codes were also extended to treat this particular process.

  3. Simulations of aging and plastic deformation in polymer glasses

    NASA Astrophysics Data System (ADS)

    Warren, Mya; Rottler, Jörg

    2007-09-01

    We study the effect of physical aging on the mechanical properties of a model polymer glass using molecular dynamics simulations. The creep compliance is determined simultaneously with the structural relaxation under a constant uniaxial load below yield at constant temperature. The model successfully captures universal features found experimentally in polymer glasses, including signatures of mechanical rejuvenation. We analyze microscopic relaxation time scales and show that they exhibit the same aging characteristics as the macroscopic creep compliance. In addition, our model indicates that the entire distribution of relaxation times scales identically with age. Despite large changes in mobility, we observe comparatively little structural change except for a weak logarithmic increase in the degree of short-range order that may be correlated with an observed decrease in aging with increasing load.

  4. Processing of polymers in high magnetic fields

    SciTech Connect

    Douglas, E.P.; Smith, M.E.; Benicewicz, B.C.; Earls, J.D.; Priester, R.D. Jr.

    1996-05-01

    Many organic molecules and polymers have an anisotropic diamagnetic susceptibility, and thus can be aligned in high magnetic fields. The presence of liquid crystallinity allows cooperative motions of the individual molecules, and thus the magnetic energy becomes greater than the thermal energy at experimentally obtainable field strengths. This work has determined the effect of magnetic field alignment on the thermal expansion and mechanical properties of liquid crystalline thermosets in the laboratory. Further advances in magnet design are needed to make magnetic field alignment a commercially viable approach to polymer processing. The liquid crystal thermoset chosen for this study is the diglycidyl ether of dihydroxy-{alpha}-methylstilbene cured with the diamine sulfamilamide. This thermoset has been cured at field strengths up to 18 Tesla.

  5. Magnetic field processing of inorganic polymers

    SciTech Connect

    Kunerth, D.C.; Peterson, E.S.

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  6. Nonlinear optical polymers for electro-optic signal processing

    NASA Technical Reports Server (NTRS)

    Lindsay, Geoffrey A.

    1991-01-01

    Photonics is an emerging technology, slated for rapid growth in communications systems, sensors, imagers, and computers. Its growth is driven by the need for speed, reliability, and low cost. New nonlinear polymeric materials will be a key technology in the new wave of photonics devices. Electron-conjubated polymeric materials offer large electro-optic figures of merit, ease of processing into films and fibers, ruggedness, low cost, and a plethora of design options. Several new broad classes of second-order nonlinear optical polymers were developed at the Navy's Michelson Laboratory at China Lake, California. Polar alignment in thin film waveguides was achieved by electric-field poling and Langmuir-Blodgett processing. Our polymers have high softening temperatures and good aging properties. While most of the films can be photobleached with ultraviolet (UV) light, some have excellent stability in the 500-1600 nm range, and UV stability in the 290-310 nm range. The optical nonlinear response of these polymers is subpicosecond. Electro-optic switches, frequency doublers, light modulators, and optical data storage media are some of the device applications anticipated for these polymers.

  7. AMPK Function in Aging Process.

    PubMed

    Ruiz, Rocío; Pérez-Villegas, Eva María; Manuel Carrión, Ángel

    2016-01-01

    Aging involves the progressive deterioration of physiological functions, diminishing the individual's capacity for survival. Indeed, aging is the main risk factor for cancer, diabetes, cardiovascular disorders and neurodegenerative diseases. The discovery that the rate of aging is controlled by conserved genetic and biochemical pathways represented an unprecedented advance in aging research. The AMPK protein is a metabolic sensor that acts as a qualified cellular housekeeper, as well as controlling energy homeostasis and resistance to stress. Thus, the correct regulation of this factor enhances health and survival. In this manuscript we will review the molecular pathways regulated by AMPK that are related to the aging process, paying special attention to mitochondrial dysfunction, metabolic deregulation, cell senescence and autophagy.

  8. Effects of physical aging on long-term creep of polymers and polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Brinson, L. Catherine; Gates, Thomas S.

    1994-01-01

    For many polymeric materials in use below the glass transition temperature, the long term viscoelastic behavior is greatly affected by physical aging. To use polymer matrix composites as critical structural components in existing and novel technological applications, this long term behavior of the material system must be understood. Towards that end, this study applied the concepts governing the mechanics of physical aging in a consistent manner to the study of laminated composite systems. Even in fiber-dominated lay-ups the effects of physical aging are found to be important in the long-term behavior of the composite. The basic concepts describing physical aging of polymers are discussed. Several aspects of physical aging which have not been previously documented are also explored in this study, namely the effects of aging into equilibrium and a relationship to the time-temperature shift factor. The physical aging theory is then extended to develop the long-term compliance/modulus of a single lamina with varying fiber orientation. The latter is then built into classical lamination theory to predict long-time response of general oriented lamina and laminates. It is illustrated that the long term response can be counterintuitive, stressing the need for consistent modeling efforts to make long term predictions of laminates to be used in structural situations.

  9. Constitutive Modeling and Testing of Polymer Matrix Composites Incorporating Physical Aging at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.

  10. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, Kenneth Orville

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  11. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, K.O.

    1998-06-30

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  12. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  13. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  14. Effect of alternative aging and accident simulations on polymer properties

    SciTech Connect

    Bustard, L.D.; Chenion, J.; Carlin, F.; Alba, C.; Gaussens, G.; LeMeur, M.

    1985-05-01

    The influence of accident irradiation, steam, and chemical spray exposures on the behavior of twenty-three age-preconditioned polymer sample sets (twenty-one different materials) has been investigated. The test program varied the following conditions: (1) Accident simulations of irradiation and thermodynamic (steam and chemical spray) conditions were performed both sequentially and simultaneously. (2) Accident thermodynamic (steam and chemical spray) exposures were performed both with and without air present during the exposures. (3) Sequential accident irradiations were performed both at 28/sup 0/C and 70/sup 0/C. (4) Age preconditioning was performed both sequentially and simultaneously. (5) Sequential aging irradiations were performed both at 27/sup 0/C and 70/sup 0/C. (6) Sequential aging exposures were performed using two sequences: (1) thermal followed by irradiation and (2) irradiation followed by thermal. We report both general trends applicable to a majority of the tested materials as well as specific results for each polymer. Our data base consists of ultimate tensile properties at the completion of the accident exposure for three XLPO and XLPE, five EPR and EPDM, two CSPE (HYPALON), one CPE, one VAMAC, one polydiallylphtalate, and one PPS material. We also report bend test results at completion of the accident exposures for two TEFZEL materials and permanent set after compression results for three EPR, one VAMAC, one BUNA N, one SILICONE, and one VITON material.

  15. Rheometry of polymer melts using processing machines

    NASA Astrophysics Data System (ADS)

    Friesenbichler, Walter; Neunhäuserer, Andreas; Duretek, Ivica

    2016-08-01

    The technology of slit-die rheometry came into practice in the early 1960s. This technique enables engineers to measure the pressure drop very precisely along the slit die. Furthermore, slit-die rheometry widens up the measurable shear rate range and it is possible to characterize rheological properties of complicated materials such as wall slipping PVCs and high-filled compounds like long fiber reinforced thermoplastics and PIM-Feedstocks. With the use of slit-die systems in polymer processing machines e.g., Rauwendaal extrusion rheometer, by-pass extrusion rheometer, injection molding machine rheometers, new possibilities regarding rheological characterization of thermoplastics and elastomers at processing conditions near to practice opened up. Special slit-die systems allow the examination of the pressure-dependent viscosity and the characterization of cross-linking elastomers because of melt preparation and reachable shear rates comparable to typical processing conditions. As a result of the viscous dissipation in shear and elongational flows, when performing rheological measurements for high-viscous elastomers, temperature-correction of the apparent values has to be made. This technique was refined over the last years at Montanuniversitaet. Nowadays it is possible to characterize all sorts of rheological complicated polymeric materials under process- relevant conditions with viscosity values fully temperature corrected.

  16. Laser Processing of Metals and Polymers

    SciTech Connect

    Singaravelu, Senthilraja

    2012-05-01

    A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applications starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.

  17. Forming of polymer nanofibers by a pressurised gyration process.

    PubMed

    Mahalingam, Suntharavathanan; Edirisinghe, Mohan

    2013-07-25

    A new route consisting of simultaneous centrifugal spinning and solution blowing to form polymer nanofibers is reported. The fiber diameter (60-1000 nm) is shown to be a function of polymer concentration, rotational speed, and working pressure of the processing system. The fiber length is dependent on the rotational speed. The process can deliver 6 kg of fiber per hour and therefore offers mass production capabilities compared with other established polymer nanofiber generation methods such as electrospinning, centrifugal spinning, and blowing.

  18. Effect of processing on Polymer/Composite structure and properties

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.

  19. Stability analysis of a polymer coating process

    NASA Astrophysics Data System (ADS)

    Kallel, A.; Hachem, E.; Demay, Y.; Agassant, J. F.

    2015-05-01

    A new coating process involving a short stretching distance (1 mm) and a high draw ratio (around 200) is considered. The resulting thin molten polymer film (around 10 micrometers) is set down on a solid primary film and then covered by another solid secondary film. In experimental studies, periodical fluctuation in the thickness of the coated layer may be observed. The processing conditions markedly influence the onset and the development of these defects and modeling will help our understanding of their origins. The membrane approach which has been commonly used for cast film modeling is no longer valid and two dimensional time dependent models (within the thickness) are developed in the whole domain (upstream die and stretching path). A boundary-value problem with a free surface for the Stokes equations is considered and stability of the free surface is assessed using two different numerical strategies: a tracking strategy combined with linear stability analysis involving computation of leading eigenvalues, and a Level Set capturing strategy coupled with transient stability analysis.

  20. Process for crosslinking and extending conjugated diene-containing polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1977-01-01

    A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.

  1. Stochastic resonance during a polymer translocation process

    NASA Astrophysics Data System (ADS)

    Mondal, Debasish; Muthukumar, M.

    2016-04-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  2. Characterization of a faster resorbing polymer after real time aging.

    PubMed

    McManus, Anastasia J; Moser, Rodney C; Thomas, Kevin A

    2006-08-01

    This study evaluated the in vitro strength retention and polymer characteristics of specimens made from commercially available 85:15 poly(D,L-lactide-co-glycolide). Test samples included dogbone tensile specimens with a nominal thickness of either 0.75 and 1.0 mm, which were machined from compression-molded sheets, and screws with a major diameter of 2.71 mm and minor diameter of 2.14 mm, which were manufactured by injection molding. All samples were sterilized by e-beam irradiation prior to in vitro aging following a standard methodology. Mechanical testing and polymer analysis were performed at time zero and weekly up to 15 weeks of real time aging. The time zero maximum tensile strength of the 0.75 mm dogbone specimens averaged 55.86 +/- 0.72 MPa. The 1.0-mm dogbone specimens tested at time zero had an average maximum tensile strength of 34.55 +/- 0.36 MPa. The 0.75-mm and 1.0-mm thick dogbone specimens exhibited a controlled decrease in their tensile strength. The initial shear strength of the injection-molded screws was 32.86 +/- 4.15 MPa. After 3 weeks of real time in vitro aging, the screws maintained approximately 70% of their initial (time zero) strength. The inherent viscosity and molecular weight (Mw) at time zero averaged approximately 0.9 dL/g and 98,000 g/mol respectively, and decreased at similar rates for both dogbones and screws. These results demonstrate a controlled, rapid degradation in the mechanical properties of 85:15 poly(D,L-lactide-co-glycolide) material, with sufficient strength for pediatric craniofacial applications.

  3. A Graduate Course in Polymer Processing.

    ERIC Educational Resources Information Center

    Middleman, Stanley

    1978-01-01

    This course, offered by the departments of chemical engineering and polymer science and engineering at the University of Massachusetts, is mainly a course in applied fluid dynamics with an emphasis on flow pressures dominated by viscous effects. (BB)

  4. Continuous process to produce lithium-polymer batteries

    DOEpatents

    Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville

    1998-01-01

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.

  5. Continuous process to produce lithium-polymer batteries

    DOEpatents

    Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.

    1998-05-12

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.

  6. Solid electrolyte material manufacturable by polymer processing methods

    DOEpatents

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  7. Growing perovskite into polymers for easy-processable optoelectronic devices.

    PubMed

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-12

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH₃NH₃PbI₃ (MAPbI₃) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition.

  8. Growing perovskite into polymers for easy-processable optoelectronic devices.

    PubMed

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-01

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH₃NH₃PbI₃ (MAPbI₃) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition. PMID:25579988

  9. Electric Field-Mediated Processing of Polymers. Appendix 1

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Bowlin, G. L.; Haas, T. W.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. We suggest that a broad range of properties can be achieved using a relatively small number of polymers, with electric fields providing the ability to tailor properties via the control of shape, morphology, and orientation. Specific attention is given to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options.

  10. Processing and post-processing issues related to polymer films

    NASA Astrophysics Data System (ADS)

    Mueller, Chad David

    1998-12-01

    In Chapter 1, the effect of heat sealing variables on seal strength of a linear low density polyethylene (LLDPE) was examined. Blown films were heat sealed for various times and temperatures so that the films ranged from partially to fully melted. A temperature of 115sp°C or higher was required to form a good seal and was related to the heterogeneous composition of the LLDPE studied. At 115sp°C, the lower molecular weight, more highly branched chains easily diffused across the interface. However, because these chains represented a small fraction of the crystallinity and the molecular weight was low, they contributed much less than the full peel strength. Conversely, chains with less branching represented the main fraction of crystallinity (anchors for tie chains) and the highest molecular weights (more entanglements). Only at temperatures where the higher molecular weight, less branched chains began to melt and diffuse across the interface could high peel strengths be achieved. In Chapter 2, a novel coextrusion process used to create microlayered hierarchically structured films is described. With this technology, two or three polymers can be multiplied into tens or thousands of alternating layers. This unique coextrusion process can be used to combine polymers of widely dissimilar solid state morphologies and properties into unique layered and gradient structures. In addition, the effect of the viscosity ratio of the component materials and the effect of the layer multiplier geometry on the layer structure and uniformity was investigated. In Chapter 3, the development of a breathable film produced by the microlayer process is described. Two systems were produced: one with poly(ethylene oxide) (PEO) and CaCOsb3-filled LLDPE and the other with PEO and CaCOsb3-filled polypropylene. The water vapor transport (WVT) behavior of these films was measured and related to the tortuousity of the path through the PEO and filled polyolefin domains. PEO is water soluble and has

  11. Radiochemical Ageing of Aromatic Polymers PEEK, PSU and Kapton registered

    SciTech Connect

    Richaud, E.; Audouin, L.; Colin, X.; Verdu, J.; Monchy-Leroy, C.

    2010-06-02

    This article deals with degradation mechanism of three aromatic polymers submitted to gamma-rays in air at 60 deg. C. T{sub g} measurements and GPC results indicated that thin samples (thickness lower than 200 mum) undergo mostly chain scission whereas sol gel analysis and rheometric measurements showed that thicker ones undergo mainly crosslinking. Both results are explained by oxygen diffusion control of oxidation resulting in the formation of a superficial oxidized layer experimentally observed by muATR InfraRed in which oxidative processes orientate rather to chain scission than crosslinking. Experimental results also allowed discussing relative oxidative stability, sensitivity of T{sub g} to chain scission concentration, and crosslinking mechanism (Y or H).

  12. Use of molecularly imprinted polymers in a biotransformation process.

    PubMed

    Ye, L; Ramström, O; Ansell, R J; Månsson, M O; Mosbach, K

    1999-09-20

    Molecularly imprinted polymers are highly stable and can be sterilised, making them ideal for use in biotransformation process. In this communication, we describe a novel application of molecularly imprinted polymers in an enzymatic reaction. The enzymatic condensation of Z-L-aspartic acid with L-phenylalanine methyl ester to give Z-L-Asp-L-Phe-OMe (Z-aspartame) was chosen as a model system to evaluate the applicability of using molecularly imprinted polymers to facilitate product formation. When the product-imprinted polymer is present, a considerable increase (40%) in product yield is obtained. Besides their use to enhance product yields, as demonstrated here, we suggest that imprinted polymers may also find use in the continuous removal of toxic compounds during biochemical reactions.

  13. Novel carbon nanotube-conjugated polymer nanohybrids produced by multiple polymer processing.

    PubMed

    Stranks, Samuel D; Habisreutinger, Severin N; Dirks, Beate; Nicholas, Robin J

    2013-08-21

    We describe two methods in which we manipulate the binding of multiple conjugated polymers to single-walled carbon nanotubes (SWNTs) to produce new and novel nanostructures. One method fi rst utilizes the selective binding of poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) to a narrow distribution of semiconducting SWNTs and then uses a polymer exchange to transfer this purity to other nanotube-polymer combinations, using technologically useful polymers such as poly(3-hexylthiophene) (P3HT) and poly(9,9'-dioctylfluoreneco -benzothiadiazole) (F8BT) as fi rst examples. The other method involves controlling the competitive binding of P3HT and F8BT to SWNTs to produce coaxial nanostructures consisting of both polymers simultaneously bound in ordered layers. We show that these two simple solution-processing techniques can be carried out sequentially to afford new dual-polymer nanostructures comprised of a semiconducting SWNT of a single chirality. This allows the favorable properties of both polymers and purified semiconducting SWNTs to be implemented into potentially highly efficient organic photovoltaic devices. PMID:24137628

  14. Protection of alodine coatings from thermal aging by removable polymer coatings.

    SciTech Connect

    Wagstaff, Brett R.; Bradshaw, Robert W.; Whinnery, LeRoy L., Jr.

    2006-12-01

    Removable polymer coatings were evaluated as a means to suppress dehydration of Alodine chromate conversion coatings during thermal aging and thereby retain the corrosion protection afforded by Alodine. Two types of polymer coatings were applied to Alodine-treated panels of aluminum alloys 7075-T73 and 6061-T6 that were subsequently aged for 15 to 50 hours at temperatures between 135 F to 200 F. The corrosion resistance of the thermally aged panels was evaluated, after stripping the polymer coatings, by exposure to a standard salt-fog corrosion test and the extent of pitting of the polymer-coated and untreated panels compared. Removable polymer coatings mitigated the loss of corrosion resistance due to thermal aging experienced by the untreated alloys. An epoxide coating was more effective than a fluorosilicone coating as a dehydration barrier.

  15. Composites processed from wood fibers and automobile polymer fluff

    NASA Astrophysics Data System (ADS)

    Shi, Qiang

    The objective of this research effort was to investigate the physical and mechanical properties of composites processed from wood fiber and automobile polymer fluff. To this end, a study was conducted to investigate the feasibility of incorporating polymer fluff in dry-process wood fiberboard using polymeric diphenylmethane diisocyanate and phenol - formaldehyde resins. The effect of polymer fluff content and polymer fluff particle size on the physical and mechanical properties of wood fiber/fluff composites was also investigated. The surface properties (dispersive energy and acid-base properties) of the polymer fluff materials and the thermal mechanically pulped hardwood fibers were characterized using contact angle analysis and inverse gas chromatography. Detailed studies were conducted on the moisture related properties of the wood fiber/fluff composites such as moisture transfer and thickness swelling, using both a water immersion test and moisture vapor test. A model to predict the maximum water absorption of water immersion was established for wood fiber/fluff composites as a function of board density and polymer fluff content. A swelling model was also established to predict the hygroscopic thickness swelling rate of composites in a water vapor environment. A moisture diffusion model based on Fick's second law of diffusion was applied to the moisture absorption process of the composites from which the diffusion coefficients and surface emission coefficients were calculated using a nonlinear curve fitting algorithm. The experimental results indicated that automobile polymer fluff, after processing through several simple procedures including separation, cleansing, and granulation, could be recycled by manufacturing dry-process wood fiber/fluff composites. The smaller the polymer fluff particle size, the higher the internal bond, and the lower the thickness swelling and water absorption. Polymer fluff size did not have a significant effect on the bending

  16. Slow process in confined polymer melts: Layer exchange dynamics at a polymer solid interface

    NASA Astrophysics Data System (ADS)

    Yelash, L.; Virnau, P.; Binder, K.; Paul, W.

    2010-11-01

    Employing Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene between graphite walls we show that the mass exchange between layers close to the walls is a slow process already in the melt state. For the glass transition of confined polymers this process competes with the slowing down due to packing effects and intramolecular rotation barriers.

  17. Collaborative Investigations of Supramolecular Polymer Assembly Processes.

    NASA Astrophysics Data System (ADS)

    Wooley, Karen

    2007-03-01

    It is a pleasure to participate in this symposium, honoring Darrin J. Pochan's awarding of the John H. Dillon Medal for advancing our understanding of the physics of assembly and chain conformation of synthetic polypeptides. Assemblies of polypeptides, polysaccharides and polymers of nucleic acids are, of course, complex natural systems that form the bases of life. Over the past three years, we have worked together as a highly interdisciplinary team of investigators, to investigate the self assembly behaviors and resulting morphologies for synthetic amphiphilic block copolymer systems. This presentation will highlight the findings from these collaborative studies, including the importance of the block copolymer composition and topology and the significance of the assembly conditions.

  18. Azobenzene-based supramolecular polymers for processing MWCNTs

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M.; Yoosaf, K.; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2012-12-01

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy

  19. Polymer Aging Techniques Applied to Degradation of a Polyurethane Propellant Binder

    SciTech Connect

    Assink, R.A.; Celina, M.; Graham, A.C.; Minier, L.M.

    1999-07-27

    The oxidative thermal aging of a crosslinked hydroxy-terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) polyurethane rubber, commonly used as the polymeric binder matrix in solid rocket propellants, was studied at temperatures of RT to 125 C. We investigate changes in tensile elongation, mechanical hardening, polymer network properties, density, O{sub 2} permeation and molecular chain dynamics using a range of techniques including solvent swelling, detailed modulus profiling and NMR relaxation measurements. Using extensive data superposition and highly sensitive oxygen consumption measurements, we critically evaluate the Arrhenius methodology, which normally assumes a linear extrapolation of high temperature aging data. Significant curvature in the Arrhenius diagram of these oxidation rates was observed similar to previous results found for other rubber materials. Preliminary gel/network properties suggest that crosslinking is the dominant process at higher temperatures. We also assess the importance of other constituents such as ammonium perchlorate or aluminum powder in the propellant formulation.

  20. Polymer Filler Aging and Failure Studied by Lateral Force Microscopy

    SciTech Connect

    Ratto, T; Saab, A P

    2009-05-27

    In the present work, we study, via force microscopy, the basic physical interactions of a single bead of silica filler with a PDMS matrix both before and after exposure to gamma radiation. Our goal was to confirm our results from last year, and to explore force microscopy as a means of obtaining particle-scale polymer/filler interactions suitable for use as empirical inputs to a computational model consisting of an ensemble of silica beads embedded in a PDMS matrix. Through careful calibration of a conventional atomic force microscope, we obtained both normal and lateral force data that was fitted to yield adhesion, surface shear modulus, and friction of a 1 {micro}m silica bead in contact with PDMS layers of various thickness. Comparison of these terms before and after gamma exposure indicated that initially, radiation exposure lead to softening of the PDMS, but eventually resulted in stiffening. Simultaneously, adhesion between the polymer and silica decreased. This could indicate a serious failure path for filled PDMS exposed to radiation, whereby stiffening of the bulk polymer leads to loss of compressive elastic behavior, while a decrease in polymer filler adhesion results in an increased likelihood of stress failure under load. In addition to further testing of radiation damaged polymers, we also performed FEA modeling of silica beads in a silicone matrix using the shear modulus and adhesion values isolated from the force microscopy experiments as model inputs. The resulting simulation indicated that as a polymer stiffens due to impinging radiation, it also undergoes weakening of adhesion to the filler. The implication is that radiation induces a compound failure mode in filled polymer systems.

  1. Numerical investigation of viscoelastic flow induced crystallization in polymer processing

    NASA Astrophysics Data System (ADS)

    Mu, Yue; Zhao, Guoqun; Wu, Xianghong; Dong, Guiwei

    2013-05-01

    The investigation of viscoelastic flow induced crystallization is of great engineering significance in polymer processing like extrusion, injection and blow molding. In the study, the behavior of viscoelastic flow induced crystallization of semi-crystalline polymers is investigated by using finite element-finite difference method. The Schneider's approach is introduced to describe the evolution of crystallization kinetic process. The numerical model of three-dimensional flow induced crystallization of polymer melts obeying Phan-Thien and Tanner constitutive model is established. A penalty method is introduced to solve the nonlinear governing equations with a decoupled algorithm. The effect of flow state on the crystallization behavior is investigated. The crystalline distribution within the flow channel is obtained based on the proposed mathematical model and numerical method.

  2. Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends.

    PubMed

    Gevaerts, Veronique S; Furlan, Alice; Wienk, Martijn M; Turbiez, Mathieu; Janssen, René A J

    2012-04-24

    Solution processed polymer tandem solar cells that combine wide and small bandgap absorber layers reach a power conversion efficiency of 7% in a series configuration. This represents a 20% increase compared to the best single junction cells made with the individual active layers and shows that the tandem configuration reduces transmission and thermalization losses in converting sunlight. PMID:22438114

  3. Growing perovskite into polymers for easy-processable optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-01

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH3NH3PbI3 (MAPbI3) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition.

  4. Growing perovskite into polymers for easy-processable optoelectronic devices

    PubMed Central

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-01

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH3NH3PbI3 (MAPbI3) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition. PMID:25579988

  5. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    PubMed

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer.

  6. Polymer-Oxygen Compatibility Testing: Effect of Oxygen Aging on Ignition and Combustion Properties

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Haas, Jon P.; Wilson, D. Bruce; Fries, Joseph (Technical Monitor)

    2000-01-01

    The oxygen compatibility of six polymers used in oxygen service was evaluated after exposure for 48 hours to oxygen pressures ranging from 350 to 6200 kPa (50 to 900 psia), and temperatures ranging from 50 to 250 C (122 to 302 F). Three elastomers were tested: CR rubber (C873-70), FKM fluorocarbon rubber (Viton A), and MPQ silicone rubber (MIL-ZZ-765, Class 2); and three thermoplastics were tested: polyhexamethylene adipamide (Zytel 42), polytetrafluoroethylene (Teflon TFE), and polychlorotrifluoroethylene (Neoflon CTFE M400H). Post-aging changes in mass, dimensions, tensile strength, elongation at break, and durometer hardness were determined. Also, the compression set was determined for the three elastomers. Results show that the properties under investigation were more sensitive to oxygen pressure at low to moderate temperatures, and more sensitive to temperature at low to moderate oxygen pressures. Inspection of the results also suggested that both chain scissioning and cross-linking processes were operative, consistent with heterogeneous oxidation. Attempts are underway to verify conclusively the occurrence of heterogeneous oxidation using a simple modulus profiling technique. Finally, the effect of aging at 620 kpa (90 psia) and 121 C (250 F) on ignition and combustion resistance was determined. As expected, aged polymers were less ignitable and combustible (had higher AlTs and lower heats of combustion). Special attention was given to Neoflon CTFE. More specifically, the effect of process history (compression versus extrusion molding) and percent crystallinity (quick- versus slow-quenched) on the AIT, heat of combustion, and impact sensitivity of Neoflon CTFE was investigated. Results show the AIT, heat of combustion, and impact sensitivity to be essentially independent of Neoflon CTFE process history and structure.

  7. Characterizing Residuals in New and Aged Fluorotelomer Polymers in Soil

    EPA Science Inventory

    Fluorotelomer polymers (FTPs) comprise some of the major products of the fluorotelomer industry. FTPs impart anti-wetting and anti-staining properties which are invaluable to wide range of consumer products including clothing, upholstery, food packaging, and carpeting. FTPs retai...

  8. Process for recovering filler from polymer

    DOEpatents

    Smith, Maurice L.; Smith, Robert M.

    1978-01-01

    This disclosure relates to a process for recovering filler material from a polymeric matrix by reacting the matrix at an elevated temperature in a gas atmosphere with a controlled oxidizing potential and thereafter separating and cleaning the residue from the reaction mixture.

  9. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process of preparation

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1993-08-31

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylenealt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R.sup.1)(R.sup.2)Si--C.ident.C--(R.sup.3)(R.sup.4)Si--CH=CH--].sub.n --, wherein n.gtoreq.2; each R.sup.1, R.sup.2, R.sup.3, and R.sup.4 is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  10. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process of preparation

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1995-10-10

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R{sup 1})(R{sup 2})Si--C{triple_bond}C--(R{sup 3})(R{sup 4})Si--CH{double_bond}CH--]{sub n}--, wherein n{>=}2; and each R{sup 1}, R{sup 2}, R{sup 3}, and R{sup 4} is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  11. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process of preparation

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1995-10-10

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R.sup.1)(R.sup.2)Si--C.tbd.C--(R.sup.3)(R.sup.4)Si--CH.dbd.CH--].sub .n --, wherein n.gtoreq.2; and each R.sup.1, R.sup.2, R.sup.3, and R.sup.4 is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  12. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process of preparation

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Yi Pang.

    1993-08-31

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: -[-(R[sup 1])(R[sup 2])Si-C[triple bond]C-(R[sup 3])(R[sup 4])Si-CH[double bond]CH-][sub n]-, wherein n[>=]2; each R[sup 1], R[sup 2], R[sup 3], and R[sup 4] is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  13. Polymerization and processing of organic polymers in a magnetic field

    SciTech Connect

    Douglas, E.P.

    1995-05-01

    The use of magnetic fields to affect the structure and properties of polymeric materials remains an area of great promise. Liquid crystalline polymers have been actively studied over the past 20 years for use in high performance structural applications. In particular, highly oriented fibers can exhibit remarkable increases in strength to weight performance compared to conventional materials. For example, the fibers marketed by DuPont under the tradename Kevlar are 20 times stronger than steel on an equivalent weight basis. However, larger bulk parts do not exhibit the same increases in strength due to a lack of orientation of the polymer molecules. Magnetic field processing of polymers remains an attractive solution to this problem.

  14. Laser processing of components for polymer mircofluidic and optoelectronic products

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Bremus-Koebberling, Elke A.; Wehner, Martin; Russek, Ulrich A.; Berden, Thomas

    2001-06-01

    Miniaturization is one of the keywords for the production of customer oriented and highly integrated consumer products like mobile phones, portables and other products from the daily life and there are some first silicon made products like pressure sensors, acceleration sensors and micro fluidic components, which are built in automobiles, washing machines and medical products. However, not all applications can be covered with this material, because of the limitations in lateral and 3-dimensional structuring, the mechanical behavior, the functionality and the costs of silicon. Therefore other materials, like polymers have been selected as suitable candidates for cost effective mass products. This holds especially for medical and optical applications, where the properties of selected polymers, like biocompatibility, inert chemical behavior and high transparency can be used. For this material laser micro processing offers appropriate solutions for structuring as well as for packaging with high flexibility, material variety, structure size, processing speed and easy integration into existing fabrication plants. The paper presents recent results and industrial applications of laser micro processing for polymer micro fluidic devices, like micro analysis systems, micro reactors and medical micro implants, where excimer radiation is used for lateral structuring and diode lasers have used for joining and packaging. Similar technologies have been applied to polymer waveguides to produce passive optoelectronic components for high speed interconnection with surface roughness less than 20 nm and low attenuation. The paper also reviews the technical and economical limitations and the potential of the technology for other micro products.

  15. Use of step scan FT-IR and multivariate curve resolution to understand aging of propellant binder as a function of depth into the polymer material.

    SciTech Connect

    Rivera, Dion Arledge; Alam, Mary Kathleen

    2003-01-01

    A sample of polymeric propellant binder was aged from 0 to 60 days at 95 C and analyzed using FT-IR step scan photoacoustic spectroscopy. This technique has the ability of to obtain spectra of the polymer as a function of depth into the polymer material. Multivariate curve resolution was applied to the spectra data obtained to extract the contributions of the aged and un-aged spectral components from the spectra. It was found that multivariate curve resolution could efficiently separate highly overlapped spectra and yielded insights into the aging process.

  16. Tough, processable semi-interpenetrating polymer networks from monomer reactants

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1994-01-01

    A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance, and mechanical performance, when compared to the commercial Thermid materials. This simultaneous semi-IPN was prepared by mixing the monomer precursors of Thermid AL-600 (a thermoset) and NR-150B2 (a thermoplastic) and allowing the monomers to react randomly upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene end-capped polyimides which were previously inherently brittle and difficult to process.

  17. Observation and Analysis of Polymer Crystal Structures at the Stem Level. Implications Regarding Polymer Crystallization Processes.

    NASA Astrophysics Data System (ADS)

    Lotz, Bernard

    2003-03-01

    The building element of chain folded polymer crystals is the individual stem that spans the lamellar thickness. For chiral but racemic helical polymers such as polyolefins (e.g. isotactic and syndiotactic polypropylene and poly(1-butene)), stems can be right- or left-handed helices. These polymers can exist in various crystal polymorphs that are either "racemic" or "chiral" (made of both, or of only one helical hand). Upon crystallization, each stem has a conformational "choice", but must adapt to the crystal structure and, once crystallized, is characterized by a "conformational tag" (right or left hand). Various means exist to determine or observe helical hands in polyolefin lamellae: Atomic Force Microscopy on epitaxially crystallized samples, or, for the alpha phase of isotactic polypropylene, analysis of its specific lamellar branching. These observations and analyses indicate that the helical hand of stems is tightly determined by the substrate or growth face topography, i.e. indicate that the depositing stem probes and adapts to the surface structure prior to successful attachment. This "post-mortem" analysis of the crystal structure and stem chirality emphasizes the "sequential" nature of the growth process (successive attachment of individual stems). It is in line with early views on polymer crystallization. It is at variance with recently introduced models or scenarios that assume either some pre-ordering of the polymer melt as a result of spinodal decomposition and/or accretion of polymer chains in pseudo-crystalline bundles followed by (solid state) reorganization of the bundles to generate fully grown lamellae.

  18. Application of polymer membrane technology in coal combustion processes

    SciTech Connect

    Kaldis, S.P.; Skodras, G.; Grammelis, P.; Sakellaropoulos, G.P.

    2007-03-15

    The energy efficiency and the environmental consequences of typical coal upgrading processes, such as combustion, depend to a large extent on the degree of gas separation, recovery, and recycle. Among the available methods used in chemical industry for a variety of gas separation tasks, the technology of polymer membranes offers several advantages such as low size, simplicity of operation and maintenance, compatibility, and use with a diversity of fuel sources. To examine the impact of membrane separation on coal upgrading processes, the Aspen Plus simulation software was used, in combination with developed membrane mathematical models. Energy analysis in coal combustion processes, where the main scope is CO{sub 2} removal, showed that very promising results can be attained. It is estimated that 95% of the emitted CO{sub 2} can be captured with a moderately low energy penalty (10%). This penalty can be further decreased if higher selectivity and/or permeability polymers can be developed.

  19. Characterizing and monitoring changes in state of polymers during cure and use-aging

    NASA Astrophysics Data System (ADS)

    Meyer, Andrew Orschel

    2001-10-01

    Multi Angle Laser Light Scattering (MALLS) and Frequency Dependent Electromagnetic Sensing (FDEMS) provide unique characterizations of polymer systems during cure and use- aging. This research illustrates how MALLS is an extremely accurate technique for absolute characterization of macromolecules, giving molecular weight and size information that other widely used and accepted techniques are incapable of measuring. Application of MALLS to monitoring the changing state of a polyamide-11 system in a water aging environment led to the discovery of an equilibrium molecular weight which is the result of two competing reactions, hydrolysis- degradation and a newly discovered recombination- polymerization reaction. The discovery of this recombination reaction creates the possibility of an indefinitely healthy polyamide-11 polymer system. FDEMS successfully monitored changing water content and degree of cure of a moisture-curing adhesive polymer. The data show potential for total in situ cure characterization by FDEMS, including in situ determinations of moisture diffusion rates during a polymer cure in the adhesive bondline.

  20. Study on degradation process of polymer electrolyte by solution analysis

    NASA Astrophysics Data System (ADS)

    Akiyama, Yoko; Sodaye, Hemant; Shibahara, Yuji; Honda, Yoshihide; Tagawa, Seiichi; Nishijima, Shigehiro

    Degradation process of Nafion which is one of the polymer electrolyte generally used for polymer electrolyte membrane fuel cell was investigated by solution analysis and structural analysis of eluted species. Nafion degraded by gamma-ray irradiation and heat treatment was immersed in distilled water and the solutions were analyzed using ion chromatograph, total organic carbon (TOC) analyzer, and inductively coupled plasma atomic emission spectrometer (ICP-AES). The solutions after the Fenton reaction were also analyzed with the same methods. Proton, sulfide ion, fluorine ion and organic carbon were eliminated into the solution, and their ratio was changed depending on the degradation method. To determine the eliminated species to the solution, structural analysis of concentrated dissolved species was performed using FT-IR. As the results, the initial process of degradation was detected sensitively in solution analysis compared with membrane analysis, and difference of the degradation process under different conditions was clearly observed. It was also found that new functional group COOH was formed in the eliminated species. These results showed that solution analysis are very simple yet powerful methods to elucidate the degradation process, which can also be applied to actual fuel cell operation to track minute changes in the polymer electrolyte.

  1. Glass transition and relaxation processes of nanocomposite polymer electrolytes.

    PubMed

    Money, Benson K; Hariharan, K; Swenson, Jan

    2012-07-01

    This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces. PMID:22686254

  2. Fabrication of Metal Embedded Polymer Periodic Nanostructures by Nanoimprint Process

    NASA Astrophysics Data System (ADS)

    Ogai, Noriyuki; Sugimura, Ryo; Takiguchi, Yoshihiro

    Many nano-application research have been conducted with development of nanoimprint technologies. In particular, metal or metal-polymer hybrid nanostructures have great potentials as nano-devices such as localized surface plasmon resonance (LSPR) devices, wire grid polarizer (WGP) and organic electronics. The metal embedded polymer periodic nanostructures are also expected as a control substrate to array nanoparticles at three dimensional photonic crystal (3DPC). In this study, we propose and demonstrate new fabrication process based on a combination technique of vacuum evaporation and nanoimprint as a fabrication method for the metal embedded nanostructures. As the result, the PMMA nanodot array (approximate 100 nm in diameter with 300 nm pitch) with gold round films embedded at their bottoms were fabricated successfully using this method. Application to 3DPC and other nanodevices of these nanostructures and fabrication process are described.

  3. Nano-structured polymer composites and process for preparing same

    DOEpatents

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  4. The Rheology and Processing of Renewable Resource Polymers

    NASA Astrophysics Data System (ADS)

    Conrad, Jason D.; Harrison, Graham M.

    2008-07-01

    Bio-based polymers offer an alternative to conventional fossil fuel-based materials, in particular for commodity applications such as single-use products. In this work, we report on the rheology and processing of two bio-based polymers, namely poly-hydroxyalkanoate (PHA) copolymers and poly-lactic acid (PLA), and their blends. These materials are derived from renewable resources, and can degrade under the appropriate conditions. The rheology is investigated in shear, elongation, and transient modes. Of particular importance is the degradation of these materials at typical processing conditions, and the impact of polymer architecture on the extensional properties. Using results from these rheological investigations, appropriate thermal and flow conditions are employed in a DSM Xplore microcompounder, with the cast film attachment, to produce films of PHA copolymers blended with PLA. The resultant films are characterized, as a function of both material composition and processing history, using DSC, WAXD, tensile testing, and SEM, to investigate the effect of varying PHA content on the final properties.

  5. Impact of polymer film thickness and cavity size on polymer flow during embossing : towards process design rules for nanoimprint lithography.

    SciTech Connect

    Schunk, Peter Randall; King, William P. (Georgia Institute of Technology, Atlanta, GA); Sun, Amy Cha-Tien; Rowland, Harry D.

    2006-08-01

    This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measures polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.

  6. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  7. All-solution processed polymer light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Zheng, Hua; Zheng, Yina; Liu, Nanliu; Ai, Na; Wang, Qing; Wu, Sha; Zhou, Junhong; Hu, Diangang; Yu, Shufu; Han, Shaohu; Xu, Wei; Luo, Chan; Meng, Yanhong; Jiang, Zhixiong; Chen, Yawen; Li, Dongyun; Huang, Fei; Wang, Jian; Peng, Junbiao; Cao, Yong

    2013-06-01

    Adopting the emerging technology of printed electronics in manufacturing novel ultrathin flat panel displays attracts both academic and industrial interests because of the challenge in the device physics and the potential of reducing production costs. Here we produce all-solution processed polymer light-emitting diode displays by solution-depositing the cathode and utilizing a multifunctional buffer layer between the cathode and the organic layers. The use of ink-jetted conducting nanoparticles as the cathode yields high-resolution cathode patterns without any mechanical stress on the organic layers. The buffer layer, which offers the functions of solvent-proof electron injection and proper affinity, is fabricated by mixing the water/alcohol-soluble polymer and a curable epoxy adhesive. Our 1.5-inch polymer light-emitting diode displays are fabricated without any dead pixels or dead lines. The all-solution process eliminates the need for high vacuum for thermal evaporation of the cathode, which paves the way to industrial roll-to-roll manufacturing of flat panel displays.

  8. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films. PMID:23631433

  9. Mechanisms of shark skin suppression by novel polymer processing aids

    NASA Astrophysics Data System (ADS)

    Wagner, M. H.; Himmel, T.; Kulikov, O.; Hornung, K.

    2014-05-01

    The extrusion rate of polyethylene (PE) with narrow molar weight distribution, as e.g. metallocen catalysed polyethylene (m-PE), is limited by melt fracture. The first level of fracture is a surface defect called sharkskin. Common polymer processing aids based on fluorinated polymers shift the onset of sharkskin to higher extrusion rates by creating a "low energy surface" at the die wall and promoting wall slip. Alternatively, Kulikov et al. [1, 2] suggested thermoplastic elastomers (TPE) for sharkskin suppression, and Müller [3] showed the suitability of some TPEs as polymer processing aids. We investigated the slip velocity of several TPEs against steel, and the slip velocity in a polymeric interface between polyethylene (PE) and TPE by rotational plate-plate rheometry in the Newtonian flow regime. TPEs with lower viscosities showed higher slip velocities against steel. However, the interfacial slip velocities between PE and TPE were found to be viscosity independent. In both cases, the slip velocity was found to be proportional to the applied shear stress.

  10. Depth of Processing and Age Differences.

    PubMed

    Kheirzadeh, Shiela; Pakzadian, Sarah Sadat

    2016-10-01

    The present article is aimed to investigate whether there are any differences between youngsters and adults in their working and long-term memory functioning. The theory of Depth of Processing (Craik and Lockhart in J Verbal Learning Verbal Behav 11:671-684, 1972) discusses the varying degrees of strengths of memory traces as the result of differential levels of processing on the retrieved input. Additionally, they claim that there are three levels of visual, auditory and semantic processes applied on the stimuli in the short-term memory leading to discrepancy in the durability of the memory traces and the later ease of recall and retrieval. In the present article, it is tried to demonstrate if there are evidences of more durable memory traces formed after semantic, visual and auditory processions of the incoming language data in two groups of (a) children in their language learning critical age and (b) youngsters who have passed the critical age period. The comparisons of the results made using two-way ANOVAs revealed the superiority of semantic processing for both age groups in recall, retention and consequently recognition of the new English vocabularies by EFL learners.

  11. Depth of Processing and Age Differences.

    PubMed

    Kheirzadeh, Shiela; Pakzadian, Sarah Sadat

    2016-10-01

    The present article is aimed to investigate whether there are any differences between youngsters and adults in their working and long-term memory functioning. The theory of Depth of Processing (Craik and Lockhart in J Verbal Learning Verbal Behav 11:671-684, 1972) discusses the varying degrees of strengths of memory traces as the result of differential levels of processing on the retrieved input. Additionally, they claim that there are three levels of visual, auditory and semantic processes applied on the stimuli in the short-term memory leading to discrepancy in the durability of the memory traces and the later ease of recall and retrieval. In the present article, it is tried to demonstrate if there are evidences of more durable memory traces formed after semantic, visual and auditory processions of the incoming language data in two groups of (a) children in their language learning critical age and (b) youngsters who have passed the critical age period. The comparisons of the results made using two-way ANOVAs revealed the superiority of semantic processing for both age groups in recall, retention and consequently recognition of the new English vocabularies by EFL learners. PMID:26396084

  12. Bridging Microstructure, Properties and Processing of Polymer Based Advanced Materials

    SciTech Connect

    Li, Dongsheng; Ahzi, Said; Khaleel, Mohammad A.

    2012-01-01

    This is a guest editorial for a special issue in Journal of Engineering Materials and Technology. The papers collected in this special issue emphasize significant challenges, current approaches and future strategies necessary to advance the development of polymer-based materials. They were partly presented at the symposium of 'Bridging microstructure, properties and processing of polymer based advanced materials' in the TMS 2011 annual conference meeting, which was held in San Diego, US, on Feb 28 to March 3, 2011. This symposium was organized by the Pacific Northwest National Laboratory (USA) and the Institute of Mechanics of Fluids and Solids of the University of Strasbourg (France). The organizers were D.S. Li, S. Ahzi, and M. Khaleel.

  13. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-11-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5-10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant.

  14. Aging and Self-Regulated Language Processing

    PubMed Central

    Stine-Morrow, Elizabeth A. L.; Soederberg Miller, Lisa M.; Hertzog, Christopher

    2008-01-01

    This paper introduces an adult developmental model of self-regulated language processing (SRLP), in which the allocation policy with which a reader engages text is driven by declines in processing capacity, growth in knowledge-based processes, and age-related shifts in reading goals. Evidence is presented to show that the individual reader’s allocation policy is consistent across time and across different types of text, can serve a compensatory function in relation to abilities, and is predictive of subsequent memory performance. As such, it is an important facet of language understanding and learning from text through the adult life span. PMID:16822168

  15. [Oxidative stress, antioxydants and the ageing process].

    PubMed

    Pincemail, J; Ricour, C; Defraigne, J O; Petermans, J

    2014-01-01

    Antioxidant supplementation in the form of pills is thought to slow down the aging process through the "free radical" scavenger activity of these compounds. The idea arose from the "Free Radical Theory of Ageing" (FRTA), initially developed by Harman in 1956. In the present paper, we present some arguments against this theory. One of the most pertinent is that "free radicals", more properly renamed as reactive oxygen species (ROS), play important biological roles in defense mechanisms of the organism as illustrated, in particular, by the hormesis phenomenon. Surprisingly, a moderate production of ROS has been shown to extend the life span in animals. PMID:25065231

  16. Analysis of Ageing Effect on Li-Polymer Batteries

    PubMed Central

    Barcellona, Simone; Brenna, Morris; Foiadelli, Federica; Longo, Michela; Piegari, Luigi

    2015-01-01

    Lithium-ion batteries are a key technology for current and future energy storage in mobile and stationary application. In particular, they play an important role in the electrification of mobility and therefore the battery lifetime prediction is a fundamental aspect for successful market introduction. Numerous studies developed ageing models capable of predicting battery life span. Most of the previous works compared the effect of the ageing factors to a battery's cycle life. These cycles are identical, which is not the case for electric vehicles applications. Indeed, most of the available information is based on results from laboratory testing, under very controlled environments, and using ageing protocols, which may not correctly reflect the actual utilization. For this reason, it is important to link the effect of duty cycles with the ageing of the batteries. This paper proposes a simple method to investigate the effect of the duty cycle on the batteries lifetime through tests performed on different cells for different kinds of cycle. In this way, a generic complex cycle can be seen as a composition of elemental cycles by means of Rainflow procedures. Consequently, the ageing due to any cycle can be estimated starting from the knowledge of simpler cycles. PMID:26236775

  17. Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent.

    PubMed

    Ji, Yunjing; Xiao, Chengyi; Wang, Qiang; Zhang, Jianqi; Li, Cheng; Wu, Yonggang; Wei, Zhixiang; Zhan, Xiaowei; Hu, Wenping; Wang, Zhaohui; Janssen, René A J; Li, Weiwei

    2016-02-01

    Newly designed asymmetric diketopyrrolopyrrole conjugated polymers with two different aromatic substituents possess a hole mobility of 12.5 cm(2) V(-1) s(-1) in field-effect transistors and a power conversion efficiency of 6.5% in polymer solar cells, when solution processed from a nonchlorinated toluene/diphenyl ether mixed solvent.

  18. Minority Aging and Endogenous Pain Facilitatory Processes

    PubMed Central

    Bulls, Hailey W.; Goodin, Burel R.; McNew, Myriah; Gossett, Ethan W.; Bradley, Laurence A.

    2016-01-01

    Objective The aim of the current study was to examine the relationships among age, ethnicity, and endogenous pain facilitation using temporal summation (TS) responses to mechanical and heat stimuli. Design The present study assessed hyperalgesia and pain facilitation to thermal and mechanical stimuli at the knee and distal sites in 98 pain-free men and women. Participants were drawn from two ethnic (African-Americans, AA; and non-Hispanic whites, NHW) and age groups (19-35 and 45-85). Results Significant main effects of ethnicity were demonstrated for both mechanical and heat modalities (all p’s≤0.05), suggesting that AA participants, relative to NHW counterparts, demonstrated enhanced hyperalgesia. Age differences (older > younger) in hyperalgesia were found in mechanical pain ratings only. Results indicated that mechanical pain ratings significantly increased from first to maximal pain as a function of both age group and ethnicity (all p’s≤0.05), and a significant ethnicity by age interaction for TS of mechanical pain was found at the forearm (p<0.05) and trended towards significance at the knee (p=0.071). Post-hoc tests suggested that results were primarily driven by the older AA participants, who demonstrated the greatest mechanical TS. Additionally, evidence of differences in heat TS due to both ethnicity alone (all p’s≤0.05) and minority aging was also found. Conclusions This study provides evidence suggesting that older AAs demonstrate enhanced pain facilitatory processes, which is important because this group may be at increased risk for development of chronic pain. These results underscore the necessity of testing pain modulatory mechanisms when addressing questions related to pain perception and minority aging. PMID:26814250

  19. Processable high-carbon-yielding polymer for micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Perpall, Mark W.; Zengin, Huseyin; Perera, K. Prasanna U.; Zhou, Wensheng; Shah, Hiren; Wu, Xinyu; Creager, Stephen E.; Smith, Dennis W., Jr.; Foulger, Stephen H.; Ballato, John M.

    2003-01-01

    Bis-ortho-Diynyl Arene (BODA) monomers polymerize to network polynapthalene by the thermally-driven Bergman cyclization and subsequent radical polymerization via oligomeric intermediates that can be melt or solution processed. Further heating of the network to 1000 °C affords a high-yield glassy carbon structure that retains the approximate size and dimensions of the polymer precursor. The higher carbon-yield for BODA networks (75- 80 % by mass) is significantly greater than that of traditional phenol-formaldehyde resins and other carbon precursor polymers leading to its greater dimensional stability. Phenyl terminated BODA derived polymers were fabricated using microprocessing such as the micromolding in capillaries (MIMIC) technique, direct microtransfer molding, and molding in quartz capillary tubes. Nano-scale fabrication using closed packed silica spheres as templates was demonstrated with an hydroxy-terminated monomer which exhibits greatly enhanced compatibility for silica surfaces. After pyrolysis to glassy carbon, the silica is chemically etched leaving an inverse carbon opal photonic crystal which is electrically conductive. The wavelength of light diffracted is a function of the average refractive index of the carbon/ filler composite, which can be modified for use as sensitive detector elements.

  20. Removal of Pu-238 from aqueous process streams using a polymer filtration process

    NASA Astrophysics Data System (ADS)

    Jarvinen, Gordon D.; Purdy, Geraldine M.; Rau, Karen C.; Remeroski, M. L.; Reimus, Mary Ann H.; Ramsey, Kevin B.; Foltyn, Elizabeth M.; Smith, Barbara F.; Robison, Thomas W.

    2001-02-01

    A glovebox facility is under construction at Los Alamos that will recover a significant quantity of the impure Pu-238 that exists in scrap and residues from past production operations. The general flowsheet consists of milling, acid dissolution, ion exchange, precipitation, calcination, oxygen isotope exchange, and waste treatment operations. As part of the waste treatment operations we are using polymer filtration to remove Pu-238 to meet facility discharge limits. Polymer filtration (PF) technology uses water-soluble polymers prepared with selective receptor sites to sequester metal ions, organic molecules, and other species from dilute aqueous solutions. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using ultrafiltration (UF) methods. Water and small, unbound components of the solution pass freely through the UF membrane while the polymer concentrates in the retentate. The permeate stream is ``cleaned'' of the components bound to the polymer and can be used in further processing steps or discharged. The concentrated retentate solution can be treated to give a final waste form or to release the sequestered species from the receptor sites by adjusting the conditions in the retentate solution. The PF technology is part of our work to develop a safe, reliable and cost-effective scrap recovery operation with high process efficiencies, minimal waste generation, and high product purity. .

