Space and surface charge behavior analysis of charge-eliminated polymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro
1995-12-31
Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less
Zhou, Ying; Yu, Hai; Wanless, Erica J; Jameson, Graeme J; Franks, George V
2009-08-15
Flocs were produced by adding three cationic polymers (10% charge density, 3.0x10(5) g/mol molecular weight; 40% charge density, 1.1x10(5) g/mol molecular weight; and 100% charge density, 1.2x10(5) g/mol molecular weight) to 90 nm diameter silica particles. The shear yield stresses of the consolidated sediment beds from settled and centrifuged flocs were determined via the vane technique. The polymer charge density plays an important role in influencing the shear yield stresses of sediment beds. The shear yield stresses of sediment beds from flocs induced by the 10% charged polymer were observed to increase with an increase in polymer dose, initial solid concentration and background electrolyte concentration at all volume fractions. In comparison, polymer dose has a marginal effect on the shear yield stresses of sediment beds from flocs induced by the 40% and 100% charged polymers. The shear yield stresses of sediments from flocs induced by the 40% charged polymer are independent of salt concentration whereas the addition of salt decreases the shear yield stresses of sediments from flocs induced by the 100% charged polymer. When flocculated at the optimum dose for each polymer (12 mg/g silica for the 10% charged polymer at 0.03 M NaCl, 12 mg/g for 40% and 2 mg/g for 100%), shear yield stress increases as polymer charge increases. The effects observed are related to the flocculation mechanism (bridging, patch attraction or charge neutralisation) and the magnitude of the adhesive force. Comparison of shear and compressive yield stresses show that the network is only slightly weaker in shear than in compression. This is different than many other systems (mainly salt and pH coagulation) which have shear yield stress much less than compressive yield stress. The existing models relating the power law exponent of the volume fraction dependence of the shear yield stress to the network fractal structure are not satisfactory to predict all the experimental behaviour.
Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.
Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani
2017-10-14
Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.
Sulas, Dana B.; Yao, Kai; Intemann, Jeremy J.; ...
2015-09-12
Using an analysis based on Marcus theory, we characterize losses in open-circuit voltage (V OC) due to changes in charge-transfer state energy, electronic coupling, and spatial density of charge-transfer states in a series of polymer/fullerene solar cells. Here, we use a series of indacenodithiophene polymers and their selenium-substituted analogs as electron donor materials and fullerenes as the acceptors. By combining device measurements and spectroscopic studies (including subgap photocurrent, electroluminescence, and, importantly, time-resolved photoluminescence of the charge-transfer state) we are able to isolate the values for electronic coupling and the density of charge-transfer states (NCT), rather than the more commonly measuredmore » product of these values. We find values for NCT that are surprisingly large (~4.5 × 10 21–6.2 × 10 22 cm -3), and we find that a significant increase in N CT upon selenium substitution in donor polymers correlates with lower VOC for bulk heterojunction photovoltaic devices. The increase in N CT upon selenium substitution is also consistent with nanoscale morphological characterization. Using transmission electron microscopy, selected area electron diffraction, and grazing incidence wide-angle X-ray scattering, we find evidence of more intermixed polymer and fullerene domains in the selenophene blends, which have higher densities of polymer/fullerene interfacial charge-transfer states. Our results provide an important step toward understanding the spatial nature of charge-transfer states and their effect on the open-circuit voltage of polymer/fullerene solar cells« less
For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles McCormick; Roger Hester
Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge densitymore » terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.« less
Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications
NASA Astrophysics Data System (ADS)
Paulsen, Bryan D.
pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.
Liu, Jing; Zhang, Hai-Bo
2014-12-01
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
A model and simulation of fast space charge pulses in polymers
NASA Astrophysics Data System (ADS)
Lv, Zepeng; Rowland, Simon M.; Wu, Kai
2017-11-01
The transport of space charge packets across polyethylene and epoxy resin in high electric fields has been characterized as fast or slow depending on packet mobility. Several explanations for the formation and transport of slow space charge packets have been proposed, but the origins of fast space charge pulses, with mobilities above 10-11 m2 V-1 s-1, are unclear. In one suggested model, it is assumed that the formation of fast charge pulses is due to discontinuous electromechanical compression and charge injection at the electrode-insulation interface, and their transport is related to corresponding relaxation processes. In that model, charges travel as a pulse because of group polarization. This paper provides an alternative model based on the reduction of charge carrier activation energy due to charge density triggered polymer chain movement and subsequent chain relaxation times. The generation and transport of fast charge pulses are readily simulated by a bipolar charge transport model with three additional parameters: reduced activation energy, charge density threshold, and chain relaxation time. Such a model is shown to reproduce key features of fast space charge pulses including speed, duration, repetition rate and pulse size. This model provides the basis for a deep understanding of the physical origins of fast space charge pulses in polymers.
Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang
2007-12-01
Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.
NASA Astrophysics Data System (ADS)
Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen
2018-03-01
Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.
Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.
Wu, Guangfen; Li, Zi; Zhang, Xu; Lu, Gang
2014-08-07
Charge separation and exciton dynamics play a crucial role in determining the performance of excitonic photovoltaics. Using time-dependent density functional theory with a range-separated exchange-correlation functional as well as nonadiabatic ab initio molecular dynamics, we have studied the formation and dynamics of charge-transfer (CT) excitons at polymer/ZnO interface. The interfacial atomic structure, exciton density of states and conversions between exciton species are examined from first-principles. The exciton dynamics exhibits both adiabatic and nonadiabatic characters. While the adiabatic transitions are facilitated by C═C vibrations along the polymer (P3HT) backbone, the nonadiabatic transitions are realized by exciton hopping between the excited states. We find that the localized ZnO surface states lead to localized low-energy CT states and poor charge separation. In contrast, the surface states of crystalline C60 are indistinguishable from the bulk states, resulting in delocalized CT states and efficient charge separation in polymer/fullerene (P3HT/PCBM) heterojunctions. The hot CT states are found to cool down in an ultrafast time scale and may not play a major role in charge separation of P3HT/ZnO. Finally we suggest that the dimensions of nanostructured acceptors can be tuned to obtain both efficient charge separation and high open circuit voltages.
Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.
Keh, Huan J; Ding, Jau M
2003-07-15
An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Ashley, Paul R.; Abushagur, Mustafa
2004-01-01
A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.
Redox electrodes comprised of polymer-modified carbon nanomaterials
NASA Astrophysics Data System (ADS)
Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team
2013-03-01
A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.
High Energy Density Lithium Primary Cells Using Nitrogen Containing Polymer Positives.
1983-12-01
the charges were stabilized on heteroatoms, particularly nitro- gen. A positive charge would be stored in the form of an ammonium ion. in a high...operate reversibly. 2.0 POLYMERIC CATHODES A polymer which might be expected to exemplify charge stabilization by nitrogen is poly-N-methylpyrrole (PMP...This material is electronically conductive and might store one charge per nitrogen atom. ox. PMP;4 N3 red. I N + N+ An additional, seductive attraction
Conducting polymer coated neural recording electrodes.
Harris, Alexander R; Morgan, Simeon J; Chen, Jun; Kapsa, Robert M I; Wallace, Gordon G; Paolini, Antonio G
2013-02-01
Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during acute implantation, inferring good biostability. Electrode impedance at 1 kHz was correlated with background noise and inversely correlated with signal to noise ratio and spike count, regardless of coating. These results collectively confirm a potential for improvement of neural electrode systems by coating with conducting polymers.
Conducting polymer coated neural recording electrodes
NASA Astrophysics Data System (ADS)
Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.
2013-02-01
Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during acute implantation, inferring good biostability. Electrode impedance at 1 kHz was correlated with background noise and inversely correlated with signal to noise ratio and spike count, regardless of coating. These results collectively confirm a potential for improvement of neural electrode systems by coating with conducting polymers.
NASA Astrophysics Data System (ADS)
Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki
2011-09-01
We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.
Maximum Frictional Charge Generation on Polymer Surfaces
NASA Astrophysics Data System (ADS)
Calle, Carlos; Groop, Ellen; Mantovani, James; Buehler, Martin
2001-03-01
The maximum amount of charge that a given surface area can hold is limited by the surrounding environmental conditions such as the atmospheric composition, pressure, humidity, and temperature. Above this charge density limit, the surface will discharge to the atmosphere or to a nearby conductive surface that is at a different electric potential. We have performed experiments using the MECA Electrometer, a flight instrument developed jointly by the Jet Propulsion Laboratory and NASA Kennedy Space Center to study the electrostatic properties of the Martian soil. The electrometer contains five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). We repeatedly rubbed the polymers with another material until each polymer's charge saturation was determined. We will discuss the correlation of our data with the triboelectric series.
Long, Run; Prezhdo, Oleg V
2015-07-08
Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy. QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor-acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong, especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon coupling in the polymer rationalizes why the electron-hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and QD modes. The electron dynamics is exponential, whereas evolution of the injected hole through the low density manifold of states of the polymer is highly nonexponential. The time scale of the electron-hole recombination at the interface is intermediate between those in pristine polymer and QD and is closer to that in the polymer. The detailed atomistic insights into the photoinduced charge and energy dynamics at the polymer/QD interface provide valuable guidelines for optimization of solar light harvesting and photovoltaic efficiency in modern nanoscale materials.
Molecular Design of Antifouling Polymer Brushes Using Sequence-Specific Peptoids.
Lau, King Hang Aaron; Sileika, Tadas S; Park, Sung Hyun; Sousa, Ana Maria Leal; Burch, Patrick; Szleifer, Igal; Messersmith, Phillip B
2015-01-07
Material systems that can be used to flexibly and precisely define the chemical nature and molecular arrangement of a surface would be invaluable for the control of complex biointerfacial interactions. For example, progress in antifouling polymer biointerfaces that prevent non-specific protein adsorption and cell attachment, which can significantly improve the performance of an array of biomedical and industrial applications, is hampered by a lack of chemical models to identify the molecular features conferring their properties. Poly(N-substituted glycine) "peptoids" are peptidomimetic polymers that can be conveniently synthesized with specific monomer sequences and chain lengths, and are presented as a versatile platform for investigating the molecular design of antifouling polymer brushes. Zwitterionic antifouling polymer brushes have captured significant recent attention, and a targeted library of zwitterionic peptoid brushes with a different charge densities, hydration, separations between charged groups, chain lengths, and grafted chain densities, is quantitatively evaluated for their antifouling properties through a range of protein adsorption and cell attachment assays. Specific zwitterionic brush designs were found to give rise to distinct but subtle differences in properties. The results also point to the dominant roles of the grafted chain density and chain length in determining the performance of antifouling polymer brushes.
The Structures of Fibronectin Adsorbed on Polyelectrolyte Thin Films
NASA Astrophysics Data System (ADS)
Shin, Kwanwoo; Satija, Sushil; Fang, Xiao-Hua; Li, Bin-Quan; Nadine, Pernodet; Miriam, Rafailovich; Sokolov, Jonathan; Arach, Goldar; Roser, Steve
2002-03-01
We have shown that it is possible to form a fibrilar network of fibronectin on a polyelectrolyte polymer film whose dimensions are similar to those reported on the extra cellular matrix. The fibronectin network was observed to form only when the charge density of the polymer was in excess of the natural charge density of the cell wall. Furthermore, the self-organized fibronectin layer was much thicker than the polymer film, indicating that long ranged interaction may play a key role in the assembly process. It is therefore important to understand the structure of the polymer layer/protein interface. Here we report on a neutron reflectivity study where we explore the structure of the polyelectrolyte layer, in this case sulfonated polystyrene (PSS_x.), with varying degree of sulfonation (x<30%), as a function of sulfur content and counter ion concentration. These results are then correlated with systemic study of the adsorption and the multilayer formation of fibronectin as a function of incubation time for various sulfonation levels of PSS_x. Furthermore, the surface charge on the substrates can be strongly influenced by the presence of salt ions, it is important to understand changes due to electrostatic interactions occurring in the various salt conditions. Complementary X-ray reflection was used to determine the salt density profile associating with the internal ionic polymer matrix. This work was funded in part of the NSF-MRSEC program.
D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David
2016-02-04
We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.
Elucidating the Charge Transfer Mechanism in Radical Polymer Thin Films
NASA Astrophysics Data System (ADS)
Mukherjee, Sanjoy; Boudouris, Bryan
The active role of polymers in organic electronics has attracted significant attention in recent decades. Beyond conventional conjugated polymers, recently radical polymers have received a great deal of consideration by the community. Radical polymers are redox-active macromolecules with non-conjugated backbones functionalized with persistent radical sites. Because of their nascent nature, many open questions regarding the physics of their solid-state charge transfer mechanism still exist. In order to address these questions, well-defined radical polymers were synthesized and blended in a manner such that there was tight control over the radical density within the conducting thin films. We demonstrate that the systematic manipulation of the radical-to-radical spacing in open-shell macromolecules leads to exponential changes in the macroscopic electrical conductivity, and temperature-independent charge transport behaviour. Thus, a clear picture emerges that charge transfer in radical polymers is dictated by a tunnelling mechanism between proximal sites. This behavior is consistent with a distinct mechanism similar to redox reactions in biological media, but is unique relative to transport in common conjugated polymers. These results constitute the first experimental insight into the mechanism of solid-state electrical conduction in radical polymers.
Electro-osmotic flow in coated nanocapillaries: a theoretical investigation.
Marini Bettolo Marconi, Umberto; Monteferrante, Michele; Melchionna, Simone
2014-12-14
Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration.
Polymeric efficiency in remove impurities during cottonseed biodiesel production
NASA Astrophysics Data System (ADS)
Lin, H. L.; Liang, Y. H.; Yan, J.; Lin, H. D.; Espinosa, A. R.
2016-07-01
This paper describes a new process for developing biodiesel by polymer from crude cottonseed oil. The study was conducted to examine the effectiveness of the alkali transesterification-flocculation-sedimentation process on fast glycerol and other impurities in the separation from biodiesel by using quaternary polyamine-based cationic polymers SL2700 and polyacylamide cationic polymer SAL1100. The settling velocity of glycerol and other impurities in biodiesel was investigated through settling test experiments; the quality of the biodiesel was investigated by evaluating the viscosity and density. The results revealed that SL2700, SAL1100 and their combination dramatically improved the settling velocity of glycerol and other impurities materials than traditional method. SL 2700 with molecular weight of 0.2 million Da and charge density of 50% then plus SAL1100 with molecular weight of 11 million Da and charge density of 10% induced observable particle aggregation with the best settling performance.
Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes
NASA Astrophysics Data System (ADS)
Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao
2014-03-01
Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.
Molecular Design of Antifouling Polymer Brushes Using Sequence-Specific Peptoids
Lau, King Hang Aaron; Sileika, Tadas S.; Park, Sung Hyun; ...
2014-11-26
Material systems that can be used to flexibly and precisely define the chemical nature and molecular arrangement of a surface would be invaluable for the control of complex biointerfacial interactions. For example, progress in antifouling polymer biointerfaces that prevents nonspecific protein adsorption and cell attachment, which can significantly improve the performance of an array of biomedical and industrial applications, is hampered by a lack of chemical models to identify the molecular features conferring their properties. Poly(N-substituted glycine) “peptoids” are peptidomimetic polymers that can be conveniently synthesized with specific monomer sequences and chain lengths, and are presented as a versatile platformmore » for investigating the molecular design of antifouling polymer brushes. Zwitterionic antifouling polymer brushes have captured significant recent attention, and a targeted library of zwitterionic peptoid brushes with different charge densities, hydration, separations between charged groups, chain lengths, and grafted chain densities, is quantitatively evaluated for their antifouling properties through a range of protein adsorption and cell attachment assays. Specific zwitterionic brush designs are found to give rise to distinct but subtle differences in properties. In conclusion, the results also point to the dominant roles of the grafted chain density and chain length in determining the performance of antifouling polymer brushes.« less
He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo
2015-02-07
Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.
Tartakovsky, Alla; Drutis, Dane M; Carnali, Joseph O
2003-07-15
The adsorption of cationic and amphoteric copolymers onto controlled pore glass (CPG) powders has been studied by measurement of the powder particle zeta (zeta) potential, by determination of the adsorption isotherm, and by FT Raman measurements of the polymer-coated powder. The cationic polymers consisted chiefly of homopolymers of dimethyldiallylammonium chloride (DMDAAC) or copolymers of DMDAAC and acrylamide. The amphoteric polymers studied included copolymers of DMDAAC and acrylic acid. The comonomer ratio was varied to explore the dependence of cationic charge density on the extent and effect of adsorption. Both types of polymers adsorb onto the anionic glass surface via an ion-exchange mechanism. Consequently, a correspondingly higher mass of a low-charge-density copolymer adsorbs than of a cationic homopolymer. The presence of the anionic portion in the amphoteric polymers does not significantly alter this picture. The zeta potential, however, reflects the overall nature of the polymer. Cationic polymers effectively neutralize the glass surface, while amphoteric polymers leave the zeta potential net negative. Adsorption isotherms, determined via the depletion technique using colloidal titration, were used to "calibrate" a FT Raman method. The latter was used to determined the amount of adsorbed polymer under solution conditions in which colloidal titration could not be performed.
Pedersen, C O; Masse, L; Hjorth, M
2014-01-01
Solid-liquid separation with flocculation can be used as pre-treatment for reverse osmosis (RO) filtration as it produces a liquid fraction (LF) low in suspended solids (SS). However, residual polymers in the LF may foul the membrane. Membrane fouling during RO filtration of swine wastewater containing polymers was investigated with respect to polymer charge density (CD), effluent SS concentration and membrane surface charge. Effluents with 765 mg/L SS and without SS were spiked with low and medium CD polymers (0-40 mg/L effluent) then processed with RO membranes having low and high negative surface charges. Fouling intensity was evaluated by comparing permeate flux and water flux recovery of fouled and cleaned membranes. For effluents containing SS, the presence of polymer reduced permeate flux by 4-16% and water flux recovery of the fouled membrane by 0-18%, relative to effluents without polymer. The extent of the fouling was higher with the low than the medium CD polymer. The fouling was mostly reversible as cleaning allowed for over 95% flux recovery, but the membrane with high negative surface charge was more susceptible to irreversible fouling. Adding the low CD polymer to feed without SS had no effect on permeate flux or flux recovery. Membrane fouling thus appeared to be caused by the polymer changing SS-membrane interaction. If flocculation is applied to pre-treat manure, a medium CD polymer should be used to optimize SS removal and a membrane with low surface charge should be selected to minimize fouling.
Enhanced photophysics of conjugated polymers
Chen, Liaohai [Darien, IL
2007-06-12
A particulate fluorescent conjugated polymer surfactant complex and method of making and using same. The particles are between about 15 and about 50 nm and when formed from a lipsome surfactant have a charge density similar to DNA and are strongly absorbed by cancer cells.
Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R
2014-10-01
Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. Copyright © 2014 Elsevier B.V. All rights reserved.
Charge transport kinetics in a robust radical-substituted polymer/nanocarbon composite electrode
NASA Astrophysics Data System (ADS)
Sato, Kan; Oyaizu, Kenichi; Nishide, Hiroyuki
We have reported a series of organic radical-substituted polymers as new-type charge storage and transport materials which could be used for energy related devices such as batteries and solar cells. Redox-active radical moieties introduced to the non-conjugated polymer backbones enable the rapid electron transfer among the adjacent radical sites, and thus large diffusive flux of electrical charge at a bulk scale. Here we present the elucidated charge transport kinetics in a radical polymer/single-walled carbon nanotube (SWNT) composite electrode. The synergetic effect of electrical conduction by a three-dimensional SWNT network and electron self-exchange reaction by radical polymers contributed to the 105-fold (per 1 g of added SWNT) boosting of electrochemical reactions and exceptionally large current density (greater than 1 A/cm2) as a rechargeable electrode. A totally organic-based secondary battery with a submicron thickness was fabricated to demonstrate the splendid electrochemical performances. Grants-in-Aid for Scientific Research (No. 24225003, 15J00888) and the Leading Graduate Program in Science and Engineering, from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).
NASA Astrophysics Data System (ADS)
Paulsen, Bryan D.; Frisbie, C. Daniel
2012-02-01
Ionic liquids, used in place of traditional gate dielectric materials, allow for the accumulation of very high 2D and 3D charge densities (>10^14 #/cm^2 and >10^21 #/cm^3 respectively) at low voltage (<5 V). Here we study the electrochemical gating of the benchmark semiconducting polymer poly(3-hexylthiophene) (P3HT) with the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMI][FAP]). The electrochemical stability of [EMI][FAP] allowed the reproducible accumulation of 2 x 10^21 hole/cm^3, or one hole (and stabilizing anion dopant) per every two thiophene rings. A finite potential/charge density window of high electrical conductivity was observed with hole mobility reaching a maximum of 0.86 cm^2/V s at 0.12 holes per thiophene ring. Displacement current measurements, collected versus a calibrated reference electrode, allowed the mapping of the highly structured and extremely broad density of states of the P3HT/[EMI][FAP] doped composite. Variable temperature and charge density hole transport measurements revealed hole transport to be thermally activated and non-monotonic, displaying a activation energy minimum of ˜20 meV in the region of maximum conductivity and hole mobility. To show the generality of this result, the study was extended to an additional four ionic liquids and three semiconducting polymers.
Valentine, Andrew J S; Talapin, Dmitri V; Mazziotti, David A
2017-04-27
Recent work found that soldering CdTe quantum dots together with a molecular CdTe polymer yielded field-effect transistors with much greater electron mobility than quantum dots alone. We present a computational study of the CdTe polymer using the active-space variational two-electron reduced density matrix (2-RDM) method. While analogous complete active-space self-consistent field (CASSCF) methods scale exponentially with the number of active orbitals, the active-space variational 2-RDM method exhibits polynomial scaling. A CASSCF calculation using the (48o,64e) active space studied in this paper requires 10 24 determinants and is therefore intractable, while the variational 2-RDM method in the same active space requires only 2.1 × 10 7 variables. Natural orbitals, natural-orbital occupations, charge gaps, and Mulliken charges are reported as a function of polymer length. The polymer, we find, is strongly correlated, despite possessing a simple sp 3 -hybridized bonding scheme. Calculations reveal the formation of a nearly saturated valence band as the polymer grows and a charge gap that decreases sharply with polymer length.
Effect of Polymer Electrode Morphology on Performance of a Lithium/Polypyrrole Battery. M.S. Thesis
NASA Technical Reports Server (NTRS)
Nicholson, Marjorie Anne
1991-01-01
A variety of conducting polymer batteries were described in the recent literature. In this work, a Li/Polypyrrole secondary battery is described. The effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase is explored. A method of preparing conducting polymers was developed which yields high surface area per unit volume of electrode material. A porous membrane is used as a template in which to electrochemically polymerize pyrrole, then the membrane is dissolved, leaving the polymer in a fibrillar form. Conventionally, the polymer is electrochemically polymerized as a dense polymer film on a smooth Pt disk electrode. Previous work has shown that when the polymer is electrochemically polymerized in fribrillar form, charge transport rates are faster and charge capacities are greater than for dense, conventionally grown films containing the same amount of polymer. The purpose is to expand previous work by further investigating the possibilities of the optimization of transport rates in polypyrrole films by controlling the morphology of the films. The utility of fibrillar polypyrrole as a cathode material in a lithium/polymer secondary battery is then assessed. The performance of the fibrillar battery is compared to the performance of an analogous battery which employed a conventionally grown polypyrrole film. The study includes a comparison of cyclic voltammetry, shape of charge/discharge curves, discharge time and voltage, cycle life, coulombic efficiencies, charge capacities, energy densities, and energy efficiencies.
NASA Astrophysics Data System (ADS)
Chen, Zhuoying; Bird, Matthew; Lemaur, Vincent; Radtke, Guillaume; Cornil, Jérôme; Heeney, Martin; McCulloch, Iain; Sirringhaus, Henning
2011-09-01
Understanding the mechanisms limiting ambipolar transport in conjugated polymer field-effect transistors (FETs) is of both fundamental and practical interest. Here, we present a systematic study comparing hole and electron charge transport in an ambipolar conjugated polymer, semicrystalline poly(3,3''-di-n-decylterselenophene) (PSSS). Starting from a detailed analysis of the device characteristics and temperature/charge-density dependence of the mobility, we interpret the difference between hole and electron transport through both the Vissenberg-Matters and the mobility-edge model. To obtain microscopic insight into the quantum mechanical wave function of the charges at a molecular level, we combine charge modulation spectroscopy (CMS) measuring the charge-induced absorption signatures from positive and negative polarons in these ambipolar FETs with corresponding density functional theory (DFT) calculations. We observe a significantly higher switch-on voltage for electrons than for holes due to deep electron trap states, but also a higher activation energy of the mobility for mobile electrons. The CMS spectra reveal that the electrons that remain mobile and contribute to the FET current have a wave function that is more localized onto a single polymer chain than that of holes, which is extended over several polymer chains. We interpret this as evidence that the transport properties of the mobile electrons in PSSS are still affected by the presence of deep electron traps. The more localized electron state could be due to the mobile electrons interacting with shallow trap states in the vicinity of a chemical, potentially water-related, impurity that might precede the capture of the electron into a deeply trapped state.
Charge delocalization characteristics of regioregular high mobility polymers
Coughlin, J. E.; Zhugayevych, A.; Wang, M.; ...
2017-01-01
Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while themore » reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.« less
A switchable polymer layer: Chain folding in end-charged polymer brushes
NASA Astrophysics Data System (ADS)
Heine, David; Wu, David T.
2001-03-01
We use a self-consistent field approximation to model the configurations of end-charged homopolymer and block copolymer brushes in response to an external electric field due to charges on the grafting surface. By varying the charge density on the grafting surface, we can cause the chains either to extend outward, greatly increasing the brush height, or to loop back to the grafting surface. We show that such a copolymer brush can present one block at the exposed surface in the extended state and present the other block in the retracted state. This occurs for both a solvated brush and a dry brush. We also compare these results to those of a modified Alexander-de Gennes model for the end-charged homopolymer brush.
Azizi, Amin; Gadinski, Matthew R; Li, Qi; AlSaud, Mohammed Abu; Wang, Jianjun; Wang, Yi; Wang, Bo; Liu, Feihua; Chen, Long-Qing; Alem, Nasim; Wang, Qing
2017-09-01
Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh-environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h-BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge-discharge efficiency is achieved in the PEI sandwiched with CVD-grown h-BN films at elevated temperatures when compared to neat PEI films and other high-temperature polymer and nanocomposite dielectrics. Notably, the h-BN-coated PEI films are capable of operating with >90% charge-discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm -3 , even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge-discharge cycles are demonstrated in the h-BN-coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Removal of waterborne microorganisms by filtration using clay-polymer complexes.
Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda
2014-08-30
Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel Flexible Plastic-Based Solar Cells
2009-11-30
the high mobility of charge carriers in pentacene probably due to conducting domains provided by it. 2. Multi-Exciton Generation (MEG) in Devices...with simulating the model including recombination rate, trap density and trapped charge induced electric field. £ < £ O 0.2 0.3 0.4...to charge extraction and transport in hybrid nanoparticle:polymer photovoltaic devices. In particular, we demonstrated (i) enhancement of charge
Unique magnetic and thermoelectric properties of chemically functionalized narrow carbon polymers.
Zberecki, K; Wierzbicki, M; Swirkowicz, R; Barnaś, J
2017-02-01
We analyze magnetic, transport and thermoelectric properties of narrow carbon polymers, which are chemically functionalized with nitroxide groups. Numerical calculations of the electronic band structure and the corresponding transmission function are based on density functional theory. Transport and thermoelectric parameters are calculated in the linear response regime, with particular interest in charge and spin thermopowers (charge and spin Seebeck effects). Such nanoribbons are shown to have thermoelectric properties described by large thermoelectric efficiency, which makes these materials promising from the application point of view.
Evidence of the charge-density wave state in polypyrrole nanotubes
Sarma, Abhisakh; Sanyal, Milan K.; Littlewood, Peter B.
2015-04-13
Here, we present a detailed investigation of the low-frequency dielectric and conductivity properties of conducting polymer nanowires. Our results, obtained by connecting ~10 7 nanowires in parallel, show that these polypyrrole nanowires behave like conventional charge-density wave (CDW) materials, in their nonlinear and dynamic response, together with scaling of relaxation time and conductivity. The observed Arrhenius law for both these quantities gives a CDW gap of 3.5 meV in the regime of temperature (~40 K) in which the CDW state survives. We find good agreement with a theory of weakly pinned CDW, screened by thermally excited carriers across the CDWmore » gap. The identification of polymer nanowires as CDW provides us a model system to investigate charge ordering owing to electrostatic interaction, relevant to a variety of systems from dusty plasma to molecular biology.« less
Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing
2018-05-09
Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.
Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.
Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir
2016-03-01
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.
Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; ...
2016-03-04
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
NASA Astrophysics Data System (ADS)
Fujita, Takehiro; Matsui, Toru; Sumita, Masato; Imamura, Yutaka; Morihashi, Kenji
2018-02-01
We investigated the charge-transfer reactions of solar cells including a quaterthiophene copolymer with naphtho-bis-thiadiazole (PNTz4T) and naphtho-bis-oxadiazole (PNOz4T) using constrained density functional theory (CDFT). According to our calculations, the high electron-transfer rate results in a highly efficient solar cell, and the stable charge-transfer state results in low energy loss. Our computations imply that the following three factors are crucial to improve the performance of semiconducting polymers: (i) large structural changes following charge-transfer, (ii) narrow band gap, and (iii) spatially delocalized lowest unoccupied molecular orbital (LUMO) of the ground state.
Magnetic Field Effect in Conjugated Molecules-Based Devices
2017-10-23
triplet annihilation process (TTA) process in charge- balanced polymer light emitting diode (PLED) containing a super yellow poly-(phenylene vinylene...current density. Our results demonstrate a clear correlation between TTA process and current density as well as temperature in charge- balanced SY-PPV...dimethyl sulfoxide (DMSO) (7:3, v/v) at 60 °C for 12 h inside the nitrogen -filled glove box. The perovskite films were spin-cast by a consecutive two-step
Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong
2013-05-01
This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.
Chen, Xiaoyun; Wang, Jie; Paszti, Zoltan; Wang, Fulin; Schrauben, Joel N; Tarabara, Volodymyr V; Schmaier, Alvin H; Chen, Zhan
2007-05-01
Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), zeta-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules.
Conductive hydrogel containing 3-ionene
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor)
1977-01-01
Cationic polyelectrolytes formed by the polymerization in absence of oxygen of a monomer of the general formula: dispersed ##STR1## where x is 3 or more than 6 and Z is I, Br or Cl to form high charge density linear polymers are dispered in a water-soluble polymer such as polyvinyl alcohol to form a conductive hydrogel.
NASA Astrophysics Data System (ADS)
Kannan, R. M.; Kolhe, Parag; Khandare, Jayant; Kannan, Sujatha; Lieh-Lai, Mary
2004-03-01
Dendrimers and hyperbranched polymers are a new class of macromolecules characterized by large density of "tunable" peripheral functional groups. Therefore dendrimers can serve as a model macromolecular system to study the influence of molecular geometry and charge density on transport across biological barriers, especially cellular interfaces. The effect of size, end-functionality, surface charge (pH), and the nature of the cell surface are expected to play an important role in transport, and are investigated using flow cytometry, fluorescene microscopy and UV/Vis spectroscopy. Our results suggest that at physiological pH, cationic polyamidoamine (PAMAM) dendrimers can enter the A549 cancer lung epithelial cells within 5 minutes, perhaps due to the favorable interaction between anionic surface receptors of cells and cationic PAMAM dendrimer, through adsorptive endocytosis. On the other hand, hyperbranched polyol, which is a neutral polymer at physiological pH, enters cells at a much slower rate. The entry of hyperbranched polyol may be because of fluid-phase pinocytosis. Our results also indicate that the dendritic polymers enter the cell surface much more rapidly than linear polymers, and some small drugs, suggesting that the high density of functional groups plays a key role in the interaction with the cell surface, and the subsequent transport inside.
Subtle charge balance controls surface-nucleated self-assembly of designed biopolymers.
Charbonneau, Céline; Kleijn, J Mieke; Cohen Stuart, Martien A
2014-03-25
We report the surface-nucleated self-assembly into fibrils of a biosynthetic amino acid polymer synthesized by the yeast Pichia pastoris. This polymer has a block-like architecture, with a central silk-like block labeled SH, responsible for the self-assembly into fibrils, and two collagen-like random coil end blocks (C) that colloidally stabilize the fibers in aqueous solution. The silk-like block contains histidine residues (pKa≈6) that are positively charged in the low pH region, which hinders self-assembly. In aqueous solution, CSHC self-assembles into fibers above a pH-dependent critical nucleation concentration Ccb. Below Ccb, where no self-assembly occurs in solution, fibril formation can be induced by a negatively charged surface (silica) in the pH range of 3.5-7. The density of the fibers at the surface and their length are controlled by a subtle balance in charge between the protein polymer and the silica surface, which is evidenced from the dependence on pH. With increasing number density of the fibers at the surface, their average length decreases. The results can be explained on the basis of a nucleation-and-growth mechanism: the surface density of fibers depends on the rate of nucleation, while their growth rate is limited by transport of proteins from solution. Screening of the charges on the surface and histidine units by adding NaCl influences the nucleation-and-growth process in a complicated fashion: at low pH, the growth is improved, while at high pH, the nucleation is limited. Under conditions where nucleation in the bulk solution is not possible, growth of the surface-nucleated fibers into the solution--away from the surface--can still occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks.
Milczarek, Grzegorz; Inganäs, Olle
2012-03-23
Renewable and cheap materials in electrodes could meet the need for low-cost, intermittent electrical energy storage in a renewable energy system if sufficient charge density is obtained. Brown liquor, the waste product from paper processing, contains lignin derivatives. Polymer cathodes can be prepared by electrochemical oxidation of pyrrole to polypyrrole in solutions of lignin derivatives. The quinone group in lignin is used for electron and proton storage and exchange during redox cycling, thus combining charge storage in lignin and polypyrrole in an interpenetrating polypyrrole/lignin composite.
Polymer-free carbon nanotube thermoelectrics with improved charge carrier transport and power factor
Norton-Baker, Brenna; Ihly, Rachelle; Gould, Isaac E.; ...
2016-11-17
Here, semiconducting single-walled carbon nanotubes (s-SWCNTs) have recently attracted attention for their promise as active components in a variety of optical and electronic applications, including thermoelectricity generation. Here we demonstrate that removing the wrapping polymer from the highly enriched s-SWCNT network leads to substantial improvements in charge carrier transport and thermoelectric power factor. These improvements arise primarily from an increase in charge carrier mobility within the s-SWCNT networks because of removal of the insulating polymer and control of the level of nanotube bundling in the network, which enables higher thin-film conductivity for a given carrier density. Ultimately, these studies demonstratemore » that highly enriched s-SWCNT thin films, in the complete absence of any accompanying semiconducting polymer, can attain thermoelectric power factors in the range of approximately 400 μW m -1K -2, which is on par with that of some of the best single-component organic thermoelectrics demonstrated to date.« less
Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao
2015-12-01
Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Schmidt, Matthias
2005-06-01
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter—the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.
Adsorption of polyethyleneimine and polymethacrylic acid onto synthesized hematite.
Chibowski, S; Patkowski, J; Grzadka, E
2009-01-01
An influence of different functional groups of polymer, its molecular weight, polydispersity ratio (M(w)/M(n)) and presence of impurities on its adsorption in different pH values (3, 6 and 9) onto synthesized hematite (Fe(2)O(3)) was measured. A structure of adsorbed macromolecules of PMA and PEI was obtained according to S-F theory. Two polymers were used: polymethacrylic acid (PMA) of 6500 and 75,100 molecular weight as well as polyethyleneimine (PEI) 25,000 commercial and fractionated. Electrokinetic properties of the interface oxide-polymer solution (surface charge density and zeta potential) were also measured as well as adsorption layer thicknesses (with use of viscosimetric measurements). Obtained data show, that all above-mentioned factors do influence not only the adsorption process itself but also a surface charge, zeta potential and structure of adsorbed polymer layers on polymer/hematite interface.
Recombination in polymer-fullerene bulk heterojunction solar cells
NASA Astrophysics Data System (ADS)
Cowan, Sarah R.; Roy, Anshuman; Heeger, Alan J.
2010-12-01
Recombination of photogenerated charge carriers in polymer bulk heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and the fill factor (FF). Identifying the mechanism of recombination is, therefore, fundamentally important for increasing the power conversion efficiency. Light intensity and temperature-dependent current-voltage measurements on polymer BHJ cells made from a variety of different semiconducting polymers and fullerenes show that the recombination kinetics are voltage dependent and evolve from first-order recombination at short circuit to bimolecular recombination at open circuit as a result of increasing the voltage-dependent charge carrier density in the cell. The “missing 0.3 V” inferred from comparison of the band gaps of the bulk heterojunction materials and the measured open-circuit voltage at room-temperature results from the temperature dependence of the quasi-Fermi levels in the polymer and fullerene domains—a conclusion based on the fundamental statistics of fermions.
The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells
Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas
2014-01-01
A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086
Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells
Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel
2009-01-01
We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.
Uppu, Divakara S S M; Samaddar, Sandip; Hoque, Jiaul; Konai, Mohini M; Krishnamoorthy, Paramanandham; Shome, Bibek R; Haldar, Jayanta
2016-09-12
Cationic-amphiphilic antibacterial polymers with optimal amphiphilicity generally target the bacterial membranes instead of mammalian membranes. To date, this balance has been achieved by varying the cationic charge or side chain hydrophobicity in a variety of cationic-amphiphilic polymers. Optimal hydrophobicity of cationic-amphiphilic polymers has been considered as the governing factor for potent antibacterial activity yet minimal mammalian cell toxicity. However, the concomitant role of hydrogen bonding and hydrophobicity with constant cationic charge in the interactions of antibacterial polymers with bacterial membranes is not understood. Also, degradable polymers that result in nontoxic degradation byproducts offer promise as safe antibacterial agents. Here we show that amide- and ester (degradable)-bearing cationic-amphiphilic polymers with tunable side chain hydrophobicity can modulate antibacterial activity and cytotoxicity. Our results suggest that an amide polymer can be a potent antibacterial agent with lower hydrophobicity whereas the corresponding ester polymer needs a relatively higher hydrophobicity to be as effective as its amide counterpart. Our studies reveal that at higher hydrophobicities both amide and ester polymers have similar profiles of membrane-active antibacterial activity and mammalian cell toxicity. On the contrary, at lower hydrophobicities, amide and ester polymers are less cytotoxic, but the former have potent antibacterial and membrane activity compared to the latter. Incorporation of amide and ester moieties made these polymers side chain degradable, with amide polymers being more stable than the ester polymers. Further, the polymers are less toxic, and their degradation byproducts are nontoxic to mice. More importantly, the optimized amide polymer reduces the bacterial burden of burn wound infections in mice models. Our design introduces a new strategy of interplay between the hydrophobic and hydrogen bonding interactions keeping constant cationic charge density for developing potent membrane-active antibacterial polymers with minimal toxicity to mammalian cells.