  1. Basalt fiber reinforced polymer composites: Processing and properties

    NASA Astrophysics Data System (ADS)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  2. Predicting the ageing and the long-term durability of organic polymer solar cells

    NASA Astrophysics Data System (ADS)

    Gardette, Jean-Luc; Rivaton, Agnès; Thérias, Sandrine; Chambon, Sylvain; Manceau, Matthieu; Gaume, Julien

    2010-06-01

    Organic solar cells based on conductive polymers exhibit a unique combination of properties which include low cost, flexibility and large surface processability. Organic photovoltaic could then prevail for some applications alongside silicon, such as nomad or indoor. To achieve this objective, the sustainability of the initial properties in conditions of use of the cell is required, since it could be a lock to the emergence of these devices in the market. The polymers used in solar cells are indeed known to exhibit low resistance to environmental constraints, in particular to the combined action of sunlight, oxygen and water. We present recent results on both the accelerated artificial and the natural outdoors ageing of MDMO-PPV (Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-Phenylenevinylene) and P3HT/PCBM blends poly(3-hexylthiophene) (P3HT) (methano-fullerene[6,6]-phenyl C61-butyric acid methyl ester) ([60] PCBM). The influence of various parameters such as the temperature and the presence of oxygen were studied. The modifications of the chemical structure of both the components of the blend were monitored by spectroscopic analysis (infrared, UV-visible), the morphology of the blends was analysed by AFM and XRD and the photovoltaic performances all along the exposure were recorded. Two important results have been pointed out: on one hand, the Achilles heel of the chemical structure of MDMO-PPV and P3HT under the impact of light has been evidenced. On the other hand, it has been shown that P3HT:PCBM blends are much more stable than MDMO:PCBM blends whatever the conditions of ageing are. Results show that a convenient encapsulation can ensure a promising lifetime of P3HT/PCBM blends in real conditions of use. This work also focuses on this last point and proposes to study and try to understand the behavior of the materials used in the active layer when submitted to photoaging and thermal aging in the absence of oxygen. To fulfil very good encapsulation, glass

  3. Process for preparing tapes from thermoplastic polymers and carbon fibers

    NASA Technical Reports Server (NTRS)

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  4. Polymer Solidification and Stabilization: Adaptable Processes for Atypical Wastes

    SciTech Connect

    Jensen, C.

    2007-07-01

    Vinyl Ester Styrene (VES) and Advanced Polymer Solidification (APS{sup TM}) processes are used to solidify, stabilize, and immobilize radioactive, pyrophoric and hazardous wastes at US Department of Energy (DOE) and Department of Defense (DOD) sites, and commercial nuclear facilities. A wide range of projects have been accomplished, including in situ immobilization of ion exchange resin and carbon filter media in decommissioned submarines; underwater solidification of zirconium and hafnium machining swarf; solidification of uranium chips; impregnation of depth filters; immobilization of mercury, lead and other hazardous wastes (including paint chips and blasting media); and in situ solidification of submerged demineralizers. Discussion of the adaptability of the VES and APS{sup TM} processes is timely, given the decommissioning work at government sites, and efforts by commercial nuclear plants to reduce inventories of one-of-a-kind wastes. The VES and APS{sup TM} media and processes are highly adaptable to a wide range of waste forms, including liquids, slurries, bead and granular media; as well as metal fines, particles and larger pieces. With the ability to solidify/stabilize liquid wastes using high-speed mixing; wet sludges and solids by low-speed mixing; or bead and granular materials through in situ processing, these polymer will produce a stable, rock-hard product that has the ability to sequester many hazardous waste components and create Class B and C stabilized waste forms for disposal. Technical assessment and approval of these solidification processes and final waste forms have been greatly simplified by exhaustive waste form testing, as well as multiple NRC and CRCPD waste form approvals. (authors)

  5. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. PMID:27059404

  6. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures.

  7. Hybrid polymer fabrication process for electro-enzymatic glucose sensor

    NASA Astrophysics Data System (ADS)

    Patel, Jasbir N.; Kaminska, Bozena; Gray, Bonnie L.; Gates, Byron D.

    2008-02-01

    We present a novel self-aligned and hybrid polymer fabrication process for an electro-enzymatic glucose sensor. The self-aligned fabrication process is performed using polydimethylsiloxane (PDMS) as a process substrate material, SU-8 as a sensor structural material, and gold as an electrode material. PDMS has many advantages as a process substrate over conventional substrates such as bare silicon or glass. During the fabrication process, SU-8 has good adhesion to the PDMS. However, after completion of all fabrication steps, the SU-8 based sensors can be easily peeled-off from the PDMS. The PDMS is prepared on a glass handle wafer, and is reusable for many process cycles. Such an SU-8 release technique from a PDMS substrate has never been proposed before. The novel process is employed to realize a glucose sensor with active and reference gold electrodes that are sandwiched between two SU-8 layers with contact pad openings and the active area opening to the top SU-8 layer. The enzyme glucose oxidase is immobilized within the confined active area opening to provide an active electrode sensing surface. After successful fabrication using the hybrid process, the overall thickness of the sensors is measured between 166.15 μm and 210.15 μm. The sensor area and the electrode area are 2mm x 3mm and 2mm x 2mm respectively. The resulting glucose sensors are mechanically flexible. A linear response is observed for the glucose sensors, typically between 50mg/dl and 600mg/dl glucose concentrations.

  8. XIIth international meeting on radiation processing Avignon 25-30 March 2001 (Polymer irradiation: past-present and future)

    NASA Astrophysics Data System (ADS)

    Chapiro, Adolphe

    2002-03-01

    Radiations are used efficiently and economically for the production of new or modified polymers. The following processes are considered: Radiation curing; Radiation cross-linking; Radiation grafting. These processes are commonly used today in industry and provide a broad range of new potential applications in various fields. The history of their development is briefly reported. The chemical reactions underlying these processes are described. (1) Radiation curing is used commercially on a large scale for the production of improved coatings, lacquers and inks. The process can be conducted at very high speeds. Curing of magnetic formulations leads to particularly stable products, which compete favourably with more conventional materials. (2) Radiation cross-linking is an established technology in the wire and cable industry. It emparts to the modified insulators improved resistance to solvents, to ageing and to elevated temperatures. The resulting cross-linked network also reduces the migration of fillers and thereby stabilizes in time any message imprinted with magnetic or colored pigments dispersed in a polymer. (3) Radiation grafting is a powerful method for modifying more profoundly the properties of a polymer and for creating numerous, entirely new materials. The chemical modification can be applied at will into the bulk of the material or limited to a surface zone of any desired depth. This method can be used for instance, for introducing polar groups in the bulk or on the surface of non-polar polymers, for increasing or reducing the wettability of a polymer, for imparting a better compatibility of a polymer to a specific coating and the like. The irradiation of water-soluble polymers in aqueous solutions, with or without the addition of another monomer gives rise to a variety of cross-linked gels which find useful applications in the biomedical field. Other promising applications will be considered.

  9. Electron Beam-Cure Polymer Matrix Composites: Processing and Properties

    NASA Technical Reports Server (NTRS)

    Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.

    2001-01-01

    Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.

  10. Multiscale metrologies for process optimization of carbon nanotube polymer composites

    DOE PAGESBeta

    Natarajan, Bharath; Orloff, Nathan D.; Ashkar, Rana; Doshi, Sagar; Twedt, Kevin; Krishnamurthy, Ajay; Davis, Chelsea; Forster, Aaron M.; Thostenson, Erik; Obrzut, Jan; et al

    2016-07-18

    Carbon nanotube (CNT) polymer nanocomposites are attractive multifunctional materials with a growing range of commercial applications. With the increasing demand for these materials, it is imperative to develop and validate methods for on-line quality control and process monitoring during production. In this work, a novel combination of characterization techniques is utilized, that facilitates the non-invasive assessment of CNT dispersion in epoxy produced by the scalable process of calendering. First, the structural parameters of these nanocomposites are evaluated across multiple length scales (10-10 m to 10-3 m) using scanning gallium-ion microscopy, transmission electron microscopy and small-angle neutron scattering. Then, a non-contactmore » resonant microwave cavity perturbation (RCP) technique is employed to accurately measure the AC electrical conductivity of the nanocomposites. Quantitative correlations between the conductivity and structural parameters find the RCP measurements to be sensitive to CNT mass fraction, spatial organization and, therefore, the processing parameters. These results, and the non-contact nature and speed of RCP measurements identify this technique as being ideally suited for quality control of CNT nanocomposites in a nanomanufacturing environment. In conclusion, when validated by the multiscale characterization suite, RCP may be broadly applicable in the production of hybrid functional materials, such as graphene, gold nanorod, and carbon black nanocomposites.« less

  11. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa

    2016-03-01

    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  12. Basic physical and chemical processes in space radiation effects on polymers

    NASA Technical Reports Server (NTRS)

    Kamaratos, E.; Wilson, J. W.; Chang, C. K.; Xu, Y. J.

    1982-01-01

    The effects of space ionizing radiation on polymers is investigated in terms of operative physical and chemical processes. A useful model of charged particle impact with a polymer was designed. Principle paths of molecular relaxation were identified and energy handling processes were considered. The focus of the study was on energy absorption and the immediately following events. Further study of the radiation degradation of polymers is suggested.

  13. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  14. Effect of thermal and irradiation aging simulation procedures on polymer properties

    SciTech Connect

    Bustard, L.D.; Minor, E.; Chenion, J.; Carlin, F.; Alba, C.; Gaussens, G.; LeMeur, M.

    1984-04-01

    Prior to initiating a qualification test on safety-related equipment, the testing sequence for thermal and irradiation aging exposures must be chosen. Likewise, the temperature during irradiation must be selected. Typically, U.S. qualification efforts employ ambient temperature irradiation, while French qualification efforts employ 70/sup 0/C irradiations. For several polymer materials, the influence of the thermal and irradiation aging sequence, as well as the irradiation temperature (ambient versus 70/sup 0/C), has been investigated in preparation for Loss-of-Coolant Accident simulated tests. Ultimate tensile properties at completion of aging are presented for three XLPO and XLPE, five EPR and EPDM, two CSPE (HYPALON), one CPE, one VAMAC, one polydiallylphtalate, and one PPS material. Bend test results at completion of aging are presented for two TEFZEL materials. Permanent set after compression results are presented for three EPR, one VAMAC, one BUNA N, one Silicone, and one Viton material.

  15. Acceleration of the aging process by oxygen

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Lunderen, P. R.; Bensch, K. G.

    1975-01-01

    Tissue changes induced by hyperoxia have been compared with those of normal aging. Results of investigations using male flies prompt conclusion that normal aging, radiation syndrome, and hyperoxic injury share at least one common feature--lipid peroxidation damage to all mambranes resulting in accumulation of age pigment.

  16. Process property studies of melt blown thermoplastic polyurethane polymers

    NASA Astrophysics Data System (ADS)

    Lee, Youn Eung

    The primary goal of this research was to determine optimum processing conditions to produce commercially acceptable melt blown (MB) thermoplastic polyurethane (TPU) webs. The 6-inch MB line and the 20-inch wide Accurate Products MB pilot line at the Textiles and Nonwovens Development Center (TANDEC), The University of Tennessee, Knoxville, were utilized for this study. The MB TPU trials were performed in four different phases: Phase 1 focused on the envelope of the MB operating conditions for different TPU polymers; Phase 2 focused on the production of commercially acceptable MB TPU webs; Phase 3 focused on the optimization of the processing conditions of MB TPU webs, and the determination of the significant relationships between processing parameters and web properties utilizing statistical analyses; Based on the first three phases, a more extensive study of fiber and web formation in the MB TPU process was made and a multi liner regression model for the MB TPU process versus properties was also developed in Phase 4. In conclusion, the basic MB process was fundamentally valid for the MB TPU process; however, the MB process was more complicated for TPU than PP, because web structures and properties of MB TPUs are very sensitive to MB process conditions: Furthermore, different TPU grades responded very differently to MB processing and exhibited different web structure and properties. In Phase 3 and Phase 4, small fiber diameters of less than 5mum were produced from TPU237, TPU245 and TPU280 pellets, and the mechanical strengths of MB TPU webs including the tensile strength, tear strength, abrasion resistance and tensile elongation were notably good. In addition, the statistical model showed useful interaction regarding trends for processing parameters versus properties of MB TPU webs. Die and air temperature showed multicollinearity problems and fiber diameter was notably affected by air flow rate, throughput and die/air temperature. It was also shown that most of

  17. The rheology, degradation, processing, and characterization of renewable resource polymers

    NASA Astrophysics Data System (ADS)

    Conrad, Jason David

    Renewable resource polymers have become an increasingly popular alternative to conventional fossil fuel based polymers over the past couple decades. The push by the government as well as both industrial and consumer markets to go "green" has provided the drive for companies to research and develop new materials that are more environmentally friendly and which are derived from renewable materials. Two polymers that are currently being produced commercially are poly-lactic acid (PLA) and polyhydroxyalkanoate (PHA) copolymers, both of which can be derived from renewable feedstocks and have shown to exhibit similar properties to conventional materials such as polypropylene, polyethylene, polystyrene, and PET. PLA and PHA are being used in many applications including food packaging, disposable cups, grocery bags, and biomedical applications. In this work, we report on the rheological properties of blends of PLA and PHA copolymers. The specific materials used in the study include Natureworks RTM 7000D grade PLA and PHA copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Blends ranging from 10 to 50 percent PHA by weight are also examined. Shear and extensional experiments are performed to characterize the flow behavior of the materials in different flow fields. Transient experiments are performed to study the shear rheology over time in order to determine how the viscoelastic properties change under typical processing conditions and understand the thermal degradation behavior of the materials. For the blends, it is determined that increasing the PHA concentration in the blend results in a decrease in viscosity and increase in degradation. Models are fit to the viscosity of the blends using the pure material viscosities in order to be able to predict the behavior at a given blend composition. We also investigate the processability of these materials into films and examine the resultant properties of the cast films. The mechanical and thermal properties of the

  18. Process for removing polymer-forming impurities from naphtha fraction

    DOEpatents

    Kowalczyk, Dennis C.; Bricklemyer, Bruce A.; Svoboda, Joseph J.

    1983-01-01

    Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone (24) and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment.

  19. Process for removing polymer-forming impurities from naphtha fraction

    DOEpatents

    Kowalczyk, D.C.; Bricklemyer, B.A.; Svoboda, J.J.

    1983-12-27

    Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment. 2 figs.

  20. Long-term water-aging of whisker-reinforced polymer-matrix composites.

    PubMed

    Xu, H H K

    2003-01-01

    Long-term water exposure may degrade polymer-matrix composites. This study investigated the water-aging of whisker composites. It was hypothesized that whiskers would provide stable and substantial reinforcement, and that whisker type would affect water-aging resistance. Silica-fused Si(3)N(4) and SiC whiskers were incorporated into a resin. The specimens were tested by three-point flexure and nano-indentation vs. water-aging for 1 to 730 days. After 730 days, SiC composite had a strength (mean +/- SD; n = 6) of 185 +/- 33 MPa, similar to 146 +/- 44 MPa for Si(3)N(4) composite (p = 0.064); both were significantly higher than 67 +/- 23 MPa for an inlay/onlay control (p < 0.001). Compared with 1 day, the strength of the SiC composite showed no decrease, while that of the Si(3)N(4) composite decreased. The decrease was due to whisker weakening rather than to resin degradation or interface breakdown. Whisker composites also had higher moduli than the controls. In conclusion, silica-fused whiskers bonded to polymer matrix and resisted long-term water attack, resulting in much stronger composites than the controls after water-aging.

  1. Novel ArF photoresist polymer to suppress the roughness formation in plasma etching processes

    NASA Astrophysics Data System (ADS)

    Kato, Keisuke; Yasuda, Atsushi; Maeda, Shin-ichi; Uesugi, Takuji; Okada, Takeru; Wada, Akira; Samukawa, Seiji

    2013-03-01

    The serious problem associated with 193-nm lithography using an ArF photoresist is roughness formation of photoresist polymer during plasma processes. We have previously investigated the mechanism of roughness formation caused by plasma. The main deciding factor for roughness formation is a chemical reaction between photoresist polymer and reactive species from plasma. The lactone group in photoresist polymer is highly chemically reactive, and shrinking the lactone structure enhances the roughness formation. In this paper, on the basis of the mechanism of roughness formation, we propose a novel ArF photoresist polymer. The roughness formation was much more suppressed in the novel photoresist polymer during plasma etching process than in the previous type. In the novel photoresist polymer, chemical reactions were spread evenly on the photoresist film surface by adding the polar structure. As a result, decreases in the lactone group were inhibited, leading to suppressing ArF photoresist roughness.

  2. Influence of artificially accelerated ageing on the adhesive joint of plasma treated polymer materials

    NASA Astrophysics Data System (ADS)

    Lehocký, M.; Lapčik, L.; Dlabaja, R.; Rachünek, L.; Stoch, J.

    2004-03-01

    An influence of simulated ageing on the adhesive joint of plasma treated polyethylene (PE) and polypropylene (PP) was tested. Plasma surface treatment was performed in the rf-plasma reactor operating at 13,56 MHz. The simulated ageing of prepared specimens for following tensile testing was carried out under conditions given by Volkswagen standard P-VW 1200. Temperature of ageing was regularly oscillating between -40°C and 80°C (relative humidity 80%) for required time. The mechanical tensile properties of adhesive joint were measured according to the standard ISO 527. Surface analysis of treated polymer substrates was characterized by XPS measurement. The observation of surface structure and morphology was obtained using SEM. We used convenient cyanoacrylate adhesive Loctite E 406 for PE and PP joints. Tested adhesive joints were prepared in compliance with the standard ISO 4587.

  3. Particle manipulation through polymer solutions in microfluidic processes

    NASA Astrophysics Data System (ADS)

    Del Giudice, F.; D'Avino, G.; Villone, M. M.; Greco, F.; Maffettone, P. L.

    2015-12-01

    Manipulation of particles suspended in fluids flowing in microfluidic channels is required in a variety of biological, diagnostic and therapeutic applications. For instance, alignment of particles into a tight stream is a necessary step prior to counting, detecting, and sorting. Generally, this task is accomplished by using a Newtonian fluid as suspending medium and by properly fabricating a complex device aimed to displace particle trajectories. In the last years, however, the use of polymeric liquids in microfluidic processes has received a growing interest. Indeed, the addition of a small amount of polymer in a Newtonian suspension flowing in a channel promotes "internal" forces that can be exploited to manipulate the trajectories of suspended particles in simple devices. In this work, we show the possibility to align particles in simple square-shaped microfluidic channels by exploiting viscoelastic forces in flowing suspending liquids. Experiments have been performed to investigate the effect of the channel length, flow rate, confinement ratio (i.e., the ratio between the particle and channel size) and fluid rheology on the particle alignment. Finally, we present experimental results where particle alignment induced by fluid viscoelasticity is combined with magnetophoresis to deflect magnetic beads in a H-shaped channel. High-efficiency separation of magnetic and non-magnetic beads is demonstrated.

  4. Additive quantification on polymer thin films by ToF-SIMS: aging sample effects

    NASA Astrophysics Data System (ADS)

    Poleunis, Claude; Médard, Nicolas; Bertrand, Patrick

    2004-06-01

    Thin films (150 nm) of an amorphous polyester (polyethylene(terephthalate-isophthalate)) containing variable concentrations of an antioxidant (Irgafos™ 168) and a UV-stabilizer (Hostavin™ N30) have been prepared by spin-coating. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) results showed, in the case of a single additive system (antioxidant), that the additive intensity increased on the polymer surface during the first five aging days (exudation phenomenon), followed by an intensity decrease, which was related to the adsorption of hydrocarbon contaminations on the sample surface. This kinetic competition was observed whatever the used additive concentration. In the case of the binary additive system (antioxidant and UV-stabilizer), the antioxidant behavior was similar to the single additive system, whereas, the UV-stabilizer evolution corresponded to an additive depletion, followed by an exudation. These results indicate that it is necessary to be very careful when comparing ToF-SIMS data for additive quantification on polymer surfaces. It is strongly recommended to compare samples having the same aging time, because the surface composition was seen to be strongly dependent of the aging time.

  5. Preparation of Soy Polymers by a Green Processing Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate was conducted in liquid carbon dioxide. The resulting polymers (RPESO) were characterized using Infrared (IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), 1H NM...

  6. Human neurologic function and the aging process.

    PubMed

    Potvin, A R; Syndulko, K; Tourtellotte, W W; Lemmon, J A; Potvin, J H

    1980-01-01

    Sixty-one normal men whose ages ranged from 20 to 80 years were evaluated on two occasions by means of a comprehensive series of 128 instrumented tests of neurologic function. The tests measured cognition, vision, strength, steadiness, reactions, speed, coordination, fatigue, gait, station, sensations, and tasks of daily living. The reliability of each test measured was determined, and any measure found unreliable (r less than or equal to 0.41) was not further analyzed. Significant age-related linear decreases were found for almost all neurologic functions. The declines over the age span varied from less than 10 percent to more than 90 percent for different functions. For the upper extremities, the largest declines (greater than 50 percent) were in hand-force steadiness, speed of hand-arm movements, and vibration sense; for the lower extremities, the largest declines were in one-legged balance with eyes closed and in vibration sense. For 13 of 14 tests in which significant dominant body-side effects were found, larger re-testing 7-10 days later, the subjects improved their scores by more than 5 percent on only 17 tests, 9 of which concerned the activities of daily living. No significant differential learning effects were found across age groups. The results point to the importance of developing a data bank on age-based neurologic function so that therapeutic effects can be evaluated in terms of age- and sex-matched normal functioning.

  7. Dry powder process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1997-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. A material is applied to each side of the towpreg to form a sandwich. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  8. A Dry Powder Process for Preparing Uni-Tape Prepreg from Polymer Powder Coated Filamentary Towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  9. Self-aligned, full solution process polymer field-effect transistor on flexible substrates

    PubMed Central

    Yan, Yan; Huang, Long-Biao; Zhou, Ye; Han, Su-Ting; Zhou, Li; Zhuang, Jiaqing; Xu, Zong-Xiang; Roy, V. A. L.

    2015-01-01

    Conventional techniques to form selective surface energy regions on rigid inorganic substrates are not suitable for polymer interfaces due to sensitive and soft limitation of intrinsic polymer properties. Therefore, there is a strong demand for finding a novel and compatible method for polymeric surface energy modification. Here, by employing the confined photo-catalytic oxidation method, we successfully demonstrate full polymer filed-effect transistors fabricated through four-step spin-coating process on a flexible polymer substrate. The approach shows negligible etching effect on polymeric film. Even more, the insulating property of polymeric dielectric is not affected by the method, which is vital for polymer electronics. Finally, the self-aligned full polymer field-effect transistors on the flexible polymeric substrate are fabricated, showing good electrical properties and mechanical flexibility under bending tests. PMID:26497412

  10. Age differences in stress and coping processes.

    PubMed

    Folkman, S; Lazarus, R S; Pimley, S; Novacek, J

    1987-06-01

    The dramatic increase in the numbers of people who are living into old age has been accompanied by a growing interest among psychologists and health care professionals in their sources of stress and how they cope with them. Despite this interest, little is known about normative stress and coping patterns and the ways in which these patterns differ in older and younger people. This study, which draws on stress and coping theory, compares younger and older community-dwelling adults in daily hassles and eight kinds of coping. Two interpretations of age differences are evaluated: a developmental interpretation, which says that there are inherent, stage-related changes in the ways people cope as they age, and a contextual interpretation, which says that age differences in coping result from changes in what people must cope with. The findings indicate that there are clear age differences in hassles and coping. Overall, the findings tend to support the developmental interpretation, although the contextual interpretation also applies.

  11. Synergistic Effects of Physical Aging and Damage on Long-Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Brinson, L. Cate

    1999-01-01

    The research consisted of two major parts, first modeling and simulation of the combined effects of aging and damage on polymer composites and secondly an experimental phase examining composite response at elevated temperatures, again activating both aging and damage. For the simulation, a damage model for polymeric composite laminates operating at elevated temperatures was developed. Viscoelastic behavior of the material is accounted for via the correspondence principle and a variational approach is adopted to compute the temporal stresses within the laminate. Also, the effect of physical aging on ply level stress and on overall laminate behavior is included. An important feature of the model is that damage evolution predictions for viscoelastic laminates can be made. This allows us to track the mechanical response of the laminate up to large load levels though within the confines of linear viscoelastic constitutive behavior. An experimental investigation of microcracking and physical aging effects in polymer matrix composites was also pursued. The goal of the study was to assess the impact of aging on damage accumulation, in ten-ns of microcracking, and the impact of damage on aging and viscoelastic behavior. The testing was performed both at room and elevated temperatures on [+/- 45/903](sub s) and [02/903](sub s) laminates, both containing a set of 90 deg plies centrally located to facilitate investigation of microcracking. Edge replication and X-ray-radiography were utilized to quantify damage. Sequenced creep tests were performed to characterize viscoelastic and aging parameters. Results indicate that while the aging times studied have limited ]Influence on damage evolution, elevated temperature and viscoelastic effects have a profound effect on the damage mode seen. Some results are counterintuitive, including the lower strain to failure for elevated temperature tests and the catastrophic failure mode observed for the [+/- 45/9O3](sub s), specimens. The

  12. Processing of Fine-Scale Piezoelectric Ceramic/Polymer Composites for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Janas, V. F.; Safari, A.

    1996-01-01

    The objective of the research effort at Rutgers is the development of lead zirconate titanate (PZT) ceramic/polymer composites with different designs for transducer applications including hydrophones, biomedical imaging, non-destructive testing, and air imaging. In this review, methods for processing both large area and multifunctional ceramic/polymer composites for acoustic transducers were discussed.

  13. Method of solution preparation of polyolefin class polymers for electrospinning processing included

    NASA Technical Reports Server (NTRS)

    Rabolt, John F. (Inventor); Lee, Keun-Hyung (Inventor); Givens, Steven R. (Inventor)

    2011-01-01

    A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.

  14. Boron-carbon-silicon polymers and ceramic and a process for the production thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1992-01-01

    The present invention relates to a process for the production of an organoborosilicon preceramic polymer. The polymer is prepared by the reaction of vinylsilane or vinlymethylsilanes (acetylene)silane or acetylene alkyl silanes and borane or borane derivatives. The prepolymer form is pyrolyzed to produce a ceramic article useful in high temperature (e.g., aerospace) or extreme environmental applications.

  15. Thermal analysis and evolution of shape loss phenomena during polymer burnout in powder metal processing

    NASA Astrophysics Data System (ADS)

    Enneti, Ravi Kumar

    2005-07-01

    Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate

  16. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    SciTech Connect

    Skidmore, E.; Fondeur, F.

    2013-04-15

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  17. Slowing Down: Age-Related Neurobiological Predictors of Processing Speed

    PubMed Central

    Eckert, Mark A.

    2011-01-01

    Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging. PMID:21441995

  18. Removal and recovery of metal ions from process and waste streams using polymer filtration

    SciTech Connect

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-06-13

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described.

  19. Aging of a Polymer Core Composite Conductor under combined ozone and temperature conditions

    NASA Astrophysics Data System (ADS)

    Middleton, James M.

    The next generation High Temperature Low Sag Polymer Core Composite Conductors (HTLS PCCC) can experience harsh in-service environments including high temperature and highly concentrated ozone. In some extreme cases, it is possible that the conductors will experience temperatures of up to 180°C and ozone concentrations as high as 1% (10,000 ppm). Therefore, the primary goal of this research was to determine the most damaging aging conditions which could negatively affect the in-service life of the conductors. This included characterizing the aging in ozone and at high temperature of the HTLS PCCC hybrid composite rods and neat resin. It was found that exposure to 1% ozone for up to three months at room temperature did not negatively affect the flexural performance of either the neat resin epoxy, or the hybrid composite rods. When aged up to a year at 140°C no detrimental effect on flexural performance of the composite was observed, as opposed to aging at 180°C, which had a very negative effect on the properties. The aging of the epoxy at 140°C was driven almost entirely by temperature and the effect of 1% ozone, even at that temperature, was insignificant for aging times up to ninety days. A finite element model was developed and showed the residual stresses developed after aging at 140°C for a year were minimal, but for temperatures higher than 160°C were substantial. From this it was determined that the aging was thermally driven, and atmospheric high temperatures were the most damaging conditions for the PCCC conductors.

  20. Process for crosslinking methylene-containing aromatic polymers with ionizing radiation

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1990-01-01

    A process for crosslinking aromatic polymers containing radiation-sensitive methylene groups (-CH2-) by exposing the polymers to ionizing radiation thereby causing crosslinking of the polymers through the methylene groups is described. Crosslinked polymers are resistant to most organic solvents such as acetone, alcohols, hydrocarbons, methylene, chloride, chloroform, and other halogenated hydrocarbons, to common fuels and to hydraulic fluids in contrast to readily soluble uncrosslinked polymers. In addition, the degree of crosslinking of the polymers depends upon the percentage of the connecting groups which are methylene which ranges from 5 to 50 pct and preferably from 25 to 50 pct of the connecting groups, and is also controlled by the level of irradiation which ranges from 25 to 1000 Mrads and preferably from 25 to 250 Mrads. The temperature of the reaction conditions ranges from 25 to 200 C and preferably at or slightly above the glass transition temperature of the polymer. The crosslinked polymers are generally more resistant to degradation at elevated temperatures such as greater than 150 C, have a reduced tendency to creep under load, and show no significant embrittlement of parts fabricated from the polymers.

  1. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  2. The aging process and potential interventions to extend life expectancy

    PubMed Central

    Tosato, Matteo; Zamboni, Valentina; Ferrini, Alessandro; Cesari, Matteo

    2007-01-01

    Aging is commonly defined as the accumulation of diverse deleterious changes occurring in cells and tissues with advancing age that are responsible for the increased risk of disease and death. The major theories of aging are all specific of a particular cause of aging, providing useful and important insights for the understanding of age-related physiological changes. However, a global view of them is needed when debating of a process which is still obscure in some of its aspects. In this context, the search for a single cause of aging has recently been replaced by the view of aging as an extremely complex, multifactorial process. Therefore, the different theories of aging should not be considered as mutually exclusive, but complementary of others in the explanation of some or all the features of the normal aging process. To date, no convincing evidence showing the administration of existing “anti-aging” remedies can slow aging or increase longevity in humans is available. Nevertheless, several studies on animal models have shown that aging rates and life expectancy can be modified. The present review provides an overlook of the most commonly accepted theories of aging, providing current evidence of those interventions aimed at modifying the aging process. PMID:18044191

  3. Polymer and protein interfacial competition in a shell production process

    NASA Astrophysics Data System (ADS)

    Willard, Emma; Randall, Greg

    2015-11-01

    We are exploring oil-in-aqueous polymer compound droplet formulations to UV polymerize into shells while in a strong AC electric field (kV/cm, 20 MHz). The electric field drives the drops to adopt a concentric configuration so that a ``perfect'' spherical shell can be polymerized with a uniform wall thickness. In our previous study of oil-in-water droplet centering, we determined that droplet stretching in the electric field was a problem, which we overcame by using protein additives to strengthen the oil/water interface. However, adding polymer to the shell fluid has been shown to weaken the droplet interface and further complicates T junction droplet generation. In this work, we study the adsorption competition between bovine serum albumin and polyethylene glycol diacrylate with the pendant drop method to generate a polymer/protein shell formulation that will resist stretching in the centering electric field. Furthermore, we explore droplet generation of polymer/protein shell formulations in a double T junction and stretching in an electric field. Work supported by General Atomics IR&D funds.

  4. Aqueous-Processed Insulating Polymer/Nanocrystal Hybrid Solar Cells.

    PubMed

    Jin, Gan; Chen, Zhaolai; Dong, Chunwei; Cheng, Zhongkai; Du, Xiaohang; Zeng, Qingsen; Liu, Fangyuan; Sun, Haizhu; Zhang, Hao; Yang, Bai

    2016-03-23

    A novel kind of hybrid solar cell (HSC) was developed by introducing water-soluble insulating polymer poly(vinyl alcohol) (PVA) into nanocrystals (NCs), which revealed that the most frequently used conjugated polymer could be replaced by an insulating one. It was realized by strategically taking advantage of the characteristic of decomposition for the polymer at annealing temperature, and it was interesting to discover that partial decomposition of PVA left behind plenty of pits on the surfaces of CdTe NC films, enlarging surface contact area between CdTe NCs and subsequently evaporated MoO3. Moreover, the residual annealed PVA filled in the voids among spherical CdTe NCs, which led to the decrease of leakage current. An improved shunt resistance (increased by ∼80%) was achieved, indicating the charge-carrier recombination was effectively overcome. As a result, the new HSCs were endowed with increased Voc, fill factor, and power conversion efficiency compared with the pure NC device. This approach can be applied to other insulating polymers (e.g., PVP) with advantages in synthesis, type, economy, stability, and so on, providing a novel universal cost-effective way to achieve higher photovoltaic performance.

  5. Aqueous-Processed Insulating Polymer/Nanocrystal Hybrid Solar Cells.

    PubMed

    Jin, Gan; Chen, Zhaolai; Dong, Chunwei; Cheng, Zhongkai; Du, Xiaohang; Zeng, Qingsen; Liu, Fangyuan; Sun, Haizhu; Zhang, Hao; Yang, Bai

    2016-03-23

    A novel kind of hybrid solar cell (HSC) was developed by introducing water-soluble insulating polymer poly(vinyl alcohol) (PVA) into nanocrystals (NCs), which revealed that the most frequently used conjugated polymer could be replaced by an insulating one. It was realized by strategically taking advantage of the characteristic of decomposition for the polymer at annealing temperature, and it was interesting to discover that partial decomposition of PVA left behind plenty of pits on the surfaces of CdTe NC films, enlarging surface contact area between CdTe NCs and subsequently evaporated MoO3. Moreover, the residual annealed PVA filled in the voids among spherical CdTe NCs, which led to the decrease of leakage current. An improved shunt resistance (increased by ∼80%) was achieved, indicating the charge-carrier recombination was effectively overcome. As a result, the new HSCs were endowed with increased Voc, fill factor, and power conversion efficiency compared with the pure NC device. This approach can be applied to other insulating polymers (e.g., PVP) with advantages in synthesis, type, economy, stability, and so on, providing a novel universal cost-effective way to achieve higher photovoltaic performance. PMID:26931540

  6. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  7. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    DOE PAGESBeta

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; Xue, Qifan; Liu, Feng; Russell, Thomas P.; Huang, Fei; Yip, Hin -Lap; Cao, Yong

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  8. Thermally Activated Delayed Fluorescence Polymers for Efficient Solution-Processed Organic Light-Emitting Diodes.

    PubMed

    Lee, Sae Youn; Yasuda, Takuma; Komiyama, Hideaki; Lee, Jiyoung; Adachi, Chihaya

    2016-06-01

    Thermally activated delayed fluorescence (TADF) π-conjugated polymers are developed for solution-processed TADF-OLEDs. Benzophenone-based alternating donor-acceptor structures contribute to the small ∆EST , enabling efficient exciton-harvesting through TADF. Solution-processed OLEDs using the TADF polymers as emitters can achieve high maximum external electroluminescence efficiencies of up to 9.3%. PMID:27001891

  9. Differential Effects of Aging on Processes Underlying Task Switching

    ERIC Educational Resources Information Center

    West, Robert; Travers, Stephanie

    2008-01-01

    In this study, we used event-related brain potentials (ERPs) to examine the effects of aging on processes underlying task switching. The response time data revealed an age-related increase in mixing costs before controlling for general slowing and no effect of aging on switching costs. In the cue-locked epoch, the ERP data revealed little effect…

  10. Three-dimensional printing of conducting polymer microstructures into transparent polymer sheet: Relationship between process resolution and illumination conditions

    NASA Astrophysics Data System (ADS)

    Yamada, Katsumi; Watanabe, Mizuki; Sone, Junji

    2014-09-01

    Three-dimensional (3D) polypyrrole microstructures were successfully obtained in a transparent polymer sheet by 3D scanning of the laser focal point. The lateral process resolution of the microstructures was studied under different photofabrication conditions such as the repetition rate of the femtosecond pulse laser and the waiting time of the laser focal point scanning. As a result, a very small line width of the polypyrrole deposition of less than 500 nm was realized with good reproducibility.

  11. Evolution of stress and deformations in high-temperature polymer matrix composites during thermo-oxidative aging

    NASA Astrophysics Data System (ADS)

    Pochiraju, K. V.; Tandon, G. P.; Schoeppner, G. A.

    2008-03-01

    This paper presents a model-based analysis of thermo-oxidative behavior in high-temperature polymer matrix composite (HTPMC) materials. The thermo-oxidative behavior of the composite differs from that of the constituents as the composite microstructure, the fiber/matrix interphase/interface behavior and damage mechanisms introduce anisotropy in the diffusion and oxidation behavior. Three-dimensional Galerkin finite element methods (GFEM) that model the thermo-oxidative layer growth with time are used together with homogenization techniques to analyze lamina-scale behavior using representative volume elements (RVEs). Thermo-oxidation-induced shrinkage is characterized from dimensional changes observed during aging in inert (argon) and oxidative (air) environments. Temperature-dependent macro-scale (bulk) mechanical testing and nano-indentation techniques are used for characterizing the effect of oxidative aging on modulus evolution. The stress and deformation fields in a single ply unidirectional lamina are studied using coupled oxidation evolution and non-linear elastic deformation analyses. Deformation and stress states are shown as a function of the aging time. While the thermo-oxidative processes are controlled by diffusion phenomenon in neat resin, the onset and propagation of damage determines the oxidative response of an HTPMC.

  12. Time-dependent effects of pre-aging polymer films in cell culture medium on cell adhesion and spreading.

    PubMed

    Chen, Ruby I; Gallant, Nathan D; Smith, Jack R; Kipper, Matt J; Simon, Carl G

    2008-04-01

    We have tested the hypothesis that cell adhesion and spreading on polymer films are influenced by the amount of time that the polymer films are pre-aged in cell culture medium. Cell adhesion and spreading were assessed after a 6-h culture on poly(D,L-lactic acid) (PDLLA) films that had been pre-aged in cell culture medium for 30 min, 1, 3 or 7 d. Cell adhesion and spread area were enhanced as the duration of pre-aging PDLLA films in cell culture medium was increased. Materials characterization showed that the hydrophobicity and surface morphology of the PDLLA films changed with increasing length of pre-aging time. These results suggest that cell adhesion and spreading are sensitive to the time-dependent changes in PDLLA hydrophobicity and surface morphology that occur during exposure of the polymer to cell medium for different lengths of time. These results demonstrate that cell response to a degradable, biomedical polymer can change as a function of the amount of time that the polymer is exposed to physiological medium.

  13. A Process for Preparing 1,3-Diamino-5-Pentafluorosulfanylbenzene and Polymers Therefrom

    NASA Technical Reports Server (NTRS)

    St.clair, Anne K. (Inventor); St.clair, Terry L. (Inventor); Thrasher, Joseph S. (Inventor)

    1991-01-01

    Diamines have shown their utility in the formation of many polymers. Examples of these polymers include polyimides, polyamides, and epoxies. The properties of these polymers are often dependent on the diamine which is used to make the polymer. By the present invention, a process was developed to make a diamine containing pentafluorosulfanylbenzene moiety. This process involves two steps: the preparation of a dinitro precursor and the reduction of the dinitro compound to form the diamine. This diamine was then reacted with various dianhydrides, diacidchlorides, and epoxy resins to yield the corresponding polyimide, polyamide, and epoxy polymers. These polymers were then used to make films, a wire coating enamel, and a semi-permeable membrane. The novelty of this invention resides in the process to make the diamine. Traditionally, dinitro compounds are reduced with hydrazine or a catalyst such as palladium on charcoal. The catalyst which is used in this invention is platinum oxide. When this catalyst is used, it makes it possible to form a polymer-grade diamine.

  14. Hybrid light emitting diodes based on solution processed polymers, colloidal quantum dots, and colloidal metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    This dissertation focuses on solution-processed light-emitting devices based on polymer, polymer/PbS quantum dot, and polymer/silver nanoparticle hybrid materials. Solution based materials and organic/inorganic hybrid light emitting diodes attracted significant interest recently due to many of their advantages over conventional light emitting diodes (LEDs) including low fabrication cost, flexible, high substrate compatibility, as well as tunable emission wavelength of the quantum dot materials. However, the application of these novel solution processed materials based devices is still limited due to their low performances. Material properties and fabrication parameters need to be carefully examined and understood for further device improvement. This thesis first investigates the impact of solvent property and evaporation rate on the polymer molecular chain morphology and packaging in device structures. Solvent is a key component to make the active material solution for spin coating fabrication process. Their impacts are observed and examined on both polymer blend system and mono-polymer device. Secondly, PbS colloidal quantum dot are introduced to form hybrid device with polymer and to migrate the device emission into near-IR range. As we show, the dithiol molecules used to cross-link quantum dots determine the optical and electrical property of the resulting thin films. By choosing a proper ligand for quantum dot ligand exchange, a high performance polymer/quantum dot hybrid LED is fabricated. In the end, the interaction of polymer exciton with surface plasmon mode in colloidal silver nanoparticles and the use of this effect to enhance solution processed LEDs' performances are investigated.

  15. Process for preparing phthalocyanine polymer from imide containing bisphthalonitrile

    NASA Technical Reports Server (NTRS)

    Achar, Bappalige N. (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1987-01-01

    Imide-linked bisphthalonitrile compounds are prepared by combining a dicyano aromatic diamine and an organic dianhydride to produce an amic acid linked bisphthalonitrile compound. The amic acid linked bisphthalonitrile compound is dehydrocyclized to produce the imide-linked bisphthalonitrile compounds. The imide-linked bisphthalonitrile compounds may be polymerized to produce a phythalocyanine polymer by heating the imide-linked bisphthalonitrile compound, either alone or in the presence of a metal powder or a metal salt. These compounds are useful in the coating, laminating and molding arts. The polymers are useful in composite matrix resins where increased fire resistance, toughness and resistance to moisture are required, particularly as secondary structures in aircraft and spacecraft.

  16. Organic Polymer Chemistry in the Context of Novel Processes

    PubMed Central

    2016-01-01

    This article was written to shed light on a series of what some have stated are not so obvious connections that link polymer synthesis in supercritical CO2 to cancer treatment and vaccines, nonflammable polymer electrolytes for lithium ion batteries, and 3D printing. In telling this story, we also attempt to show the value of versatility in applying one’s primary area of expertise to address pertinent questions in science and in society. In this Outlook, we attempted to identify key factors to enable a versatile and nimble research effort to take shape in an effort to influence diverse fields and have a tangible impact in the private sector through the translation of discoveries into the marketplace. PMID:27725955

  17. Processing of Polymer Nanofibers Through Electrospinning as Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Kenawy, E.; Abdel-Hay, F. I.; El-Newehy, M. H.; Wnek, G. E.

    The use of electrospun fibers as drug carriers could be promising in the future for biomedical applications, especially postoperative local chemotherapy. In this research, electrospun fibers were developed as a new system for the delivery of ketoprofen as non-steroidal anti-inflammatory drug (NSAID). The fibers were made either from polycaprolactone (PCL) as a biodegradable polymer or polyurethane (PU) as a non-biodegradable polymer, or from the blends of the two. The release of the ketoprofen was followed by UV—VIS spectroscopy in phosphate buffer of pH 7.4 at 37°C and 20°C. The results showed that the release rates from the polycaprolactone, polyurethane and their blend were similar. However, the blend of the polycaprolactone with polyurethane improved its visual mechanical properties. Release profiles from the electrospun mats were compared to cast films of the various formulations.

  18. Chemistry of crosslinking processes for self-healing polymers.

    PubMed

    Billiet, Stijn; Hillewaere, Xander K D; Teixeira, Roberto F A; Du Prez, Filip E

    2013-02-25

    Recent developments in material design have seen an exponential increase of polymers and polymer composites that can repair themselves in response to damage. In this review, a distinction is made between extrinsic materials, where the self-healing property is obtained by adding healing agents to the material to be repaired, and intrinsic materials, where self-healing is achieved by the material itself through its chemical nature. An overview of the crosslinking chemistries used in self-healing materials will be given, discussing the advantages and drawbacks of each system. The review is not only aiming to enable researchers to compare their ongoing research with the state-of-the-art but also to serve as a guide for the newcomers, which allows for a selection of the most promising self-healing chemistries.

  19. Watching the Annealing Process One Polymer Chain at a Time

    SciTech Connect

    Vogelsang, Jan; Brazard, Johanna; Adachi, Takuji; Bolinger, Joshua; Barbara, Paul F.

    2011-02-03

    By using single-molecule spectroscopy (SMS) several effects of solvent vapor induced annealing (SVA) were studied directly on single conjugated polymers, e.g.: SVA-induced translocations, folding/unfolding dynamics, and changes in the morphological order. It is shown that single chains can be trapped by spin-coating in a disordered conformation and subsequent SVA leads to an equilibrated, highly ordered conformation.

  20. Positron Annihilation Spectroscopy as a Probe of Microscopic Structure and Physical Aging in Polymer.

    NASA Astrophysics Data System (ADS)

    Yu, Minzi

    Positron annihilation is studied as a characterization method for the properties of polymers. Previous studies indicate that the ortho-positronium lifetime tau _3 and intensity I_3 is correlated to the free volume "hole" size and number density of holes in a polymer. Positron annihilation lifetime (PAL) studies in polymers measure the change in free volume, and they are sensitive to different physical environments. PAL studies of the temperature dependence of a bisphenol-A polycarbonate shows that the free volume increases with increasing temperature, and it also obtains the transition temperatures T_{rm g} and T_beta^', from the tau_3 curve and the I_3 curve, respectively. The isothermal aging in polycarbonate shows that: I_3 decreases while tau_3 remains constant during a long-time annealing at a temperature far below T_{rm g}; and I_3 remains constant while tau_3 goes through a "over shooting" in the first few hours after quenching and annealing at a temperature just below T_{rm g}. The free volume in polycarbonate increases (as a result of an increase in tau_3 ) with applied tensile strain up to 4%, then levels off. Similarly, the free volume in polymethyl methacrylate (PMMA) decreases (as the result of tau_3 ) with applied compressional strain also up to -4% then levels off. A negative change in both tau_3 and I _3 has been observed when polycarbonate is under 3% tensile strain and after release of strain. A more advance technique of positron annihilation, PAL-momentum correlation which can give more detailed information about free volume structure in polymers, has also been studied and improved. Two 5-cm-diameter, 5-cm-long CsF scintillation detectors for lifetime measurement, and a 30-cm-diameter Anger camera whose y-analog pulse gives one-dimensional ACAR information, comprise a new experimental arrangement of PAL-momentum correlation system. Its triple -coincidence counting rate is about 2.5 per minute per microcurie of positron source and system time

  1. Processing and characterization of natural cellulose fibers/thermoset polymer composites.

    PubMed

    Thakur, Vijay Kumar; Thakur, Manju Kumari

    2014-08-30

    Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials.

  2. Syntactic processing with aging: an event-related potential study.

    PubMed

    Kemmer, Laura; Coulson, Seana; De Ochoa, Esmeralda; Kutas, Marta

    2004-05-01

    To assess age-related changes in simple syntactic processing with normal aging, event-related brain potentials (ERPs) elicited by grammatical number violations as individuals read sentences for comprehension were analyzed. Violations were found to elicit a P600 of equal amplitude and latency regardless of an individual's age. Instead, advancing age was associated with a change in the scalp distribution of the P600 effect, being less asymmetric and more frontal (though still with a parietal maximum) in older than younger adults. Our results thus show that the brain's response to simple syntactic violations, unlike those reported for simple binary categorizations and simple semantic violations, is neither slowed nor diminished in amplitude by age. At the same time, the brain's processing of these grammatical number violations did engage at least somewhat different brain regions as a function of age, suggesting a qualitative change rather than any simple quantitative change in speed of processing.

  3. Aging and the rate of visual information processing.

    PubMed

    Guest, Duncan; Howard, Christina J; Brown, Louise A; Gleeson, Harriet

    2015-01-01

    Multiple methods exist for measuring how age influences the rate of visual information processing. The most advanced methods model the processing dynamics in a task in order to estimate processing rates independently of other factors that might be influenced by age, such as overall performance level and the time at which processing onsets. However, such modeling techniques have produced mixed evidence for age effects. Using a time-accuracy function (TAF) analysis, Kliegl, Mayr, and Krampe (1994) showed clear evidence for age effects on processing rate. In contrast, using the diffusion model to examine the dynamics of decision processes, Ratcliff and colleagues (e.g., Ratcliff, Thapar, & McKoon, 2006) found no evidence for age effects on processing rate across a range of tasks. Examination of these studies suggests that the number of display stimuli might account for the different findings. In three experiments we measured the precision of younger and older adults' representations of target stimuli after different amounts of stimulus exposure. A TAF analysis found little evidence for age differences in processing rate when a single stimulus was presented (Experiment 1). However, adding three nontargets to the display resulted in age-related slowing of processing (Experiment 2). Similar slowing was observed when simply presenting two stimuli and using a post-cue to indicate the target (Experiment 3). Although there was some interference from distracting objects and from previous responses, these age-related effects on processing rate seem to reflect an age-related difficulty in processing multiple objects, particularly when encoding them into visual working memory. PMID:26473319

  4. Manufacturing polymer/carbon nanotube composite using a novel direct process.

    PubMed

    Tran, C-D; Lucas, S; Phillips, D G; Randeniya, L K; Baughman, R H; Tran-Cong, T

    2011-04-01

    A direct process for manufacturing polymer carbon nanotube (CNT)-based composite yarns is reported. The new approach is based on a modified dry spinning method of CNT yarn and gives a high alignment of the CNT bundle structure in yarns. The aligned CNT structure was combined with a polymer resin and, after being stressed through the spinning process, the resin was cured and polymerized, with the CNT structure acting as reinforcement in the composite. Thus the present method obviates the need for special and complex treatments to align and disperse CNTs in a polymer matrix. The new process allows us to produce a polymer/CNT composite with properties that may satisfy various engineering specifications. The structure of the yarn was investigated using scanning electron microscopy coupled with a focused-ion-beam system. The tensile behavior was characterized using a dynamic mechanical analyzer. Fourier transform infrared spectrometry was also used to chemically analyze the presence of polymer on the composites. The process allows development of polymer/CNT-based composites with different mechanical properties suitable for a range of applications by using various resins. PMID:21346301

  5. Manufacturing polymer/carbon nanotube composite using a novel direct process.

    PubMed

    Tran, C-D; Lucas, S; Phillips, D G; Randeniya, L K; Baughman, R H; Tran-Cong, T

    2011-04-01

    A direct process for manufacturing polymer carbon nanotube (CNT)-based composite yarns is reported. The new approach is based on a modified dry spinning method of CNT yarn and gives a high alignment of the CNT bundle structure in yarns. The aligned CNT structure was combined with a polymer resin and, after being stressed through the spinning process, the resin was cured and polymerized, with the CNT structure acting as reinforcement in the composite. Thus the present method obviates the need for special and complex treatments to align and disperse CNTs in a polymer matrix. The new process allows us to produce a polymer/CNT composite with properties that may satisfy various engineering specifications. The structure of the yarn was investigated using scanning electron microscopy coupled with a focused-ion-beam system. The tensile behavior was characterized using a dynamic mechanical analyzer. Fourier transform infrared spectrometry was also used to chemically analyze the presence of polymer on the composites. The process allows development of polymer/CNT-based composites with different mechanical properties suitable for a range of applications by using various resins.

  6. Observational Search for Cometary Aging Processes

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    1997-01-01

    The scientific objectives of this study were (i) to search for physical differences in the behavior of the dynamically new comets (those which are entering the solar system for the first time from the Oort cloud) and the periodic comets, and (ii) to interpret these differences, if any, in terms of the physical and chemical nature of the comets and the evolutionary histories of the two comet groups. Because outer solar system comets may be direct remnants of the planetary formation processes, it is clear that the understanding of both the physical characteristics of these bodies at the edge of the planet forming zone and of their activity at large heliocentric distances, r, will ultimately provide constraints on the planetary formation process both in our Solar System and in extra-solar planetary systems. A combination of new solar system models which suggest that the protoplanetary disk was relatively massive and as a consequence comets could form at large distances from the sun (e.g. from the Uranus-Neptune region to the vicinity of the Kuiper belt), observations of activity in comets at large r, and laboratory experiments on low temperature volatile condensation, are dramatically changing our understanding of the chemical'and physical conditions in the early solar nebula. In order to understand the physical processes driving the apparent large r activity, and to address the question of possible physical and chemical differences between periodic, non-periodic and Oort comets, the PI has been undertaking a long-term study of the behavior of a significant sample of these comets (approximately 50) over a wide range of r to watch the development, disappearance and changing morphology of the dust coma. The ultimate goal is to search for systematic physical differences between the comet classes by modelling the coma growth in terms of volatile-driven activity. The systematic observations for this have been ongoing since 1986, and have been obtained over the course of

  7. Polymer laser fabricated by a simple micromolding process

    NASA Astrophysics Data System (ADS)

    Lawrence, Justin R.; Turnbull, Graham A.; Samuel, Ifor D. W.

    2003-06-01

    We report polymer distributed feedback lasers fabricated using solvent-assisted microcontact molding. The poly[2-methoxy-5-(3,7-dimethyloctyloxy) paraphenylenevinylene] film is patterned by placing it in conformal contact with an elastomeric mould inked with a suitable solvent. When the resulting microstructured film is pumped with the 532 nm pulsed output of a microchip laser, we observe lasing above a threshold pump energy of 225 nJ. Above threshold the emission narrows to a linewidth of less than 0.6 nm at a wavelength of 638 nm. This micromolding technique may find application to a wide range of wavelength-scale microstructured organic photonic devices.

  8. Electric field-mediated processing of polymer blend solutions

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Krause, S.

    1993-01-01

    Multiphase polymer blends in which the minor phases are oriented in a desired direction may demonstrate unique optical, electrical, and mechanical properties. While morphology development in shear fields was studied extensively, little work has focused on effects of electric fields on phase structure. The use of electric fields for blend morphology modulation with particular attention given to solvent casting of blends in d.c. fields was explored. Both homopolymer blends (average phase sizes of several microns) and diblock copolymer/homopolymer blends (average phase sizes of hundreds of Angstroms) were investigated. Summarized are important observations and conclusions.

  9. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    SciTech Connect

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  10. Fabrication of a reinforced polymer microstructure using femtosecond laser material processing

    NASA Astrophysics Data System (ADS)

    Alubaidy, M.; Venkatakrishnan, K.; Tan, B.

    2010-05-01

    This paper presents a new method for the formation of microfeatures with reinforced polymer using femtosecond laser material processing. The femtosecond laser was used for the generation of a three-dimensional interweaved nanofiber and the construction of microfeatures, such as microchannels and voxels, through two-photon polymerization of a nanofiber-dispersed polymer resin. This new method has the potential of direct fabrication of reinforced micro/nanostructures.

  11. Dynamic viscoelastic properties of processed soft denture liners: Part II--Effect of aging.

    PubMed

    Wagner, W C; Kawano, F; Dootz, E R; Koran, A

    1995-09-01

    The proper functioning of soft denture liners depends to a great extent on their mechanical properties. As with many polymers these materials are affected by aging. Twelve soft denture liners were processed by a laboratory according to the manufacturers' directions. Five specimens of each material were tested without aging. Five additional specimens of each material were subjected to 900 hours of accelerated aging in a Weather-Ometer instrument. These were tested with a dynamic viscoelastometer at three frequencies and two temperatures, and data for 37 degrees C and 1 Hz was obtained. Two of the ethyl methacrylate resins demonstrated the largest increases in storage (E') and loss moduli (E") after aging. These materials also showed the greatest overall E' and E". One denture liner material exhibited 673% and 488% increases in E' and E", and other materials showed smaller increases. The effects of aging on the damping factor (tan delta) were varied and five materials showed increased tan delta. Only two ethyl methacrylate resins developed lower tan delta. All the silicone and polyphosphazine rubbers showed small changes after aging and had the lowest tan delta values. Significance of differences between materials and treatments was tested with ANOVA, Scheffé intervals, and t-tests at a = 0.05. The ethyl methacrylate soft denture liners were affected the most by accelerated aging, and the silicones and polyphosphazine were least affected. The ethyl methacrylate resins also had the greatest values of E', E", and tan delta after aging.

  12. Enhanced oil recovery process using a hydrophobic associative composition containing a hydrophilic/hydrophobic polymer

    SciTech Connect

    Evani, S.

    1989-03-21

    An enhanced oil recovery process is described, which comprises forcing an aqueous flooding medium from an injection well through a subterranean formation toward a producing well wherein the flooding medium contains a mobility control agent which is soluble in an aqueous flooding medium. The agent consists of a hydrophilic/hydrophobic polymer having hydrophobic moieties and a water-dispersible, nonionic surfactant having hydrophobic groups that are capable of associating with the hydrophobic moieties of the polymer wherein the proportion of the polymer and the surfactant is such that, at ambient conditions, water containing 0.5 weight percent of the agent has a viscosity at least twice the viscosity of water. The agent is prepared by carrying out the polymerization to form the polymer in the presence of the nonionic surfactant, the ratio of the surfactant to the polymer in the agent being sufficient to provide a viscosity at least twice that of an aqueous solution containing only the polymer, the hydrophobic polymer being a copolymer of a hydrophilic/water-soluble monomer and a water-insoluble monomer selected from the group consisting of higher alkyl ester of ..cap alpha..,..beta..-ethylenically unsaturated carboxylic acids wherein alkyl has from 8 to 20 carbons, alkylaryl esters of ethylenically unsaturated carboxylic acids, N-alkylethylenically unsaturated amides wherein alkyl has from 8 to 20 carbon atoms; vinyl alkylates wherein alkyl has at least 8 carbons and ar-alkyl styrenes wherein alkyl has at least 4 carbons.

  13. Filling and Transcription Behavior of Molten Polymer Coating on Microstructures in Melt-Transcription-Molding Process

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Satoh, Isao; Saito, Takushi; Yakemoto, Kazutoshi

    To clarify the fabrication mechanism of molten polymer coating on microstructures such as optical display parts and bio-tip in Melt-Transcription-Molding (MTM) process, the transcription experiments between a metal stamper engraved with microstructures and a molten polymer (PC: polycarbonate and COC: cyclo-olefin copolymer) were carried out under various molding conditions (mold temperature, polymer temperature, polymer pressure and coating speed) and transcript results were evaluated from the dimensional aspect. In this study the complete transcription of the microstructures was obtained at mold temperature of 170°C for COC and 175°C for PC, respectively. However, the rim height of the microstructure was increased and its center depth was decreased, when lower mold temperatures were applied. From these experimental results, it was suggested that the adhesion force between a molten polymer filled with the microstructure and the metal mold surface plays an important role in fixing the transcript shape of the microstructure against the elastic recovery force and/or shrinkage by cooling. Furthermore, a model to explain the filling and transcription behavior of molten polymers was proposed from viscoelastic properties of each polymer, and it was confirmed that predicted microstructure geometries deduced with the model are well fitted with the transcript results which were experimentally obtained under various mold temperatures.

  14. Improving conducting polymer electrochromic speeds and depositing aligned polymeric nanofibers by electrospinning process

    NASA Astrophysics Data System (ADS)

    Asemota, Chris I.

    The effects of film thickness and porosity on electrochromic switching time of conducting polymers was pursued to determine the morphology influence on ions transport during oxidation step of the redox process, affording sub-second or seconds switching times. Electrospinning technique provided non-woven nanofiber mats, while spin coating and electropolymerization of monomer (N3T) provided films. Porosity decreased as depositing method changed from electrospinning to spin coating. In electrochemical oxidation, the electrons leave the polymer at the metal electrode-polymer film interface, and counter ions arrive at the polaron-bipolaron sites left in the polymer, through polymer-electrolyte interface. Counter ion diffusion in conducting polymers are film thickness limited at increasing thickness and inability of ions to reach holes sites on the oxidizing polymer accounts for long switching speeds, introducing extensive and micro pores and high surface areas should lead to decreasing electrochromic switching speed to single digit time in seconds (for display and vision applications), while increasing the maximum optical switching contrast due to increased fiber mat thicknesses. Photolithographic patterning of nanofiber mats of the conducting polymer precursor having photo cross-linking unit was also explored. The photo-crosslinkable polymer was prepared by including norborene methacrylate (NMA) units to the polymer backbone during precursor polymerization, yielding a terpolymer poly(N3T-NA-NMA). The influence of photo crosslinking on electrochemical switching in conducting polymer nanofibers, and effect of developing parameters (solvent and time) on pattern transfer to the nanofiber mat was investigated and showed no influence on the electrochemical redox of the polymer. Solvents suitable for dissolving the polymer were investigated as developers with results showing non-differentiable pattern transfer for all suitable solvents, and no net preference to solvent choice

  15. Novel low-dielectric constant photodefinable polyimides for low-temperature polymer processing

    NASA Astrophysics Data System (ADS)

    Yamanaka, Kazuhiro; Romeo, Michael; Maeda, Kazuhiko; Henderson, Clifford L.

    2006-03-01

    Current photosensitive polyimide formulations that can be developed in aqueous alkaline developers are based on the use of either (1) soluble poly(amic acid) precursor polymers or (2) polyimides functionalized with hydrophilic groups (e.g. phenol). The use of poly(amic acid) polymers requires the subsequent high temperature thermal cyclization of the polymer after imaging to produce the desired polyimide which can prevent ue of such materials in many applications. However, the use of pre-imidized poliyimides by imparting solubility with hydrophilic groups also is problematic since the presence of such groups in the polymer generally degrades the dielectric constant and water uptake performance of such materials. The goal of the work in this paper was to overcome these problems by developing new low dielectric constant polyimides that can be formulated into photo-definable materials and processed at low temperatures. In this work the use of a novel hexafluoroisopropanol (HFA)-substituted diamine to synthesize novel poly(amic-acid) and polyimide polymers is reported. The addition of HFA to the polymers is shown to produce polyimides which are soluble in both common casting solvents and 0.26 N TMAH alkaline developers. A photosentitive polyimide composition based on formulation of the HFA-subtituted polyimide with 20 wt% of a DNQ inhibitor is shown to produce high resolution patterns with a sensitivity of 170 mJ/cm2 and a contrast of 1.32 using I-line exposure. The HFA groups in the polymers are contained on a substituent group attached to the main chain by an ester linkage. It is shown that these HFA-substituent side-groups can be easily removed from the polymer after development of the patterned image by thermal treatment of the polymer at temperatures above 280 °C. The cleavage of the HFA side groups produces a polymer which does not swell and is insoluble in aqueous alkaline developers. Polyimide film properties including dissolution rate, dielectric constant

  16. Unravelling the working junction of aqueous-processed polymer-nanocrystal solar cells towards improved performance.

    PubMed

    Chen, Zhaolai; Du, Xiaohang; Jin, Gan; Zeng, Qingsen; Liu, Fangyuan; Yang, Bai

    2016-06-21

    Hybrid solar cells (HSCs) based on aqueous polymers and nanocrystals are attractive due to their environmental friendliness and cost effectiveness. In this study, HSCs are fabricated from a series of water-soluble polymers with different highest occupied molecular orbital (HOMO) levels and nanocrystals with different Fermi levels. We demonstrate that the working principle of the aqueous-processed HSCs follows a p-n junction instead of a type-II heterojunction. The function of the polymer is to provide an interface dipole which can improve the build-in potential of the HSCs. Subsequently, the aqueous-processed HSCs are optimized following a p-n junction and an improved PCE of 5.41% is achieved, which is the highest for aqueous-processed HSCs. This study will provide instructive guidelines for the development of aqueous-processed HSCs. PMID:27229447

  17. Influence of physical aging on mechanical properties of polymer free films: the prediction of long-term aging effects on the water permeability and dissolution rate of polymer film-coated tablets.

    PubMed

    Guo, J H; Robertson, R E; Amidon, G L

    1991-12-01

    The effects of physical aging on the water permeation of cellulose acetate and ethylcellulose, the mechanical properties of ethylcellulose, and the dissolution property of hydroxypropyl methylcellulose phthalate were investigated. The water permeabilities of cellulose acetate and ethylcellulose and the dissolution rate of hydroxypropyl methylcellulose phthalate were found to decrease with physical aging time after being quenched from above the glass transition temperatures to sub-Tg temperatures. The gradual approach toward thermodynamic equilibrium during physical aging decreases the free volume of the polymers. This decrease in free volume is accompanied by a decrease in the transport mobility, with concomitant changes in those properties of the polymer that depend on it. The effects of long-term aging on the dissolution rate and water permeabilities of these polymers can be estimated from a linear double-logarithmic relationship between the mobility properties and physical aging time. The existence of the linear double-logarithmic relationship can be derived from the Williams-Landel-Ferry equation, the Doolittle equation, Struik's model, and Fujita's relationship between diffusion and free volume.

  18. A novel process route for the production of spherical SLS polymer powders

    SciTech Connect

    Schmidt, Jochen; Sachs, Marius; Blümel, Christina; Winzer, Bettina; Toni, Franziska; Wirth, Karl-Ernst; Peukert, Wolfgang

    2015-05-22

    Currently, rapid prototyping gradually is transferred to additive manufacturing opening new applications. Especially selective laser sintering (SLS) is promising. One drawback is the limited choice of polymer materials available as optimized powders. Powders produced by cryogenic grinding show poor powder flowability resulting in poor device quality. Within this account we present a novel process route for the production of spherical polymer micron-sized particles of good flowability. The feasibility of the process chain is demonstrated for polystyrene e. In a first step polymer microparticles are produced by a wet grinding method. By this approach the mean particle size and the particle size distribution can be tuned between a few microns and several 10 microns. The applicability of this method will be discussed for different polymers and the dependencies of product particle size distribution on stressing conditions and process temperature will be outlined. The comminution products consist of microparticles of irregular shape and poor powder flowability. An improvement of flowability of the ground particles is achieved by changing their shape: they are rounded using a heated downer reactor. The influence of temperature profile and residence time on the product properties will be addressed applying a viscous-flow sintering model. To further improve the flowability of the cohesive spherical polymer particles nanoparticles are adhered onto the microparticles’ surface. The improvement of flowability is remarkable: rounded and dry-coated powders exhibit a strongly reduced tensile strength as compared to the comminution product. The improved polymer powders obtained by the process route proposed open new possibilities in SLS processing including the usage of much smaller polymer beads.

  19. A novel process route for the production of spherical SLS polymer powders

    NASA Astrophysics Data System (ADS)

    Schmidt, Jochen; Sachs, Marius; Blümel, Christina; Winzer, Bettina; Toni, Franziska; Wirth, Karl-Ernst; Peukert, Wolfgang

    2015-05-01

    Currently, rapid prototyping gradually is transferred to additive manufacturing opening new applications. Especially selective laser sintering (SLS) is promising. One drawback is the limited choice of polymer materials available as optimized powders. Powders produced by cryogenic grinding show poor powder flowability resulting in poor device quality. Within this account we present a novel process route for the production of spherical polymer micron-sized particles of good flowability. The feasibility of the process chain is demonstrated for polystyrene e. In a first step polymer microparticles are produced by a wet grinding method. By this approach the mean particle size and the particle size distribution can be tuned between a few microns and several 10 microns. The applicability of this method will be discussed for different polymers and the dependencies of product particle size distribution on stressing conditions and process temperature will be outlined. The comminution products consist of microparticles of irregular shape and poor powder flowability. An improvement of flowability of the ground particles is achieved by changing their shape: they are rounded using a heated downer reactor. The influence of temperature profile and residence time on the product properties will be addressed applying a viscous-flow sintering model. To further improve the flowability of the cohesive spherical polymer particles nanoparticles are adhered onto the microparticles' surface. The improvement of flowability is remarkable: rounded and dry-coated powders exhibit a strongly reduced tensile strength as compared to the comminution product. The improved polymer powders obtained by the process route proposed open new possibilities in SLS processing including the usage of much smaller polymer beads.

  20. Molecular-level insights into aging processes of skin elastin.

    PubMed

    Mora Huertas, Angela C; Schmelzer, Christian E H; Hoehenwarter, Wolfgang; Heyroth, Frank; Heinz, Andrea

    2016-01-01

    Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin. PMID:27569260

  1. Network strategies to understand the aging process and help age-related drug design

    PubMed Central

    2009-01-01

    Recent studies have demonstrated that network approaches are highly appropriate tools for understanding the extreme complexity of the aging process. Moreover, the generality of the network concept helps to define and study the aging of technological and social networks and ecosystems, which may generate novel concepts for curing age-related diseases. The current review focuses on the role of protein-protein interaction networks (inter-actomes) in aging. Hubs and inter-modular elements of both interactomes and signaling networks are key regulators of the aging process. Aging induces an increase in the permeability of several cellular compartments, such as the cell nucleus, introducing gross changes in the representation of network structures. The large overlap between aging genes and genes of age-related major diseases makes drugs that aid healthy aging promising candidates for the prevention and treatment of age-related diseases, such as cancer, atherosclerosis, diabetes and neurodegenerative disorders. We also discuss a number of possible research options to further explore the potential of the network concept in this important field, and show that multi-target drugs (representing 'magic-buckshots' instead of the traditional 'magic bullets') may become an especially useful class of age-related drugs in the future. PMID:19804610

  2. Network strategies to understand the aging process and help age-related drug design.

    PubMed

    Simkó, Gábor I; Gyurkó, Dávid; Veres, Dániel V; Nánási, Tibor; Csermely, Peter

    2009-01-01

    Recent studies have demonstrated that network approaches are highly appropriate tools for understanding the extreme complexity of the aging process. Moreover, the generality of the network concept helps to define and study the aging of technological and social networks and ecosystems, which may generate novel concepts for curing age-related diseases. The current review focuses on the role of protein-protein interaction networks (inter-actomes) in aging. Hubs and inter-modular elements of both interactomes and signaling networks are key regulators of the aging process. Aging induces an increase in the permeability of several cellular compartments, such as the cell nucleus, introducing gross changes in the representation of network structures. The large overlap between aging genes and genes of age-related major diseases makes drugs that aid healthy aging promising candidates for the prevention and treatment of age-related diseases, such as cancer, atherosclerosis, diabetes and neurodegenerative disorders. We also discuss a number of possible research options to further explore the potential of the network concept in this important field, and show that multi-target drugs (representing 'magic-buckshots' instead of the traditional 'magic bullets') may become an especially useful class of age-related drugs in the future.

  3. Tailoring the physical properties of homopolymers and polymer nanocomposites via solid-state processing

    NASA Astrophysics Data System (ADS)

    Pierre, Cynthia

    Numerous approaches can be used to modify polymer properties. In this thesis, it is demonstrated that an innovative, continuous, industrially scalable process called solid-state shear pulverization (SSSP) can be used to enhance polymer properties with and without the addition of nanofillers. The SSSP process employs a modified twin-screw extruder in which the barrel is cooled rather than heated, resulting in the polymer being processed at a temperature below its glass transition temperature, if the polymer is amorphous, or its melt transition temperature, if the polymer is semi-crystalline. The material processed via SSSP experiences high levels of shear and compressive stresses, resulting in many repeated fragmentation and fusion steps during pulverization, which can lead to mechanochemistry. This research provides the first in-depth study on the effect of SSSP processing on the molecular structure as well as physical properties of homopolymers. Rheological characterization has demonstrated an increase in the melt viscosity of pulverized poly(ethylene terephthalate) (PET), which can be ascribed to the in situ formation of lightly branched PET. Further evidence of branched PET is provided via a dramatic increase in the rate of crystallization of the pulverized samples. These results suggest that SSSP processing can enhance the reuse and recyclability of PET. While SSSP processing has dramatic effects on the structure of polyesters and consequently their properties, a mild effect is observed for polyolefins. This thesis also demonstrates via a combination of methods that the well-exfoliated state can be achieved via SSSP processing of various polymer nanocomposites, using as-received, unmodified fillers. For example, extensive comparisons are made concerning the thermal stability in air or nitrogen atmosphere of polypropylene (PP)/clay, PP/graphite, and PP/carbon nanotube (CNT) nanocomposites made by SSSP. These comparisons suggest that the mechanism by which CNTs

  4. Radiochemical Ageing of Aromatic Polymers PEEK, PSU and Kapton®

    NASA Astrophysics Data System (ADS)

    Richaud, E.; Audouin, L.; Colin, X.; Monchy-Leroy, C.; Verdu, J.

    2010-06-01

    This article deals with degradation mechanism of three aromatic polymers submitted to γ-rays in air at 60° C. Tg measurements and GPC results indicated that thin samples (thickness lower than 200 μm) undergo mostly chain scission whereas sol gel analysis and rheometric measurements showed that thicker ones undergo mainly crosslinking. Both results are explained by oxygen diffusion control of oxidation resulting in the formation of a superficial oxidized layer experimentally observed by μATR InfraRed in which oxidative processes orientate rather to chain scission than crosslinking. Experimental results also allowed discussing relative oxidative stability, sensitivity of Tg to chain scission concentration, and crosslinking mechanism (Y or H).

  5. Photothermal Property of Metal Nanoparticles and its Application in Polymer Processing

    NASA Astrophysics Data System (ADS)

    Maity, Somsubhra

    The surface plasmon resonance of metal nanoparticles is responsible for their unique optical properties. One of those properties is the capability to transform incident light, at the resonance frequency, into heat energy. The heat is dissipated into the surrounding medium thereby causing a rise in the local temperature. In this work, I describe the methods used to generate plasmonic heat in a polymer matrix and the conditions required for thermal processing of polymers via this approach. The goal of this study is to present photothermal heating as an alternative technique to process polymers, and demonstrate the efficacy of the technique to initiate local phase transformation or actuation or enhance mechanical properties. We successfully demonstrate that low intensity resonant light can be used to generate heat within the polymer matrix and even melt polymers with low melting temperatures. In Chapters 2 and 3, I describe the different factors governing the efficient transformation of incident light energy to heat, and the conditions required to processing different polymer types and polymer morphologies. In Chapter 3, I also describe a fluorescence-based temperature-sensing technique which aids in remotely quantifying the heat produced under different conditions. This helps in monitoring the average temperature of the bulk sample in real time. The heating can be greatly manipulated by modifying not just internal factors like concentration and light intensity, but also external conditions such as the surrounding environment. The heating properties of different shapes of nanoparticles are also studied. In Chapter 4-6, I describe the use of cylindrical nanorods to generate heat to alter the polymer matrix. The anisotropic properties of nanorods are exploited to accomplish polarizationdependent annealing of polymer matrices. The fabrication, characterization and selective processing of aligned nanofibrous polymer samples is described in Chapter 4. Fluorescence

  6. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications

    NASA Astrophysics Data System (ADS)

    Lee, ChaBum; Tarbutton, Joshua A.

    2014-09-01

    This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called ‘electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar β crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step.

  7. Time-Dependent Effects of Pre-Aging 3D Polymer Scaffolds in Cell Culture Medium on Cell Proliferation.

    PubMed

    Chatterjee, Kaushik; Hung, Stevephen; Kumar, Girish; Simon, Carl G

    2012-01-01

    Protein adsorption is known to direct biological response to biomaterials and is important in determining cellular response in tissue scaffolds. In this study we investigated the effect of the duration of protein adsorption to 3D polymer scaffolds on cell attachment and proliferation. 3D macro-porous polymer scaffolds were pre-aged in serum-containing culture medium for 5 min, 1 d or 7 d prior to seeding osteoblasts. The total amount of protein adsorbed was found to increase with pre-ageing time. Cell attachment and proliferation were measured 1 d and 14 d, respectively, after cell seeding. Osteoblast proliferation, but not attachment, increased with scaffold pre-ageing time and amount of adsorbed serum protein. These results demonstrate that the amount of time that scaffolds are exposed to serum-containing medium can affect cell proliferation and suggest that these effects are mediated by differences in the amount of protein adsorption.

  8. Correlating polymer solution conformation and thin film nanostructure: Implications for BHJ processing

    NASA Astrophysics Data System (ADS)

    Dattani, Rajeev; Nedoma, Alisyn; Stingelin, Natalie; Nelson, Jenny; Cabral, Joao

    2013-03-01

    We study the solution properties of polymer-fullerene mixtures by a combination of dynamic light scattering, viscometry, small angle neutron scattering and microscopy. Specifically, the kinetics of polymer conformation (Rg and Rh) and interaction changes are mapped as function of polymer-particle concentration, overall concentration in solution and age. A model system of polystyrene and C60 fullerene was selected for this study, in addition to the P3HT/PCBM pair, which is currently explored in photovoltaic applications. The solution properties show a clear correlation to the resulting thin film nanostructured composite morphology. Our future work will further link it to bulk heterojunction solar cell performance. EPSRC and Plastic Electronics DTC

  9. Thermal aging of interfacial polymer chains in ethylene-propylene-diene terpolymer/aluminum hydroxide composites: solid-state NMR study.

    PubMed

    Gabrielle, Brice; Lorthioir, Cédric; Lauprêtre, Françoise

    2011-11-01

    The possible influence of micrometric-size filler particles on the thermo-oxidative degradation behavior of the polymer chains at polymer/filler interfaces is still an open question. In this study, a cross-linked ethylene-propylene-diene (EPDM) terpolymer filled by aluminum trihydrate (ATH) particles is investigated using (1)H solid-state NMR. The time evolution of the EPDM network microstructure under thermal aging at 80 °C is monitored as a function of the exposure time and compared to that of an unfilled EPDM network displaying a similar initial structure. While nearly no variations of the topology are observed on the neat EPDM network over 5 days at 80 °C, a significant amount of chain scission phenomena are evidenced in EPDM/ATH. A specific surface effect induced by ATH on the thermodegradative properties of the polymer chains located in their vicinity is thus pointed out. Close to the filler particles, a higher amount of chain scissions are detected, and the characteristic length scale related to these interfacial regions displaying a significant thermo-oxidation process is determined as a function of the aging time.

  10. Effect of polymers on the retention and aging of enzyme on bioactive papers.

    PubMed

    Khan, Mohidus Samad; Haniffa, Sharon B M; Slater, Alison; Garnier, Gil

    2010-08-01

    The effect of polymer on the retention and the thermal stability of bioactive enzymatic papers was measured using a colorimetric technique quantifying the intensity of the enzyme-substrate product complex. Alkaline phosphatase (ALP) was used as model enzyme. Three water soluble polymers: a cationic polyacrylamide (CPAM), an anionic polyacrylic acid (PAA) and a neutral polyethylene oxide (PEO) were selected as retention aids. The model polymers increased the enzyme adsorption on paper by around 50% and prevented enzyme desorption upon rewetting of the papers. The thermal deactivation of ALP retained on paper with polymers follows two sequential first order reactions. This was also observed for ALP simply physisorbed on paper. The retention aid polymers instigated a rapid initial deactivation which significantly decreased the longevity of the enzymatic papers. This suggests some enzyme-polymer interaction probably affecting the enzyme tertiary structure. A deactivation mathematical model predicting the enzymatic paper half-life was developed.

  11. Hot water, surfactant, and polymer flooding process for heavy oil

    SciTech Connect

    Ashrawi, S.S.

    1992-01-28

    This patent describes a method of recovering viscous petroleum from a subterranean, porous and permeable formation penetrated by at least one injection well and by at least one production well, both in fluid communication with the formation. It comprises injecting a thermal recovery fluid into the formation to heat the formation above its natural temperature; injecting a surfactant solution into the formation, the surfactant solution comprising a mixture of petrochemical sulfonate and a co-surfactant, the co-surfactant being an olefin sulfonate having the general formula CH{sub 3}{emdash}(CH{sub 2}){sub x}{emdash}CH{double bond}CH{emdash}(CH{sub 2}){sub y}{emdash}SO{sub 3}{sup {minus}}M{sup +}, wherein x is 0 to 15, x + y is 9 to 15, and M is a monovalent cation; injecting a water-soluble polymer solution into the formation through the same well the surfactant solution was injected into; and recovering petroleum through a production well.

  12. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    SciTech Connect

    Cavallo, Dario; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  13. Mechanistic study of the Polymer-Induced Liquid-Precursor (PILP) process: Relevance to biomineralization

    NASA Astrophysics Data System (ADS)

    Dai, Lijun

    Biomineralization is a process in which cells construct a mineralization platform based on framework proteins and water-soluble proteins, and utilize some transportation vesicles, such as matrix vesicles to regulate the transportation of ions and precursor phases. The mineral morphologies formed by the Polymer-Induced Liquid-Precursor (PILP) process, which utilizes acidic polypeptides or polymers to mimic the acidic proteins in biominerals, have been shown to have a great similarity with many biominerals. This drives us to investigate the important factors and underlying mechanisms governing the generation, stabilization and transformation of polymer-induced liquid-precursor phases. First, the PILP phase composition has been characterized during a reaction time series using a combination of measuring water loss with elemental analysis. This phase is found to be a highly hydrated phase with a large amount of acidic polymers entrapped within. By FT-Raman, it is found that these acidic polymers can chelate with calcium ions by breaking the initial calcium-water complexes, liberating free water near the calcium-polymer complexes. It is then shown that when calcium carbonate complexes are formed, most of the acidic polymer can be liberated from the formed precursor phase to re-induce more PILP phase. By FTIR, it is found that acidic polymers can stabilize the PILP amorphous phase. The extended stabilization lifetime of the PILP phase is due to the entrapped acidic polymers and the free water in the precursor phase. They disrupt the ordered packing of the calcium carbonate complexes. Second, to investigate how different protein structures would affect the PILP phase quality, quantity, and stability, a series of synthetic peptides mimicking proteins involved in biomineralization were synthesized and applied to generate the PILP process using various techniques. Peptides with high charge density, phosphorylation density and molecular weight to a limit of 5000 Da in

  14. Aging Chart: a community resource for rapid exploratory pathway analysis of age-related processes.

    PubMed

    Moskalev, Alexey; Zhikrivetskaya, Svetlana; Shaposhnikov, Mikhail; Dobrovolskaya, Evgenia; Gurinovich, Roman; Kuryan, Oleg; Pashuk, Aleksandr; Jellen, Leslie C; Aliper, Alex; Peregudov, Alex; Zhavoronkov, Alex

    2016-01-01

    Aging research is a multi-disciplinary field encompassing knowledge from many areas of basic, applied and clinical research. Age-related processes occur on molecular, cellular, tissue, organ, system, organismal and even psychological levels, trigger the onset of multiple debilitating diseases and lead to a loss of function, and there is a need for a unified knowledge repository designed to track, analyze and visualize the cause and effect relationships and interactions between the many elements and processes on all levels. Aging Chart (http://agingchart.org/) is a new, community-curated collection of aging pathways and knowledge that provides a platform for rapid exploratory analysis. Building on an initial content base constructed by a team of experts from peer-reviewed literature, users can integrate new data into biological pathway diagrams for a visible, intuitive, top-down framework of aging processes that fosters knowledge-building and collaboration. As the body of knowledge in aging research is rapidly increasing, an open visual encyclopedia of aging processes will be useful to both the new entrants and experts in the field. PMID:26602690

  15. Aging Chart: a community resource for rapid exploratory pathway analysis of age-related processes.

    PubMed

    Moskalev, Alexey; Zhikrivetskaya, Svetlana; Shaposhnikov, Mikhail; Dobrovolskaya, Evgenia; Gurinovich, Roman; Kuryan, Oleg; Pashuk, Aleksandr; Jellen, Leslie C; Aliper, Alex; Peregudov, Alex; Zhavoronkov, Alex

    2016-01-01

    Aging research is a multi-disciplinary field encompassing knowledge from many areas of basic, applied and clinical research. Age-related processes occur on molecular, cellular, tissue, organ, system, organismal and even psychological levels, trigger the onset of multiple debilitating diseases and lead to a loss of function, and there is a need for a unified knowledge repository designed to track, analyze and visualize the cause and effect relationships and interactions between the many elements and processes on all levels. Aging Chart (http://agingchart.org/) is a new, community-curated collection of aging pathways and knowledge that provides a platform for rapid exploratory analysis. Building on an initial content base constructed by a team of experts from peer-reviewed literature, users can integrate new data into biological pathway diagrams for a visible, intuitive, top-down framework of aging processes that fosters knowledge-building and collaboration. As the body of knowledge in aging research is rapidly increasing, an open visual encyclopedia of aging processes will be useful to both the new entrants and experts in the field.

  16. Aging Chart: a community resource for rapid exploratory pathway analysis of age-related processes

    PubMed Central

    Moskalev, Alexey; Zhikrivetskaya, Svetlana; Shaposhnikov, Mikhail; Dobrovolskaya, Evgenia; Gurinovich, Roman; Kuryan, Oleg; Pashuk, Aleksandr; Jellen, Leslie C.; Aliper, Alex; Peregudov, Alex; Zhavoronkov, Alex

    2016-01-01

    Aging research is a multi-disciplinary field encompassing knowledge from many areas of basic, applied and clinical research. Age-related processes occur on molecular, cellular, tissue, organ, system, organismal and even psychological levels, trigger the onset of multiple debilitating diseases and lead to a loss of function, and there is a need for a unified knowledge repository designed to track, analyze and visualize the cause and effect relationships and interactions between the many elements and processes on all levels. Aging Chart (http://agingchart.org/) is a new, community-curated collection of aging pathways and knowledge that provides a platform for rapid exploratory analysis. Building on an initial content base constructed by a team of experts from peer-reviewed literature, users can integrate new data into biological pathway diagrams for a visible, intuitive, top-down framework of aging processes that fosters knowledge-building and collaboration. As the body of knowledge in aging research is rapidly increasing, an open visual encyclopedia of aging processes will be useful to both the new entrants and experts in the field. PMID:26602690

  17. Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes.

    PubMed

    Kang, Yun Kenneth; Hamzik, James; Felo, Michael; Qi, Bo; Lee, Julia; Ng, Stanley; Liebisch, Gregory; Shanehsaz, Behnam; Singh, Nripen; Persaud, Kris; Ludwig, Dale L; Balderes, Paul

    2013-11-01

    Recent advances in mammalian cell culture processes have significantly increased product titers, but have also resulted in substantial increases in cell density and cellular debris as well as process and product related impurities. As such, with improvements in titer, corresponding improvements in downstream processing are essential. In this study we have developed an alternative antibody harvest process that incorporates flocculation using a novel stimulus responsive polymer, benzylated poly(allylamine), followed by depth filtration. As tested on multiple antibodies, this process demonstrates high process yield, improved clearance of cells and cell debris, and efficient reduction of aggregates, host cell proteins (HCP) and DNA. A wide operating window was established for this novel flocculation process through design of experiments condition screening and optimization. Residual levels of impurities in the Protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. In addition, efficient clearance of residual polymer was demonstrated using a fluorescence tagged polymer in the presence of a stimulus reagent. The mechanism of HCP and aggregates removal during flocculation was also explored. This novel and efficient process can be easily integrated into current mAb purification platforms, and may overcome downstream processing challenges.

  18. Structural evolution in the aging process of supercooled colloidal liquids.

    PubMed

    Kawasaki, Takeshi; Tanaka, Hajime

    2014-06-01

    When a liquid is rapidly quenched to a temperature below the glass-transition point, it is driven out of equilibrium; it then slowly relaxes to a (quasi)equilibrium state. This slow relaxation process is called aging. By definition, any glasses are inevitably in the process of aging and actually slowly evolving with time. Thus the study of aging phenomena is of fundamental importance for understanding not only the nonequilibrium nature of the glass transition, but also the stability of glassy materials. Here we consider aging after a rather shallow quench, for which a system is still able to reach (metastable) equilibrium. By using polydisperse colloidal liquids as a model, we show the validity of dynamical scaling that there is only one relevant length scale not only for a quasiequilibrium supercooled state but also for a nonequilibrium process of aging, which is reminiscent of dynamical critical phenomena. Our finding indicates that the aging toward (metastable) equilibrium may be regarded as the growth process of critical-like fluctuations of static order associated with low-free-energy configurations, further suggesting that this ordering is the origin of cooperative slow dynamics in the systems studied. The generality of this statement for other glass-forming systems remains for a future study. PMID:25019784

  19. Structural evolution in the aging process of supercooled colloidal liquids

    NASA Astrophysics Data System (ADS)

    Kawasaki, Takeshi; Tanaka, Hajime

    2014-06-01

    When a liquid is rapidly quenched to a temperature below the glass-transition point, it is driven out of equilibrium; it then slowly relaxes to a (quasi)equilibrium state. This slow relaxation process is called aging. By definition, any glasses are inevitably in the process of aging and actually slowly evolving with time. Thus the study of aging phenomena is of fundamental importance for understanding not only the nonequilibrium nature of the glass transition, but also the stability of glassy materials. Here we consider aging after a rather shallow quench, for which a system is still able to reach (metastable) equilibrium. By using polydisperse colloidal liquids as a model, we show the validity of dynamical scaling that there is only one relevant length scale not only for a quasiequilibrium supercooled state but also for a nonequilibrium process of aging, which is reminiscent of dynamical critical phenomena. Our finding indicates that the aging toward (metastable) equilibrium may be regarded as the growth process of critical-like fluctuations of static order associated with low-free-energy configurations, further suggesting that this ordering is the origin of cooperative slow dynamics in the systems studied. The generality of this statement for other glass-forming systems remains for a future study.

  20. Why and How We Age, and Is That Process Modifiable?

    NASA Astrophysics Data System (ADS)

    Arking, R.

    Aging is an almost-universal biological process that is better understood in terms of an evolutionary explanation than in terms of a medical or adaptationist explanation. The major advances in human longevity which took place in developed countries during the past century arose from decreases in external (e.g., environmental) sources of mortality, and not from any effect on the aging process. Laboratory studies show that the aging process is under genetic control, can be manipulated, and can be expressed in three different phenotypes. The adult lifespan consists of the health span (ages 20-55 yrs) and the senescent span (ages 55+), with a relatively short but variable transition phase between the two. The most socially desirable phenotype would be that where the transition phase is delayed and the health span extended with little effect on the senescent span. The genetic, nutritional, cell-signaling and pharmecutical interventions inducing this phenotype are discussed. The genetic architecture of senescence is discussed and its stochastic nature made clear. The social and ethical consequences of pharmecutical intervention into the aging process are briefly discussed.

  1. Influence Of The Microinjection Moulding Process On The Crystalline Orientation And Morphology Of Semicrystalline Polymers

    NASA Astrophysics Data System (ADS)

    Malhab, Nada Bou; Régnier, Gilles

    2011-05-01

    Microinjection moulding (μIM) seems to be a key for the large scale production of polymer microparts. For semicrystalline polymers, the crystallisation under high shear and cooling rates induces specific morphologies and properties and thus takes tremendous importance in microinjection process compared to classical injection moulding (IM) process where wall thicknesses are generally larger than 1mm. Two semicrystalline polymers were microinjected, a high density polyethylene and a polyamide 12 in plaque cavities having thicknesses of 0.3 and 0.5mm. Analyses obtained by optical microscopy show that the crystalline morphologies vary between micro- and macro- parts. While a `skin-core' morphology is present for the macropart, the μpart exhibits a specific morphology. The X-ray scattering at small angles (SAXS) studies show an orientation of HDPE lamellae whatever the conditions of microinjection whereas the orientation of PA12 lamellae is either isotropic or anisotropic depending on the thickness of molded parts.

  2. The influence of binary processing additives on the performance of polymer solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Hu, Xiaowen; Zhong, Chengmei; Huang, Mingjun; Wang, Kai; Zhang, Zhan; Gong, Xiong; Cao, Yong; Heeger, Alan J.

    2014-11-01

    In this study, we report the investigation of the influence of binary processing additives, 1,8-octanedithiol (ODT) and 1-chloronaphthalene (CN) on the performance of polymer solar cells (PSCs). It was found that the power conversion efficiency (PCE) can be enhanced to 8.55% from the PSCs processed with binary processing additives as compared with ~6.50% from the PSCs processed with either ODT or CN processing additives. With binary processing additives, the crystallinity of the electron donor polymer, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2 ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  3. Supercritical carbon dioxide-processed resorbable polymer nanocomposites for bone graft substitute applications

    NASA Astrophysics Data System (ADS)

    Baker, Kevin C.

    Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the requisite porous morphology. As such, porous resorbable polymers are often reinforced with filler materials. In the presented work, we describe the use of supercritical carbon dioxide (scCO2) processing to create porous resorbable polymeric constructs reinforced by nanostructured, organically modified Montmorillonite clay (nanoclay). scCO2 processing simultaneously disperses the nanoclay throughout the polymeric matrix, while imparting a porous morphology to the construct conducive to facilitating cellular infiltration and neoangiogenesis, which are necessary components of bone growth. With the addition of as little as 2.5wt% of nanoclay, the compressive strength of the constructs nearly doubles putting them on par with human cortico-cancellous bone. Rheological measurements indicate that the dominant mode of reinforcement of the nanocomposite constructs is the restriction of polymer chain mobility. This restriction is a function of the positive interaction between polymer chains and the nanoclay. In vivo inflammation studies indicate biocompatibility of the constructs. Ectopic osteogenesis assays have determined that the scCO2-processed nanocomposites are capable of supporting growth-factor induced bone formation. scCO 2-processed resorbable

  4. Process for making polymers comprising derivatized carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved.

  5. Novel Controlled Release Polymer-Lipid Formulations Processed by Hot Melt Extrusion.

    PubMed

    Maniruzzaman, Mohammed; Islam, Muhammad T; Halsey, Sheelagh; Amin, Devyani; Douroumis, Dennis

    2016-02-01

    The aim of the study was to investigate the effect of novel polymer/lipid formulations on the dissolution rates of the water insoluble indomethacin (INM), co-processed by hot melt extrusion (HME). Formulations consisted of the hydrophilic hydroxypropyl methyl cellulose polymer (HPMCAS) and stearoyl macrogol-32 glycerides-Gelucire 50/13 (GLC) were processed with a twin screw extruder to produce solid dispersions. The extrudates characterized by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and hot stage microscopy (HSM) indicated the presence of amorphous INM within the polymer/lipid matrices. In-line monitoring via near-infrared (NIR) spectroscopy revealed significant peak shifts indicating possible interactions and H-bonding formation between the drug and the polymer/lipid carriers. Furthermore, in vitro dissolution studies showed a synergistic effect of the polymer/lipid carrier with 2-h lag time in acidic media followed by enhanced INM dissolution rates at pH > 5.5.

  6. Hormones as "difference makers" in cognitive and socioemotional aging processes.

    PubMed

    Ebner, Natalie C; Kamin, Hayley; Diaz, Vanessa; Cohen, Ronald A; MacDonald, Kai

    2014-01-01

    Aging is associated with well-recognized alterations in brain function, some of which are reflected in cognitive decline. While less appreciated, there is also considerable evidence of socioemotional changes later in life, some of which are beneficial. In this review, we examine age-related changes and individual differences in four neuroendocrine systems-cortisol, estrogen, testosterone, and oxytocin-as "difference makers" in these processes. This suite of interrelated hormonal systems actively coordinates regulatory processes in brain and behavior throughout development, and their level and function fluctuate during the aging process. Despite these facts, their specific impact in cognitive and socioemotional aging has received relatively limited study. It is known that chronically elevated levels of the stress hormone cortisol exert neurotoxic effects on the aging brain with negative impacts on cognition and socioemotional functioning. In contrast, the sex hormones estrogen and testosterone appear to have neuroprotective effects in cognitive aging, but may decrease prosociality. Higher levels of the neuropeptide oxytocin benefit socioemotional functioning, but little is known about the effects of oxytocin on cognition or about age-related changes in the oxytocin system. In this paper, we will review the role of these hormones in the context of cognitive and socioemotional aging. In particular, we address the aforementioned gap in the literature by: (1) examining both singular actions and interrelations of these four hormonal systems; (2) exploring their correlations and causal relationships with aspects of cognitive and socioemotional aging; and (3) considering multilevel internal and external influences on these hormone systems within the framework of explanatory pluralism. We conclude with a discussion of promising future research directions. PMID:25657633

  7. Laser processing of polymer constructs from poly(3-hydroxybutyrate).

    PubMed

    Volova, T G; Tarasevich, A A; Golubev, A I; Boyandin, A N; Shumilova, A A; Nikolaeva, E D; Shishatskaya, E I

    2015-01-01

    CO2 laser radiation was used to process poly(3-hydroxybutyrate) constructs - films and 3D pressed plates. Laser processing increased the biocompatibility of unperforated films treated with moderate uniform radiation, as estimated by the number and degree of adhesion of NIH 3T3 mouse fibroblast cells. The biocompatibility of perforated films modified in the pulsed mode did not change significantly. At the same time, pulsed laser processing of the 3D plates produced perforated scaffolds with improved mechanical properties and high biocompatibility with bone marrow-derived multipotent, mesenchymal stem cells, which show great promise for bone regeneration. PMID:26278920

  8. Laser processing of polymer constructs from poly(3-hydroxybutyrate).

    PubMed

    Volova, T G; Tarasevich, A A; Golubev, A I; Boyandin, A N; Shumilova, A A; Nikolaeva, E D; Shishatskaya, E I

    2015-01-01

    CO2 laser radiation was used to process poly(3-hydroxybutyrate) constructs - films and 3D pressed plates. Laser processing increased the biocompatibility of unperforated films treated with moderate uniform radiation, as estimated by the number and degree of adhesion of NIH 3T3 mouse fibroblast cells. The biocompatibility of perforated films modified in the pulsed mode did not change significantly. At the same time, pulsed laser processing of the 3D plates produced perforated scaffolds with improved mechanical properties and high biocompatibility with bone marrow-derived multipotent, mesenchymal stem cells, which show great promise for bone regeneration.

  9. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  10. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, Mark E.; Benicewicz, Brian C.; Douglas, Elliot P.

    1998-01-01

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  11. Normal aging modulates prefrontoparietal networks underlying multiple memory processes

    PubMed Central

    Sambataro, Fabio; Safrin, Martin; Lemaitre, Herve S.; Steele, Sonya U.; Das, Saumitra B.; Callicott, Joseph H; Weinberger, Daniel R.; Mattay, Venkata S.

    2012-01-01

    Functional decline of brain regions underlying memory processing represents a hallmark of cognitive aging. Although a rich literature documents age-related differences in several memory domains, the effect of aging on networks that underlie multiple memory processes has been relatively unexplored. Here we used functional magnetic resonance imaging during working memory and incidental episodic encoding memory to investigate patterns of age-related differences in activity and functional covariance patterns common across multiple memory domains. Relative to younger subjects, older subjects showed increased activation in left dorso-lateral prefrontal cortex along with decreased deactivation in the posterior cingulate. Older subjects showed greater functional covariance during both memory tasks in a set of regions that included a positive prefronto-parietal-occipital networkas well as a negative network that spanned the default mode regions. These findings suggest that the memory process-invariant recruitment of brain regions within prefronto-parietal-occipital network increases with aging.Our results are in line with the dedifferentiation hypothesis of neurocognitive aging, thereby suggesting a decreased specialization of the brain networks supporting different memory networks. PMID:22909094

  12. Aging of the planning process: the role of executive functioning.

    PubMed

    Sorel, Olivier; Pennequin, Valérie

    2008-03-01

    This study tested whether the aging of executive functioning is linked to the decline in planning performance. Participants were divided into three groups: group 1 composed of 15 adults with a mean age of 22.7 years, group 2 composed of 15 adults with a mean age of 68.1 years and group 3 composed of 16 adults with a mean age of 78.75 years. Each participant took tests for shifting, inhibition, updating and processing speed. Planning was evaluated by the Tower of Hanoi task with 3 and 4 disks. Analyses of variance showed a main age effect on the many executive functioning and planning measures assessed. Analyses of regression indicated that combined processing speed and shifting accounted for 58.33% of performance on the 3-disk version, while processing speed accounted for only 36.86% of performance on the 4-disk version. These results are discussed in relation to two levels of the planning process: formulation and execution. PMID:17884265

  13. Processing of continuous fiber reinforced ceramic composites for ultra high temperature applications using organosilicon polymer precursors

    NASA Astrophysics Data System (ADS)

    Nicholas, James Robert

    The current work is on the development of continuous fiber reinforced ceramic materials (CFCCs) for use in ultra high temperature applications. These applications subject materials to extremely high temperatures(> 2000°C). Monolithic ceramics are currently being used for these applications, but the tendency to fail catastrophically has driven the need for the next generation of material. Reinforcing with continuous fibers significantly improves the toughness of the monolithic materials; however, this is a manufacturing challenge. The development of commercial, low-viscosity preceramic polymers provides new opportunities to fabricate CFCCs. Preceramic polymers behave as polymers at low temperatures and are transformed into ceramics upon heating to high temperatures. The polymer precursors enable the adaptation of well-established polymer processing techniques to produce high quality materials at relatively low cost. In the present work, SMP-10 from Starfire Systems, and PURS from KiON Corp. were used to manufacture ZrB2-SiC/SiC CFCCs using low cost vacuum bagging process in conjunction with the polymer infiltration and pyrolysis process. The microstructure was investigated using scanning electron microscopy and it was determined that the initial greenbody cure produced porosity of both closed and open pores. The open pores were found to be more successfully re-infiltrated using neat resin compared to slurry reinfiltrate; however, the closed pores were found to be impenetrable during subsequent reinfiltrations. The mechanical performance of the manufactured samples was evaluated using flexure tests and found the fiber reinforcement prevented catastrophic failure behavior by increasing fracture toughness. Wedge sample were fabricated and evaluated to demonstrate the ability to produce CFCC of complex geometry.

  14. New Polymer Materials for the Laser Sintering Process: Polypropylene and Others

    NASA Astrophysics Data System (ADS)

    Wegner, Andreas

    Laser sintering of polymers gets more and more importance for small series production. However, there is only a little number of materials available for the process. In most cases parts are build up using polyamide 12 or polyamide 11. Reasons for that are high prices, a restricted availability, poor mechanical part properties or an insufficient understanding of the processing of other materials. These problems result from the complex processing conditions in laser sintering with high requirements on the material's characteristics. Within this area, at the chair for manufacturing technology fundamental knowledge was established. Aim of the presented study was to qualify different polymers for the laser sintering process. Polyethylene, polypropylene, polyamide 6, polyoxymethylene as well as polybutylene terephthalate were analyzed. Within the study problems of qualifying new materials are discussed using some examples. Furthermore, the processing conditions as well as mechanical properties of a new polypropylene compound are shown considering also different laser sintering machines.

  15. A study of the process of nonisothermal decomposition of phenolformaldehyde polymers by differential thermal analysis

    SciTech Connect

    Petrova, O.M.; Fedoseev, S.D.; Komarova, T.V.

    1984-01-01

    A calculation has been made of the activation energy of the thermal decomposition of phenol-formaldehyde polymers. It has been established that for nonisothermal conditions the rate of performance of the process does not affect the effective activation energy calculated by means of Piloyan's equation.

  16. Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate

    PubMed Central

    Noh, Jonghyeon; Jeong, Seonju; Lee, Jung-Yong

    2016-01-01

    Polymer solar cells are attracting attention as next-generation energy sources. Scalable deposition techniques of high-quality organic films should be guaranteed to realize highly efficient polymer solar cells in large areas for commercial viability. Herein, we introduce an ultrafast, scalable, and versatile process for forming high-quality organic films on an aqueous substrate by utilizing the spontaneous spreading phenomenon. This approach provides easy control over the thickness of the films by tuning the spreading conditions, and the films can be transferred to a variety of secondary substrates. Moreover, the controlled Marangoni flow and ultrafast removal of solvent during the process cause the films to have a uniform, high-quality nanomorphology with finely separated phase domains. Polymer solar cells were fabricated from a mixture of polymer and fullerene derivatives on an aqueous substrate by using the proposed technique, and the device exhibited an excellent power conversion efficiency of 8.44 %. Furthermore, a roll-to-roll production system was proposed as an air-processable and scalable commercial process for fabricating organic devices. PMID:27507624

  17. Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate

    NASA Astrophysics Data System (ADS)

    Noh, Jonghyeon; Jeong, Seonju; Lee, Jung-Yong

    2016-08-01

    Polymer solar cells are attracting attention as next-generation energy sources. Scalable deposition techniques of high-quality organic films should be guaranteed to realize highly efficient polymer solar cells in large areas for commercial viability. Herein, we introduce an ultrafast, scalable, and versatile process for forming high-quality organic films on an aqueous substrate by utilizing the spontaneous spreading phenomenon. This approach provides easy control over the thickness of the films by tuning the spreading conditions, and the films can be transferred to a variety of secondary substrates. Moreover, the controlled Marangoni flow and ultrafast removal of solvent during the process cause the films to have a uniform, high-quality nanomorphology with finely separated phase domains. Polymer solar cells were fabricated from a mixture of polymer and fullerene derivatives on an aqueous substrate by using the proposed technique, and the device exhibited an excellent power conversion efficiency of 8.44 %. Furthermore, a roll-to-roll production system was proposed as an air-processable and scalable commercial process for fabricating organic devices.

  18. Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate.