Adroher-Benítez, Irene; Martín-Molina, Alberto; Ahualli, Silvia; Quesada-Pérez, Manuel; Odriozola, Gerardo; Moncho-Jordá, Arturo
2017-03-01
In this work the equilibrium distribution of ions around a thermo-responsive charged nanogel particle in an electrolyte aqueous suspension is explored using coarse-grained Monte Carlo computer simulations and the Ornstein-Zernike integral equation theory. We explicitly consider the ionic size in both methods and study the interplay between electrostatic and excluded-volume effects for swollen and shrunken nanogels, monovalent and trivalent counterions, and for two different nanogel charges. We find good quantitative agreement between the ionic density profiles obtained using both methods when the excluded repulsive force exerted by the cross-linked polymer network is taken into account. For the shrunken conformation, the electrostatic repulsion between the charged groups provokes a heterogeneous polymer density profile, leading to a nanogel structure with an internal low density hole surrounded by a dense corona. The results show that the excluded-volume repulsion strongly hinders the ion permeation for shrunken nanogels, where volume exclusion is able to significantly reduce the concentration of counterions in the more dense regions of the nanogel. In general, we demonstrate that the thermosensitive behaviour of nanogels, as well as their internal structure, is strongly influenced by the valence of the counterions and also by the charge of the particles. On the one hand, an increase of the counterion valence moves the swelling transition to lower temperatures, and induces a major structuring of the charged monomers into internal and external layers around the crown for shrunken nanogels. On the other hand, increasing the particle charge shifts the swelling curve to larger values of the effective radius of the nanogel.
Adsorption of surfactants and polymers at interfaces
NASA Astrophysics Data System (ADS)
Rojas, Orlando Jose
Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge density. In practical systems the adsorption phenomena were found to be far more complex. Electrostatic and hydrogen bonding interactions play a major role in the adsorption of cationic polyelectrolytes on cellulosic substrates. Cationic and underivatized guar gum macromolecules form complexes with fines and dissolved and colloidal carbohydrates which are then retained on the cellulose fibers. The extent of the adsorption and association depends on the charge and nature of all the components present in pulp suspensions.
NASA Technical Reports Server (NTRS)
Reeves, R. D.; Balmain, K. G.
1981-01-01
A two dimensional model was developed to describe the charging of thin polymer films exposed to a uniform mon-energetic electron beam. The study was motivated by observed anomalous behavior of geosynchronous satellites which was attributed to electrical discharges associated with the differential charging of satellite surfaces of magnetospheric electrons. Electric fields both internal and external to the irradiated specimen were calculated at steady state in order to identify regions of high electrical stress. Particular emphasis was placed on evaluating the charging characteristics near the material's edge. The model was used to identify and quantify the effects of some of the experimental parameters notably: beam energy; beam angle of incidence; beam current density; material thickness; and material width. Simulations of the following situations were also conducted: positive or negative precharging over part of the surface; a central gap in the material; and a discontinuity in the material's thickness.
The mass spectral density in quantitative time-of-flight mass spectrometry of polymers
NASA Astrophysics Data System (ADS)
Tate, Ranjeet S.; Ebeling, Dan; Smith, Lloyd M.
2001-03-01
Time-of-flight mass spectrometry (TOF-MS) is being increasingly used for the study of polymers, for example to obtain the distribution of molecular masses for polymer samples. Serious efforts have also been underway to use TOF-MS for DNA sequencing. In TOF-MS the data is obtained in the form of a time-series that represents the distribution in arrival times of ions of various m/z ratios. This time-series data is then converted to a "mass-spectrum" via a coordinate transformation from the arrival time (t) to the corresponding mass-to-charge ratio (m/z = const. t^2). In this transformation, it is important to keep in mind that spectra are distributions, or densities of weight +1, and thus do not transform as functions. To obtain the mass-spectral density, it is necessary to include a multiplicative factor of √m/z. Common commercial instruments do not take this factor into account. Dropping this factor has no effect on qualitative analysis (detection) or local quantitative measurements, since S/N or signal-to-baseline ratios are unaffected for peaks with small dispersions. However, there are serious consequences for general quantitative analyses. In DNA sequencing applications, loss of signal intensity is in part attributed to multiple charging; however, since the √m/z factor is not taken into account, this conclusion is based on an overestimate (by a factor of √z) of the relative amount of the multiply charged species. In the study of polymers, the normalized dispersion is underestimated by approximately (M_w/Mn -1)/2. In terms of M_w/Mn itself, for example, a M_w/M_n=1.5 calculated without the √m factor corresponds in fact to a M_w/M_n=1.88.
Development of advanced polymer nanocomposite capacitors
NASA Astrophysics Data System (ADS)
Mendoza, Miguel
The current development of modern electronics has driven the need for new series of energy storage devices with higher energy density and faster charge/discharge rate. Batteries and capacitors are two of the most widely used energy storage devices. Compared with batteries, capacitors have higher power density and significant higher charge/discharge rate. Therefore, high energy density capacitors play a significant role in modern electronic devices, power applications, space flight technologies, hybrid electric vehicles, portable defibrillators, and pulse power applications. Dielectric film capacitors represent an exceptional alternative for developing high energy density capacitors due to their high dielectric constants, outstanding breakdown voltages, and flexibility. The implementation of high aspect ratio dielectric inclusions such as nanowires into polymer capacitors could lead to further enhancement of its energy density. Therefore, this research effort is focused on the development of a new series of dielectric capacitors composed of nanowire reinforced polymer matrix composites. This concept of nanocomposite capacitors combines the extraordinary physical and chemical properties of the one-dimension (1D) nanoceramics and high dielectric strength of polymer matrices, leading to a capacitor with improved dielectric properties and energy density. Lead-free sodium niobate (NaNbO3) and lead-containing lead magnesium niobate-lead titanate (0.65PMN-0.35PT) nanowires were synthesized following hydrothermal and sol-gel approaches, respectively. The as-prepared nanowires were mixed with a polyvinylidene fluoride (PVDF) matrix using solution-casting method for nanocomposites fabrication. The dielectric constants and breakdown voltages of the NaNbO3/PVDF and 0.65PMN-0.35PT/PVDF nanocomposites were measured under different frequency ranges and temperatures in order to determine their maximum energy (J/cm3) and specific (J/g) densities. The electrical properties of the synthesized nanoceramics were compared with commercially available barium titanate (BaTiO3) and lead zirconate titanate Pb(ZrxTi1-x)O3 powders embedded into a PVDF matrix. The resulting dielectric film capacitors represent an excellent alternative energy storage device for future high energy density applications.
Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng
2016-05-25
The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.
NASA Astrophysics Data System (ADS)
Li, Yaping; Lagowski, Jolanta B.
2011-08-01
Inorganic (mostly silicon based) solar cells are important devices that are used to solve the world energy and environmental needs. Now days, organic solar cells are attracting considerable attention in the field of photovoltaic cells because of their low cost and processing flexibility. Often conjugated polymers are used in the construction of the organic solar cells. We study the conjugated polymers' charge transport using computational approach that involves the use of the density functional theory (DFT), semiempirical (ZINDO), and Monte Carlo (MC) theoretical methods in order to determine their transfer integrals, reorganization energies, transfer rates (with the use of Marcus-Hush equation) and mobilities. We employ the experimentally determined three dimensional (3D) structure of poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) to estimate the electron mobility in a similar co-alternating polymer consisting of carbazole and benzothiadiazole units (C8BT). In agreement with our previous work, we found that including an orientational disorder in the crystal reduces the electron mobility in C8BT. We hope that the proposed computational approach can be used to predict charge mobility in organic materials that are used in solar cells.
Pryamitsyn, Victor; Ganesan, Venkat
2015-10-28
We study the effective pair interactions between two charged spherical particles in polyelectrolyte solutions using polymer self-consistent field theory. In a recent study [V. Pryamitsyn and V. Ganesan, Macromolecules 47, 6095 (2015)], we considered a model in which the particles possess fixed charge density, the polymers contain a prespecified amount of dissociated charges and, the dielectric constant of the solution was assumed to be homogeneous in space and independent of the polymer concentration. In this article, we present results extending our earlier model to study situations in which either or both the particle and the polymers possess partially dissociable groups. Additionally, we also consider the case when the dielectric constant of the solution depends on the local concentration of the polymers and when the particle's dielectric constant is lower than that of the solvent. For each case, we quantify the polymer-mediated interactions between the particles as a function of the polymer concentrations and the degree of dissociation of the polymer and particles. Consistent with the results of our previous study, we observe that the polymer-mediated interparticle interactions consist of a short-range attraction and a long-range repulsion. The partial dissociablity of the polymer and particles was seen to have a strong influence on the strength of the repulsive portion of the interactions. Rendering the dielectric permittivity to be inhomogeneous has an even stronger effect on the repulsive interactions and results in changes to the qualitative nature of interactions in some parametric ranges.
McGeachy, A C; Dalchand, N; Caudill, E R; Li, T; Doğangün, M; Olenick, L L; Chang, H; Pedersen, J A; Geiger, F M
2018-04-25
Charge densities of cationic polymers adsorbed to lipid bilayers are estimated from second harmonic generation (SHG) spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The systems surveyed included poly(vinylamine hydrochloride) (PVAm), poly(diallyldimethylammonium chloride) (PDADMAC), poly-l-lysine (PLL), and poly-l-arginine (PLR), as well as polyalcohol controls. Upon accounting for the number of positive charges associated with each polyelectrolyte, the binding constants and apparent free energies of adsorption as estimated from SHG data are comparable despite differences in molecular masses and molecular structure, with ΔGads values of -61 ± 2, -58 ± 2, -57 ± 1, -52 ± 2, -52 ± 1 kJ mol-1 for PDADMAC400, PDADMAC100, PVAm, PLL, and PLR, respectively. Moreover, we find charge densities for polymer adlayers of approximately 0.3 C m-2 for poly(diallyldimethylammonium chloride) while those of poly(vinylamine) hydrochloride, poly-l-lysine, and poly-l-arginine are approximately 0.2 C m-2. Time-dependent studies indicate that polycation adsorption to supported lipid bilayers is only partially reversible for most of the polymers explored. Poly(diallyldimethylammonium chloride) does not demonstrate reversible binding even over long timescales (>8 hours).
Venkatesan, Swaminathan; Ngo, Evan C; Chen, Qiliang; Dubey, Ashish; Mohammad, Lal; Adhikari, Nirmal; Mitul, Abu Farzan; Qiao, Qiquan
2014-06-21
Single and double junction solar cells with high open circuit voltage were fabricated using poly{thiophene-2,5-diyl-alt-[5,6-bis(dodecyloxy)benzo[c][1,2,5]thiadiazole]-4,7-diyl} (PBT-T1) blended with fullerene derivatives in different weight ratios. The role of fullerene loading on structural and morphological changes was investigated using atomic force microscopy (AFM) and X-ray diffraction (XRD). The XRD and AFM measurements showed that a higher fullerene mixing ratio led to breaking of inter-chain packing and hence resulted in smaller disordered polymer domains. When the PBT-T1:PC60BM weight ratio was 1 : 1, the polymer retained its structural order; however, large aggregated domains formed, leading to poor device performance due to low fill factor and short circuit current density. When the ratio was increased to 1 : 2 and then 1 : 3, smaller amorphous domains were observed, which improved photovoltaic performance. The 1 : 2 blending ratio was optimal due to adequate charge transport pathways giving rise to moderate short circuit current density and fill factor. Adding 1,8-diiodooctane (DIO) additive into the 1 : 2 blend films further improved both the short circuit current density and fill factor, leading to an increased efficiency to 4.5% with PC60BM and 5.65% with PC70BM. These single junction solar cells exhibited a high open circuit voltage at ∼ 0.9 V. Photo-charge extraction by linearly increasing voltage (Photo-CELIV) measurements showed the highest charge carrier mobility in the 1 : 2 film among the three ratios, which was further enhanced by introducing the DIO. The Photo-CELIV measurements with varying delay times showed significantly higher extracted charge carrier density for cells processed with DIO. Tandem devices using P3HT:IC60BA as bottom cell and PBT-T1:PC60BM as top cell exhibited a high open circuit voltage of 1.62 V with 5.2% power conversion efficiency.
Wang, Kai; Yi, Chao; Liu, Chang; ...
2015-03-18
The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less
``Smart'' Surfaces of Polymer Brushes
NASA Astrophysics Data System (ADS)
Wang, Qiang; Meng, Dong
2009-03-01
``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.
NASA Astrophysics Data System (ADS)
Wu, Shan; Burlingame, Quinn; Lin, Minren; Zhang, Qiming
2013-03-01
There is an increasing demand on dielectric materials with high electric energy density and low loss for a broad range of applications in modern electronics and electrical power systems such as hybrid electric vehicles (HEV), medical defibrillators, filters, and switched-mode power supplies. One major challenge in developing dielectric polymers is how to achieve high energy density Ue while maintaining low dielectric loss, even at very high-applied electric fields. Here we show that amorphous polar-polymers with very low impurity concentration can be promising for realizing such a dielectric polymer. Polar-polymer with high dipole moment and weak dipole coupling can provide relatively high dielectric constant for high Ue, eliminate polarization and conduction losses due to weak dipolar coupling and strong polar-scattering to charge carriers. Indeed, an aromatic polythiourea thin film can maintain low loss to high fields (>1 GV/m) with a high Ue (~ 24 J/cm3) , which is very attractive for energy storage capacitors.
NASA Astrophysics Data System (ADS)
Roh, Jeongkyun; Lee, Taesoo; Kang, Chan-Mo; Kwak, Jeonghun; Lang, Philippe; Horowitz, Gilles; Kim, Hyeok; Lee, Changhee
2017-04-01
We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of SAMs with different dipole direction, thiophenol (TP) and pentafluorobenzene thiol (PFBT) were employed, modifying the work function of the inkjet-printed Ag (4.9 eV) to 4.66 eV and 5.24 eV with TP and PFBT treatments, respectively. The charge carrier densities were controlled by the SAM treatment in both dominant and non-dominant carrier-channel regimes. This work demonstrates that control of the charge carrier densities can be efficiently achieved by modifying the injection property with SAM treatment; thus, this approach can achieve polarity conversion of the OFETs.
Polymer bulk heterojunction solar cells with PEDOT:PSS bilayer structure as hole extraction layer.
Kim, Wanjung; Kim, Namhun; Kim, Jung Kyu; Park, Insun; Choi, Yeong Suk; Wang, Dong Hwan; Chae, Heeyeop; Park, Jong Hyeok
2013-06-01
A high current density obtained in a limited, nanometer-thick region is important for high efficiency polymer solar cells (PSCs). The conversion of incident photons to charge carriers only occurs in confined active layers; therefore, charge-carrier extraction from the active layer within the device by using solar light has an important impact on the current density and the related to power conversion efficiency. In this study, we observed a surprising result, that is, extracting the charge carrier generated in the active layer of a PSC device, with a thickness-controlled PEDOT:PSS bilayer that acted as a hole extraction layer (HEL), yielded a dramatically improved power conversion efficiency in two different model systems (P3HT:PC₆₀BM and PCDTBT:PC₇₀BM). To understand this phenomenon, we conducted optical strength simulation, photocurrent-voltage measurements, incident photon to charge carrier efficiency measurements, ultraviolet photoelectron spectroscopy, and AFM studies. The results revealed that approximately 60 nm was the optimum PEDOT:PSS bilayer HEL thickness in PSCs for producing the maximum power conversion efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qin
Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less
Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes
Wu, Qin
2015-01-30
Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less
A mathematical model for predicting cyclic voltammograms of electronically conductive polypyrrole
NASA Technical Reports Server (NTRS)
Yeu, Taewhan; Nguyen, Trung V.; White, Ralph E.
1988-01-01
Polypyrrole is an attractive polymer for use as a high-energy-density secondary battery because of its potential as an inexpensive, lightweight, and noncorrosive electrode material. A mathematical model to simulate cyclic voltammograms for polypyrrole is presented. The model is for a conductive porous electrode film on a rotating disk electrode (RDE) and is used to predict the spatial and time dependence of concentration, overpotential, and stored charge profiles within a polypyrrole film. The model includes both faradic and capacitance charge components in the total current density expression.
A mathematical model for predicting cyclic voltammograms of electronically conductive polypyrrole
NASA Technical Reports Server (NTRS)
Yeu, Taewhan; Nguyen, Trung V.; White, Ralph E.
1987-01-01
Polypyrrole is an attractive polymer for use as a high-energy-density secondary battery because of its potential as an inexpensive, lightweight, and noncorrosive electrode material. A mathematical model to simulate cyclic voltammograms for polypyrrole is presented. The model is for a conductive porous electrode film on a rotating disk electrode (RDE) and is used to predict the spatial and time dependence of concentration, overpotential, and stored charge profiles within a polypyrrole film. The model includes both faradic and capacitance charge components in the total current density expression.
High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte
Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong
2016-01-01
Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772
Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators
NASA Technical Reports Server (NTRS)
Watson, Michael Dale
2004-01-01
Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.
Research of spin-orbit interaction in organic conjugated polymers
NASA Astrophysics Data System (ADS)
Li, H.; Zhou, M. Y.; Wu, S. Y.; Liang, X. R.
2017-06-01
The effect of spin-orbit interaction on the one-dimensional organic polymer was investigated theoretically. Spin-orbital interaction led to the spatial separation of energy band but did not eliminate spin degeneration, which was different from energy level splitting in the Zeeman Effect. Spin-orbit interaction had little effect on the energy band structure, charge density, and lattice position, etc.; Spin precession was obtained when a polaron was transported along the polymer chain, which theoretically proved that it was feasible to control the spin precession of polaron in organic polymers by the use of external electric field.
NASA Astrophysics Data System (ADS)
Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.
2016-01-01
The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.
Shen, Jian; Zhao, He; Cao, Hongbin; Zhang, Yi; Chen, Yongsheng
2014-02-01
Whether a cationic organic polymer can remove more total cyanide (TCN) than a non-ionic organic polymer during the same flocculation system has not been reported previously. In this study, the effects of organic polymers with different charge density on the removal mechanisms of TCN in coking wastewater are investigated by polyferric sulfate (PFS) with a cationic organic polymer (PFS-C) or a non-ionic polymer (PFS-N). The coagulation experiments results show that residual concentrations of TCN (Fe(CN)6(3-)) after PFS-C flocculation (TCN < 0.2 mg/L) are much lower than that after PFS-N precipitation. This can be attributed to the different TCN removal mechanisms of the individual organic polymers. To investigate the roles of organic polymers, physical and structural characteristics of the flocs are analyzed by FT-IR, XPS, TEM and XRD. Owing to the presence of N+ in PFS-C, Fe(CN)6(3-) and negative flocs (Fe(CN)6(3-) adsorbed on ferric hydroxides) can be removed via charge neutralization and electrostatic patch flocculation by the cationic organic polymer. However, non-ionic N in PFS-N barely reacts with cyanides through sweeping or bridging, which indicates that the non-ionic polymer has little influence on TCN removal.
Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes
NASA Astrophysics Data System (ADS)
Storm, Ingeborg M.; Stuart, Martien A. Cohen; de Vries, Renko; Leermakers, Frans A. M.
2018-03-01
A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lonergan, Mark
Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been themore » polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.« less
Importance of core electrostatic properties on the electrophoresis of a soft particle
NASA Astrophysics Data System (ADS)
De, Simanta; Bhattacharyya, Somnath; Gopmandal, Partha P.
2016-08-01
The impact of the volumetric charged density of the dielectric rigid core on the electrophoresis of a soft particle is analyzed numerically. The volume charge density of the inner core of a soft particle can arise for a dendrimer structure or bacteriophage MS2. We consider the electrokinetic model based on the conservation principles, thus no conditions for Debye length or applied electric field is imposed. The fluid flow equations are coupled with the ion transport equations and the equation for the electric field. The occurrence of the induced nonuniform surface charge density on the outer surface of the inner core leads to a situation different from the existing analysis of a soft particle electrophoresis. The impact of this induced surface charge density together with the double-layer polarization and relaxation due to ion convection and electromigration is analyzed. The dielectric permittivity and the charge density of the core have a significant impact on the particle electrophoresis when the Debye length is in the order of the particle size. We find that by varying the ionic concentration of the electrolyte, the particle can exhibit reversal in its electrophoretic velocity. The role of the polymer layer softness parameter is addressed in the present analysis.
Polymer space-charge-limited transistor as a solid-state vacuum tube triode
NASA Astrophysics Data System (ADS)
Chao, Yu-Chiang; Ku, Ming-Che; Tsai, Wu-Wei; Zan, Hsiao-Wen; Meng, Hsin-Fei; Tsai, Hung-Kuo; Horng, Sheng-Fu
2010-11-01
We report the construction of a polymer space-charge-limited transistor (SCLT), a solid-state version of vacuum tube triode. The SCLT achieves a high on/off ratio of 3×105 at a low operation voltage of 1.5 V by using high quality insulators both above and below the grid base electrode. Applying a greater bias to the base increases the barrier potential, and turns off the channel current, without introducing a large parasitic leakage current. Simulation result verifies the influence of base bias on channel potential distribution. The output current density is 1.7 mA/cm2 with current gain greater than 1000.
Use of cationic polymers to reduce pathogen levels during dairy manure separation.
Liu, Zong; Carroll, Zachary S; Long, Sharon C; Gunasekaran, Sundaram; Runge, Troy
2016-01-15
Various separation technologies are used to deal with the enormous amounts of animal waste that large livestock operations generate. When the recycled waste stream is land applied, it is essential to lower the pathogen load to safeguard the health of livestock and humans. We investigated whether cationic polymers, used as a flocculent in the solid/liquid separation process, could reduce the pathogen indicator load in the animal waste stream. The effects of low charge density cationic polyacrylamide (CPAM) and high charge density cationic polydicyandiamide (PDCD) were investigated. Results demonstrated that CPAM was more effective than PDCD for manure coagulation and flocculation, while PDCD was more effective than CPAM in reducing the pathogen indicator loads. However, their combined use, CPAM followed by PDCD, resulted in both improved solids separation and pathogen indicator reduction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Asymmetric Supercapacitor for Long-Duration Power Storage
NASA Technical Reports Server (NTRS)
Rangan, Krishnaswamy K.; Sudarshan, Tirumalai S.
2012-01-01
A document discusses a project in which a series of novel hybrid positive electrode materials was developed and tested in asymmetric capacitors with carbon negative electrodes. The electrochemical performance of the hybrid capacitors was characterized by cyclic voltammetry and a DC charge/discharge test. The hybrid capacitor exhibited ideal capacitor behavior with an extended operating voltage of 1.6 V in aqueous electrolyte, and energy density higher than activated carbon-based supercapacitors. Nanostructured MnO2 is a promising material for electrochemical capacitors (ECS) because of its low cost, environmentally friendly nature, and reasonably high specific capacitance. The charge capacity of the capacitors can be further improved by increasing the specific surface area of the MnO2 electrode material. The power density and space radiation stability of the capacitors can be enhanced by coating the MnO2 nanoparticles with conducting polymers. The conducting polymer coating also helps in radiation-hardening the ECS.
Two-dimensional electron beam charging model for polymer films
NASA Technical Reports Server (NTRS)
Reeves, R. D.; Balmain, K. G.
1981-01-01
A two-dimensional model is developed to describe the charging of strips of thin polymer films above a grounded substrate exposed to a uniform mono-energetic electron beam. The study is motivated by the observed anomalous behavior of geosynchronous satellites, which has been attributed to differential charging of the satellite surfaces exposed to magnetospheric electrons. Surface and bulk electric fields are calcuated at steady state in order to identify regions of high electrical stress, with emphasis on behavior near the material's edge. The model is used to study the effects of some of the experimental parameters, notably beam energy, beam angle of incidence, beam current density, material thickness and material width. Also examined are the consequences of a central gap in the material and a discontinuity in the material thickness.
Revealing weak spin-orbit coupling effects on charge carriers in a π -conjugated polymer
NASA Astrophysics Data System (ADS)
Malissa, H.; Miller, R.; Baird, D. L.; Jamali, S.; Joshi, G.; Bursch, M.; Grimme, S.; van Tol, J.; Lupton, J. M.; Boehme, C.
2018-04-01
We measure electrically detected magnetic resonance on organic light-emitting diodes made of the polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] at room temperature and high magnetic fields where spectral broadening of the resonance due to spin-orbit coupling (SOC) exceeds that due to the local hyperfine fields. Density-functional-theory calculations on an open-shell model of the material reveal g -tensors of charge-carrier spins in the lowest unoccupied (electron) and highest occupied (hole) molecular orbitals. These tensors are used for simulations of magnetic resonance line shapes. Besides providing the first quantification and direct observation of SOC effects on charge-carrier states in these weakly SO-coupled hydrocarbons, this procedure demonstrates that spin-related phenomena in these materials are fundamentally monomolecular in nature.
NASA Astrophysics Data System (ADS)
McBranch, Duncan W.; Kraabel, Brett; Xu, Su; Wang, Hsing-Lin; Klimov, Victor I.
1999-12-01
Using subpicosecond transient absorption spectroscopy, we have investigated the primary photoexcitations in thin films and solution of several phenylene-based conjugated polymers and an oligomer. We identify two features in the transient absorption spectra and dynamics that are common to all of the materials which we have studied from this family. The first spectral feature is a photoinduced absorption (PA) band peaking near 1 eV which has intensity-dependent dynamics which match the stimulated emission dynamics exactly over two orders of magnitude in excitation density. This band is associated with singlet intrachain excitons. The second spectral feature (observed only in thin films and aggregated solutions) is a PA band peaking near 1.8 eV, which is longer-lived than the 1 eV exciton PA band, and which has dynamics that are independent (or weakly-dependent) on excitation density. This feature is attributed to charge separated (interchain) excitations. These excitations are generated through a bimolecular process. By comparing to samples in which charged excitations are created deliberately by doping with C6O, we assign these secondary species as bound polarons.
Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2017-11-01
We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.
NASA Astrophysics Data System (ADS)
Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.
2015-07-01
Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.
Polyelectrolytes with high charge density
NASA Technical Reports Server (NTRS)
Rembaum, A.; Yen, S. P. S.
1974-01-01
Polymers can be used as flocculants to clarify residential and industrial water supplies and as bactericidal and fungicidal agents. They can be used in preparation of electroconductive photocopy papers, to improve living cell adhesion to glass or plastic, and as anticancer agents.
Ropers, M H; Novales, B; Boué, F; Axelos, M A V
2008-11-18
The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Besides classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than the pure surfactant foam film but similar for high- and low-charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a low-charged pectin or by neutralizing the highly charged pectin in decreasing pH.
25th anniversary article: charge transport and recombination in polymer light-emitting diodes.
Kuik, Martijn; Wetzelaer, Gert-Jan A H; Nicolai, Herman T; Craciun, N Irina; De Leeuw, Dago M; Blom, Paul W M
2014-01-01
This article reviews the basic physical processes of charge transport and recombination in organic semiconductors. As a workhorse, LEDs based on a single layer of poly(p-phenylene vinylene) (PPV) derivatives are used. The hole transport in these PPV derivatives is governed by trap-free space-charge-limited conduction, with the mobility depending on the electric field and charge-carrier density. These dependencies are generally described in the framework of hopping transport in a Gaussian density of states distribution. The electron transport on the other hand is orders of magnitude lower than the hole transport. The reason is that electron transport is hindered by the presence of a universal electron trap, located at 3.6 eV below vacuum with a typical density of ca. 3 × 10¹⁷ cm⁻³. The trapped electrons recombine with free holes via a non-radiative trap-assisted recombination process, which is a competing loss process with respect to the emissive bimolecular Langevin recombination. The trap-assisted recombination in disordered organic semiconductors is governed by the diffusion of the free carrier (hole) towards the trapped carrier (electron), similar to the Langevin recombination of free carriers where both carriers are mobile. As a result, with the charge-carrier mobilities and amount of trapping centers known from charge-transport measurements, the radiative recombination as well as loss processes in disordered organic semiconductors can be fully predicted. Evidently, future work should focus on the identification and removing of electron traps. This will not only eliminate the non-radiative trap-assisted recombination, but, in addition, will shift the recombination zone towards the center of the device, leading to an efficiency improvement of more than a factor of two in single-layer polymer LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kim, Ji-Seon; Ho, Peter K. H.; Murphy, Craig E.; Seeley, Alex J. A. B.; Grizzi, Ilaria; Burroughes, Jeremy H.; Friend, Richard H.
2004-03-01
Although much progress has been made in improving polymer light-emitting diode performance, there has been little work to address device intrinsic degradation mechanisms due to the challenge of tracking minute chemical reactions in the 100-nm-thick buried active layers during operation. Here we have elucidated a hole-mediated electrical degradation of triarylamine-based blue polymer diodes using in situ Raman microspectroscopy. A slow irreversible hole-doping of polymer adjacent to the hole-injecting conducting-polymer leads to formation of oxidised triarylamine species counterbalanced by anions from the conducting-polymer. These charged species act as luminescence quenchers and hinder further hole injection across the interface leading to significant decreases in current density at low voltages.
Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers.
Leng, Chuan; Huang, Hao; Zhang, Kexin; Hung, Hsiang-Chieh; Xu, Yao; Li, Yaoxin; Jiang, Shaoyi; Chen, Zhan
2018-05-07
Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water, and how such structures change while exposing to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property while other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material.
Lee, Min-Hye; Kim, Juhwan; Kang, Minji; Kim, Jihong; Kang, Boseok; Hwang, Hansu; Cho, Kilwon; Kim, Dong-Yu
2017-01-25
Two donor-acceptor (D-A) alternating conjugated polymers based on thienylenevinylene-benzotriazole (TV-BTz), PTV6B with a linear side chain and PTVEhB with a branched side chain, were synthesized and characterized for organic field effect transistors (OFETs) and complementary metal-oxide-semiconductor (CMOS)-like inverters. According to density functional theory (DFT), polymers based on TV-BTz exhibit a coplanar and rigid structure with no significant twists, which could cause to an increase in charge-carrier mobility in OFETs. Alternating alkyl side chains of the polymers impacted neither the band gap nor the energy level. However, it significantly affected the morphology and crystallinity when the polymer films were thermally annealed. To investigate the effect of thermal annealing on the morphology and crystallinity, we characterized the polymer films using atomic force microscopy (AFM) and 2D-grazing incidence X-ray diffraction (2D-GIWAXD). Fibrillary morphologies with larger domains and increased crystallinity were observed in the polymer films after thermal annealing. These polymers exhibited improved charge-carrier mobilities in annealed films at 200 °C and demonstrated optimal OFET device performance with p-type transport characteristics with charge-carrier mobilities of 1.51 cm 2 /(V s) (PTV6B) and 2.58 cm 2 /(V s) (PTVEhB). Furthermore, CMOS-like inorganic (ZnO)-organic (PTVEhB) hybrid bilayer inverter showed that the inverting voltage (V inv ) was positioned near the ideal switching point at half (1/2) of supplied voltage (V DD ) due to fairly balanced p- and n-channels.
NASA Astrophysics Data System (ADS)
Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Li, Shichun; Peng, Cheng
2018-03-01
Interface induced polarization has a prominent influence on dielectric properties of 0-3 type polymer based composites containing Si-based semi-conductors. The disadvantages of composites were higher dielectric loss, lower breakdown strength and energy storage density, although higher permittivity was achieved. In this work, dielectric, conductive, breakdown and energy storage properties of four nano-composites have been researched. Based on the cooperation of fluoropolymer/alpha-SiC layer and fluoropolymer/hexagonal-BN layer, it was confirmed constructing the heterogeneous layer-by-layer composite structure rather than homogeneous mono-layer structure could significantly reduce dielectric loss, promote breakdown strength and increase energy storage density. The former worked for a larger dielectric response and the latter layer acted as a robust barrier of charge carrier transfer. The best nano-composite could possess a permittivity of 43@100 Hz ( 3.3 times of polymer), loss of 0.07@100 Hz ( 37% of polymer), discharged energy density of 2.23 J/cm3@249 kV/cm ( 10 times of polymer) and discharged energy efficiency of 54%@249 kV/cm ( 5 times of polymer). This work might enlighten a facile route to achieve the promising high energy storage composite dielectrics by constructing the layer-by-layer topological structure.
Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers
NASA Astrophysics Data System (ADS)
Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco
2011-03-01
The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.
Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik
2017-07-01
After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2 = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Wei; Shi, Wei; Han, Shijiao; Yu, Junsheng
2013-05-01
Hysteresis mechanism of pentacene organic field-effect transistors (OFETs) with polyvinyl alcohol (PVA) and/or polymethyl methacrylate (PMMA) dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ˜ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.
Yan, Huijie; Zhu, Dingcheng; Zhou, Zhuxian; Liu, Xin; Piao, Ying; Zhang, Zhen; Liu, Xiangrui; Tang, Jianbin; Shen, Youqing
2018-03-30
Cationic polymers are one of the main non-viral vectors for gene therapy, but their applications are hindered by the toxicity and inefficient transfection, particularly in the presence of serum or other biological fluids. While rational design based on the current understanding of gene delivery process has produced various cationic polymers with improved overall transfection, high-throughput parallel synthesis of libraries of cationic polymers seems a more effective strategy to screen out efficacious polymers. Herein, we demonstrate a novel platform for parallel synthesis of low cationic charge-density polyesters for efficient gene delivery. Unsaturated polyester poly(alkylene maleate) (PAM) readily underwent Michael-addition reactions with various mercaptamines to produce polyester backbones with pendant amine groups, poly(alkylene maleate mercaptamine)s (PAMAs). Variations of the alkylenes in the backbone and the mercaptamines on the side chain produced PAMAs with tunable hydrophobicity and DNA-condensation ability, the key parameters dominating transfection efficiency of the resulting polymer/DNA complexes (polyplexes). A semi-library of such PAMAs was exampled from 7 alkylenes and 18 mercaptamines, from which a lead PAMA, G-1, synthesized from poly(1,4-phenylene bis(methylene) maleate) and N,N-dimethylcysteamine, showed remarkable transfection efficiency even in the presence of serum, owing to its efficient lysosome-circumventing cellular uptake. Furthermore, G-1 polyplexes efficiently delivered the suicide gene pTRAIL to intraperitoneal tumors and elicited effective anticancer activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-01-01
Abstract Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. PMID:20409479
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-04-21
Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen
2011-09-01
We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.
Nam, Sungho; Shin, Minjung; Park, Soohyeong; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo
2012-11-21
We report the improved performance of all-polymer solar cells with bulk heterojunction nanolayers of an electron-donating polymer (poly(3-hexylthiophene) (P3HT)) and an electron-accepting polymer (poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)), which were both doped with 4-ethylbenzenesulfonic acid (EBSA). To choose the doping ratio of P3HT for all-polymer solar cells, various EBSA doping ratios (0, 1, 3, 5, 10, 20 wt%) were tested by employing optical absorption spectroscopy, photoluminescence spectroscopy, photoelectron yield spectroscopy, and space-charge-limited current (SCLC) mobility measurement. The doping reaction of P3HT with EBSA was followed by observing the colour change in solutions. The final doping ratio for P3HT was chosen as 1 wt% from the best hole mobility measured in the thickness direction, while that for F8BT was fixed as 10 wt% (F8BT-EBSA). The polymer:polymer solar cells with bulk heterojunction nanolayers of P3HT-EBSA (EBSA-doped P3HT) and F8BT-EBSA (EBSA-doped F8BT) showed greatly improved short circuit current density (J(SC)) and open circuit voltage (V(OC)), compared to the undoped solar cells. As a result, the power conversion efficiency (PCE) was enhanced by ca. 300% for the 6 : 4 (P3HT-EBSA : F8BT-EBSA) composition and ca. 400% for the 8 : 2 composition. The synchrotron-radiation grazing incidence angle X-ray diffraction (GIXD) measurement revealed that the crystallinity of the doped nanolayers significantly increased by EBSA doping owing to the formation of advanced phase segregation morphology, as supported by the surface morphology change measured by atomic force microscopy. Thus the improved PCE can be attributed to the enhanced charge transport by the formation of permanent charges and better charge percolation paths by EBSA doping.
Gao, Jing; White, Evan M; Liu, Qiaohong; Locklin, Jason
2017-03-01
Poly quaternary "-oniums" derived from polyethylenimine (PEI), poly(vinyl-N-alkylpyridinium), or chitosan belong to a class of cationic polymers that are efficient antimicrobial agents. When dissolved in solution, the positively charged polycations are able to displace the divalent cations of the cellular phospholipid bilayer and disrupt the ionic cross-links and structural integrity of the membrane. However, when immobilized to a surface where confinement limits diffusion, poly -oniums still show excellent antimicrobial activity, which implies a different biocidal mode of action. Recently, a proposed mechanism, named phospholipid sponge effect, suggested that surface-bound polycationic networks are capable of recruiting negatively charged phospholipids out of the bacterial cell membrane and sequestering them within the polymer matrix.1 However, there has been insufficient evidence to support this hypothesis. In this study, a surface-bound N,N-dodecyl methyl-co-N,N-methylbenzophenone methyl quaternary PEI (DMBQPEI) was prepared to verify the phospholipid sponge effect. By tuning the irradiation time, the cross-linking densities of surface-bound DMBQPEI films were mediated. The modulus of films was measured by PeakForce Quantitative Nanomechanical Mapping (QNM) to indicate the cross-linking density variation with increasing irradiation time. A negative correlation between the film cross-linking density and the absorption of a negatively charged phospholipid (DPhPG) was observed, but no such correlations were observed with a neutral phospholipid (DPhPC), which strongly supported the action of anionic phospholipid suction proposed in the lipid sponge effect. Moreover, the killing efficiency toward S. aureus and E. coli was inversely affected by the cross-linking density of the films, providing evidence for the phospholipid sponge effect. The relationship between killing efficiency and film cross-linking density is discussed.
Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.
2016-01-01
The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong delocalization of the positive polaron on the polymer donor is an important reason for the efficient charge separation in bulk heterojunction systems as it minimizes the wasteful process of charge recombination. The combination of advanced EPR spectroscopy and DFT is a powerful approach for investigation of light-induced charge dynamics in organic photovoltaic materials. PMID:23670645
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor)
1978-01-01
Cationic polyelectrolytes are formed by the polymerization in absence of oxygen of a monomer of the general formula: ##STR1## where x is 3 or more than 6 and Z is I, Br or Cl to form high charge density linear polymers. Segments of the linear polymer may be attached to or formed in the presence of polyfunctional reactive tertiary amines or halogen polymeric substrates or polyfunctional lower molecular reactive polyfunctional substrates to form branched or star polyelectrolytes by a quaternization polymerization reaction.
NASA Astrophysics Data System (ADS)
Shi, Yunzhou; Zhang, Li; Zhang, Jie; Yue, Zhenxing
2017-12-01
Mg0.95Ca0.05TiO3 (MCT) filled high density polyethylene (HDPE) composites were prepared by twin-screw extrusion followed by hot pressing technique. The thermally stimulated depolarization current (TSDC) measurement was performed to analyze the contribution of charge distribution and interfacial characteristics to the dielectric loss. TSDC spectra under different polarization conditions show that the introduction of ceramic fillers engenders shallow traps in the vicinity of ceramic-polymer interface, which hinders the injection of space charge from the electrode into the polymer matrix. In the composite materials applied to an external field, charges tend to be captured by these traps. The temperature dependence of relative permittivity and dielectric loss of the composites was measured, and a strong reliance of dielectric loss on temperature was observed. In the heating process, the release of charges accumulating at interfacial region is considered to contribute to the rise in dielectric loss with the increase of temperature.