    PubMed

    Noh, Jonghyeon; Jeong, Seonju; Lee, Jung-Yong

    2016-08-10

    Polymer solar cells are attracting attention as next-generation energy sources. Scalable deposition techniques of high-quality organic films should be guaranteed to realize highly efficient polymer solar cells in large areas for commercial viability. Herein, we introduce an ultrafast, scalable, and versatile process for forming high-quality organic films on an aqueous substrate by utilizing the spontaneous spreading phenomenon. This approach provides easy control over the thickness of the films by tuning the spreading conditions, and the films can be transferred to a variety of secondary substrates. Moreover, the controlled Marangoni flow and ultrafast removal of solvent during the process cause the films to have a uniform, high-quality nanomorphology with finely separated phase domains. Polymer solar cells were fabricated from a mixture of polymer and fullerene derivatives on an aqueous substrate by using the proposed technique, and the device exhibited an excellent power conversion efficiency of 8.44 %. Furthermore, a roll-to-roll production system was proposed as an air-processable and scalable commercial process for fabricating organic devices.

  19. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites.

    PubMed

    Li, Qi; Han, Kuo; Gadinski, Matthew Robert; Zhang, Guangzu; Wang, Qing

    2014-09-01

    Concurrent improvements in dielectric constant and breakdown strength are attained in a solution-processed ternary ferroelectric polymer nanocomposite incorporated with two-dimensional boron nitride nanosheets and zero-dimensional barium titanate nanoparticles that synergistically interact to enable a remarkable energy-storage capability, including large discharged energy density, high charge-discharge efficiency, and great power density.

  20. Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate.

    PubMed

    Noh, Jonghyeon; Jeong, Seonju; Lee, Jung-Yong

    2016-01-01

    Polymer solar cells are attracting attention as next-generation energy sources. Scalable deposition techniques of high-quality organic films should be guaranteed to realize highly efficient polymer solar cells in large areas for commercial viability. Herein, we introduce an ultrafast, scalable, and versatile process for forming high-quality organic films on an aqueous substrate by utilizing the spontaneous spreading phenomenon. This approach provides easy control over the thickness of the films by tuning the spreading conditions, and the films can be transferred to a variety of secondary substrates. Moreover, the controlled Marangoni flow and ultrafast removal of solvent during the process cause the films to have a uniform, high-quality nanomorphology with finely separated phase domains. Polymer solar cells were fabricated from a mixture of polymer and fullerene derivatives on an aqueous substrate by using the proposed technique, and the device exhibited an excellent power conversion efficiency of 8.44 %. Furthermore, a roll-to-roll production system was proposed as an air-processable and scalable commercial process for fabricating organic devices. PMID:27507624

  1. Aging process of I-cathode with magnetic ion trap

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaobing; Lei, Wei; Feng, Niangen; Havekes, Jos; Tong, Linsu; den Engelsen, Daniel

    2005-09-01

    An aging process, which applies a high frequency (HF) magnetic field on the electron gun during the aging process, is introduced to solve the unbalanced I-cathode emission slump. The effect is that the scanning electron beam and the HF magnetic field heat up the gun parts by electron bombarding and eddy current heating. In this way, the grids are effectively degassed. A part of the desorbed gases is pumped by the Ba-getter in the tube, whereas another part is ionized by electron collision. These ionized gas molecules, notably Ar +, are partially trapped in gun parts. Therefore, a lower residual gas pressure and emission slump can be achieved.

  2. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  3. Hydrothermal processing of BaTiO{sub 3}/polymer films

    SciTech Connect

    Slamovich, E.B.; Aksay, I.A.

    1994-12-31

    Hydrothermally derived films of BaTiO{sub 3} were fabricated by reacting thin layers of titanium organometallic liquid precursors in aqueous solutions containing Ba(OH){sub 2} and having a high pH. Cubic submicron polycrystalline films of BaTiO{sub 3} (thickness {approx} 1 {mu}m) were formed at 70 C. Low concentrations of block copolymers of polybutadiene and polystyrene were incorporated into the liquid precursor to prevent precursor film cracking. Higher polymer concentrations allowed fabrication of polymer/ceramic composite films by virtue of the low temperature used in hydrothermal processing.

  4. Process for synthesizing a new series of fluorocarbon polymers

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1970-01-01

    Two-step process for preparing fluorocarbon materials includes - /1/ adding gaseous fluorine to a polyperfluoropolyene to create fluorocarbon radicals, with reactive sites at unsaturated carbon atoms, and /2/ introducing a monomer, after evacuation of fluorine gas, and allowing copolymerization with the free radicals.

  5. [The modified process for preparing natural organic polymer flocculant chitosan].

    PubMed

    Zeng, D; Yu, G; Zhang, P; Feng, Z

    2001-05-01

    The modified process for preparing chitosan from crab or lobster shells was developed. In the decalcification stage, 10% HCl was used as soaking solution with addition of a small quantity of A as a promoter, and the mass ratio of reactants was 10% HCl:A:crab or lobster shells = 3.5:0.5:1, continuously stirring the crab or lobster shells at 30 degrees C for 3 h in place of simply soaking the crab or lobster shells at room temperature for 16-24 h in the previous process. In the deacetylation stage, 40% NaOH solution was used with addition of a small quantity of B as a promoter, and the mass ratio of reactants was 40% NaOH:B:chitin = 4:0.2:1, keeping reaction at 105 degrees C for 2 h in place of at 115 degrees C for 6 h in the previous process. By this new process, the cost of the raw materials used for preparing chitosan was cut down 49%, the preparation time was shortened by one half, and the main properties of this chitosan such as viscosity, deacetylation and molecular weight all approached or exceeded those of the Sigma' commercial chitosan (Chitosan C-3646).

  6. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process densifying porous silicon-carbide bodies

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1994-05-17

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R.sup.1)(R.sup.2)Si--C.tbd.C--(R.sup.3)(R.sup.4)Si--CH=CH--].sub.n-- , wherein n.gtoreq.2; and each R.sup.1, R.sup.2, R.sup.3, and R.sup.4 is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  7. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process densifying porous silicon-carbide bodies

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1994-05-17

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R[sup 1])(R[sup 2])Si--C[triple bond]C-(R[sup 3])(R[sup 4])Si--CH[double bond]CH--][sub n]--, wherein n[>=]2; and each R[sup 1], R[sup 2], R[sup 3], and R[sup 4] is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  8. Efficient tandem polymer solar cells fabricated by all-solution processing.

    PubMed

    Kim, Jin Young; Lee, Kwanghee; Coates, Nelson E; Moses, Daniel; Nguyen, Thuc-Quyen; Dante, Mark; Heeger, Alan J

    2007-07-13

    Tandem solar cells, in which two solar cells with different absorption characteristics are linked to use a wider range of the solar spectrum, were fabricated with each layer processed from solution with the use of bulk heterojunction materials comprising semiconducting polymers and fullerene derivatives. A transparent titanium oxide (TiO(x)) layer separates and connects the front cell and the back cell. The TiO(x) layer serves as an electron transport and collecting layer for the first cell and as a stable foundation that enables the fabrication of the second cell to complete the tandem cell architecture. We use an inverted structure with the low band-gap polymer-fullerene composite as the charge-separating layer in the front cell and the high band-gap polymer composite as that in the back cell. Power-conversion efficiencies of more than 6% were achieved at illuminations of 200 milliwatts per square centimeter. PMID:17626879

  9. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    SciTech Connect

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher; Doshi, Pankaj; Lele, Ashish; Thete, Sumeet

    2015-05-22

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particle tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)

  10. An application of CO{sub 2} laser interference heating for polymer injection molding process

    SciTech Connect

    Saito, Takushi; Satoh, Isao; Kurosaki, Yasuo

    1999-07-01

    In this paper, the authors studied the small scale (less than 1 mm) local heat transfer control of injection molded polymer products by using CO{sub 2} laser interferometry. This technique could provide precise local temperature control of the product surface during the process. Residual birefringence of the irradiated surface was successfully distributed according to the interference pattern. This scale of heat transfer control has not been realized through common conductive heat transfer methods. To establish the laser interference heating, a CO{sub 2} laser, a set of optical equipment, and a transparent window of Zinc-selenide were used. To control the heat transfer on the molded polymer surface, the interfered laser beam was introduced through the window. Polystyrene resin was used to investigate the feasibility of this method. In the experiment, the control ability of the property distribution on a molded polymer surface was studied under various conditions. To confirm the viability of this technique, optical strain frozen in the molded polymer surface was measured with a polarizing microscope as birefringence. As the result, it was clearly shown that the residual birefringence had an equal spaced distribution. Also, the contrast between the irradiated and un-irradiated portions was obvious regardless of the polymer melt velocity and radiation intensity. This method may be applied to the production of diffraction gratings which have geometrically smooth surfaces.

  11. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    NASA Astrophysics Data System (ADS)

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher; Thete, Sumeet; Doshi, Pankaj; Lele, Ashish

    2015-05-01

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particle tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al1 wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.1D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996).

  12. Infrared radiometry using a dielectric-silver-coated hollow glass waveguide for polymer processing

    NASA Astrophysics Data System (ADS)

    Bendada, A.; Cole, K.; Lamontagne, M.; Simard, Y.

    2004-01-01

    We describe a novel on-line infrared method for remote sensing of the surface and the bulk temperatures of a polymer film during injection molding. The method may also be applied to other polymer forming processes such as extrusion and blow molding. The key feature of the new method is the use of a hollow waveguide that is incorporated into the injection mold to transmit the thermal radiation from the target to the sensor. The main characteristic of the hollow waveguide is that it exhibits low transmission loss of the thermal energy in the mid and far infrared, and no end reflection. This allows measurement of quite low temperatures, as low as near room temperature. Conventional optical fiber thermometers can neither measure such low temperature ranges nor measure the polymer surface temperature. In this article, we present the first on-line results of critical tests of the new device. A Husky injection molding press was used for the experiments. Good correlation was found between the radiometric results and those obtained with a thermal sensor inserted near the polymer mold interface, and with infrared imaging after the polymer part was ejected from the injection mold.

  13. NOCHAR Polymers: An Aqueous and Organic Liquid Solidification Process for Cadarache LOR (Liquides Organiques Radioactifs) - 13195

    SciTech Connect

    Vaudey, Claire-Emilie; Renou, Sebastien; Porco, Julien; Kelley, Dennis; Cochaud, Chantal

    2013-07-01

    To handle the Very Low Level Waste (VLLW) and the Low Level Waste (LLW) in France, two options can be considered: the incineration at CENTRACO facility and the disposal facility on ANDRA sites. The waste acceptance in these radwaste routes is dependent upon the adequacy between the waste characteristics (physical chemistry and radiological) and the radwaste route specifications. If the waste characteristics are incompatible with the radwaste route specifications (presence of significant quantities of chlorine, fluorine, organic component etc or/and high activity limits), it is necessary to find an alternative solution that consists of a waste pre-treatment process. In the context of the problematic Cadarache LOR (Liquides Organiques Radioactifs) waste streams, two radioactive scintillation cocktails have to be treated. The first one is composed of organic liquids at 13.1 % (diphenyloxazol, mesitylene, TBP, xylene) and water at 86.9 %. The second one is composed of TBP at 8.6 % and water at 91.4 %. They contain chlorine, fluorine and sulphate and have got alpha/beta/gamma spectra with mass activities equal to some kBq.g{sup -1}. Therefore, tritium is present and creates the second problematic waste stream. As a consequence, in order for disposal acceptance at the ANDRA site, it is necessary to pre-treat the waste. The NOCHAR polymers as an aqueous and organic liquid solidification process seem to be an adequate solution. Indeed, these polymers constitute an important variety of products applied to the treatment of radioactive aqueous and organic liquids (solvent, oil, solvent/oil mixing etc) and sludge through a mechanical and chemical solidification process. For Cadarache LOR, N910 and N960 respectively dedicated to the organic and aqueous liquids solidification are considered. With the N910, the organic waste solidification occurs in two steps. As the organic liquid travels moves through the polymer strands, the strands swell and immobilise the liquid. Then as the

  14. Evaluation of extractables in processed and unprocessed polymer materials used for pharmaceutical applications.

    PubMed

    Stults, Cheryl L M; Ansell, Jennifer M; Shaw, Arthur J; Nagao, Lee M

    2015-02-01

    Polymeric materials are often used in pharmaceutical packaging, delivery systems, and manufacturing components. There is continued concern that chemical entities from polymeric components may leach into various dosage forms, particularly those that are comprised of liquids such as parenterals, injectables, ophthalmics, and inhalation products. In some cases, polymeric components are subjected to routine extractables testing as a control measure. To reduce the risk of discovering leachables during stability studies late in the development process, or components that may fail extractables release criteria, it is proposed that extractables testing on polymer resins may be useful as a screening tool. Two studies have been performed to evaluate whether the extractables profile generated from a polymer resin is representative of the extractables profile of components made from that same resin. The ELSIE Consortium pilot program examined polyvinyl chloride and polyethylene, and another study evaluated polypropylene and a copolymer of polycarbonate and acrylonitrile butadiene styrene. The test materials were comprised of polymer resin and processed resin or molded components. Volatile, semi-volatile, and nonvolatile chemical profiles were evaluated after headspace sampling and extraction with solvents of varying polarity and pH. The findings from these studies indicate that there may or may not be differences between extractables profiles obtained from resins and processed forms of the resin depending on the type of material, the compounds of interest, and extraction conditions used. Extractables testing of polymer resins is useful for material screening and in certain situations may replace routine component testing. PMID:25227309

  15. Fabrication process of a high temperature polymer matrix engine duct

    NASA Technical Reports Server (NTRS)

    Pratt, R. D.; Wilson, A. J.

    1985-01-01

    The process that was used in the molding of an advanced composite outer by-pass duct planned for the F404 engine is discussed. This duct was developed as a potential replacement for the existing titanium duct in order to reduce both the weight and cost of the duct. The composite duct is now going into the manufacturing technology portion of the program. The duct is fabricated using graphite cloth impregnated with the PMR-15 matrix system.

  16. The Physiology of Exercise and the Process of Aging.

    ERIC Educational Resources Information Center

    Mravetz, Patricia

    A physical fitness plan is considered desirable for young people, young adults, and especially older adults. This program for secondary level students focuses on the physiology of exercise and the process of aging, and stresses the need for physical fitness. Specific objectives include the following: (1) to let students become evaluators of their…

  17. Effects of aging on face identification and holistic face processing.

    PubMed

    Konar, Yaroslav; Bennett, Patrick J; Sekuler, Allison B

    2013-08-01

    Several studies have shown that face identification accuracy is lower in older than younger adults. This effect of aging might be due to age differences in holistic processing, which is thought to be an important component of human face processing. Currently, however, there is conflicting evidence as to whether holistic face processing is impaired in older adults. The current study therefore re-examined this issue by measuring response accuracy in a 1-of-4 face identification task and the composite face effect (CFE), a common index of holistic processing, in older adults. Consistent with previous reports, we found that face identification accuracy was lower in older adults than in younger adults tested in the same task. We also found a significant CFE in older adults that was similar in magnitude to the CFE measured in younger subjects with the same task. Finally, we found that there was a significant positive correlation between the CFE and face identification accuracy. This last result differs from the results obtained in a previous study that used the same tasks and which found no evidence of an association between the CFE and face identification accuracy in younger adults. Furthermore, the age difference was found with subtraction-, regression-, and ratio-based estimates of the CFE. The current findings are consistent with previous claims that older adults rely more heavily on holistic processing to identify objects in conditions of limited processing resources.

  18. A Review of the Aging Process and Facilities Topic.

    PubMed

    Jornitz, Maik W

    2015-01-01

    Aging facilities have become a concern in the pharmaceutical and biopharmaceutical manufacturing industry, so much that task forces are formed by trade organizations to address the topic. Too often, examples of aging or obsolete equipment, unit operations, processes, or entire facilities have been encountered. Major contributors to this outcome are the failure to invest in new equipment, disregarding appropriate maintenance activities, and neglecting the implementation of modern technologies. In some cases, a production process is insufficiently modified to manufacture a new product in an existing process that was used to produce a phased-out product. In other instances, manufacturers expanded the facility or processes to fulfill increasing demand and the scaling occurred in a non-uniform manner, which led to non-optimal results. Regulatory hurdles of post-approval changes in the process may thwart companies' efforts to implement new technologies. As an example, some changes have required 4 years to gain global approval. This paper will address cases of aging processes and facilities aside from modernizing options.

  19. A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants.

    PubMed

    Lu, Qiuyi; Yan, Bin; Xie, Lei; Huang, Jun; Liu, Yang; Zeng, Hongbo

    2016-09-15

    Water management and treatment of mineral tailings and oil sands tailings are becoming critical challenges for the sustainable development of natural resources. Polymeric flocculants have been widely employed to facilitate the flocculation and settling of suspended fine solid particles in tailings, resulting in the separation of released water and solid sediments. In this study, a new flocculation process was developed for the treatment of oil sands tailings by using two oppositely charged polymers, i.e. an anionic polyacrylamide and a natural cationic biopolymer, chitosan. The new process was able to not only improve the clarity of supernatant after settling but also achieve a high settling efficiency. Treatment of the oil sands tailings using pure anionic polyacrylamide showed relatively high initial settling rate (ISR) of ~10.3m/h but with poor supernatant clarity (>1000NTU); while the treatment using pure cationic polymer resulted in clear supernatant (turbidity as low as 22NTU) but relatively low ISR of >2m/h. In the new flocculation process, the addition of anionic polyacrylamide to the tailings was followed by a cationic polymer, which showed both a high ISR (~7.7m/h) and a low turbidity (71NTU) of the supernatant. The flocculation mechanism was further investigated via the measurements of floc size, zeta potential and surface forces. The new flocculation process was revealed to include two steps: (1) bridging of fine solids by anionic polyacrylamide, and (2) further aggregation and flocculation mediated by charge neutralisation of the cationic polymer, which significantly eliminated the fine solids in the supernatants as well as increases floc size. Our results provide insights into the basic understanding of the interactions between polymer flocculants and solid particles in tailings treatment, as well as the development of novel tailings treatment technologies. PMID:27179318

  20. Interplay of formulation and process methodology on the extent of nifedipine molecular dispersion in polymers.

    PubMed

    Huang, Jingjun; Li, Ying; Wigent, Rodney J; Malick, Waseem A; Sandhu, Harpreet K; Singhal, Dharmendra; Shah, Navnit H

    2011-11-25

    The aim of this study is to evaluate effects of formulation and process technology on drug molecular dispersibility in solid dispersions (SDs). Nifedipine solid dispersions with ethylcellulose (EC) and/or Eudragit RL (RL) prepared by co-precipitation, co-evaporation, and fusion methods were characterized with FTIR, DSC, and XRPD for the content of nifedipine as molecular dispersion, amorphous and/or crystalline suspensions. A method was developed based on regular solution and Flory-Huggins theories to calculate drug-polymer interaction parameter in solid dispersion systems. A synergic effect of RL and EC on nifedipine molecular dispersibility in solid dispersions was observed. Increasing RL/EC ratio resulted in a higher degree of drug-polymer interaction that thermodynamically favored molecular dispersion, which, however, was counteracted by a corresponding decrease in the matrix glass transition point that kinetically favored phase-separation. Process methodology was found to play an important role in the formation of amorphous SD. The ranking of technologies with respect to the extent of molecular dispersion from high to low is fusion>co-evaporation>co-precipitation, wherein the solidification rate of polymeric solution and non-solvent effects were linked to kinetic entrapment of drug molecules in polymeric networks. Since nifedipine molecular dispersibility in EC/RL polymer(s) is a result of interplay between thermodynamic and kinetic factors, nifedipine molecular dispersions prepared for this study are thermodynamically metastable systems. To explore those supersaturation systems for use in drug delivery of poorly water soluble drugs, it is critical to balance drug-polymer interactions and matrix glass transition point and to consider a process technology with a fast solidification rate during formulation and process development of amorphous SD.

  1. A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants.

    PubMed

    Lu, Qiuyi; Yan, Bin; Xie, Lei; Huang, Jun; Liu, Yang; Zeng, Hongbo

    2016-09-15

    Water management and treatment of mineral tailings and oil sands tailings are becoming critical challenges for the sustainable development of natural resources. Polymeric flocculants have been widely employed to facilitate the flocculation and settling of suspended fine solid particles in tailings, resulting in the separation of released water and solid sediments. In this study, a new flocculation process was developed for the treatment of oil sands tailings by using two oppositely charged polymers, i.e. an anionic polyacrylamide and a natural cationic biopolymer, chitosan. The new process was able to not only improve the clarity of supernatant after settling but also achieve a high settling efficiency. Treatment of the oil sands tailings using pure anionic polyacrylamide showed relatively high initial settling rate (ISR) of ~10.3m/h but with poor supernatant clarity (>1000NTU); while the treatment using pure cationic polymer resulted in clear supernatant (turbidity as low as 22NTU) but relatively low ISR of >2m/h. In the new flocculation process, the addition of anionic polyacrylamide to the tailings was followed by a cationic polymer, which showed both a high ISR (~7.7m/h) and a low turbidity (71NTU) of the supernatant. The flocculation mechanism was further investigated via the measurements of floc size, zeta potential and surface forces. The new flocculation process was revealed to include two steps: (1) bridging of fine solids by anionic polyacrylamide, and (2) further aggregation and flocculation mediated by charge neutralisation of the cationic polymer, which significantly eliminated the fine solids in the supernatants as well as increases floc size. Our results provide insights into the basic understanding of the interactions between polymer flocculants and solid particles in tailings treatment, as well as the development of novel tailings treatment technologies.

  2. The rheology and processing of “edge sheared” colloidal polymer opals

    SciTech Connect

    Wong, Hon Sum; Mackley, Malcolm Butler, Simon; Baumberg, Jeremy; Snoswell, David; Finlayson, Chris; Zhao, Qibin

    2014-03-15

    This paper is concerned with the rheology and processing of solvent-free core shell “polymer opals” that consist of a soft outer shell grafted to hard colloidal polymer core particles. Strong iridescent colors can be produced by shearing the material in a certain way that causes the initially disordered spheres to rearrange into ordered crystalline structures and produce colors by diffraction and interference of multiple light scattering, similar to gemstone opals. The basic linear viscoelastic rheology of a polymer opal sample was determined as a function of temperature, and the material was found to be highly viscoelastic at all tested temperatures. A Cambridge multipass rheometer was specifically modified in order to make controlled mechanical measurements of initially disordered polymer opal tapes that were sandwiched between protective polyethylene terephthalate sheets. Axial extension, simple shear, and a novel “edge shearing” geometry were all evaluated, and multiple successive experiments of the edge shearing test were carried out at different temperatures. The optical development of colloidal ordering, measured as optical opalescence, was quantified by spectroscopy using visible backscattered light. The development of opalescence was found to be sensitive to the geometry of deformation and a number of process variables suggesting a complex interaction of parameters that caused the opalescence. In order to identify aspects of the deformation mechanism of the edge shearing experiment, a separate series of in situ optical experiments were carried out and this helped indicate the extent of simple shear generated with each edge shear deformation. The results show that strong ordering can be induced by successive edge shearing deformation. The results are relevant to polymer opal rheology, processing, and mechanisms relating to ordering within complex viscoelastic fluids.

  3. Dithienobenzothiadiazole-based conjugated polymer: processing solvent-relied interchain aggregation and device performances in field-effect transistors and polymer solar cells.

    PubMed

    Huang, Jun; Zhu, Yongxiang; Chen, Junwu; Zhang, Lianjie; Peng, Junbiao; Cao, Yong

    2014-11-01

    DTfBT-Th(3), a new conjugated polymer based on dithienobenzothiadiazole and terthiophene, possesses a bandgap of ≈1.86 eV and a HOMO level of -5.27 eV. Due to strong interchain aggregation, DTfBT-Th(3) can not be well dissolved in chloro-benzene (CB) and o-dichlorobenzene (DCB) at room temperature (RT), but the polymer can be processed from hot CB and DCB solutions of ≈100 °C. In CB, with a lower solvation ability, a certain polymer chain aggregation can be preserved, even in hot solution. DTfBT-Th(3) displays a field-effect hole mobility of 0.55 cm(2) V(-1) s(-1) when fabricated from hot CB solution, which is higher than that of the device processed from hot DCB (0.16 cm(2) V(-1) s(-1) In DTfBT-Th(3) -based polymer solar cells, a good power conversion efficiency from 5.37% to 6.67% can be achieved with 150-300 nm thick active layers casted from hot CB solution, while the highest efficiency for hot DCB-processed solar cells is only 5.07%. The results demonstrate that using a solvent with a lower solvation ability, as a "wet control" process, is beneficial to preserve strong interchain aggregation of a conjugated polymer during solution processing, showing great potential to improve its performances in optoelectronic devices.

  4. Polymerization and processing of polymers in magnetic fields

    SciTech Connect

    Benicewicz, B.C.; Smith, M.E.; Douglas, E.P.

    1997-04-01

    Liquid crystalline thermosets (LCT`s) have become recognized over the past few years as an important class of materials. Numerous reports from the authors laboratory and others have described their synthesis and phase behavior. In particular, the authors have described important effects due to the orientation of the rodlike molecules in a liquid crystalline phase. They have found that curing rates are enhanced compared to reaction in an isotropic phase, and that the glass transition of the fully cured material can be significantly higher than the final cure temperature. For structural applications, orientation of LCT`s will allow maximum improvement in mechanical properties. A few studies have described use of magnetic fields to orient LCT`s. However, no measurements were made of the tensile properties of materials processed in magnetic fields. The authors have conducted experiments which describe the tensile modulus dependence of an LCT over the complete range of magnetic field strengths from 0 to 18 Tesla. Their work has focused on the system composed of the diglycidyl ether of dihydroxy-{alpha}-methylstilbene (DGE-DHAMS) cured with sulfanilamide (SAA).

  5. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    PubMed Central

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-01-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced–up to about 10 times – by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10−1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing. PMID:27767184

  6. Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Tong-Fang; Hu, Yu-Feng; Deng, Zhen-Bo; Li, Xiong; Zhu, Li-Jie; Wang, Yue; Lv, Long-Feng; Wang, Tie-Ning; Lou, Zhi-Dong; Hou, Yan-Bing; Teng, Feng

    2016-08-01

    The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance–voltage (C–V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).

  7. Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Tong-Fang; Hu, Yu-Feng; Deng, Zhen-Bo; Li, Xiong; Zhu, Li-Jie; Wang, Yue; Lv, Long-Feng; Wang, Tie-Ning; Lou, Zhi-Dong; Hou, Yan-Bing; Teng, Feng

    2016-08-01

    The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance-voltage (C-V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).

  8. Electrophysiological Advances on Multiple Object Processing in Aging

    PubMed Central

    Mazza, Veronica; Brignani, Debora

    2016-01-01

    EEG research conducted in the past 5 years on multiple object processing has begun to define how the aging brain tracks the numerosity of the objects presented in the visual field for different goals. We review the recent EEG findings in healthy older individuals (age range: 65–75 years approximately) on perceptual, attentional and memory mechanisms-reflected in the N1, N2pc and contralateral delayed activity (CDA) components of the EEG, respectively-during the execution of a variety of cognitive tasks requiring simultaneous processing of multiple elements. The findings point to multiple loci of neural changes in multi-object analysis, and suggest the involvement of early perceptual mechanisms, attentive individuation and working memory (WM) operations in the neural and cognitive modification due to aging. However, the findings do not simply reflect early impairments with a cascade effect over subsequent stages of stimulus processing, but in fact highlight interesting dissociations between the effects occurring at the various stages of stimulus processing. Finally, the results on older adults indicate the occurrence of neural overactivation in association to good levels of performance in easy perceptual contexts, thus providing some hints on the existence of compensatory phenomena that are associated with the functioning of early perceptual mechanisms. PMID:26973520

  9. Electrophysiological Advances on Multiple Object Processing in Aging.

    PubMed

    Mazza, Veronica; Brignani, Debora

    2016-01-01

    EEG research conducted in the past 5 years on multiple object processing has begun to define how the aging brain tracks the numerosity of the objects presented in the visual field for different goals. We review the recent EEG findings in healthy older individuals (age range: 65-75 years approximately) on perceptual, attentional and memory mechanisms-reflected in the N1, N2pc and contralateral delayed activity (CDA) components of the EEG, respectively-during the execution of a variety of cognitive tasks requiring simultaneous processing of multiple elements. The findings point to multiple loci of neural changes in multi-object analysis, and suggest the involvement of early perceptual mechanisms, attentive individuation and working memory (WM) operations in the neural and cognitive modification due to aging. However, the findings do not simply reflect early impairments with a cascade effect over subsequent stages of stimulus processing, but in fact highlight interesting dissociations between the effects occurring at the various stages of stimulus processing. Finally, the results on older adults indicate the occurrence of neural overactivation in association to good levels of performance in easy perceptual contexts, thus providing some hints on the existence of compensatory phenomena that are associated with the functioning of early perceptual mechanisms. PMID:26973520

  10. Human stem cells as targets for the aging and diseases of aging processes.

    PubMed

    Trosko, James E

    2003-03-01

    While many theories have been proposed for the aging process, and many debates on the matter of aging and the diseases of aging being either the result of the same or independent processes, most have not considered humans as a hierarchical system made up of cybernetically interacting levels of organization. To understand the aging process and the diseases of aging, one must view the human as the result of the total genomic DNA in the single fertilized egg that proliferates, differentiates and develops into an individual of about 100 trillion cells, organized by different cell types (pluri-potent stem cells, progenitor stem cells, terminally differentiated cells) into multiple tissue, organ and organ systems which interact with each other via endogenous factors and with exogenous factors. Our hypothesis is that both aging and diseases of aging are dependent of the normal functioning of the pluri-potent stem cell pool. Specifically, the concept involves the cybernetic feedback between the 'quantity' of the stem cell pool in each tissue niche with the 'quality' of the stem cells in the pool. The process of gap junctional inter-cellular communication (GJIC), which has been implicated in the evolution from the single cell organism to the multi-cellular organisms, requiring growth control, differentiation, apoptosis, adaptive response capability of differentiated cells and senescence, is speculated to be a shared mechanism in stem cell biology and in many chronic disease processes (teratogenesis; carcinogenesis, atherogenesis, diabetigenesis, etc.). Specifically, stem cells are assumed to be 'immortal' until induced to express their connexin genes and have functional GJIC, at which time they can differentiate and become 'mortal'. As long as the stem cells are communicating with their differentiated daughters via some extra-cellular soluble negative growth factor, the homeostatic control of their growth and differentiation is maintained for the organism. However, if the

  11. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.

    PubMed

    Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus

    2016-08-01

    A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. PMID:26079689

  12. Aging of motoneurons and synaptic processes in the cat.

    PubMed

    Chase, M H; Morales, F R; Boxer, P A; Fung, S J

    1985-11-01

    The aging of spinal cord alpha motoneurons was explored in old cats with intracellular recording techniques to determine the basic membrane properties of these neurons and their monosynaptic response following activation of group Ia afferent fibers. The conduction velocity of the motoneurons' axons decreased in old animals (14 to 15 years of age) compared with adult controls (1 to 3 years of age). The input resistance of the motoneurons increased in the old cats; no change occurred in the resting membrane potential or spike amplitude. There was a reduction in the delay between the initial segment and the somadendritic components of the antidromic spike. The half-width duration of the monosynaptic EPSP in the old cats increased, but its amplitude did not change. These data indicate that a host of different membrane properties of spinal cord motoneurons and their Ia-monosynaptic input are affected by the aging process. Analysis of the results suggests that the degradation of neuronal processes occurs in all motoneurons rather than preferentially affecting a specific population of motoneurons. PMID:2996926

  13. Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Kim, Dongho; Lee, Minyung

    1995-01-01

    The photophysical properties of Methyl Red molecules embedded in a poly(methyl methacrylate) (PMMA) matrix were investigated with photoinduced absorption, absorption kinetics, steady-state, and time-resolved luminescence spectroscopy. The excited singlet (S1) state lifetimes for trans and cis isomers of Methyl Red in PMMA at room temperature have been measured as 35 and 420 ps, respectively. The excited triplet (T1) state energy level and its lifetime at 77 K were also obtained. A slow trans-cis isomerization process having a time constant of a few hundred seconds was observed for the illuminated Methyl Red in rigid polymer. Based on measured photophysical properties and dynamic processes, an energy-level diagram for Methyl Red molecules in rigid polymer is introduced to explain these observations.

  14. Value-added processing of crude glycerol into chemicals and polymers.

    PubMed

    Luo, Xiaolan; Ge, Xumeng; Cui, Shaoqing; Li, Yebo

    2016-09-01

    Crude glycerol is a low-value byproduct which is primarily obtained from the biodiesel production process. Its composition is significantly different from that of pure glycerol. Crude glycerol usually contains various impurities, such as water, methanol, soap, fatty acids, and fatty acid methyl esters. Considerable efforts have been devoted to finding applications for converting crude glycerol into high-value products, such as biofuels, chemicals, polymers, and animal feed, to improve the economic viability of the biodiesel industry and overcome environmental challenges associated with crude glycerol disposal. This article reviews recent advances of biological and chemical technologies for value-added processing of crude glycerol into chemicals and polymers, and provides strategies for addressing production challenges. PMID:27004448

  15. Effect of dopant nanoparticles on reorientation process in polymer-dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Zobov, K. V.; Zharkova, G. M.; Syzrantsev, V. V.

    2016-01-01

    The analysis of the experimental data of the nanoscale powders application for doping polymer-dispersed liquid crystals (PDLC) was represented in this work. A model based on the separation of the liquid crystals reorientation process on the surface mode and the volume mode was proposed and tested. In the research the wide-spread model mixture PDLC were used. But alumina nanoparticles were the distinctive ones obtained by electron beam evaporation. The proposed model allowed to conclude that the nanoparticles localization at the surface of the droplets (as in the Pickering emulsion) lead to the variation of the connection force between the liquid crystals and the polymer. The effect of nanoparticles resulted in an acceleration of the reorientation process near the surface when the control field is turned on and in a deceleration when it is turned off. The effect for the different size particles was confirmed.

  16. [PROBLEM OF ENDOMETRIUM HYPERPLASTIC PROCESSES IN REPRODUCTIVE AGE WOMEN].

    PubMed

    Bazyuta, L Z; Polyova, S P; Tsintar, S A

    2015-01-01

    The article presents the risk factors of endometrium hyperplastic processes (EHP) in reproduc- tive age women. It is shown that EHP occur in response to hormonal homeostasis violations of the target tissues. It is established that the biologically active substances, which are closely related to immune mechanisms of the reproductive system functioning take place in regulatory mechanisms of cell growth and differentiation of endometrium. PMID:27491143

  17. Influence of process variables on essential oil microcapsule properties by carbohydrate polymer-protein blends.

    PubMed

    Banerjee, Subham; Chattopadhyay, Pronobesh; Ghosh, Animesh; Goyary, Danswrang; Karmakar, Sanjeev; Veer, Vijay

    2013-04-01

    Carbohydrate polymer-protein blends Zanthoxylum limonella oil (ZLO) loaded microcapsules were prepared by multiple emulsion solvent evaporation technology and the influence of various processing variables on the properties of ZLO loaded microcapsules were examined systematically. It was found that the internal aqueous alginate phase volume, external aqueous gelatin phase volume and concentration of surfactant in external aqueous gelatin phase have a significant influence on microcapsules properties. The essential oil-loaded microcapsules were smooth and spherical in shape as revealed by scanning electron micrograph. Results of Fourier transform infrared (FTIR) spectroscopy indicated stable character and showed the absence of chemical interaction between the microencapsulated oil and carbohydrate polymer-protein blends. Differential scanning calorimetry (DSC) study revealed the antioxidant nature of ZLO in the microcapsules. The release rate of ZLO loaded microcapsules was analyzed by UV-vis spectrophotometer. 83.80% of oil encapsulation efficiency was obtained depending upon the processing variables. Thus, proper control of the processing variables involved in this technology could allow effective incorporation of essential oil into the core of the carbohydrate polymer-protein blends matrix.

  18. A theoretical and experimental study of additive effects of physical aging and antiplasticization on the water permeability of polymer film coatings.

    PubMed

    Guo, J H

    1994-03-01

    The effects of physical aging and antiplasticization on the water transport properties of glassy cellulose acetate film-coated tablets were investigated. The gradual approach toward thermodynamic equilibrium during physical aging decrease the free volume of the polymers. This decrease in free volume is accompanied by a decrease in the transport mobility, with concomitant changes in those properties of the polymer that depend on it. Antiplasticization arises from an interaction between the polymer and the plasticizer molecules and decreases the molecular mobility of the polymer and plasticizer. This effect was confirmed by mechanical measurements of polymer free films at the same experimental temperature. We have studied the additive effect of aging and antiplasticizing to see if the individual effects would interfere with one another, as might be expected if the same free volume were involved in each. The pronouncedly additive effects of physical aging and antiplasticization on the water permeability can be found in cellulose acetate film-coated tablets that were affected by longer physical aging time and lower plasticizer concentration. A theoretical study suggested that the free volume in the glassy polymer should consist of at least two independent parts, one of which is affected by annealing and the other by antiplasticization.

  19. Simple one-step process for immobilization of biomolecules on polymer substrates based on surface-attached polymer networks.

    PubMed

    Rendl, Martin; Bönisch, Andreas; Mader, Andreas; Schuh, Kerstin; Prucker, Oswald; Brandstetter, Thomas; Rühe, Jürgen

    2011-05-17

    For the miniaturization of biological assays, especially for the fabrication of microarrays, immobilization of biomolecules at the surfaces of the chips is the decisive factor. Accordingly, a variety of binding techniques have been developed over the years to immobilize DNA or proteins onto such substrates. Most of them require rather complex fabrication processes and sophisticated surface chemistry. Here, a comparatively simple immobilization technique is presented, which is based on the local generation of small spots of surface attached polymer networks. Immobilization is achieved in a one-step procedure: probe molecules are mixed with a photoactive copolymer in aqueous buffer, spotted onto a solid support, and cross-linked as well as bound to the substrate during brief flood exposure to UV light. The described procedure permits spatially confined surface functionalization and allows reliable binding of biological species to conventional substrates such as glass microscope slides as well as various types of plastic substrates with comparable performance. The latter also permits immobilization on structured, thermoformed substrates resulting in an all-plastic biochip platform, which is simple and cheap and seems to be promising for a variety of microdiagnostic applications. PMID:21491877

  20. Simple one-step process for immobilization of biomolecules on polymer substrates based on surface-attached polymer networks.

    PubMed

    Rendl, Martin; Bönisch, Andreas; Mader, Andreas; Schuh, Kerstin; Prucker, Oswald; Brandstetter, Thomas; Rühe, Jürgen

    2011-05-17

    For the miniaturization of biological assays, especially for the fabrication of microarrays, immobilization of biomolecules at the surfaces of the chips is the decisive factor. Accordingly, a variety of binding techniques have been developed over the years to immobilize DNA or proteins onto such substrates. Most of them require rather complex fabrication processes and sophisticated surface chemistry. Here, a comparatively simple immobilization technique is presented, which is based on the local generation of small spots of surface attached polymer networks. Immobilization is achieved in a one-step procedure: probe molecules are mixed with a photoactive copolymer in aqueous buffer, spotted onto a solid support, and cross-linked as well as bound to the substrate during brief flood exposure to UV light. The described procedure permits spatially confined surface functionalization and allows reliable binding of biological species to conventional substrates such as glass microscope slides as well as various types of plastic substrates with comparable performance. The latter also permits immobilization on structured, thermoformed substrates resulting in an all-plastic biochip platform, which is simple and cheap and seems to be promising for a variety of microdiagnostic applications.

  1. Optimised process and formulation conditions for extended release dry polymer powder-coated pellets.

    PubMed

    Terebesi, Ildikó; Bodmeier, Roland

    2010-05-01

    The objective of this study was to improve the film formation and permeability characteristics of extended release ethylcellulose coatings prepared by dry polymer powder coating for the release of drugs of varying solubility. Ethylcellulose (7 and 10 cp viscosity grades) and Eudragit(R) RS were used for dry powder coating of pellets in a fluidised bed ball coater. Pre-plasticised ethylcellulose powder was prepared by spray-drying aqueous ethylcellulose dispersions (Surelease(R) and Aquacoat(R)) or by hot melt extrusion/cryogenic grinding of plasticised ethylcellulose. Chlorpheniramine maleate and theophylline were used as model drugs of different solubilities. The film formation process, polymeric films and coated pellets were characterised by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM) and dissolution testing. Film formation and extended drug release was achieved with ethylcellulose, a polymer with a high glass transition temperature (T(g)) without the use of water, which is usually required in dry powder coating. DMA-measurements revealed that plasticised ethylcellulose had a modulus of elasticity (E') similar to the low T(g) Eudragit(R) RS. With increasing plasticiser concentration, the T(g) of ethylcellulose was reduced and the mechanical properties improved, thus facilitating coalescence of the polymer particles. SEM-pictures revealed the formation of a dense, homogeneous film. The lower viscosity grade ethylcellulose (7 cp) resulted in better film formation than the higher viscosity grade (10 cp) and required less stringent curing conditions. Successful extended release ethylcellulose coatings were also obtained by coating with pre-plasticised spray-dried ethylcellulose powders as an alternative to the separate application of pure ethylcellulose powder and plasticiser. The permeability of the extended release coating could be controlled by using powder blends of ethylcellulose with the

  2. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing

    NASA Astrophysics Data System (ADS)

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M.

    2015-10-01

    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m-1 range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering

  3. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing.

    PubMed

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M

    2015-10-01

    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m(-1) range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering

  4. Physical Aging of Thin and Ultrathin Free-Standing Polymer Films: Effect of Stress and Reduced Glass Transitions

    NASA Astrophysics Data System (ADS)

    Pye, Justin; Roth, Connie

    2014-03-01

    While great effort has been made in elucidating the effect of confinement on the glass transition (Tg) in polymers, considerably less work has been done on physical aging. Starting with supported films, we have previously shown that the reduced physical aging rates in ultrathin polystyrene (PS) films can be linked to the reduced Tg near the free surface [Macromolecules 2010, 43, 8296]. We then showed that high molecular weight (MW) free-standing PS films have two reduced Tgs suggesting that two separate mechanisms are acting simultaneously to propagate enhanced mobility at the free surface deeper into the film [PRL 2011, 107, 235701]. To help determine the mechanisms of these two reduced Tgs, we performed physical aging measurements on these high MW free-standing PS films. For thick films (220-1800 nm) in which there are no Tg reductions, we find that the physical aging rate depends strongly on stress caused by thermal expansion mismatch between film and support. This stress, applied to the films as they are quenched into the glassy state, can nearly double the physical aging rate when changing the frame material from polycarbonate to silicon [Macromolecules 2013, DOI:10.1021/ma401872u]. Finally, ultrathin high MW PS films held at a temperature between the two Tgs do exhibit physical aging, indicating that at least some of the film is glassy between these two transitions.

  5. Simulation of the temperature distribution in the selective beam melting process for polymer material

    SciTech Connect

    Riedlbauer, D. E-mail: julia.mergheim@ltm.uni-erlangen.de Mergheim, J. E-mail: julia.mergheim@ltm.uni-erlangen.de Steinmann, P. E-mail: julia.mergheim@ltm.uni-erlangen.de

    2014-05-15

    In the present contribution the temperature distribution in the selective beam melting process for polymer materials is simulated to better understand the influence of process parameters on the properties of the produced part. The basis for the developed simulation tool is the nonlinear heat equation including temperature dependent functions for the heat capacity and the heat conduction which were obtained by experimental measurements. The effect of latent heat occurring in the process is also taken into account. The heat equation is discretized in time and space where a Runge-Kutta method of Radau IIA type is used for time integration. An adaptive finite element method is applied for the discretization in space and the model is implemented into the finite element library deal.II. The heat and cooling rate as important process parameters are simulated for different beam velocities. The ability for computing these process parameters makes the simulation tool suited for optimizing the process management of selective beam melting plants.

  6. Weak ergodicity breaking, irreproducibility, and ageing in anomalous diffusion processes

    SciTech Connect

    Metzler, Ralf

    2014-01-14

    Single particle traces are standardly evaluated in terms of time averages of the second moment of the position time series r(t). For ergodic processes, one can interpret such results in terms of the known theories for the corresponding ensemble averaged quantities. In anomalous diffusion processes, that are widely observed in nature over many orders of magnitude, the equivalence between (long) time and ensemble averages may be broken (weak ergodicity breaking), and these time averages may no longer be interpreted in terms of ensemble theories. Here we detail some recent results on weakly non-ergodic systems with respect to the time averaged mean squared displacement, the inherent irreproducibility of individual measurements, and methods to determine the exact underlying stochastic process. We also address the phenomenon of ageing, the dependence of physical observables on the time span between initial preparation of the system and the start of the measurement.

  7. A new multiscale modeling method for simulating the loss processes in polymer solar cell nanodevices.

    PubMed

    Pershin, Anton; Donets, Sergii; Baeurle, Stephan A

    2012-05-21

    The photoelectric power conversion efficiency of polymer solar cells is till now, compared to conventional inorganic solar cells, still relatively low with maximum values ranging from 7% to 8%. This essentially relates to the existence of exciton and charge carrier loss phenomena, reducing the performance of polymer solar cells significantly. In this paper we introduce a new computer simulation technique, which permits to explore the causes of the occurrence of such phenomena at the nanoscale and to design new photovoltaic materials with optimized opto-electronic properties. Our approach consists in coupling a mesoscopic field-theoretic method with a suitable dynamic Monte Carlo algorithm, to model the elementary photovoltaic processes. Using this algorithm, we investigate the influence of structural characteristics and different device conditions on the exciton generation and charge transport efficiencies in case of a novel nanostructured polymer blend. More specifically, we find that the disjunction of continuous percolation paths leads to the creation of dead ends, resulting in charge carrier losses through charge recombination. Moreover, we observe that defects are characterized by a low exciton dissociation efficiency due to a high charge accumulation, counteracting the charge generation process. From these observations, we conclude that both the charge carrier loss and the exciton loss phenomena lead to a dramatic decrease in the internal quantum efficiency. Finally, by analyzing the photovoltaic behavior of the nanostructures under different circuit conditions, we demonstrate that charge injection significantly determines the impact of the defects on the solar cell performance.

  8. A new multiscale modeling method for simulating the loss processes in polymer solar cell nanodevices

    NASA Astrophysics Data System (ADS)

    Pershin, Anton; Donets, Sergii; Baeurle, Stephan A.

    2012-05-01

    The photoelectric power conversion efficiency of polymer solar cells is till now, compared to conventional inorganic solar cells, still relatively low with maximum values ranging from 7% to 8%. This essentially relates to the existence of exciton and charge carrier loss phenomena, reducing the performance of polymer solar cells significantly. In this paper we introduce a new computer simulation technique, which permits to explore the causes of the occurrence of such phenomena at the nanoscale and to design new photovoltaic materials with optimized opto-electronic properties. Our approach consists in coupling a mesoscopic field-theoretic method with a suitable dynamic Monte Carlo algorithm, to model the elementary photovoltaic processes. Using this algorithm, we investigate the influence of structural characteristics and different device conditions on the exciton generation and charge transport efficiencies in case of a novel nanostructured polymer blend. More specifically, we find that the disjunction of continuous percolation paths leads to the creation of dead ends, resulting in charge carrier losses through charge recombination. Moreover, we observe that defects are characterized by a low exciton dissociation efficiency due to a high charge accumulation, counteracting the charge generation process. From these observations, we conclude that both the charge carrier loss and the exciton loss phenomena lead to a dramatic decrease in the internal quantum efficiency. Finally, by analyzing the photovoltaic behavior of the nanostructures under different circuit conditions, we demonstrate that charge injection significantly determines the impact of the defects on the solar cell performance.

  9. Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells.

    PubMed

    Guillain, F; Endres, J; Bourgeois, L; Kahn, A; Vignau, L; Wantz, G

    2016-04-13

    We report here an original approach to dope the semiconducting polymer-metal interface in an inverted bulk-heterojunction (BHJ) organic solar cell. Solution-processed 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), is deposited on top of a P3HT:PC61BM layer before deposition of the top electrode. Doping of P3HT by F4-TCNQ occurs after thermally induced diffusion at 100 °C of the latter into the BHJ. Diffusion and doping are evidenced by XPS and UV-vis-NIR absorption. XPS highlights the decrease in Fluorine concentration on top of the BHJ after annealing. In the same time, a charge transfer band attributed to doping is observed in the UV-vis-NIR absorption spectrum. Inverted polymer solar cells using solution-processed F4-TCNQ exhibit power conversion efficiency of nearly 3.5% after annealing. This simple and efficient approach, together with the low annealing temperature required to allow diffusion and doping, leads to standard efficiency P3HT:PC61BM polymer solar cells, which are suitable for printing on plastic flexible substrate.

  10. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    NASA Astrophysics Data System (ADS)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  11. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  12. Impact of heating method on the flocculation process using thermosensitive polymer.

    PubMed

    Lemanowicz, Marcin; Kuźnik, Wojciech; Gibas, Mirosław; Dzido, Grzegorz; Gierczycki, Andrzej

    2012-09-01

    The impact of suspension heating method on the flocculation process using thermosensitive polymer is reported in this paper. In experiments a model suspension of chalk in RO water (purified by Reverse Osmosis) was destabilized using a copolymer of N-isopropylacrylamide (NIPAM) and cationic diallyldimethyl ammonium chloride (DADMAC). The measurements were made using a laboratory setup consisting of a mixing tank with four baffles, Rushton turbine, laser particle sizer Analysette 22 by Fritsch and a system of pump and thermostating devices. Two different modes of heating were used. In the first case the temperature of the system was gently raised above the Lower Critical Solution Temperature (LCST) using an electrical heater placed inside the tank, while in the second case the system temperature was rapidly raised by an injection of hot water directly into the tank. It was proven that heating method as well as the polymer concentration was crucial to the shape and size of created flocs.

  13. Impact of heating method on the flocculation process using thermosensitive polymer.

    PubMed

    Lemanowicz, Marcin; Kuźnik, Wojciech; Gibas, Mirosław; Dzido, Grzegorz; Gierczycki, Andrzej

    2012-09-01

    The impact of suspension heating method on the flocculation process using thermosensitive polymer is reported in this paper. In experiments a model suspension of chalk in RO water (purified by Reverse Osmosis) was destabilized using a copolymer of N-isopropylacrylamide (NIPAM) and cationic diallyldimethyl ammonium chloride (DADMAC). The measurements were made using a laboratory setup consisting of a mixing tank with four baffles, Rushton turbine, laser particle sizer Analysette 22 by Fritsch and a system of pump and thermostating devices. Two different modes of heating were used. In the first case the temperature of the system was gently raised above the Lower Critical Solution Temperature (LCST) using an electrical heater placed inside the tank, while in the second case the system temperature was rapidly raised by an injection of hot water directly into the tank. It was proven that heating method as well as the polymer concentration was crucial to the shape and size of created flocs. PMID:22658925

  14. Accelerated aging of tunable thermo-optic polymer planar waveguide devices made of fluorinated acrylates

    NASA Astrophysics Data System (ADS)

    Poga, Constantina; Maxfield, MacRae; Shacklette, Lawrence W.; Blomquist, Robert; Boudoughian, George K.

    2000-11-01

    Planar wave guide device components, made from photocurable fluoroacrylates, demonstrated stability under conditions that exceed those needed to operate planar polymer thermo- optic switches. Fluoroacrylate polymers exhibited negligible decomposition at 200 degree(s)C. Insertion loss and polarization-dependent loss showed no increase at temperatures up to 257 degree(s)C. The reflected spectrum of a Bragg grating showed no monotonic change in (lambda) B, width, or strength in 105 days at 125 degree(s)C. Humidity changes from 0 to 90%RH caused a reversible blue shift in (lambda) B of only 0.00004. Light flux of 130mW exhibited no impact on n, (delta) n, or IL. Heaters showed no degradation at 85 degree(s)C/85%RH. Bonding to substrate, heaters, and pigtails remained intact throughout the testing.

  15. Improved cost-effectiveness of the block co-polymer anneal process for DSA

    NASA Astrophysics Data System (ADS)

    Pathangi, Hari; Stokhof, Maarten; Knaepen, Werner; Vaid, Varun; Mallik, Arindam; Chan, Boon Teik; Vandenbroeck, Nadia; Maes, Jan Willem; Gronheid, Roel

    2016-04-01

    This manuscript first presents a cost model to compare the cost of ownership of DSA and SAQP for a typical front end of line (FEoL) line patterning exercise. Then, we proceed to a feasibility study of using a vertical furnace to batch anneal the block co-polymer for DSA applications. We show that the defect performance of such a batch anneal process is comparable to the process of record anneal methods. This helps in increasing the cost benefit for DSA compared to the conventional multiple patterning approaches.

  16. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration

    NASA Technical Reports Server (NTRS)

    Widmer, M. S.; Gupta, P. K.; Lu, L.; Meszlenyi, R. K.; Evans, G. R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C. W. Jr; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    We have fabricated porous, biodegradable tubular conduits for guided tissue regeneration using a combined solvent casting and extrusion technique. The biodegradable polymers used in this study were poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). A polymer/salt composite was first prepared by a solvent casting process. After drying, the composite was extruded to form a tubular construct. The salt particles in the construct were then leached out leaving a conduit with an open-pore structure. PLGA was studied as a model polymer to analyze the effects of salt weight fraction, salt particle size, and processing temperature on porosity and pore size of the extruded conduits. The porosity and pore size were found to increase with increasing salt weight fraction. Increasing the salt particle size increased the pore diameter but did not affect the porosity. High extrusion temperatures decreased the pore diameter without altering the porosity. Greater decrease in molecular weight was observed for conduits manufactured at higher temperatures. The mechanical properties of both PLGA and PLLA conduits were tested after degradation in vitro for up to 8 weeks. The modulus and failure strength of PLLA conduits were approximately 10 times higher than those of PLGA conduits. Failure strain was similar for both conduits. After degradation for 8 weeks, the molecular weights of the PLGA and PLLA conduits decreased to 38% and 43% of the initial values, respectively. However, both conduits maintained their shape and did not collapse. The PLGA also remained amorphous throughout the time course, while the crystallinity of PLLA increased from 5.2% to 11.5%. The potential of seeding the conduits with cells for transplantation or with biodegradable polymer microparticles for drug delivery was also tested with dyed microspheres. These porous tubular structures hold great promise for the regeneration of tissues which require tubular scaffolds such as peripheral nerve

  17. Does age affect the stress and coping process? Implications of age differences in perceived control.

    PubMed

    Aldwin, C M

    1991-07-01

    The perceived controllability of situations is thought to influence the types of coping strategies used, and thus is important in adaptive processes. Elderly individuals are widely perceived to have less control over their environment than other adults. This lack of perceived control should have adverse affects on how they cope with stressful situations. However, most studies have shown that older adults differ little from younger adults in their approaches to coping with stress. This contradiction was investigated in a sample of 228 community-residing adults with a mean age of 42.16 (SD = 14.88). Path analysis revealed that appraisals and attributions do affect the use of coping strategies such as instrumental action and escapism in the expected directions, and age is negatively associated with perceived control. However, there was an independent and negative relationship between age and the reported use of escapist coping strategies, which mitigated the adverse effects of perceived lack of control. Neither age nor perceived controllability had direct effects on depression, but they had indirect effects through their influence on the use of coping strategies and perceived efficacy.

  18. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    SciTech Connect

    Sachs, M. Schmitt, A. Schmidt, J. Peukert, W. Wirth, K-E

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  19. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    NASA Astrophysics Data System (ADS)

    Sachs, M.; Schmitt, A.; Schmidt, J.; Peukert, W.; Wirth, K.-E.

    2014-05-01

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  20. Optimising Drug Solubilisation in Amorphous Polymer Dispersions: Rational Selection of Hot-melt Extrusion Processing Parameters.

    PubMed

    Li, Shu; Tian, Yiwei; Jones, David S; Andrews, Gavin P

    2016-02-01

    The aim of this article was to construct a T-ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature-composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)-Eudragit(®) EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD-EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature-composition (T-ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid-solid curve in a F-H T-ϕ phase diagram. If extruded between the spinodal and liquid-solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F-H T-ϕ phase diagrams are valuable not only in the understanding drug-polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.

  1. Aging and inhibition processes: the case of metaphor treatment.

    PubMed

    Morrone, Isabella; Declercq, Christelle; Novella, Jean-Luc; Besche, Chrystel

    2010-09-01

    The inhibitory deficit hypothesis has often been cited as a possible explanation for cognitive changes related to age. The aim of this study was to develop a new procedure for evaluating effortful inhibition on the basis of the comprehension of metaphors. Our experiment was carried out on younger and older adults, in whom we also measured inhibitory capacity, working memory, and processing speed. The results show that older participants required a longer time and made more frequent errors in rejecting metaphors versus literally false statements. The interference effect was predicted by the psychometric tests designed to evaluate inhibition.

  2. Finding Major Patterns of Aging Process by Data Synchronization

    NASA Astrophysics Data System (ADS)

    Miyano, Takaya; Tsutsui, Takako

    We developed a method for extracting feature patterns from multivariate data using a network of coupled phase oscillators subject to an analogue of the Kuramoto model for collective synchronization. Our method may be called data synchronization. We applied data synchronization to the care-needs-certification data, provided by Otsu City as a historical old city near Kyoto City, in the Japanese public long-term care insurance program to find the trend of the major patterns of the aging process for elderly people needing nursing care.

  3. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    NASA Astrophysics Data System (ADS)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  4. Structure/property development in aPET during large strain, solid phase polymer processing

    NASA Astrophysics Data System (ADS)

    Martin, Peter; Mohamed, Raja Roslan Raja

    2015-12-01

    Amorphous Polyethylene terephthalate (aPET) is increasingly of interest for the polymer packaging industry due to its blend of excellent mechanical properties and most importantly its ease of recyclability. Among the major commercial polymers it is almost unique in the degree of improvement in mechanical properties that can be obtained through process-induced strain. For many years these unique properties have been very successfully exploited in the injection stretch blow molding process, where it is deliberately stretched to very large strains using extremely high pressures. However, the material is now also being used in much lower pressure processes such as thermoforming where its properties are often not fully exploited. In this work the change in structure and properties of aPET with strain is systematically investigated using a high speed biaxial stretching machine. The aim was to demonstrate how the properties of the material could be controlled by large strain, high temperature biaxial stretching processes such as thermoforming and blow molding. The results show that property changes in the material are driven by orientation and the onset of rapid strain hardening at large strains. This in turn is shown to vary strongly with process-induced parameters such as the strain rate and the mode and magnitude of biaxial deformation.

  5. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  6. Studies in process modeling, design, monitoring, and control, with applications to polymer composites manufacturing

    NASA Astrophysics Data System (ADS)

    Srinivasagupta, Deepak

    2002-01-01

    High material and manufacturing costs have hindered the introduction of advanced polymer composite materials into mainstream civilian applications such as automotive. Even though high-fidelity models for several polymer composite manufacturing processes have become available over the past several years and offer significant benefits in manufacturing cost reduction, concerns about their inflexibility and maintenance has adversely affected their widespread usage. This research seeks to advance process modeling and design in polymer composites manufacturing to address these concerns. Other more general issues in measurement validation and distributed control are also addressed. Using a rigorous 3-D model of the injected pultrusion (IP) process validated recently, an algorithm was developed for process and equipment design with integrated economic, operability and environmental considerations. The optimum design promised enhanced throughput as well as reduction in the time and expenses of the current purely experimental approaches. Scale-up issues in IP were analyzed, and refinements to overcome some drawbacks in the model were suggested. The process model was then extended to simulate the co-injection resin transfer molding (CIRTM) process used for manufacture of foam-core sandwich composites. A 1-D isothermal model for real-time control was also developed. Process optimization using these models and experimental parametric studies increased the debond fracture toughness of sandwiches by 78% over current technology. To ensure the availability of validated measurements from process instrumentation, a novel in-situ sensor modeling approach to sensor validation was proposed. Both active and passive, time and frequency domain techniques were developed, and experimentally verified using temperature and flow sensors. A model-based dynamic estimator to predict the true measurement online was also validated. The effect of network communication delay on stability and control

  7. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.

    PubMed

    Miyamura, Hiroyuki; Kobayashi, Shū

    2014-04-15

    Heterogeneous catalysis and one-pot tandem reactions are key for efficient and practical organic syntheses and for green and sustainable chemistry. Heterogeneous catalysts can be recovered and reused. These catalysts can be applied to efficient systems, such as continuous-flow systems. Tandem reactions often proceed via highly reactive but unstable intermediates. Tandem reactions do not require workup or much purification of the intermediate. This Account summarizes recent developments that we have made in the field of multifunctional heterogeneous metal nanocluster catalysts for use in tandem reactions based on aerobic oxidation reactions as key processes. We constructed our heterogeneous metal nanoclusters via two important procedures--microencapsulation and cross-linking--using polystyrene-based copolymers with cross-linking moieties. These frameworks can efficiently stabilize small metal nanoclusters to maintain high catalytic activity without aggregation and leaching of nanoclusters. Aggregation and leaching are prevented by weak but multiple interactions between metal nanocluster surfaces and benzene rings in the copolymer as well as by the physical envelopment of cross-linked polymer backbones. Small nanoclusters, including multimetallic alloy clusters (nanoalloys), can be "imprisoned" into these cross-linked polymer composites. The term we use for these processes is polymer incarceration. Direct oxidative esterifications were achieved with polymer-incarcerated (PI) Au nanocluster catalysts. Amides were synthesized from alcohols and amines under aerobic oxidative conditions with PI bimetallic nanocluster catalysts composed of Au and Fe-group metals that formed separated nanoclusters rather than alloys. Oxidative lactam formation from amino alcohols was also achieved. On the other hand, imines could be prepared selectively from alcohols and amines with PI Au-Pd bimetallic nanoclusters. We also achieved the integration of the aerobic oxidation of allylic

  8. Processing and properties of ceramic matrix-polymer composites for dental applications

    NASA Astrophysics Data System (ADS)

    Huang, Hsuan Yao

    The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored

  9. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes

    PubMed Central

    Ross, Mark D.; Malone, Eva; Florida-James, Geraint

    2016-01-01

    Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with “vascular ageing” and are often accompanied by a reduced ability for the body to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this “vascular ageing” process. PMID:26697131

  10. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    SciTech Connect

    Susan J. Foulk

    2012-07-24

    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and

  11. Qing'E formula alleviates the aging process in D-galactose-induced aging mice

    PubMed Central

    ZHONG, LIN; HUANG, FEI; SHI, HAILIAN; WU, HUI; ZHANG, BEIBEI; WU, XIAOJUN; WEI, XIAOHUI; WANG, ZHENGTAO

    2016-01-01

    Qing'E formula (QEF) is a clinically used prescription with four ingredients, Eucommiae Cortex, Psoraleae Fructus, Juglandis Semen and Garlic Rhizoma, from the Song dynasty (10th century CE). The present study aimed to investigate the anti-aging effect and mechanisms of QEF on D-galactose-induced aging mice. A mouse subacute aging model was established by subcutaneous injection of D-galactose at the neck consecutively for 8 weeks. Motor activity and memory impairment of the mice were evaluated by the rotarod test and passive avoidance test, respectively. Serum and liver parameters were analyzed with biochemical kits. Hippocampal mRNA and protein expression levels were examined by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. QEF administration significantly ameliorated the impaired motor and memory of aging mice. In the serum, QEF reduced blood urea nitrogen, creatinine, nitric oxide (NO) and malondialdehyde (MDA) levels, and inhibited alanine aminotransferase and aspartate aminotransferase activities. In the liver, QEF increased the glutathione level, enhanced total antioxidant capacity and catalase activity, deceased NO and MDA production, and reduced NO synthase activity. In the hippocampus, QEF elevated gene expression levels of Klotho, sirtuin 1 (SIRT1), forkhead box transcription factor O3, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), insulin-like growth factor-1 and peroxiredoxin-3. QEF increased protein expression levels of Klotho and SIRT1, and decreased that of PGC-1α in the hippocampus. In conclusion, QEF attenuated the aging process in D-galactose-treated mice, which may be mediated through enhancing the antioxidants in the body, protecting renal and hepatic health, and balancing hippocampal expression levels of the longevity-related genes. PMID:27347412

  12. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process.

    PubMed

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-01-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force (F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force (F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  13. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-07-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force ( F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force ( F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  14. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  15. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.

  16. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  17. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  18. Lead zirconate titanate fiber/polymer composites prepared by a replication process

    SciTech Connect

    Waller, D.J.; Safari, A. ); Card, R.J.; O'Toole, M.P. )

    1990-11-01

    The woven replication process was used to fabricate lead zirconate titanate (PZT)/polymer composites with 1-3, 2-3, and 3-3 connectivities by starting with novoloid-derived carbon fiber, woven fabric, and nonwoven felt templates, respectively. Activated carbon-fiber template material was impregnated with PZT by soaking it in a solution containing stoichiometric amounts of dissolved lead, zirconium, titanium, and niobium ions. Heat treatment burned out the carbon, leaving a PZT replica with the same form as the template material. Replicas were sintered in a controlled atmosphere and back-filled with an epoxy polymer to form final composites. This method, which is believed to be adaptable for mass production, is capable of producing composites and extremely fine microstructures. Woven composite samples have fiber tow diameters of 200 to 250 {mu}m and spacings between tows of about 150 to 250 {mu}m. Average d{sub 33} = 90 pC/N, g{sub 33} = 211 mV {center dot} m/N, and d{sub h}g{sub h} hydrophone figure of merit of 2100 {times} 10{sup {minus}15} m{sup 2}/N values are reported for woven PZT/polymer composites.

  19. Complexity as aging non-Poisson renewal processes

    NASA Astrophysics Data System (ADS)

    Bianco, Simone

    The search for a satisfactory model for complexity, meant as an intermediate condition between total order and total disorder, is still subject of debate in the scientific community. In this dissertation the emergence of non-Poisson renewal processes in several complex systems is investigated. After reviewing the basics of renewal theory, another popular approach to complexity, called modulation, is introduced. I show how these two different approaches, given a suitable choice of the parameter involved, can generate the same macroscopic outcome, namely an inverse power law distribution density of events occurrence. To solve this ambiguity, a numerical instrument, based on the theoretical analysis of the aging properties of renewal systems, is introduced. The application of this method, called renewal aging experiment, allows us to distinguish if a time series has been generated by a renewal or a modulation process. This method of analysis is then applied to several physical systems, from blinking quantum dots, to the human brain activity, to seismic fluctuations. Theoretical conclusions about the underlying nature of the considered complex systems are drawn.

  20. Processing fragile matter: effect of polymer graft modification on the mechanical properties and processibility of (nano-) particulate solids.

    PubMed

    Schmitt, Michael; Choi, Jihoon; Hui, Chin Min; Chen, Beibei; Korkmaz, Emrullah; Yan, Jiajun; Margel, Shlomo; Ozdoganlar, O Burak; Matyjaszewski, Krzysztof; Bockstaller, Michael R

    2016-04-21

    The effect of polymer modification on the deformation characteristics and processibility of particle assembly structures is analyzed as a function of particle size and degree of polymerization of surface-tethered chains. A pronounced increase of the fracture toughness (by approximately one order of magnitude) is observed as the degree of polymerization exceeds a threshold value that increases with particle size. The threshold value is interpreted as being related to the transition of tethered chains from stretched-to-relaxed conformation (and the associated entanglement of tethered chains) and agrees with predictions from scaling theory. The increase in toughness is reduced with increasing particle size - this effect is rationalized as a consequence of the decrease of entanglement density with increasing dimension of interstitial (void) space in particle array structures. The increased fracture toughness of particle brush materials (with sufficient degree of polymerization of tethered chains) enables the fabrication of ordered colloidal films and even complex 3D shapes by scalable polymer processing techniques, such as spin coating and micromolding. The results, therefore, suggest new opportunities for the processing of colloidal material systems that could find application in the economical fabrication of functional components or systems compromised of colloidal materials.

  1. Processing fragile matter: effect of polymer graft modification on the mechanical properties and processibility of (nano-) particulate solids.

    PubMed

    Schmitt, Michael; Choi, Jihoon; Hui, Chin Min; Chen, Beibei; Korkmaz, Emrullah; Yan, Jiajun; Margel, Shlomo; Ozdoganlar, O Burak; Matyjaszewski, Krzysztof; Bockstaller, Michael R

    2016-04-21

    The effect of polymer modification on the deformation characteristics and processibility of particle assembly structures is analyzed as a function of particle size and degree of polymerization of surface-tethered chains. A pronounced increase of the fracture toughness (by approximately one order of magnitude) is observed as the degree of polymerization exceeds a threshold value that increases with particle size. The threshold value is interpreted as being related to the transition of tethered chains from stretched-to-relaxed conformation (and the associated entanglement of tethered chains) and agrees with predictions from scaling theory. The increase in toughness is reduced with increasing particle size - this effect is rationalized as a consequence of the decrease of entanglement density with increasing dimension of interstitial (void) space in particle array structures. The increased fracture toughness of particle brush materials (with sufficient degree of polymerization of tethered chains) enables the fabrication of ordered colloidal films and even complex 3D shapes by scalable polymer processing techniques, such as spin coating and micromolding. The results, therefore, suggest new opportunities for the processing of colloidal material systems that could find application in the economical fabrication of functional components or systems compromised of colloidal materials. PMID:26979521

  2. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors

    PubMed Central

    Li, Jun; Zhao, Yan; Tan, Huei Shuan; Guo, Yunlong; Di, Chong-An; Yu, Gui; Liu, Yunqi; Lin, Ming; Lim, Suo Hon; Zhou, Yuhua; Su, Haibin; Ong, Beng S.

    2012-01-01

    Microelectronic circuits/arrays produced via high-speed printing instead of traditional photolithographic processes offer an appealing approach to creating the long-sought after, low-cost, large-area flexible electronics. Foremost among critical enablers to propel this paradigm shift in manufacturing is a stable, solution-processable, high-performance semiconductor for printing functionally capable thin-film transistors — fundamental building blocks of microelectronics. We report herein the processing and optimisation of solution-processable polymer semiconductors for thin-film transistors, demonstrating very high field-effect mobility, high on/off ratio, and excellent shelf-life and operating stabilities under ambient conditions. Exceptionally high-gain inverters and functional ring oscillator devices on flexible substrates have been demonstrated. This optimised polymer semiconductor represents a significant progress in semiconductor development, dispelling prevalent skepticism surrounding practical usability of organic semiconductors for high-performance microelectronic devices, opening up application opportunities hitherto functionally or economically inaccessible with silicon technologies, and providing an excellent structural framework for fundamental studies of charge transport in organic systems. PMID:23082244

  3. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death

  4. Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process.

    PubMed

    Huang, Yi-Cheng; Huang, Yi-You; Huang, Chun-Chieh; Liu, Hwa-Chang

    2005-07-01

    We have developed a method for nerve tissue regeneration using longitudinally oriented channels within biodegradable polymers created by a combined lyophilizing and wire-heating process. This type of cell-adhesive scaffold provides increased area to support and guide extending axons subsequent to nerve injury. Utilizing Ni-Cr wires as mandrels to create channels in scaffold increased safety, effectiveness, and reproducibility. The scaffolds tested were made from different biodegradable polymers, chitosan and poly(D,L-lactide-co-glycolide) (PLGA), because of their availability, ease of processing, low inflammatory response, and approval by the FDA. According to our experimental results, the high permeability and the characteristic porous structure of chitosan proved to be a better material for nerve guidance than PLGA. The scanning electron micrographs revealed that the scaffolds were consistent along the longitudinal axis with channels being distributed evenly throughout the scaffolds. There was no evidence to suggest merging or splitting of individual channels. The diameter of the channels was about 100 mum, similar to the 115 micromameter of the Ni-Cr wire. Regulating the size and quantity of the Ni-Cr wires allow us to control the number and the diameter of the channels. Furthermore, the neutralizing processes significantly influenced the porous structure of chitosan scaffolds. Using weak base (NaHCO(3) 1M) to neutralize chitosan scaffolds made the porous structure more uniform. The innovative method of using Ni-Cr wires as mandrels could be easily tailored to other polymer and solvent systems. The high permeability and the characteristic porous structure of chitosan made it a superior material for nerve tissue engineering. These scaffolds could be useful for guiding regeneration of the peripheral nerve or spinal cord after a transection injury. PMID:15909301

  5. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    SciTech Connect

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  6. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).

  7. Remineralization of Artificial Dentin Lesions via the Polymer-Induced Liquid-Precursor (PILP) Process.

    PubMed

    Thula-Mata, Taili; Burwell, Anora; Gower, Laurie B; Habeliz, Stefan; Marshall, Grayson W

    2011-01-01

    Acid-etched dentin samples with a zone of demineralized dentin were remineralized via the polymer-induced liquid-precursor (PILP) process. Poly-L-aspartic acid was used as the polymeric process-directing agent. Samples were incubated in the mineralization solution for 1-4 weeks. Dentin samples remineralized by the PILP process presented a surface morphology very similar to the intact mineralized dentin's architecture, in contrast to samples mineralized via the conventional nucleation and growth method (without polymer additive), which led to a superficial crust of randomly organized mineral crystals. Energy dispersive x-ray spectroscopy analysis of the PILP-mineralized samples showed the presence of calcium and phosphate ions at high levels. Since no hydroxyapatite (HA) clusters were observed on the surface of the PILP-mineralized samples, we could conclude the signal was produced from the mineral embedded within the dentin matrix. TEM and diffraction analyses suggest that both intrafibrillar and interfibrillar remineralization occurred in the demineralized dentin matrix.

  8. Remineralization of Artificial Dentin Lesions via the Polymer-Induced Liquid-Precursor (PILP) Process

    PubMed Central

    Thula-Mata, Taili; Burwell, Anora; Gower, Laurie B.; Habeliz, Stefan; Marshall, Grayson W.

    2011-01-01

    Acid-etched dentin samples with a zone of demineralized dentin were remineralized via the polymer-induced liquid-precursor (PILP) process. Poly-L-aspartic acid was used as the polymeric process-directing agent. Samples were incubated in the mineralization solution for 1–4 weeks. Dentin samples remineralized by the PILP process presented a surface morphology very similar to the intact mineralized dentin’s architecture, in contrast to samples mineralized via the conventional nucleation and growth method (without polymer additive), which led to a superficial crust of randomly organized mineral crystals. Energy dispersive x-ray spectroscopy analysis of the PILP-mineralized samples showed the presence of calcium and phosphate ions at high levels. Since no hydroxyapatite (HA) clusters were observed on the surface of the PILP-mineralized samples, we could conclude the signal was produced from the mineral embedded within the dentin matrix. TEM and diffraction analyses suggest that both intrafibrillar and interfibrillar remineralization occurred in the demineralized dentin matrix. PMID:24839340

  9. Microstructure Changes of Copper Nano Particles via Polymer Solution and Reduction Firing Processes.

    PubMed

    Han, Young-Min; Jung, Choong-Hwan; Lee, Sang-Jin

    2016-02-01

    Cu nano particles were fabricated at a very low temperature via polymer solution and reduction firing processes using a polyvinyl alcohol (PVA) and Ar-4%H2 gas mixture. In the process, copper nitrate and 5 wt% PVA solution were dissolved in D.I. water and the organic-inorganic precursor sols were dried to porous gels. The precursor gels were calcined in an air atmosphere, and then refired at 250 degrees C-300 degrees C under an Ar-4%H2 atmosphere for the reduction of CuO. The morphology of precursor gels and CuO and Cu powders was strongly dependent on the PVA content, and the as- calcined CuO readily deoxidized to Cu with minimal residual carbon. The polymer also contributed to an atomic-scale copper cation distribution, which resulted in nano-sized CuO and Cu powders. The Cu powder synthesized with PVA content in a 4:1 ratio showed a crystallite size of about 20 nm or less. In this paper, the microstructure changes of Cu nano particles at each set of processing conditions were examined by SEM and TEM observations.

  10. High-energy radiation and polymers: A review of commercial processes and emerging applications

    NASA Astrophysics Data System (ADS)

    Clough, R. L.

    2001-12-01

    Ionizing radiation has been found to be widely applicable in modifying the structure and properties of polymers, and can be used to tailor the performance of either bulk materials or surfaces. Fifty years of research in polymer radiation chemistry has led to numerous applications of commercial and economic importance, and work remains active in the application of radiation to practical uses involving polymeric materials. This paper provides a survey of radiation-processing methods of industrial interest, ranging from technologies already commercially well established, through innovations in the active R&D stage which show exceptional promise for future commercial use. Radiation-processing technologies are discussed under the following categories: cross-linking of plastics and rubbers, curing of coatings and inks, heat-shrink products, fiber-matrix composites, chain-scission for processing control, surface modification, grafting, hydrogels, sterilization, natural product enhancement, plastics recycling, ceramic precursors, electronic property materials, ion-track membranes and lithography for microdevice production. In addition to new technological innovations utilizing conventional gamma and e-beam sources, a number of promising new applications make use of novel radiation types which include ion beams (heavy ions, light ions, highly focused microscopic beams and high-intensity pulses), soft X-rays which are focused, coherent X-rays (from a synchrotron) and e-beams which undergo scattering to generate patterns.

  11. High-performance polymers from nature: catalytic routes and processes for industry.

    PubMed

    Walther, Guido

    2014-08-01

    It is difficult to imagine life today without polymers. However, most chemicals are almost exclusively synthesized from petroleum. With diminishing oil reserves, establishing an industrial process to transform renewables into high-value chemicals may be more challenging than running a car without gasoline. This is due to the difficulty in setting up processes that are novel, profitable, and environmentally benign at the same time. Additionally, the quest for sustainability of renewable resources should be based on incorporating ethical considerations in the development of plans that utilize feedstocks intended for human nutrition and health. Thus, it is important to use bio-energy containing renewable resources in the most efficient way. This Concept goes beyond the synthesis of monomers and provides insights for establishing an industrial process that transforms renewable resources into high-value chemicals, and it describes careful investigations that are of paramount importance, including evaluations from an economical and an ecological perspective. The synthesis of monomers suitable for polymer production from renewable resources would ideally be accompanied by a reduction in CO2 emission and waste, through the complete molecular utilization of the feedstock. This Concept advocates the drop-in strategy, and is guided by the example of catalytically synthesized dimethyl 1,19-nonadecanedioate and its α,ω-functionalized derivatives. With respect to the Twelve Principles of Green Chemistry, this Concept describes a technological leap forward for a sustainable green chemical industry. PMID:25049162

  12. High-performance polymers from nature: catalytic routes and processes for industry.

    PubMed

    Walther, Guido

    2014-08-01

    It is difficult to imagine life today without polymers. However, most chemicals are almost exclusively synthesized from petroleum. With diminishing oil reserves, establishing an industrial process to transform renewables into high-value chemicals may be more challenging than running a car without gasoline. This is due to the difficulty in setting up processes that are novel, profitable, and environmentally benign at the same time. Additionally, the quest for sustainability of renewable resources should be based on incorporating ethical considerations in the development of plans that utilize feedstocks intended for human nutrition and health. Thus, it is important to use bio-energy containing renewable resources in the most efficient way. This Concept goes beyond the synthesis of monomers and provides insights for establishing an industrial process that transforms renewable resources into high-value chemicals, and it describes careful investigations that are of paramount importance, including evaluations from an economical and an ecological perspective. The synthesis of monomers suitable for polymer production from renewable resources would ideally be accompanied by a reduction in CO2 emission and waste, through the complete molecular utilization of the feedstock. This Concept advocates the drop-in strategy, and is guided by the example of catalytically synthesized dimethyl 1,19-nonadecanedioate and its α,ω-functionalized derivatives. With respect to the Twelve Principles of Green Chemistry, this Concept describes a technological leap forward for a sustainable green chemical industry.

  13. Coarse-grained molecular dynamics simulation of the void growth process in the block structure of semicrystalline polymers

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuji; Kubo, Momoji

    2016-06-01

    We study fracture processes of amorphous and semicrystalline polymers with a coarse-grained molecular dynamics simulation. In the amorphous state, the stress caused by strain mainly arises from the loss of the attractive interaction in the voids. However, in semicrystalline polymers, the elongation of bonding is the dominant factor and it causes much more stress than that in an amorphous state. This is because growth of the voids is prevented by the amorphous regions and it is difficult to relax the folded polymers.

  14. Human face processing is tuned to sexual age preferences

    PubMed Central

    Ponseti, J.; Granert, O.; van Eimeren, T.; Jansen, O.; Wolff, S.; Beier, K.; Deuschl, G.; Bosinski, H.; Siebner, H.

    2014-01-01

    Human faces can motivate nurturing behaviour or sexual behaviour when adults see a child or an adult face, respectively. This suggests that face processing is tuned to detecting age cues of sexual maturity to stimulate the appropriate reproductive behaviour: either caretaking or mating. In paedophilia, sexual attraction is directed to sexually immature children. Therefore, we hypothesized that brain networks that normally are tuned to mature faces of the preferred gender show an abnormal tuning to sexual immature faces in paedophilia. Here, we use functional magnetic resonance imaging (fMRI) to test directly for the existence of a network which is tuned to face cues of sexual maturity. During fMRI, participants sexually attracted to either adults or children were exposed to various face images. In individuals attracted to adults, adult faces activated several brain regions significantly more than child faces. These brain regions comprised areas known to be implicated in face processing, and sexual processing, including occipital areas, the ventrolateral prefrontal cortex and, subcortically, the putamen and nucleus caudatus. The same regions were activated in paedophiles, but with a reversed preferential response pattern. PMID:24850896

  15. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    NASA Astrophysics Data System (ADS)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  16. Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique.

    PubMed

    Wang, Po-Chun; Wester, Brock A; Rajaraman, Swaminathan; Paik, Seung-Joon; Kim, Seong-Hyok; Allen, Mark G

    2009-01-01

    Transdermal drug delivery through microneedles is a minimally invasive procedure causing little or no pain, and is a potentially attractive alternative to intramuscular and subdermal drug delivery methods. This paper demonstrates the fabrication of a hollow microneedle array using a polymer-based process combining UV photolithography and replica molding techniques. The key characteristic of the proposed fabrication process is to define a hollow lumen for microfluidic access via photopatterning, allowing a batch process as well as high throughput. A hollow SU-8 microneedle array, consisting of 825mum tall and 400 mum wide microneedles with 15-25 mum tip diameters and 120 mum diameter hollow lumens was designed, fabricated and characterized. PMID:19964192

  17. Study of mould design and forming process on advanced polymer-matrix composite complex structure

    NASA Astrophysics Data System (ADS)

    Li, S. J.; Zhan, L. H.; Bai, H. M.; Chen, X. P.; Zhou, Y. Q.

    2015-07-01

    Advanced carbon fibre-reinforced polymer-matrix composites are widely applied to aviation manufacturing field due to their outstanding performance. In this paper, the mould design and forming process of the complex composite structure were discussed in detail using the hat stiffened structure as an example. The key issues of the moulddesign were analyzed, and the corresponding solutions were also presented. The crucial control points of the forming process such as the determination of materials and stacking sequence, the temperature and pressure route of the co-curing process were introduced. In order to guarantee the forming quality of the composite hat stiffened structure, a mathematical model about the aperture of rubber mandrel was introduced. The study presented in this paper may provide some actual references for the design and manufacture of the important complex composite structures.

  18. Improving processing and toughness of a high performance composite matrix through an interpenetrating polymer network. VI

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.

    1990-01-01

    A simultaneous semi-interpenetrating polymer network (semi-IPN) concept is presented which combines easy-to-process, but brittle, thermosetting polyimides with tough, but difficult to process, linear thermoplastic polyimides. The combination results in a semi-IPN with the easy processability of a thermoset and good toughness of a thermoplastic. Four simultaneous semi-IPN systems were developed from commercially available NR-150B2 combined with each of the four Thermid materials (LR-600, AL-600, MC-600, and FA-700). It is concluded that there is a significant improvement in resin fracture toughness of Thermid-polyimide-based semi-IPN systems and some improvement in composite microcracking resistance compared to Thermid LR-600. Excellent composite mechanical properties have been achieved. These new semi-IPN materials have the potential to be used as composite matrices, adhesives, and molding materials.

  19. In-process, non-destructive, dynamic testing of high-speed polymer composite rotors

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas

    2015-03-01

    Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.

  20. High performance hyperbranched polymers for improved processing and mechanical properties in thermoset composites

    NASA Astrophysics Data System (ADS)

    Marsh, Timothy

    Hyperbranched polymers, specifically hyperbranched poly(arylene ether ketone imide)s (HBPAEKI), are here studied as blend additives in thermoset composites to improve processing and ultimate performance properties of the composite. Monomer synthesis for HBPAEKI was further advanced in this work leading to higher yields, fewer reactions, and shorter production times. A five step synthetic method with an overall yield of 12% was reduced to a three step process with an overall yield of 38%. Polymer was synthesized under varying conditions and end group chemistry for use in thermoset blends. NMR characterization allowed for the assignment of chemical shifts in monomer and cataloguing of shifts in polymer for use in future work to characterize degree of branching. Cure kinetics of blends of HBPAEKI are explored through the use of differential scanning calorimetry (DSC) and chemorheology using small angle oscillatory shear. In a phenylethynyl terminated imide oligomer (PETI) thermoset resin, reactive phenylethynyl endcapped PAEKI (PEPAEKI) was found to retard cure while non reactive alkyl endcapped PAEKI was found to accelerate cure in DGEBA/DAH epoxy systems. Minimal effect was seen on early stage blend viscosity. Composite properties tested focused on the effect on bulk fracture and interfacial shear strength. No significant effect was seen in fracture toughness by SENB. XPS was used to verify that PEPAEKI was surface active to DGEBA/DDS epoxy/air interfaces to the complete exclusion of the epoxy at the surface. Evidence was also seen consistent with surface activity in alkyl endcapped PAEKI in DGEBA/DAH systems, although the contrast is much lower. Effect of alkyl endcapped HBPAEKI on interfacial shear strength was examined through the use of t-peel and single fiber fracture (SFF) techniques. In some systems, t-peel indicates a clear improvement in peel force, proportional to the blend concentration. In SFF, interfacial shear strength was found to be equal or slightly

  1. Photoaddressable Polymers

    NASA Astrophysics Data System (ADS)

    Bieringer, T.

    Polymers are the perfect materials for a variety of applications in almost every field of technical as well as human life. Because of their macromolecular architecture there are a lot of degrees of freedom in the synthesis of polymers. Owing to the change of their functional composition, they can be tailored even for quite difficult demands. Since a whole industry deals with the processing of polymers, cheap production lines have been developed for almost every polymer. This is the reason why not only the molecular composition but even the price of polymers has been optimized. Therefore these materials can be considered as encouraging components even in highly sophisticated areas of applications.

  2. Development and characterization of polymers-metallic hot embossing process for manufacturing metallic micro-parts

    NASA Astrophysics Data System (ADS)

    Sahli, M.; Millot, C.; Gelin, J.-C.; Barrière, T.

    2011-01-01

    In the recent years, hot embossing process becomes a promising process for the replication of polymer micro-structures associated to its manufacturing capability related to a relatively low component cost. This rising demand has prompted the development of various micro-manufacturing techniques in an attempt to get micro-parts in large batch. The paper investigates the way to get metallic micro-parts through the hot embossing process. The micro-manufacturing process consists in three stages. In the first one, the different metallic feedstocks with 50 to 60% powder loading in volume have been prepared with adapted polymers/powders formulations. In a second stage, an elastomeric master has been used to obtain micro-parts on a plastic loaded substrate with developed mixture based on polypropylene, paraffin wax and stearic acid. Finally, a thermal debinding stage in nitrogen atmosphere followed by a solid state pre-sintering stage has been applied, in order to eliminate the pores between powder particles in the debinded components. Then the porous components are agglomerated by solid state diffusion after heating to a temperature slightly lower than the melting temperature related to the material used in the process, to form an homogenous structure when full densification is achieved. The advantages of this approach include: rapid manufacturing of injection tools with high-quality, easy demoulding of metallic parts from the elastomeric moulds and great flexibility related to the choices of material. The paper describes all the processing stages and the way to characterize the geometrical, physical and mechanical properties of the resulting micro-parts.

  3. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases

    PubMed Central

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-01-01

    pathological processes emphasizing that long-term stress-related insults can impair the maintenance of chromatin landscape and provoke cellular senescence and tissue fibrosis associated with aging and age-related diseases. PMID:27114850

  4. Viscoelastic effects in relaxation processes of concentration fluctuations in dynamically asymmetric polymer blends

    NASA Astrophysics Data System (ADS)

    Takenaka, Mikihito; Takeno, Hiroyuki; Hasegawa, Hirokazu; Saito, Shin; Hashimoto, Takeji; Nagao, Michihiro

    2002-02-01

    Relaxation processes of the concentration fluctuations induced by a rapid pressure change were investigated for a dynamically asymmetric polymer blend [deuterated polybutadiene (DPB)/polyisoprene (PI)] with a composition of 50-50 by weight by using time-resolved small-angle neutron scattering. The pressure change was carried out inside the single-phase of the blend with the cell designed for polymeric systems under high pressure and temperature. Time change in the scattered intensity distribution with wave number (q) during the relaxation processes was found to be approximated by Cahn-Hilliard-Cook linearized theory. The theoretical analysis yielded the q dependence of Onsager kinetic coefficient that is characterized by the q-2 dependence at qξve>1 with the characteristic length ξve (with ξve being the viscoelastic length) being much larger than radius of gyration of DPB or PI. The estimated ξve agrees well with that calculated using the Doi and Onuki theory that takes into account the viscoelastic effects arising from the dynamical asymmetry between the component polymers in the relaxation of concentration fluctuations.

  5. Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings

    NASA Astrophysics Data System (ADS)

    Foerthner, M.; Rumler, M.; Stumpf, F.; Fader, R.; Rommel, M.; Frey, L.; Girschikofsky, M.; Belle, S.; Hellmann, R.; Klein, J. J.

    2016-03-01

    In this work, we present an approach to use UV-enhanced substrate conformal imprint lithography (UV-SCIL) as a soft imprint technique combined with excimer laser irradiation to manufacture Bragg gratings within planar waveguides on a full-wafer scale. For the first time, different hybrid polymers (OrmoComp®, OrmoStamp, OrmoCore, OrmoClad and OrmoClear) could be successfully patterned using UV-SCIL. For OrmoComp® (showing results very similar to OrmoStamp and OrmoClad), a complete imprint process could be realized. OrmoCore formed an inhibition layer in the presence of oxygen during the imprint, as could be observed for the use of OrmoClear as well. Processing options were elaborated to reduce the inhibition effect significantly, whereby the latter is mainly due to the atmospheric oxygen-containing PDMS layer of the UV-SCIL working stamp. Further on, the successful realization of a planar Bragg grating operating at the telecom wavelength is demonstrated by tuning the refractive index (RI) of OrmoComp® using a phase mask and an UV excimer laser. FTIR measurements show that the change in RI can be clearly correlated with a change in the chemical composition of the hybrid polymer during laser exposure.

  6. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods.

    PubMed

    Andersen, Thomas R; Larsen-Olsen, Thue T; Andreasen, Birgitta; Böttiger, Arvid P L; Carlé, Jon E; Helgesen, Martin; Bundgaard, Eva; Norrman, Kion; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-05-24

    Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (P2), and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (P3) were prepared using ultrasonic treatment of a chloroform solution of the polymer and [6,6]-phenyl-C(61)-butyric acid methyl ester ([60]PCBM) mixed with an aqueous solution of sodium dodecylsulphate (SDS). The size of the nanoparticles was established using small-angle X-ray scattering (SAXS) of the aqueous dispersions and by both atomic force microscopy (AFM) and using both grazing incidence SAXS (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) in the solid state as coated films. The aqueous dispersions were dialyzed to remove excess detergent and concentrated to a solid content of approximately 60 mg mL(-1). The formation of films for solar cells using the aqueous dispersion required the addition of the nonionic detergent FSO-100 at a concentration of 5 mg mL(-1). This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were processed using environmentally friendly methods and solvents. Two of the layers were processed entirely from water (the electron transport layer and the active

  7. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods.

    PubMed

    Andersen, Thomas R; Larsen-Olsen, Thue T; Andreasen, Birgitta; Böttiger, Arvid P L; Carlé, Jon E; Helgesen, Martin; Bundgaard, Eva; Norrman, Kion; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-05-24

    Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (P2), and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (P3) were prepared using ultrasonic treatment of a chloroform solution of the polymer and [6,6]-phenyl-C(61)-butyric acid methyl ester ([60]PCBM) mixed with an aqueous solution of sodium dodecylsulphate (SDS). The size of the nanoparticles was established using small-angle X-ray scattering (SAXS) of the aqueous dispersions and by both atomic force microscopy (AFM) and using both grazing incidence SAXS (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) in the solid state as coated films. The aqueous dispersions were dialyzed to remove excess detergent and concentrated to a solid content of approximately 60 mg mL(-1). The formation of films for solar cells using the aqueous dispersion required the addition of the nonionic detergent FSO-100 at a concentration of 5 mg mL(-1). This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were processed using environmentally friendly methods and solvents. Two of the layers were processed entirely from water (the electron transport layer and the active

  8. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. I. Fluoropolymer binders

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The dynamic mechanical properties and molecular weight distribution of two polymer bonded explosives, LX-10-1 and PBX-9502, maintained at 23, 60, and 74/sup 0/C for 3 years were studied. LX-10-1 is 94.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane explosive bonded together with 5.5% Viton A fluoropolymer. PBX-9502 is 95% triaminotrinitrobenzene explosive bonded with 5% Kel-F-800 fluoropolymer. There are two mechanical relaxations in the LX-10-1 in the military temperature range. The relaxation at -10/sup 0/C is associated with the glass transition temperature of the Viton A binder. A second weak relaxation occurs at about 30/sup 0/C in all LX-10-1 samples tested. This relaxation is probably associated with small amounts of crystallinity in the binder although this has not been demonstrated. There is a slight increase in modulus of the LX-10-1 with accelerated aging temperature. Changes in the dynamic mechanical properties of PBX-9502 are ascribed to crystallization of the chlorotrifluoroethylene component of the Kel-F-800 binder. The molecular weight of the Viton A binder decreased slight with increasing aging temperature. Using the kinetics of random scission the activation energy for polymer degradation in the presence of the explosive was 1.19 kcal/mole. The Arrhenius preexponential term and activation energy predict an expected use-life in excess of 60 years for LX-10-1. The Kel-F-800 in PBX-9502 is also extremely stable.

  9. Effects of aging on processing of novel musical structure.

    PubMed

    Lynch, M P; Steffens, M L

    1994-07-01

    Musical processing involves long-term memory representations of invariant properties of auditory patterns and working memory representations of patterns heard in the present moment. Musical scales are formalized sets of pitches on which much of musical composition and improvisation is based, and frequency relations among scale notes are invariant within categorical boundaries. Studies of young adults have indicated that adjustments of frequency relations are better detected when melodies are based on culturally familiar scales than on culturally unfamiliar scales. A proposed account for this finding has been that knowledge about musical frequency relations is stored in long-term memory. In the present study, old and young adults performed equivalently well in detection of frequency relation adjustments in a culturally familiar scale context, but young adults performed better than old adults in culturally unfamiliar scale contexts. The performance of old adults in a culturally unfamiliar scale context was correlated with high-frequency (8 kHz) hearing sensitivity. These findings suggest that influences of aging on processing of auditory events involve relations of auditory cognition and hearing sensitivity.

  10. Processing and quantitative analysis of biodegradable polymers (PLLA and PCL) thermal bonding

    NASA Astrophysics Data System (ADS)

    Boutry, C. M.; Kiran, R.; Umbrecht, F.; Hierold, C.

    2010-08-01

    A quantitative analysis of the bond strength and microstructure integrity achieved when bonding the biodegradable polymers poly(L-lactide) (PLLA) and poly(ɛ-caprolactone) (PCL) has been performed using the response surface methodology. The respective influence of the bonding parameters (temperature, pressure, duration) on the bond strength and microchannel integrity was investigated. PLLA and PCL were identified as suitable candidates for packaging materials for bioelectronic circuits of conductive biodegradable polymers. For a future packaging application, the bonding parameters were adapted to optimize the bond strength; the estimated values for the bond strength and channel integrity that were predicted by the surface plots were 2.32 ± 0.26 MPa and 33.7 ± 12.9% for PLLA, and 0.81 ± 0.11 MPa and 50.9 ± 5.7% for PCL. These values were in good agreement with the experimentally determined bond strength of 2.00 ± 1.10 MPa (PLLA) and 0.67 ± 0.22 MPa (PCL) and deformation of 31.4 ± 7.0% (PLLA) and 52.9 ± 4.1% (PCL). Microchannels with an aspect ratio of 1:12.5 were successfully fabricated. The impact of the fabrication process on the PLLA and PCL chemical properties was also investigated through differential scanning calorimetry and gel permeation chromatography measurements. It was observed that the weight average molecular weight Mw decreases after each fabrication step, as much as 68% for PLLA and 59% for PCL. The strongest reduction was observed after the compression molding (above the melting temperature) which should be kept as short as possible. An annealing step allowed increasing the crystallinity and improved the overall polymer stiffness.

  11. Direct laser-assisted processing of polymers for microfluidic and micro-optical applications

    NASA Astrophysics Data System (ADS)

    Pfleging, Wilhelm; Boehm, Johannes; Finke, Steffi; Gaganidze, E.; Hanemann, Thomas; Heidinger, Roland; Litfin, Karsten

    2003-07-01

    In the microscopic world the need of functional prototypes increases, e.g. as a precondition for a mould insert fabrication for micro-injection moulding. In this work the direct fabrication of prototypes made from polymers with an accuracy down to the micrometer range will be presented. For this purpose the direct patterning or modification of polymers with UV-laser radiation is performed for applications in fluidic and micro-optics. Different UV laser sources such as excimer and frequency-multiplied Nd:YAG were used. In the case of complex designs for fluidic applications it is powerful to use Nd:YAG laser radiation as patterning tool because of their high laser repetition rates: CAD data from complex fluidic designs were transmitted directly via CAM module into the polymeric surface. Because of the very small laser pulse duration of about 400-500 ps the thermal-induced damage during ablation decreases significantly. Process parameters, ablation rates and attainable surface qualities for capillary-electrophoreses chips will be presented. With the aid of a motorised aperture or a rotating mask system, excimer laser radiation is used to enable a well defined patterning of grooves with sharp edges and smooth sidewalls. The direct ablation of polymethylmethacrylate (PMMA), as well as the laser induced modification of the polymeric chemistry is used for the preparation of passive integrated-optical waveguides. Two types of concepts of waveguides are discussed: 1. Laser patterned grooves are filled with index matched materials which leads either to an increase or a decrease of the refractive index relative to pure PMMA. 2. Localised laser-induced polymer modification leads immediately to an integrated waveguide with higher refractive index. Both types of waveguides-concepts are characterised by their optical properties, which will be discussed in detail.

  12. Improving processing and toughness of a high performance composite matrix through an interpenetrating polymer network. VI

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.

    1990-01-01

    The use of a semiinterpenetrating polymer network (SIPN) of the high-performance polyimide NR-150B2 to reduce brittleness and improve processability in the highly crosslinked acetylene-terminated polyimides Thermid LR-600, AL-600, MC-600, and FA-700 is described. The theoretical basis of the SIPN process is reviewed; the preparation and characterization of the neat SIPN resins and unidirectional graphite-fiber composites are explained; and the results are presented in extensive tables, graphs, and micrographs and discussed in detail. Significant increases in fracture energy were observed with SIPN, from 93 J/sq m for unmodified LR-600 to 283-603 J/sq m for the SIPN materials; the room-temperature flexural strength of the unidirectional composites also increased, from 1344 MPa for an unmodified MC-600 composite to 2020-1751 MPa for the SIPN composites. The potential applicability of SIPN-based composites to aerospace structures and electronic components is indicated.

  13. Aging of the Planning Process: The Role of Executive Functioning

    ERIC Educational Resources Information Center

    Sorel, Olivier; Pennequin, Valerie

    2008-01-01

    This study tested whether the aging of executive functioning is linked to the decline in planning performance. Participants were divided into three groups: group 1 composed of 15 adults with a mean age of 22.7 years, group 2 composed of 15 adults with a mean age of 68.1 years and group 3 composed of 16 adults with a mean age of 78.75 years. Each…

  14. Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants.

    PubMed

    Kajiya, Tadashi; Kobayashi, Wataru; Okuzono, Tohru; Doi, Masao

    2009-11-26

    We studied how the addition of surfactants alters the drying and film formation processes of polymer solution droplets with contact lines strongly fixed by bank structures. We found that even if the amount of surfactant is quite small, it drastically changes the final profile of the polymer film from a ringlike profile to a flat profile. This property is observed commonly, irrespective of the polymer concentration, droplet volume, and type of solvent. We conjecture that the inhomogeneous distribution of the surfactant caused by the outward capillary flow induces the Marangoni flow directed toward the center of the droplet, which suppresses the outward flow. The present phenomenon implies an effective method for controlling the profile of the polymer film in inkjet printing technologies.

  15. Polymer light-emitting devices with novel cathode structures and full-color patterning processes

    NASA Astrophysics Data System (ADS)

    Deng, Xianyu

    2006-12-01

    In the past decades, polymeric light-emitting diode (PLED) have been a focus of research interest to scientists all over the world due to its potential application in flat panel displays. In previous studies, tremendous progresses in material developments, device engineering and theoretical modeling for PLEDs have been achieved. However, there are still a number of crucial problems to be solved in order for PLEDs to be widely employed in commercial flat panel displays. In this thesis, we present studies of PLEDs that used a high work-function metal aluminum as the cathode. The device exhibits a highly enhanced efficiency by modifying the cathode using certain non-ionic surfactant polymers. Based on this finding, we further demonstrated top-emitting PLEDs with environmentally stable cathodes. In another development, we show that a three-coloremitting device with a bilayer emitting polymer structure can be achieved by a dry photo-patterning process. Each of the red, green and blue emission in the device has a comparable emitting efficiency to the traditional standard red, green or blue device with single color emission. These results are believed to be important and beneficial for obtaining low-cost, large-scale and long life-time flat panel displays based on PLEDs.

  16. Critical Role of Processing on the Thermoelectric Performance of Doped Semiconducting Polymers

    NASA Astrophysics Data System (ADS)

    Patel, Shrayesh; Glaudell, Anne; Chabinyc, Michael

    The ability to convert excess waste heat into useable energy can significantly help meet the global energy demands. One may capture this waste heat through thermoelectrics devices. In a thermoelectric material, the charge carriers transport both electrical current and heat. Consequently, under a temperature difference (ΔT), a carrier concentration gradient results in a voltage (ΔV), which is related to the Seebeck coefficient, α = - Δ V/ ΔT. One of the challenges lies in finding materials that simultaneously have low thermal conductivity (κ) , high electrical conductivity (σ) , and high Seebeck coefficient (α) . Conjugated semiconducting polymers can potentially meet this demand due to their inherent low thermal conductivity and high electrical conductivity through sufficient doping. Here, we report on the critical role of thermal processing on the enhancement of thermoelectric properties of conjugated polymer thin films. These films were doping using three different mechanisms: acid (toluene sulfonic acid), charge transfer (F4TCNQ), and vapor (fluorinated-alkyl trichlorosilane). These thermoelectrics properties will be correlated to the structural and morphological properties of the doped thin-films through various synchrotron X-ray scattering techniques. Lastly, to further elucidate the charge transport mechanism driving the thermoelectric performance, we report on the temperature-dependent measurements of both the Seebeck coefficient and electrical conductivity.

  17. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer

    PubMed Central

    Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos

    2010-01-01

    We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s−1. Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 µm, shell thicknesses ranging from 10 to 50 µm and shell pore diameters ranging from 1 to 10 µm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core–shell multimaterial particles. PMID:20484226

  18. Device, Interface, Process and Electrode Engineering Towards Low Cost and High Efficiency Polymer Solar Cells in Inverted Structure

    NASA Astrophysics Data System (ADS)

    Zou, Jingyu

    As a promising technology for economically viable alternative energy source, polymer solar cells (PSCs) have attracted substantial interests and made significant progress in the past few years, due the advantages of being potentially easily solution processed into large areas, flexible, light weight, and have the versatility of material design. In this dissertation, an integrated approach is taken to improve the overall performance of polymer solar cells by the development of new polymer materials, device architectures, interface engineering of the contacts between layers, and new transparent electrodes. First, several new classes of polymers are explored as potential light harvesting materials for solar cells. Processing has been optimized and efficiency as high as 6.24% has been demonstrated. Then, with the development of inverted device structure, which has better air stability by utilizing more air stable, high work function metals, newly developed high efficiency polymers have been integrated into inverted structure device with integrated engineering approach. A comprehensive characterization and optical modeling based on conventional and inverted devices have been performed to understand the effect of device geometry on photovoltaic performance based on a newly developed high performance polymer poly(indacenodithiophene-co-phananthrene-quinoxaline) (PIDT-PhanQ). By modifying anode with a bilayer combining graphene oxide (GO) and poly(3,4-ethylenedioxylenethiophene):poly(styrenesulfonic acid) (PEDOT:PSS) as hole transporter/electron blocker, it further improved device performance of inverted structured to 6.38%. A novel processing method of sequentially bilayer deposition for active layer has been conducted based on a low band-gap polymer poly[2, 6-(4, 4-bis-(2-ethylhexyl)-4 H-cyclopenta [2,1-b;3,4-b‧] dithiophene)- alt-4,7-(2, 1, 3- fluorobenzothiadiazole)] (PCPDT-FBT). Inverted structure devices processed from bilayer deposition shows even higher

  19. Processing radio PSAs: production pacing, arousing content, and age.

    PubMed

    Lang, Annie; Schwartz, Nancy; Lee, Seungjo; Angelini, James

    2007-09-01

    This experiment uses the limited capacity model of mediated message processing (LC3MP) to investigate the effects of production pacing and arousing content in radio public service announcements (PSAs) on the emotional and cognitive responses of college-age and tween (9-12-year-olds) participants. The LC3MP predicts that both arousing content and production pacing should increase emotional arousal, physiological arousal, cognitive effort, and encoding up to the point of cognitive overload after which cognitive effort and encoding should decrease. Results showed that, as expected, arousing content did increase emotional arousal and cognitive effort for both tweens and college students, though the effect was larger for college students. For production pacing, however, the results were less clear cut. First, it was found that for radio PSAs pacing increased arousal for calm messages only. Further, the effects of production pacing on cognitive effort were larger for tweens and were experienced primarily during the first 25 seconds of the message, while college students were less affected by production pacing, and those effects appeared in the last 25 seconds of the messages. Finally, none of the messages in this experiment resulted in cognitive overload - thus both production pacing and arousing content increased memory for both groups of participants.