Sulfobetaine as a zwitterionic mediator for 3D hydroxyapatite mineralization
Liu, Pingsheng; Song, Jie
2013-01-01
Both positively and negatively charged residues play pivotal roles in recruiting precursor ions or ion clusters, and lowering interfacial energy in natural biomineralization process. Synergistic utilization of opposite charges, however, has rarely been implemented in the design of cytocompatible synthetic scaffolds promoting hydroxyapatite (HA)-mineralization and osteointegration. We report the use of cytocompatible zwitterionic sulfobetaine ligands to enable 3-dimensional in vitro mineralization of HA across covalently crosslinked hydrogels. The overall charge-neutral zwitterionic hydrogel effectively recruited oppositely charged precursor ions while overcame excessive swelling exhibited by anionic and cationic hydrogels under physiological conditions, resulting in denser and structurally well-integrated mineralized composites. Further controls over the size, content, and spatial distribution of the mineral domains within the zwitterionic hydrogel are accomplished by facile adjustments of hydrogel crosslinking densities and the supersaturation rate governing heterogeneous mineral nucleation and growth. These findings should inspire many creative uses of zwitterionic polymers and polymer coatings for skeletal tissue repair and regeneration. PMID:23332320
Sulfobetaine as a zwitterionic mediator for 3D hydroxyapatite mineralization.
Liu, Pingsheng; Song, Jie
2013-03-01
Both positively and negatively charged residues play pivotal roles in recruiting precursor ions or ion clusters, and lowering interfacial energy in natural biomineralization process. Synergistic utilization of opposite charges, however, has rarely been implemented in the design of cytocompatible synthetic scaffolds promoting hydroxyapatite (HA)-mineralization and osteointegration. We report the use of cytocompatible zwitterionic sulfobetaine ligands to enable 3-dimensional in vitro mineralization of HA across covalently crosslinked hydrogels. The overall charge-neutral zwitterionic hydrogel effectively recruited oppositely charged precursor ions while overcame excessive swelling exhibited by anionic and cationic hydrogels under physiological conditions, resulting in denser and structurally well-integrated mineralized composites. Further controls over the size, content, and spatial distribution of the mineral domains within the zwitterionic hydrogel are accomplished by facile adjustments of hydrogel crosslinking densities and the supersaturation rate governing heterogeneous mineral nucleation and growth. These findings should inspire many creative uses of zwitterionic polymers and polymer coatings for skeletal tissue repair and regeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.
How Many Parameters Actually Affect the Mobility of Conjugated Polymers?
NASA Astrophysics Data System (ADS)
Fornari, Rocco P.; Blom, Paul W. M.; Troisi, Alessandro
2017-02-01
We describe charge transport along a polymer chain with a generic theoretical model depending in principle on tens of parameters, reflecting the chemistry of the material. The charge carrier states are obtained from a model Hamiltonian that incorporates different types of disorder and electronic structure (e.g., the difference between homo- and copolymer). The hopping rate between these states is described with a general rate expression, which contains the rates most used in the literature as special cases. We demonstrate that the steady state charge mobility in the limit of low charge density and low field ultimately depends on only two parameters: an effective structural disorder and an effective electron-phonon coupling, weighted by the size of the monomer. The results support the experimental observation [N. I. Craciun, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 100, 056601 (2008), 10.1103/PhysRevLett.100.056601] that the mobility in a broad range of (polymeric) semiconductors follows a universal behavior, insensitive to the chemical detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Naisheng; Sendogdular, Levent; Sen, Mani
We report the effects of compressed CO 2 molecules as a novel plasticization agent for poly(3- hexylthiophene) (P3HT) conjugated polymer thin films. In-situ neutron reflectivity experiment demonstrated the excess sorption of CO 2 molecules in the P3HT thin films (about 40 nm in thickness) at low pressure (P = 8.2 MPa) under the isothermal condition of T = 36 °C, which is far below the polymer bulk melting point. The results evidenced that these CO 2 molecules accelerated the crystallization process of the polymer on the basis of ex-situ grazing incidence Xray diffraction measurements after drying the films via rapidmore » depressurization to atmospheric pressure: not only the out-of-plane lamellar ordering of the backbone chains but also intra-plane π-π stacking of the side chains were significantly improved, when compared to those in the control P3HT films subjected to conventional thermal annealing (at T = 170 °C). Electrical measurements elucidated that the CO 2-annealed P3HT thin films exhibited enhanced charge carrier mobility along with decreased background charge carrier concentration and trap density compared to those in the thermally annealed counterpart. This is attributed to the CO 2-induced increase in polymer chain mobility that can drive the detrapping of molecular oxygen and healing of conformational defects in the polymer thin film. Given the universality of the excess sorption of CO 2regardless of the type of polymers, the present findings suggest that the CO 2 annealing near the critical point can be useful as a robust processing strategy for improving structural and electrical characteristics of other semiconducting conjugated polymers and related systems such as polymer: fullerene bulk heterojunction films.tion films.« less
Jiang, Naisheng; Sendogdular, Levent; Sen, Mani; ...
2016-10-06
We report the effects of compressed CO 2 molecules as a novel plasticization agent for poly(3- hexylthiophene) (P3HT) conjugated polymer thin films. In-situ neutron reflectivity experiment demonstrated the excess sorption of CO 2 molecules in the P3HT thin films (about 40 nm in thickness) at low pressure (P = 8.2 MPa) under the isothermal condition of T = 36 °C, which is far below the polymer bulk melting point. The results evidenced that these CO 2 molecules accelerated the crystallization process of the polymer on the basis of ex-situ grazing incidence Xray diffraction measurements after drying the films via rapidmore » depressurization to atmospheric pressure: not only the out-of-plane lamellar ordering of the backbone chains but also intra-plane π-π stacking of the side chains were significantly improved, when compared to those in the control P3HT films subjected to conventional thermal annealing (at T = 170 °C). Electrical measurements elucidated that the CO 2-annealed P3HT thin films exhibited enhanced charge carrier mobility along with decreased background charge carrier concentration and trap density compared to those in the thermally annealed counterpart. This is attributed to the CO 2-induced increase in polymer chain mobility that can drive the detrapping of molecular oxygen and healing of conformational defects in the polymer thin film. Given the universality of the excess sorption of CO 2regardless of the type of polymers, the present findings suggest that the CO 2 annealing near the critical point can be useful as a robust processing strategy for improving structural and electrical characteristics of other semiconducting conjugated polymers and related systems such as polymer: fullerene bulk heterojunction films.tion films.« less
Sterner, B; Harms, M; Wöll, S; Weigandt, M; Windbergs, M; Lehr, C M
2016-04-01
The treatment of joint related diseases often involves direct intra-articular injections. For rational development of novel delivery systems with extended residence time in the joint, detailed understanding of transport and retention phenomena within the joint is mandatory. This work presents a systematic study on the in vitro permeation, penetration and accumulation of model polymers with differing charges and molecular weights in bovine joint tissue. Permeation experiments with bovine synovial membrane were performed with PEG polymers (6-200 kDa) and methylene blue in customized diffusion chambers. For polyethylene glycol, 2-fold (PEG 6 kDa), 3-fold (PEG 10 kDa) and 13-fold (PEG 35 kDa) retention by the synovial membrane in reference to the small molecule methylene blue was demonstrated. No PEG 200 kDa was found in the acceptor in detectable amounts after 48 h. This showed the potential for a distinct extension of joint residence times by increasing molecular weights. In addition, experiments with bovine cartilage tissue were conducted. The ability for positively charged, high molecular weight chitosans and HEMA-Co-TMAP (HCT) polymers (up to 233 kDa) to distribute throughout the entire cartilage matrix was demonstrated. In contrast, a distribution into cartilage was not observed for neutral PEG polymers (6-200 kDa). Furthermore, the positive charge density of different compounds (chitosan, HEMA-Co-TMAP, methylene blue, MSC C1 (neutral NCE) and MSC D1 (positively charged NCE) was found to correlate with their accumulation in bovine cartilage tissue. In summary, the results offer pre-clinical in vitro data, indicating that the modification of molecular size and charge of a substance has the potential to decelerate its clearance through the synovial membrane and to promote accumulation inside the cartilage matrix. Copyright © 2016 Elsevier B.V. All rights reserved.
Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan
2015-04-28
Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.
Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly
NASA Astrophysics Data System (ADS)
Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles
Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.
Cartilage-like electrostatic stiffening of responsive cryogel scaffolds
NASA Astrophysics Data System (ADS)
Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.
2017-02-01
Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.
A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode.
Gao, Hongcai; Xue, Leigang; Xin, Sen; Goodenough, John B
2018-05-04
A safe, rechargeable potassium battery of high energy density and excellent cycling stability has been developed. The anion component of the electrolyte salt is inserted into a polyaniline cathode upon charging and extracted from it during discharging while the K + ion of the KPF 6 salt is plated/stripped on the potassium-metal anode. The use of a p-type polymer cathode increases the cell voltage. By replacing the organic-liquid electrolyte in a glass-fiber separator with a polymer-gel electrolyte of cross-linked poly(methyl methacrylate), a dendrite-free potassium anode can be plated/stripped, and the electrode/electrolyte interface is stabilized. The potassium anode wets the polymer, and the cross-linked architecture provides small pores of adjustable sizes to stabilize a solid-electrolyte interphase formed at the anode/electrolyte interface. This alternative electrolyte/cathode strategy offers a promising new approach to low-cost potassium batteries for the stationary storage of electric power. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Sunwoo; Park, Junghyuck; Park, In-Sung; Ahn, Jinho
2014-07-01
We investigate the dependence of charge carrier mobility by trap states at various interface regions through channel engineering. Prior to evaluation of interface trap density, the electrical performance in pentaene field effect transistors (FET) with high-k gate oxide are also investigated depending on four channel engineering. As a channel engineering, gas treatment, coatings of thin polymer layer, and chemical surface modification using small molecules were carried out. After channel engineering, the performance of device as well as interface trap density calculated by conductance method are remarkably improved. It is found that the reduced interface trap density is closely related to decreasing the sub-threshold swing and improving the mobility. Particularly, we also found that performance of device such as mobility, subthreshold swing, and interface trap density after gas same is comparable to those of OTS.
Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity
NASA Astrophysics Data System (ADS)
de Souza, Vânia S.; da Frota, Hidembergue O.; Sanches, Edgar A.
2018-02-01
A hybrid nanocomposite based on a polymer matrix constituted of Polyaniline Emeraldine-salt form (PANI-ES) reinforced by copper oxide II (CuO) particles was obtained by in situ polymerization. Structural, morphological and electrical properties of the pure materials and nanocomposite form were investigated. The presence of CuO particles in the nanocomposite material affected the natural alignment of the polymer chains. XRD technique allowed the visualization of the polymer amorphization in the nanocomposite form, suggesting an interaction between both phases. The FTIR spectra confirmed this molecular interaction due to the blue shift of the characteristic absorption peaks of PANI-ES in the nanocomposite form. SEM images revealed that the polymer nanofiber morphology was no longer observed in the nanocomposite. The CuO spherical particles are randomly dispersed in the polymer matrix. The density functional theory plus the Coulomb interaction method revealed a charge transfer from PANI to CuO slab. Moreover, the density of states (DOS) has revealed that the nanocomposite behaves as a metal. In agreement, the electrical conductivity showed an increase of 60% in the nanocomposite material.
Influence of acceptor on charge mobility in stacked π-conjugated polymers
NASA Astrophysics Data System (ADS)
Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel
2018-02-01
We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.
Ye, Huijian; Lu, Tiemei; Xu, Chunfeng; Zhong, Mingqiang; Xu, Lixin
2018-03-02
Polymer dielectric film with a large dielectric constant, high energy density and enhanced thermal conductivity are of significance for the development of impulse capacitors. However, the fabrication of polymer dielectrics combining high energy density and thermal conductivity is still a challenge at the moment. Here we demonstrate the facile exfoliation of hexagonal boron nitride nanosheets (BNNSs) in common organic solvents under sonication with the assistance of hyperbranched polyethylene (HBPE). The noncovalent CH-π interactions between the nanosheets and HBPE ensure the dispersion of BNNSs in organic solvents with high concentrations, because of the highly branched chain structure of HBPE. Subsequently, the resultant BNNSs with a few defects are distributed uniformly in the poly(fluorovinylidene-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite films prepared via simple solution casting. The BNNS/P(VDF-HFP) nanocomposite exhibits outstanding dielectric properties, high energy density and high thermal conductivity. The dielectric constant of the 0.5 wt% nanocomposite film is 35.5 at 100 Hz with an energy density of 5.6 J cm -3 at 325 MV m -1 and a high charge-discharge efficiency of 79% due to the depression of the charge injection and chemical species ionization in a high field. Moreover, a thermal conductivity of 1.0 wt% nanocomposite film reaches 0.91 W·m -1 · K -1 , which is 3.13 times higher than that of the fluoropolymer matrix. With dipole accumulation and orientation in the interfacial zone, lightweight, flexible BNNS/P(VDF-HFP) nanocomposite films with high charge-discharge performance and thermal conductivity, exhibit promising applications in relatively high-temperature electronics and energy storage devices.
NASA Astrophysics Data System (ADS)
Ye, Huijian; Lu, Tiemei; Xu, Chunfeng; Zhong, Mingqiang; Xu, Lixin
2018-03-01
Polymer dielectric film with a large dielectric constant, high energy density and enhanced thermal conductivity are of significance for the development of impulse capacitors. However, the fabrication of polymer dielectrics combining high energy density and thermal conductivity is still a challenge at the moment. Here we demonstrate the facile exfoliation of hexagonal boron nitride nanosheets (BNNSs) in common organic solvents under sonication with the assistance of hyperbranched polyethylene (HBPE). The noncovalent CH-π interactions between the nanosheets and HBPE ensure the dispersion of BNNSs in organic solvents with high concentrations, because of the highly branched chain structure of HBPE. Subsequently, the resultant BNNSs with a few defects are distributed uniformly in the poly(fluorovinylidene-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite films prepared via simple solution casting. The BNNS/P(VDF-HFP) nanocomposite exhibits outstanding dielectric properties, high energy density and high thermal conductivity. The dielectric constant of the 0.5 wt% nanocomposite film is 35.5 at 100 Hz with an energy density of 5.6 J cm-3 at 325 MV m-1 and a high charge-discharge efficiency of 79% due to the depression of the charge injection and chemical species ionization in a high field. Moreover, a thermal conductivity of 1.0 wt% nanocomposite film reaches 0.91 W·m-1 · K-1, which is 3.13 times higher than that of the fluoropolymer matrix. With dipole accumulation and orientation in the interfacial zone, lightweight, flexible BNNS/P(VDF-HFP) nanocomposite films with high charge-discharge performance and thermal conductivity, exhibit promising applications in relatively high-temperature electronics and energy storage devices.
Monitoring the degrafting of polyelectrolyte brushes by using surface gradients
NASA Astrophysics Data System (ADS)
Ko, Yeongun; Genzer, Jan
Polymer brushes comprise densely grafted polymer chains on surfaces, which possess high stability and high concentration of reactive centers per unit area compared to physisorbed polymer film. Polymer brushes are employed in many applications, including anti-fouling surfaces, cell adhesive surfaces, responsive surfaces, low-friction surfaces, etc. Recently, researchers reported that charged (or chargeable) polymer brushes can be degrafted from substrate while incubated in buffer solutions. Based on previous experiments conducted in our group and by others, we assume that chain degrafting results from the hydrolysis of Si-O groups in head-group of the initiator and/or the ester groups in main body of the initiator. The kinetic of hydrolysis is affected by mechanical forces acting on the initiator. Those forces depend on the molecular weight and the grafting density of the brush, and the concentration and distribution of charges along the macromolecule (tuned by pH - for weak electrolytes - and concentration of external salt). In this work, we study the stability of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) brushes in two solvents (ethanol and water) at various pH values in water and under different levels of external salt concentration. National Science Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xinyue; Tseng, Jung-Kai; Treufeld, Imre
We report that with the recent advancement of power electronics, polymer film capacitors have become increasingly important. However, the low temperature rating (up to 85 °C) and low energy density (5 J cm -3 at breakdown) of state-of-the-art biaxially oriented polypropylene (BOPP) films have been limiting factors for advanced power electronics. Based on our recent work, multilayer films (MLFs), which consist of a high energy density polymer [e.g., poly(vinylidene fluoride) (PVDF)] and a high breakdown/low loss polymer [e.g., polycarbonate (PC)], have shown potential to achieve high energy density (13–17 J cm -3), enhanced breakdown strength, high temperature tolerance, and lowmore » loss simultaneously. In this study, the dielectric properties of PC/PVDF 50/50 32- and 256-layer (32L and 256L) films were investigated. The breakdown strength of the 32L film was as high as 800 MV m -1 at room temperature, as compared to 600 MV m -1 of PVDF and 750 MV m-1 of PC. The temperature rating of the 32L film reached 120 °C, higher than that of BOPP. In addition, it was observed that the 32L film with thicker PC layers exhibited a higher breakdown strength and a lower DC conductivity than the 256L film with thinner PC layers at elevated temperatures. These differences were attributed to the difference in the interfacial polarization of space charges, which was further verified by thermally stimulated depolarization current spectroscopy. In conclusion, we conclude that interfacial polarization endows MLFs with the desirable dielectric properties for next generation film capacitors.« less
Chen, Xinyue; Tseng, Jung-Kai; Treufeld, Imre; ...
2017-09-15
We report that with the recent advancement of power electronics, polymer film capacitors have become increasingly important. However, the low temperature rating (up to 85 °C) and low energy density (5 J cm -3 at breakdown) of state-of-the-art biaxially oriented polypropylene (BOPP) films have been limiting factors for advanced power electronics. Based on our recent work, multilayer films (MLFs), which consist of a high energy density polymer [e.g., poly(vinylidene fluoride) (PVDF)] and a high breakdown/low loss polymer [e.g., polycarbonate (PC)], have shown potential to achieve high energy density (13–17 J cm -3), enhanced breakdown strength, high temperature tolerance, and lowmore » loss simultaneously. In this study, the dielectric properties of PC/PVDF 50/50 32- and 256-layer (32L and 256L) films were investigated. The breakdown strength of the 32L film was as high as 800 MV m -1 at room temperature, as compared to 600 MV m -1 of PVDF and 750 MV m-1 of PC. The temperature rating of the 32L film reached 120 °C, higher than that of BOPP. In addition, it was observed that the 32L film with thicker PC layers exhibited a higher breakdown strength and a lower DC conductivity than the 256L film with thinner PC layers at elevated temperatures. These differences were attributed to the difference in the interfacial polarization of space charges, which was further verified by thermally stimulated depolarization current spectroscopy. In conclusion, we conclude that interfacial polarization endows MLFs with the desirable dielectric properties for next generation film capacitors.« less
Bloch oscillations in organic and inorganic polymers
NASA Astrophysics Data System (ADS)
Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; de Almeida Fonseca, Antonio Luciano; e Silva, Geraldo Magela
2017-04-01
The transport of polarons above the mobility threshold in organic and inorganic polymers is theoretically investigated in the framework of a one-dimensional tight-binding model that includes lattice relaxation. The computational approach is based on parameters for which the model Hamiltonian suitably describes different polymer lattices in the presence of external electric fields. Our findings show that, above critical field strengths, a dissociated polaron moves through the polymer lattice as a free electron performing Bloch oscillations. These critical electric fields are considerably smaller for inorganic lattices in comparison to organic polymers. Interestingly, for inorganic lattices, the free electron propagates preserving charge and spin densities' localization which is a characteristic of a static polaron. Moreover, in the turning points of the spatial Bloch oscillations, transient polaron levels are formed inside the band gap, thus generating a fully characterized polaron structure. For the organic case, on the other hand, no polaron signature is observed: neither in the shape of the distortion—those polaron profile signatures are absent—nor in the energy levels—as no such polaron levels are formed during the simulation. These results solve controversial aspects concerning Bloch oscillations recently reported in the literature and may enlighten the understanding about the charge transport mechanism in polymers above their mobility edge.
Wasim, Fatima; Mahmood, Tariq; Ayub, Khurshid
2016-07-28
Density functional theory (DFT) calculations have been performed to study the response of polypyrrole towards nitrate ions in gas and aqueous phases. First, an accurate estimate of interaction energies is obtained by methods calibrated against the gold standard CCSD(T) method. Then, a number of low cost DFT methods are also evaluated for their ability to accurately estimate the binding energies of polymer-nitrate complexes. The low cost methods evaluated here include dispersion corrected potential (DCP), Grimme's D3 correction, counterpoise correction of the B3LYP method, and Minnesota functionals (M05-2X). The interaction energies calculated using the counterpoise (CP) correction and DCP methods at the B3LYP level are in better agreement with the interaction energies calculated using the calibrated methods. The interaction energies of an infinite polymer (polypyrrole) with nitrate ions are calculated by a variety of low cost methods in order to find the associated errors. The electronic and spectroscopic properties of polypyrrole oligomers nPy (where n = 1-9) and nPy-NO3(-) complexes are calculated, and then extrapolated for an infinite polymer through a second degree polynomial fit. Charge analysis, frontier molecular orbital (FMO) analysis and density of state studies also reveal the sensing ability of polypyrrole towards nitrate ions. Interaction energies, charge analysis and density of states analyses illustrate that the response of polypyrrole towards nitrate ions is considerably reduced in the aqueous medium (compared to the gas phase).
Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin
2016-01-28
This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J.; Whinnery, Jr., Leroy; Even, Jr., William R.
2005-01-25
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J [Livermore, CA; Whinnery, Jr., Leroy; Even, Jr., William R.
2009-02-10
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Novel fluorescent core-shell nanocontainers for cell membrane transport.
Yin, Meizhen; Kuhlmann, Christoph R W; Sorokina, Ksenia; Li, Chen; Mihov, George; Pietrowski, Eweline; Koynov, Kaloian; Klapper, Markus; Luhmann, Heiko J; Müllen, Klaus; Weil, Tanja
2008-05-01
The synthesis and characterization of novel core-shell macromolecules consisting of a fluorescent perylene-3,4,9,10-tetracarboxdiimide chromophore in the center surrounded by a hydrophobic polyphenylene shell as a first and a flexible hydrophilic polymer shell as a second layer was presented. Following this strategy, several macromolecules bearing varying polymer chain lengths, different polymer shell densities, and increasing numbers of positive and negative charges were achieved. Because all of these macromolecules reveal a good water solubility, their ability to cross cellular membranes was investigated. In this way, a qualitative relationship between the molecular architecture of these macromolecules and the biological response was established.
Fluids Density Functional Theory of Salt-Doped Block Copolymers
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Hall, Lisa M.
Block copolymers have attracted a great deal of recent interest as potential non-flammable, solid-state, electrolyte materials for batteries or other charge carrying applications. The microphase separation in block copolymers combines the properties of a conductive (though mechanically soft) polymer with a mechanically robust (though non-conductive) polymer. We use fluids density functional theory (fDFT) to study the phase behavior of salt-doped block copolymers. Because the salt prefers to preferentially solvate into the conductive phase, salt doping effectively enhances the segregation strength between the two polymer types. We consider the effects of this preferential solvation and of charge correlations by separately modeling the ion-rich phase, without bonding, using the Ornstein-Zernike equation and the hypernetted-chain closure. We use the correlations from this subsystem in the inhomogeneous fDFT calculations. Initial addition of salt increases the domain spacing and sharpens the interfacial region, but for high salt loadings the interface can broaden. Addition of salt can also drive a system with a low copolymer segregation strength to order by first passing through a two phase regime with a salt-rich ordered phase and a salt-poor disordered phase. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0014209.
An ionic liquid-gated polymer thin film transistor with exceptionally low "on" resistance
NASA Astrophysics Data System (ADS)
Algarni, Saud A.; Althagafi, Talal M.; Smith, Patrick J.; Grell, Martin
2014-05-01
We report the ionic liquid (IL) gating of a solution processed semiconducting polymer, poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). IL gating relies on the poor solubility of PBTTT, which requires hot chlorinated benzenes for solution processing. PBTTT, thus, resists dissolution even in IL, which otherwise rapidly dissolves semiconducting polymers. The resulting organic thin film transistors (OTFTs) display low threshold, very high carrier mobility (>3 cm2/Vs), and deliver high currents (in the order of 1 mA) at low operational voltages. Such OTFTs are interesting both practically, for the addressing of current-driven devices (e.g., organic LEDs), and for the study of charge transport in semiconducting polymers at very high carrier density.
NASA Astrophysics Data System (ADS)
Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.
2018-04-01
Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.
Continuum modeling of charging process and piezoelectricity of ferroelectrets
NASA Astrophysics Data System (ADS)
Xu, Bai-Xiang; von Seggern, Heinz; Zhukov, Sergey; Gross, Dietmar
2013-09-01
Ferroelectrets in the form of electrically charged micro-porous foams exhibit a very large longitudinal piezoelectric coefficient d33. The structure has hence received wide application interests as sensors particularly in acoustic devices. During charging process, electrical breakdown (Paschen breakdown) takes place in the air pores of the foam and introduces free charge pairs. These charges are separated by electrostatic forces and relocated at the interfaces between the polymer and the electrically broken-down medium, where they are trapped quasistatically. The development of this trapped charge density along the interfaces is key for enabling the piezoelectricity of ferroelectrets. In this article, an internal variable based continuum model is proposed to calculate the charge density development at the interfaces, whereas a Maxwell stress based electromechanical model is used for the bulk behavior, i.e., of the polymer and of the medium where the Paschen breakdown takes place. In the modeling, the electrostatic forces between the separated charge pairs are included, as well as the influence of deformation of the solid layers. The material models are implemented in a nonlinear finite element scheme, which allows a detailed analysis of different geometries. A ferroelectret unit with porous expanded polytetrafluoroethylene (ePTFE) surrounded by fluorinated ethylene propylene is studied first. The simulated hysteresis curves of charge density at the surfaces and the calculated longitudinal piezoelectric constant are in good agreement with experimental results. Simulations show a strong dependency of the interface charge development and thus the remnant charges on the thicknesses of the layers and the permittivity of the materials. According to the calculated relation between d33 and the Young's modulus of ePTFE, the value of the Young's modulus of ePTFE is identified to be around 0.75 MPa, which lies well in the predicted range of 0.45 to 0.80 MPa, determined from the dielectric resonance spectra in the work of Zhang et al. [X. Q. Zhang et al., J. Appl. Phys. 108, 064113 (2010)]. To show the potential of the models, it is also applied to simulation of ferroelectrets with a lens shape. The results indicate that the electrical breakdown happens in a sequential manner, and the local piezoelectric coefficient varies with position. Thereby, the middle point on the surface exhibits the maximum d33. The simulation results obtained by the proposed models will provide insight for device optimization.
Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites.
Li, Zhonglei; Du, Boxue; Han, Chenlei; Xu, Hang
2017-06-21
The role of trap characteristics in modulating charge transport properties is attracting much attentions in electrical and electronic engineering, which has an important effect on the electrical properties of dielectrics. This paper focuses on the electrical properties of Low-density Polyethylene (LDPE)/graphene nanocomposites (NCs), as well as the corresponding trap level characteristics. The dc conductivity, breakdown strength and space charge behaviors of NCs with the filler content of 0 wt%, 0.005 wt%, 0.01 wt%, 0.1 wt% and 0.5 wt% are studied, and their trap level distributions are characterized by isothermal discharge current (IDC) tests. The experimental results show that the 0.005 wt% LDPE/graphene NCs have a lower dc conductivity, a higher breakdown strength and a much smaller amount of space charge accumulation than the neat LDPE. It is indicated that the graphene addition with a filler content of 0.005 wt% introduces large quantities of deep carrier traps that reduce charge carrier mobility and result in the homocharge accumulation near the electrodes. The deep trap modulated charge carrier transport attributes to reduce the dc conductivity, suppress the injection of space charges into polymer bulks and enhance the breakdown strength, which is of great significance in improving electrical properties of polymer dielectrics.
NASA Astrophysics Data System (ADS)
Bartczak, Witold M.; Kroh, Jerzy
The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.
Qin, Tianshi; Zajaczkowski, Wojciech; Pisula, Wojciech; Baumgarten, Martin; Chen, Ming; Gao, Mei; Wilson, Gerry; Easton, Christopher D; Müllen, Klaus; Watkins, Scott E
2014-04-23
Extensive efforts have been made to develop novel conjugated polymers that give improved performance in organic photovoltaic devices. The use of polymers based on alternating electron-donating and electron-accepting units not only allows the frontier molecular orbitals to be tuned to maximize the open-circuit voltage of the devices but also controls the optical band gap to increase the number of photons absorbed and thus modifies the other critical device parameter-the short circuit current. In fact, varying the nonchromophoric components of a polymer is often secondary to the efforts to adjust the intermolecular aggregates and improve the charge-carrier mobility. Here, we introduce an approach to polymer synthesis that facilitates simultaneous control over both the structural and electronic properties of the polymers. Through the use of a tailored multicomponent acceptor-donor-acceptor (A-D-A) intermediate, polymers with the unique structure A-D1-A-D2 can be prepared. This approach enables variations in the donor fragment substituents such that control over both the polymer regiochemistry and solubility is possible. This control results in improved intermolecular π-stacking interactions and therefore enhanced charge-carrier mobility. Solar cells using the A-D1-A-D2 structural polymer show short-circuit current densities that are twice that of the simple, random analogue while still maintaining an identical open-circuit voltage. The key finding of this work is that polymers with an A-D1-A-D2 structure offer significant performance benefits over both regioregular and random A-D polymers. The chemical synthesis approach that enables the preparation of A-D1-A-D2 polymers therefore represents a promising new route to materials for high-efficiency organic photovoltaic devices.
Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee
2009-01-14
The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.
Synthesis and characterization of ion containing polymers
NASA Astrophysics Data System (ADS)
Dou, Shichen
Two types of ion-containing polymers are included in this dissertation. The first was focused on the rheology, solvation, and correlation length of polyelectrolyte solutions in terms of charge density, solvent dielectric constant, and solvent quality. The second was focused on the PEO-based polyester ionomers as single ion conductors. A series of polyelectrolytes with varied charge density (0.03 < alpha < 0.6) and counterions (Cl- and I-) were investigated in good solvent (EG, NMF, and GC) and poor solvent (DW and F). The concentration dependence of the specific viscosity and relaxation time of polyelectrolytes in solution agrees with Dobrynin's theoretical predictions at c < c**. Effective charge density greatly impacts the viscosity of polyelectrolyte semidilute solutions, while residual salt significantly reduces the viscosity of polyelectrolyte solutions at concentrations c < 2cs/f. For polyelectrolyte solutions with less condensed counterions, the correlation length obtained from SAXS and rheology perfectly matches and agrees with de Gennes prediction. Dobrynin scaling model successfully predicts the rheology of polyelectrolyte solutions in all cases: without salt, with low residual salt, and with high residual salt concentration. PEO-based polyester ionomers were synthesized by melt polycondensation. Mn was determined using the 1H NMR of ionomers. No ion-cluster was observed from the DSC, SAXS, and rheology measurements. Ionic conductivity greatly depends on the Tg, T-T g and ion content of the ionomers. PEG600-PTMO650 (z)-Li copolyester ionomers show microphase separation and much lower ionic conductivity, compared to that of PE600-Li. PTMO650-Li shows nonconductor behavior.
NASA Astrophysics Data System (ADS)
Kipp, Dylan; Ganesan, Venkat
2013-06-01
We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.
Optoelectronic properties of dicyanofluorene-based n-type polymers.
Vijayakumar, Chakkooth; Saeki, Akinori; Seki, Shu
2012-08-01
Three new donor-acceptor-type copolymers (P1-P3) consisting of dicyanofluorene as acceptor and various donor moieties were designed and synthesized. Optoelectronic properties were studied in detail by means of UV-visible absorption and fluorescence spectroscopy, cyclic voltammetry, space-charge-limited current (SCLC), flash-photolysis time-resolved microwave conductivity (FP-TRMC), and density functional theory (DFT). All polymers showed strong absorption in the UV-visible region and the absorption maximum undergoes redshift with an increasing number of thiophene units in the polymer backbone. SCLC analysis showed that the electron mobilities of the polymers in the bulk state were 1 to 2 orders higher than that of the corresponding hole mobilities, which indicated the n-type nature of the materials. By using FP-TRMC, the intrapolymer charge-carrier mobility was assessed and compared with the interpolymer mobility obtained by SCLC. The polymers exhibited good electron-accepting properties sufficiently high enough to oxidize the excited states of regioregular poly(3-hexylthiophene) (P3HT (donor)), as evident from the FP-TRMC analysis. The P3 polymer exhibited the highest FP-TRMC transients in the pristine form as well as when blended with P3HT. Use of these polymers as n-type materials in all-polymer organic solar cells was also explored in combination with P3HT. In accordance with the TRMC results, P3 exhibited superior electron-transport and photovoltaic properties to the other two polymers, which is explained by the distribution of the energy levels of the polymers by using DFT calculations. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery.
Li, Chao; Lou, Xiaobing; Shen, Ming; Hu, Xiaoshi; Guo, Zhi; Wang, Yong; Hu, Bingwen; Chen, Qun
2016-06-22
We report the designed synthesis of Co 1,3,5-benzenetricarboxylate coordination polymers (CPs) via a straightforward hydrothermal method, in which three kinds of reaction solvents are selected to form CPs with various morphologies and dimensions. When tested as anode materials in Li-ion battery, the cycling stabilities of the three CoBTC CPs at a current density of 100 mA g(-1) have not evident difference; however, the reversible capacities are widely divergent when the current density is increased to 2 A g(-1). The optimized product CoBTC-EtOH maintains a reversible capacity of 473 mAh g(-1) at a rate of 2 A g(-1) after 500 galvanostatic charging/discharging cycles while retaining a nearly 100% Coulombic efficiency. The hollow microspherical morphology, accessible specific area, and the absence of coordination solvent of CoBTC-EtOH might be responsible for such difference. Furthermore, the ex situ soft X-ray absorption spectroscopy studies of CoBTC-EtOH under different states-of-charge suggest that the Co ions remain in the Co(2+) state during the charging/discharging process. Therefore, Li ions are inserted to the organic moiety (including the carboxylate groups and the benzene ring) of CoBTC without the direct engagement of Co ions during electrochemical cycling.
NASA Astrophysics Data System (ADS)
Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.
2018-04-01
We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.
Di Pietro, Riccardo; Fazzi, Daniele; Kehoe, Tom B; Sirringhaus, Henning
2012-09-12
We present an optical spectroscopy study on the role of oxygen and water in electron trapping and storage/bias-stress degradation of n-type polymer field-effect transistors based on one of the most widely studied electron transporting conjugated polymers, poly{[N,N9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bisthiophene)} (P(NDI2OD-T2)). We combine results obtained from charge accumulation spectroscopy, which allow optical quantification of the concentration of mobile and trapped charges in the polymer film, with electrical characterization of P(NDI2OD-T2) organic field-effect transistors to study the mechanism for storage and bias-stress degradation upon exposure to dry air/oxygen and humid nitrogen/water environments, thus separating the effect of the two molecules and determining the nature of their interaction with the polymer. We find that the stability upon oxygen exposure is limited by an interaction between the neutral polymer and molecular oxygen leading to a reduction in electron mobility in the bulk of the semiconductor. We use density functional theory quantum chemical calculations to ascribe the drop in mobility to the formation of a shallow, localized, oxygen-induced trap level, 0.34 eV below the delocalized lowest unoccupied molecular orbital of P(NDI2OD-T2). In contrast, the stability of the polymer anion against water is limited by two competing reactions, one involving the electrochemical oxidation of the polymer anion by water without degradation of the polymer and the other involving a radical anion-catalyzed chemical reaction of the polymer with water, in which the electron can be recycled and lead to further degradation reactions, such that a significant portion of the film is degraded after prolonged bias stressing. Using Raman spectroscopy, we have been able to ascribe this to a chemical interaction of water with the naphthalene diimide unit of the polymer. The degradation mechanisms identified here should be considered to explain electron trapping in other rylene diimides and possibly in other classes of conjugated polymers as well.
Contribution of Charges in Polyvinyl Alcohol Networks to Marine Antifouling.
Yang, Wufang; Lin, Peng; Cheng, Daocang; Zhang, Longzhou; Wu, Yang; Liu, Yupeng; Pei, Xiaowei; Zhou, Feng
2017-05-31
Semi-interpenetrated polyvinyl alcohol polymer networks (SIPNs) were prepared by integrating various charged components into polyvinyl alcohol polymer. Contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and tensile tests were used to characterize the physicochemical properties of the prepared SIPNs. To investigate the contribution of charges to marine antifouling, the adhesion behaviors of green algae Dunaliella tertiolecta and diatoms Navicula sp. in the laboratory and of the actual marine animals in field test were studied for biofouling assays. The results suggest that less algae accumulation densities are observed for neutral-, anionic-, and zwitterionic-component-integrated SIPNs. However, for the cationic SIPNs, despite the hydration shell induced by the ion-dipole interaction, the resistance to biofouling largely depends on the amount of cationic component because of the possible favorable electrostatic attraction between the cationic groups in SIPNs and the negatively charged algae. Considering that the preparation of novel nontoxic antifouling coating is a long-standing and cosmopolitan industrial challenge, the SIPNs may provide a useful reference for marine antifouling and some other relevant fields.
Multilevel Investigation of Charge Transport in Conjugated Polymers.
Dong, Huanli; Hu, Wenping
2016-11-15
Conjugated polymers have attracted the world's attentions since their discovery due to their great promise for optoelectronic devices. However, the fundamental understanding of charge transport in conjugated polymers remains far from clear. The origin of this challenge is the natural disorder of polymers with complex molecular structures in the solid state. Moreover, an effective way to examine the intrinsic properties of conjugated polymers is absent. Optoelectronic devices are always based on spin-coated films. In films, polymers tend to form highly disordered structures at nanometer to micrometer length scales due to the high degree of conformational freedom of macromolecular chains and the irregular interchain entanglement, thus typically resulting in much lower charge transport properties than their intrinsic performance. Furthermore, a subtle change of processing conditions may dramatically affect the film formation-inducing large variations in the morphology, crystallinity, microstructure, molecular packing, and alignment, and finally varying the effective charge transport significantly and leading to great inconsistency over an order of magnitude even for devices based on the same polymer semiconductor. Meanwhile, the charge transport mechanism in conjugated polymers is still unclear and its investigation is challenging based on such complex microstructures of polymers in films. Therefore, how to objectively evaluate the charge transport and probe the charge transport mechanism of conjugated polymers has confronted the world for decades. In this Account, we present our recent progress on multilevel charge transport in conjugated polymers, from disordered films, uniaxially aligned thin films, and single crystalline micro- or nanowires to molecular scale, where a derivative of poly(para-phenylene ethynylene) with thioacetyl end groups (TA-PPE) is selected as the candidate for investigation, which could also be extended to other conjugated polymer systems. Our systematic investigations demonstrated that 3-4 orders higher charge transport properties could be achieved with the improvement of polymer chain order and confirmed efficient charge transport along the conjugated polymer backbones. Moreover, with downscaling to molecular scale, many novel phenomena were observed such as the largely quantized electronic structure for an 18 nm-long TA-PPE and the modulation of the redox center of tetrathiafulvalene (TTF) units on tunneling charge transport, which opens the door for conjugated polymers used in nanometer quantum devices. We hope the understanding of charge transport in PPE and its related conjugated polymer at multilevel scale in this Account will provide a new method to sketch the charge transport properties of conjugated polymers, and new insights into the combination of more conjugated polymer materials in the multilevel optoelectronic and other related functional devices, which will offer great promise for the next generation of electronic devices.