  20. Upscaling of polymer solar cell fabrication using full roll-to-roll processing.

    PubMed

    Krebs, Frederik C; Tromholt, Thomas; Jørgensen, Mikkel

    2010-06-01

    Upscaling of the manufacture of polymer solar cells is detailed with emphasis on cost analysis and practical approach. The device modules were prepared using both slot-die coating and screen printing the active layers in the form of stripes that were serially connected. The stripe width was varied and the resultant performance analysed. Wider stripes give access to higher geometric fill factors and lower aperture loss while they also present larger sheet resistive losses. An optimum was found through preparation of serially connected stripes having widths of 9, 13 and 18 mm with nominal geometric fill factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator and an IV-curve tracer. After characterisation the solar cell modules were cut into sheets using a sheeting machine and contacted using button contacts applied by crimping. Based on this a detailed cost analysis was made showing that it is possible to prepare complete and contacted polymer solar cell modules on this scale at an area cost of 89 euro m(-2) and an electricity cost of 8.1 euro Wp(-1). The cost analysis was separated into the manufacturing cost, materials cost and also the capital investment required for setting up a complete production plant on this scale. Even though the cost in euro Wp(-1) is comparable to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing

  1. Simulation of the Densification of Semicrystalline Polymer Powders during the Selective Laser Sintering Process: Application to Nylon-12,

    SciTech Connect

    Dong, L.; Makradi, A.; Ahzi, Said; Remond, Y.; Sun, Xin

    2008-06-01

    The heating and densification processes of semi-crystalline polymer powders, during the selective laser sintering process, are simulated using the finite element method. Based on previously developed three-dimensional approach for the sintering of amorphous polymer powders, the modeling methodology is extended to semi-crystalline polymers by taking into account the effects of latent heat during melting. In these simulations, the temperature dependent thermal conductivity, specific heat, density and the effect of latent heat are computed then used as material constants for the integration of the heat equation. Results for temperature and density distribution using Nylon-12 powder are presented and discussed. The effects of processing parameters on the density distribution are also presented.

  2. Undergraduate Students' Perceptions and Behaviors Related to the Aged and to Aging Processes

    ERIC Educational Resources Information Center

    Van Dussen, Daniel J.; Weaver, Robert R.

    2009-01-01

    Aging education is relatively new to the university, and our understanding of the perspectives students bring to aging populations is correspondingly limited. This investigation surveys 546 students at a midsized, Midwestern university to explore students' views toward elders, toward serving elders, and toward the relevance of aging education for…

  3. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  4. Low-temperature baroplastic processing of graphene-based polymer composites by pressure-induced flow

    NASA Astrophysics Data System (ADS)

    Tang, Wei; He, Cheng-en; Wang, Yuanzhen; Yang, Yingkui; Pong Tsui, Chi

    2014-08-01

    Two-stage emulsion polymerization was employed to synthesize nanoparticles consisting of a low glass transition temperature core of poly(n-butyl acrylate) (PBA) and a glassy poly(methyl methylacrylate) (PMMA) shell. Incorporation of graphene oxide (GO) into the PBA-PMMA latex produced GO/PBA-PMMA composites after demulsification and graphene/PBA-PMMA composites after chemical reduction of GO. The as-prepared powdery materials were processed into thin films by compression molding at room temperature as the result of a pressure-induced mixing mechanism of microphase-separated baroplastics. The presence of oxygen-containing groups for GO sheets contributed to better dispersion and stronger interface with the matrix, thereby showing greater reinforcement efficiency toward polymers compared to graphene sheets. In addition, both Young's modulus and yield strength for all materials increased with applied pressure and processing time due to better flowability, processability and cohesion at higher pressure and longer time. Low-temperature processing under pressure is of significance for energy conservation, recyclability and environmental protection during plastic processing.

  5. Study of the sorption processes in a piezoelectric-molecularly imprinted polymer film structure using Rayleigh surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved', A. V.

    2009-09-01

    The sorption processes in a piezoelectric-molecularly imprinted polymer film structure, where the polymer is synthesized from the monomers of bisphenol-A glycerolate diacrylate using imprinted morpholine molecules as template molecules, are experimentally studied with Rayleigh surface acoustic waves at a frequency of 120 MHz. The desorption processes for morpholine are found to be anomalously slow as compared to other analytes under study. The possibility of the application of the results obtained for creating selective chemical sensors based on surface acoustic waves is discussed.

  6. Solution-processed low dimensional nanomaterials with self-assembled polymers for flexible photo-electronic devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Park, Cheolmin

    2015-09-01

    Self assembly driven by complicated but systematic hierarchical interactions offers a qualified alternative for fabricating functional micron or nanometer scale pattern structures that have been potentially useful for various organic and nanotechnological devices. Self assembled nanostructures generated from synthetic polymer systems such as controlled polymer blends, semi-crystalline polymers and block copolymers have gained a great attention not only because of the variety of nanostructures they can evolve but also because of the controllability of these structures by external stimuli. In this presentation, various novel photo-electronic materials and devices are introduced based on the solution-processed low dimensional nanomaterials such as networked carbon nanotubes (CNTs), reduced graphene oxides (rGOs) and 2 dimensional transition metal dichalcogenides (TMDs) with self assembled polymers including field effect transistor, electroluminescent device, non-volatile memory and photodetector. For instance, a nanocomposite of networked CNTs and a fluorescent polymer turned out an efficient field induced electroluminescent layer under alternating current (AC) as a potential candidate for next generation displays and lightings. Furthermore, scalable and simple strategies employed for fabricating rGO as well as TMD nanohybrid films allowed for high performance and mechanically flexible non-volatile resistive polymer memory devices and broad band photo-detectors, respectively.

  7. Purification and processing of carbon nanotubes using self-assembly and selective interaction with a semiconjugated polymer

    NASA Astrophysics Data System (ADS)

    Fournet, Patrick; McCarthy, Brendan; Dalton, Alan B.; Coleman, Jonathan N.; Murphy, Robert J.; Stephan, Christophe; Lefrant, Serge; Bernier, Patrick; Byrne, Hugh J.; Blau, Werner J.

    2001-12-01

    A new route for nanotube-based applications in molecular electronics was developed. Individual polymer strands were assembled onto single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT) by mechanical agitation. The SWNT hybrid systems have been characterized by electron microscopy (TEM, STM), optical absorption and Raman spectroscopy and a fully nondestructive technique, using electron paramagnetic resonance (EPR), has been developed to estimate the purity of MWNT soot and hybrids. It is demonstrated that solutions of the polymer are capable of suspending nanotubes indefinitely while the majority of the accompanying amorphous graphite precipitates out of solution. Electron microscopy and Raman scattering indicate that through an intercalation process, the ropes of SWNT are destroyed, resulting in individual nanotubes being well dispersed within the polymer matrix. Moreover, Raman and absorption studies suggest that the polymer interacts preferentially with nanotubes of specific diameters or a range of diameters. STM studies showed that the chiral angle of the underlying nanotube is reflected in the polymer coating, demonstrating that the lattice structure of the SWNT templates the ordering in the coating. This could lead to design of specific polymer architectures for selection of desired chiral angles, and hence specific electronic properties.

  8. High-Performance Thin Film Transistor from Solution-Processed P3HT Polymer Semiconductor Nanoparticles

    NASA Astrophysics Data System (ADS)

    Darwis, Darmawati; Elkington, Daniel; Ulum, Syahrul; Stapleton, Andrew; Bryant, Glenn; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul

    2011-12-01

    Nanoparticulate suspensions of semiconducting polymer poly-3-hexylthiophene (P3HT) have been prepared in water through a mini-emulsion process using sodium dodecyl sulphate (SDS) as the surfactant. Using these suspensions, we have fabricated organic thin film transistors (OTFTs) in a top gate configuration. These devices operate at a low voltage and show output characteristics similar to those achieved when the P3HT film is spun from chloroform. To characterize the properties of the film made from the nanoparticle suspension, differential thermal analysis (TGA), differential scanning calorimetry (DSC), atomic force microscopy (AFM), fluorescence spectra analysis, ultraviolet/visible (UV/VIS) spectrophotometry and X-ray photoelectron spectroscopy (XPS) have been used.

  9. Tuning the Microcavity of Organic Light Emitting Diodes by Solution Processable Polymer-Nanoparticle Composite Layers.

    PubMed

    Preinfalk, Jan B; Schackmar, Fabian R; Lampe, Thomas; Egel, Amos; Schmidt, Tobias D; Brütting, Wolfgang; Gomard, Guillaume; Lemmer, Uli

    2016-02-01

    In this study, we present a simple method to tune and take advantage of microcavity effects for an increased fraction of outcoupled light in solution-processed organic light emitting diodes. This is achieved by incorporating nonscattering polymer-nanoparticle composite layers. These tunable layers allow the optimization of the device architecture even for high film thicknesses on a single substrate by gradually altering the film thickness using a horizontal dipping technique. Moreover, it is shown that the optoelectronic device parameters are in good agreement with transfer matrix simulations of the corresponding layer stack, which offers the possibility to numerically design devices based on such composite layers. Lastly, it could be shown that the introduction of nanoparticles leads to an improved charge injection, which combined with an optimized microcavity resulted in a maximum luminous efficacy increase of 85% compared to a nanoparticle-free reference device.

  10. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    PubMed

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices. PMID:25405589

  11. Differential-Integral method in polymer processing: Taking melt electrospinning technique for example

    NASA Astrophysics Data System (ADS)

    Haoyi, Li; Weimin, Yang; Hongbo, Chen; Jing, Tan; Pengcheng, Xie

    2016-03-01

    A concept of Differential-Integral (DI) method applied in polymer processing and molding was proposed, which included melt DI injection molding, DI nano-composites extrusion molding and melt differential electrospinning principle and equipment. Taking the melt differential electrospinning for example to introduce the innovation research progress, two methods preparing polymer ultrafine fiber have been developed: solution electro-spinning and melt electro-spinning, between which solution electro-spinning is much simpler to realize in lab. More than 100 institutions have endeavored to conduct research on it and more than 30 thousand papers have been published. However, its industrialization was restricted to some extend because of the existence of toxic solvent during spinning process and poor mechanical strength of resultant fibers caused by small pores on fiber surface. Solvent-free melt electrospinning is environmentally friendly and highly productive. However, problems such as the high melt viscosity, thick fiber diameter and complex equipment makes it relatively under researched compared with solution electrospinning. With the purpose of solving the shortage of traditional electro-spinning equipment with needles or capillaries, a melt differential electro-spinning method without needles or capillaries was firstly proposed. Nearly 50 related patents have been applied since 2005, and systematic method innovations and experimental studies have also been conducted. The prepared fiber by this method had exhibited small diameter and smooth surface. The average fiber diameter can reach 200-800 nm, and the single nozzle can yield two orders of magnitude more than the capillaries. Based on the above principle, complete commercial techniques and equipment have been developed to produce ultra-fine non-woven fabrics for the applications in air filtration, oil spill recovery and water treatment, etc.

  12. Partial ages: diagnosing transport processes by means of multiple clocks

    NASA Astrophysics Data System (ADS)

    Mouchet, Anne; Cornaton, Fabien; Deleersnijder, Éric; Delhez, Éric J. M.

    2016-03-01

    The concept of age is widely used to quantify the transport rate of tracers - or pollutants - in the environment. The age focuses only on the time taken to reach a given location and disregards other aspects of the path followed by the tracer parcel. To keep track of the subregions visited by the tracer parcel along this path, partial ages are defined as the time spent in the different subregions. Partial ages can be computed in an Eulerian framework in much the same way as the usual age by extending the Constituent oriented Age and Residence Time theory (CART, www.climate.be/CARTages, applications to a 1D model with lateral/transient storage, to the 1D advection-diffusion equation and to the diagnosis of the ventilation of the deep ocean are provided. They demonstrate the versatility of the concept of partial age and the potential new insights that can be gained with it.

  13. Subjective Age Bias: A Motivational and Information Processing Approach

    ERIC Educational Resources Information Center

    Teuscher, Ursina

    2009-01-01

    There is broad empirical evidence, but still a lack of theoretical explanations, for the phenomenon that most older people feel considerably younger than their real age. In this article, a measurement model of subjective age was assessed, and two independent theoretical approaches are proposed: (1) a motivational approach assuming that the age…

  14. ARTICLE Molecular Dynamic Simulation on the Absorbing Process of Isolating and Coating of α-olefin Drag Reducing Polymer

    NASA Astrophysics Data System (ADS)

    Li, Bing; Sheng, Xiang; Xing, Wen-guo; Dong, Gui-lin; Liu, Yong-jun; Zhang, Chang-qiao; Chen, Xiang-jun; Zhou, Ning-ning; Qin, Zhan-bo

    2010-12-01

    The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobic properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfactant and one kind of multiple hydroxyl compound were similar to those of one kind of surfactant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions with isocyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a

  15. Implementation of New Process Models for Tailored Polymer Composite Structures into Processing Software Packages

    SciTech Connect

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Phelps, Jay; Tucker III, Charles L.; Kunc, Vlastimil; Bapanapalli, Satish K.; Smith, Mark T.

    2010-02-23

    This report describes the work conducted under the Cooperative Research and Development Agreement (CRADA) (Nr. 260) between the Pacific Northwest National Laboratory (PNNL) and Autodesk, Inc. to develop and implement process models for injection-molded long-fiber thermoplastics (LFTs) in processing software packages. The structure of this report is organized as follows. After the Introduction Section (Section 1), Section 2 summarizes the current fiber orientation models developed for injection-molded short-fiber thermoplastics (SFTs). Section 3 provides an assessment of these models to determine their capabilities and limitations, and the developments needed for injection-molded LFTs. Section 4 then focuses on the development of a new fiber orientation model for LFTs. This model is termed the anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model as it explores the concept of anisotropic rotary diffusion to capture the fiber-fiber interaction in long-fiber suspensions and uses the reduced strain closure method of Wang et al. to slow down the orientation kinetics in concentrated suspensions. In contrast to fiber orientation modeling, before this project, no standard model was developed to predict the fiber length distribution in molded fiber composites. Section 5 is therefore devoted to the development of a fiber length attrition model in the mold. Sections 6 and 7 address the implementations of the models in AMI, and the conclusions drawn from this work is presented in Section 8.

  16. Accelerated aging of solid lubricants for the W76-1 TSL : effects of polymer outgassing.

    SciTech Connect

    Dugger, Michael Thomas; Wallace, William O.; Huffman, Elizabeth M.

    2006-09-01

    The behavior of MoS{sub 2} lubricants intended for the W76-1 TSL was evaluated after 17 and 82 thermal cycles, each lasting seven days and including a low temperature of -35 C and a high temperature of 93 C, in a sealed container containing organic materials. The MoS{sub 2} was applied by tumbling with MoS{sub 2} powder and steel pins (harperized), or by spraying with a resin binder (AS Mix). Surface composition measurements indicated an uptake of carbon and silicon on the lubricant surfaces after aging. Oxidation of the MoS{sub 2} on harperized coupons, where enough MoS{sub 2} was present at the surface to result in significant Mo and S concentrations, was found to be minimal for the thermal cycles in an atmosphere of primarily nitrogen. Bare steel surfaces showed a reduction in friction for exposed coupons compared to control coupons stored in nitrogen, at least for the initial cycles of sliding until the adsorbed contaminants were worn away. Lubricated surfaces showed no more than a ten percent increase in steady-state friction coefficient after exposure. Initial coefficient of friction was up to 250 percent higher than steady-state for AS Mix films on H950 coupons after 82 thermal cycles. However, the friction coefficient exhibited by lubricated coupons was never greater than 0.25, and more often less than 0.15, even after the accelerated aging exposures.

  17. Microfabrication of Super Absorbent Polymer Structure Using Nanoimprinting and Swelling Process

    NASA Astrophysics Data System (ADS)

    Inaba, Tomomi; Kano, Tomonori; Miki, Norihisa

    2013-06-01

    Micro-fabrication technologies have been extensively studied to achieve smaller sizes and higher aspect ratios. When the features have sizes of a couple of micrometers or below, nano-imprinting can be an effective method for micro-fabrication at low cost. However, it is difficult to achieve aspect ratio greater than 1. In this research, we propose micro fabrication of super absorbent polymer (SAP) as a new material for micro devices. SAP swells by adding deionized water, which can be used as a post patterning process to enhance the aspect ratio of micro structures. Micropatterning of SAP must be conducted under thoroughly dry conditions and we used nano-imprinting processes. We successfully augmented an aspect ratio of the nano-imprinted micro holes of SAP from 0.65 to 1.2 by the swelling process. The proposed patterning and swelling process of SAP can be applicable to micro-fabricate high-aspect-ratio structures at low cost for high performance lab-on-a-chip.

  18. Real-time process monitoring and temperature mapping of a 3D polymer printing process

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Love, Lonnie J.; Rowe, John C.

    2013-05-01

    An extended-range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation of the parts as they are being fabricated. The IR camera was also used to map the temperature within the build volume of the oven. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of build location within the oven. The observation of the temperature variation of a part during construction provides insight into how the deposition process itself creates temperature distributions, which can lead to failure.

  19. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process

    SciTech Connect

    Dinwiddie, Ralph Barton; Love, Lonnie J; Rowe, John C

    2013-01-01

    An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as quantify the temperature of a part during fabrication. The IR camera was used to map the temperature within the build volume of the oven and surface temperature measurement of a part as it was being manufactured. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of location. The observation of the temperature variation of a part that fails during construction provides insight into how the deposition process itself impacts temperature distribution within a single part leading to failure.

  20. Piling-to-buckling transition in the drying process of polymer solution drop on substrate having a large contact angle

    NASA Astrophysics Data System (ADS)

    Kajiya, Tadashi; Nishitani, Eisuke; Yamaue, Tatsuya; Doi, Masao

    2006-01-01

    We studied the drying process of polymer solution drops placed on a substrate having a large contact angle with the drop. The drying process takes place in three stages. First, the droplet evaporates keeping the contact line fixed. Second, the droplet shrinks uniformly with receding contact line. Finally the contact line is pinned again, and the droplet starts to be deformed. The shape of the final polymer deposit changes from concave dot, to flat dot, and then to concave dot again with the increase of the initial polymer concentration. This shape change is caused by the gradual transition from the solute piling mechanism proposed by Deegan to the crust buckling mechanism proposed by de Gennes and Pauchard.

  1. Does the Aging Process Significantly Modify the Mean Heart Rate?

    PubMed Central

    Santos, Marcos Antonio Almeida; Sousa, Antonio Carlos Sobral; Reis, Francisco Prado; Santos, Thayná Ramos; Lima, Sonia Oliveira; Barreto-Filho, José Augusto

    2013-01-01

    Background The Mean Heart Rate (MHR) tends to decrease with age. When adjusted for gender and diseases, the magnitude of this effect is unclear. Objective To analyze the MHR in a stratified sample of active and functionally independent individuals. Methods A total of 1,172 patients aged ≥ 40 years underwent Holter monitoring and were stratified by age group: 1 = 40-49, 2 = 50-59, 3 = 60-69, 4 = 70-79, 5 = ≥ 80 years. The MHR was evaluated according to age and gender, adjusted for Hypertension (SAH), dyslipidemia and non-insulin dependent diabetes mellitus (NIDDM). Several models of ANOVA, correlation and linear regression were employed. A two-tailed p value <0.05 was considered significant (95% CI). Results The MHR tended to decrease with the age range: 1 = 77.20 ± 7.10; 2 = 76.66 ± 7.07; 3 = 74.02 ± 7.46; 4 = 72.93 ± 7.35; 5 = 73.41 ± 7.98 (p < 0.001). Women showed a correlation with higher MHR (p <0.001). In the ANOVA and regression models, age and gender were predictors (p < 0.001). However, R2 and ETA2 < 0.10, as well as discrete standardized beta coefficients indicated reduced effect. Dyslipidemia, hypertension and DM did not influence the findings. Conclusion The MHR decreased with age. Women had higher values of MHR, regardless of the age group. Correlations between MHR and age or gender, albeit significant, showed the effect magnitude had little statistical relevance. The prevalence of SAH, dyslipidemia and diabetes mellitus did not influence the results. PMID:24029962

  2. Rheological Analysis of Polymer Interactions and Ageing of Poly(Methylvinylether-Co-Maleic Anhydride)/Poly(Vinyl Alcohol) Binary Networks and Their Effects on Mucoadhesion.

    PubMed

    Andrews, Gavin P; Laverty, Thomas P; Jones, David S

    2015-12-01

    Polymer blends of poly(vinylalcohol, PVA) and poly(methylvinylether-co-maleic anhydride, PMVE/MA) were formulated and their viscoelastic and mucoadhesive properties characterised. The viscoelastic and mucoadhesive properties were dependent on polymer concentration, molecular weight of PVA and PVA:PMVE/MA ratio. Alteration of these properties allowed platforms to be designed to offer defined rheological and mucoadhesive properties, properties that could not be achieved using monopolymeric platforms. A strong correlation was noted between the modulus of the polymeric blends and mucoadhesion. After storage, the polymeric blends underwent rheological structuring (ageing) with an attendant enhancement of mucoadhesion. In certain blends containing the highest molecular weight of PVA (146-186 kDa), storage ultimately resulted in an increase and then a significant decrease in the rheological and mucoadhesive properties, the latter phenomenon being accredited to polymer recrystallisation. Ageing of the rheological and mucoadhesive properties was modelled using an exponential growth model, allowing predictions of the storage period associated with the maxima in viscoelastic and mucoadhesive properties. These observations highlight the possible implications whenever interactive polymeric blends are employed in drug delivery. Caution is therefore urged whenever a formulation strategy based on interactive polymer blends is employed to ensure that ageing is fully understood and mathematically characterised. PMID:26502109

  3. Effect of polymer matrix on structure of Se particles formed in aqueous solutions during redox process

    SciTech Connect

    Suvorova, E. I. Klechkovskaya, V. V.

    2010-12-15

    Transmission electron microscopy and X-ray energy dispersive microanalysis study of the structure of particles formed during the reduction of Se(IV) to Se(0) in aqueous solutions in the presence of amphiphilic polymers showed the formation of Se/polymer composite particles. The content of carbon inside the particles can be as large as 80 at %. Polymers deeply influence the structure of particles. Depending on polymers, the composite particles may be unstable with time and they spontaneously evolve from Se/polymer composite particles to crystalline particles of monoclinic Se. For the stable ones, addition of bacterial cellulose Acetobacter xylinum gel-film can induce crystallization in the particles which expel the polymeric material. The Se/polymer composite particles and Se crystalline particles exhibit different sensitivity to electron irradiation and stiffness.

  4. Chemical and physical processes in the retention of functional groups in plasma polymers studied by plasma phase mass spectroscopy.

    PubMed

    Ryssy, Joonas; Prioste-Amaral, Eloni; Assuncao, Daniela F N; Rogers, Nicholas; Kirby, Giles T S; Smith, Louise E; Michelmore, Andrew

    2016-02-14

    Surface engineering of functionalised polymer films is a rapidly expanding field of research with cross disciplinary implications and numerous applications. One method of generating functionalised polymer films is radio frequency induced plasma polymerisation which provides a substrate independent coating. However, there is currently limited understanding surrounding chemical interactions in the plasma phase and physical interactions at the plasma-surface interface, and their effect on functional group retention in the thin film. Here we investigate functionalised plasma polymer films generated from four precursors containing primary amines. Using XPS and fluorine tagging with 4-(trifluoromethyl)benzaldehyde, the primary amine content of plasma polymer films was measured as a function of applied power at constant precursor pressure. The results were then correlated with analysis of the plasma phase by mass spectrometry which showed loss of amine functionality for both neutral and ionic species. Surface interactions are also shown to decrease primary amine retention due to abstraction of hydrogen by high energy ion impacts. The stability of the plasma polymers in aqueous solution was also assessed and is shown to be precursor dependent. Increased understanding of the chemical and physical processes in the plasma phase and at the surface are therefore critical in designing improved plasma polymerisation processes. PMID:26791435

  5. Liquid PEG Polymers Containing Antioxidants: A Versatile Platform for Studying Oxygen-Sensitive Photochemical Processes.

    PubMed

    Mongin, Cédric; Golden, Jessica H; Castellano, Felix N

    2016-09-14

    This article proposes the exploitation of widely available, inexpensive, innocuous "green" liquid polyethylene glycol (PEG) polymers containing the oxygen scavenger oleic acid (OA) as promising media for studying oxygen-sensitive photochemical processes. Here we report the successful application of this media to detailed investigations of triplet-sensitized photochemical upconversion, previously established as being readily poisoned by dissolved oxygen. Three different PEG materials were investigated with increasing molecular weight from 200 to 600 g/mol, coded as PEG-200, PEG-400, and PEG-600. These fluidic polymers facilitate an oxygen-depleted environment in comparison to commonly employed organic solvents while providing high solubility and diffusion for the dissolved chromophores. Moreover, the low oxygen permeation afforded by these PEG solvents allows them to remain deoxygenated in open containers under ambient conditions for extended time periods. OA, 9,10-dimethylanthracene (DMA), and 2,5-dimethylfuran (DMF) are shown to efficiently and quantitatively consume dissolved oxygen in the PEG environment in the presence of the photoactivated triplet sensitizer platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP). Oxygen consumption was directly correlated with systematically increasing sensitizer excited-state lifetimes that eventually reach the same plateau as achieved through extensive N2 sparging. Diffusion-controlled bimolecular triplet-triplet energy transfer quenching between PtTPBP and the acceptor/annihilator 9,10-bisphenylethynylanthracene (BPEA) was observed in all three PEG formulations investigated. Subsequent triplet-triplet annihilation, between triplet excited BPEA acceptors, achieves bright and stable upconverted singlet fluorescence from BPEA with no decrease in intensity over 20 h under ambient conditions. In the champion composition (PEG 200), the upconversion quantum efficiency reached 31% under conditions where triplet-triplet annihilation

  6. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  7. Fluorescence spectral changes of perylene in polymer matrices during the solvent evaporation process.

    PubMed

    Ito, Fuyuki; Kogasaka, Yoshiko; Yamamoto, Kazuki

    2013-04-01

    This work examined concentration-dependent variations in the fluorescence spectra of solutions of perylene and PMMA in toluene during the process of evaporation, using fluorescence microscopy. At low perylene concentrations, the fluorescence spectra of the resulting perylene/PMMA films exhibited a structural band originating from monomeric perylene. Increasing the concentration resulted in the appearance of new, broader bands due to the formation of two excimer species. An estimation of variations in the fluorescence excitation spectra of these same films with changing concentration and excitation wavelength indicated the formation from monomer to fully overlapped excimer via partially overlapped excimer in terms of the kinetic situation. These species are believed to consist of either ground state aggregates or α-crystals resulting from phase separation within the PMMA films. Dynamic fluorescence changes during solvent evaporation were monitored by fluorescence spectroscopy and CCD photography. Fluorescence emission changed from blue to green with the formation of α-crystals, a pattern which was also observed when increasing perylene concentrations in PMMA films during static trials. The concentration distribution around α-crystals was attributed to the crystal growth process and could be followed by observing the fluorescence color gradient radiating from the crystal. Studying concentration-dependent fluorescence spectral changes during solvent evaporation not only provides insight into the molecular dynamics of the casting process and the compatibility between the dispersed material and the polymer matrix but also provides information concerning molecular assembly and the nucleation and growth of crystals of the fluorescent organic molecules.

  8. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    SciTech Connect

    Sharma, G. D.

    2011-10-20

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm{sup 2} has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  9. Recent developments in the application of electron accelerators for polymer processing

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Al-Sheikhly, M.; Berejka, A. J.; Cleland, M. R.; Antoniak, M.

    2014-01-01

    There are now over 1700 high current, electron beam (EB) accelerators being used world-wide in industrial applications, most of which involve polymer processing. In contrast to the use of heat, which transfers only about 5-10% of input energy into energy useful for materials modification, radiation processing is very energy efficient, with 60% or more of the input energy to an accelerator being available for affecting materials. Historic markets, such as the crosslinking of wire and cable jacketing, of heat shrinkable tubings and films, of partial crosslinking of tire components and of low-energy EB to cure or dry inks and coatings remain strong. Accelerator manufacturers have made equipment more affordable by down-sizing units while maintaining high beam currents. Very powerful accelerators with 700 kW output have made X-ray conversion a practical alternative to the historic use of radioisotopes, mainly cobalt-60, for applications as medical device sterilization. New EB end-uses are emerging, such as the development of nano-composites and nano-gels and the use of EB processing to facilitate biofuel production. These present opportunities for future research and development.

  10. Ultrafast Electronic Processes At Semiconductor Polymer Heterojunctions: A Molecular-Level, Quantum-Dynamical Analysis

    SciTech Connect

    Burghardt, I.; Tamura, H.; Bittner, E. R.

    2009-03-09

    This contribution gives an overview of our recent study of phonon-driven exciton dissociation at semiconductor polymer heterojunctions, using a quantum dynamical analysis based on a linear vibronic coupling model parametrized for three electronic states and 20-30 phonon modes. The decay of the photogenerated exciton towards an interfacial charge transfer state is an ultrafast (femtosecond to picosecond scale) process which initiates the photocurrent generation. We consider several representative interface configurations, which are shown to exhibit an efficient exciton dissociation. The process depends critically on the presence of intermediate states, and on the dynamical interplay between high-frequency (C=C stretch) and low-frequency (ring-torsional) modes. The dynamical mechanism is interpreted in terms of a hierarchical electron-phonon model which allows one to identify generalized reaction coordinates for the nonadiabatic process. This analysis highlights that the electron-phonon coupling is dominated by the high-frequency modes, but the low-frequency modes are crucial in mediating the transition to a charge-separated state. The ultra-fast, highly nonequilibrium dynamics is in accordance with spectroscopic observations.

  11. Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process

    SciTech Connect

    Jee, S.S.; DiMasi, E.; Kasinath, R.K.; Kim, Y.Y.; Gower, L.

    2010-12-03

    Bone is a hierarchically structured composite which imparts it with unique mechanical properties and bioresorptive potential. These properties are primarily influenced by the underlying nanostructure of bone, which consists of nanocrystals of hydroxyapatite embedded and uniaxially aligned within collagen fibrils. There is also a small fraction of non-collagenous proteins in bone, and these are thought to play an important role in bone's formation. In our in vitro model system of bone formation, polyanionic peptides are used to mimic the role of the non-collagenous proteins. In our prior studies, we have shown that intrafibrillar mineralization can be achieved in synthetic reconstituted collagen sponges using a polymer-induced liquid-precursor (PILP) mineralization process. This led to a nanostructured arrangement of hydroxyapatite crystals within the individual fibrils which closely mimics that of bone. This report demonstrates that biogenic collagen scaffolds obtained from turkey tendon, which consist of densely packed and oriented collagen fibrils, can also be mineralized by the PILP process. Synchrotron X-ray diffraction studies show that the mineralization process leads to a high degree of crystallographic orientation at the macroscale, thus emulating that found in the biological system of naturally mineralizing turkey tendon.

  12. Ultrafast Electronic Processes At Semiconductor Polymer Heterojunctions: A Molecular-Level, Quantum-Dynamical Analysis

    NASA Astrophysics Data System (ADS)

    Burghardt, I.; Bittner, E. R.; Tamura, H.

    2009-03-01

    This contribution gives an overview of our recent study of phonon-driven exciton dissociation at semiconductor polymer heterojunctions, using a quantum dynamical analysis based on a linear vibronic coupling model parametrized for three electronic states and 20-30 phonon modes. The decay of the photogenerated exciton towards an interfacial charge transfer state is an ultrafast (femtosecond to picosecond scale) process which initiates the photocurrent generation. We consider several representative interface configurations, which are shown to exhibit an efficient exciton dissociation. The process depends critically on the presence of intermediate states, and on the dynamical interplay between high-frequency (C=C stretch) and low-frequency (ring-torsional) modes. The dynamical mechanism is interpreted in terms of a hierarchical electron-phonon model which allows one to identify generalized reaction coordinates for the nonadiabatic process. This analysis highlights that the electron-phonon coupling is dominated by the high-frequency modes, but the low-frequency modes are crucial in mediating the transition to a charge-separated state. The ultra-fast, highly nonequilibrium dynamics is in accordance with spectroscopic observations.

  13. LIGHT SOURCE: Physical design of a 10 MeV LINAC for polymer radiation processing

    NASA Astrophysics Data System (ADS)

    Feng, Guang-Yao; Pei, Yuan-Ji; Wang, Lin; Zhang, Shan-Cai; Wu, Cong-Feng; Jin, Kai; Li, Wei-Min

    2009-06-01

    In China, polymer radiation processing has become one of the most important processing industries. The radiation processing source may be an electron beam accelerator or a radioactive source. Physical design of an electron beam facility applied for radiation crosslinking is introduced in this paper because of it's much higher dose rate and efficiency. Main part of this facility is a 10 MeV travelling wave electron linac with constant impedance accelerating structure. A start to end simulation concerning the linac is reported in this paper. The codes Opera-3d, Poisson-superfish and Parmela are used to describe electromagnetic elements of the accelerator and track particle distribution from the cathode to the end of the linac. After beam dynamic optimization, wave phase velocities in the structure have been chosen to be 0.56, 0.9 and 0.999 respectively. Physical parameters about the main elements such as DC electron gun, iris-loaded periodic structure, solenoids, etc, are presented. Simulation results proves that it can satisfy the industrial requirement. The linac is under construction. Some components have been finished. Measurements proved that they are in a good agreement with the design values.

  14. Processing and characterization of protein polymer thin films for surface modification of neural prosthetic devices

    NASA Astrophysics Data System (ADS)

    Buchko, Christopher John

    The objective of this research has been to develop methods for modifying the surfaces of neural prosthetic devices to enhance biocompatibility. Also central to this work was the characterization of the processes used to modify the surfaces, the resulting macroscopic and microscopic structure, and the relevant physical properties of the new surface. The application required a coating that could attract and adhere cells, mediate the stiffness mismatch between the device and tissue, and facilitate signal transport from the device to tissue. The materials chosen for use as surface modifiers were genetically engineered polypeptides that combine biofunctional sequences with structural segments, creating a processable bioadhesive agent. An electric field mediated deposition process was used to create thin coatings on the devices from these protein polymers. Varying the process parameters was found to exert controllable changes on the morphology, and porous thin films with a range of structures were fabricated. This deposition process was combined with lithographic techniques to generate high-fidelity patterned surfaces. It was anticipated that the surface structure of these films could augment their biochemical composition and facilitate cell adhesion. A Fourier Transform-based method of explicitly quantifying the surface topography was employed to evaluate the effects of process parameters on topography. The mechanical properties of the coatings were examined to determine a suitable morphology for joining the mechanically dissimilar device and tissue. Fibrous coatings composed of randomly oriented filaments exhibited a stiffness gradient while under compression. The films were compliant near the tissue and stiffer near the device. The biological performance of these films was assayed and the films were seen to be potent cellular adhesives. The coatings were also found to be capable of delivering biologically-relevant molecules in vitro.

  15. Hyaluronic acid auto-crosslinked polymer (ACP): Reaction monitoring, process investigation and hyaluronidase stability.

    PubMed

    Pluda, Stefano; Pavan, Mauro; Galesso, Devis; Guarise, Cristian

    2016-10-01

    Hyaluronic Acid (HA) is a non-sulphated glycosaminoglycan that, despite its high molecular weight, is soluble in water and is not resistant to enzymatic degradation, the latter of which hinders its wider application as a biomedical material. Auto-crosslinked polymer (ACP) gels of HA are fully biocompatible hydrogels that exhibit improved viscoelastic properties and prolonged in vivo residence times compared to the native polymer. Crosslinking is achieved through a base-catalysed reaction consisting of the activation of HA carboxyl groups by 2-chloro-1-methylpyridinium iodide (CMPI) and subsequent nucleophilic acyl substitution by the hydroxyl groups of HA in organic solvent. In this study, a number of ACP hydrogels have been obtained via reactions using varying ratios of CMPI to HA. The crosslinking reaction was monitored by rheological measurements in organic solvents during CMPI addition to the reaction mixture. The ACP intermediates, powders and hydrogels were characterized, helping to elucidate the crosslinking process. A two-step mechanism was proposed to explain the observed trends in viscosity and particle size. Syntheses were carried out by varying the reaction temperature, respectively at 0 °C, 25 °C and 45 °C in N-Methyl-2-Pyrrolidone (NMP), as well as the solvent respectively in NMP, DMSO and DMF at 25 °C. Interestingly, varying these parameters did not substantially affect the degree of crosslinking but likely did influence the intra/inter-molecular crosslinking ratio and, therefore, the viscoelastic properties. A wide range of crosslinking densities was confirmed through ESEM analysis. Finally, a comparative hyaluronidase degradation assay revealed that the ACPs exhibited a higher resistance toward enzymatic cleavage at low elastic modulus compared to other more chemically resistant, crosslinked HAs. These observations demonstrated the importance of crosslinking density of matrix structures on substrate availability. PMID:27442913

  16. Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process.

    PubMed

    Cheng, Xingguo; Gower, Laurie B

    2006-01-01

    Natural biominerals often have exquisite morphologies, where the cells exercise a high degree of crystallographic control through secretion of biological macromolecules and regulation of ion transport. One important example is the sea urchin spine. It has recently been shown to be formed through deposition of a transient amorphous calcium carbonate (ACC) precursor phase that later transforms to single-crystalline calcite, ultimately forming an elaborate three-dimensional microporous calcium carbonate structure with interconnected pores. Macromolecules associated with the mineral phase are thought to play a key role in regulating this transformation. The work described here mimics this type of morphological control by "molding" an amorphous calcium carbonate precursor within a porous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel that has been prepared as a negative replica from the void space of an urchin spine. Using an acidic biomimetic polymer as a process-directing agent, we show that polyaspartic acid induces amorphous calcium carbonate (ACC) nanoparticles, which have fluidic character and therefore are able to infiltrate the PHEMA hydrogel replica and coalesce into the convoluted morphology that replicates the original microporous structure of the sea urchin spine. By "molding" calcium carbonate into a complex morphology at room temperature, using a precursor process that is induced by a biomimetic acidic macromolecule, the PILP process is a useful in vitro model for examining different aspects of the amorphous-to-crystalline transformation process that is apparently used by a variety of biomineralizing organisms. For example, although we were able to replicate the overall morphology of the spine, it had polycrystalline texture; further studies with this system will focus on controlling the nucleation event, which may help to elucidate how such a convoluted structure can be prepared with single-crystalline texture via an amorphous precursor. Through a

  17. Fracture properties of aged and post-processed dental composites.

    PubMed

    Drummond, J L; Botsis, J; Zhao, D; Samyn, J

    1998-04-01

    The purpose of this study was to determine the flexure strength (sigma f), Young's modulus (E), and fracture toughness (KIC) of five dental composites after aging in water and air. The composites were, by weight, 75% or 79% glass filler and 25% or 21% resin composed of 60% Bis-GMA and 40% TEG-DMA. The filler was either strontium glass (75Sr or 79Sr) or a combination, by weight, of 90% strontium glass and 10% colloidal silica (75Sr10 or 79Sr10). The specimens, 2 x 4 x 70 mm bars, were aged in either air or distilled water at 37 degrees C and were tested in their respective aging media at a loading rate of 1.22 mm/s. The sigma f and E were tested in four-point loading and the KIC in three-point loading. The addition of the fillers to the unfilled resin resulted in a statistically significant increase in the flexure strength, flexure modulus, and fracture toughness. Aging in air had minimal effect on these properties. However, testing and aging in water led to a significant decrease in the mechanical properties in the first 6 months, but had limited effect from 6 to 12 months.

  18. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process

    NASA Astrophysics Data System (ADS)

    Park, Seung-Hee; Park, Jin-Soo; Yim, Sung-Dae; Park, Seok-Hee; Lee, Young-Moo; Kim, Chang-Soo

    Organic/inorganic composite membranes were prepared using two different polymers. BPO 4 particles were introduced into polymers via an in situ sol-gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO 4 particles were homogenously dispersed in the polymer matrices and BPO 4 particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO 4 composite membranes had much smaller BPO 4 particle size than the SPEEK/BPO 4 composite membranes due to well dispersion of BPO 4 sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO 4 particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO 4 particles at similar water uptake due to the increase in freezable water and effect of particle size.

  19. Phase morphology and orientation development of polymer blends in melt processing

    NASA Astrophysics Data System (ADS)

    Yang, Jinhai

    In this dissertation, we studied phase morphology development of various polymer blends in both extrusion and melt spinning using scanning electron microscopy (SEM) assisted with appropriate etching techniques. Various processing conditions, for example shear or elongation rate, shear or elongation stress, and extrusion die length/diameter ratio were considered. The effects of material characteristics, such as viscosity ratio, miscibility and interfacial tension, were studied. To do this, polymer blends were carefully selected. One isotactic polypropylene was blended with two ethylene butene copolymers (EBM), which had different butene contents. One of the blends was miscible and the other was immiscible. The polypropylene was also blended two ethylene octene copolymers (EOM). The above blends had low interfacial tension and different viscosity ratios. One EBM was blended with two polyamide 12 (PA12) materials. These blends had high interfacial tension and different viscosity ratios. One maleic anhydride grafted ethylene octene copolymer was added into the EBM/PA12 blends to decrease their interfacial tension. Studies were focused on a phenomenon that the dispersed phases in these blends could coalesce into a surface layer in both extrusion and melt spinning. This process was controlled by viscosity ratio, interfacial tension and processing conditions. The orientation development of melt spun fibers of these blends was studied by both wide angle X-ray diffraction (WAXD) and birefringence techniques. The orientation was affected by both blend morphologies and solidification order of the blend individual phases. The phase, which solidifies later in the spinline, did not affect the orientation of the first solidified phase. However, the first solidified phase, if it was continuous phase, could largely suppress the orientation of the second solidified phase. Composite stress analysis explained the different orientation behaviors. Extrusion of a PA12 material through a

  20. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process.

    PubMed

    Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei

    2016-06-28

    On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process. PMID:27254136

  1. [Thyroid gland and the aging process of the men].

    PubMed

    Herman, Waldemar A; Lacka, Katarzyna

    2006-03-01

    Changes in the anatomy of thyroid and age-related modifications in the regulation of the hypothalamic-pituitary-thyroid axis in aging men were described and reciprocal dependences with the cytokine network were also discussed. Pathophysiological role of the inflammatory cytokines in the promotion of thyroid dysfunctions, autoimmunological including were demonstrated. The modulating impact of environmental factors (micronutrient deficiencies, condiments) on thyroid metabolism was reported. The differences in symptomatology and therapy in thyroid dysfunction in elderly men were depicted. Furthermore the associations between thyroid status and gonadal as well as adrenal function were illustrated.

  2. Mathematical simulation of thermal decomposition processes in coking polymers during intense heating

    SciTech Connect

    Shlenskii, O.F.; Polyakov, A.A.

    1994-12-01

    Description of nonstationary heat transfer in heat-shielding materials based on cross-linked polymers, mathematical simulation of chemical engineering processes of treating coking and fiery coals, and designing calculations all require taking thermal destruction kinetics into account. The kinetics of chemical transformations affects the substance density change depending on the temperature, the time, the heat-release function, and other properties of materials. The traditionally accepted description of the thermal destruction kinetics of coking materials is based on formulating a set of kinetic equations, in which only chemical transformations are taken into account. However, such an approach does not necessarily agree with the obtained experimental data for the case of intense heating. The authors propose including the parameters characterizing the decrease of intermolecular interaction in a comparatively narrow temperature interval (20-40 K) into the set of kinetic equations. In the neighborhood of a certain temperature T{sub 1}, which is called the limiting temperature of thermal decomposition, a decrease in intermolecular interaction causes an increase in the rates of chemical and phase transformations. The effect of the enhancement of destruction processes has been found experimentally by the contact thermal analysis method.

  3. Porous coordination polymers as novel sorption materials for heat transformation processes.

    PubMed

    Janiak, Christoph; Henninger, Stefan K

    2013-01-01

    Porous coordination polymers (PCPs)/metal-organic frameworks (MOFs) are inorganic-organic hybrid materials with a permanent three-dimensional porous metal-ligand network. PCPs or MOFs are inorganic-organic analogs of zeolites in terms of porosity and reversible guest exchange properties. Microporous water-stable PCPs with high water uptake capacity are gaining attention for low temperature heat transformation applications in thermally driven adsorption chillers (TDCs) or adsorption heat pumps (AHPs). TDCs or AHPs are an alternative to traditional air conditioners or heat pumps operating on electricity or fossil fuels. By using solar or waste heat as the operating energy TDCs or AHPs can significantly help to minimize primary energy consumption and greenhouse gas emissions generated by industrial or domestic heating and cooling processes. TDCs and AHPs are based on the evaporation and consecutive adsorption of coolant liquids, preferably water, under specific conditions. The process is driven and controlled by the microporosity and hydrophilicity of the employed sorption material. Here we summarize the current investigations, developments and possibilities of PCPs/MOFs for use in low-temperature heat transformation applications as alternative materials for the traditional inorganic porous substances like silica gel, aluminophosphates or zeolites.

  4. Protonation process of conjugated polyelectrolytes on enhanced power conversion efficiency in the inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yi, Chao; Hu, Rong; Ren, He; Hu, Xiaowen; Wang, Shu; Gong, Xiong; Cao, Yong

    2014-01-01

    In this study, two conjugated polyelectrolytes, polythiophene derivative (PTP) and poly[(9,9-bis [6‧-N, N, N-trimethylammonium] hexyl)-fluorenylene-phenylene] dibromide (PFP), are utilized to modify the surface properties of ZnO electron extraction layer (EEL) in the inverted polymer solar cells (PSCs). Both higher short-circuit current densities and larger open-circuit voltages were observed from the inverted PSCs with ZnO/PFP or ZnO/PTP as compared with those only with ZnO EEL. The protonation process for PTP and PFP in solution is distinguished. Overall, more than 40% enhanced power conversion efficiency (PCE) from the inverted PSCs with ZnO/PFP, in which the PFP could be fully ionized in deionized water, and more than 30% enhanced PCE from the inverted PSCs with ZnO/PTP, as the case that the PTP could not be fully ionized in deionized water, as compared with the inverted PSCs with ZnO EEL were observed, respectively. These results demonstrate that the conjugated polyelectrolytes play an important role in enhancement of device performance of inverted PSCs and that the protonation process of the conjugated polyelectrolytes is critical to the modification for EEL in PSCs.

  5. Porous coordination polymers as novel sorption materials for heat transformation processes.

    PubMed

    Janiak, Christoph; Henninger, Stefan K

    2013-01-01

    Porous coordination polymers (PCPs)/metal-organic frameworks (MOFs) are inorganic-organic hybrid materials with a permanent three-dimensional porous metal-ligand network. PCPs or MOFs are inorganic-organic analogs of zeolites in terms of porosity and reversible guest exchange properties. Microporous water-stable PCPs with high water uptake capacity are gaining attention for low temperature heat transformation applications in thermally driven adsorption chillers (TDCs) or adsorption heat pumps (AHPs). TDCs or AHPs are an alternative to traditional air conditioners or heat pumps operating on electricity or fossil fuels. By using solar or waste heat as the operating energy TDCs or AHPs can significantly help to minimize primary energy consumption and greenhouse gas emissions generated by industrial or domestic heating and cooling processes. TDCs and AHPs are based on the evaporation and consecutive adsorption of coolant liquids, preferably water, under specific conditions. The process is driven and controlled by the microporosity and hydrophilicity of the employed sorption material. Here we summarize the current investigations, developments and possibilities of PCPs/MOFs for use in low-temperature heat transformation applications as alternative materials for the traditional inorganic porous substances like silica gel, aluminophosphates or zeolites. PMID:23945102

  6. USING THE SULFUR POLYMER STABILIZATION SOLIDIFICATION PROCESS TO TREAT RESIDUAL MERCURY WASTES FROM GOLD MINING OPERATIONS.

    SciTech Connect

    BOWERMAN,B.ADAMS,J.KALB,P.WAN,R.Y.LEVIER,M.

    2003-02-24

    Large quantities of mercury are generated as a by-product during the processing of gold ore following mining operations. Newmont Mining Corporation (NMC), which operates some of the world's largest gold mines, sought a method to permanently ''retire'' its mercury by-products, thereby avoiding potential environmental liability. Sulfur Polymer Stabilization-Solidification (SPSS) is an innovative technology developed at Brookhaven National Laboratory (BNL) for treatment of mercury and mercury contaminated materials, such as soil, sludge and debris. BNL conducted a treatability study to determine the potential applicability of SPSS for treatment of Newmont mercury, and the treated product passed the U.S. Environmental Protection Agency (EPA) test for toxicity. The SPSS process has been shown to be effective on radioactive and nonradioactive mercury and mercury-contaminated materials with a pilot-scale batch system capable of producing 0.03 m{sup 3} (1 ft{sup 3}) per batch. Engineering scale-up issues are discussed and material property tests addressing these issues are described.

  7. Gas expanded polymer process to anneal nanoparticle dispersion in thin films

    DOE PAGESBeta

    Ambuken, Preejith V.; Stretz, Holly A.; Dadmun, Mark; Michael Kilbey, S.

    2015-04-21

    A spin-coating solution comprising poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles used to create organic photovoltaic (OPV) active layers have been shown to adopt a non-uniform concentration profile across the thin film dimension. This inhomogeneous distribution can reduce the efficiency of the device. For our new process, gas expanded polymer (GXP) annealing, is applied to P3HT/PCBM thin film blends, enabling the distribution of the PCBM nanoparticles to be manipulated by varying the GXP processing conditions. Films of 50 nm thickness (nominally) created by spin casting a blend of P3HT mixed with PCBM were annealed by oscillatory GXP andmore » GXP at constant pressure using high pressure CO2. An increase in P3HT crystallinity (detected by X-ray diffraction and UV-vis spectroscopy) along with a more uniform distribution of PCBM nanoparticles in the thickness dimension, as interpreted from neutron reflectivity measurements, were observed after oscillatory GXP annealing. In addition, static water contact angles suggest that the film/air interface is enriched in PCBM relative to the as-cast film. Finally, these results demonstrate that GXP annealing, which is commercially scalable, can be successfully used to create a uniform distribution of PCBM nanoparticles across the thickness dimension in a P3HT thin film.« less

  8. Gas expanded polymer process to anneal nanoparticle dispersion in thin films

    SciTech Connect

    Ambuken, Preejith V.; Stretz, Holly A.; Dadmun, Mark; Michael Kilbey, S.

    2015-04-21

    A spin-coating solution comprising poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles used to create organic photovoltaic (OPV) active layers have been shown to adopt a non-uniform concentration profile across the thin film dimension. This inhomogeneous distribution can reduce the efficiency of the device. For our new process, gas expanded polymer (GXP) annealing, is applied to P3HT/PCBM thin film blends, enabling the distribution of the PCBM nanoparticles to be manipulated by varying the GXP processing conditions. Films of 50 nm thickness (nominally) created by spin casting a blend of P3HT mixed with PCBM were annealed by oscillatory GXP and GXP at constant pressure using high pressure CO2. An increase in P3HT crystallinity (detected by X-ray diffraction and UV-vis spectroscopy) along with a more uniform distribution of PCBM nanoparticles in the thickness dimension, as interpreted from neutron reflectivity measurements, were observed after oscillatory GXP annealing. In addition, static water contact angles suggest that the film/air interface is enriched in PCBM relative to the as-cast film. Finally, these results demonstrate that GXP annealing, which is commercially scalable, can be successfully used to create a uniform distribution of PCBM nanoparticles across the thickness dimension in a P3HT thin film.