Spacecraft dielectric material properties and spacecraft charging
NASA Technical Reports Server (NTRS)
Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.
1986-01-01
The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.
Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution.
Zhu, Ji-Hua; Guo, Guanping; Wei, Liangliang; Zhu, Miaochang; Chen, Xianchuan
2016-02-06
The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP) were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP) system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.
Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution
Zhu, Ji-Hua; Guo, Guanping; Wei, Liangliang; Zhu, Miaochang; Chen, Xianchuan
2016-01-01
The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP) were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP) system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities. PMID:28787900
Liao, Yaozu; Wang, Haige; Zhu, Meifang; Thomas, Arne
2018-03-01
Supercapacitors have received increasing interest as energy storage devices due to their rapid charge-discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald-Hartwig coupling between 2,6-diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m 2 g -1 , good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three-electrode specific capacitance of 576 F g -1 in 0.5 m H 2 SO 4 at a current of 1 A g -1 retaining 80-85% capacitances and nearly 100% Coulombic efficiencies (95-98%) upon 6000 cycles at a current density of 2 A g -1 . Asymmetric two-electrode supercapacitors assembled by PAQs show a capacitance of 168 F g -1 of total electrode materials, an energy density of 60 Wh kg -1 at a power density of 1300 W kg -1 , and a wide working potential window (0-1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Koster, L. Jan A.; Mihailetchi, Valentin D.; Ramaker, Robert; Xie, Hangxing; Blom, Paul W. M.
2006-04-01
The open-circuit voltage (Voc) of polymer/fullerene bulk heterojunction solar cells is investigated as a function of light intensity for different temperatures. The observed photogenerated current and V oc are at variance with classical p-n junctionbased models. The influence of light intensity and recombination strength on V oc is consistently explained by a model based on the notion that the quasi-Fermi levels are constant throughout the device, including both drift and diffusion of charge carriers. The light intensity dependence of the short-circuit current density (J sc) is also addressed. A typical feature of polymer/fullerene based solar cells is that Jsc does not scale exactly linearly with light intensity (I). Instead, a power law relationship is found given by Jsc~ Iα, where α ranges from 0.9 to 1. In a number of reports this deviation from unity is attributed to the occurrence of bimolecular recombination. We demonstrate that the dependence of the photocurrent in bulk heterojunction solar cells is governed by the build-up of space charge in the device. The occurrence of space-charge stems from the difference in charge carrier mobility of electrons and holes. In blends of poly(3-hexylthiophene) and 6,6- phenyl C61-butyric acid methyl ester this mobility difference can be tuned in between one and three orders of magnitude, depending on the annealing conditions. This allows us to experimentally verify the relation between space charge build-up and intensity dependence of Jsc. Model calculations confirm that bimolecular recombination leads only to a typical loss of 1% of all free charge carriers at Jsc for these devices. Therefore, bimolecular recombination plays only a minor role as compared to the effect of space charge in the intensity dependence of J sc.
Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin
2017-02-01
We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.
NASA Astrophysics Data System (ADS)
Zhao, Ling; Xia, Huifen
2018-01-01
The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.
All Solid State Rechargeable Lithium Batteries using Block Copolymers
NASA Astrophysics Data System (ADS)
Hallinan, Daniel; Balsara, Nitash
2011-03-01
The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.
Mousseau, F; Vitorazi, L; Herrmann, L; Mornet, S; Berret, J-F
2016-08-01
The electrostatic charge density of particles is of paramount importance for the control of the dispersion stability. Conventional methods use potentiometric, conductometric or turbidity titration but require large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase separation. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio X, and the peak position XMax is linked to the particle charge density according to σ∼D0XMax where D0 is the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide particles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-objects. Copyright © 2016 Elsevier Inc. All rights reserved.
Vaidyanathan, Sriram; Anderson, Kevin B; Merzel, Rachel L; Jacobovitz, Binyamin; Kaushik, Milan P; Kelly, Christina N; van Dongen, Mallory A; Dougherty, Casey A; Orr, Bradford G; Banaszak Holl, Mark M
2015-06-23
Cationic gene delivery agents (vectors) are important for delivering nucleotides, but are also responsible for cytotoxicity. Cationic polymers (L-PEI, jetPEI, and G5 PAMAM) at 1× to 100× the concentrations required for translational activity (protein expression) induced the same increase in plasma membrane current of HEK 293A cells (30-50 nA) as measured by whole cell patch-clamp. This indicates saturation of the cell membrane by the cationic polymers. The increased currents induced by the polymers are not reversible for over 15 min. Irreversibility on this time scale is consistent with a polymer-supported pore or carpet model and indicates that the cell is unable to clear the polymer from the membrane. For polyplexes, although the charge concentration was the same (at N/P ratio of 10:1), G5 PAMAM and jetPEI polyplexes induced a much larger current increase (40-50 nA) than L-PEI polyplexes (<20 nA). Both free cationic lipid and lipid polyplexes induced a lower increase in current than cationic polymers (<20 nA). To quantify the membrane bound material, partition constants were measured for both free vectors and polyplexes into the HEK 293A cell membrane using a dye influx assay. The partition constants of free vectors increased with charge density of the vectors. Polyplex partition constants did not show such a trend. The long lasting cell plasma permeability induced by exposure to the polymer vectors or the polyplexes provides a plausible mechanism for the toxicity and inflammatory response induced by exposure to these materials.
Gautam, Bhoj R; Lee, Changyeon; Younts, Robert; Lee, Wonho; Danilov, Evgeny; Kim, Bumjoon J; Gundogdu, Kenan
2015-12-23
All-polymer solar cells exhibit rapid progress in power conversion efficiency (PCE) from 2 to 7.7% over the past few years. While this improvement is primarily attributed to efficient charge transport and balanced mobility between the carriers, not much is known about the charge generation dynamics in these systems. Here we measured exciton relaxation and charge separation dynamics using ultrafast spectroscopy in polymer/polymer blends with different molecular packing and morphology. These measurements indicate that preferential face-on configuration with intermixed nanomorphology increases the charge generation efficiency. In fact, there is a direct quantitative correlation between the free charge population in the ultrafast time scales and the external quantum efficiency, suggesting not only the transport but also charge generation is key for the design of high performance all polymer solar cells.
NASA Astrophysics Data System (ADS)
Lei, Yan; Yang, Xiaogang; Gu, Longyan; Jia, Huimin; Ge, Suxiang; Xiao, Pin; Fan, Xiaoli; Zheng, Zhi
2015-04-01
Solar cells devices based on inorganic/polymer heterojunction can be a possible solution to harvest solar energy and convert to electric energy with high efficiency through a cost-effective fabrication. The solution-process method can be easily used to produce large area devices. Moreover, due to the intrinsic different charge separation, diffusion or recombination in various semiconductors, the interfaces between each component may strongly influence the inorganic/polymer heterojunction performance. Here we prepared a n-type Ag3CuS2 (Eg = 1.25 eV) nanostructured film through a room-temperature element reaction process, which was confirmed as direct bandgap semiconductor through density function theory simulation. This Ag3CuS2 film was spin-coated with an organic semiconducting poly(3-hexythiophene) (P3HT) or polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) film, which formed an inorganic/polymer heterojunction. After constructing it to a solar cell device, the power conversion efficiencies of 0.79% and 0.31% were achieved with simulated solar illumination on Ag3CuS2/P3HT and Ag3CuS2/PTB7, respectively. A possible mechanism was discussed and we showed the charge separation at interface of inorganic and polymer semiconductors played an important role.
He, Peng; He, Lin
2009-07-13
We report here an approach to grafting DNA-polymer bioconjugates on a planar solid support using reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, a trithiocarbonate compound as the RAFT chain transfer agent (CTA) is attached to the distal point of a surface-immobilized oligonucleotide. Initiation of RAFT polymerization leads to controlled growth of polymers atop DNA molecules on the surface. Growth kinetics of poly(monomethoxy-capped oligo(ethylene glycol) methacrylate) atop DNA molecules is investigated by monitoring the change of polymer film thickness as a function of reaction time. The reaction conditions, including the polymerization temperature, the initiator concentration, the CTA surface density, and the selection of monomers, are varied to examine their impacts on the grafting efficiency of DNA-polymer conjugates. Comparing to polymer growth atop small molecules, the experimental results suggest that DNA molecules significantly accelerate polymer growth, which is speculated as a result of the presence of highly charged DNA backbones and purine/pyrimidine moieties surrounding the reaction sites.
Estimation of energy density of Li-S batteries with liquid and solid electrolytes
NASA Astrophysics Data System (ADS)
Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.
2016-09-01
With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.
Interplay of Transport and Morphology in Nanostructured Ion-Containing Polymers
NASA Astrophysics Data System (ADS)
Park, Moon Jeong
The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community to develop innovative ways to improve energy storage and find more efficient methods of transporting the energy. Polymers containing charged species that show high ionic conductivity and good mechanical integrity are the essential components of these energy storage and transport systems. In this talk, first, I will present a fundamental understanding of the thermodynamics and transport in ion-containing block copolymers with a focus on the structure-property relationships. Tailoring the intermolecular interactions between the polymer matrix and the embedded charges appeared to be vital for controlling the transport properties. Particularly, the achievement of well-defined self-assembled morphologies with three-dimensional symmetries has proven to facilitate fast ion transport by constructing less tortuous ion-conducting pathways. Examples of attained morphologies include disorder, lamellae, gyroid, Fddd, hexagonal cylinder, body-centered cubic, face-centered cubic, and A15 phases. Second, various strategies for accessing high cation transference number as well as improved ionic conductivity from ionic-containing polymers are enclosed; (1) the inclusion of terminal ionic units as a new means to control the nanoscale morphologies and the transport efficiency of block copolymer electrolytes and (2) the addition of zwitterions that offered a polar medium close to water, and accordingly increased the charge density and ionic conductivity. The obtained knowledge on polymer electrolytes could be used in a wide range of emerging nanotechnologies such as fuel cells, lithium batteries, and electro-active actuators.
Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi
2013-01-01
In this study, we modified a surface plasmon resonance immunosensor chip with a polymer using surface-initiated atom transfer polymerization (SI-ATRP) for the highly sensitive detection of 2,4,6-trinitrotoluene (TNT). To immobilize a TNT analogue on the polymer, mono-2-(methacryloyloxy)ethylsuccinate (MES), which has a carboxyl group, was used in this study. However, the anti-TNT antibody may adsorb non-specifically on the polymer surface by an electrostatic interaction because MES is negatively charged. Therefore, a mixed monomer with MES and diethylaminoethylmethacrylate (DEAEM), which has a tertiary amino group and is positively charged, was prepared to obtain electroneutrality for suppressing the nonspecific adsorption. The detection of TNT was performed by inhibition assay using the polymer surface. To ensure high sensitivity to TNT, the affinity between the surface and the antibody was optimized by controlling the density of the initiator for ATRP by mixing two types of self-assembled monolayer reagents. As a result, a limit of detection of 5.7 pg/mL (ppt) for TNT was achieved using the optimized surface. PMID:23877126
Charged polymers in high dimensions
NASA Technical Reports Server (NTRS)
Kantor, Yacov
1990-01-01
A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.
NASA Astrophysics Data System (ADS)
Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min
2016-02-01
The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.
Photo-degradation of high efficiency fullerene-free polymer solar cells.
Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf
2017-12-07
Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.
A plasticized polymer-electrolyte-based photoelectrochemical solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, D.; Ibrahim, M.A.; Frank, A.J.
1998-01-01
A photoelectrochemical solar cell based on an n-GaAs/polymer-redox-electrolyte junction is reported. Di(ethylene glycol) ethyl ether acrylate containing ferrocene as a redox species and benzoin methyl ether as a photoinitiator is polymerized in situ. Propylene carbonate is used as a plasticizer to improve the conductivity of the polymer redox electrolyte. For thin (1 {micro}m) polymer electrolytes, the series resistance of the cell is negligible. However, the short-circuit photocurrent density of the cell at light intensities above 10 mW/cm{sup 2} is limited by mass transport of redox species within the polymer matrix. At a light intensity of 70 mW/cm{sup 2}, a moderatemore » light-to-electrical energy conversion efficiency (3.1%) is obtained. The interfacial charge-transfer properties of the cell in the dark and under illumination are studied.« less
Critical Role of the Sorting Polymer in Carbon Nanotube-Based Minority Carrier Devices.
Mallajosyula, Arun T; Nie, Wanyi; Gupta, Gautam; Blackburn, Jeffrey L; Doorn, Stephen K; Mohite, Aditya D
2016-12-27
A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFO may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFO|C 60 and C 60 -only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C 60 -only devices. In addition, with a relatively higher contribution to photocurrent from the PFO-C 60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C 60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. These results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.
Adsorption of poly(ethylene oxide) on smectite: Effect of layer charge.
Su, Chia-Chi; Shen, Yun-Hwei
2009-04-01
The adsorption of polymers on clay is important in many applications. However the mechanisms of poly(ethylene oxide) (PEO) adsorption on smectite is not well elucidated at present. The aim of this study was to investigate the effect of layer charge density on the adsorption of PEO by smectite. The results indicated that both the hydrophobic interaction (between CH(2)CH(2) groups and siloxane surface) and the hydrogen bonding (between ether oxygen of PEO and structure OH of smectite) lead to PEO preferential adsorption on the surface of low-charge smectite. In addition, the delamination of low-charge smectite in water is enhanced upon PEO adsorption presumably due to the hydrophilic ether oxygen of adsorbed PEO.
Moerman, D; Sebaihi, N; Kaviyil, S E; Leclère, P; Lazzaroni, R; Douhéret, O
2014-09-21
In this work, conductive atomic force microscopy (C-AFM) is used to study the local electrical properties in thin films of self-organized fibrillate poly(3-hexylthiophene) (P3HT), as a reference polymer semiconductor. Depending on the geometrical confinement in the transport channel, the C-AFM current is shown to be governed either by the charge transport in the film or by the carrier injection at the tip-sample contact, leading to either bulk or local electrical characterization of the semiconducting polymer, respectively. Local I-V profiles allow discrimination of the different dominating electrical mechanisms, i.e., resistive in the transport regime and space charge limited current (SCLC) in the local regime. A modified Mott-Gurney law is analytically derived for the contact regime, taking into account the point-probe geometry of the contact and the radial injection of carriers. Within the SCLC regime, the probed depth is shown to remain below 12 nm with a lateral electrical resolution below 5 nm. This confirms that high resolution is reached in those C-AFM measurements, which therefore allows for the analysis of single organic semiconducting nanostructures. The carrier density and mobility in the volume probed under the tip under steady-state conditions are also determined in the SCLC regime.
Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte
NASA Astrophysics Data System (ADS)
Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi
A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance.
NASA Astrophysics Data System (ADS)
Zhao, Hua; Meng, Wei-Feng
2017-10-01
In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.
Yao, Yifan; Dong, Huanli; Liu, Feng; Russell, Thomas P; Hu, Wenping
2017-08-01
Charge transport of small molecules is measured well with scanning tunneling microscopy, conducting atomic force microscopy, break junction, nanopore, and covalently bridging gaps. However, the manipulation and measurement of polymer chains remain a long-standing fundamental issue in conjugated polymers and full of challenge since conjugated polymers are naturally disordered materials. Here, a fundamental breakthrough in generating high-quality conjugated-polymer nanocrystals with extended conjugation and exceptionally high degrees of order using a surface-supported topochemical polymerization method is demonstrated. In the crystal the conjugated-polymer chains are extended along the long axis of the crystal with the side chains perpendicular to the long axis. Devices with conducting channels along the polymer chains show efficient charge transport, nearly two orders of magnitude greater than the interchain charge transport along the π-π stacking direction. This is the first example to clarify intra- and interchain charge transport based on an individual single crystal of conjugated polymers, and demonstrate the importance of intrachain charge transport in plastic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Nanjia; Dudnik, Alexander S; Li, Ting I N G; Manley, Eric F; Aldrich, Thomas J; Guo, Peijun; Liao, Hsueh-Chung; Chen, Zhihua; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Olvera de la Cruz, Monica; Marks, Tobin J
2016-02-03
The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer components to realize the full potential of APSC performance.
Chung, Chin-Lung; Chen, Hsieh-Chih; Yang, Yun-Siou; Tung, Wei-Yao; Chen, Jian-Wei; Chen, Wen-Chang; Wu, Chun-Guey; Wong, Ken-Tsung
2018-02-21
Three novel donor-acceptor alternating polymers containing ladder-type pentacyclic heteroacenes (PBo, PBi, and PT) are synthesized, characterized, and further applied to organic field effect transistors (OFETs) and polymer solar cells. Significant aspects of quinoidal characters, electrochemical properties, optical absorption, frontier orbitals, backbone coplanarity, molecular orientation, charge carrier mobilities, morphology discrepancies, and the corresponding device performances are notably different with various heteroarenes. PT exhibits a stronger quinoidal mesomeric structure, linear and coplanar conformation, smooth surface morphology, and better bimodal crystalline structures, which is beneficial to extend the π-conjugation and promotes charge transport via 3-D transport pathways and in consequence improves overall device performances. Organic photovoltaics based on the PT polymer achieve a power conversion efficiency of 6.04% along with a high short-circuit current density (J SC ) of 14.68 mA cm -2 , and a high hole mobility of 0.1 cm 2 V -1 s -1 is fulfilled in an OFET, which is superior to those of its counterparts, PBi and PBo.
Polymer amide as an early topology.
McGeoch, Julie E M; McGeoch, Malcolm W
2014-01-01
Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.
NASA Astrophysics Data System (ADS)
Gavvalapalli, Nagarjuna
All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not trivial. Thus to avoid micro-phase segregation, nanoparticles of hole and electron transporters are synthesized and blended. But the PCE of nanoparticle blends are far less than those of polymer blends. This is mainly due to the: i) lack of optimal assembly of nanoparticles to facilitate charge transfer and transport processes; and ii) lack of control over the exciton and charge transport properties within the nanoparticles. Polymer packing within the nanoparticle controls the optoelectronic and charge transport properties of the nanoparticle. In this work I have shown that the solvent used to synthesize nanoparticles plays a crucial role in determining the assembly of polymer chains inside the nanoparticle there by affecting its exciton and charge transport processes. To obtain the optimal morphology for better charge transfer and transport, we have also synthesized nanoparticles of different radius with surfactants of opposite charge. We propose that depending on the radius and/or Coulombic interactions these nanoparticles can be assembled into mineral structure-types that are useful for photovoltaic devices.
Wang, Hui; Ryu, Jeong-Tak; Kwon, Younghwan
2012-05-01
This study examined the influence of the charge injection barriers on the performance of organic light emitting diodes (OLEDs) using polymers with a stepwise tuned ionization potential (I(p) approximately -5.01 - -5.29 eV) between the indium tin oxide (ITO) (phi approximately -4.8 eV) anode and tris(8-hydroxyquinolinato) aluminium (Alq3) (I(p) approximately -5.7 eV) layer. The energy levels of the polymers were tuned by structural modification. Double layer devices were fabricated with a configuration of ITO/polymer/Alq3/LiF/Al, where the polymers, Alq3, and LiF/Al were used as the hole injection/transport layer, emissive electron transport layer, and electron injection/cathode, respectively. Using the current density-voltage (J-V), luminescence-voltage (L-V) and efficiencies in these double layer devices, the device performance was evaluated in terms of the energy level alignments at the interfaces, such as the hole injection barriers (phi(h)(iTO/polymer) and phi(h)(polymer/Alq3)) from ITO through the polymers into the Alq3 layer, and the electron injection barrier (phi(e)(polymer/Alq3) or electron/exciton blocking barrier) at the polymer/Alq3 interface.
Efficient barrier for charge injection in polyethylene by silver nanoparticles/plasma polymer stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliere, L.; Makasheva, K., E-mail: kremena.makasheva@laplace.univ-tlse.fr; Laurent, C.
2014-09-22
Charge injection from a metal/insulator contact is a process promoting the formation of space charge in polymeric insulation largely used in thick layers in high voltage equipment. The internal charge perturbs the field distribution and can lead to catastrophic failure either through its electrostatic effects or through energetic processes initiated under charge recombination and/or hot electrons effects. Injection is still ill-described in polymeric insulation due to the complexity of the contact between the polymer chains and the electrodes. Barrier heights derived from the metal work function and the polymer electronic affinity do not provide a good description of the measurementsmore » [Taleb et al., IEEE Trans. Dielectr. Electr. Insul. 20, 311–320 (2013)]. Considering the difficulty to describe the contact properties and the need to prevent charge injection in polymers for high voltage applications, we developed an alternative approach by tailoring the interface properties by the silver nanoparticles (AgNPs)/plasma polymer stack, deposited on the polymer film. Due to their small size, the AgNPs, covered by a very thin film of plasma polymer, act as deep traps for the injected charges thereby stabilizing the interface from the point of view of charge injection. After a quick description of the method for elaborating the nanostructured layer near the contact, it is demonstrated how the AgNPs/plasma polymer stack effectively prevents, in a spectacular way, the formation of bulk space charge.« less
Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang
2016-01-01
Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486
Improved hybrid solar cells via in situ UV-polymerization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tepavcevic, S.; Darling, S. B.; Dimitrijevic, N. M.
One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO{sub 2} nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV-PT) inside TiO{sub 2} NTs is presented and compared to the conventional approach of infiltrating NTs with pre-synthesized polymer. A nanotubular TiO{sub 2} substrate is immersed in a 2,5-diiodothiophene (DIT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C-I bond produces monomer radicals with intact {pi}-ring structure that further produce longer oligothiophene/PT molecules.more » Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO{sub 2} surface via a charge transfer complex. Coupling with the TiO{sub 2} surface improves UV-PT crystallinity and {pi}-{pi} stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non-ideal, backside-illuminated setup under illumination of 620-nm light yields a photocurrent density of {approx} 5 {micro}A cm{sup -2} - surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO{sub 2} surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nanjia; Dudnik, Alexander S.; Li, Ting I. N. G.
2016-01-21
The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhancesmore » donor–acceptor polymer–polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE “sweet spot” at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer components to realize the full potential of APSC performance.« less
Delocalization Drives Free Charge Generation in Conjugated Polymer Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry
We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less
Delocalization Drives Free Charge Generation in Conjugated Polymer Films
Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry
2018-02-19
We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less
Reid, Obadiah G; Munechika, Keiko; Ginger, David S
2008-06-01
We describe local (~150 nm resolution), quantitative measurements of charge carrier mobility in conjugated polymer films that are commonly used in thin-film transistors and nanostructured solar cells. We measure space charge limited currents (SCLC) through these films using conductive atomic force microscopy (c-AFM) and in macroscopic diodes. The current densities we measure with c-AFM are substantially higher than those observed in planar devices at the same bias. This leads to an overestimation of carrier mobility by up to 3 orders of magnitude when using the standard Mott-Gurney law to fit the c-AFM data. We reconcile this apparent discrepancy between c-AFM and planar device measurements by accounting for the proper tip-sample geometry using finite element simulations of tip-sample currents. We show that a semiempirical scaling factor based on the ratio of the tip contact area diameter to the sample thickness can be used to correct c-AFM current-voltage curves and thus extract mobilities that are in good agreement with values measured in the conventional planar device geometry.
Surfactant mediated polyelectrolyte self-assembly
Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...
2015-11-25
Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less
Exciton size and binding energy limitations in one-dimensional organic materials.
Kraner, S; Scholz, R; Plasser, F; Koerner, C; Leo, K
2015-12-28
In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent density functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.
Critical role of the sorting polymer in carbon nanotube-based minority carrier devices
Mallajosyula, Arun T.; Nie, Wanyi; Gupta, Gautam; ...
2016-11-27
A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFOmore » may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFO|C 60 and C 60-only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C 60-only devices. In addition, with a relatively higher contribution to photocurrent from the PFO-C 60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C 60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. Lastly, these results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.« less
Electrochemical energy storage devices comprising self-compensating polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody
The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises amore » zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.« less
Gonnelli, R. S.; Paolucci, F.; Piatti, E.; Sharda, Kanudha; Sola, A.; Tortello, M.; Nair, Jijeesh R.; Gerbaldi, C.; Bruna, M.; Borini, S.
2015-01-01
The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8·1014 cm−2 has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T2 component – that can be associated with electron-electron scattering – and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly, this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy. PMID:25906088
Li, Yonghai; Wang, Junyi; Liu, Yan; Qiu, Meng; Wen, Shuguang; Bao, Xichang; Wang, Ning; Sun, Mingliang; Yang, Renqiang
2016-10-05
It is known that fluorination on π-conjugated donor-acceptor (D-A) polymers can significantly affect the optoelectronic properties and fluorination on A moiety has been well established for design of efficient photovoltaic materials. For example, polymers based on 4,7-dithienyl-5,6-difluorobenzothiadiazole (DTffBT) have been intensively investigated and exhibited excellent performance, but the corresponding DTBT-based polymers without fluorine often display an unfavorable efficiency. With the purpose of improving photovoltaic efficiency of DTBT-based D-A polymers, we design three polymers PDTBT-TxfBT (x = 0, 1, 2) with fluorination on D moiety (TxfBT) and systematically investigate fluorination on the photophysical/electrochemical and photovoltaic properties. The results show that polymer solar cells (PSCs) based on PDTBT-TBT exhibit moderate power conversion efficiency (PCE) of 5.84%. However, the bis-fluorination on TffBT moiety (PDTBT-TffBT) can greatly enhance the molecular planarity and intermolecular interaction, improve the charge transport and heterojunction morphology, and further suppress the charge recombination losses. PSCs based on PDTBT-TffBT demonstrate obviously improved photovoltaic efficiency with the best PCE up to 7.53% without any processing additives, which ranks among the top DTBT-based PSCs. However, it should be noted that unsymmetrical fluorination on TfBT moiety (PDTBT-TfBT) impairs the regularity of polymer backbone and intermolecular interaction, increases the recombination losses, and seriously reduces the short-circuit current density and efficiency (5.44%). The results exhibit that fluorination on D moiety is a helpful strategy for design high-performance photovoltaic materials and the regularity of fluorination is crucial to improving efficiencies.
Current status of non-viral gene therapy for CNS disorders
Jayant, Rahul Dev; Sosa, Daniela; Kaushik, Ajeet; Atluri, Venkata; Vashist, Arti; Tomitaka, Asahi; Nair, Madhavan
2017-01-01
Introduction Viral and non-viral vectors have been used as methods of delivery in gene therapy for many CNS diseases. Currently, viral vectors such as adeno-associated viruses (AAV), retroviruses, lentiviruses, adenoviruses and herpes simplex viruses (HHV) are being used as successful vectors in gene therapy at clinical trial levels. However, many disadvantages have risen from their usage. Non-viral vectors like cationic polymers, cationic lipids, engineered polymers, nanoparticles, and naked DNA offer a much safer option and can therefore be explored for therapeutic purposes. Areas covered This review discusses different types of viral and non-viral vectors for gene therapy and explores clinical trials for CNS diseases that have used these types of vectors for gene delivery. Highlights include non-viral gene delivery and its challenges, possible strategies to improve transfection, regulatory issues concerning vector usage, and future prospects for clinical applications. Expert opinion Transfection efficiency of cationic lipids and polymers can be improved through manipulation of molecules used. Efficacy of cationic lipids is dependent on cationic charge, saturation levels, and stability of linkers. Factors determining efficacy of cationic polymers are total charge density, molecular weights, and complexity of molecule. All of the above mentioned parameters must be taken care for efficient gene delivery. PMID:27249310
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650
Organic conductive films for semiconductor electrodes
Frank, Arthur J.
1984-01-01
According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.
Annealed scaling for a charged polymer in dimensions two and higher
NASA Astrophysics Data System (ADS)
Berger, Q.; den Hollander, F.; Poisat, J.
2018-02-01
This paper considers an undirected polymer chain on {Z}d , d ≥slant 2 , with i.i.d. random charges attached to its constituent monomers. Each self-intersection of the polymer chain contributes an energy to the interaction Hamiltonian that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The object of interest is the annealed free energy per monomer in the limit as the length n of the polymer chain tends to infinity. We show that there is a critical curve in the parameter plane spanned by the charge bias and the inverse temperature separating an extended phase from a collapsed phase. We derive the scaling of the critical curve for small and for large charge bias and the scaling of the annealed free energy for small inverse temperature. We argue that in the collapsed phase the polymer chain is subdiffusive, namely, on scale \
Structure/property relationships in polymer membranes for water purification and energy applications
NASA Astrophysics Data System (ADS)
Geise, Geoffrey
Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.
NASA Astrophysics Data System (ADS)
Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.
2016-08-01
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.; Wu, Ke
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to havemore » the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.« less
Blakney, Anna K; Yilmaz, Gokhan; McKay, Paul F; Becer, C Remzi; Shattock, Robin J
2018-05-03
Nucleic acid delivery systems are commonly translated between different modalities, such as DNA and RNA of varying length and structure, despite physical differences in these molecules that yield disparate delivery efficiency with the same system. Here, we synthesized a library of poly(2-ethyl-2-oxazoline)/poly(ethylene imine) copolymers with varying molar mass and charge densities in order to probe how pDNA, mRNA, and RepRNA polyplex characteristics affect transfection efficiency. The library was utilized in a full factorial design of experiment (DoE) screening, with outputs of luciferase expression, particle size, surface charge, and particle concentration. The optimal copolymer molar mass and charge density was found as 83 kDa/100%, 72 kDa/100%, and 45 kDa/80% for pDNA, RepRNA, and mRNA, respectively. While 10 of the synthesized copolymers enhanced the transfection efficiency of pDNA and mRNA, only 2 copolymers enhanced RepRNA transfection efficiency, indicating a narrow and more stringent design space for RepRNA. These findings suggest that there is not a "one size fits all" polymer for different nucleic acid species.
Organic conductive films for semiconductor electrodes
Frank, A.J.
1984-01-01
According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.
NASA Astrophysics Data System (ADS)
Radhakrishna, Mithun; Sing, Charles E.
Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.
Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell
NASA Astrophysics Data System (ADS)
Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.
2016-08-01
The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.
Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Aniket; Lochan, Abhiram; Chand, Suresh
The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET)more » mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.« less
NASA Astrophysics Data System (ADS)
Chen, Guang; Das, Siddhartha
2017-11-01
Polyelectrolyte (PE) brushes have aroused increasing attention in applications in energy conversion and chemical sensing due to the environmentally-responsive and designable nature. PE brushes are charged polymer chains densely grafted on solid-liquid interfaces. By designing copolymeric systems, one can localize the ionizable sites at the brush tip in order to get end-charged PE brushes. Such brushes demonstrate anomalous shrinking/swelling behaviors with tunable environmental parameters such as pH and salt concentration. In this study, we probe the conformation and electrostatics of such PE brush systems with various size, grafting density and charge distribution, and exploit the electrochemomechanical energy conversion capabilities of nanochannels grafted with such PE brush systems. Our results indicate that the presence of the end-charged PE brush layer can massively enhance the streaming potential mediated energy conversion efficiency, and the improvement is more significant in strongly ionic solution.
Turner, Johnathan; Gadisa, Abay
2016-12-07
Charge transport is a central issue in all types of organic electronic devices. In organic films, charge transport is crucially limited by film microstructure and the nature of the substrate/organic interface interactions. In this report, we discuss the influence of active layer thickness on space-charge limited hole transport in pristine polymer and polymer/fullerene bulk heterojunction thin films (∼15-300 nm) in a diode structure. According to the results, the out-of-plane hole mobility in pristine polymers is sensitive to the degree of polymer chain aggregation. Blending the polymers with a fullerene molecule does not change the trend of hole mobility if the polymer tends to make an amorphous structure. However, employing an aggregating polymer in a bulk heterojunction blend gives rise to a marked difference in charge carrier transport behavior compared to the pristine polymer and this difference is sensitive to active layer thickness. In aggregating polymer films, the thickness-dependent interchain interaction was found to have direct impact on hole mobility. The thickness-dependent mobility trend was found to correspond well with the trend of fill factors of corresponding bulk heterojunction solar cells. This investigation has a vital implication for material design and the development of efficient organic electronic devices, including solar cells and light-emitting diodes.
A Polymer Chemistry Point of View on Mucoadhesion and Mucopenetration.
Schattling, Philipp; Taipaleenmäki, Essi; Zhang, Yan; Städler, Brigitte
2017-09-01
Although oral is the preferred route of administration of pharmaceutical formulations, the long-standing challenge for medically active compounds to efficiently cross the mucus layer barrier limits its wider applicability. Efforts in nanomedicine to overcome this hurdle consider mucoadhesive and mucopenetrating drug carriers by selectively designing (macromolecular) building blocks. This review highlights and critically discusses recent strategies developed in this context including poly(ethylene glycol)-based modifications, cationic and thiolated polymers, as well as particles with high charge density, zeta-potential shifting ability, or mucolytic properties. The latest advances in ex vivo test platforms are also reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.
Yang, Hui; Leow, Wan Ru; Chen, Xiaodong
2018-03-01
Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cao, Qianqian; Tian, Xiu; You, Hao
2018-04-01
We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.
Boundary layer charge dynamics in ionic liquid-ionic polymer transducers
NASA Astrophysics Data System (ADS)
Davidson, Jacob D.; Goulbourne, N. C.
2011-01-01
Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites, are soft sensors and actuators which operate through a coupling of microscale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work, we apply Nernst-Planck/Poisson theory to model charge transport in an ionic liquid IPT by considering a certain fraction of the ionic liquid ions as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. Numerical simulations are performed using the finite element method to examine how the introduction of another pair of mobile ions affects boundary layer charge dynamics, concentration, and charge density distributions in the electric double layer, and the overall charge transferred and current response of the IPT. Due to interactions with the Nafion ionomer, not all of the ionic liquid ions will function as mobile charge carriers; only a certain fraction will exist as "free" ions. The presence of mobile ionic liquid ions in the transducer will increase the overall charge transferred when a voltage is applied, and cause the current in the transducer to decay more slowly. The additional mobile ions also cause the ionic concentration profiles to exhibit a nonlinear dynamic response, characterized by nonmonotonic ionic concentration profiles in space and time. Although the presence of mobile ionic liquid ions increases the overall amount of charge transferred, this additional charge transfer occurs in a somewhat symmetric manner. Therefore, the additional charge transferred due to the ionic liquid ions does not greatly increase the net bending moment of the transducer; in fact, it is possible that ionic liquid ion movement actually decreases the observed bending response. This suggests that an optimal electromechanical conversion efficiency for bending actuation is achieved by using an ionic liquid where only a relatively small fraction of the ionic liquid ions exist as free ions. Conversely, if it is desired to increase the overall amount of charge transferred, an ionic liquid with a large fraction of free ions should be used. These theoretical considerations are found to be in good qualitative agreement with recent experimental results.
Studies of Surface Charging of Polymers by Indirect Triboelectrification
NASA Astrophysics Data System (ADS)
Mantovani, James; Calle, Carlos; Groop, Ellen; Buehler, Martin
2001-03-01
Charge is known to develop on the surface of an insulating polymer by frictional charging through direct physical contact with another material. We will present results of recent triboelectrification studies of polymer surfaces that utilized an indirect method of frictional charging. This method first involves placing a grounded thin metal foil in stationary contact over the polymer surface. The exposed metal foil is then rubbed with the surface of the material that generates the triboelectric charge. Data is presented for five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). The amount of charge that develops on an insulator's surface is measured using the MECA Electrometer, which was developed jointly by NASA Kennedy Space Center and the Jet Propulsion Laboratory to study the electrostatic properties of soil on the surface of Mars. Even though the insulator's surface is electrically shielded from the rubbing material by the grounded metal foil, charge measurements obtained by the MECA Electrometer after the metal foil is separated from the insulator's surface reveal that the insulator's surface does accumulate charge by indirect frictional charging. A possible explanation of the observations will be presented based on a simple contact barrier model.
Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study
NASA Astrophysics Data System (ADS)
Marsusi, F.; Fedorov, I. A.; Gerivani, S.
2018-01-01
Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.
Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J
2014-12-23
Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.
Thermoelectric transport properties of high mobility organic semiconductors
NASA Astrophysics Data System (ADS)
Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning
2016-09-01
Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states within these materials. 2, 3
Modeling space-charge-limited current transport in spatially disordered organic semiconductors
NASA Astrophysics Data System (ADS)
Zubair, M.; Ang, Y. S.; Ang, L. K.
Charge transport properties in organic semiconductors are determined by two kinds of microscopic disorder, namely energetic disorder and the spatial disorder. It is demonstrated that the thickness dependence of space-charge limited current (SCLC) can be related to spatial disorder within the framework of fractional-dimensional space. We present a modified Mott-Gurney (MG) law in different regimes to model the varying thickness dependence in such spatially disordered materials. We analyze multiple experimental results from literature where thickness dependence of SCLC shows that the classical MG law might lead to less accurate extraction of mobility parameter, whereas the modified MG law would be a better choice in such devices. Experimental SCLC measurement in a PPV-based structure was previously modeled using a carrier-density dependent model which contradicts with a recent experiment that confirms a carrier-density independent mobility originating from the disordered morphology of the polymer. Here, this is reconciled by the modified MG law which intrinsically takes into account the effect of spatial disorder without the need of using a carrier-density dependent model. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).
Complexation of amyloid fibrils with charged conjugated polymers.
Ghosh, Dhiman; Dutta, Paulami; Chakraborty, Chanchal; Singh, Pradeep K; Anoop, A; Jha, Narendra Nath; Jacob, Reeba S; Mondal, Mrityunjoy; Mankar, Shruti; Das, Subhadeep; Malik, Sudip; Maji, Samir K
2014-04-08
It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.
Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R
2015-04-14
Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.
NASA Astrophysics Data System (ADS)
Makita, Tatsuyuki; Sasaki, Masayuki; Annaka, Tatsuro; Sasaki, Mari; Matsui, Hiroyuki; Mitsui, Chikahiko; Kumagai, Shohei; Watanabe, Shun; Hayakawa, Teruaki; Okamoto, Toshihiro; Takeya, Jun
2017-04-01
Charge-transporting semiconductor layers with high carrier mobility and low trap-density, desired for high-performance organic transistors, are spontaneously formed as a result of thermodynamic phase separation from a blend of π-conjugated small molecules and precisely synthesized insulating polymers dissolved in an aromatic solvent. A crystal film grows continuously to the size of centimeters, with the critical conditions of temperature, concentrations, and atmosphere. It turns out that the molecular weight of the insulating polymers plays an essential role in stable film growth and interfacial homogeneity at the phase separation boundary. Fabricating the transistor devices directly at the semiconductor-insulator boundaries, we demonstrate that the mixture of 3,11-didecyldinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and poly(methyl methacrylate) with the optimized weight-average molecular weight shows excellent device performances. The spontaneous phase separation with a one-step fabrication process leads to a high mobility up to 10 cm2 V-1 s-1 and a low subthreshold swing of 0.25 V dec-1 even without any surface treatment such as self-assembled monolayer modifications on oxide gate insulators.