  9. Remote inhibition of polymer degradation.

    SciTech Connect

    Clough, Roger Lee; Celina, Mathias Christopher

    2005-08-01

    Polymer degradation has been explored on the basis of synergistic infectious and inhibitive interaction between separate materials. A dual stage chemiluminescence detection system with individually controlled hot stages was applied to probe for interaction effects during polymer degradation in an oxidizing environment. Experimental confirmation was obtained that volatile antioxidants can be transferred over a relatively large distance. The thermal degradation of a polypropylene (PP) sample receiving traces of inhibitive antioxidants from a remote source is delayed. Similarly, volatiles from two stabilized elastomers were also capable of retarding a degradation process remotely. This observation demonstrates inhibitive cross-talk as a novel interactive phenomenon between different polymers and is consequential for understanding general polymer interactions, fundamental degradation processes and long-term aging effects of multiple materials in a single environment.

  10. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    NASA Astrophysics Data System (ADS)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  11. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    SciTech Connect

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-22

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  12. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks

    NASA Astrophysics Data System (ADS)

    Altuna, F. I.; Antonacci, J.; Arenas, G. F.; Pettarin, V.; Hoppe, C. E.; Williams, R. J. J.

    2016-04-01

    Green laser irradiation successfully activated self-healing processes in epoxy-acid networks modified with low amounts of gold nanoparticles (NPs). A bio-based polymer matrix, obtained by crosslinking epoxidized soybean oil (ESO) with an aqueous citric acid (CA) solution, was self-healed through molecular rearrangements produced by transesterification reactions of β-hydroxyester groups generated in the polymerization reaction. The temperature increase required for the triggering of these thermally activated reactions was attained by green light irradiation of the damaged area. Compression force needed to assure a good contact between crack faces was achieved by volume dilatation generated by the same temperature rise. Gold NPs dispersed in the polymer efficiently generated heat in the presence of electromagnetic radiation under plasmon resonance, acting as nanometric heating sources and allowing remote activation of the self-healing in the crosslinked polymer.

  13. Rapid and effective decontamination of chlorophenol-contaminated soil by sorption into commercial polymers: concept demonstration and process modeling.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Ademollo, Nicoletta; Daugulis, Andrew J

    2015-03-01

    Solid phase extraction performed with commercial polymer beads to treat soil contaminated by chlorophenols (4-chlorophenol, 2,4-dichlorophenol and pentachlorophenol) as single compounds and in a mixture has been investigated in this study. Soil-water-polymer partition tests were conducted to determine the relative affinities of single compounds in soil-water and polymer-water pairs. Subsequent soil extraction tests were performed with Hytrel 8206, the polymer showing the highest affinity for the tested chlorophenols. Factors that were examined were polymer type, moisture content, and contamination level. Increased moisture content (up to 100%) improved the extraction efficiency for all three compounds. Extraction tests at this upper level of moisture content showed removal efficiencies ≥70% for all the compounds and their ternary mixture, for 24 h of contact time, which is in contrast to the weeks and months, normally required for conventional ex situ remediation processes. A dynamic model characterizing the rate and extent of decontamination was also formulated, calibrated and validated with the experimental data. The proposed model, based on the simplified approach of "lumped parameters" for the mass transfer coefficients, provided very good predictions of the experimental data for the absorptive removal of contaminants from soil at different individual solute levels. Parameters evaluated from calibration by fitting of single compound data, have been successfully applied to predict mixture data, with differences between experimental and predicted data in all cases being ≤3%.

  14. FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect

    Charles McCormick; Roger Hester

    2002-04-29

    To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar to those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the

  15. The effects of sterilization, processing and aging on the structure and morphology of medical-grade ultrahigh molecular weight polyethylene for use in total joint replacements

    NASA Astrophysics Data System (ADS)

    Goldman, Marni

    A pilot study was performed which examined the effects of gamma radiation sterilization after five years aging in air on the structure of ultrahigh molecular weight polyethylene (UHMWPE) for total joint replacements. A sterilized tibial component and a nonsterile block of polymer which had come from the same compression molded batch of material were characterized by differential scanning calorimetry (DSC), density gradient column (DGC), small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). Increases in crystallinity and density were observed for the sterilized component after five years aging in air. A thickening of the lamellae as well as an increase in their tortuosity was seen in the sterilized material. Oxygen uptake occurred in the irradiated specimens. Results indicated that chain scission was the dominant response to gamma irradiation sterilization and aging in air for five years. Material from four different processing conditions was sterilized by: gamma irradiation, electron beam irradiation, ethylene oxide gas, plasma, or not sterilized as a control. Groups were divided into aging environments: air, hyaluronic acid and hydrogen peroxide. Characterization by DSC, DGC, TEM, SAXS and FTIR was performed periodically over a period of one and a half years. Processing conditions had the least effect on the structure and morphology of UHMWPE. Initial increases in oxygen uptake were higher for those materials with higher nascent crystallinities. Trends observed for all materials as a function of sterilization, aging environment and time were similar. Sterilization method and subsequent aging time were the most important factor in examining the structure of UHMWPE. Ethylene oxide gas and plasma did not appear to alter the polymer. Both forms of irradiation resulted in the most changes with time augmenting some effects. Results indicated chain scission dominated in response to radiation and

  16. Age-Related Variability in Cortical Activity during Language Processing

    ERIC Educational Resources Information Center

    Fridriksson, Julius; Morrow, K. Leigh; Moser, Dana; Baylis, Gordon C.

    2006-01-01

    Purpose: The present study investigated the extent of cortical activity during overt picture naming using functional magnetic resonance imaging (fMRI). Method: Participants comprised 20 healthy, adult participants with ages ranging from 20 to 82 years. While undergoing fMRI, participants completed a picture-naming task consisting of 60…

  17. Adult Age Differences in Processing Narrative Text: Managing Character Representations

    ERIC Educational Resources Information Center

    Noh, Soo Rim

    2009-01-01

    Understanding a narrative situation depends on keeping track of multiple characters that enter and exit dynamically as the plot unfolds. Because there has been no systematic investigation of age differences in the ability to manage multiple characters during narrative comprehension, this project was designed to examine those differences in this…

  18. Air-processable silane-coupled polymers to modify a dielectric for solution-processed organic semiconductors.

    PubMed

    Jang, Mi; Yu, Young Chang; Jeon, Hyeonyeol; Youk, Ji Ho; Yang, Hoichang

    2015-03-11

    Poly(styrene-r-3-methacryloxypropyltrimethoxysilane) (PSMPTS) copolymers were synthesized by the free radical polymerization of styrene and 3-methacryloxypropyltrimethoxysilane (MPTS) for use as surface modifiers. PSMPTS copolymers were spun-cast onto a hydrophilic SiO2 layer and were then annealed at 150 °C in ambient air. The polystyrene (PS)-based copolymer, with a molecular weight of 32 700 g mol(-1) and approximately 30 MPTS coupling sites, was easily grafted onto the SiO2 surface after annealing periods longer than 1 min, yielding a physicochemically stable layer. On the untreated and polymer-treated dielectrics, spin-casting of an ultrasonicated poly(3-hexyl thiophene) (P3HT) solution yielded highly interconnected crystal nanofibrils of P3HT. The resulting organic field-effect transistors (OFETs) showed similar mobility values of 0.01-0.012 cm(2) V(-1) s(-1) for all surfaces. However, the threshold voltage (Vth) drastically decreased from +13 (for bare SiO2) to 0 V by grafting the PSMPTS copolymers to the SiO2 surface. In particular, the interfacial charge traps that affect Vth were minimized by grafting the 11 mol % MPTS-loaded copolymer to the polar dielectric surface. We believe that this ambient-air-processable silane-coupled copolymer can be used as a solution-based surface modifier for continuous, large-scale OFET fabrication. PMID:25700018

  19. Air-processable silane-coupled polymers to modify a dielectric for solution-processed organic semiconductors.

    PubMed

    Jang, Mi; Yu, Young Chang; Jeon, Hyeonyeol; Youk, Ji Ho; Yang, Hoichang

    2015-03-11

    Poly(styrene-r-3-methacryloxypropyltrimethoxysilane) (PSMPTS) copolymers were synthesized by the free radical polymerization of styrene and 3-methacryloxypropyltrimethoxysilane (MPTS) for use as surface modifiers. PSMPTS copolymers were spun-cast onto a hydrophilic SiO2 layer and were then annealed at 150 °C in ambient air. The polystyrene (PS)-based copolymer, with a molecular weight of 32 700 g mol(-1) and approximately 30 MPTS coupling sites, was easily grafted onto the SiO2 surface after annealing periods longer than 1 min, yielding a physicochemically stable layer. On the untreated and polymer-treated dielectrics, spin-casting of an ultrasonicated poly(3-hexyl thiophene) (P3HT) solution yielded highly interconnected crystal nanofibrils of P3HT. The resulting organic field-effect transistors (OFETs) showed similar mobility values of 0.01-0.012 cm(2) V(-1) s(-1) for all surfaces. However, the threshold voltage (Vth) drastically decreased from +13 (for bare SiO2) to 0 V by grafting the PSMPTS copolymers to the SiO2 surface. In particular, the interfacial charge traps that affect Vth were minimized by grafting the 11 mol % MPTS-loaded copolymer to the polar dielectric surface. We believe that this ambient-air-processable silane-coupled copolymer can be used as a solution-based surface modifier for continuous, large-scale OFET fabrication.

  20. A process to recover carbon fibers from polymer-matrix composites in end-of-life vehicles

    NASA Astrophysics Data System (ADS)

    Jody, Bassam J.; Pomykala, Joseph A.; Daniels, Edward J.; Greminger, Jessica L.

    2004-08-01

    Because of their high strength-to-weight ratios, carbon-fiber-reinforced polymer-matrix composite (PMC) materials are being evaluated for use in the automotive industry. The major barriers to their widespread use are their relatively high cost and the uncertainty about whether they can be recycled. A process to recover carbon fibers from obsolete PMC materials has been developed at Argonne National Laboratory. The process was tested using PMC samples made with different thermoset or thermoplastic substrates. For most mixtures of PMCs, the process can be energy self-sufficient using the polymer substrate as an energy source. An evaluation of the recovered samples found that the fibers appear to have retained good properties and characteristics and are suitable for short fiber applications. This paper describes the process and the characteristics and properties of the recovered fibers.

  1. Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin

    of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.

  2. Effect of Aging on Bond Strength of Two Soft Lining Materials to a Denture Base Polymer.

    PubMed

    Salloum, Alaa'a M

    2014-12-01

    The purpose of this study was evaluation the effect of immersion in distilled water and inorganic artificial saliva on the shear bond strength of a heat-polymerized and an auto-polymerized silicone-based denture lining materials. The denture liners investigated were Molloplast-B (heat-polymerized), and Mollosil plus (auto-polymerized). The soft liner specimens were 10 × 10 × 2.5 mm and were processed between two poly(methylmethacrylate) plates. Thirty shear specimens for each type of test lining material were prepared. Specimens were divided equally into three groups for each test lining material: first group, specimens were tested after 48 h of preparation without immersion; second group, specimens were tested following immersion in distilled water at 37 °C for 12 months; and third group, specimens were tested following immersion in inorganic artificial saliva at 37 °C for 12 months. Shear bond strength was measured using an universal testing machine at a crosshead speed of 40 mm/min and failure mode (adhesive, cohesive and mixed) after debonding was assessed. Data were statistically analyzed with one-way analysis of variance (ANOVA) (α = 0.05). ANOVA was followed by Bonferroni post hoc tests for pairwise comparisons. A significant difference in shear bond strength was detected between Molloplast-B and Mollosil plus following immersion in distilled water and artificial saliva. Molloplast-B demonstrated considerably higher shear strength than Mollosil plus after immersion. Shear strengths of the lining materials investigated reduced significantly after immersion in both solutions. Visual examination after separation revealed that the soft materials tested exhibited mostly adhesive failure. The effect of immersion in distilled water and inorganic artificial saliva on bond strength of test lining materials was perceivable; however, both of them had acceptable bond strength and might be proper for long-term use. PMID:26199507

  3. The Origin of Aging: Imperfectness-Driven Non-Random Damage Defines the Aging Process and Control of Lifespan

    PubMed Central

    Gladyshev, Vadim N.

    2013-01-01

    Physico-chemical properties preclude ideal biomolecules and perfect biological functions. This inherent imperfectness leads to the generation of damage by every biological process, at all levels, from small molecules to cells. The damage is too numerous to be repaired, is partially invisible to natural selection and manifests as aging. I propose that it is the inherent imperfectness of biological systems that is the true root of the aging process. As each biomolecule generates specific forms of damage, the cumulative damage is largely non-random and is indirectly encoded in the genome. I consider this concept in light of other proposed theories of aging and integrate these disparate ideas into a single model. I also discuss the evolutionary significance of damage accumulation and strategies for reducing damage. Finally, I suggest ways to test this integrated model of aging. PMID:23769208

  4. For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes

    SciTech Connect

    Charles McCormick; Roger Hester

    2003-02-28

    Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge density terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.

  5. Efficient inverted polymer solar cells using low-temperature zinc oxide interlayer processed from aqueous solution

    NASA Astrophysics Data System (ADS)

    Chen, Dazheng; Zhang, Chunfu; Heng, Ting; Wei, Wei; Wang, Zhizhe; Han, Genquan; Feng, Qian; Hao, Yue; Zhang, Jincheng

    2015-04-01

    In this work, an aqueous solution method that entails processing at low temperatures is utilized to deposit a ZnO interlayer in poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61 butyric acid methyl ester-based inverted polymer solar cells (PSCs). The effect of ZnO annealing temperature from 50 to 150 °C on PSC performance is systemically studied and it is found that the transition point is approximately 80 °C. When the ZnO annealing temperature is higher than 80 °C, PSCs show similar current density-voltage (J-V) characteristics and achieve a power conversion efficiency higher than 3.5%. Transmittance spectrum, PL spectrum, and surface morphology studies show that an annealing temperature above 80 °C is sufficient for ZnO to achieve a relatively good quality, and that a higher temperature only slightly improves ZnO quality, which is confirmed from statistical results. Furthermore, flexible PSCs based on PET substrates show a comparable power conversion efficiency and good flexibility.

  6. Solution-processed nickel compound as hole collection layer for efficient polymer solar cells

    NASA Astrophysics Data System (ADS)

    He, Shaojian; Li, Shusheng; Tan, Zhan'ao; Zheng, Hua; Lin, Jun; Hu, Siqian; Liu, Jiyan; Li, Yongfang

    2014-12-01

    We demonstrated efficient bulk heterojunction polymer solar cells (PSCs) by inserting a solution-processable hole collection layer (HCL) between the indium tin oxide (ITO) electrode and photoactive layer. The HCL was prepared by spin-coating nickel acetylacetonate (Ni(acac)2) isopropanol solution on ITO, and then baking in air at 180 °C for 10 min followed by UV ozone treatment, which was marked as a-Ni(acac)2. The a-Ni(acac)2 HCL shows suitable energy levels, high hole mobility of 4.09  ×  10-3 cm2 V-1·s-1, and high transparency with light transmittance better than poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) in the wavelength range 550-800 nm. The PSCs with a-Ni(acac)2 HCL showed improved performance compared with the PSCs without or with traditional PEDOT:PSS HCL. The power conversion efficiency of the PSC based on PBDTTT-C-T:PC70BM with a-Ni(acac)2 HCL reached 7.84% under the illumination of AM 1.5 G, 100 mW cm-2.

  7. Influence of Processing Conditions and Material Properties on Electrohydrodynamic Direct Patterning of a Polymer Solution

    NASA Astrophysics Data System (ADS)

    Jang, Shin; Kim, Yeongjun; Oh, Je Hoon

    2016-04-01

    An electrohydrodynamic (EHD) patterning method was utilized to obtain high-resolution line patterns in a low electric field regime without an additional mechanical drawing process. Molecular weight and weight percent of a polymer were selected as key parameters to reduce the voltage. EHD patterning was performed using polyethylene oxide (PEO) solutions. The threshold voltages (V th) to initiate jet ejection are almost the same for all solutions. A method verified in this study, reducing the driving voltage (V d) just after the initiation of the jet at the threshold voltage, can make a very thin, continuous jet, while increasing molecular weight and weight percent were enabled to further reduce the input voltage. As the voltage reduction ratio (V d/ V th) is decreased, the jet behaves like a solid rather than a liquid due to its fast solidification. The line width of the resultant line pattern could be tuned from 50 nm to 10 μm depending on the substrate moving speed. Contour maps were also developed that show the pattern mode variation as a function of the voltage reduction ratio and key parameters. The results show that well-defined PEO line and grid patterns can be fabricated via the proposed EHD direct patterning under appropriate conditions.

  8. The future of carbon dioxide for polymer processing in tissue engineering.

    PubMed

    Bhamidipati, Manjari; Scurto, Aaron M; Detamore, Michael S

    2013-06-01

    The use of CO2 for scaffold fabrication in tissue engineering was popularized in the mid-1990 s as a tool for producing polymeric foam scaffolds, but had fallen out of favor to some extent, in part due to challenges with pore interconnectivity. Pore interconnectivity issues have since been resolved by numerous dedicated studies that have collectively outlined how to control the appropriate parameters to achieve a pore structure desirable for tissue regeneration. In addition to CO2 foaming, several groups have leveraged CO2 as a swelling agent to impregnate scaffolds with drugs and other bioactive additives, and for encapsulation of plasmids within scaffolds for gene delivery. Moreover, in contrast to CO2 foaming, which typically relies on supercritical CO2 at very high pressures, CO2 at much lower pressures has also been used to sinter polymeric microspheres together in the presence of cells to create cell-seeded scaffolds in a single step. CO2 has a number of advantages for polymer processing in tissue engineering, including its ease of use, low cost, and the opportunity to circumvent the use of organic solvents. Building on these advantages, and especially now with the tremendous precedent that has paved the way in defining operating parameters, and making the technology accessible for new groups to adapt, we invite and encourage our colleagues in the field to leverage CO2 as a new tool to enhance their own respective unique capabilities.

  9. The Future of Carbon Dioxide for Polymer Processing in Tissue Engineering

    PubMed Central

    Bhamidipati, Manjari; Scurto, Aaron M.

    2013-01-01

    The use of CO2 for scaffold fabrication in tissue engineering was popularized in the mid-1990s as a tool for producing polymeric foam scaffolds, but had fallen out of favor to some extent, in part due to challenges with pore interconnectivity. Pore interconnectivity issues have since been resolved by numerous dedicated studies that have collectively outlined how to control the appropriate parameters to achieve a pore structure desirable for tissue regeneration. In addition to CO2 foaming, several groups have leveraged CO2 as a swelling agent to impregnate scaffolds with drugs and other bioactive additives, and for encapsulation of plasmids within scaffolds for gene delivery. Moreover, in contrast to CO2 foaming, which typically relies on supercritical CO2 at very high pressures, CO2 at much lower pressures has also been used to sinter polymeric microspheres together in the presence of cells to create cell-seeded scaffolds in a single step. CO2 has a number of advantages for polymer processing in tissue engineering, including its ease of use, low cost, and the opportunity to circumvent the use of organic solvents. Building on these advantages, and especially now with the tremendous precedent that has paved the way in defining operating parameters, and making the technology accessible for new groups to adapt, we invite and encourage our colleagues in the field to leverage CO2 as a new tool to enhance their own respective unique capabilities. PMID:23289736

  10. The effect of processing additives for charge generation, recombination, and extraction in bulk heterojunction layers of all-polymer photovoltaics

    NASA Astrophysics Data System (ADS)

    Kim, Yu Jin; Ahn, Sunyong; Wang, Dong Hwan; Park, Chan Eon

    2015-08-01

    Bulk heterojunction all-polymer solar cells, fabricated with poly{[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b']dithiophene-2,6-diyl]-alt-[2-(2-ethyl-hexanoyl)-thieno[3,4-b']thiophen-4,6-diyl]} (PBDTTT-CT) as a donor polymer, and a acceptor polymer, poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)), have been demonstrated and have achieved a power conversion efficiency exceeding 3.7% by using 1,8-diiodooctane (DIO) as a processing additive. Based on the analysis of charge carrier dynamics (charge generation, separation, and extraction), we found that the appropriate ratio of processing solvent additive (5 vol. % DIO) leads to enhanced device performance and favorable morphological characteristics. This research, therefore, indicates that the incorporation of a DIO additive in all-polymer blends is an effective way to form a morphologically ideal heterojunction network and thereby improve charge carrier kinetics for efficient photovoltaic devices.

  11. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites.

    PubMed

    Kluge, Johannes; Mazzotti, Marco

    2012-10-15

    The study explores the enabling role of near-critical CO(2) as a reversible plasticizer in the high pressure homogenization of polymer particles, aiming at their comminution as well as at the formation of drug-polymer composites. First, the effect of near-critical CO(2) on the homogenization of aqueous suspensions of poly lactic-co-glycolic acid (PLGA) was investigated. Applying a pressure drop of 900 bar and up to 150 passes across the homogenizer, it was found that particles processed in the presence of CO(2) were generally of microspherical morphology and at all times significantly smaller than those obtained in the absence of a plasticizer. The smallest particles, exhibiting a median x(50) of 1.3 μm, were obtained by adding a small quantity of ethyl acetate, which exerts on PLGA an additional plasticizing effect during the homogenization step. Further, the study concerns the possibility of forming drug-polymer composites through simultaneous high pressure homogenization of the two relevant solids, and particularly the effect of near-critical CO(2) on this process. Therefore, PLGA was homogenized together with crystalline S-ketoprofen (S-KET), a non-steroidal anti-inflammatory drug, at a drug to polymer ratio of 1:10, a pressure drop of 900 bar and up to 150 passes across the homogenizer. When the process was carried out in the presence of CO(2), an impregnation efficiency of 91% has been reached, corresponding to 8.3 wt.% of S-KET in PLGA; moreover, composite particles were of microspherical morphology and significantly smaller than those obtained in the absence of CO(2). The formation of drug-polymer composites through simultaneous homogenization of the two materials is thus greatly enhanced by the presence of CO(2), which increases the efficiency for both homogenization and impregnation.

  12. Genetic Variance in Processing Speed Drives Variation in Aging of Spatial and Memory Abilities

    PubMed Central

    Finkel, Deborah; McArdle, John J.; Reynolds, Chandra A.; Hamagami, Fumiaki; Pedersen, Nancy L.

    2013-01-01

    Previous analyses have identified a genetic contribution to the correlation between declines with age in processing speed and higher cognitive abilities. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories for processing speed and cognitive abilities. Longitudinal twin data from the Swedish Adoption/Twin Study of Aging, including up to 5 measurement occasions covering a 16-year period, were available from 806 participants ranging in age from 50 to 88 years at the 1st measurement wave. Factors were generated to tap 4 cognitive domains: verbal ability, spatial ability, memory, and processing speed. Model-fitting indicated that genetic variance for processing speed was a leading indicator of variation in age changes for spatial and memory ability, providing additional support for processing speed theories of cognitive aging. PMID:19413434

  13. Electrodeposition of nonconducting polymers: roles of carbon nanotubes in the process and products.

    PubMed

    Hu, Di; Peng, Chuang; Chen, George Z

    2010-07-27

    The self-limiting electrodeposition of nonconducting polymers, such as poly(o-aminophenol) (PoAP), has been continued by the addition of acid treated carbon nanotubes (CNTs) into the aqueous monomer solution without any other supporting electrolyte. Electron microscopy revealed fairly thick (>8 microm) and highly porous nanocomposite films on electrodes, consisting of CNTs which were well interconnected and individually coated with a thin layer (e.g., 30 nm) of the nonconducting polymer. The mechanism behind this approach is explainable by the newly arrived CNTs and those entrapped in the nonconducting polymer matrix providing extra reaction and growth sites, and extended electron pathways, leading to sustained electro-co-deposition of the nonconducting polymer and CNTs into the nanoporous composite films. Promising applications of the PoAP-CNT composite were explored, such as CO2 sensing in water, and energy storage in an unprecedented metal-free supercapattery. PMID:20550142

  14. Effect of dietary boron on the aging process.

    PubMed Central

    Massie, H R

    1994-01-01

    Total boron concentrations in Drosophila changed during development and aging. The highest concentration of boron was found during the egg stage, followed by a decline during the larval stages. Newly emerged flies contained 35.5 ppm boron. During the adult stage the boron concentration increased by 52% by 9 weeks of age. Adding excess dietary boron during the adult stage decreased the median life span by 69% at 0.01 M sodium borate and by 21% at 0.001 M sodium borate. Lower concentrations gave small but significant increases in life span. Supplementing a very low boron diet with 0.00025 M sodium borate improved life span by 9.5%. The boron contents of young and old mouse tissues were similar to those of Drosophila and human samples. Boron supplements of 4.3 and 21.6 ppm in the drinking water, however, did not significantly change the life span of old mice fed a diet containing 31.1 ppm boron. PMID:7889879

  15. Initiation of polymer degradation via transfer of infectious species.

    SciTech Connect

    Clough, Roger Lee; Jones, Gary Dunn; Celina, Mathias Christopher

    2005-06-01

    A novel dual stage chemiluminescence detection system incorporating individually controlled hot stages has been developed and applied to probe for material interaction effects during polymer degradation. Utilization of this system has resulted in experimental confirmation for the first time that in an oxidizing environment a degrading polymer A (in this case polypropylene, PP) is capable of infecting a different polymer B (in this case polybutadiene, HTPB) over a relatively large distance. In the presence of the infectious degrading polymer A, the thermal degradation of polymer B is observed over a significantly shorter time period. Consistent with infectious volatiles from material A initiating the degradation process in material B it was demonstrated that traces (micrograms) of a thermally sensitive peroxide in the vicinity of PP could induce degradation remotely. This observation documents cross-infectious phenomena between different polymers and has major consequences for polymer interactions, understanding fundamental degradation processes and long-term aging effects under combined material exposures.

  16. Initiation of polymer degradation via transfer of infectious species.

    SciTech Connect

    Clough, Roger Lee; Jones, Gary D.; Celina, Mathias Christopher

    2005-02-01

    A novel dual stage chemiluminescence detection system incorporating individually controlled hot stages has been developed and applied to probe for material interaction effects during polymer degradation. Utilization of this system has resulted in experimental confirmation for the first time that in an oxidizing environment a degrading polymer A (in this case polypropylene, PP) is capable of infecting a different polymer B (in this case polybutadiene, HTPB) over a relatively large distance. In the presence of the infectious degrading polymer A, the thermal degradation of polymer B is observed over a significantly shorter time period. Consistent with infectious volatiles from material A initiating the degradation process in material B it was demonstrated that traces (micrograms) of a thermally sensitive peroxide in the vicinity of PP could induce degradation remotely. This observation documents cross-infectious phenomena between different polymers and has major consequences for polymer interactions, understanding fundamental degradation processes and long-term aging effects under combined material exposures.

  17. Aging and Others' Pain Processing: Implications for Hospitalization

    PubMed Central

    2014-01-01

    Objectives. While self-pain perception has been widely investigated in aging, the perception as well as memory of pain in others has received little attention. Methods. The study was designed as a cross-sectional behavioral study in which a group of 41 younger and a group of 41 older adults evaluated a series of valenced and pain-related pictures and were later required to recall them. Results. We found that older adults judge the stimuli as being less intense compared to their younger counterparts. However, older adults remembered a larger number of pictures with individuals expressing pain compared to pictures with individuals who have neutral or positive facial expressions. Conclusions. Older adults may underestimate emotional intensity in others, but they seem to remember painful information in others as well as younger adults. These data are discussed in terms of theories of pain perception and implications for hospitalization. PMID:25254040

  18. Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process.

    PubMed

    Villano, Marianna; Valentino, Francesco; Barbetta, Andrea; Martino, Lucrezia; Scandola, Mariastella; Majone, Mauro

    2014-06-25

    Polyhydroxyalkanoates (PHA) production with mixed microbial cultures (MMC) has been investigated by means of a sequential process involving three different stages, consisting of a lab-scale sequencing batch reactor for MMC selection, a PHA accumulation reactor and a polymer extraction reactor. All stages were performed under continuous operation for at least 4 months to check the overall process robustness as well as the related variability of polymer composition and properties. By operating both biological stages at high organic loads (8.5 and 29.1 gCOD/Ld, respectively) with a synthetic mixture of acetic and propionic acid, it was possible to continuously produce PHA at 1.43 g/Ld with stable performance (overall, the storage yield was 0.18 COD/COD). To identify the optimal operating conditions of the extraction reactor, two digestion solutions have been tested, NaOH (1m) and NaClO (5% active Cl2). The latter resulted in the best performance both in terms of yield of polymer recovery (around 100%, w/w) and purity (more than 90% of PHA content in the residual solids, on a weight basis). In spite of the stable operating conditions and performance, a large variation was observed for the HV content, ranging between 4 and 20 (%, w/w) for daily samples after accumulation and between 9 and 13 (%, w/w) for weekly average samples after extraction and lyophilization. The molecular weight of the produced polymer ranged between 3.4 × 10(5) and 5.4 × 10(5)g/mol with a large polydispersity index. By contrast, TGA and DSC analysis showed that the thermal polymer behavior did not substantially change over time, although it was strongly affected by the extraction agent used (NaClO or NaOH).

  19. Improved electron transport properties of n-type naphthalenediimide polymers through refined molecular ordering and orientation induced by processing solvents.

    PubMed

    An, Yujin; Long, Dang Xuan; Kim, Yiho; Noh, Yong-Young; Yang, Changduk

    2016-05-14

    To determine the role played by the choice of processing solvents in governing the photophysics, microstructure, and charge carrier transport in naphthalenediimide (NDI)-based polymers, we have prepared two new NDI-bithiophene (T2)- and NDI-thienothiophene (TTh)-containing polymers with hybrid siloxane pentyl chains (SiC5) (P(NDI2SiC5-T2) and P(NDI2SiC5-TTh)). Among the various processing solvents studied here, the films prepared using chloroform exhibited far better electron mobilities (0.16 ± 0.1-0.21 ± 0.05 cm(2) V(-1) s(-1)) than the corresponding samples prepared from different solvents, exceeding one order of magnitude higher, indicating the significant influence of the processing solvent on the charge transport. Upon thin-film analysis using atomic force microscopy and grazing incidence X-ray diffraction, we discovered that molecular ordering and orientation are affected by the choice of the processing solvent, which is responsible for the change in the transport characteristics of this class of polymers. PMID:27087486

  20. Emerging Adulthood: Age-Related Tasks and Underlying Self Processes

    ERIC Educational Resources Information Center

    Shulman, Shmuel; Feldman, Benni; Blatt, Sidney; Cohen, Omri; Mahler, Amalya

    2005-01-01

    Seventy-two Israeli emerging adults were interviewed for descriptions of themselves and accounts of their personal, social, and professional dreams, current life status, romantic relationships, and relationships with their parents. Interviews were transcribed and rated on scales assessing self-processes, attainment of professional and romantic…

  1. Word Learning and Phonetic Processing in Preschool-Age Children

    ERIC Educational Resources Information Center

    Havy, Melanie; Bertoncini, Josiane; Nazzi, Thierry

    2011-01-01

    Consonants and vowels have been shown to play different relative roles in different processes, including retrieving known words from pseudowords during adulthood or simultaneously learning two phonetically similar pseudowords during infancy or toddlerhood. The current study explores the extent to which French-speaking 3- to 5-year-olds exhibit a…

  2. Lexical Processing Skill in College-Age Resilient Readers

    ERIC Educational Resources Information Center

    Welcome, Suzanne E.; Chiarello, Christine; Halderman, Laura K.; Leonard, Christiana M.

    2009-01-01

    Despite an extensive literature linking individual differences in phonological processing to reading ability, some adults show normal text comprehension abilities despite poor pseudoword reading (Jackson & Doellinger (2002). "Journal of Educational Psychology," 94, 64-78). This study was undertaken to investigate differences between these…

  3. Electro-Mechanical Properties of Metal-Insulator-Metal Device Fabricated on Polymer Substrate Using Low-Temperature Process

    NASA Astrophysics Data System (ADS)

    Park, Sung Kyu; Han, Jeong In; Kim, Won Keun; Hong, Sung Jei; Kwak, Min Gi; Lee, Myung Jae; Chung, Kwan Soo

    2002-02-01

    High-performance metal-insulator-metal (MIM) devices on flexible polymer substrates were successfully fabricated without any defects such as cracks, delamination and blistering. This work examines the mechanical and electrical properties of MIM devices constructed using anodic Ta2O5 films. Using newly developed methods including stepped heating process and low-temperature post-annealing below 180°C, we obtained high-performances MIM devices on polymer substrates. Here, we propose the use of stacked bottom electrode and water barrier layer in order to enhance the ductility of the Ta electrode and to prevent blistering problems, respectively. Rutherford backscattering spectroscopy (RBS), auger electron spectroscopy (AES) and transmission electronic microscope (TEM) observations were performed for the structural investigation of the MIM devices on polymer substrates. Electrical measurements were also carried out for as-deposited and thermally treated MIM devices including Al/Ta/Ta2O5/Cr or Ti structures. They exhibit a low leakage current (below 10-7 A/cm2 at 2 MV) and reasonable breakdown voltage (5-7 MV/cm) with a uniformity of 92%. Finally, under low-temperature post-annealing conditions, The Current-Voltage (I-V) behaviors and conduction mechanisms of MIM devices on polymer substrates are discussed based on the results of electrical measurements, structural investigations and conduction band modeling.

  4. Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar Cells with Fullerene Intercalation

    NASA Astrophysics Data System (ADS)

    Xiao, Ting; Xu, Haihua; Grancini, Giulia; Mai, Jiangquan; Petrozza, Annamaria; Jeng, U.-Ser; Wang, Yan; Xin, Xin; Lu, Yong; Choon, Ng Siu; Xiao, Hu; Ong, Beng S.; Lu, Xinhui; Zhao, Ni

    2014-06-01

    The interpenetrating morphology formed by the electron donor and acceptor materials is critical for the performance of polymer:fullerene bulk heterojunction (BHJ) photovoltaic (PV) cells. In this work we carried out a systematic investigation on a high PV efficiency (>6%) BHJ system consisting of a newly developed 5,6-difluorobenzo[c] thiadiazole-based copolymer, PFBT-T20TT, and a fullerene derivative. Grazing incidence X-ray scattering measurements reveal the lower-ordered nature of the BHJ system as well as an intermixing morphology with intercalation of fullerene molecules between the PFBT-T20TT lamella. Steady-state and transient photo-induced absorption spectroscopy reveal ultrafast charge transfer (CT) at the PFBT-T20TT/fullerene interface, indicating that the CT process is no longer limited by exciton diffusion. Furthermore, we extracted the hole mobility based on the space limited current (SCLC) model and found that more efficient hole transport is achieved in the PFBT-T20TT:fullerene BHJ as compared to pure PFBT-T20TT, showing a different trend as compared to the previously reported highly crystalline polymer:fullerene blend with a similar intercalation manner. Our study correlates the fullerene intercalated polymer lamella morphology with device performance and provides a coherent model to interpret the high photovoltaic performance of some of the recently developed weakly-ordered BHJ systems based on conjugated polymers with branched side-chain.

  5. Controlled processes account for age-related decrease in episodic memory.

    PubMed

    Vanderaspoilden, Valérie; Adam, Stéphane; der Linden, Martial Van; Morais, José

    2007-05-01

    A decrease in controlled processes has been proposed to be responsible for age-related episodic memory decline. We used the Process Dissociation Procedure, a method that attempts to estimate the contribution of controlled and automatic processes to cognitive performance, and entered both estimates in regression analyses. Results indicate that only controlled processes explained a great part of the age-related variance in a word recall task, especially when little environmental support was offered. PMID:16860766

  6. Cognitive aging in patients with multiple sclerosis: a cross-sectional analysis of speeded processing.

    PubMed

    Bodling, Angela M; Denney, Douglas R; Lynch, Sharon G

    2009-12-01

    Studies have identified generalized slowing in information processing speed as the primary cognitive deficit in multiple sclerosis (MS). Similar changes are also commonly observed in healthy cognitive aging. The present study is the first to examine the combined impact of aging and disease on the course of cognitive slowing. MS patients (N = 245) and healthy controls (N = 188) were assessed using two measures of processing speed (the preliminary word reading and color naming trials of the Stroop). Participants ranging in age from 18 to 74 were grouped into five age cohorts. Slowing in processing speed was evident for patients vs. controls and for older vs. younger cohorts. The age-related declines in performance were parallel for patients and controls, indicating that the disease process in MS does not interact with general cognitive aging to effect a more rapid decline in functioning.

  7. A high throughput MATLAB program for automated force-curve processing using the AdG polymer model.

    PubMed

    O'Connor, Samantha; Gaddis, Rebecca; Anderson, Evan; Camesano, Terri A; Burnham, Nancy A

    2015-02-01

    Research in understanding biofilm formation is dependent on accurate and representative measurements of the steric forces related to brush on bacterial surfaces. A MATLAB program to analyze force curves from an AFM efficiently, accurately, and with minimal user bias has been developed. The analysis is based on a modified version of the Alexander and de Gennes (AdG) polymer model, which is a function of equilibrium polymer brush length, probe radius, temperature, separation distance, and a density variable. Automating the analysis reduces the amount of time required to process 100 force curves from several days to less than 2min. The use of this program to crop and fit force curves to the AdG model will allow researchers to ensure proper processing of large amounts of experimental data and reduce the time required for analysis and comparison of data, thereby enabling higher quality results in a shorter period of time.

  8. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically <5 years MRT. Vertical groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of

  9. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    NASA Astrophysics Data System (ADS)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  10. Real-Time Language Processing in School-Age Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Montgomery, James W.

    2006-01-01

    Background:School-age children with specific language impairment (SLI) exhibit slower real-time (i.e. immediate) language processing relative to same-age peers and younger, language-matched peers. Results of the few studies that have been done seem to indicate that the slower language processing of children with SLI is due to inefficient…

  11. False Memory in Aging Resulting From Self-Referential Processing

    PubMed Central

    2013-01-01

    Objectives. Referencing the self is known to enhance accurate memory, but less is known about how the strategy affects false memory, particularly for highly self-relevant information. Because older adults are more prone to false memories, we tested whether self-referencing increased false memories with age. Method. In 2 studies, older and younger adults rated adjectives for self-descriptiveness and later completed a surprise recognition test comprised of words rated previously for self-descriptiveness and novel lure words. Lure words were subsequently rated for self-descriptiveness in order to assess the impact of self-relevance on false memory. Study 2 introduced commonness judgments as a control condition, such that participants completed a recognition test on adjectives rated for commonness in addition to adjectives in the self-descriptiveness condition. Results. Across both studies, findings indicate an increased response bias to self-referencing that increased hit rates for both older and younger adults but also increased false alarms as information became more self-descriptive, particularly for older adults. Discussion. Although the present study supports previous literature showing a boost in memory for self-referenced information, the increase in false alarms, especially in older adults, highlights the potential for memory errors, particularly for information that is strongly related to the self. PMID:23576449

  12. Solution-Processed 8-Hydroquinolatolithium as Effective Cathode Interlayer for High-Performance Polymer Solar Cells.

    PubMed

    Liu, Wenqing; Liang, Tao; Chen, Qi; Yu, Zhikai; Zhang, Yingying; Liu, Yujing; Fu, Weifei; Tang, Feng; Chen, Liwei; Chen, Hongzheng

    2016-04-13

    Solution-processed 8-hydroxyquinolinatolithium (s-Liq) was successfully applied as an efficient cathode interlayer in bulk heterojunction polymer solar cells (PSCs), giving rise to enhancement in device performance. The ultraviolet photoelectron spectra results revealed that the presence of s-Liq could lower work function of Al cathode, allowing for the ohmic contacts with the fullerene acceptor for better electron extraction and also a larger work function difference between the two electrodes, which leads to an increase in open-circuit voltage (V(oc)). Scanning Kelvin probe microscopy study on the surface potential of active layers suggested that an interfacial dipole was formed in the s-Liq interlayer between the active layer and the Al cathode, which enhanced the intrinsic built-in potential in the device for better charge transportation and extraction. Consequently, the V(oc), fill factor, and current density of the device can be improved by the introduction of s-Liq interlayer, leading to a power conversion efficiency (PCE) improvement. With PTB7 (or PTB7-Th) as the donor and PC71BM as the acceptor, the s-Liq-based PSC devices exhibited a PCE of 8.37% (or 9.04%), much higher than those of devices with the evaporated Liq (7.62%) or commonly used PFN (8.14%) as the cathode interlayer. Moreover, the s-Liq-based devices showed good stability, maintaining 75% (in N2) and 45% (in air) of the initial PCE after 7 days, respectively. These results suggest the great potential of s-Liq as cathode interlayer material for high-performance solar cells application.

  13. Solution-Processed 8-Hydroquinolatolithium as Effective Cathode Interlayer for High-Performance Polymer Solar Cells.

    PubMed

    Liu, Wenqing; Liang, Tao; Chen, Qi; Yu, Zhikai; Zhang, Yingying; Liu, Yujing; Fu, Weifei; Tang, Feng; Chen, Liwei; Chen, Hongzheng

    2016-04-13

    Solution-processed 8-hydroxyquinolinatolithium (s-Liq) was successfully applied as an efficient cathode interlayer in bulk heterojunction polymer solar cells (PSCs), giving rise to enhancement in device performance. The ultraviolet photoelectron spectra results revealed that the presence of s-Liq could lower work function of Al cathode, allowing for the ohmic contacts with the fullerene acceptor for better electron extraction and also a larger work function difference between the two electrodes, which leads to an increase in open-circuit voltage (V(oc)). Scanning Kelvin probe microscopy study on the surface potential of active layers suggested that an interfacial dipole was formed in the s-Liq interlayer between the active layer and the Al cathode, which enhanced the intrinsic built-in potential in the device for better charge transportation and extraction. Consequently, the V(oc), fill factor, and current density of the device can be improved by the introduction of s-Liq interlayer, leading to a power conversion efficiency (PCE) improvement. With PTB7 (or PTB7-Th) as the donor and PC71BM as the acceptor, the s-Liq-based PSC devices exhibited a PCE of 8.37% (or 9.04%), much higher than those of devices with the evaporated Liq (7.62%) or commonly used PFN (8.14%) as the cathode interlayer. Moreover, the s-Liq-based devices showed good stability, maintaining 75% (in N2) and 45% (in air) of the initial PCE after 7 days, respectively. These results suggest the great potential of s-Liq as cathode interlayer material for high-performance solar cells application. PMID:27015527

  14. Study and modeling of the ironing process on a multi-layered polymer coated low-carbon steel

    NASA Astrophysics Data System (ADS)

    Selles Canto, Miguel Angel

    The ironing process is the most crucial step in the manufacture of cans. Sheet steel covered by three polymer layers can be used as the starting material, but this coating must neither break nor fail in any manner in order to be considered as a viable and effective alternative to traditional practice. During ironing, the deformations are severe and high pressures exist at the tool-workpiece interface. Thickness reductions inherent in ironing require a large amount of surface generation. Deterioration of the coating in this delicate operation might enable direct contact of the stored food or drink with the metal. As can be appreciated, the key to the use of polymer-coated steel sheets in the manufacture of cans lies in the survival of these layers during the ironing process. Another important issue is the roughness of the newly-generated surface, because it should be possible to decorate the can without any difficulty. Changing the traditional manufacture of metallic containers such as cans and using this new coated material permits great reduction in environmental contaminants produced as a result of avoiding the formation of Volatile Organic Compounds (VOCs) during the manufacture of the polymer layers. This reduction is even greater because of not using additional lubricants due to the self-lubricanting property of the solid polymer coating layers during the drawing process. These objectives, together with the improvement of the mechanical characteristics and the adhesion of the painting or decorative priming, are realized by the use of the proposed material. In the existing bibliography about ironing processes on coated materials, some authors propose the use of the Upper Bound Theorem for modeling the material behavior. The present research shows for the first time the modeling of the ironing process on a three-layer polymer coated material. In addition, it takes into account the cases in which successful ironing is produced and those in which ones the ironing

  15. Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds.

    PubMed

    Motealleh, Azadeh; Eqtesadi, Siamak; Perera, Fidel Hugo; Pajares, Antonia; Guiberteau, Fernando; Miranda, Pedro

    2016-12-01

    The effect of different dip-coating variables-solvent, deposition temperature and polymer concentration-on the mechanical performance of polycaprolactone-coated 45S5 bioglass robocast scaffolds is systematically analyzed in this work. The reproducible geometry of the scaffolds produced by this additive manufacturing technique makes them an optimal model system and facilitates the analysis. The results suggest that the mechanical performance of the hybrid scaffolds is improved monotonically with polymer concentration, but this concentration cannot be increased indefinitely if the macroporosity interconnectivity, and thus the scaffold׳s capacity to promote tissue ingrowth, are to be preserved. An optimal concentration, and therefore viscosity (~1-4Pas in the present case), exists for any given set of process variables (scaffold geometry and material, polymer, solvent and process temperature) that yields coatings with optimal reinforcement and minimal reduction of scaffold functionality. Solvent and process temperature do not directly affect the strengthening provided by the polymeric coating. However they can determine the maximum concentration at the critical viscosity, and thereby the maximum achievable mechanical performance of the resulting hybrid scaffold.

  16. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-04-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V‑1s‑1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements.

  17. Computer simulation of bridging flocculation processes: The role of colloid to polymer concentration ratio on aggregation kinetics

    SciTech Connect

    Stoll, S.; Buffle, J.

    1996-06-25

    The flocculation of colloidal particles by adsorbing polymers is one of the central issues of colloid science and a very important topic in many industrial, biological, and environmental processes. The authors report a computer simulation study of a 2- and 3-dimensional model for bridging flocculation between large linear polymer chains and comparatively small colloidal particles, where the structure and growth kinetics of cluster formation are investigated. This model was developed within the framework of the cluster-cluster aggregation model using mass and fractal dimension dependent diffusion constants, where bridging flocculation is seen as a case of heterocoagulation in which, in addition, macromolecule configurations and lengths play an important role. The simulation of aggregate structure and formation kinetics obtained at different (1) relative particle concentrations, (2) polymer chain conformations, and (3) sticking probabilities are described from a qualitatively and quantitative point of view. The results suggest that the formation of large aggregates is a slow process, controlled by the reactivity of the clusters, even when the reaction between microcolloids and macrochains is very fast. Aggregation kinetics are strongly dependent on the particle/chain concentration ratio and on the configurational properties of the chains. It is shown that the scaling laws which are valid for homocoagulation processes are also applicable to the kinetics of bridging flocculation. The corresponding scaling exponents have been calculated.

  18. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors.

    PubMed

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm(2)V(-1)s(-1)), on/off ratio (10(7)), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  19. Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds.

    PubMed

    Motealleh, Azadeh; Eqtesadi, Siamak; Perera, Fidel Hugo; Pajares, Antonia; Guiberteau, Fernando; Miranda, Pedro

    2016-12-01

    The effect of different dip-coating variables-solvent, deposition temperature and polymer concentration-on the mechanical performance of polycaprolactone-coated 45S5 bioglass robocast scaffolds is systematically analyzed in this work. The reproducible geometry of the scaffolds produced by this additive manufacturing technique makes them an optimal model system and facilitates the analysis. The results suggest that the mechanical performance of the hybrid scaffolds is improved monotonically with polymer concentration, but this concentration cannot be increased indefinitely if the macroporosity interconnectivity, and thus the scaffold׳s capacity to promote tissue ingrowth, are to be preserved. An optimal concentration, and therefore viscosity (~1-4Pas in the present case), exists for any given set of process variables (scaffold geometry and material, polymer, solvent and process temperature) that yields coatings with optimal reinforcement and minimal reduction of scaffold functionality. Solvent and process temperature do not directly affect the strengthening provided by the polymeric coating. However they can determine the maximum concentration at the critical viscosity, and thereby the maximum achievable mechanical performance of the resulting hybrid scaffold. PMID:27522314

  20. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    PubMed Central

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  1. Lake Erie Yellow perch age estimation based on three structures: Precision, processing times, and management implications

    USGS Publications Warehouse

    Vandergoot, C.S.; Bur, M.T.; Powell, K.A.

    2008-01-01

    Yellow perch Perca flavescens support economically important recreational and commercial fisheries in Lake Erie and are intensively managed. Age estimation represents an integral component in the management of Lake Erie yellow perch stocks, as age-structured population models are used to set safe harvest levels on an annual basis. We compared the precision associated with yellow perch (N = 251) age estimates from scales, sagittal otoliths, and anal spine sections and evaluated the time required to process and estimate age from each structure. Three readers of varying experience estimated ages. The precision (mean coefficient of variation) of estimates among readers was 1% for sagittal otoliths, 5-6% for anal spines, and 11-13% for scales. Agreement rates among readers were 94-95% for otoliths, 71-76% for anal spines, and 45-50% for scales. Systematic age estimation differences were evident among scale and anal spine readers; less-experienced readers tended to underestimate ages of yellow perch older than age 4 relative to estimates made by an experienced reader. Mean scale age tended to underestimate ages of age-6 and older fish relative to otolith ages estimated by an experienced reader. Total annual mortality estimates based on scale ages were 20% higher than those based on otolith ages; mortality estimates based on anal spine ages were 4% higher than those based on otolith ages. Otoliths required more removal and preparation time than scales and anal spines, but age estimation time was substantially lower for otoliths than for the other two structures. We suggest the use of otoliths or anal spines for age estimation in yellow perch (regardless of length) from Lake Erie and other systems where precise age estimates are necessary, because age estimation errors resulting from the use of scales could generate incorrect management decisions. ?? Copyright by the American Fisheries Society 2008.

  2. Gender stereotypes across the ages: On-line processing in school-age children, young and older adults.

    PubMed

    Siyanova-Chanturia, Anna; Warren, Paul; Pesciarelli, Francesca; Cacciari, Cristina

    2015-01-01

    Most research to date on implicit gender stereotyping has been conducted with one age group - young adults. The mechanisms that underlie the on-line processing of stereotypical information in other age groups have received very little attention. This is the first study to investigate real time processing of gender stereotypes at different age levels. We investigated the activation of gender stereotypes in Italian in four groups of participants: third- and fifth-graders, young and older adults. Participants heard a noun that was stereotypically associated with masculine (preside "headmaster") or feminine roles (badante "social care worker"), followed by a male (padre "father") or female kinship term (madre "mother"). The task was to decide if the two words - the role noun and the kinship term - could describe the same person. Across all age groups, participants were significantly faster to respond, and significantly more likely to press 'yes,' when the gender of the target was congruent with the stereotypical gender use of the preceding prime. These findings suggest that information about the stereotypical gender associated with a role noun is incorporated into the mental representation of this word and is activated as soon as the word is heard. In addition, our results show differences between male and female participants of the various age groups, and between male- and female-oriented stereotypes, pointing to important gender asymmetries. PMID:26441763

  3. Gender stereotypes across the ages: On-line processing in school-age children, young and older adults

    PubMed Central

    Siyanova-Chanturia, Anna; Warren, Paul; Pesciarelli, Francesca; Cacciari, Cristina

    2015-01-01

    Most research to date on implicit gender stereotyping has been conducted with one age group – young adults. The mechanisms that underlie the on-line processing of stereotypical information in other age groups have received very little attention. This is the first study to investigate real time processing of gender stereotypes at different age levels. We investigated the activation of gender stereotypes in Italian in four groups of participants: third- and fifth-graders, young and older adults. Participants heard a noun that was stereotypically associated with masculine (preside “headmaster”) or feminine roles (badante “social care worker”), followed by a male (padre “father”) or female kinship term (madre “mother”). The task was to decide if the two words – the role noun and the kinship term – could describe the same person. Across all age groups, participants were significantly faster to respond, and significantly more likely to press ‘yes,’ when the gender of the target was congruent with the stereotypical gender use of the preceding prime. These findings suggest that information about the stereotypical gender associated with a role noun is incorporated into the mental representation of this word and is activated as soon as the word is heard. In addition, our results show differences between male and female participants of the various age groups, and between male- and female-oriented stereotypes, pointing to important gender asymmetries. PMID:26441763

  4. Rheology at the Interface and the Role of the Interphase in Reactive Functionalized Multilayer Polymers in Coextrusion Process

    NASA Astrophysics Data System (ADS)

    Lamnawar, Khalid; Maazouz, Abderrahim

    2008-07-01

    Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances regarding the stability of compatible and incompatible polymers have, during the last decades, been made using a mechanical approach. However, few research efforts have been dedicated to the physicochemical affinity between the neighboring layers. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers. Polyamide (PA6)/polyethylene grafted with glycidyl methacrylate (PE-GMA) was used as a reactive system and PE/PA6 as a non reactive one. Two grades of polyamide (PA6) were used in order to change the viscosity and elasticity ratios between PE (or PE-GMA) and PA6. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to an interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations from previous work which the interphase effect can be probed, an experimental strategy was here formulated to optimize the process by listing the parameters that controlled the stability of the reactive multilayer flows. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters (viscosity, elasticity and layer ratios) and the physicochemical affinity at the polymer/polymer interface.

  5. Influence of interface on the formation process of polymer coatings on metal

    NASA Astrophysics Data System (ADS)

    Maksimova, O. G.; Maksimov, A. V.; Moiseeva, A. I.

    2016-03-01

    The purpose of this work is in development of the model that allows to investigate the conformations of macromolecules near the interface “dielectric-metal” depending on the conditions of formation of the polymer coating. In the modified model of “sticky tape”, one part of macromolecule is anchored to the metal surface while the other can be elongated due to effective mean (molecular) field of dipolar type formed by free ends of other chains. The dynamic Monte-Carlo method for Langmuir’s model is used for calculation of adhesion force taking into account the interaction energy of monomers with the metal surface. It is shown that conformation of polymer chain is defined by temperature conditions of its formation. The obtained results are confirmed by the data of production tests on polymer coatings in JSC “Severstal”.

  6. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  7. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Watson, A. (Inventor); Ounales, Zoubeida (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T(sub g)) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted hy selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  8. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  9. Power spectra for both interrupted and perennial aging processes

    NASA Astrophysics Data System (ADS)

    Lukovic, Mirko; Grigolini, Paolo

    2008-11-01

    We study the power spectrum of a random telegraphic noise with the distribution density of waiting times τ given by ψ(τ )∝1/τμ, with μ ≈2. The condition μ <2 violates the ergodic hypothesis, and in this case the adoption of Wiener-Khintchine (WK) theorem for the spectrum evaluation requires some caution. We study this problem theoretically and numerically and we prove that the power spectrum obeys the prescription S(f )=K/fη, with η =3-μ, namely, the 1/f noise lives at border between the ergodic μ >2 and nonergodic μ <2 condition. We study sequences with the finite length L. In the case μ <2 the adoption of WK theorem is made legitimate by two different kinds of truncation effects: the physical and observation-induced effect. In the former case ψ(τ ) is truncated at τ ≈Tmax and L ≫Tmax ensures the condition of interrupted aging. In this case, we find that K is a number independent of L. The latter case, L ≪Tmax, is more challenging. It was already solved by Margolin and Barkai, who used time asymptotic arguments based on the ergodicity breakdown and obtained K ∝1/L2-μ, proving that the out-of-equilibrium nature of the condition μ <2 is signaled by the decrease of K with the increase of L. We use a generalized version of the Onsager principle that leads us to the same conclusion from a somewhat more extended view valid also for the transient out-of-equilibrium case of μ >2. We do not limit our treatment to the time asymptotic case, thereby producing a prediction that accounts for the transition from the 1/fη to the 1/f2 regime, recently observed in an experiment on blinking quantum dots. Our theoretical approach allows us to discuss some other recent experiments on molecular intermittent fluorescence and affords indications that should help to assess whether the spectrum is determined by the L ≪Tmax or by the L ≫Tmax condition.

  10. Power spectra for both interrupted and perennial aging processes.

    PubMed

    Lukovic, Mirko; Grigolini, Paolo

    2008-11-14

    We study the power spectrum of a random telegraphic noise with the distribution density of waiting times tau given by psi(tau) proportional to 1tau(mu), with mu approximately 2. The condition mu<2 violates the ergodic hypothesis, and in this case the adoption of Wiener-Khintchine (WK) theorem for the spectrum evaluation requires some caution. We study this problem theoretically and numerically and we prove that the power spectrum obeys the prescription S(f)=Kf(eta), with eta=3-mu, namely, the 1f noise lives at border between the ergodic mu>2 and nonergodic mu<2 condition. We study sequences with the finite length L. In the case mu<2 the adoption of WK theorem is made legitimate by two different kinds of truncation effects: the physical and observation-induced effect. In the former case psi(tau) is truncated at tau approximately T(max) and L>T(max) ensures the condition of interrupted aging. In this case, we find that K is a number independent of L. The latter case, L2. We do not limit our treatment to the time asymptotic case, thereby producing a prediction that accounts for the transition from the 1f(eta) to the 1f(2) regime, recently observed in an experiment on blinking quantum dots. Our theoretical approach allows us to discuss some other recent experiments on molecular intermittent fluorescence and affords indications that should help to assess whether the spectrum is determined by the LT(max) condition.

  11. From mind wandering to involuntary retrieval: Age-related differences in spontaneous cognitive processes.

    PubMed

    Maillet, David; Schacter, Daniel L

    2016-01-01

    The majority of studies that have investigated the effects of healthy aging on cognition have focused on age-related differences in voluntary and deliberately engaged cognitive processes. Yet many forms of cognition occur spontaneously, without any deliberate attempt at engaging them. In this article we review studies that have assessed age-related differences in four such types of spontaneous thought processes: mind-wandering, involuntary autobiographical memory, intrusive thoughts, and spontaneous prospective memory retrieval. These studies suggest that older adults exhibit a reduction in frequency of both mind-wandering and involuntary autobiographical memory, whereas findings regarding intrusive thoughts have been more mixed. Additionally, there is some preliminary evidence that spontaneous prospective memory retrieval may be relatively preserved in aging. We consider the roles of age-related differences in cognitive resources, motivation, current concerns and emotional regulation in accounting for these findings. We also consider age-related differences in the neural correlates of spontaneous cognitive processes.

  12. Functional remineralization of dentin lesions using polymer-induced liquid-precursor process.

    PubMed

    Burwell, Anora K; Thula-Mata, Taili; Gower, Laurie B; Habelitz, Stefan; Habeliz, Stefan; Kurylo, Michael; Ho, Sunita P; Chien, Yung-Ching; Cheng, Jing; Cheng, Nancy F; Gansky, Stuart A; Marshall, Sally J; Marshall, Grayson W

    2012-01-01

    It was hypothesized that applying the polymer-induced liquid-precursor (PILP) system to artificial lesions would result in time-dependent functional remineralization of carious dentin lesions that restores the mechanical properties of demineralized dentin matrix. 140 µm deep artificial caries lesions were remineralized via the PILP process for 7-28 days at 37°C to determine temporal remineralization characteristics. Poly-L-aspartic acid (27 KDa) was used as the polymeric process-directing agent and was added to the remineralization solution at a calcium-to-phosphate ratio of 2.14 (mol/mol). Nanomechanical properties of hydrated artificial lesions had a low reduced elastic modulus (E(R) = 0.2 GPa) region extending about 70 μm into the lesion, with a sloped region to about 140 μm where values reached normal dentin (18-20 GPa). After 7 days specimens recovered mechanical properties in the sloped region by 51% compared to the artificial lesion. Between 7-14 days, recovery of the outer portion of the lesion continued to a level of about 10 GPa with 74% improvement. 28 days of PILP mineralization resulted in 91% improvement of E(R) compared to the artificial lesion. These differences were statistically significant as determined from change-point diagrams. Mineral profiles determined by micro x-ray computed tomography were shallower than those determined by nanoindentation, and showed similar changes over time, but full mineral recovery occurred after 14 days in both the outer and sloped portions of the lesion. Scanning electron microscopy and energy dispersive x-ray analysis showed similar morphologies that were distinct from normal dentin with a clear line of demarcation between the outer and sloped portions of the lesion. Transmission electron microscopy and selected area electron diffraction showed that the starting lesions contained some residual mineral in the outer portions, which exhibited poor crystallinity. During remineralization, intrafibrillar mineral

  13. Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process

    PubMed Central

    Burwell, Anora K.; Thula-Mata, Taili; Gower, Laurie B.; Habeliz, Stefan; Kurylo, Michael; Ho, Sunita P.; Chien, Yung-Ching; Cheng, Jing; Cheng, Nancy F.; Gansky, Stuart A.; Marshall, Sally J.; Marshall, Grayson W.

    2012-01-01

    It was hypothesized that applying the polymer-induced liquid-precursor (PILP) system to artificial lesions would result in time-dependent functional remineralization of carious dentin lesions that restores the mechanical properties of demineralized dentin matrix. 140 µm deep artificial caries lesions were remineralized via the PILP process for 7–28 days at 37°C to determine temporal remineralization characteristics. Poly-L-aspartic acid (27 KDa) was used as the polymeric process-directing agent and was added to the remineralization solution at a calcium-to-phosphate ratio of 2.14 (mol/mol). Nanomechanical properties of hydrated artificial lesions had a low reduced elastic modulus (ER = 0.2 GPa) region extending about 70 μm into the lesion, with a sloped region to about 140 μm where values reached normal dentin (18–20 GPa). After 7 days specimens recovered mechanical properties in the sloped region by 51% compared to the artificial lesion. Between 7–14 days, recovery of the outer portion of the lesion continued to a level of about 10 GPa with 74% improvement. 28 days of PILP mineralization resulted in 91% improvement of ER compared to the artificial lesion. These differences were statistically significant as determined from change-point diagrams. Mineral profiles determined by micro x-ray computed tomography were shallower than those determined by nanoindentation, and showed similar changes over time, but full mineral recovery occurred after 14 days in both the outer and sloped portions of the lesion. Scanning electron microscopy and energy dispersive x-ray analysis showed similar morphologies that were distinct from normal dentin with a clear line of demarcation between the outer and sloped portions of the lesion. Transmission electron microscopy and selected area electron diffraction showed that the starting lesions contained some residual mineral in the outer portions, which exhibited poor crystallinity. During remineralization, intrafibrillar

  14. Colloidal processing, tape casting and sintering of PLZT for development of piezoceramic/polymer interlayered composites

    NASA Astrophysics Data System (ADS)

    Feng, Jian-Huei

    Piezoceramic/polymer composites possess many advantages as compared to single-phase piezoceramics. One typical form of the composites is the interlayered structure, where the main requirement is to obtain thin, flat and dense ceramic sheets. Tape casting is a reliable process for producing such high-quality sheets. The colloidal processing of tape casting slurries is a critical step to achieve uniform ceramic bodies. Lanthanum-modified lead zirconate titanate (PLZT) was selected for making piezoceramic sheets due to its superior piezoelectric properties. The quality of green tapes depends mainly on the solvents and organic additives of tape casting slurries. The effects of xylenes/ethanol solvent mixtures on non-aqueous slurries were first investigated. Well-dispersed colloidal suspensions were obtained in xylenes-rich solvents with a minimum amount of menhaden fish oil as a dispersant. Adsorption of dispersant and PLZT solids content of unfired tapes are strongly affected by the solvent(s) utilized. Furthermore, when selecting solvent mixtures, one needs to consider other additives, such as binder that can affect the viscosity of slurries. Aqueous tape casting was performed using a polyelectrolyte dispersant, poly(vinyl alcohol) (PVA) binders and various plasticizers. Zeta potential, conductivity and viscosity of PLZT suspensions containing dispersant were characterized. The effects of plasticizers and binders on properties of unfired tapes were also investigated. The tapes made from low molecular weight plasticizers showed higher plasticity. Glycerol was shown to be the most effective plasticizer for PVA. Strong hydrogen bonding in high hydrolysis PVA led to high strength and high bulk density of green tapes, but also caused deformation of the tapes after drying. There are many challenges for sintering PLZT tapes due to volatilization of PbO component at high temperatures and fragility of thin tapes. By using the proper setter powders and the sandwich method

  15. Optimal Control of Markov Processes with Age-Dependent Transition Rates

    SciTech Connect

    Ghosh, Mrinal K. Saha, Subhamay

    2012-10-15

    We study optimal control of Markov processes with age-dependent transition rates. The control policy is chosen continuously over time based on the state of the process and its age. We study infinite horizon discounted cost and infinite horizon average cost problems. Our approach is via the construction of an equivalent semi-Markov decision process. We characterise the value function and optimal controls for both discounted and average cost cases.

  16. Visual-motor processing: relationships among age, dimensional variation, and the use of information redundancy.

    PubMed

    Wallace, J R

    1984-09-01

    This study examined the hypothesis that age-related superiority in the ability to process complex stimuli was linked with age differences in the use of information redundancy. Seventy-two children (6-9 years of age) solved a series of puzzles that varied in complexity and redundancy. Significant correlations between age and completion times were found only for those puzzles that included some degree of information redundancy. Completion times on multidimensional puzzles that lacked redundancy were not significantly age related. PMID:6512512

  17. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight.

    PubMed

    Jee, Sang-Soo; Thula, Taili T; Gower, Laurie B

    2010-09-01

    Bone is an organic-inorganic composite consisting primarily of collagen fibrils and hydroxyapatite crystals intricately interlocked to provide skeletal and metabolic functions. Non-collagenous proteins (NCPs) are also present, and although only a minor component, the NCPs are thought to play an important role in modulating the mineralization process. During secondary bone formation, an interpenetrating structure is created by intrafibrillar mineralization of the collagen matrix. Many researchers have tried to develop bone-like collagen-hydroxyapatite (HA) composites via the conventional crystallization process of nucleation and growth. While those methods have been successful in inducing heterogeneous nucleation of HA on the surface of collagen scaffolds, they have failed to produce a composite with the interpenetrating nanostructured architecture of bone. Our group has shown that intrafibrillar mineralization of type I collagen can be achieved using a polymer-induced liquid-precursor (PILP) process. In this process, acidic polypeptides are included in the mineralization solution to mimic the function of the acidic NCPs, and in vitro studies have found that acidic peptides such as polyaspartate induce a liquid-phase amorphous mineral precursor. Using this PILP process, we have been able to prepare collagen-HA composites with the fundamental nanostructure of bone, wherein HA nanocrystals are embedded within the collagen fibrils. This study shows that through further optimization a very high degree of mineralization can be achieved, with compositions matching that of bone. Synthetic collagen sponges were mineralized with calcium phosphate while analyzing various parameters of the reaction, with the focus of this report on the molecular weight of the polymeric process-directing agent. In order to determine whether intrafibrillar mineralization was achieved, an in-depth characterization of the mineralized composites was performed, including wide-angle X-ray diffraction

  18. The New Mexico aging process study (1979-2003). A longitudinal study of nutrition, health and aging.

    PubMed

    Garry, P J; Wayne, S J; Vellas, B

    2007-01-01

    In 1979, Dr. James S. Goodwin, M.D., assisted by Philip J. Garry, Ph.D., submitted a grant proposal to the United States Public Health Service/ National Institute on Aging (NIA) entitled, "A prospective study of nutrition in the elderly". This study was approved and funded by the NIA beginning in 1979. Initially, approximately 300 men and women over 65 years of age with no known medical illnesses and no prescription medications were selected for this study. The primary purpose of this multi disciplinary study, known in the literature as the New Mexico Aging Process Study (NMAPS), was to examine the role of nutrition and resultant changes in body composition and organ function in relation to the aging process and health status of the elderly. This was accomplished by following prospectively healthy elderly volunteers, obtaining in-depth information about dietary habits, lifestyle, body composition, organ function, cognitive status, vitamin metabolism, genetic markers, and biochemical measures of nutritional status and then examining these data in relationship to age and health status and changes in health status. Some of the specific aims of the study were modified over the course of this longitudinal study because of availability of University of New Mexico School of Medicine faculty with expertise in different areas of aging research. In 1988, Dr. Bruno Vellas from the University Hospital in Toulouse, France became an on-going visiting professor at the University of New Mexico School of Medicine. From 1988, until the study was terminated in 2003, Dr. Vellas has collaborated with the faculty involved in the NMAPS on a number of research projects. In this article, we provide information about the studies overall design and briefly describe some of the major finding of the NMAPS.

  19. Aging and the number sense: preserved basic non-symbolic numerical processing and enhanced basic symbolic processing.

    PubMed

    Norris, Jade E; McGeown, William J; Guerrini, Chiara; Castronovo, Julie

    2015-01-01

    Aging often leads to general cognitive decline in domains such as memory and attention. The effect of aging on numerical cognition, particularly on foundational numerical skills known as the number sense, is not well-known. Early research focused on the effect of aging on arithmetic. Recent studies have begun to investigate the impact of healthy aging on basic numerical skills, but focused on non-symbolic quantity discrimination alone. Moreover, contradictory findings have emerged. The current study aimed to further investigate the impact of aging on basic non-symbolic and symbolic numerical skills. A group of 25 younger (18-25) and 25 older adults (60-77) participated in non-symbolic and symbolic numerical comparison tasks. Mathematical and spelling abilities were also measured. Results showed that aging had no effect on foundational non-symbolic numerical skills, as both groups performed similarly [RTs, accuracy and Weber fractions (w)]. All participants showed decreased non-symbolic acuity (accuracy and w) in trials requiring inhibition. However, aging appears to be associated with a greater decline in discrimination speed in such trials. Furthermore, aging seems to have a positive impact on mathematical ability and basic symbolic numerical processing, as older participants attained significantly higher mathematical achievement scores, and performed significantly better on the symbolic comparison task than younger participants. The findings suggest that aging and its lifetime exposure to numbers may lead to better mathematical achievement and stronger basic symbolic numerical skills. Our results further support the observation that basic non-symbolic numerical skills are resilient to aging, but that aging may exacerbate poorer performance on trials requiring inhibitory processes. These findings lend further support to the notion that preserved basic numerical skills in aging may reflect the preservation of an innate, primitive, and embedded number sense.

  20. Formation Mechanism and Characterization of Ag-Metal Chelate Polymer Prepared by a Wet Chemical Process

    NASA Astrophysics Data System (ADS)

    Huang, Chueh-Jung; Lin, Jiang-Jen; Shieu, Fuh-Sheng

    2005-08-01

    In this study, a metal chelate polymer (MCP) contained Ag(0) was prepared from commercial polyvinyl acetate (PVAc) and silver nitrate (AgNO3) by a wet chemical method using concentrate formic acid (HCOOH) as solvent. The characterization of these MCP materials, and the formation mechanism that involved in the MCP system, were studied by the analyses of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM). The Ag(I) cations of silver nitrate (AgNO3) were found coordinated with polymer functional groups to form polymer-Ag(I) complexes. The XRD analysis revealed that these complexed Ag(I) ions were in-situ reduced to generate Ag(0) metal by HCOOH solvent in MCP system. The results of FTIR and NMR analyses demonstrated that there are hydrolyzed hydroxyl groups present in the MCP chains. The XPS analysis showed that the oxygen ligands that interacted with the Ag(0) were mostly contributed from the OH groups. The interaction between the reduced Ag(0) metal and the polymer chains was confirmed by transmission electron microscopy (TEM) investigation on the MCP materials.

  1. Process and composition to enhance removal of polymer-containing filter cakes from wellbores

    SciTech Connect

    Mondshine, T.C.; Benta, G.R.

    1993-08-24

    A method is described for removing the filter cake from the surface of a hydrocarbon-containing subterranean formation, the filter cake comprising bridging particles and at least one polysaccharide polymer, which comprises contacting the filter cake with a solution comprising an aqueous brine, a peroxide selected from the group consisting of alkaline earth metal peroxides, zinc peroxide, and mixtures thereof, and an acidic substance to provide the soak solution with a pH in the range from about 1 to about 8, for a period of time at least sufficient to decompose the polysaccharide polymers therein to such an extent that the filter cake forms a loosely adherent mass on the surface of the formation, and thereafter contacting the filter cake with a wash solution in which the bridging particles are soluble to remove the remaining filter cake solids. A composition is described for decomposing polysaccharide polymers contained within filter cakes on the sides of a borehole, the filter cake containing at least one polysaccharide polymer and bridging particles, which comprises an aqueous brine in which the bridging particles are not appreciably soluble, an alkaline earth metal peroxide in an amount from about 2.8 kg/m[sup 3] to about 57 kg/m[sup 3], a soluble activator to enhance the rate of decomposition of the polysaccharide, and an acidic substance to provide the composition with a pH in the range from about 1 to about 8.

  2. Enhancing the efficiency of solution-processed polymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment.

    PubMed

    Zhou, Renjia; Stalder, Romain; Xie, Dongping; Cao, Weiran; Zheng, Ying; Yang, Yixing; Plaisant, Marc; Holloway, Paul H; Schanze, Kirk S; Reynolds, John R; Xue, Jiangeng

    2013-06-25

    Advances in colloidal inorganic nanocrystal synthesis and processing have led to the demonstration of organic-inorganic hybrid photovoltaic (PV) cells using low-cost solution processes from blends of conjugated polymer and colloidal nanocrystals. However, the performance of such hybrid PV cells has been limited due to the lack of control at the complex interfaces between the organic and inorganic hybrid active materials. Here we show that the efficiency of hybrid PV devices can be significantly enhanced by engineering the polymer-nanocrystal interface with proper chemical treatment. Using two different conjugated polymers, poly(3-hexylthiophene) (P3HT) and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), we show that treating the polymer:nanocrystal hybrid film in an ethanedithiol-containing acetonitrile solution can increase the efficiency of the hybrid PV devices by 30-90%, and a maximum power conversion efficiency of 5.2 ± 0.3% was obtained in the PCPDTBT:CdSe devices at 0.2 sun (AM 1.5G), which was slightly reduced to 4.7 ± 0.3% at 1 sun. The ethanedithiol treatment did not result in significant changes in the morphology and UV-vis optical absorption of the hybrid thin films; however, infrared absorption, NMR, and X-ray photoelectron spectroscopies revealed the effective removal of organic ligands, especially the charged phosphonic acid ligands, from the CdSe nanorod surface after the treatment, accompanied by the possible monolayer passivation of nanorod surfaces with Cd-thiolates. We attribute the hybrid PV cell efficiency increase upon the ethanedithiol treatment to the reduction in charge and exciton recombination sites on the nanocrystal surface and the simultaneous increase in electron transport through the hybrid film.

  3. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Rogina, Anamarija

    2014-03-01

    Over the past two decades, the electrospinning process has shown a great potential in various applications, such as membrane filtration, catalytic processes, fibrous-sensor applications, drug delivery and tissue engineering, due to ability of facile producing high surface-to-volume fibrous structure. The most appealing electrospinning characteristic has shown to be the mimicking nano-scale fibrous topography of extracellular matrix (ECM) in tissue engineering field. The wide range of electrospinnable synthetic biodegradable and natural polymers offers fabrication of fibrous nano-structures with specific biological responses and mechanical properties. Conducting different processing parameters (needle geometry, tip-to-collector distance, electric field strength, collector composition and geometry) allows the altering of fiber size, density, alignment and overall morphology. So far, electrospinning process has shown limitless application in tissue engineering and drug delivery. The following review has been focused on studies of electrospinning process as the most promising fabrication technique for tissue engineering and drug delivery applications.

  4. Reevaluating the "subjective weathering" hypothesis: subjective aging, coping resources, and the stress process.

    PubMed

    Benson, Janel E

    2014-03-01

    The subjective weathering model contends that subjective aging is a key component of the stress process. This study reevaluates and extends this model by considering how adaptive capacities influence subjective aging and depressive symptoms in late adolescence and young adulthood. Using longitudinal data from the National Longitudinal Study of Adolescent Health (n = 7,230), I investigate how earlier stressors and coping resources contribute to older age identities (ages 18-22) and how these self-perceptions influence subsequent depressive symptoms (ages 25-29). The results show that subjective weathering alone does not lead to depressive symptoms; the critical issue is the level of psychosocial maturity that accompanies an older age identity. Those with high levels of psychosocial maturity, regardless of subjective age, were least likely to exhibit depressive symptoms. These results demonstrate that psychosocial maturity is an important adaptive resource that can shield young adults from the negative effects of "subjective weathering" or growing up fast.

  5. Liquid- and solid-state high-resolution NMR methods for the investigation of aging processes of silicone breast implants.

    PubMed

    Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina

    2003-01-01

    To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition.

  6. Relevance of the polymer-induced liquid-precursor (PILP) process to biomineralization and development of biomimetic materials

    NASA Astrophysics Data System (ADS)

    Cheng, Xingguo

    Natural biominerals often contain small amount of acidic macromolecules. These soluble macromolecules are thought to play a very important role in regulating the biomineralization process. By using synthetic acidic biopolymer and natural proteins extracted from biominerals to mimic these acidic macromolecules, the Polymer-Induced Liquid-Precursor (PILP) process is proposed to have great relevance to biomineralization. Like some biominerals, the minerals formed by the PILP process have both non-equilibrium morphology (e.g., "molded" crystal morphologies, films, rods, and tablets) and non-equilibrium composition (e.g., high magnesian calcite). Our goal was to study the formation of calcium carbonate and calcium phosphate formation by the PILP process. By using fluorescence labeling, in-situ observation, and TEM study, we examined the formation of liquid-precursor and polymer-mineral association (exclusion, occlusion). The cooperation of Mg and polymer leads to pronounced amorphous-crystalline transition and formation of thin films incorporating high amount of impurity comparable to biominerals. By taking advantage of amorphous-crystalline transition in the PILP process, calcium carbonate amorphous liquid precursors are molded inside a porous hydrogel and transform to crystalline calcite. After removal of the organic mold, a calcite scaffold with complex morphology is formed. Natural soluble proteins are extracted from nacre. Our in-vitro crystallization studies using these proteins show similar amorphous-crystalline transition and thin film morphology in the presence of Mg. The combination of organic substrate and nacre proteins leads to thin aragonite films. Finally we studied the formation of calcium phosphate using our in-vitro crystallization model. As in the calcium carbonate system, thin films were formed on organic substrate and glass slides in the presence of polymer. We also successfully prepared PHEMA-CaP and collagen-HA organic inorganic composites for

  7. Influence of aging process on the bioactive components and antioxidant activity of ginseng (Panax ginseng L.).

    PubMed

    Bae, Hyun Jung; Chung, Soo Im; Lee, Sang Chul; Kang, Mi Young

    2014-10-01

    The effects of aging process on the ginsenosides and antioxidant activity of ginseng was investigated. Fresh ginseng roots were aged in oven at 70 or 80 °C for 7, 14, 21, or 28 d. Their ginsenosides, phenolics, and antioxidant activity were analyzed. Ginseng aged at 80 °C for 14 d exhibited the highest amounts of total saponins and phenolics. It also showed markedly higher free radical scavenging activity, reducing power, and ferrous ion chelating ability than the other aged ginsengs. The ginsenosides Rb1 , Rb3 , Rg3 , Re, Rg1 , and Rg2 were generated during aging. The Rg2 was the most abundant ginsenoside in aged ginseng, with samples treated at 80 °C for 14 d having the highest amount. These findings provide the first evidence that aging, particularly at 80 °C for 14 d, could increase the bioactive compounds, indicating that this heating process may be useful in enhancing the biological activity of ginseng. PRACTICALAPPLICATION: Ginseng has long been recognized for its various health beneficial effects. The present study showed that aging of ginseng roots at 80 °C for 14 d substantially increased the amount of bioactive compounds ginsenosides and phenolics and enhanced the antioxidant activity. The food industry could use the aging process to improve the functional quality of ginseng.

  8. Leaf Aging of Amazonian Canopy Trees: Insights to Tropical Ecological Processes and Satellited Detected Canopy Dynamics

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Malhi, Y.; Gerard, F.

    2015-12-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby, regulating ecosystem processes and remotely-sensed canopy dynamics. Leaf age is particularly important for carbon-rich tropical evergreen forests, as leaf demography (leaf age distribution) has been proposed as a major driver of seasonal productivity in these forests. We explore leaf reflectance as a tool to monitor leaf age and develop a novel spectra-based (PLSR) model to predict age using data from a phenological study of 1,072 leaves from 12 lowland Amazonian canopy tree species in southern Peru. Our results demonstrate monotonic decreases in LWC and Pmass and increase in LMA with age across species; Nmass and Cmassshowed monotonic but species-specific age responses. Spectrally, we observed large age-related variation across species, with the most age-sensitive spectral domains found to be: green peak (550nm), red edge (680-750 nm), NIR (700-850 nm), and around the main water absorption features (~1450 and ~1940 nm). A spectra-based model was more accurate in predicting leaf age (R2= 0.86; %RMSE= 33) compared to trait-based models using single (R2=0.07 to 0.73; %RMSE=7 to 38) and multiple predictors (step-wise analysis; R2=0.76; %RMSE=28). Spectral and trait-based models established a physiochemical basis for the spectral age model. The relative importance of the traits modifying the leaf spectra of aging leaves was: LWC>LMA>Nmass>Pmass,&Cmass. Vegetation indices (VIs), including NDVI, EVI2, NDWI and PRI were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity, and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.

  9. Genetic Variance in Processing Speed Drives Variation in Aging of Spatial and Memory Abilities

    ERIC Educational Resources Information Center

    Finkel, Deborah; Reynolds, Chandra A.; McArdle, John J.; Hamagami, Fumiaki; Pedersen, Nancy L.

    2009-01-01

    Previous analyses have identified a genetic contribution to the correlation between declines with age in processing speed and higher cognitive abilities. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories…

  10. Negotiations of the Ageing Process: Older Adults' Stories of Sports Participation

    ERIC Educational Resources Information Center

    Dionigi, Rylee A.; Horton, Sean; Baker, Joseph

    2013-01-01

    The purpose of this paper is to examine the talk of older athletes, with particular focus on how the context of sport helps them negotiate the ageing process. It draws on personal stories provided by 44 World Masters Games competitors (23 women; 21 men; aged 56-90 years; "M" = 72). Four themes emerged: "There's no such thing as…

  11. Variability of the Aging Process in Dementia-Free Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Tsao, Raphaele; Kindelberger, Cecile; Freminville, Benedicte; Touraine, Renaud; Bussey, Gerald

    2015-01-01

    The aim of this cross-sectional study was to analyze the typical aging process in adults with Down syndrome, focusing on its variability. The sample comprised 120 adults with Down syndrome who were free of dementia. Ages ranged from 20 to 69 years. Each participant was assessed on cognitive functioning and social adaptation, and was checked for…

  12. Effect of hydrodynamic pressure processing and aging on sarcoplasmic proteins of beef strip loins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of hydrodynamic pressure processing (HDP) and aging on the sarcoplasmic proteins of beef strip loins. Loins (n=12) were halved at 48 h postmortem and assigned to HDP or control treatments. Following treatment, each half was divided into three portions for aging (0, 5...

  13. Effect of polymer/clay composition on processability of polylactide nanocomposites by film blowing

    NASA Astrophysics Data System (ADS)

    Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The blown extrusion of poly(lactic acid) presents several challenges mainly due to its poor elongation properties. This work deals on the possibility to enhance the processabiliy of PLA by film blowing by functionalizing the polymer with nanosilicates. In particular, two types of polylactic acid (PLA 4032D and PLA 4042D) and different types of filler, selected from montmorillonites (Cloisite 30B) and bentonites (Nanofil SE3010) families, were used to prepare the hybrid systems by using a twin-screw extruder. The interaction between the polymer and the clay was evaluated by FTIR analysis and correlated to the structure of the obtained nanocomposites in terms of clay dispersion. All the samples were then submitted to rheological measurements both in shear and elongational mode.

  14. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  15. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process

    PubMed Central

    Yatabe, Rui; Noda, Junpei; Tahara, Yusuke; Naito, Yoshinobu; Ikezaki, Hidekazu; Toko, Kiyoshi

    2015-01-01

    It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG), which is called “preconditioning”. However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photon spectroscopy (XPS) and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS). After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB), contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods. PMID:26404301

  16. Picosecond kinetics of excited state decay processes in internally hydrogen-bonded polymer photostabilizers

    NASA Technical Reports Server (NTRS)

    Huston, A. L.; Scott, G. W.

    1982-01-01

    A construction of economically practical solar energy conversion devices could be based on the employment of inexpensive, visible-radiation transparent, durable, light-fast materials. Difficulties arise in connection with the availability of such materials. Plastics which are not particularly susceptible to solar ultraviolet degradation are, in general, expensive, while less expensive optically transparent films are susceptible to deterioration when exposed to solar radiation. However, techniques are known for protecting polymers from photochemical degradation. According to these techniques, the composition or structure of polymeric material is modified by incorporation of photostabilizers. Two classes of ultraviolet absorbers are used as commercial photostabilizers. These classes include 2-hydroxybenzophenone (HB) and 2-(2-prime -hydroxyphenyl)benzotriazole (HPB). The present investigation is concerned with the results of spectroscopic and kinetics measurements related to the study of the mechanism of excited-state relaxation of polymer photostabilizers in the class HB and HPB.

  17. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    NASA Astrophysics Data System (ADS)

    Gupta, Sanju; Price, Carson

    2015-10-01

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g-1 as compared with constituents (˜70 F g-1) at discharge current density of 0.3 A g-1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites

  18. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    SciTech Connect

    Gupta, Sanju Price, Carson

    2015-10-15

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO){sub 1}, (PPy/ErGO){sub 1}, (PAni/GO){sub 1} and (PPy/GO){sub 1}. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, C{sub s}, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent C{sub s} of ≥350 F g{sup −1} as compared with constituents (∼70 F g{sup −1}) at discharge current density of 0.3 A g{sup −1} that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine

  19. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  20. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, M.; Sampa, M. H.; Ramamoorthy, N.; Güven, O.; Chmielewski, A. G.

    2007-12-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information.

  1. Novel Zeolitic Imidazolate Framework/Polymer Membranes for Hydrogen Separations in Coal Processing

    SciTech Connect

    Musselman, Inga H.

    2013-01-31

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed-matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethylenediamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncrosslinked polymer.

  2. Overview on energetic polymers

    SciTech Connect

    Boileau, J.

    1996-07-01

    Energetic materials for missiles, gun munitions or pyrotechnic devices often are mixtures in a biphasic form, with a filler and a binder. To satisfy the user needs, an analysis of functional requirements together with constraints (safety, vulnerability, aging, environment, disposal, price) is useful to choose a convenient binder. From this point of view numerous synthetic energetic polymers proposed or developed as binders are reviewed with regard to their syntheses, processing, properties and possible uses. These polymers contain explosophore groups: C-NO{sub 2} aliphatic or aromatic, ONO{sub 2}, NNO{sub 2}, NF{sub 2} and N{sub 3}. Some research projects are suggested. Among them in the list of published polymers, following a NIMIC (NATO) suggestion, note the reason of a development interruption. Some dinitropolystyrene-polyvinyl nitrate mixtures or copolymers could exhibit interesting properties. For unknown reasons, some mixtures of crystalline filler with polymer binder, generally in a biphasic form, may also be monophasic for a same composition. What properties are modified between both forms (e.g. combustion mechanisms, erosion, ideal character of the detonation)? It is also interesting to pursue a newly open route to thermo-plastic elastomers. 50 refs., 1 tab.

  3. FOR STIMUL-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect

    Charles McCormick; Roger Hester

    2004-03-26

    This report contains a series of terpolymers containing acrylic acid, methacrylamide and a twin-tailed hydrophobic monomer that were synthesized using micellar polymerization methods. These polymer systems were characterized using light scattering, viscometry, and fluorescence methods. Viscosity studies indicate that increasing the nonpolar character of the hydrophobic monomer (longer chain length or twin tailed vs. single tailed) results in enhanced viscosity in aqueous solutions. The interactions of these polymers with surfactants were investigated. These surfactants include sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), Triton X-100. Viscosity measurements of DiC{sub 6}AM and DiC{sub 8}AM mixtures indicate little interaction with SDS, gelation with CTAB, and hemimicelle formation followed by polymer hydrophobe solubilization with Triton X-100. The DiC{sub 10}Am terpolymer shows similar interaction behavior with CTAB and Triton X-100. However, the enhanced hydrophobic nature of the DiC{sub 10} polymer allows complex formation with SDS as confirmed by surface tensiometry. Fluorescence measurements performed on a dansyl labeled DiC{sub 10}Am terpolymer in the presence of increasing amounts of each of the surfactant indicate relative interaction strengths to be CTAB>Triton X-100>SDS. A modified model based on Yamakawa-Fujii and Odjik-Skolnick-Fixman theories was found to describe the contribution of electrostatic forces to the excluded volume of a polyelectrolyte in solution. The model was found to be valid for flexible polymer coils in aqueous salt solutions where intermolecular interactions are minimal. The model suggested that a dimensionless group of parameters termed the dimensionless viscosity should be proportional to the dimensionless ratio of solution screening length to polyion charge spacing. Several sets of experimental data from the literature and from our laboratory have been analyzed according to the model and the results

  4. Electrophysiological evidence for age effects on sensory memory processing of tonal patterns.

    PubMed

    Rimmele, Johanna; Sussman, Elyse; Keitel, Christian; Jacobsen, Thomas; Schröger, Erich

    2012-06-01

    In older adults, difficulties processing complex auditory scenes, such as speech comprehension in noisy environments, might be due to a specific impairment of temporal processing at early, automatic processing stages involving auditory sensory memory (ASM). Even though age effects on auditory temporal processing have been well-documented, there is a paucity of research on how ASM processing of more complex tone-patterns is altered by age. In the current study, age effects on ASM processing of temporal and frequency aspects of two-tone patterns were investigated using a passive listening protocol. The P1 component, the mismatch negativity (MMN) and the P3a component of event-related brain potentials (ERPs) to tone frequency and temporal pattern deviants were recorded in younger and older adults as a measure of auditory event detection, ASM processing, and attention switching, respectively. MMN was elicited with smaller amplitude to both frequency and temporal deviants in older adults. Furthermore, P3a was elicited only in the younger adults. In conclusion, the smaller MMN amplitude indicates that automatic processing of both frequency and temporal aspects of two-tone patterns is impaired in older adults. The failure to initiate an attention switch, suggested by the absence of P3a, indicates that impaired ASM processing of patterns may lead to less distractibility in older adults. Our results suggest age-related changes in ASM processing of patterns that cannot be explained by an inhibitory deficit.

  5. Brain Processing of Emotional Scenes in Aging: Effect of Arousal and Affective Context

    PubMed Central

    Mathieu, Nicolas Gilles; Gentaz, Edouard; Harquel, Sylvain; Vercueil, Laurent; Chauvin, Alan; Bonnet, Stéphane; Campagne, Aurélie

    2014-01-01

    Research on emotion showed an increase, with age, in prevalence of positive information relative to negative ones. This effect is called positivity effect. From the cerebral analysis of the Late Positive Potential (LPP), sensitive to attention, our study investigated to which extent the arousal level of negative scenes is differently processed between young and older adults and, to which extent the arousal level of negative scenes, depending on its value, may contextually modulate the cerebral processing of positive (and neutral) scenes and favor the observation of a positivity effect with age. With this aim, two negative scene groups characterized by two distinct arousal levels (high and low) were displayed into two separate experimental blocks in which were included positive and neutral pictures. The two blocks only differed by their negative pictures across participants, as to create two negative global contexts for the processing of the positive and neutral pictures. The results show that the relative processing of different arousal levels of negative stimuli, reflected by LPP, appears similar between the two age groups. However, a lower activity for negative stimuli is observed with the older group for both tested arousal levels. The processing of positive information seems to be preserved with age and is also not contextually impacted by negative stimuli in both younger and older adults. For neutral stimuli, a significantly reduced activity is observed for older adults in the contextual block of low-arousal negative stimuli. Globally, our study reveals that the positivity effect is mainly due to a modulation, with age, in processing of negative stimuli, regardless of their arousal level. It also suggests that processing of neutral stimuli may be modulated with age, depending on negative context in which they are presented to. These age-related effects could contribute to justify the differences in emotional preference with age. PMID:24932857

  6. Impact of nutrition on ageing the process. Bridging the gap: the animal perspective.

    PubMed

    Butterwick, Richard F

    2015-01-01

    In pets, as in humans, there is increasing interest in interventions that promote 'health and well-being' into later life and extend these beyond their current limits. The purpose of this review was to assess the relevance of current knowledge of ageing in humans, described in a companion paper, as well as reviewing recent research on ageing in pet populations. The role of diet and other factors that influence the ageing process and ultimately lifespan in pets are highlighted in this review; in addition, future opportunities and challenges to further our understanding of the ageing process in pets are identified. Advancing knowledge of the fundamental biology of ageing will be key for the development and evaluation of strategies that extend both the quality and the quantity of lifespan in human and pet populations. PMID:25588384

  7. The utility of phenol-aldehyde cross linking resins in polymer modified asphalt - the Butaphalt (tm) process

    SciTech Connect

    Krivohlavek, D.D.

    1996-12-31

    The use of Phenol-Aldehyde cross linking or vulcanizing resin is well known in the rubber and plastics industry. Previous to our work little (if any) understanding of the utility of these compounds in polymer modified asphalt (or bitumen) was known. This presentation will hopefully enlighten practitioners of the art of asphalt modification on this subject. This art is commercially known as the Butaphalt(tm) Process. Of initial interest is the mechanism of reaction of Phenol-Aldehyde cross linking resins. As the quantitative analysis of such a mechanism in asphalt would likely need years of effort to resolve, we will look at possible mechanisms in a rubber system.

  8. Microphase separation in cross-linked polymer blends. Efficient replica RPA post-processing of simulation data for homopolymer networks.

    PubMed

    Klopper, A V; Svaneborg, Carsten; Everaers, Ralf

    2009-01-01

    We investigate the behaviour of randomly cross-linked (co)polymer blends using a combination of replica theory and large-scale molecular dynamics simulations. In particular, we derive the analogue of the random phase approximation for systems with quenched disorder and show how the required correlation functions can be calculated efficiently. By post-processing simulation data for homopolymer networks we are able to describe neutron scattering measurements in heterogeneous systems without resorting to microscopic detail and otherwise unphysical assumptions. We obtain structure function data which illustrate the expected microphase separation and contain system-specific information relating to the intrinsic length scales of our networks.

  9. Patterns of frontoparietal activation as a marker for unsuccessful visuospatial processing in healthy aging.

    PubMed

    Drag, Lauren L; Light, Sharee N; Langenecker, Scott A; Hazlett, Kathleen E; Wilde, Elisabeth A; Welsh, Robert; Steinberg, Brett A; Bieliauskas, Linas A

    2016-09-01

    Visuospatial abilities are sensitive to age-related decline, although the neural basis for this decline (and its everyday behavioral correlates) is as yet poorly understood. fMRI was employed to examine age-related differences in patterns of functional activation that underlie changes in visuospatial processing. All participants completed a brief neuropsychological battery and also a figure ground task (FGT) assessing visuospatial processing while fMRI was recorded. Participants included 16 healthy older adults (OA; aged 69-82 years) and 16 healthy younger adults (YA; aged 20-35 years). We examined age-related differences in behavioral performance on the FGT in relation to patterns of fMRI activation. OA demonstrated reduced performance on the FGT task and showed increased activation of supramarginal parietal cortex as well as increased activation of frontal and temporal regions compared to their younger counterparts. Performance on the FGT related to increased supramarginal gyrus activity and increased medial prefrontal activity in OAs, but not YAs. Our results are consistent with an anterior-posterior compensation model. Successful FGT performance requires the perception and integration of multiple stimuli and thus it is plausible that healthy aging may be accompanied by changes in visuospatial processing that mimic a subtle form of dorsal simultanagnosia. Overall, decreased visuospatial processing in OA relates to an altered frontoparietal neurobiological signature that may contribute to the general phenomenon of increasingly fragmented execution of behavior associated with normal aging.

  10. Hydrogel-elastomer composite biomaterials: 2. Effects of aging methacrylated gelatin solutions on the preparation and physical properties of interpenetrating polymer networks.

    PubMed

    Peng, Henry T; Mok, Michelle; Martineau, Lucie; Shek, Pang N

    2007-06-01

    This study was conducted to understand the effects of aging methacrylated gelatin solutions on the properties of gelatin-HydroThane Interpenetrating Polymer Network (IPN) films. The latter were prepared from methacrylated gelatin solutions that were either freshly made or stored at different concentrations and temperatures for various periods. The morphology, swelling stability and mechanical properties of the IPNs were then accordingly characterized. The IPNs prepared with aged solutions showed a reduced phase separation; changed from a network-like structure to a continuous phase structure; and demonstrated higher swelling stabilities and higher elasticity under optimal aging conditions, compared to the IPN prepared with a fresh methacrylated gelatin solution. An increase in viscosity and a change in phase transition of aged methacrylated gelatin solutions were also observed, presumably due to the physical structuring of methacrylated gelatin chains (e.g., by the formation of a helix structure), thus altering the resulting IPN characteristics. A better understanding of the effects of aging methacrylated gelatin solution on the formation and properties of gelatin-HydroThane IPNs should enable us to further develop our composite biomaterials for different dressing applications.

  11. Effects of Age and Hearing Loss on the Processing of Auditory Temporal Fine Structure.

    PubMed

    Moore, Brian C J

    2016-01-01

    Within the cochlea, broadband sounds like speech and music are filtered into a series of narrowband signals, each of which can be considered as a relatively slowly varying envelope (ENV) imposed on a rapidly oscillating carrier (the temporal fine structure, TFS). Information about ENV and TFS is conveyed in the timing and short-term rate of nerve spikes in the auditory nerve. There is evidence that both hearing loss and increasing age adversely affect the ability to use TFS information, but in many studies the effects of hearing loss and age have been confounded. This paper summarises evidence from studies that allow some separation of the effects of hearing loss and age. The results suggest that the monaural processing of TFS information, which is important for the perception of pitch and for segregating speech from background sounds, is adversely affected by both hearing loss and increasing age, the former being more important. The monaural processing of ENV information is hardly affected by hearing loss or by increasing age. The binaural processing of TFS information, which is important for sound localisation and the binaural masking level difference, is also adversely affected by both hearing loss and increasing age, but here the latter seems more important. The deterioration of binaural TFS processing with increasing age appears to start relatively early in life. The binaural processing of ENV information also deteriorates somewhat with increasing age. The reduced binaural processing abilities found for older/hearing-impaired listeners may partially account for the difficulties that such listeners experience in situations where the target speech and interfering sounds come from different directions in space, as is common in everyday life. PMID:27080640

  12. Morphologies, Processing and Properties of Ceramic Foams from Pre-Ceramic Foams from Pre-Ceramic Polymer Routes

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Simoes, Conan R.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    The current research is focused on processing ceramic foams that have potential as a thermal protection material. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies will be presented. The presentation will also focus on characterization of these foams in terms of mechanical and thermal properties. Foams processed using these approaches having bulk densities ranging from 0.15 to 0.9 g per cubic centimeter and a cell sizes from 5 to 500 micrometers. Compression strengths ranged from 2 to 7 MPa for these materials.

  13. Protein-polymer nano-machines. Towards synthetic control of biological processes

    PubMed Central

    Pennadam, Sivanand S; Firman, Keith; Alexander, Cameron; Górecki, Dariusz C

    2004-01-01

    The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams [1,2]. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales [3]. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme) with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function [4]. PMID:15350203

  14. Protein-polymer nano-machines. Towards synthetic control of biological processes.

    PubMed

    Pennadam, Sivanand S; Firman, Keith; Alexander, Cameron; Górecki, Dariusz C

    2004-09-01

    The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition.The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme) with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4. PMID:15350203

  15. From the Solution Processing of Hydrophilic Molecules to Polymer-Phthalocyanine Hybrid Materials for Ammonia Sensing in High Humidity Atmospheres

    PubMed Central

    Gaudillat, Pierre; Jurin, Florian; Lakard, Boris; Buron, Cédric; Suisse, Jean-Moïse; Bouvet, Marcel

    2014-01-01

    We have prepared different hybrid polymer-phthalocyanine materials by solution processing, starting from two sulfonated phthalocyanines, s-CoPc and CuTsPc, and polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), poly(acrylic acid-co-acrylamide) (PAA-AM), poly(diallyldimethylammonium chloride) (PDDA) and polyaniline (PANI) as polymers. We also studied the response to ammonia (NH3) of resistors prepared from these sensing materials. The solvent casted films, prepared from s-CoPc and PVP, PEG and PAA-AM, were highly insulating and very sensitive to the relative humidity (RH) variation. The incorporation of s-CoPc in PDDA by means of layer-by-layer (LBL) technique allowed to stabilize the film, but was too insulating to be interesting. We also prepared PANI-CuTsPc hybrid films by LBL technique. It allowed a regular deposition as evidenced by the linear increase of the absorbance at 688 nm as a function of the number of bilayers. The sensitivity to ammonia (NH3) of PANi-CuTsPc resistors was very high compared to that of individual materials, giving up to 80% of current decrease when exposed to 30 ppm NH3. Contrarily to what happens with neutral polymers, in PANI, CuTsPc was stabilized by strong electrostatic interactions, leading to a stable response to NH3, whatever the relative humidity in the range 10%–70%. Thus, the synergy of PANI with ionic macrocycles used as counteranions combined with their simple aqueous solution processing opens the way to the development of new gas sensors capable of operating in real world conditions. PMID:25061841

  16. Process For Cutting Polymers Electrolyte Multi-Layer Batteries And Batteries Obtained Thereby

    DOEpatents

    Gauthier, Michel; Lessard, Ginette; Dussault, Gaston; Rouillard, Roger; Simoneau, Martin; Miller, Alan Paul

    2003-09-09

    A stacking of battery laminate is prepared, each battery consisting of anode, polymer electrolyte, cathode films and possibly an insulating film, under conditions suitable to constitute a rigid monoblock assembly, in which the films are unitary with one another. The assembly obtained is thereafter cut in predetermined shape by using a mechanical device without macroscopic deformation of the films constituting the assembly and without inducing permanent short circuits. The battery which is obtained after cutting includes at least one end which appears as a uniform cut, the various films constituting the assembly having undergone no macroscopic deformation, the edges of the films of the anode including an electronically insulating passivation film.

  17. Photoinduced processes in solid polymer solutions of dyes in an interference field of laser radiation

    SciTech Connect

    Sizykh, A G; Tarakanova, E A

    1998-12-31

    An investigation was made of the relationships governing the photochemical mechanism of formation of light-induced gratings in solid polymer solutions of a dye with a high quantum yield of the triplet states. The combined analysis of the results of real and numerical experiments was made for a solution of eosin K in gelatin. The protonation rate constant of the dye was measured and the dependence of the diffraction efficiency on the duration of irradiation was explained taking diffusion of the dye into account. A method was proposed for determination of the duffusion coefficient in a spatially modified interference field of the laser radiation. The diffusion coefficients were found. (nonlinear optical phenomena)

  18. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion.

    PubMed

    Mendes, J F; Paschoalin, R T; Carmona, V B; Sena Neto, Alfredo R; Marques, A C P; Marconcini, J M; Mattoso, L H C; Medeiros, E S; Oliveira, J E

    2016-02-10

    Blends of thermoplastic cornstarch (TPS) and chitosan (TPC) were obtained by melt extrusion. The effect of TPC incorporation in TPS matrix and polymer interaction on morphology and thermal and mechanical properties were investigated. Possible interactions between the starch molecules and thermoplastic chitosan were assessed by XRD and FTIR techniques. Scanning Electron Microscopy (SEM) analyses showed a homogeneous fracture surface without the presence of starch granules or chitosan aggregates. Although the incorporation of thermoplastic chitosan caused a decrease in both tensile strength and stiffness, films with better extensibility and thermal stability were produced.

  19. Autoclaving as a chemical-free process to stabilize recombinant silk-elastinlike protein polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Qiu, Weiguo; Cappello, Joseph; Wu, Xiaoyi

    2011-06-01

    We report here that autoclaving is a chemical-free, physical crosslinking strategy capable of stabilizing electrospun recombinant silk-elastinlike protein (SELP) polymer nanofibers. Fourier transform infrared spectroscopy showed that the autoclaving of SELP nanofibers induced a conformational conversion of β-turns and unordered structures to ordered β-sheets. Tensile stress-strain analysis of the autoclaved SELP nanofibrous scaffolds in phosphate buffered saline at 37 °C revealed a Young's modulus of 1.02 ± 0.28 MPa, an ultimate tensile strength of 0.34 ± 0.04 MPa, and a strain at failure of 29% ± 3%.

  20. Sulfur polymer cement as a low-level waste glass matrix encapsulant. Part 1: Thermal processing

    SciTech Connect

    Sliva, P.; Peng, Y.B.; Bunnell, L.R.; Peeler, D.K.; Feng, X.; Martin, P.; Turner, P.J.

    1996-08-01

    Sulfur polymer cement (SPC) is a candidate material to encapsulate low-level waste (LLW) glass. Molten SPC will be poured into a LLW glass cullet-filled canister, surrounding the glass to act as an additional barrier to groundwater intrusion. This paper covers the first part of a study performed at Pacific Northwest National Laboratory concerned with the fundamental aspects of embedding LLW glass in SPC. Part one is a study of the SPC itself. Variations in SPC properties are discussed, especially in relation to long-term stability and controlling crystallization in a cooling canister.