Cast-to-shape electrokinetic trapping medium
Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander
2004-08-03
A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.
Cast-to-shape electrokinetic trapping medium
Shepodd, Timothy J [Livermore, CA; Franklin, Elizabeth [Rolla, MO; Prickett, Zane T [Golden, CO; Artau, Alexander [Pleasanton, CA
2006-05-30
A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.
The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers
NASA Astrophysics Data System (ADS)
Di, Bing; Wang, Ya-Dong; Zhang, Ya-Lin; An, Zhong
2013-06-01
The inelastic scattering of oppositely charge polarons in polymer heterojunctions is believed to be of fundamental importance for the light-emitting and transport properties of conjugated polymers. Based on the tight-binding SSH model, and by using a nonadiabatic molecular dynamic method, we investigate the effects of interface hopping on inelastic scattering of oppositely charged polarons in a polymer heterojunction. It is found that the scattering processes of the charge and lattice defect depend sensitively on the hopping integrals at the polymer/polymer interface when the interface potential barrier and applied electric field strength are constant. In particular, at an intermediate electric field, when the interface hopping integral of the polymer/polymer heterojunction material is increased beyond a critical value, two polarons can combine to become a lattice deformation in one of the two polymer chains, with the electron and the hole bound together, i.e., a self-trapped polaron—exciton. The yield of excitons then increases to a peak value. These results show that interface hopping is of fundamental importance and facilitates the formation of polaron—excitons.
Ghobadi, Ahmadreza F; Letteri, Rachel; Parelkar, Sangram S; Zhao, Yue; Chan-Seng, Delphine; Emrick, Todd; Jayaraman, Arthi
2016-02-08
Polymer-based gene delivery vehicles benefit from the presence of hydrophilic groups that mitigate the inherent toxicity of polycations and that provide tunable polymer-DNA binding strength and stable complexes (polyplexes). However, hydrophilic groups screen charge, and as such can reduce cell uptake and transfection efficiency. We report the effect of embedding zwitterionic sulfobetaine (SB) groups in cationic comb polymers, using a combination of experiments and molecular simulations. Ring-opening metathesis polymerization (ROMP) produced comb polymers with tetralysine (K4) and SB pendent groups. Dynamic light scattering, zeta potential measurements, and fluorescence-based experiments, together with coarse-grained molecular dynamics simulations, described the effect of SB groups on the size, shape, surface charge, composition, and DNA binding strength of polyplexes formed using these comb polymers. Experiments and simulations showed that increasing SB composition in the comb polymers decreased polymer-DNA binding strength, while simulations indicated that the SB groups distributed throughout the polyplex. This allows polyplexes to maintain a positive surface charge and provide high levels of gene expression in live cells. Notably, comb polymers with nearly 50 mol % SB form polyplexes that exhibit positive surface charge similarly as polyplexes formed from purely cationic comb polymers, indicating the ability to introduce an appreciable amount of SB functionality without screening surface charge. This integrated simulation-experimental study demonstrates the effectiveness of incorporating zwitterions in polyplexes, while guiding the design of new and effective gene delivery vectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nanjia; Dudnik, Alexander S.; Li, Ting I. N. G.
2015-12-31
ABSTRACT: The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4- c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)- thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'- bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)- 2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The M n effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable M ns. Experimental and coarse-grain modeling results reveal that systematic M n variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing M n formore » both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (J sc). However, the greater disorder and intermixed feature proliferation accompanying increasing M n promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal M ns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer M ns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest M ns, the present two-dimensional M n optimization matrix strategy locates a PCE “sweet spot” at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired M n and highlights the importance of optimizing M n for both polymer components to realize the full potential of APSC performance.« less
Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation
NASA Astrophysics Data System (ADS)
Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro
The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.
Garner, Logan E.; Bera, Abhijit; Larson, Bryon W.; ...
2017-06-06
Due to the inherent challenges in probing nanoscale properties within bulk heterojunction (BHJ) active layers of organic photovoltaic (OPV) devices, the relationship between morphology and nanoscale electronic structure is not well understood. Here, we employ scanning tunneling microscopy (STM) dI/dV imaging and localized density of states (DOS) spectra to investigate the influence of additives on morphology in a high-performance OPV system. In short, we are able to correlate the use of diiodooctane (DIO) additive with significant changes to the distribution of the localized DOS, most notably a broader distribution of PCE10 polymer HOMO levels and PC70BM fullerene LUMO levels, asmore » well as significantly smaller domain sizes and significantly higher overall device efficiencies. We further correlate this data with a nearly 3-fold increase in charge carrier lifetimes in the active layer when DIO is employed, determined by time-resolved microwave conductivity (TRMC) measurements. In conclusion, the results are consistent with the growing body of literature evidence that DIO promotes the formation of a polymer/fullerene mixed phase and therefore highlight the unique information that this combination of techniques can provide when investigating OPV active layer morphology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, Logan E.; Bera, Abhijit; Larson, Bryon W.
Due to the inherent challenges in probing nanoscale properties within bulk heterojunction (BHJ) active layers of organic photovoltaic (OPV) devices, the relationship between morphology and nanoscale electronic structure is not well understood. Here, we employ scanning tunneling microscopy (STM) dI/dV imaging and localized density of states (DOS) spectra to investigate the influence of additives on morphology in a high-performance OPV system. In short, we are able to correlate the use of diiodooctane (DIO) additive with significant changes to the distribution of the localized DOS, most notably a broader distribution of PCE10 polymer HOMO levels and PC70BM fullerene LUMO levels, asmore » well as significantly smaller domain sizes and significantly higher overall device efficiencies. We further correlate this data with a nearly 3-fold increase in charge carrier lifetimes in the active layer when DIO is employed, determined by time-resolved microwave conductivity (TRMC) measurements. In conclusion, the results are consistent with the growing body of literature evidence that DIO promotes the formation of a polymer/fullerene mixed phase and therefore highlight the unique information that this combination of techniques can provide when investigating OPV active layer morphology.« less
Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei
2011-09-01
Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.
New way of polymer design for organic solar cells using the quinoid structure
NASA Astrophysics Data System (ADS)
Berube, Nicolas; Gaudreau, Josiane; Cote, Michel
2013-03-01
Research in organic photovoltaic applications are receiving a great interest as they offer an environmentally clean and low-cost solution to the world's rising energy needs. Controlling the device's active polymer optical bandgap is an important step that affects its absorption of the solar spectrum, and ultimately, its power conversion efficiency. The use of fused heterocycles that favors the polymer's quinoid structure has been a known method to lower the bandgap, for example, with isothianapthene, but there is a lack of quantifiable data on this effect. Density functional theory (DFT) calculations were done on over 60 polymers with bandgaps between 0.5 eV and 4 eV. They clearly show that low bandgaps are observed in copolymers that carefully stands between their quinoid and aromatic structures. Such balance can be obtained by mixing monomer units with quinoid characteristics with aromatic ones. Time-dependant DFT results also links low bandgaps with lower reorganization energy, which means that polymers with this structural form could possess higher charge mobilities. This link between the geometrical structure and the bandgap is compatible with a vast variety of polymers and is more convincing than the commonly used donor-acceptor method of polymer design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallajosyula, Arun T.; Nie, Wanyi; Gupta, Gautam
A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFOmore » may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFO|C 60 and C 60-only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C 60-only devices. In addition, with a relatively higher contribution to photocurrent from the PFO-C 60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C 60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. Lastly, these results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.« less
Design of Stomach Acid-Stable and Mucin-Binding Enzyme Polymer Conjugates.
Cummings, Chad S; Campbell, Alan S; Baker, Stefanie L; Carmali, Sheiliza; Murata, Hironobu; Russell, Alan J
2017-02-13
The reduced immunogenicity and increased stability of protein-polymer conjugates has made their use in therapeutic applications particularly attractive. However, the physicochemical interactions between polymer and protein, as well as the effect of this interaction on protein activity and stability, are still not fully understood. In this work, polymer-based protein engineering was used to examine the role of polymer physicochemical properties on the activity and stability of the chymotrypsin-polymer conjugates and their degree of binding to intestinal mucin. Four different chymotrypsin-polymer conjugates, each with the same polymer density, were synthesized using "grafting-from" atom transfer radical polymerization. The influence of polymer charge on chymotrypsin-polymer conjugate mucin binding, bioactivity, and stability in stomach acid was determined. Cationic polymers covalently attached to chymotrypsin showed high mucin binding, while zwitterionic, uncharged, and anionic polymers showed no mucin binding. Cationic polymers also increased chymotrypsin activity from pH 6-8, while zwitterionic polymers had no effect, and uncharged and anionic polymers decreased enzyme activity. Lastly, cationic polymers decreased the tendency of chymotrypsin to structurally unfold at extremely low pH, while uncharged and anionic polymers induced unfolding more quickly. We hypothesized that when polymers are covalently attached to the surface of a protein, the degree to which those polymers interact with the protein surface is the predominant determinant of whether the polymer will stabilize or inactivate the protein. Preferential interactions between the polymer and the protein lead to removal of water from the surface of the protein, and this, we believe, inactivates the enzyme.
Electrophoretic mobilities of counterions and a polymer in cylindrical pores
Singh, Sunil P.; Muthukumar, M.
2014-01-01
We have simulated the transport properties of a uniformly charged flexible polymer chain and its counterions confined inside cylindrical nanopores under an external electric field. The hydrodynamic interaction is treated by describing the solvent molecules explicitly with the multiparticle collision dynamics method. The chain consisting of charged monomers and the counterions interact electrostatically with themselves and with the external electric field. We find rich behavior of the counterions around the polymer under confinement in the presence of the external electric field. The mobility of the counterions is heterogeneous depending on their location relative to the polymer. The adsorption isotherm of the counterions on the polymer depends nonlinearly on the electric field. As a result, the effective charge of the polymer exhibits a sigmoidal dependence on the electric field. This in turn leads to a nascent nonlinearity in the chain stretching and electrophoretic mobility of the polymer in terms of their dependence on the electric field. The product of the electric field and the effective polymer charge is found to be the key variable to unify our simulation data for various polymer lengths. Chain extension and the electrophoretic mobility show sigmoidal dependence on the electric field, with crossovers from the linear response regime to the nonlinear regime and then to the saturation regime. The mobility of adsorbed counterions is nonmonotonic with the electric field. For weaker and moderate fields, the adsorbed counterions move with the polymer and at higher fields they move opposite to the polymer's direction. We find that the effective charge and the mobility of the polymer decrease with a decrease in the pore radius. PMID:25240366
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2015-12-01
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization.
Sen, Swati; Kundagrami, Arindam
2015-12-14
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
NASA Astrophysics Data System (ADS)
Yanju, Wei; Jingyu, Wang; Chongwei, An; Hequn, Li; Xiaomu, Wen; Binshuo, Yu
2017-01-01
With ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and glycidyl azide polymer (GAP) as the solid filler and binder, respectively, GAP/CL-20-based compound explosives were designed and prepared. Using micro injection charge technology, the compound explosives were packed into small grooves to explore their application in a small-sized initiation network. The detonation reliability, detonation velocity, mechanical sensitivity, shock sensitivity, and brisance of the explosive were measured and analyzed. The results show that when the solid content of CL-20 is 82 wt%, the explosive charged in the groove has a smooth surface from a macroscopic view. From a microscopic view, a coarse surface is bonded with many CL-20 particles by GAP binder. The GAP/CL-20-based explosive charge successfully generates detonation waves in a groove larger than 0.6 mm × 0.6 mm. When the charge density in the groove is 1.68 g.cm-3 (90% theoretical maximum density), the detonation velocity reaches 7,290 m.s-1. Moreover, this kind of explosive is characterized by low impact and shock sensitivity.
Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert
2016-01-01
We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445
Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...
2015-12-03
Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less
Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material
NASA Technical Reports Server (NTRS)
Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.
1999-01-01
A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.
Effect of molecular properties on the performance of polymer light-emitting diodes
NASA Astrophysics Data System (ADS)
Ramos, Marta M. D.; Almeida, A. M.; Correia, Helena M. G.; Ribeiro, R. Mendes; Stoneham, A. M.
2004-11-01
The performance of a single layer polymer light-emitting diode depends on several interdependent factors, although recombination between electrons and holes within the polymer layer is believed to play an important role. Our aim is to carry out computer experiments in which bipolar charge carriers are injected in polymer networks made of poly(p-phenylene vinylene) chains randomly oriented. In these simulations, we follow the charge evolution in time from some initial state to the steady state. The intra-molecular properties of the polymer molecules obtained from self-consistent quantum molecular dynamics calculations are used in the mesoscopic model. The purpose of the present work is to clarify the effects of intra-molecular charge mobility and energy disorder on recombination efficiency. In particular, we find that charge mobility along the polymer chains has a serious influence on recombination within the polymer layer. Our results also show that energy disorder due to differences in ionization potential and electron affinity of neighbouring molecules affects mainly recombinations that occur near the electrodes at polymer chains parallel to them.
NASA Astrophysics Data System (ADS)
Arcila Velez, Margarita Rosa
Supercapacitors (SCs) are promising energy storage devices because they deliver energy faster than Li-ion batteries and store larger amounts of charge compared to dielectric capacitors. SCs are classified in electrical double layer capacitors (EDLCs) and pseudocapacitors, based on their charge storage mechanism. EDLCs store charge electrostatically, i.e. by physical charge separation. This mechanism limits the storable amount of energy to the available surface area of the electrode, typically made of carbon materials, but grants good cycling stability of the SC device. Pseudocapacitor electrodes, commonly made of conducting polymers or metal oxides, store charge faradaically, i.e. through redox reactions throughout the bulk material, which allows them to store significantly larger amounts of energy than EDLCs, but their stability is compromised due to the partial irreversibility of the faradaic processes. To accomplish the commercialization of SCs, devices must show a combination of high charge storage capacities and long-term stability, besides being cost-effective. To tackle the current issues of SCs, this field of study has taken mainly two directions: 1) the development of new architectures and nanostructures of the active materials, which has shown to increase the surface area, enhance stability, and facilitate ion diffusion; and 2) fabrication of composites between non-faradaic (carbon), faradaic materials, and/or redox-active components to achieve a balance between the amount of energy stored and the stability. Following the first approach, a continuous process to grow vertically aligned carbon nanotubes (VACNTs) on cost-effective aluminum foil was developed. The resulting electrodes were analyzed as SC electrodes and in symmetric cells, and the influence of the arrangement of the nanotubes and the synthesis conditions was studied. The performance of the VACNTs produced continuously showed similar performance to the VACNTs produced stationarily and the ordered structure of the VACNTs showed superior performance compared to randomly oriented CNTs. To increase the energy density, the second approach was taken, by combining pre-synthesized conducting polymers (CPs) and carbon nanotubes (CNTs) using a facile scalable dispersion filtration method to produce free-standing electrodes. Composites with the three main CPs were prepared, analyzed in various electrolytes, and their performance was comparable with polymer/ CNT films prepared with more complex techniques such as in-situ polymerization and pellet pressing. Then, based on the idea that the quinone molecules present in lignin store charge by undergoing a 2 proton, 2 electron redox reaction, a composite between polypyrrole, a stable conducting polymer, and the prototypical molecule p-benzoquinone was fabricated by electropolymerization of pyrrole in the presence of the redox molecule. A significant increase in capacitance and capacity was obtained with respect to polypyrrole films. Furthermore, an important obstacle in the application of CPs in SCs is the lack of easily reduced (n-dopable) polymers. Poly(aminoanthraquinone) (PAQ) is a conjugated polymer that shows electroactivity in the negative potential range of 0 to -2 V, due to the redox moieties of the polymer. PAQ was electropolymerized on free-standing CNT films and its performance as anode for SCs was studied. The materials and processing techniques described in this dissertation are useful to further develop high power/high energy electrodes for SCs.
Investigation on electrical tree propagation in polyethylene based on etching method
NASA Astrophysics Data System (ADS)
Shi, Zexiang; Zhang, Xiaohong; Wang, Kun; Gao, Junguo; Guo, Ning
2017-11-01
To investigate the characteristic of electrical tree propagation in semi-crystalline polymers, the low-density polyethylene (LDPE) samples containing electrical trees are cut into slices by using ultramicrotome. Then the slice samples are etched by potassium permanganate etchant. Finally, the crystalline structure and the electrical tree propagation path in samples are observed by polarized light microscopy (PLM). According to the observation, the LDPE spherocrystal structure model is established on the basis of crystallization kinetics and morphology of polymers. And the electrical tree growth process in LDPE is discussed based on the free volume breakdown theory, the molecular chain relaxation theory, the electromechanical force theory, the thermal expansion effect and the space charge shielding effect.
Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices
NASA Astrophysics Data System (ADS)
Oh, Hyukkeun
Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid group and a poly(ether ether ketone) backbone showed the highest proton conductivity and proton diffusion coefficient among the three ionomers, demonstrating the effect of the perfluorinated side chains. The proton conductivity of the novel ionomer was comparable to that of Nafion over a wide humidity range and temperature. A lithium perfluorosulfonate ionomer based on aromatic poly(arylene ether)s with pendant lithium perfluoroethyl sulfonates was prepared by ion exchange of the perlfuorosulfonic acid ionomer, and subsequently incoroporated into a lithium-ion battery cell as a single-ion conducting electrolyte. The microporous polymer film saturated with organic carbonates exhibited a nearly unity Li + transfer number, high ionic conductivity (e.g. > 10-3 S m-1 at room temperature) over a wide range of temperatures, high electrochemical stability, and excellent mechanical properties. Excellent cyclability with almost identical charge and discharge capacities have been demonstrated at ambient temperature in the batteries assembled from the prepared single-ion conductors. The mechanical stability of the polymer film was attributed to the rigid polymer backbone which was largely unaffected by the presence of plasticizing organic solvents, while the porous channels with high concentration of the perfluorinated side chains resulted in high ionic conductivity. The expected high charge-rate performance was not achieved, however, due to the high interfacial impedance present between the polymer electrolyte and the electrodes. Several procedural modifications were employed in order to decrease the interfacial impedance of the battery cell. The poly(arylene ether) based ionomer was saturated with an ionic liquid mixture, in order to explore the possibility of its application as a safe, inflammable electrolyte. A low-viscosity ionic liquid with high ionic conductivity, 1-butyl-3-methylimidazolium thiocyanate which has never been successfully utilized as an electrolyte for lithium-ion batteries was incorporated into a battery cell as a solvent mixture with propylene carbonate and lithium bis(trifluoromethane)sulfonimide impregnated in a free-standing hybrid electrolyte film. Outstanding ionic conductivity was achieved and the lithium half cell comprising a LTO cathode and a lithium metal anode separated by the solid polymer electrolyte showed good cyclability at room temperature and even at 0°C. The presence of a sufficient amount of propylene carbonate, which resulted in flammability of the polymer electrolyte, was discovered to be critical in the electrochemical stability of the polymer electrolyte.
Wu, Yefan; Chen, Jie; Fang, Yun; Zhu, Meng
2016-10-01
Accordance with the previously supposed polyelectrolyte-like behaviour of neutral polymer-anionic surfactant complexes, direct evidence for the formation of the pseudo-polyanions in polyvinylpyrrolidone (PVP)-sodium dodecylsulfate (SDS) solution is put forward in this paper by capillary electrophoresis (CE) experiments in assistance with capillary viscosimetry and conductometry. The contradictory phenomena of the absolute value of relative electrophoretic mobility (re) increasing while the ionization degree (α) decreasing with the increasing specific clusterization [Г] in aqueous PVP-SDS solution are explained by the finding that the PVP-SDS complex is eventually a family of PVP-SDS pseudo-polyanions with different charge densities. And it is found countercations playing an important role in the formation of the PVP-SDS pseudo-polyanions in virtue of bridge effect. Copyright © 2016 Elsevier Inc. All rights reserved.
Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode
NASA Astrophysics Data System (ADS)
Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2015-04-01
Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.
NASA Astrophysics Data System (ADS)
Eleftheriou, E.; Karatasos, K.
2012-10-01
Models of mixtures of peripherally charged dendrimers with oppositely charged linear polyelectrolytes in the presence of explicit solvent are studied by means of molecular dynamics simulations. Under the influence of varying strength of electrostatic interactions, these systems appear to form dynamically arrested film-like interconnected structures in the polymer-rich phase. Acting like a pseudo-thermodynamic inverse temperature, the increase of the strength of the Coulombic interactions drive the polymeric constituents of the mixture to a gradual dynamic freezing-in. The timescale of the average density fluctuations of the formed complexes initially increases in the weak electrostatic regime reaching a finite limit as the strength of electrostatic interactions grow. Although the models are overall electrically neutral, during this process the dendrimer/linear complexes develop a polar character with an excess charge mainly close to the periphery of the dendrimers. The morphological characteristics of the resulted pattern are found to depend on the size of the polymer chains on account of the distinct conformational features assumed by the complexed linear polyelectrolytes of different length. In addition, the length of the polymer chain appears to affect the dynamics of the counterions, thus affecting the ionic transport properties of the system. It appears, therefore, that the strength of electrostatic interactions together with the length of the linear polyelectrolytes are parameters to which these systems are particularly responsive, offering thus the possibility for a better control of the resulted structure and the electric properties of these soft-colloidal systems.
Triboelectric, Corona, and Induction Charging of Insulators as a Function of Pressure
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mucciolo, Eduardo R.; Calle, Carlos I.
2006-01-01
Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. In this paper we will report on the results of three different charging techniques (triboelectric, corona, and induction) performed on selected polymers with varying atmospheric pressure. This data will show that ion exchange between the polymer samples is the mechanism responsible for most of the surface charge on the polymer surfaces.
Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min
2017-10-25
Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO 4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO 4 /Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2016-05-01
The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.
Humidity influence on atomic force microscopy electrostatic nanolithography
NASA Astrophysics Data System (ADS)
Lyuksyutov, Sergei; Juhl, Shane; Vaia, Richard
2006-03-01
The formation and sustainability of water menisci and bridges between solid dielectric surface and nano-asperity under external electrostatic potential is a mystery, which must be adequately explained. The goal of our study is twofold: (i) To address the influence of an ambient humidity through the water meniscus formation on the nanostructure formation in soften polymeric surfaces; (ii) Estimate an electric charge generation and transport inside the water meniscus in vicinity of nanoscale asperity taking into consideration an induced water ionization in strong non-uniform electric field of magnitude up to 10^10 Vm-1. It is suspected that strong electric field inside a polymer matrix activates the hoping mechanism of conductivity. The electrons are supplied by tunneling of conductive tip, and also through water ionization. Electric current associated with these free carriers produces Jule heating of a small volume of polymer film heating it above the glass transition temperature. Nanostructures are created by mass transport of visco-elastic polymer melt enabling high structure densities on polymer film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat
Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less
Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat; ...
2016-08-10
Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less
NASA Astrophysics Data System (ADS)
Malov, V. V.; Tameev, A. R.; Novikov, S. V.; Khenkin, M. V.; Kazanskii, A. G.; Vannikov, A. V.
2015-08-01
Optical and photoelectric properties of modern photosensitive polymers are of great interest due to their prospects for photovoltaic applications. In particular, an investigation of absorption and photoconductivity edge of these materials could provide valuable information. For these purpose we applied the constant photocurrent method which has proved its efficiency for inorganic materials. PCDTBT and PTB7 polymers were used as objects for the study as well as their blends with a fullerene derivative PC71BM. The measurements by constant photocurrent method (CPM) show that formation of bulk heterojunction (BHJ) in the blends increases photoconductivity and results in a redshift of the photocurrent edge in the doped polymers compared with that in the neat polymers. Obtained from CPM data, spectral dependences of absorption coefficient were approximated using Gaussian distribution of density-of-states within HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) bands. The approximation procedure allowed us to evaluate rather optical than electrical bandgaps for the studied materials. Moreover, spectra of polymer:PC71BM blends were fitted well by the sum of two Gaussian peaks which reveal both the transitions within the polymer and the transitions involving charge transfer states at the donor-acceptor interface in the BHJ.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2014-11-01
The effects of solution pH and the content of cationic groups in polyacrylamide (PAM) macromolecules on the stability mechanism of aqueous alumina suspension were investigated. The following experimental techniques were applied: spectrophotometry, potentiometric titration, microelectrophoresis, viscosimetry and turbidimetry. They enable determination of polymer adsorbed amount, surface charge density and zeta potential of solid particles in the presence and absence of PAM, as well as thickness of polymer adsorption layer, size of macromolecules in the solution and stability of the Al2O3-polymer systems, respectively. The obtained results indicate that adsorption of PAM increases with the increasing pH, whereas the thickness of polymeric adsorption layer decreases. Additionally, the greater the number of cationic groups in the PAM chains is, the higher adsorption was found. The polymer presence influences on the alumina suspension stability. At pH 3 and 6 the slight deterioration of stability conditions of solid particle covered with polyacrylamide was observed. At pH 9 the systems containing polymer are unstable, similarly to the suspension without PAM, but the mechanism of their destabilization is different.
NASA Astrophysics Data System (ADS)
Anand, Siddeswaran; Muthusamy, Athianna
2017-11-01
Three benzimidazole monomers synthesized by condensing various substituted phenolic aldehydes with 4-methylphenylenediamine were converted in to polymers by oxidative polycondensation. The structure of the monomers and polymers were confirmed by various spectroscopic techniques. Electronic distribution of molecular frontier orbitals and optimized geometries of monomers were calculated by Gaussian 09 package. The spectral results showed that the repeating units are connected through both Csbnd C and Csbnd Osbnd C linkages. Both polymers and monomers are showing good fluorescence emission in blue region. The electrical conductivity of I2 doped PBIs was measured using two point probe technique. The conductivities of PBIs were compared on the basis of the charge densities obtained from Huckel method on imidazole nitrogen which is involved in iodine coordination. The conductivity of polymers increases with increase in iodine vapour contact time. The dielectric properties of the synthesized polymers have been investigated at different temperature and frequency. Among the PBIs, PBIOP is having greater thermal stability and is shown by high carbines residues of around 50% at 500 °C in thermogravimetric analysis.
Baek, Sungchul; Green, Rylie A; Poole-Warren, Laura A
2014-07-01
Poly(3,4-ethylenedioxythiophene) (PEDOT) films have attracted substantial interest as coatings for platinum neuroprosthetic electrodes due to their excellent chemical stability and electrical properties. This study systematically examined PEDOT coatings formed with different amounts of charge and dopant ions, and investigated the combination of surface characteristics that were optimal for neural cell interactions. PEDOT samples were fabricated by varying the electrodeposition charge from 0.05 to 1 C cm(-2). Samples were doped with either poly(styrenesulfonate), tosylate (pTS) or perchlorate. Scanning electron micrographs revealed that both thickness and nodularity increased as the charge used to produce the sample was increased, and larger dopants produced smoother films across all thicknesses. X-ray photoelectron spectroscopy confirmed that the amount of charge directly corresponded to the thickness and amount of dopant in the samples. Additionally, with increased thickness and nodularity, the electrochemical properties of all PEDOT coatings improved. However, neural cell adhesion and outgrowth assays revealed that there is a direct biological tradeoff related to the thickness and nodularity. Cell attachment, growth and differentiation was poorer on the thicker, rougher samples, but thin, less nodular PEDOT films exhibited significant improvements over bare platinum. PEDOT/pTS fabricated with a charge density of <0.1Ccm(-2) provided superior electrochemical and biological properties over conventional platinum electrodes and would be the most suitable conducting polymer for neural interface applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Monson, Todd C; Hollars, Christopher W; Orme, Christine A; Huser, Thomas
2011-04-01
The dispersion of CdTe tetrapods in a conducting polymer and the resulting charge transfer is studied using a combination of confocal fluorescence microscopy and atomic force microscopy (AFM). The results of this work show that both the tetrapod dispersion and charge transfer between the CdTe and conducting polymer (P3HT) are greatly enhanced by exchanging the ligands on the surface of the CdTe and by choosing proper solvent mixtures. The ability to experimentally probe the relationship between particle dispersion and charge transfer through the combination of AFM and fluorescence microscopy provides another avenue to assess the performance of polymer/semiconductor nanoparticle composites. © 2011 American Chemical Society
Li, Mengmeng; An, Cunbin; Pisula, Wojciech; Müllen, Klaus
2018-05-15
Donor-acceptor (D-A) conjugated polymers are of great interest as organic semiconductors, because they offer a rational tailoring of the electronic properties by modification of the donor and acceptor units. Nowadays, D-A polymers exhibit field-effect mobilities on the order of 10 -2 -10 0 cm 2 V -1 s -1 , while several examples showed a mobility over 10 cm 2 V -1 s -1 . The development of cyclopentadithiophene-benzothiadiazole (CDT-BTZ) copolymers one decade ago represents an important step toward high-performance organic semiconductors for field-effect transistors. The significant rise in field-effect mobility of CDT-BTZ in comparison to the existing D-A polymers at that time opened the door to a new research field with a large number of novel D-A systems. From this point, the device performance of CDT-BTZ was gradually improved by a systematic optimization of the synthesis and polymer structure as well as by an efficient solution processing into long-range ordered thin films. The key aspect was a comprehensive understanding of the relation between polymer structure and solid-state organization. Due to their fundamental role for the field of D-A polymers in general, this Account will for the first time explicitly focus on prototypical CDT-BTZ polymers, while other reviews provide an excellent general overview on D-A polymers. The first part of this Account discusses strategies for improving the charge carrier transport, focusing on chemical aspects. Improved synthesis as an essential stage toward high purity, and high molecular weight is a prerequisite for molecular order. The modification of substituents is a further crucial feature to tune the CDT-BTZ packing and self-assembly. Linear alkyl side chains facilitate intermolecular π-stacking interactions, while branched ones increase solubility and alter the polymer packing. Additional control over the supramolecular organization of CDT-BTZ polymers is introduced by alkenyl substituents via their cis-trans isomerization. The last discussed chemical concept is based on heteroatom variation within the CDT unit. The relationships found experimentally for CDT-BTZ between polymer chemical structure, solid-state organization, and charge carrier transport are explained by means of theoretical simulations. Besides the effects of molecular design, the second part of this Account discusses the processing conditions from solution. The film microstructure, defined as a mesoscopic domain organization, is critically affected by solution processing. Suitable processing techniques allow the formation of a long-range order and a uniaxial orientation of the CDT-BTZ chains, thus lowering the trapping density of grain boundaries for charge carriers. For instance, alignment of the CDT-BTZ polymer by dip-coating yields films with a pronounced structural and electrical anisotropy and favors a fast migration of charge carriers along the conjugated backbones in the deposition direction. By using film compression with the assistance of an ionic liquid, one even obtains CDT-BTZ films with a band-like transport and a transistor hole mobility of 10 cm 2 V -1 s -1 . This device performance is attributed to large domains in the compressed films being formed by CDT-BTZ with longer alkyl chains, which establish a fine balance between polymer interactions and growth kinetics during solvent evaporation. On the basis of the prototypical semiconductor CDT-BTZ, this Account provides general guidelines for achieving high-performance polymer transistors by taking into account the subtle balance of synthetic protocol, molecular design, and processing.
Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution.
Li, Zifeng; Van Dyk, Antony K; Fitzwater, Susan J; Fichthorn, Kristen A; Milner, Scott T
2016-01-19
Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the double layer assume sharp interfaces bearing fixed uniform charge, and so cannot describe aqueous binder particle surfaces, which are soft and diffuse, and bear mobile charge from ionic surfactants as well as grafted multivalent oligomers. To treat this industrially important system, we use atomistic molecular dynamics simulations to investigate a structurally realistic model of commercial binder particle surfaces, informed by extensive characterization of particle synthesis and surface properties. We determine the interfacial profiles of polymer, water, bound and free ions, from which the charge density and electrostatic potential can be calculated. We extend the traditional definitions of the inner and outer Helmholtz planes to our diffuse interfaces. Beyond the Stern layer, the simulated electrostatic potential is well described by the Poisson-Boltzmann equation. The potential at the outer Helmholtz plane compares well to the experimental zeta potential. We compare particle surfaces bearing two types of charge groups, ionic surfactant and multivalent oligomers, with and without added salt. Although the bare charge density of a surface bearing multivalent oligomers is much higher than that of a surfactant-bearing surface at realistic coverage, greater counterion condensation leads to similar zeta potentials for the two systems.
Ternary nylon-3 copolymers as host-defense peptide mimics: beyond hydrophobic and cationic subunits.
Chakraborty, Saswata; Liu, Runhui; Hayouka, Zvi; Chen, Xinyu; Ehrhardt, Jeffrey; Lu, Qin; Burke, Eileen; Yang, Yiqing; Weisblum, Bernard; Wong, Gerard C L; Masters, Kristyn S; Gellman, Samuel H
2014-10-15
Host-defense peptides (HDPs) are produced by eukaryotes to defend against bacterial infection, and diverse synthetic polymers have recently been explored as mimics of these natural peptides. HDPs are rich in both hydrophobic and cationic amino acid residues, and most HDP-mimetic polymers have therefore contained binary combinations of hydrophobic and cationic subunits. However, HDP-mimetic polymers rarely duplicate the hydrophobic surface and cationic charge density found among HDPs ( Hu , K. ; et al. Macromolecules 2013 , 46 , 1908 ); the charge and hydrophobicity are generally higher among the polymers. Statistical analysis of HDP sequences ( Wang , G. ; et al. Nucleic Acids Res. 2009 , 37 , D933 ) has revealed that serine (polar but uncharged) is a very common HDP constituent and that glycine is more prevalent among HDPs than among proteins in general. These observations prompted us to prepare and evaluate ternary nylon-3 copolymers that contain a modestly polar but uncharged subunit, either serine-like or glycine-like, along with a hydrophobic subunit and a cationic subunit. Starting from binary hydrophobic-cationic copolymers that were previously shown to be highly active against bacteria but also highly hemolytic, we found that replacing a small proportion of the hydrophobic subunit with either of the polar, uncharged subunits can diminish the hemolytic activity with minimal impact on the antibacterial activity. These results indicate that the incorporation of polar, uncharged subunits may be generally useful for optimizing the biological activity profiles of antimicrobial polymers. In the context of HDP evolution, our findings suggest that there is a selective advantage to retaining polar, uncharged residues in natural antimicrobial peptides.
Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian
Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA < GO-PAM < GO-PEG < GO-pSB. Thus, zwitterionic polymer-modified GO is superior to other GO derivatives with different charges in enhancing the specificity of PCR. GO derivatives are also successfully used to enhance the specificity of PCR for the amplification of human mitochondrial DNA using blood genomic DNA as template. Molecular dynamics simulations and molecular docking are performed to elucidate the interaction between the polymers and Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR.
An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.
Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D; Schubert, Ulrich S
2015-11-05
For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.
An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials
NASA Astrophysics Data System (ADS)
Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.
2015-11-01
For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.
Shang, Barry Z; Wang, Zuowei; Larson, Ronald G
2009-11-19
We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges on larger units in the polymer chain.
Tang, Fu-Ching; Wu, Fu-Chiao; Yen, Chia-Te; Chang, Jay; Chou, Wei-Yang; Gilbert Chang, Shih-Hui; Cheng, Horng-Long
2015-01-07
In the optimization of organic solar cells (OSCs), a key problem lies in the maximization of charge carriers from the active layer to the electrodes. Hence, this study focused on the interfacial molecular configurations in efficient OSC charge extraction by theoretical investigations and experiments, including small molecule-based bilayer-heterojunction (sm-BLHJ) and polymer-based bulk-heterojunction (p-BHJ) OSCs. We first examined a well-defined sm-BLHJ model system of OSC composed of p-type pentacene, an n-type perylene derivative, and a nanogroove-structured poly(3,4-ethylenedioxythiophene) (NS-PEDOT) hole extraction layer. The OSC with NS-PEDOT shows a 230% increment in the short circuit current density compared with that of the conventional planar PEDOT layer. Our theoretical calculations indicated that small variations in the microscopic intermolecular interaction among these interfacial configurations could induce significant differences in charge extraction efficiency. Experimentally, different interfacial configurations were generated between the photo-active layer and the nanostructured charge extraction layer with periodic nanogroove structures. In addition to pentacene, poly(3-hexylthiophene), the most commonly used electron-donor material system in p-BHJ OSCs was also explored in terms of its possible use as a photo-active layer. Local conductive atomic force microscopy was used to measure the nanoscale charge extraction efficiency at different locations within the nanogroove, thus highlighting the importance of interfacial molecular configurations in efficient charge extraction. This study enriches understanding regarding the optimization of the photovoltaic properties of several types of OSCs by conducting appropriate interfacial engineering based on organic/polymer molecular orientations. The ultimate power conversion efficiency beyond at least 15% is highly expected when the best state-of-the-art p-BHJ OSCs are combined with present arguments.
Lamboy, Jorge A.; Arter, Jessica A.; Knopp, Kristeene A.; Der, Denise; Overstreet, Cathie M.; Palermo, Edmund; Urakami, Hiromitsu; Yu, Ting-Bin; Tezgel, Ozgul; Tew, Gregory; Guan, Zhibin; Kuroda, Kenichi; Weiss, Gregory A.
2011-01-01
M13 phage have provided scaffolds for nanostructure synthesis based upon self-assembled inorganic and hard materials interacting with phage-displayed peptides. Additionally, phage display has been used to identify binders to plastic, TiO2, and other surfaces. However, synthesis of phage-based materials through the hybridization of soft materials with the phage surface remains unexplored. Here, we present an efficient “phage wrapping” strategy for the facile synthesis of phage coated with soluble, cationic polymers. Polymers bearing high positive charge densities demonstrated the most effective phage wrapping, as shown by assays for blocking non-specific binding of the anionic phage coat to a high pI target protein. The results establish the functional group requirements for hybridizing phage with soft materials, and solve a major problem in phage display – non-specific binding by the phage to high pI target proteins. PMID:19856910
Morisaki, Yasuhiro; Ueno, Shizue; Saeki, Akinori; Asano, Atsushi; Seki, Shu; Chujo, Yoshiki
2012-04-02
[2.2]Paracyclophane-based through-space conjugated oligomers and polymers were prepared, in which poly(p-arylene-ethynylene) (PAE) units were partially π-stacked and layered, and their properties in the ground state and excited state were investigated in detail. Electronic interactions among PAE units were effective through at least ten units in the ground state. Photoexcited energy transfer occurred from the stacked PAE units to the end-capping PAE moieties. The electrical conductivity of the polymers was estimated using the flash-photolysis time-resolved microwave conductivity (FP-TRMC) method and investigated together with time-dependent density functional theory (TD-DFT) calculations, showing that intramolecular charge carrier mobility through the stacked PAE units was a few tens of percentage larger than through the twisted PAE units. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lamboy, Jorge A; Arter, Jessica A; Knopp, Kristeene A; Der, Denise; Overstreet, Cathie M; Palermo, Edmund F; Urakami, Hiromitsu; Yu, Ting-Bin; Tezgel, Ozgul; Tew, Gregory N; Guan, Zhibin; Kuroda, Kenichi; Weiss, Gregory A
2009-11-18
M13 phage have provided scaffolds for nanostructure synthesis based upon self-assembled inorganic and hard materials interacting with phage-displayed peptides. Additionally, phage display has been used to identify binders to plastic, TiO(2), and other surfaces. However, synthesis of phage-based materials through the hybridization of soft materials with the phage surface remains unexplored. Here, we present an efficient "phage wrapping" strategy for the facile synthesis of phage coated with soluble, cationic polymers. Polymers bearing high positive charge densities demonstrated the most effective phage wrapping, as shown by assays for blocking nonspecific binding of the anionic phage coat to a high pI target protein. The results establish the functional group requirements for hybridizing phage with soft materials and solve a major problem in phage display-nonspecific binding by the phage to high pI target proteins.
Synthesis of linear polyethylenimine derivatives for DNA transfection.
Brissault, Blandine; Kichler, Antoine; Guis, Christine; Leborgne, Christian; Danos, Olivier; Cheradame, Hervé
2003-01-01
A series of linear polymers containing varying amounts of ethylenimine or N-propylethylenimine units were synthesized by hydrolysis and/or reduction of polyethyloxazolines. The pK(a)s of the polyamines were determined potentiometrically. Gel mobility shift assay showed that the efficiency of DNA complexation was related to the fraction of amino groups that are protonated at neutral pH. The effects of cationic charge density and molar weight of the polymers on the transfection efficiency were evaluated on HepG2 cells. The results obtained with different copolymers show that the transfection efficiency primarily depends on the fraction of ethylenimine units included in the polymer albeit the molar weight is also of importance. On the basis of the results obtained with poly(N-propylethylenimines), we also demonstrate that the high transfection efficiency of polyethylenimines does not solely rely on their capacity to capture protons which are transferred into the endo-lysosomes during acidification.
NASA Astrophysics Data System (ADS)
Bekkara, Mohammed Fethi; Dascalescu, Lucien; Benmimoun, Youcef; Zeghloul, Thami; Tilmatine, Amar; Zouzou, Noureddine
2018-01-01
The aim of this paper is to quantify the effects of dielectric barrier discharge (DBD) exposure on the physico-chemical and tribo-electric properties of polymers. The study was conducted in atmospheric air on polypropylene, polyethylene and polyvinyl-chloride. These three types of polymers are widely used in industry. The polymers were characterized by means of an optical profilometer, a fourier-transform infrared (FTIR) spectrometer and an electric charge measurement system. The latter is composed of a Faraday pail connected to an electrometer. The profilometer analyses showed that the DBD plasma treatment has increased the surface roughness of the three polymers. FTIR revealed that oxygen atoms and polar groups were grafted on their surfaces, thereby conferring them a hydrophilic character. The short (2 sec) DBD plasma treatment has considerably improved the electrostatic charge acquired by the polymers during electrostatic tribo-charging, while longer exposures conferred the polymer anti-static properties and decreased its tribo-charging capability. The correlation between the results of the physico-chemical analyses and the tribo-electric behavior has been discussed.
NASA Astrophysics Data System (ADS)
Newland, B.; Aied, A.; Pinoncely, A. V.; Zheng, Y.; Zhao, T.; Zhang, H.; Niemeier, R.; Dowd, E.; Pandit, A.; Wang, W.
2014-06-01
The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies.The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies. Electronic supplementary information (ESI) available: 1H NMR spectroscopy data and gel permeation chromatography data. See DOI: 10.1039/c3nr06737h
Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene
NASA Astrophysics Data System (ADS)
Piatti, E.; Galasso, S.; Tortello, M.; Nair, J. R.; Gerbaldi, C.; Bruna, M.; Borini, S.; Daghero, D.; Gonnelli, R. S.
2017-02-01
We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.
Solids and nutrient removal from flushed swine manure using polyacrylamides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanotti, M.B.; Hunt, P.G.
1999-12-01
Most of the organic nutrients and reduced carbon (C) materials in liquid swine manure are contained in fine suspended particles that are not separated by available mechanical separators. Treatment with polyacrylamide (PAM) polymers prior to mechanical removal or gravity settling has the potential for enhancing solids-liquid separation, thus concentrating nitrogen (N), phosphorus (P), and organic C. In this work, the authors determined PAM charge and density characteristics most desirable for swine wastewater applications and established the optimum chemical requirement. Treatments were applied to flushed manure from two swine operations in North Carolina. Cationic PAMs significantly increased solids separation while performancemore » of neutral and anionic types was not different from a control. Cationic PAMs with moderate-charge density (20%) were more effective than polymers with higher charge density. Flocs were large and effectively retained with a 1-mm screen. Optimum PAM rate varied with the amount of total suspended solids (TSS) in the liquid manure; 26 and 79 mg PAM/L for samples containing 1.5 and 4.1 g TSS/L, respectively. Corresponding TSS removal efficiencies were 90 to 94%. In contrast, screening without PAM treatment captured only 5 to 14% of the suspended solids. Polymer usage rate was consistent and averaged 2.0{degree} based on weight of dry solids produced. Volatile suspended solids (VSS) were highly correlated with TSS and comprised 79.5% of TSS. Chemical oxygen demand (COD) and organic nutrient concentrations in the effluent were also significantly decreased by PAM treatment. The decrease of COD concentration, an important consideration for odor control, was linearly related with removal of suspended solids, at a rate of 2.0 g COD/g TSS and 2.6 g COD/g VSS. Removal efficiency of organic N and P followed approximately a 1:1 relationship with removal efficiency of TSS. Chemical cost to capture 90% of the suspended solids was estimated to be $0.026 per hog per day ($2.79 per finished hog). Results obtained indicate that PAM treatment is very effective for removal of manure solids, COD, and organic nutrients from flushed swine effluents. The technology provides an attractive alternative to existing liquid manure handling methods for conserving nutrients and avoiding excessive nutrient application in areas where swine production is concentrated.« less
Kim, In-Bok; Jang, Soo-Young; Kim, Yeong-A; Kang, Rira; Kim, In-Sik; Ko, Do-Kyeong; Kim, Dong-Yu
2017-07-19
Fluorine (F) substitution on conjugated polymers in polymer solar cells (PSCs) has a diverse effect on molecular properties and device performance. We present a series of three D-A type conjugated polymers (PBT, PFBT, and PDFBT) based on dithienothiophene and benzothiadiazole units with different numbers of F atoms to explain the influence of F substitution by comparing the molecular interactions of the polymers and the recombination kinetics in PSCs. The preaggregation behavior of PFBT and PDFBT in o-DCB at the UV-vis absorption spectra proves that both polymers have strong intermolecular interactions. Besides, more closely packed structures and change into face-on orientation of fluorinated polymers are observed in polymer:PC 71 BM blends by GIXD which is beneficial for charge transport and, ultimately, for current density in PSCs (4.3, 13.0, and 14.5 mA cm -2 for PBT, PFBT, and PDFBT, respectively). Also, the introduction of F atoms on conjugated backbones affects the recombination kinetics by suppressing bimolecular recombination, thereby improving the fill factor (0.41, 0.68, and 0.69 for PBT, PFBT, and PDFBT, respectively). Consequently, the PCE of PSCs reached 7.3% without any additional treatment (annealing, solvent additive, etc.) in the polymer containing difluorinated BT (PDFBT) that is much higher than nonfluorinated BT (PBT ∼ 1%) and monofluorinated BT (PFBT ∼ 6%).
Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander
2015-04-22
Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.
Lennon, John D; Cole, Scott P; Glish, Gary L
2006-12-15
A new approach has been developed to analyze synthetic polymers via electrospray ionization mass spectrometry. Ion/molecule reactions, a unique feature of trapping instruments such as quadrupole ion trap mass spectrometers, can be used to chemically deconvolute the molecular mass distribution of polymers from the charge-state distribution generated by electrospray ionization. The reaction involves stripping charge from multiply charged oligomers to reduce the number of charge states. This reduces or eliminates the overlapping of oligomers from adjacent charge states. 15-Crown-5 was used to strip alkali cations (Na+) from several narrow polydisperse poly(ethylene glycol) standards. The charge-state distribution of each oligomer is reduced to primarily one charge state. Individual oligomers can be resolved, and the average molecular mass and polydispersities can be calculated for the polymers examined here. In most cases, the measured number-average molecular mass values are within 10% of the manufacturers' reported values obtained by gel permeation chromatography. The polydispersity was typically underestimated compared to values reported by the suppliers. Mn values were obtained with 0.5% RSD and are independent, over several orders of magnitude, of the polymer and cation concentration. The distributions that were obtained fit quite well to the Gaussian distribution indicating no high- or low-mass discriminations.
Xu, Yalong; Yuan, Jianyu; Sun, Jianxia; Zhang, Yannan; Ling, Xufeng; Wu, Haihua; Zhang, Guobing; Chen, Junmei; Wang, Yongjie; Ma, Wanli
2018-01-24
A widely applicable doping design for emerging nonfullerene solar cells would be an efficient strategy in order to further improve device photovoltaic performance. Herein, a family of compound TBAX (TBA= tetrabutylammonium, X = F, Cl, Br, or I, containing Lewis base anions are considered as efficient n-dopants for improving polymer-polymer solar cells (all-PSCs) performance. In all cases, significantly increased fill factor (FF) and slightly increased short-circuit current density (J sc ) are observed, leading to a best PCE of 7.0% for all-PSCs compared to that of 5.8% in undoped devices. The improvement may be attributed to interaction between different anions X - (X = F, Cl, Br, and I) in TBAX with the polymer acceptor. We reveal that adding TBAX at relatively low content does not have a significantly impact on blend morphology, while it can reduce the work function (WF) of the electron acceptor. We find this simple and solution processable n-type doping can efficiently restrain charge recombination in all-polymer solar cell devices, resulting in improved FF and J sc. More importantly, our findings may provide new protocles and insights using n-type molecular dopants in improving the performance of current polymer-polymer solar cells.
The influence of selective chemical doping on clean, low-carrier density SiC epitaxial graphene
NASA Astrophysics Data System (ADS)
Chuang, Chiashain; Yang, Yanfei; Huang, Lung-I.; Liang, Chi-Te; Elmquist, Randolph E.; National Institute of of Standards; Technology Collaboration; National Taiwan University, Department of Physics Collaboration
2015-03-01
The charge-transfer effect of ambient air on magneto-transport in polymer-free SiC graphene was investigated. Interestingly, adsorption of atmospheric gas molecules on clean epitaxial graphene can reduce the carrier density to near charge neutrality, allowing observation of highly precise v = 2 quantum Hall plateaus. The atmospheric adsorbates were reproducibly removed and pure gases (N2, O2, CO2, H2O) were used to form new individual adsorbates on SiC graphene. Our experimental results (τt/τq ~ 2) support the theoretical predictions for the ratio of transport relaxation time τt to quantum lifetime τq in clean graphene. The analysis of Shubnikov-de Haas oscillations at intermediate doping levels indicates that the carrier scattering is reduced by water and oxygen so as to increase both the classical and quantum mobility. This study points to the key dopant gases in ambient air and also paves the way towards extremely precise quantized Hall resistance standards in epitaxial graphene systems with carrier density tuned by exposure to highly pure gases and vacuum annealing treatment. National Institute of Standard and Technology.
Nanotribology of charged polymer brushes
NASA Astrophysics Data System (ADS)
Klein, Jacob
Polymers at surfaces, whose modern understanding may be traced back to early work by Sam Edwards1, have become a paradigm for modification of surface properties, both as steric stabilizers and as remarkable boundary lubricants2. Charged polymer brushes are of particular interest, with both technological implications and especially biological relevance where most macromolecules are charged. In the context of biolubrication, relevant in areas from dry eye syndrome to osteoarthritis, charged polymer surface phases and their complexes with other macromolecules may play a central role. The hydration lubrication paradigm, where tenaciously-held yet fluid hydration shells surrounding ions or zwitterions serve as highly-efficient friction-reducing elements, has been invoked to understand the excellent lubrication provided both by ionized3 and by zwitterionic4 brushes. In this talk we describe recent advances in our understanding of the nanotribology of such charged brush systems. We consider interactions between charged end-grafted polymers, and how one may disentangle the steric from the electrostatic surface forces5. We examine the limits of lubrication by ionized brushes, both synthetic and of biological origins, and how highly-hydrated zwitterionic chains may provide extremely effective boundary lubrication6. Finally we describe how the lubrication of articular cartilage in the major joints, a tribosystem presenting some of the greatest challenges and opportunities, may be understood in terms of a supramolecular synergy between charged surface-attached polymers and zwitterionic groups7. Work supported by European Research Council (HydrationLube), Israel Science Foundation (ISF), Petroleum Research Fund of the American Chemical Society, ISF-NSF China Joint Program.
NASA Astrophysics Data System (ADS)
Baur, Cary Allen
In this work, novel approaches to the design of highly piezoelectric and flexible polymer composites were explored. Diverging from past work focused on the addition of piezoelectric particles into polymer matrices, this research explores the ability to increase the piezoelectric performance of a host polymer through the incorporation of charge via polarizable, organic particles. The ability to insert charge into polymers, known as electrets, is well documented but widely considered impractical because of the low lifetime and temperature resistance of the inserted charge. Through the addition of particles that are polarizable, charge can be inserted into a system in a stable manner that results in highly charged materials with long lifetimes. Here, carbon structures, such as Buckminsterfullerenes (C60) and single-walled nanotubes (SWNTs), were composited into poly(vinylidene difluoride) at very low loading levels (0.05-0.25 wt%), resulting in the ability to insert stable charge into the system. We show that these highly charged systems can result in a doubling of the piezoelectric response of the host polymer when optimized. The low amount of nanoparticle filler required to improve these materials allows for the advantageous properties of the polymer matrix such as flexibility and compliance to be preserved, enabling highly piezoelectric and flexible system. This dissertation outlines research efforts towards the design and fabrication of 1) polymer composites with high piezoelectric response, 2) piezoelectric composites with increased operating temperatures, 3) motion control devices that incorporate piezoelectric materials and shape memory polymers, and 4) artificial muscles with piezoelectric polymers. The piezoelectric polymer composites developed in this work have potential to be utilized as highly efficient, flexible energy harvesters that can be used to capture ambient energy from environmental vibrations and motion from the human body. As actuators, these materials may find use as rapid-response muscle replacements in legs, arms, fingers, or toes. As sensors, such devices may provide electrical impulses capable of sensing small vibrations due to structural damage or movements. There is a wide range of applications for flexible piezoelectric materials that will continue to expand as technologies in monitoring, energy harvesting, and motion control continue to develop.
Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels
NASA Astrophysics Data System (ADS)
Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike
2013-06-01
We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.
Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, Martin, E-mail: martin.weis@stuba.sk; Otsuka, Takako; Taguchi, Dai
2015-04-21
Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the devicemore » performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.« less
NASA Astrophysics Data System (ADS)
Ferber, Steven Dwight
2005-11-01
The Vibrational Circular Dichroism (VCD) of Nucleic Acids is a sensitive function of their conformation. DeVoe's classically derived polarizability theory allows the calculation of polymer absorption and circular dichroism spectra in any frequency range. Following the approach of Tinoco and Cech as modified by Moore and Self, calculations were done in the infrared (IR) region with theoretically derived monomer input parameters. Presented herein are calculated absorption and CD spectra for nucleic acid oligomers and polymers. These calculations improve upon earlier attempts, which utilized frequencies, intensities and normal modes from empirical analysis of the nitrogenous base of the monomers. These more complete input polarizability parameters include all contributions to specific vibrational normal modes for the entire nucleotide structure. They are derived from density functional theory (DFT) vibrational analysis on quasi-nucleotide monomers using the GAUSSIAN '98/'03 program. The normal modes are "integrated" for the first time into single virtual (DeVoe) oscillators by incorporating "fixed partial charges" in the manner of Schellman. The results include the complete set of monomer normal modes. All of these modes may be analyzed, in a manner similar to those demonstrated here (for the 1500-1800 cm-1 region). A model is utilized for the polymer/oligomer monomers which maintains the actual electrostatic charge on the adjacent protonated phosphoryl groups (hydrogen phosphate, a mono-anion). This deters the optimization from "collapsing" into a hydrogen-bonded "ball" and thereby maintains the extended (polymer-like) conformation. As well, the precise C2 "endo" conformation of the sugar ring is maintained in the DNA monomers. The analogous C3 "endo" conformation is also maintained for the RNA monomers, which are constrained by massive "anchors" at the phosphates. The complete IR absorbance spectra (0-4,000 cm-1) are calculated directly in Gaussian. Calculated VCD and Absorbance Spectra for the eight standard Ribonucleic and Deoxy-ribonucleic acid homo-polymers in the nitrogenous base absorbing region 1550-1750 cm-1 are presented. These spectra match measured spectra at least as well as spectra calculated from empirical parameters. These results demonstrate that the purely theoretical calculation, an example given herein, should serve to provide more transferable, universal parameters for the polarizability treatment of the optical properties of oligomers and polymers.
Morphology of Block Copolymer Electrolytes: A Numerical Self-Consistent Field Theory Study
NASA Astrophysics Data System (ADS)
Hou, Kevin; Qin, Jian
Engineering the morphology of ion-containing block copolymers is imperative for the optimization of their charge-transport and mechanical properties. Existing experiments have demonstrated that the addition of ions has a dramatic effect on the morphology and thermodynamic behavior of these structured electrolytes. We have developed an efficient, symmetry-adapted algorithm to calculate the ionic interactions in the SCFT for ion-containing polymers. We present the results of a numerical SCFT study examining how dielectric heterogeneity, ion concentration, and ion solvation affect morphology, domain spacing, ion distribution, and polymer density profiles. Particular attention is given to the detailed morphological analysis of the bicontinuous gyroidal phase, as well as the relevance of the aforementioned results to ionic conductivity.
Nanodisperse transition metal electrodes (NTME) for electrochemical cells
Striebel, Kathryn A.; Wen, Shi-Jie
2000-01-01
Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.
Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.
Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun; Chung, Hyunjoong; Diao, Ying
2017-07-01
Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C 8 -benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor-acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun
Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This papermore » further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.« less
Effect of polyaniline on MWCNTs supercapacitor properties prepared by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Razak, Rozelia Azila Abd; Eleas, Nor Hamizah; Mohammad, Nurul Nazwa; Yusof, Azmi Mohamed; Zaine, Intan Syaffinazzilla
2017-08-01
Multi-walled carbon nanotubes (MWCNTs) is widely used as supercapacitor electrode material. However, the specific capacitance of MWCNTs cannot achieve optimum value to facilitate required demand. Conducting polymers have been introduced to achieve optimum energy density and power density of supercapacitor electrode material. Previous work had demonstrated the effects of adding conducting polymer into carbon base material to get pseudocapacitance effect. Nevertheless the effects specifically of polyaniline (PANi) to MWCNTs were significantly low. This work describes the effect of PANi adding on MWCNTs film prepared by electrophoretic deposition (EPD) technique in order to increase the specific capacitance of MWCNTs. The commercial MWCNTs is dispersed in deionized water by using crystal violet. The admixtures without PANi (sample A), 5wt.% of PANi (sample B) and 10wt.% of PANi (sample C) have been prepared by ex-situ polymerization. The voltage supplied for film deposition is 8 V for 5 minutes. The morphology, functional group and electrochemical properties of MWCNTs due to the presence of PANi had been studied. From FESEM analysis, the presence of PANi can be clearly observed for sample B and sample C while FTIR analysis, proves PANi structure on MWCNTs with its functional group presence in sample B and sample C through the absorbtion band which obviously shifted to higher value compare to sample A. Cyclic voltammogram (CV) analysis shown redox activity occurred in sample B and sample C with identical anodic and cathodic peaks. Sample B hold the higher specific capacitance and higher energy density compared than sample A and sample B. From galvanostatic charge-discharge (CD) measurement, the charge and discharge process for sample B is longer than sample A and sample C which consequently lower its power density. The presence of PANi at 5wt.% is able to increase specific capacitance as well as energy density to optimum value.
Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun
2018-05-18
We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T ) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T ) and low σ (high N T ) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ [Formula: see text] in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ [Formula: see text] which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T , which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.
NASA Astrophysics Data System (ADS)
Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun
2018-05-01
We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T) and low σ (high N T) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ {{N}{{T}}}-0.5 in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ {{Δ }}{{N}{{T}}}0.5, which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T, which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.
Buyel, Johannes Felix; Fischer, Rainer
2014-01-01
All biological platforms for the manufacture of biopharmaceutical proteins produce an initially turbid extract that must be clarified to avoid fouling sensitive media such as chromatography resins. Clarification is more challenging if the feed stream contains large amounts of dispersed particles, because these rapidly clog the filter media typically used to remove suspended solids. Charged polymers (flocculants) can increase the apparent size of the dispersed particles by aggregation, facilitating the separation of solids and liquids, and thus reducing process costs. However, many different factors can affect the behavior of flocculants, including the pH and conductivity of the medium, the size and charge distribution of the particulates, and the charge density and molecular mass of the polymer. Importantly, these properties can also affect the recovery of the target protein and the overall safety profile of the process. We therefore used a design of experiments approach to establish reliable predictive models that characterize the impact of flocculants during the downstream processing of biopharmaceutical proteins. We highlight strategies for the selection of flocculants during process optimization. These strategies will contribute to the quality by design aspects of process development and facilitate the development of safe and efficient downstream processes for plant-derived pharmaceutical proteins.
Bagby, Taryn R.; Cai, Shuang; Duan, Shaofeng; Yang, Qiuhong; Thati, Sharadvi; Berkland, Cory; Aires, Daniel J.; Forrest, M. Laird
2015-01-01
Targeted lymphatic delivery of nanoparticles for drug delivery and imaging is primarily dependent on size and charge. Prior studies have observed increased lymphatic uptake and retentions of over 48 hrs for negatively charged particles compared to neutral and positively charged particles. We have developed new polymeric materials that extend retention over a more pharmaceutically relevant 7-day period. We used whole body fluorescence imaging to observe in mice the lymphatic trafficking of a series of anionic star poly-(6-O-methacryloyl-D-galactose) polymer-NIR dye (IR820) conjugates. The anionic charge of polymers was increased by modifying galactose moieties in the star polymers with succinic anhydride. Increasing anionic nature was associated with enhanced lymphatic uptake up to a zeta potential of ca. -40 mV; further negative charge did not affect lymphatic uptake. Compared to the 20% acid-conjugate, the 40 to 90% acid-star-polymer conjugates exhibited a 2.5- to 3.5-fold increase in lymphatic uptake in both the popliteal and iliac nodes. The polymer conjugates exhibited node half-lives of 2 to 20 hrs in the popliteal nodes and 19 to 114 hrs in the deeper iliac nodes. These polymer conjugates can deliver drugs or imaging agents with rapid lymphatic uptake and prolonged deep-nodal retention; thus they may provide a useful vehicle for sustained intralymphatic drug delivery with low toxicity. PMID:22546180
Organic electrode coatings for next-generation neural interfaces
Aregueta-Robles, Ulises A.; Woolley, Andrew J.; Poole-Warren, Laura A.; Lovell, Nigel H.; Green, Rylie A.
2014-01-01
Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes. PMID:24904405
Masse, Lucie; Massé, Daniel I
2010-08-01
This paper reports on the effects of environmental conditions and process parameters on flocculation of high dry matter (average DM of 7.3%) swine manure with cationic polymers with 10%, 35%, and 55% charge densities (CDs). Polymer solutions prepared with hard and distilled water allowed similar suspended solids (SS) reductions in the initial 24h. After 3-7 days at 20 degrees C, however, the efficiency of the hard water solutions started to decline, while the polymers made with distilled water maintained their performance for up to 10 days. The 10% CD polymer was considerably less affected than the 35% CD polymer by the age of the hard water solutions. During polymer injection, minimum velocity gradients (G) of 108 and 253 s(-1) were required to maximized efficiency of the 10% and 35% CD polymer, respectively. Flocculation mixing velocities up to 84 s(-1) and mixing times between 1 and 30 min had no effect on polymer efficiency. However, mixing at 22s(-1) for more than 30 min decreased SS reduction. Adding polymer in multiple injections did not improve the efficiency of medium and high CD polymers, and adversely affected that of the low CD polymer, maybe because of repeated rapid mixing cycles which ruptured the flocs. Polymer performance was not affected by operating temperature between 6 and 25 degrees C. These results were collected on a laboratory-scale apparatus and remain to be validated at larger scale. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
Predictive study of charge transport in disordered semiconducting polymers.
Athanasopoulos, Stavros; Kirkpatrick, James; Martínez, Diego; Frost, Jarvist M; Foden, Clare M; Walker, Alison B; Nelson, Jenny
2007-06-01
We present a theoretical study of charge transport in disordered semiconducting polymers that relates the charge mobility to the chemical structure and the physical morphology in a novel multiscale approach. Our studies, focusing on poly(9,9-dioctylfluorene) (PFO), show that the charge mobility is dominated by pathways with the highest interchain charge-transfer rates. We also find that disorder is not always detrimental to charge transport. We find good agreement with experimental time-of-flight mobility data in highly aligned PFO films.
Role of charge separation mechanism and local disorder at hybrid solar cell interfaces
NASA Astrophysics Data System (ADS)
Ehrenreich, Philipp; Pfadler, Thomas; Paquin, Francis; Dion-Bertrand, Laura-Isabelle; Paré-Labrosse, Olivier; Silva, Carlos; Weickert, Jonas; Schmidt-Mende, Lukas
2015-01-01
Dye-sensitized metal oxide polymer hybrid solar cells deliver a promising basis in organic solar cell development due to many conceptual advantages. Since the power conversion efficiency is still in a noncompetitive state, it has to be understood how the photocurrent contribution can be maximized (i.e., which dye-polymer properties are most beneficial for efficient charge generation in hybrid solar cells). By the comparison of three model systems for hybrid solar cells with Ti O2 -dye-polymer interfaces, this paper was aimed at elucidating the role of the exact mechanism of charge generation. In the exciton dissociation (ED) case, an exciton that is generated in the polymer is split at the dye-polymer interface. Alternatively, this exciton can be transferred to the dye via an energy transfer (ET), upon which charge separation occurs between dye and Ti O2 . For comparison, the third case is included in which the high lowest unoccupied molecular orbital of the dye does not allow exciton separation or ET from the dye to the polymer, so that the dye only is responsible for charge generation. To separate effects owing to differences in energy levels of the involved materials from the impact of local order and disorder in the polymer close to the interface, this paper further comprises a detailed analysis of the polymer crystallinity based on the H-aggregate model. While the massive impact of the poly(3-hexylthiophene) crystallinity on device function has been outlined for bare metal oxide-polymer interfaces, it has not been considered for hybrid solar cells with dye-sensitized Ti O2 . The results presented here indicate that all dye molecules in general influence the polymer morphology, which has to be taken into account for future optimization of hybrid solar cells. Apart from that, it can be suggested that ED on the polymer needs an additional driving force to work efficiently; thus, energy transfer seems to be currently the most promising strategy to increase the polymer photocurrent contribution.
Planar-Processed Polymer Transistors.
Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young
2016-10-01
Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bulk charging and breakdown in electron-irradiated polymers
NASA Technical Reports Server (NTRS)
Frederickson, A. R.
1981-01-01
High energy electron irradiations were performed in an experimental and theoretical study of ten common polymers. Breakdowns were monitored by measuring currents between the electrodes on each side of the planar samples. Sample currents as a function of time during irradiation are compared with theory. Breakdowns are correlated with space charge electric field strength and polarity. Major findings include evidence that all polymers tested broke down, breakdowns remove negligible bulk charge and no breakdowns are seen below 20 million V/m.
Charge collection kinetics on ferroelectric polymer surface using charge gradient microscopy
Choi, Yoon-Young; Tong, Sheng; Ducharme, Stephen P.; ...
2016-05-03
Here, a charge gradient microscopy (CGM) probe was used to collect surface screening charges on poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. These charges are naturally formed on unscreened ferroelectric domains in ambient condition. The CGM data were used to map the local electric current originating from the collected surface charges on the poled ferroelectric domains in the P(VDF-TrFE) thin films. Both the direction and amount of the collected current were controlled by changing the polarity and area of the poled domains. The endurance of charge collection by rubbing the CGM tip on the polymer film was limited to 20 scan cycles,more » after which the current reduced to almost zero. This degradation was attributed to the increase of the chemical bonding strength between the external screening charges and the polarization charges. Once this degradation mechanism is mitigated, the CGM technique can be applied to efficient energy harvesting devices using polymer ferroelectrics.« less
Tibbits, Andrew C; Yan, Yushan S; Kloxin, Christopher J
2017-07-01
Ene-functionalized ionic liquids with a range of different cationic groups and counteranions react stoichiometrically within a tetrathiol-divinyl ether formulation within 20 minutes to form thiol-ene polymers with measurable ionic conductivities via a photoinitiated polymerization and crosslinking reaction. Dynamic mechanical analysis indicates that these networks are more spatially heterogeneous and possess higher glass transition temperatures (T g ) compared with thiol-ene formulations without charge. While tuning the molar content of ionic liquid monomer is one method for adjusting the crosslink and charge densities of the thiol-ene polymeric ionic liquid networks, the presence of cation-anion interactions also plays a critical role in dictating the thermomechanical and conductive properties. Particularly, while cationic structure effects are not significant on the polymer properties, the use of a weakly coordinating hydrophobic anion (bistriflimide) instead of bromide-based networks results in an apparent decrease in hydrated ion conductivity (7.4 to 1.5 mS cm -1 ) and T g (-9.6 to -17.8 °C). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Smith, T. M.; Nelson, G. L.
2005-01-01
Electrostatic dissipative polymers are used for a variety of functions. Typical methods utilized to transform electrically insulating polymers into either charge dissipative or conductive materials involve incorporating a conductive filler, conductive polymer, oxidizing the surface using plasma, or incorporating surfactants that act as surface wetting agents. Another approach is to synthesize a block copolymer that is expected to result in better electrical properties with minimal impacts to physical, fire, and thermal properties. One such block that can be added into the main chain of polymers is a diol terminated ferrocene oligomer, which is expected to impart electrostatic dissipative properties into the host polymer while concurrently improving the overall fire properties. Previous work with polyurethanes incorporating a ferrocene oligomer into the main chain resulted in much improved fire retardancy. In dealing with electrostatic dissipative materials the important questions are: how easily does the material charge and how quickly can the charge move to ground. One normally describes the materials conductivity, but conductivity only measures the fastest path for an electron not the slowest path. The slowest path is the one of interest, since it is left on the surface and thus can cause discharges. In order to assess ease of charging and decay times corona charge dissipation measurements can accurately assess these properties by introducing a charge on the surface of the material then measuring the surface voltage and the amount of charge deposited. The charge decay curve then will give an indication of a materials electrostatic dissipation properties. Normally, triboelectric testing can be performed, but results vary. Corona charge dissipation results are more repeatable.
Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.
Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B-H; Bao, Zhenan
2018-03-01
Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.
Skin electronics from scalable fabrication of an intrinsically stretchable transistor array
NASA Astrophysics Data System (ADS)
Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R.; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M.; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B.-H.; Bao, Zhenan
2018-03-01
Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.
New secondary batteries utilizing electronically conductive polymer cathodes
NASA Technical Reports Server (NTRS)
Martin, Charles R.; White, Ralph E.
1989-01-01
The objectives of this project are to optimize the transport rates in electronically conductive polypyrrole films by controlling the morphology of the film and to assess the utility of these films as cathodes in a lithium/polypyrrole secondary battery. During this research period, progress has been made in improving the charge transport rate of the supermolecular-engineered polypyrrole electrode by eliminating the polypyrrole baselayer that hampered earlier work. Also, the fibril density of the polypyrrole electrode was increased, providing more electroactive sites per unit area.
Space charge effects on the dielectric response of polymer nanocomposites
NASA Astrophysics Data System (ADS)
Shen, Zhong-Hui; Wang, Jian-Jun; Zhang, Xin; Lin, Yuanhua; Nan, Ce-Wen; Chen, Long-Qing; Shen, Yang
2017-08-01
Adding high-κ ceramic nanoparticles into polymers is a general strategy to improve the performances in energy storage. Classic effective medium theories may fail to predict the effective permittivity in polymer nanocomposites wherein the space charge effects are important. In this work, a computational model is developed to understand the space charge effects on the frequency-dependent dielectric properties including the real permittivity and the loss for polymer nanocomposites with both randomly distributed and aggregated nanoparticle fillers. It is found that the real permittivity of the SrTiO3/polyethylene (12% SrTiO3 in volume fraction) nanocomposite can be increased to as high as 60 when there is nanoparticle aggregation and the ion concentration in the bulk polymer is around 1016 cm-3. This model can be employed to quantitatively predict the frequency-dependent dielectric properties for polymer nanocomposites with arbitrary microstructures.
NASA Astrophysics Data System (ADS)
Jen, Alex
2010-03-01
The performance of polymer solar cells are strongly dependent on the efficiency of light harvesting, exciton dissociation, charge transport, and charge collection at the metal/organic, metal/metal oxide, and organic/metal oxide interfaces. To improve the device performance, two parallel approaches were used: 1) developing novel low band gap conjugated polymers with good charge-transporting properties and 2) modifying the interfaces between the organic/metal oxide and organic/metal layers with functional self-assembling monolayers to tune their energy barriers. Moreover, the molecule engineering approach was also used to tune the energy level, charge mobility, and morphology of organic semiconductors.
NASA Astrophysics Data System (ADS)
Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.
2016-08-01
We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).
Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; ...
2015-07-03
In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang
In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less
Zhu, Huimin; Johansson, Malin B; Johansson, Erik M J
2018-03-22
The photovoltaic characteristics of CsBi 3 I 10 -based solar cells with three dopant-free hole-conducting polymers are investigated. The effect on charge generation and charge recombination in the solar cells using the different polymers is studied and the results indicate that the choice of polymer strongly affects the device properties. Interestingly, for the solar cell with poly[[2,3-bis(3-octyloxyphenyl)-5,8-quinoxalinediyl]-2,5-thiophenediyl] (TQ1), the photon-to-current conversion spectrum is highly improved in the red wavelength region, suggesting that the polymer also contributes to the photocurrent generation in this case. This report provides a new direction for further optimization of Bi-halide solar cells by using dopant-free hole-transporting polymers and shows that the energy levels and the interaction between the Bi-halide and the conducting polymers are very important for solar cell performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.
While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less
Kee, Tak W
2014-09-18
Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.
Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.
2016-11-10
While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less
Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng
2018-03-01
Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Miteva, Tzenka; Nelles, Gabriele
2009-06-01
Although charging of insulators by atomic force microscopy (AFM) has found widespread interest, often with data storage or nanoxerography in mind, less attention has been paid to the charging mechanism and the nature of the charge. Here we present a systematic study on charging of amorphous polymer films by voltage pulses applied to conducting AFM probes. We find a quadratic space charge limited current law of Kelvin probe force microscopy and electrostatic force microscopy peak volumes in pulse height, offset by a threshold voltage, and a power law in pulse width of positive exponents smaller than one. We interpret the results by a charging mechanism of injection and surface near accumulation of aqueous ions stemming from field induced water adsorption, with threshold voltages linked to the water affinities of the polymers.
NASA Astrophysics Data System (ADS)
Lankevich, Vladimir; Bittner, Eric
In organic photovoltaic devices (OPVs), initially bound electron and hole can take many different paths to dissociate and become free charge carriers. This leads to the increase in their density of states and therefore increase in the entropy of the system. Accurate description of the energy barriers that charges have to overcome, therefore requires calculation of the free energy. Free energy of an OPV is directly related to its open-circuit voltage and depends only on few important parameters such as average life-time of a charge-transfer state, average energy of the charge-transfer state and energetic disorder in the system. We extend these ideas to the quantum mechanical simulations of the dissociation in the lattice modeled bulk-heterojunction system. We observe average excitonic and free energies that agree with theoretical predictions and the number of experimental results from previous studies. We study effects of the energy disorder and importance of the dimensionality and morphology in materials such as polymer-fullerene blends.
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
Kristen-Hochrein, Nora; Laschewsky, André; Miller, Reinhard; von Klitzing, Regine
2011-12-15
In the present paper, the influence of the surfactant concentration and the degree of charge of a polymer on foam film properties of oppositely charged polyelectrolyte/surfactant mixtures has been investigated. To verify the assumption that the position of the isoelectric point (IEP) does not change the character of the foam film stabilities, the position of the IEP of the polyelectrolyte/surfactant mixtures has been shifted in two different ways. Within the first series of experiments, the foam film properties were studied using a fixed surfactant concentration of 3 × 10(-5) M in the mixture. Due to the low surfactant concentration, this is a rather dilute system. In the second approach, a copolymer of nonionic and ionic monomer units was used to lower the charge density of the polymer. This gave rise to additional interactions between the polyelectrolyte and the surfactant, which makes the description of the foam film behavior more complex. In both systems, the same characteristics of the foam film stabilities were found: The foam film stability is reduced toward the IEP of the system, followed by a destabilization around the IEP. At polyelectrolyte concentrations above the IEP, foam films are very stable. However, the concentration range where unstable films were formed was rather broad, and the mechanisms leading to the destabilization had different origins. The results were compared with former findings on PAMPS/C(14)TAB mixtures with an IEP of 10(-4) M.
Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI.
Chao, Ying; Karmali, Priya P; Mukthavaram, Rajesh; Kesari, Santosh; Kouznetsova, Valentina L; Tsigelny, Igor F; Simberg, Dmitri
2013-05-28
Scavenger receptors (SRs) are molecular pattern recognition receptors that have been shown to mediate opsonin-independent uptake of therapeutic and imaging nanoparticles, underlying the importance of SRs in nanomedicine. Unlike pathogens, engineered nanomaterials offer great flexibility in control of surface properties, allowing addressing specific questions regarding the molecular mechanisms of nanoparticle recognition. Recently, we showed that SR-type AI/II mediates opsonin-independent internalization of dextran superparamagnetic iron oxide (SPIO) nanoparticles via positively charged extracellular collagen-like domain. To understand the mechanism of opsonin-independent SPIO recognition, we tested the binding and uptake of nanoparticles with different surface coatings by SR-AI. SPIO coated with 10 kDa dextran was efficiently recognized and taken up by SR-AI transfected cells and J774 macrophages, while SPIO with 20 kDa dextran coating or cross-linked dextran hydrogel avoided the binding and uptake. Nanoparticle negative charge density and zeta-potential did not correlate with SR-AI binding/uptake efficiency. Additional experiments and computer modeling revealed that recognition of the iron oxide crystalline core by the positively charged collagen-like domain of SR-AI is sterically hindered by surface polymer coating. Importantly, the modeling revealed a strong complementarity between the surface Fe-OH groups of the magnetite crystal and the charged lysines of the collagen-like domain of SR-AI, suggesting a specific recognition of SPIO crystalline surface. These data provide an insight into the molecular recognition of nanocrystals by innate immunity receptors and the mechanisms whereby polymer coatings promote immune evasion.
NASA Astrophysics Data System (ADS)
Ostolska, Iwona; Wiśniewska, Małgorzata
2014-08-01
Polyamino acids are a group of synthesized polymers obtained by polymerization of a given kind of amino acid monomer. Because of high biodegradability of this class of polymers, they can be used as flocculation or stabilization agents in the environmental aspects. Therefore determination of their influence on the stability of the aqueous suspension of metal oxides is important. An influence of different functional groups of polyamino acids, their molecular weight and concentration on the adsorption at the chromium (III) oxide (Cr2O3)-aqueous solution interface was determined. Experiments were carried out for four values of solution pH varying from 3 to 10 (3, 4, 7.6 and 10, respectively). Two polymers were used: anionic polyaspartic acid (ASP) of 6800 and 27,000 as well as polylysine (LYS) of 4900 and 33,000 molecular weights. Changes of surface charge density of colloidal Cr2O3 in the presence and in the absence of macromolecular substances were determined using potentiometric titration. In these studies the influence of the concentration and molecular weight of the ionic polymers on the pHpzc value was determined. Additionally, due to the lack of appropriate literature data, potentiometric titration of the selected polymers was performed to determine pKa values.
2011-01-01
The photocurrent in bilayer polymer photovoltaic cells is dominated by the exciton dissociation efficiency at donor/acceptor interface. An analytical model is developed for the photocurrent-voltage characteristics of the bilayer polymer/TiO2 photovoltaic cells. The model gives an analytical expression for the exciton dissociation efficiency at the interface, and explains the dependence of the photocurrent of the devices on the internal electric field, the polymer and TiO2 layer thicknesses. Bilayer polymer/TiO2 cells consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and TiO2, with different thicknesses of the polymer and TiO2 films, were prepared for experimental purposes. The experimental results for the prepared bilayer MEH-PPV/TiO2 cells under different conditions are satisfactorily fitted to the model. Results show that increasing TiO2 or the polymer layer in thickness will reduce the exciton dissociation efficiency in the device and further the photocurrent. It is found that the photocurrent is determined by the competition between the exciton dissociation and charge recombination at the donor/acceptor interface, and the increase in photocurrent under a higher incident light intensity is due to the increased exciton density rather than the increase in the exciton dissociation efficiency. PMID:21711905
Shovsky, Alexander; Varga, Imre; Makuska, Ricardas; Claesson, Per M
2009-06-02
The formation of complexes with stoichiometric (1:1) as well as nonstoichiometric (2:1) and (1:2) compositions between oppositely charged synthetic polyelectrolytes carrying strong ionic groups and significantly different molecular weights is reported in this contribution. Poly(sodium styrenesulfonate) (NaPSS) was used as polyanion, and a range of copolymers with various molar ratios of the poly(methacryloxyethyltrimethylammonium) chloride, poly(METAC), and the nonionic poly(ethylene oxide) ether methacrylate, poly(PEO45MEMA), were used as polycations. Formation and stability of PECs have been investigated by dynamic and static light scattering (LS), turbidity, and electrophoretic mobility measurements as a function of polyelectrolyte solution concentration, charge density of the cationic polyelectrolyte, and mixing ratio. The data obtained demonstrate that in the absence of PEO45 side chains the 100% charged polymer (polyMETAC) formed insoluble PECs with PSS that precipitate from solution when exact stoichiometry is achieved. In nonstoichiometric complexes (1:2) and (2:1) large colloidally stable aggregates were formed. The presence of even a relatively small amount of PEO45 side chains (25%) in the cationic copolymer was sufficient for preventing precipitation of the formed stoichiometric and nonstoichiometric complexes. These PEC's are sterically stabilized by the PEO45 chains. By further increasing the PEO45 side-chain content (50 and 75%) of the cationic copolymer, small, water-soluble molecular complexes could be formed. The data suggest that PSS molecules and the charged backbone of the cationic brush form a compact core, and with sufficiently high PEO45 chain density (above 25%) molecular complexes are formed that are stable over prolonged times.
Organic nanoparticles for photovoltaic and sensing applications
NASA Astrophysics Data System (ADS)
Venkatraman, B. Harihara
2011-12-01
Can organic semiconducting nanoparticles be used as building blocks for fabricating electronic devices? The first half of this dissertation focuses on addressing this question and the associated research challenges for attaining morphological control pertaining to organic photovoltaic devices by nanoparticle assembly. Conjugated polymer nanoparticles were synthesized using miniemulsion technique and their optical, charge transfer and charge transport properties were studied. Some degree of control in polymer chain packing within the nanoparticle was also demonstrated. The optical, charge transfer and charge transport properties of these nanoparticles were found to be similar to that of parent conjugated polymer irrespective of the surface charge. From the initial photovoltaic measurements, it is shown that these nanoparticles are potential candidates for fabricating future photovoltaic devices. The second half of this dissertation is focused on developing a novel and viable strategy for sensing aqueous based nitroaromatic compounds. Nitroaromatic compounds are commonly used as explosives and possess serious health hazards. Thiophene-based conjugated polymer nanoparticles were synthesized and were shown to effectively detect aqueous based nitroaromatic explosives.
Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan
2012-03-21
Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.
Trap-assisted and Langevin-type recombination in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.
2011-04-01
Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.
Liu, Zitong; Zhang, Guanxin; Zhang, Deqing
2018-06-19
Organic semiconductors have received increasing attentions in recent years because of their promising applications in various optoelectronic devices. The key performance metric for organic semiconductors is charge carrier mobility, which is governed by the electronic structures of conjugated backbones and intermolecular/interchain π-π interactions and packing in both microscopic and macroscopic levels. For this reason, more efforts have been paid to the design and synthesis of conjugated frameworks for organic semiconductors with high charge mobilities. However, recent studies manifest that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular/interchain packing order and boost charge mobilities. In this Account, we discuss our research results in context of modification of side chains in organic semiconductors for charge mobility enhancement. These include the following: (i) The lengths of alkyl chains in sulfur-rich thiepin-fused heteroacences can dramatically influence the intermolecular arrangements and orbital overlaps, ushering in different hole mobilities. Inversely, the lamellar stacking modes of alkyl chains in naphthalene diimide (NDI) derivatives with tetrathiafulvalene (TTF) units are affected by the structures of conjugated cores. (ii) The steric hindrances owing to the bulky branching chains can be weakened by partial replacement of the branching alkyl chains with linear ones for diketopyrrolopyrrole (DPP)-based D (donor)-A (acceptor) conjugated polymers. Such modification of side chains makes the polymer backbones more planar and thus interchain packing order and charge mobilities are improved. The incorporation of hydrophilic tri(ethylene glycol) (TEG) chains into the polymers also leads to improved interchain packing order. In particular, the polymer in which TEG side chains are distributed uniformly exhibits relatively high charge mobility without thermal annealing. (iii) The incorporation of urea groups in the side chains induces the polymer chains to pack more orderly and form large domains because of the additional H-bonding among urea groups. Accordingly, thin film mobilities of the conjugated D-A polymers with side chains entailing urea groups are largely boosted in comparison with those of polymers of the same backbones with either branching alkyl chains or branching/linear alkyl chains. (iv) The torsions of branching alkyl chains in conjugated D-A polymers can be inhibited to some extent upon incorporation of tiny amount of NMe 4 I in the thin film. As a result, the polymer thin films with NMe 4 I exhibit improved crystallinity, and charge mobilities can be boosted by more than 20 times. (v) Side chains with functional groups in the conjugated polymers can endow the thin film field-effect transistors (FETs) with sensing functionality. FETs with the conjugated polymer with -COOH groups in the side chains show sensitive, selective, and fast responses toward ammonia and amines, while FETs with the ultrathin films of the polymer containing tetra(ethylene glycol) (TEEG) in the side chains can sense alcohol vapors (in particular ethanol vapor) sensitively and selectively with fast response.
NASA Astrophysics Data System (ADS)
Jo, Gyuha; Park, Moon Jeong
2012-02-01
In recent years Li-batteries have attracted significant interests for a variety of applications such as portable electronics and electric vehicle (EV) batteries due to their high energy densities. Key challenges in advancing the technology lie in specific energy density, the long term cycle properties, and durability at elevated temperature. In present study, we were motivated to prepare high capacity Li-battery by creating regular arrays of germanium nanoparticles (GeNPs, 1600 mAh/g) to replace commercial graphite anode (370 mAh/g). Thermoset polymers were employed to prepare GeNPs/polymer composites with tunable NP loadings and spacings, followed by carbonization process to prepare GeNPs/carbon composite anode material. Due to the large volume change of GeNPs with charge/discharge cycles, the regular arrays of GeNPs are turned out to be a crucial parameter in obtaining enhanced cyclability. The GeNPs/carbon anode materials were cycle tested in a half cell configuration using Lithium foil as a counter electrode and lithium salt doped PS-PEO block copolymers as electrolytes. High capacity and rate capability were achieved, which demonstrate the role of nano-sized and regularly-arrayed anode active materials in obtaining the improved battery performance.
Chawla, Parul; Singh, Son; Sharma, Shailesh Narain
2014-01-01
In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern-Volmer quenching constant (K SV) and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor-acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe). Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications.
Study of Velocity and Materials on Tribocharging of Polymer Powders for Powder Coating Applications
NASA Technical Reports Server (NTRS)
Biris, Alex S.; Trigwell, Steve; Sims, Robert A.; Mazumder, Malay K.
2005-01-01
Electrostatic powder deposition is widely used in a plethora of industrial-applications ranging from the pharmaceutical and food.industries, to farm equipment and automotive applications. The disadvantages of this technique are possible back corona (pin-like formations) onset and the Faraday penetration limitation (when the powder does not penetrate in some recessed areas). A possible solution to overcome these problems is to use tribochargers to electrostatically charge the powder. Tribocharging, or contact charging while two materials are in contact, is related to the work function difference between the contacting materials and generates bipolarly charged particles. The generation of an ion-free powder cloud by tribocharging with high bipolar charge and an overall charge density of almost zero, provides a better coverage of the recessed areas. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity was varied to determine its effect on the net charge-to-mass ratio (QIM) acquired by the powders. In general, the Q/M increases rapidly when the velocity was increased from 1.5 to 2.5 m/s, remaining almost constant for higher velocities. Charge separation experiments showed bipolar charging for all chargers.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Ostolska, Iwona; Szewczuk-Karpisz, Katarzyna; Chibowski, Stanisław; Terpiłowski, Konrad; Gun'ko, Vladimir Moiseevich; Zarko, Vladimir Iljich
2015-01-01
A new adsorbent consisting of fumed, mixed alumina, silica, and titania in various proportions (AST 50) was investigated. The studied material was prepared by chemical vapor deposition method. The diameter of AST 50 primary particles was equal to about 51 nm which denotes that it can be classified as a nanomaterial. In the presented paper, the adsorption properties of polyvinyl alcohol on the ternary oxide were investigated. The polymer macromolecules were characterized by two different molecular weights and degree of hydrolysis. The polymer adsorption reaches the maximum at pH 3 and decreases with the solution pH rise. The reduction of the adsorbed PVA macromolecules is related to the electrostatic repulsion forces occurring in the studied system. The AST 50 point of zero charge (pHpzc) obtained from the potentiometric titration is equal to 4.7. Due to the nonionic character of the analyzed macromolecular compound, the polymer attendance has an insignificant effect on the AST 50 surface charge density. In the case of the adsorbent particles zeta potential, the obtained dependencies are different in the absence and presence of PVA. The shift of the slipping plane and displacement of the counter-ions from Stern layer by the adsorbed polymer chains have the greatest effect on the ζ potential value. The stability measurements indicate that the AST 50 suspensions in the presence of the background electrolyte at pH 3 and 6 are unstable. In turn, in an alkaline medium the mixed oxide suspensions exhibit the highest durability, which is a result of a large number of the negative charges on the AST 50 surface. The addition of PVA 100 significantly improves the suspension stability at pH 3 and 6; at higher pH value, the polymer presence does not influence the system durability. It is related to the steric and electrosteric stabilization of the colloidal particles by the adsorbed polyvinyl alcohol macromolecules.
2013-01-01
Low-bandgap diketopyrrolopyrrole- and carbazole-based polymer bulk-heterojunction solar cells exhibit much faster charge carrier recombination kinetics than that encountered for less-recombining poly(3-hexylthiophene). Solar cells comprising these polymers exhibit energy losses caused by carrier recombination of approximately 100 mV, expressed as reduction in open-circuit voltage, and consequently photovoltaic conversion efficiency lowers in more than 20%. The analysis presented here unravels the origin of that energy loss by connecting the limiting mechanism governing recombination dynamics to the electronic coupling occurring at the donor polymer and acceptor fullerene interfaces. Previous approaches correlate carrier transport properties and recombination kinetics by means of Langevin-like mechanisms. However, neither carrier mobility nor polymer ionization energy helps understanding the variation of the recombination coefficient among the studied polymers. In the framework of the charge transfer Marcus theory, it is proposed that recombination time scale is linked with charge transfer molecular mechanisms at the polymer/fullerene interfaces. As expected for efficient organic solar cells, small electronic coupling existing between donor polymers and acceptor fullerene (Vif < 1 meV) and large reorganization energy (λ ≈ 0.7 eV) are encountered. Differences in the electronic coupling among polymer/fullerene blends suffice to explain the slowest recombination exhibited by poly(3-hexylthiophene)-based solar cells. Our approach reveals how to directly connect photovoltaic parameters as open-circuit voltage to molecular properties of blended materials. PMID:23662167
Simulating the thermodynamics of charging in weak polyelectrolytes: the Debye-Hückel limit
NASA Astrophysics Data System (ADS)
Rathee, Vikramjit S.; Sikora, Benjamin J.; Sidky, Hythem; Whitmer, Jonathan K.
2018-01-01
The coil-globule transition in weak (annealed) polyelectrolytes involves a subtle balance of pH, charge strength, and solvation forces. In this work, we utilize a coarse-grained hybrid grand-canonical Monte Carlo and molecular dynamics approach to explore the swelling behavior of weak linear and star polyelectrolytes under different ionic screening conditions and pH. Importantly, we are able to quantify topology-dependent effects in charging which arise at the core of star polymers. Our results are suggestive of suppression of charging in star weak polyelectrolytes in comparison to linear weak polyelectrolytes. Furthermore, we characterize the coil-globule transition in linear and star weak polyelectrolyte through expanded ensemble density-of-states simulations which suggest a change from a first order to second order phase transition moving from linear to star polyelectrolytes. Lastly, we characterize the inhomogeneous charging across the weak star polyelectrolyte through observed shifts in {{Δ }}{{{pK}}}{{o}}, and compare with experimental work. We discuss these results in relation to surfaces functionalized by weak polyelectrolyte brushes and weak polyelectrolyte-based drug delivery applications.
Charge Generation and Recombination in Organic Materials for Photovoltaics
NASA Astrophysics Data System (ADS)
Ramirez, Jessica Jacklyn
Understanding the nature of molecular exciton states is critical for the design of organic photovoltaic materials that push current device efficiencies into the next realm. This thesis describes several research projects that have sought to further our understanding of the generation and recombination of charge carriers, facilitated by such excitonic states, in organic systems. We begin with fundamental studies on the excited-state dynamics of several fullerene derivatives. We also venture away from the traditional fullerene-based electron acceptors and consider several derivatized perylene diimides as alternate electron acceptors. We then report on the observation of a broad, structureless, emission emanating from charge-generating films comprised of perfluoroalkyl fullerene derivatives dilutely dispersed in polyfluorene hosts. We have determined that this red-shifted PL signature is the result of radiative recombination from a charge-transfer state that is populated initially as a precursor to charge generation, and may be repopulated upon charge recombination. Our data offers an observable link between charge-generation and charge-transfer emission that is kinetically associated with carrier recombination, and we utilize this link to probe the influence of driving force and polymer microstructure in the fundamental processes of charge generation and decay in small molecule/polymer heterojunctions. Thereafter, we sought to develop our understanding of a novel photophysical mechanism (known as energy pooling) which would allow for the energy of multiple excitons to be 'pooled' towards a central molecular moiety, where the individual exciton energies may add together to create a single highly excited excitonic state. This upconversion-like process would facilitate more efficient photocurrent generation in devices utilizing this mode of charge separation. The primary modes of inquiry utilized in this work come from the spectroscopic techniques of absorbance, steady-state and time-resolved photoluminescence, transient absorption and time-resolved microwave conductivity. Some secondary methods employed include cyclic voltammetry, X-ray diffraction and computational tools from density functional theory. This utilization of both experimental and theoretical methodologies provides a powerful approach to furthering our understanding of both the fundamental photophysics of the systems studied, as well as the charge generation and recombination pathways occurring at organic donor-acceptor interfaces, helping to guide the design of more efficient organic photovoltaics.
Electron and hole transport in the organic small molecule α-NPD
NASA Astrophysics Data System (ADS)
Rohloff, R.; Kotadiya, N. B.; Crǎciun, N. I.; Blom, P. W. M.; Wetzelaer, G. A. H.
2017-02-01
Electron and hole transport properties of the organic small molecule N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine are investigated by space-charge-limited current measurements. The hole transport shows trap-free behavior with a mobility of 2.3 × 10-8 m2/Vs at vanishing carrier density and electric field. The electron transport, on the other hand, shows heavily trap-limited behavior, which leads to highly unbalanced transport. A trap concentration of 1.3 × 1024 m-3 was found by modeling the electron currents, similar to the universal trap concentration found in conjugated polymers. This indicates that electron trapping is a generic property of organic semiconductors, ranging from vacuum-deposited small-molecules to solution-processed conjugated polymers.
Realization of highly efficient polymer solar cell based on PBDTTT-EFT and [71]PCBM
NASA Astrophysics Data System (ADS)
Bharti, Vishal; Chand, Suresh; Dutta, Viresh
2018-04-01
In this work, we have fabricated highly efficient polymer solar cells based on the blend of PBDTTT-EFT:PC71BM in the inverted device configuration. By using low temperature processed zinc oxide (ZnO) nanoparticles as an electron-transport layer (ETL) and 1,8-diiodooctane (DIO) as additive in chlorobenzene (CB) solvent we have achieved PCE of 9.43% with an excellent short-circuit current density (Jsc) of 17.6 mAcm-2, open circuit voltage (Voc) of 0.80 V and fill factor (FF) of 0.67. These results reveals that addition of 3% DIO additive in CB solvent improve the morphology (lower charge carrier recombination and better metal/organic semiconductor interface) and provide uniform interpenetrating networks in PBDTTT-EFT:PC71BM blend active layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguirre, Jordan C.; Ferreira, Amy; Ding, Hong
2014-07-09
Our program on capacitive energy storage is a comprehensive one that combines experimental and computational components to achieve a fundamental understanding of charge storage processes in redox-based materials, specifically transition metal oxides. Some of the highlights of this program are the identification of intercalation pseudocapacitance in Nb2O5, which enables high energy density to be achieved at high rates, and the development of a new route for synthesizing mesoporous films in which preformed nanocrystal building blocks are used in combination with polymer templating. The resulting material architectures have large surface areas and enable electrolyte access to the redox active pore walls,more » while the interconnected mesoporous film provides good electronic conductivity. Select first-principles density-functional theory studies of prototypical pseudocapacitor materials are reviewed, providing insight into the key physical and chemical features involved in charge transfer and ion diffusion. Rigorous multiscale physical models and numerical tools have been developed and used to reproduce electrochemical properties of carbon-based electrochemical capacitors with the ultimate objective of facilitating the optimization of electrode design. For the organic photovoltaic (OPV) program, our focus has been ongoing beyond the trial-and-error Edisonian approaches that have been responsible for the increase in power conversion efficiency of blend-cast (BC) bulk heterojunction blends of polymers and fullerenes. Our first approach has been to use molecular self-assembly to create the ideal nanometer-scale architecture using thermodynamics rather than relying on the kinetics of spontaneous phase segregation. We have created fullerenes that self-assemble into one-dimensional stacks and have shown that use of these self-assembled fullerenes lead to dramatically enhanced OPV performance relative to fullerenes that do not assemble. We also have created self-assembling conjugated polymers that form gels based on electrically continuous cross-linked micelles in solution, opening the possibility for water-processable “green” production of OPVs based on these materials. Our second approach has been to avoid kinetic control over phase separation by using a sequential processing (SqP) technique to deposit the polymer and fullerene materials in separate deposition steps. The polymer layer is deposited first, using solvents and deposition conditions that optimize the polymer crystallinity for swelling and hole mobility. The fullerene layer is then deposited in a second step from a solvent that swells the polymer but does not dissolve it, allowing the fullerene to penetrate into the polymer underlayer to the desired degree. Careful comparison of composition- and thickness-matched BC and SqP devices shows that SqP not only produces more efficient devices but also leads to devices that behave more consistently.« less
Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides
NASA Astrophysics Data System (ADS)
Lienkamp, Karen; Madkour, Ahmad E.; Tew, Gregory N.
Polymer-based peptidomimetics, or proteinomimetics, are a relatively young and dynamic field of research. The ability to successfully mimic the biochemical activity of antimicrobial peptides (AMPs) has been demonstrated by several groups. This has been accomplished by careful tuning of the molecule's hydrophobicity and charge density. At the same time, many important questions remain to be answered, including the role of backbone rigidity, details of membrane insertion, and the role of curvature in the self-assemblies between these novel peptidemimetics and phospholipids. As the biological properties of polymeric synthetic mimics of AMPs (SMAMPs) result from the interplay of many parameters, it is not yet possible to predict the exact properties of such molecules from their mere chemical structure. However, as demonstrated here, the effect of certain design features such as charge and hydrophobicity on the properties across a polymer series is understood. Compared to the mechanistic specifics that are known about the interactions of AMPs or small antibacterial molecules with membranes and cells, relatively little is known concerning the interaction of polymeric SMAMPs with membranes. Beyond SMAMPs, numerous opportunities exist and protein transduction domain mimics are an active area of research in the Tew laboratory. These two examples, one quite new and the other studied for almost a decade, demonstrate that it is possible to teach synthetic polymers to behave like peptides, despite their lack of sequence specificity and secondary structure.
Novel Polymers for High Efficiency Renewable and Portable Power Applications
2015-07-30
photoelectric, thermoelectric , energy conversions, charge transfer, energy transfer, photoluminescence (PL). REPORT DOCUMENTATION PAGE 11. SPONSOR...of polymer/dye interface of photo generated excitons in the covalent system resulting in more efficient exciton dissociations. 4) For thermoelectric ...studies, it appears the thermoelectric charge carrier generations of the four conjugated polymers doped with iodine at room temperature are in the
Formation of ion clusters in the phase separated structures of neutral-charged polymer blends
NASA Astrophysics Data System (ADS)
Kwon, Ha-Kyung; Olvera de La Cruz, Monica
2015-03-01
Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulas, Dana B.; London, Alexander E.; Huang, Lifeng
Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less
Sulas, Dana B.; London, Alexander E.; Huang, Lifeng; ...
2018-02-13
Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less
Haler, Jean R N; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin
2017-11-01
Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Haler, Jean R. N.; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin
2017-08-01
Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. [Figure not available: see fulltext.
Impact of organic polyelectrolytes on coagulation of source-separated black water.
Kozminykh, Pavlo; Heistad, Arve; Ratnaweera, Harsha C; Todt, Daniel
2016-01-01
Household wastewater is originated from common people's activities and has a potential harmful impact on the environment if discharged directly without proper treatment. Toilet wastewater or black water (BW) contains urine, faeces, toilet paper and flushing water and it contains the majority of pollutants obtained from a single household. In this study, the focus was on BW treatment using chemical methods. The main goal of current research was to define the possibility and applicability of conventional coagulants and flocculants in direct chemical treatment of vacuum-collected BW to remove particles, organic matter and phosphorous. After the definition of dosing ranges, based on the equivalent doses in conventional municipal and industrial wastewater treatment data, aluminium and iron coagulants, organic polyelectrolytes (polymers with anionic, neutral and cationic charge with different molecular weights) and their various combinations were tested using the well-known jar-test laboratory method to study aggregation and solid-liquid separation processes in raw BW. The most important process parameter during the coagulation was pH level, dependent on the type and doses of metal salts. Some side processes were found to occur while using iron-based coagulants. Dosing of either single coagulants or single polymers did not give satisfactory results, while a combination of aluminium salts and cationic polymers showed high removal rates in total suspended solids, total chemical oxygen demand and ortho-phosphates, reaching 97.8%, 92% and 98.6%, respectively, with the optimal doses of chemicals. Cationic polymers with the lowest molecular weight and highest charge density were the most efficient in combination with aluminium coagulants.
Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers.
Fares, Hadi M; Schlenoff, Joseph B
2017-10-18
It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.
Wang, Gang; Huang, Wei; Eastham, Nicholas D.; Fabiano, Simone; Manley, Eric F.; Zeng, Li; Wang, Binghao; Zhang, Xinan; Chen, Zhihua; Li, Ran; Chang, Robert P. H.; Chen, Lin X.; Bedzyk, Michael J.; Melkonyan, Ferdinand S.; Facchetti, Antonio; Marks, Tobin J.
2017-01-01
Shear-printing is a promising processing technique in organic electronics for microstructure/charge transport modification and large-area film fabrication. Nevertheless, the mechanism by which shear-printing can enhance charge transport is not well-understood. In this study, a printing method using natural brushes is adopted as an informative tool to realize direct aggregation control of conjugated polymers and to investigate the interplay between printing parameters, macromolecule backbone alignment and aggregation, and charge transport anisotropy in a conjugated polymer series differing in architecture and electronic structure. This series includes (i) semicrystalline hole-transporting P3HT, (ii) semicrystalline electron-transporting N2200, (iii) low-crystallinity hole-transporting PBDTT-FTTE, and (iv) low-crystallinity conducting PEDOT:PSS. The (semi-)conducting films are characterized by a battery of morphology and microstructure analysis techniques and by charge transport measurements. We report that remarkably enhanced mobilities/conductivities, as high as 5.7×/3.9×, are achieved by controlled growth of nanofibril aggregates and by backbone alignment, with the adjusted R2 (R2adj) correlation between aggregation and charge transport as high as 95%. However, while shear-induced aggregation is important for enhancing charge transport, backbone alignment alone does not guarantee charge transport anisotropy. The correlations between efficient charge transport and aggregation are clearly shown, while mobility and degree of orientation are not always well-correlated. These observations provide insights into macroscopic charge transport mechanisms in conjugated polymers and suggest guidelines for optimization. PMID:29109282
Nap, R J; Tagliazucchi, M; Szleifer, I
2014-01-14
This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads to systematic, but in general small, corrections to earlier theoretical predictions describing the behavior of weak polyelectrolyte layers. However, polyelectrolyte uncharging results in a decrease in the concentration of counterions and inclusion of the Born Energy can result in a substantial decrease of the counterion concentration. The effect of considering the Born energy contribution is explored for end-grafted weak polyelectrolyte layers by calculating experimental observables which are known to depend on the presence of charges within the polyelectrolyte layer: inclusion of the Born energy contribution leads to a decrease in the capacitance of polyelectrolyte-modified electrodes, a decrease of conductivity of polyelectrolyte-modified nanopores and an increase in the repulsion exerted by a planar polyelectrolyte layer confined by an opposing wall.
Fatehi, Pedram; Shen, Jing; Hamdan, Fadia C; Ni, Yonghao
2013-02-15
In this work, the adsorption of lignocelluloses of pre-hydrolysis liquor (PHL) on precipitated calcium carbonate (PCC) was studied in the presence of poly diallyldimethylammonium chloride (PDADMAC) or cationic polyacrylamide (CPAM). The results revealed that adding PCC to PHL and subsequently adding cationic polymers to PHL/PCC systems was more effective than adding cationic polymers to PHL and then adding PCC to the cationic polymer/PHL systems. At the same dosage applied, PDADMAC resulted in a higher adsorption of lignocelluloses on PCC than CPAM did due to its higher charge density. The adsorption of lignocelluloses on PCC reached its maximum in 3h, and a high temperature reduced the adsorption level as the adsorption was an exothermic process. The maximum adsorptions of 530 mg/g oligo-sugars, 203 mg/g lignin and 58 mg/g furfural on PCC were achieved via adding 0.8 mg/g PDADMAC2 (i.e. higher MW PDADMAC) to PCC/PHL system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer
NASA Astrophysics Data System (ADS)
Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.
2017-12-01
The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.
Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles
NASA Astrophysics Data System (ADS)
Chacko, Salvio; Chung, Yongmann M.
2012-09-01
Time-dependent, thermal behaviour of a lithium-ion (Li-ion) polymer cell has been modelled for electric vehicle (EV) drive cycles with a view to developing an effective battery thermal management system. The fully coupled, three-dimensional transient electro-thermal model has been implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for electric load cycles consisting of various charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. The cell-level thermal behaviour under stressful conditions such as high power draw and high ambient temperature was predicted with the model. A significant temperature increase was observed in the stressful condition, corresponding to a repeated acceleration and deceleration, indicating that an effective battery thermal management system would be required to maintain the optimal cell performance and also to achieve a full battery lifesapn.
Haesuwannakij, Setsiri; Kimura, Tetsunari; Furutani, Yuji; Okumura, Kazu; Kokubo, Ken; Sakata, Takao; Yasuda, Hidehiro; Yakiyama, Yumi; Sakurai, Hidehiro
2017-08-29
Poly(N-vinyl-2-pyrrolidone) (PVP) of varying molecular weight (M w = 40-360 kDa) were employed to stabilize gold nanoclusters of varying size. The resulting Au:PVP clusters were subsequently used as catalysts for a kinetic study on the sized-dependent aerobic oxidation of 1-indanol, which was monitored by time-resolved in situ infrared spectroscopy. The obtained results suggest that the catalytic behaviour is intimately correlated to the size of the clusters, which in turn depends on the molecular weight of the PVPs. The highest catalytic activity was observed for clusters with a core size of ~7 nm, and the size of the cluster should increase with the molecular weight of the polymer in order to maintain optimal catalytic activity. Studies on the electronic and colloid structure of these clusters revealed that the negative charge density on the cluster surface also strongly depends on the molecular weight of the stabilizing polymers.
Chemical anchoring of organic conducting polymers to semiconducting surfaces
Frank, A.J.; Honda, K.
1984-01-01
According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.
Chemical anchoring of organic conducting polymers to semiconducting surfaces
Frank, Arthur J.; Honda, Kenji
1984-01-01
According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge-conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge-conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.
Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.
Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E
2012-05-15
Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Gregory M.; Patel, Shrayesh N.; Pemmaraju, C. D.
The electronic structure and molecular orientation of semiconducting polymers in thin films determine their ability to transport charge. Methods based on near-edge X-ray absorption fine structure (NEXAFS) spectroscopy can be used to probe both the electronic structure and microstructure of semiconducting polymers in both crystalline and amorphous films. However, it can be challenging to interpret NEXAFS spectra on the basis of experimental data alone, and accurate, predictive calculations are needed to complement experiments. Here, we show that first-principles density functional theory (DFT) can be used to model NEXAFS spectra of semiconducting polymers and to identify the nature of transitions inmore » complicated NEXAFS spectra. Core-level X-ray absorption spectra of a set of semiconducting polymers were calculated using the excited electron and core-hole (XCH) approach based on constrained-occupancy DFT. A comparison of calculations on model oligomers and periodic structures with experimental data revealed the requirements for accurate prediction of NEXAFS spectra of both conjugated homopolymers and donor–acceptor polymers. The NEXAFS spectra predicted by the XCH approach were applied to study molecular orientation in donor–acceptor polymers using experimental spectra and revealed the complexity of using carbon edge spectra in systems with large monomeric units. The XCH approach has sufficient accuracy in predicting experimental NEXAFS spectra of polymers that it should be considered for design and analysis of measurements using soft X-ray techniques, such as resonant soft X-ray scattering and scanning transmission X-ray microscopy.« less
NASA Astrophysics Data System (ADS)
Aikawa, Shinya; Kim, Sungjin; Thurakitseree, Theerapol; Einarsson, Erik; Inoue, Taiki; Chiashi, Shohei; Tsukagoshi, Kazuhito; Maruyama, Shigeo
2018-01-01
We present that the electrical conduction type in carbon nanotube field-effect transistors (CNT-FETs) can be converted by induced charges in a polyvinyl alcohol (PVA) insulator. When the CNT channels are covered with pure PVA, the FET characteristics clearly change from unipolar p-type to ambipolar. The addition of ammonium ions (NH4+) in the PVA leads to further conversion to unipolar n-type conduction. The capacitance - voltage characteristics indicate that a high density of positive charges is induced at the PVA/SiO2 interface and within the bulk PVA. Electrons are electrostatically accumulated in the CNT channels due to the presence of the positive charges, and thus, stable n-type conduction of PVA-coated CNT-FETs is observed, even under ambient conditions. The mechanism for conversion of the conduction type is considered to be electrostatic doping due to the large amount of positive charges in the PVA. A blue-shift of the Raman G-band peak was observed for CNTs coated with NH4+-doped PVA, which corresponds to unipolar n-type CNT-FET behavior. These results confirm that carrier polarity engineering in CNT-FETs can be achieved with a charged PVA passivation layer.
NASA Astrophysics Data System (ADS)
Bai, Jaeil; Ducharme, Stephen; Leonov, Alexei G.; Lu, Liu; Takacs, James M.
1999-10-01
In this report, we introduce new organic photorefractive composites consisting of charge transporting den-drimers highly doped with a stilbene nonlinear optic chromophore, The purpose of making these composites is to improve charge transport, by reducing inhomogeneity when compared to ordinary polymer-based systems. Because the structure of this material gives us freedom to control the orientation of charge transport agents synthetically, we can study the charge transport mechanism more systematically than in polymers. We discuss this point and present the characterization results for this material.
Simulation of bipolar charge transport in nanocomposite polymer films
NASA Astrophysics Data System (ADS)
Lean, Meng H.; Chu, Wei-Ping L.
2015-03-01
This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.
NASA Astrophysics Data System (ADS)
Held, Martin; Schießl, Stefan P.; Miehler, Dominik; Gannott, Florentina; Zaumseil, Jana
2015-08-01
Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfOx) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100-300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfOx dielectrics.
Yang, Lu; Deng, Wenfang; Zhang, Youming; Tan, Yueming; Ma, Ming; Xie, Qingji
2017-05-15
Microbial fuel cells (MFCs) have attracted great attentions due to their great application potentials, but the relatively low power densities of MFCs still hinder their widespread practical applications. Herein, we report that the current generation in MFCs can be boosted by an order of magnitude, simply by coating a hydrophilic and positively charged ionic liquid polymer (ILP) on carbon cloth (CC) or carbon felt (CF). The ILP coating not only can increase the bacterial loading capacity due to the electrostatic interactions between ILP and bacterial cells, but also can improve the mediated extracellular electron transfer between the electrode and the cytochrome proteins on the outer membrane of Shewanella putrefaciens cells. As a result, the maximum power density of a MFC equipped with the CF-ILP bioanode is as high as 4400±170mWm -2 , which is amongst the highest values reported to date. This work demonstrates a new strategy for greatly boosting the current generation in MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Network formation and gelation in telechelic star polymers
NASA Astrophysics Data System (ADS)
Wadgaonkar, Indrajit; Chatterji, Apratim
2017-02-01
We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.
Network formation and gelation in telechelic star polymers.
Wadgaonkar, Indrajit; Chatterji, Apratim
2017-02-28
We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Shashi B.; Singh, Samarendra P., E-mail: samarendra.singh@snu.edu.in; Sonar, Prashant
2015-07-15
Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C{sub 71} butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO{sub 3}/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis ofmore » impedance spectra exhibits electron’s mobility ∼2 × 10{sup −3} cm{sup 2}V{sup −1}s{sup −1}, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10{sup −5} cm{sup 2}V{sup −1}s{sup −1}, and electron mobility of 8.7 × 10{sup −4} cm{sup 2}V{sup −1}s{sup −1}.« less
Karlsson, Rose-Marie Pernilla; Larsson, Per Tomas; Yu, Shun; Pendergraph, Samuel Allen; Pettersson, Torbjörn; Hellwig, Johannes; Wågberg, Lars
2018-06-01
Macroscopic beads of water-based gels consisting of uncharged and partially charged β-(1,4)-d-glucan polymers were developed to be used as a novel model material for studying the water induced swelling of the delignified plant fiber walls. The gel beads were prepared by drop-wise precipitation of solutions of dissolving grade fibers carboxymethylated to different degrees. The internal structure was analyzed using Solid State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance and Small Angle X-ray Scattering showing that the internal structure could be considered a homogeneous, non-crystalline and molecularly dispersed polymer network. When beads with different charge densities were equilibrated with aqueous solutions of different ionic strengths and/or pH, the change in water uptake followed the trends expected for weak polyelectrolyte gels and the trends found for cellulose-rich fibers. When dried and subsequently immersed in water the beads also showed an irreversible loss of swelling depending on the charge and type of counter-ion which is commonly also found for cellulose-rich fibers. Taken all these results together it is clear that the model cellulose-based beads constitute an excellent tool for studying the fundamentals of swelling of cellulose rich plant fibers, aiding in the elucidation of the different molecular and supramolecular contributions to the swelling. Copyright © 2018 Elsevier Inc. All rights reserved.
Particle transport through hydrogels is charge asymmetric.
Zhang, Xiaolu; Hansing, Johann; Netz, Roland R; DeRouchey, Jason E
2015-02-03
Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Helseth, L. E.; Guo, X. D.
2016-04-01
Water contact electric harvesting has a great potential as a new energy technology for powering small-scale electronics, but a better understanding of the dynamics governing the conversion from mechanical to electrical energy on the polymer surfaces is needed. Important questions are how current correlates with droplet kinetic energy and what happens to the charge dynamics when a large number of droplets are incident on the polymer simultaneously. Here we address these questions by studying the current that is generated in an external electrical circuit when water droplets impinge on hydrophobic fluorinated ethylene propylene film containing a grating electrode on the back side. Droplets moving down an inclined polymer plane exhibit a characteristic periodic current time trace, and it is found that the peak current scales with sine of the inclination angle. For single droplets in free fall impinging onto the polymer, it is found that the initial peak current scales with the height of the free fall. The transition from individual droplets to a nearly continuous stream was investigated using the spectral density of the current signal. In both regimes, the high frequency content of the spectral density scales as f -2. For low frequencies, the low frequency content at low volume rates was noisy but nearly constant, whereas for high volume rates an increase with frequency is observed. It is demonstrated that the output signal from the system exposed to water droplets from a garden hose can be rectified and harvested by a 33 μF capacitor, where the stored energy increases at a rate of about 20 μJ in 100 s.
Novel molecular device based on electrostatic interactions in organic polymers.
Kwok, H L; Xu, J B
2004-04-01
A number of researchers have reported attempts to design molecular level devices. One approach is to make use of electrostatic interactions in different parts of a polymeric molecule. This paper reports a means to achieve this by adding space charge to a molecule consisting of symmetric and asymmetric subgroups. Physically, space charge residing in a subgroup produces a dipolar charge layer thereby creating a potential trough in the polymer backbone. By lifting or lowering this potential minimum, it is possible to modify the terminal current. The effect of space charge on the potential profile in the polymer backbone was examined and the change correlated to data on carrier mobilities for OC1C10-PPV reported in the literature. Modulation of space charge in the subgroup allows the manipulation of current flow along the polymer backbone, forming the basis for the development of a molecular device. A first-order analysis suggested that such a device could have current-voltage (I-V) characteristics similar to those of a MOSFET at subthreshold, with an estimated transconductance approximately 1-2 pAV and a cutoff frequency approximately 10(15) Hz.
2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion
NASA Astrophysics Data System (ADS)
Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning
2016-08-01
Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.
Weak polyelectrolyte complexation driven by associative charging.
Rathee, Vikramjit S; Zervoudakis, Aristotle J; Sidky, Hythem; Sikora, Benjamin J; Whitmer, Jonathan K
2018-03-21
Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.
Weak polyelectrolyte complexation driven by associative charging
NASA Astrophysics Data System (ADS)
Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.
2018-03-01
Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.
Organic phototransistors with nanoscale phase-separated polymer/polymer bulk heterojunction layers
NASA Astrophysics Data System (ADS)
Hwang, Hyemin; Kim, Hwajeong; Nam, Sungho; Bradley, Donal D. C.; Ha, Chang-Sik; Kim, Youngkyoo
2011-05-01
Low-cost detectors for sensing photons at a low light intensity are of crucial importance in modern science. Phototransistors can deliver better signals of low-intensity light by electrical amplification, but conventional inorganic phototransistors have a limitation owing to their high temperature processes in vacuum. In this work, we demonstrate organic phototransistors with polymer/polymer bulk heterojunction blend films (mixtures of p-type and n-type semiconducting polymers), which can be fabricated by inexpensive solution processes at room temperature. The key idea here is to effectively exploit hole charges (from p-type polymer) as major signaling carriers by employing p-type transistor geometry, while the n-type polymer helps efficient charge separation from excitons generated by incoming photons. Results showed that the present organic transistors exhibited proper functions as p-type phototransistors with ~4.3 A W-1 responsivity at a low light intensity (1 µW cm-2), which supports their encouraging potential to replace conventional cooled charge coupled devices (CCD) for low-intensity light detection applications.Low-cost detectors for sensing photons at a low light intensity are of crucial importance in modern science. Phototransistors can deliver better signals of low-intensity light by electrical amplification, but conventional inorganic phototransistors have a limitation owing to their high temperature processes in vacuum. In this work, we demonstrate organic phototransistors with polymer/polymer bulk heterojunction blend films (mixtures of p-type and n-type semiconducting polymers), which can be fabricated by inexpensive solution processes at room temperature. The key idea here is to effectively exploit hole charges (from p-type polymer) as major signaling carriers by employing p-type transistor geometry, while the n-type polymer helps efficient charge separation from excitons generated by incoming photons. Results showed that the present organic transistors exhibited proper functions as p-type phototransistors with ~4.3 A W-1 responsivity at a low light intensity (1 µW cm-2), which supports their encouraging potential to replace conventional cooled charge coupled devices (CCD) for low-intensity light detection applications. Electronic supplementary information (ESI) available: XPS spectra of P3HT:F8BT nanolayers and pristine P3HT and F8BT films, HRTEM images of P3HT:F8BT blend film detached from the substrate, and 1D GIXD profiles of P3HT:F8BT nanolayers and PI layer coated on the ITO-glass substrates. See DOI: 10.1039/c0nr00915f
Patterned piezo-, pyro-, and ferroelectricity of poled polymer electrets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Xunlin
2010-07-01
Polymers with strong piezo-, pyro-, and ferroelectricity are attractive for a wide range of applications. In particular, semicrystalline ferroelectric polymers are suitable for a large variety of piezo- and pyroelectric transducers or sensors, while amorphous polymers containing chromophore molecules are particularly interesting for photonic devices. Recently, a new class of polymer materials has been added to this family: internally charged cellular space-charge polymer electrets (so-called “ferroelectrets”), whose piezoelectricity can be orders of magnitude higher than that of conventional ferroelectric polymers. Suitable patterning of these materials leads to improved or unusual macroscopic piezo-, pyro-, and ferroelectric or nonlinear optical properties thatmore » may be particularly useful for advanced transducer or waveguide applications. In the present paper, the piezo-, pyro-, and ferroelectricity of poled polymers is briefly introduced, an overview on the preparation of polymer electrets with patterned piezo-, pyro-, and ferroelectricity is provided and a survey of selected applications is presented.« less
Charged Polymer Brushes: Counterion Incorporation and Scaling Relations
NASA Astrophysics Data System (ADS)
Ahrens, Heiko; Förster, Stephan; Helm, Christiane A.
1998-11-01
Amphiphilic block copolymers consisting of a fluid hydrophobic and a polyelectrolyte part form monolayers at the air/water interface. With x-ray reflectivity it is shown that the hydrophobic block is a nm-thick melt, while the polyelectrolyte forms an osmotically swollen brush of constant thickness, independent of grafting density and with stochiometric counter ion incorporation. Only at high salt conditions (above 0.1 M), the brush shrinks and the thickness scales with the molecular area and the salt concentration (corrected for excluded volume interactions) with an exponent -1/3.
Hopping Conduction in Polymers
NASA Astrophysics Data System (ADS)
Bässler, Heinz
The concept of hopping within a Gaussian density of localized states introduced earlier to rationalize charge transport in random organic photoconductors is developed further to account for temporal features of time of flight (TOF) signals. At moderate degree of energetic disorder (σ/kT~3.5…4.5) there is a transport regime intermediate between dispersive and quasi-Gaussian type whose signatures are (i) universal TOF signals that can appear weakly dispersive despite yielding a well defined carrier mobility and (ii) an asymmetric propagator of the carrier packet yielding a time dependent diffusivity.
Khan, Amit Kumar; Gudlur, Sushanth; de Hoog, Hans-Peter M; Siti, Winna; Liedberg, Bo; Nallani, Madhavan
2017-09-18
The synthesis and characterization of a new protein-polymer conjugate composed of β lactoglobulin A (βLG A) and poly(ethylene glycol) PEG is described. βLG A was selectively modified to self-assemble by super-charging via amination or succinylation followed by conjugation with PEG. An equimolar mixture of the oppositely charged protein-polymer conjugates self-assemble into spherical capsules of 80-100 nm in diameter. The self-assembly proceeds by taking simultaneous advantage of the amphiphilicity and polyelectrolyte nature of the protein-polymer conjugate. These protein-polymer capsules or proteinosomes are reminiscent of protein capsids, and are capable of encapsulating solutes in their interior. We envisage this approach to be applicable to other globular proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crystalline Colloidal Arrays in Polymer Matrices
NASA Technical Reports Server (NTRS)
Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.
1997-01-01
Crystalline Colloidal Arrays (CCA, also known as colloidal crystals), composed of aqueous or nonaqueous dispersions of self-assembled nanosized polymer colloidal spheres, are emerging toward the development of advanced optical devices for technological applications. The spontaneous self assembly of polymer spheres in a dielectric medium results from the electrostatic repulsive interaction between particles of uniform size and charge distribution. In a way similar to atomic crystals that diffract X-rays, CCA dispersions in thin quartz cells selectively and efficiently Bragg diffract the incident visible light. The reason for this diffraction is because the lattice (body or face centered cubic) spacing is on the order of the wavelength of visible light. Unlike the atomic crystals that diffract a fixed wavelength, colloidal crystals in principle, depending on the particle size, particle number and charge density, can diffract W, Vis or IR light. Therefore, the CCA dispersions can be used as laser filters. Besides, the diffraction intensity depends on the refractive index mismatch between polymer spheres and dielectric medium; therefore, it is possible to modulate incident light intensities by manipulating the index of either the spheres or the medium. Our interest in CCA is in the fabrication of all-optical devices such as optical switches, limiters, and spatial light modulators for optical signal processing. The two major requirements from a materials standpoint are the incorporation of suitable nonlinear optical materials (NLO) into polymer spheres which will allow us to alter the refractive index of the spheres by intense laser radiation, and preparation of solid CCA filters which can resist laser damage. The fabrication of solid composite filters not only has the advantage that the films are easier to handle, but also the arrays in solid films are more robust than in liquid media. In this paper, we report the photopolymerization process used to trap CCA in polymer matrices, the factors which affect the optical diffraction qualities of resulting polymer films, and methods to improve the efficiencies of solid optical filters. Before this, we also present the experimental demonstration, of controlling the optical diffraction intensities from aqueous CCA dispersions by varying the temperature, which establishes the feasibility of fabricating all-optical switching devices with nonlinear periodic array structures.
Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.
Tang, Cindy G; Ang, Mervin C Y; Choo, Kim-Kian; Keerthi, Venu; Tan, Jun-Kai; Syafiqah, Mazlan Nur; Kugler, Thomas; Burroughes, Jeremy H; Png, Rui-Qi; Chua, Lay-Lay; Ho, Peter K H
2016-11-24
To make high-performance semiconductor devices, a good ohmic contact between the electrode and the semiconductor layer is required to inject the maximum current density across the contact. Achieving ohmic contacts requires electrodes with high and low work functions to inject holes and electrons respectively, where the work function is the minimum energy required to remove an electron from the Fermi level of the electrode to the vacuum level. However, it is challenging to produce electrically conducting films with sufficiently high or low work functions, especially for solution-processed semiconductor devices. Hole-doped polymer organic semiconductors are available in a limited work-function range, but hole-doped materials with ultrahigh work functions and, especially, electron-doped materials with low to ultralow work functions are not yet available. The key challenges are stabilizing the thin films against de-doping and suppressing dopant migration. Here we report a general strategy to overcome these limitations and achieve solution-processed doped films over a wide range of work functions (3.0-5.8 electronvolts), by charge-doping of conjugated polyelectrolytes and then internal ion-exchange to give self-compensated heavily doped polymers. Mobile carriers on the polymer backbone in these materials are compensated by covalently bonded counter-ions. Although our self-compensated doped polymers superficially resemble self-doped polymers, they are generated by separate charge-carrier doping and compensation steps, which enables the use of strong dopants to access extreme work functions. We demonstrate solution-processed ohmic contacts for high-performance organic light-emitting diodes, solar cells, photodiodes and transistors, including ohmic injection of both carrier types into polyfluorene-the benchmark wide-bandgap blue-light-emitting polymer organic semiconductor. We also show that metal electrodes can be transformed into highly efficient hole- and electron-injection contacts via the self-assembly of these doped polyelectrolytes. This consequently allows ambipolar field-effect transistors to be transformed into high-performance p- and n-channel transistors. Our strategy provides a method for producing ohmic contacts not only for organic semiconductors, but potentially for other advanced semiconductors as well, including perovskites, quantum dots, nanotubes and two-dimensional materials.
Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.
Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N
2013-01-01
Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.
Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan
2015-11-05
The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion(®) ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg(-1)Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion(®) ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture.
NASA Astrophysics Data System (ADS)
Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan
2015-11-01
The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion® ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg-1Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion® ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture.
Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D
2015-04-01
Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Balachandra, Anagi Manjula
Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of polymerization initiators to a porous alumina support and subsequent polymerization from these initiators. Because ATRP is a controlled polymerization technique, it yields well-defined polymer films with low polydispersity indices (narrow molecular weight distributions). Additionally, this method is attractive because film thickness can be easily controlled by adjusting polymerization time. Gas-permeability data showed that grafted poly(ethylene glycol dimethacrylate) membranes have a CO 2/CH4 selectivity of 20, whereas poly(2-hydroxyethyl methacrylate) (PHEMA) films grown from a surface have negligible selectivity. However, derivatization of PHEMA with pentadecafluorooctanoyl chloride increases the solubility of CO2 in the membrane and results in a CO2/CH4 selectivity of 9. Although composite PHEMA membranes have no significant gas-transport selectivity, diffusion dialysis studies with PHEMA membranes showed moderate ion-transport selectivities. Cross-linking of PHEMA membranes by reaction with succinyl chloride greatly enhanced anion-transport selectivities while maintaining reasonable flux. The selectivities of these systems demonstrate that alternating polyelectrolyte deposition and surface-initiated ATRP are indeed capable of forming ultrathin, defect-free membrane skins that can potentially be modified for specific separations.
50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions
2017-01-01
From the beginning of life with the information-containing polymers until the present era of a plethora of water-based materials in health care industry and biotechnology, polyelectrolytes are ubiquitous with a broad range of structural and functional properties. The main attribute of polyelectrolyte solutions is that all molecules are strongly correlated both topologically and electrostatically in their neutralizing background of charged ions in highly polarizable solvent. These strong correlations and the necessary use of numerous variables in experiments on polyelectrolytes have presented immense challenges toward fundamental understanding of the various behaviors of charged polymeric systems. This Perspective presents the author’s subjective summary of several conceptual advances and the remaining persistent challenges in the contexts of charge and size of polymers, structures in homogeneous solutions, thermodynamic instability and phase transitions, structural evolution with oppositely charged polymers, dynamics in polyelectrolyte solutions, kinetics of phase separation, mobility of charged macromolecules between compartments, and implications to biological systems. PMID:29296029
The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules.
Abou Matar, Tamara; Karam, Pierre
2018-02-01
It is generally accepted that positively charged molecules are the gold standard to by-pass the negatively charged cell membrane. Here, it is shown that cellular uptake is also possible for polymers with negatively charged side chains and hydrophobic backbones. Specifically, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], a conjugated polyelectrolyte with sulfonate, as water-soluble functional groups, is shown to accumulate in the intracellular region. When the polymer hydrophobic backbone is dissolved using polyvinylpyrrolidone, an amphiphilic macromolecule, the cellular uptake is dramatically reduced. The report sheds light on the fine balance between negatively charged side groups and the hydrophobicity of polymers to either enhance or reduce cellular uptake. As a result, these findings will have important ramifications on the future design of targeted cellular delivery nanocarriers for imaging and therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kanimozhi, Catherine; Yaacobi-Gross, Nir; Burnett, Edmund K; Briseno, Alejandro L; Anthopoulos, Thomas D; Salzner, Ulrike; Patil, Satish
2014-08-28
The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential "edge-on" packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V(-1) s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast, moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional electron mobility is at least partially a result of the strong intramolecular conjugation of the donor and acceptor as evidenced by the unusually wide conduction band of the polymer.
Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark
2014-06-01
The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chervanyov, A I
2016-12-28
By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.
Jones, Matthew L; Dyer, Reesha; Clarke, Nigel; Groves, Chris
2014-10-14
Kinetic Monte Carlo simulations are used to examine the effect of high-energy, 'hot' delocalised charge transfer (HCT) states for donor:acceptor and mixed:aggregate blends, the latter relating to polymer:fullerene photovoltaic devices. Increased fullerene aggregation is shown to enhance charge generation and short-circuit device current - largely due to the increased production of HCT states at the aggregate interface. However, the instances where HCT states are predicted to give internal quantum efficiencies in the region of 50% do not correspond to HCT delocalisation or electron mobility measured in experiments. These data therefore suggest that HCT states are not the primary cause of high quantum efficiencies in some polymer:fullerene OPVs. Instead it is argued that HCT states are responsible for the fast charge generation seen in spectroscopy, but that regional variation in energy levels are the cause of long-term, efficient free-charge generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niklas, Jens; Beaupré, Serge; Leclerc, Mario
2015-06-18
Understanding charge separation and charge transport is crucial for improving the efficiency of organic solar cells. Their active media are based on organic molecules and polymers, serving as both light-absorbing and transport layers. The charge-transfer (CT) states play an important role, being intermediate for free carrier generation and charge recombination. Here, we use light-induced electron paramagnetic resonance spectroscopy to study the CT dynamics in blends of the polymers P3HT, PCDTBT, and PTB7 with the fullerene derivative C-60-PCBM. Time-resolved EPR measurements show strong spin-polarization patterns for all polymer-fullerene blends, confirming predominant generation of singlet CT states and partial orientation ordering nearmore » the donor-acceptor interface. These observations allow a comparison with charge separation processes in molecular donor-acceptor systems and in natural and artificial photosynthetic assemblies, and thus the elucidation of the initial steps of sequential CT in organic photovoltaic materials.« less
Elucidation of band structure of charge storage in conducting polymers using a redox reaction.
Contractor, Asfiya Q; Juvekar, Vinay A
2014-07-01
A novel technique to investigate charge storage characteristics of intrinsically conducting polymer films has been developed. A redox reaction is conducted on a polymer film on a rotating disk electrode under potentiostatic condition so that the rate of charging of the film equals the rate of removal of the charge by the reaction. The voltammogram obtained from the experiment on polyaniline film using Fe(2+)/Fe(3+) in HCl as the redox system shows five distinct linear segments (bands) with discontinuity in the slope at specific transition potentials. These bands are the same as those indicated by electron spin resonance (ESR)/Raman spectroscopy with comparable transition potentials. From the dependence of the slopes of the bands on concentration of ferrous and ferric ions, it was possible to estimate the energies of the charge carriers in different bands. The film behaves as a redox capacitor and does not offer resistance to charge transfer and electronic conduction.
Exploring the Charge Transport in Conjugated Polymers.
Xu, Yong; Sun, Huabin; Li, Wenwu; Lin, Yen-Fu; Balestra, Francis; Ghibaudo, Gerard; Noh, Yong-Young
2017-11-01
Conjugated polymers came to an unprecedented epoch that the charge transport is limited only by small disorder within aggregated domains. Accurate evaluation of transport performance is thus vital to optimizing further molecule design. Yet, the routine method by means of the conventional field-effect transistors may not satisfy such a requirement. Here, it is shown that the extrinsic effects of Schottky barrier, access transport through semiconductor bulk, and concurrent ambipolar conduction seriously influence transport analysis. The planar transistors incorporating ohmic contacts free of access and ambipolar conduction afford an ideal access to charge transport. It is found, however, that only the planar transistors operating in low-field regime are reliable to explore the inherent transport properties due to the energetic disorder lowering by the lateral field induced by high drain voltage. This work opens up a robust approach to comprehend the delicate charge transport in conjugated polymers so as to develop high-performance semiconducting polymers for promising plastic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Building a road map for tailoring multilayer polyelectrolyte films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankner, John Francis; Bardoel, Agatha A; Sukishvili, Svetlana
2012-01-01
Researchers are moving a step closer to a definite road map for building layer-by-layer (LbL) assembled polyelectrolyte films, with the assistance of the Liquids Reflectometer at Oak Ridge National Laboratory's Spallation Neutron Source, in Oak Ridge, Tennessee. Scientists using the liquids reflectometer have successfully taken snapshots in close to real time of these multilayered structures for different applications when they modify the structure and function parameters. Polyelecrolytes are polymers that carry charge in aqueous solutions. They contain chemical groups that dissociate in water, making such polymers charged. Most polyelectrolytes are water soluble. They are important components in foods, soaps, shampoos,more » and cosmetics products. They show promise for such environmental work as oil recovery and water treatment. Polyelectrolytes are compelling because researchers can chemically modify how they interact with water for multiple applications. When two types of polyelectrolytes of opposite charge are assembled at a surface in a sequential way using the LbL assembly technique, 'the result is the forming of surface films, useful for coatings, biomedical implants and devices, controlling adhesion of biological molecules, and controlling delivery of therapeutic molecules from surfaces,' said Svetlana Sukhishvili of the Stevens Institute of Technology in New Jersey, the lead chemist on the collaboration. 'Medical doctors often prefer to deliver multiple therapeutic compounds from the coatings in a time-resolved manner,' Sukhishvili said. 'To assist them, material scientists need to learn how to build coatings in which polymer layering will not be compromised when exposed to normal physiological conditions.' 'Being able to control these properties, understanding how what you do to the materials affects their properties, this allows you to apply them to situations where interacting with an environment is very helpful, whether in a biological context or any other kind of water soluble context,' said John Ankner, lead instrument scientist for the Liquids Reflectometer. Ankner said that when several parameters are systematically altered, that allows researchers to map out the whole range of structures in the polymer. 'This work really sets a road map for how to get started with synthesizing polyelectrolyte materials for specific applications. Then, one can say, ok, this methylated material, the one that is 30% charged, is going to be what we want to use for a particular application.' The ORNL collaboration with the Stevens Institute has been conducting a series of experiments at the SNS to study layered film stratification in these polymers. Researchers stitch the polyelectrolyte chains in the LbL films together through what is called ionic pairing and arrange them within fuzzy, ultrathin layers that lie parallel to a solid surface substrate. Exposure of these films to aqueous solutions that contain salt (i.e., conditions that imitate real life) can compromise this film layering, as the salt ions act to weaken the ionic pairing that binds such layers together. So salt solutions are of key interest in studying how to make such layers for use in human applications. In the first research, Ankner, Sukhishvili and her student Li Xu looked at the effects of the layering of two types of LbL films of changing the charge density with a salt solution, and of blocking access to a charged site by nearby groups. The films were composed of positively charged variants of PDMA, a methyl polymer, and PDEA, an ethyl polymer. The other component of both systems is the ion exchanger polystyrene sulfonate (PSS) which features a fixed negative charge. First, a silicon substrate was dipped into solutions of PDMA and PDEA in dilute sodium chloride for a fixed time. Depending on the deposition time and the concentration of the solution, a nanometer-thick monolayer of the polymer adsorbs to the silicon surface. The film buildup is then continued by depositing a layer of PSS, and the cycle is repeated. The PDMA (methyl)/PSS and PDEA (ethyl)/PSS films were then annealed in varying concentrations of aqueous salt solutions. The chemists wanted to know if in these multi-layer cake-like assemblies, the structure can be systematically altered by varying the salt concentration, time in solution, and ultimately other environmental parameters, such as temperature or pH. Neutron reflectivity of the layered films exhibits the quality of the layering, in particular the concentration of the layers and how intermixed they are with adjacent layers. In this research, neutron reflectivity data from films built from 10%, 40%, and 100% charged PDMA or PDEA polyelectrolytes and 100% charged PSS were quantitatively compared to predicted, layered arrangements until the models produced reflectivity patterns matching those of the data.« less
Water-Soluble Conjugated Polymers: Self-Assembly and Biosensor Applications
NASA Astrophysics Data System (ADS)
Bazan, Guillermo
2005-03-01
Homogeneous assays can be designed which take advantage of the optical amplification of conjugated polymers and the self-assembly characteristic of aqueous polyelectrolytes. For example, a ssDNA sequence sensor comprises an aqueous solution containing a cationic water soluble conjugated polymer such as poly(9,9-bis(trimethylammonium)-hexyl)-fluorene phenylene) with a peptide nucleic acid (PNA) labeled with a dye (PNA-C*). Signal transduction is controlled by hybridization of the neutral PNA-C* probe and the negative ssDNA target, resulting in favorable electrostatic interactions between the hybrid complex and the cationic polymer. Distance requirements for Förster energy transfer are thus met only when ssDNA of complementary sequence to the PNA-C* probe is present. Signal amplification by the conjugated polymer provides fluorescein emission >25 times higher than that of the directly excited dye. Transduction by electrostatic interactions followed by energy transfer is a general strategy. Examples involving other biomolecular recognition events, such as DNA/DNA, RNA/protein and RNA/RNA, will also be provided. The mechanism of biosensing will be discussed, with special attention to the varying contributions of hydrophobic and electrostatic forces, polymer conformation, charge density, local concentration of C*s and tailored defect sites for aggregation-induced optical changes. Finally, the water solubility of these conjugated polymers opens possibilities for spin casting onto organic materials, without dissolving the underlying layers. This property is useful for fabricating multilayer organic optoelectronic devices by simple solution techniques.
NASA Astrophysics Data System (ADS)
Dharmapurikar, Satej S.; Chithiravel, Sundaresan; Mane, Manoj V.; Deshmukh, Gunvant; Krishnamoorthy, Kothandam
2018-03-01
Diketopyrrolopyrrole (DPP) and i-Indigo (i-Ind) are two monomers that are widely explored as active materials in organic field effect transistor and solar cells. These two molecules showed impressive charge carrier mobility due to better packing that are facilitated by quadrupoles. We hypothesized that the copolymers of these monomers would also exhibit high charge carrier mobility. However, we envisioned that the dihedral angle at the connecting point between the monomers will play a crucial role in packing as well as charge transport. To understand the impact of dihedral angle on charge transport, we synthesized three copolymers, wherein the DPP was sandwiched between benzenes, thiophenes and furans. The copolymer of i-Indigo and furan comprising DPP showed a band gap of 1.4 eV with a very high dihedral angle of 179°. The polymer was found to pack better and the coherence length was found to be 112 Å. The hole carrier mobility of these polymer was found to be highest among the synthesized polymer i.e. 0.01 cm2/vs. The copolymer comprising benzene did not transport hole and electrons. The dihedral angle at the connecting point between i and Indigo and benzene DPP was 143 Å, which the packing and consequently charge transport properties.
Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.
Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi
2017-10-04
Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.
New secondary batteries utilizing electronically conductive polymer cathodes
NASA Technical Reports Server (NTRS)
Martin, Charles R.; White, Ralph E.
1989-01-01
The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.
Suppression of protein adsorption on a charged phospholipid polymer interface.
Xu, Yan; Takai, Madoka; Ishihara, Kazuhiko
2009-02-09
High capability of a charged interface to suppress adsorption of both anionic and cationic proteins was reported. The interface was covalently constructed on quartz by modifying with an anionic phospholipid copolymer, poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-potassium 3-methacryloyloxypropyl sulfonate (PMPS)-co-3-methacryloxypropyl trimethoxysilane (MPTMSi)) (PMBSSi). The PMBSSi interfaces were very hydrophilic and homogeneous and could function effectively for a long time even under long-term fluidic working conditions. The PMBSSi density on the interface, which was controllable by adjusting the PMBSSi concentration of the modification solution, affected the surface properties, including the surface contact angle, the surface roughness, and the surface zeta-potential. When a PMBSSi modification was applied, the adsorption of various proteins (isoelectric point varying from 1.0 to 11.0) on quartz was reduced to at least 87% in amount, despite the various electrical natures these proteins have. The protein adsorption behavior on the PMBSSi interface depended more on the PMBSSi density than on the surface charge. The PMBSSi modification had a stable impact on the surface, not only at the physiologic ionic strength, but also over a range of the ionic strength, suggesting that electrostatic interactions do not dominate the behavior of protein adsorption to the PMBSSi surface.
Hu, Dehua; Liu, Qing; Tisdale, Jeremy; ...
2015-04-15
This paper reports Seebeck effects driven by both surface polarization difference and entropy difference by using intramolecular charge-transfer states in n-type and p-type conjugated polymers, namely IIDT and IIDDT, based on vertical conductor/polymer/conductor thin-film devices. Large Seebeck coefficients of -898 V/K and 1300 V/K from are observed from n-type IIDT p-type IIDDT, respectively, when the charge-transfer states are generated by a white light illumination of 100 mW/cm2. Simultaneously, electrical conductivities are increased from almost insulating states in dark condition to conducting states under photoexcitation in both n-type IIDT and p-type IIDDT devices. We find that the intramolecular charge-transfer states canmore » largely enhance Seebeck effects in the n-type IIDT and p-type IIDDT devices driven by both surface polarization difference and entropy difference. Furthermore, the Seebeck effects can be shifted between polarization and entropy regimes when electrical conductivities are changed. This reveals a new concept to develop Seebeck effects by controlling polarization and entropy regimes based on charge-transfer states in vertical conductor/polymer/conductor thin-film devices.« less
Condon, Joshua E; Jayaraman, Arthi
2017-10-04
Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (T m ) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (T a ) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA T m in these systems, as the number of ONA-star polymer arms increase, the assembly temperature T a increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.
Mahalingam, Alamelu; Geonnotti, Anthony R.; Balzarini, Jan; Kiser, Patrick F.
2011-01-01
Lectins derived from plant and microbial sources constitute a vital class of entry inhibitors that target the oligomannose residues on the HIV envelope gp120. Despite their potency and specificity, success of lectin-based entry inhibitors may be impeded by issues in regards to economical production, formulation and potential mitogenicity. Therefore, there exists a gap in the HIV therapeutics pipeline that underscores the need for mass producible, synthetic, broad-spectrum, and biocomptabile inhibitors of HIV entry. Here, we present the development of a polymeric synthetic lectin, based on benzoboroxole (BzB), which exhibits weak affinity (~25 M−1) for non-reducing sugars, similar to those found on the HIV envelope. High molecular weight BzB-functionalized polymers demonstrated antiviral activity that increased with an increase in ligand density and molecular weight of the polymer construct; revealing that polyvalency improves activity. Polymers showed significant increase in activity from 25 to 75 mol% BzB functionalization with EC50 of 15 μM and 15 nM, respectively. A further increase in mole functionalization to 90% resulted in an increase of the EC50 (59 ± 5 nM), likely due to the elongated rigid structure of the polymer chain compelled by electrostatic repulsion between the boronic acid groups. An increase in molecular weight of the polymer at 50 mol% BzB functionalization showed a gradual but significant increase in antiviral activity, with the highest activity seen with the 382 kDa polymer (EC50 of 1.1 ± 0.5 nM in CEM cells and 11 ± 3 nM in TZM-bl cells). Supplementing the polymer backbone with 10 mol% sulfonic acid not only increased the aqueous solubility of the polymers by at least 50-fold, but also demonstrated a synergistic increase in anti-HIV activity (4.0 ± 1.5 nM in TZM-bl cells), possibly due to electrostatic interactions between the negatively charged polymer backbone and the positively charged V3-loop in the gp120. The benzoboroxole-sulfonic acid copolymers showed no decrease in activity in the presence of a seminal concentration of fructose (p > 0.05). Additionally, the co-polymers exhibit minimal, if any effect on the cellular viability, barrier properties, or cytokine levels in human reconstructed ecto-cervical tissue after 3 days of repeated exposure and did not show pronounced activity against a variety of other RNA and DNA viruses. PMID:21879735
Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant.
Bao, Qinye; Liu, Xianjie; Braun, Slawomir; Li, Yanqing; Tang, Jianxin; Duan, Chungang; Fahlman, Mats
2017-10-11
Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of π-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.
Effect of CdS nanocrystals on charge transport mechanism in poly(3-hexylthiophene)
NASA Astrophysics Data System (ADS)
Khan, Mohd Taukeer; Almohammedi, Abdullah
2017-08-01
The present manuscript demonstrates the optical and electrical characteristics of poly(3-hexylthiophene) (P3HT) and cadmium sulphide (CdS) hybrid nanocomposites. Optical results suggest that there is a formation of charge transfer complex (CTC) between host P3HT and guest CdS nanocrystals (NCs). Electrical properties of P3HT and P3HT-CdS thin films have been studied in hole only device configurations at different temperatures (290 K-150 K), and results were analysed by the space charge limited conduction mechanism. Density of traps and characteristic trap energy increase on incorporation of inorganic NCs in the polymer matrix, which might be due to the additional favourable energy states created by CdS NCs in the band gap of P3HT. These additional trap states assist charge carriers to move quicker which results in enhancement of hole mobility from 7 × 10-6 to 5.5 × 10-5 cm2/V s in nanocomposites. These results suggest that the P3HT-CdS hybrid system has desirable optical and electrical properties for its applications to photovoltaics devices.
NASA Astrophysics Data System (ADS)
Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David
Diffusion of H+ and OH- along water wires provides an efficient mechanism for charge transport that is exploited by biological systems and shows promise in technological applications. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we consider H+ and OH- in finite water wires using density functional theory. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition of the charge. We employ thermostated ring polymer molecular dynamics and extract a ``universal'' diffusion coefficient from simulations with different wire sizes by considering Langevin dynamics on the potential of mean force of the charged species. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate O-O distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire, presumably making them more robust to environment fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
Reentrant equilibrium disordering in nanoparticle–polymer mixtures
Meng, Dong; Kumar, Sanat K.; Grest, Gary S.; ...
2017-01-31
A large body of experimental work has established that athermal colloid/polymer mixtures undergo a sequence of transitions from a disordered fluid state to a colloidal crystal to a second disordered phase with increasing polymer concentration. These transitions are driven by polymer-mediated interparticle attraction, which is a function of both the polymer density and size. It has been posited that the disordered state at high polymer density is a consequence of strong interparticle attractions that kinetically inhibit the formation of the colloidal crystal, i.e., the formation of a non-equilibrium gel phase interferes with crystallization. Here we use molecular dynamics simulations andmore » density functional theory on polymers and nanoparticles (NPs) of comparable size and show that the crystal-disordered phase coexistence at high polymer density for sufficiently long chains corresponds to an equilibrium thermodynamic phase transition. While the crystal is, indeed, stabilized at intermediate polymer density by polymer-induced intercolloid attractions, it is destabilized at higher densities because long chains lose significant configurational entropy when they are forced to occupy all of the crystal voids. Finally, our results are in quantitative agreement with existing experimental data and show that, at least in the nanoparticle limit of sufficiently small colloidal particles, the crystal phase only has a modest range of thermodynamic stability.« less
Charge injection and transport in regioregular poly(3-hexylthiophene)-based field-effect transistors
NASA Astrophysics Data System (ADS)
Singh, Kumar Abhishek
Organic (semi)conductors are poised as never before to transform the electronics industry towards unprecedented versatility. In this thesis, we have taken an experimental approach to address the effect of nanostructure and the energy-level alignment at the metal/polymer interface on charge injection and transport in regioregular poly(3-hexylthiophene) (rr-P3HT) based field-effect transistors (FETs). We found that the mobility and contact resistance in rr-P3HT based FETs show an inverse relationship, and that both properties were affected by the nanostructure of the polymer proving that that charge injection, in addition to charge transport, is significantly affected by the bulk-transport properties of rr-P3HT. Thereafter we successfully recessed the contacts into the SiO 2 dielectric to minimize the effect of the step between the metal contacts and the dielectric on the polymer nanomorphology. The planarization of the devices resulted in a dramatic improvement of the nanomorphology of rr-P3HT reflected as an improvement in charge injection as evident from the decrease in contact resistance values. Gold contacts were also modified by treating them with self-assembled monolayers (SAMs) of aromatic thiols. Electron-poor (electron-rich) SAMs resulted in an increase (decrease) in the Au work function because of the electron-withdrawing (-donating) tendency of the polar molecules. The change in metal work-function by SAM modification also resulted in a modulation of the contact resistance. While there was a clear effect on charge injection upon modification of the contacts, either by SAMs or planarization, the mobility values improved only in the short-channel devices indicating that at longer channels the OFETs are channel-limited because of grain-boundary limited charge transport. Photoemission spectroscopy was also conducted to investigate the energy level alignment at bottom-contact (polymer-on-metal) and top-contact (metal-on-polymer) geometries for high work function metals (Au, Pt) and rr-P3HT. The Fermi energy level was found to be pinned at the polaronic energy level within the band gap of rr-P3HT resulting in barrier-less interfaces for charge injection. Photoemission spectroscopy studies of the metal-on-polymer configuration also provided insight into the chemical structure of the metal/polymer interface. Platinum was found to react with sulfur from the thiophene ring whereas Au was found to be relatively unreactive.
NASA Astrophysics Data System (ADS)
Xie, Yunchuan; Wang, Jian; Yu, Yangyang; Jiang, Wanrong; Zhang, Zhicheng
2018-05-01
Polymer/ceramic nanocomposites are promising dielectrics for high energy storage density (Ue) capacitors. However, their low breakdown strength (Eb) and high dielectric loss due to heterogeneous structure seriously limit their applications under high electric field. In this work, boron nitride nano-sheets (BNNS) exfoliated from BN particles were introduced into PVDF-based BaTiO3 (mBT) binary composites to reduce the dielectric loss and promote the Ue. The effects of BNNS on the dielectric properties, especially breakdown resistance, and energy storage performance of the resultant composites were carefully investigated by comparing with the composites without BNNS. The introduction of BNNS could significantly improve Eb and Ue of the final composites. Ternary composite with particle contents of 6 wt% BNNS and 5 wt% mBT presented a Eb of about 400 MV/m and Ue of 5.2 J/cm3, which is 40% and 30% superior to that of the binary composite with 5 wt% mBT, respectively. That may be attributed to the 2D structure, high bulk electrical resistivity, and fine dispersion in PVDF of BNNS, which is acting as an efficient insulating barrier against the leakage current and charges conduction. The depression effect of BNNS onto the charge mobility and the interfacial polarization of the polymer composites is finely addressed, which may offer a promising strategy for the fabrication of high-k polymer composites with low loss.
Namvar, Azadeh; Warriner, Keith
2007-04-15
The fabrication of Bacillus subtilis endospore imprinted conducting polymer films and subsequent electrochemical detection of bound spores is reported. Imprinted films were prepared by absorbing spores on the surface of glassy carbon electrodes upon which a polypyrrole, followed by a poly(3-methylthiophene), layer were electrochemically deposited. Spore template release was achieved through soaking the modified electrode in DMSO. Binding of endospores to imprinted films could be detected via impedance spectroscopy by monitoring changes in Y'' (susceptance) using Mn(II)Cl2 (0.5M pH 3) as the supporting electrolyte. Here, the change in Y'' could be correlated to spore densities between 10(4) and 10(7)cfu/ml. More sensitive detection of absorbed spores was achieved by following endospore germination via changes in film charge as measured using cyclic voltammetry. Here, imprinted films were submerged in spore suspensions to permit absorption, heat activated at 70 degrees C for 10 min prior to transferring to an electrochemical cell containing germination activators. By using the assay format it was possible to detect 10(2)cfu/ml. The observed changes in film charge could be attributed to the interaction of the supporting conducting polymer with dipicolinic acid (DPA) and other constituents released from the core in the course of germination. In all cases, it was not possible to regenerate the imprinted films without losing electrode response. In summary, the study has provided proof-of-concept for fabricating microbial imprinted films using conducting polymers.
NASA Astrophysics Data System (ADS)
Rothe, C.; Al Attar, H. A.; Monkman, A. P.
2005-10-01
The triplet exciton densities in electroluminescent devices prepared from two polyspirobifluorene derivatives have been investigated by means of time-resolved transient triplet absorption as a function of optical and electrical excitation power at 20 K. Because of the low mobility of the triplet excitons at this temperature, the triplet generation profile within the active polymer layer is preserved throughout the triplet lifetime and as a consequence the absolute triplet-triplet annihilation efficiency is not homogeneously distributed but depends on position within the active layer. This then gives a method to measure the charge-carrier recombination layer after electrical excitation relative to the light penetration depth, which is identical to the triplet generation layer after optical excitation. With the latter being obtained from ellipsometry, an absolute value of 5 nm is found for the exciton formation layer in polyspirobifluorene devices. This layer increases to 11 nm if the balance between the electron and the hole mobility is improved by chemically modifying the polymer backbone. Also, and consistent with previous work, triplet diffusion is dispersive at low temperature. As a consequence of this, the triplet-triplet annihilation rate is not a constant in the classical sense but depends on the triplet excitation dose. At 20 K and for typical excitation doses, absolute values of the latter rate are of the order of 10-14cm3s-1 .
Hybrid supercapacitor-battery materials for fast electrochemical charge storage
Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.
2014-01-01
High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843
Fang, Yuanxing; Xu, Yuntao; Li, Xiaochun; Ma, Yiwen; Wang, Xinchen
2018-06-14
Solar-to-fuel conversion via photoelectrochemical (PEC) water splitting has the potential to ease current energy and environmental concerns. In pursuit of sustainability, polymeric carbon nitride (PCN) photosensitizers are receiving increasing attention as replacements for their inorganic counterparts. However, intense charge recombination, primarily because of the numerous surface defects, limits the use of PCN in PEC systems. Herein, photoanodes are designed by coating PCN films onto highly conductive yttrium (Y) doped zinc oxide (ZnO) nanorods (NRs) serving as charge collectors. The generation of charge carriers can therefore be promoted by this type II heterostructure. Accordingly, the charge collectors would be kept nearby for charge separation and transport to be used in the interfacial redox reactions. As such, the photocurrent density of the polymer electrode is improved to an exceptional value of 0.4 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) in a Na2SO4 electrolyte solution under AM 1.5 illumination. The result reveals a more than 50-fold enhancement over the PCN films achieved by powder, and the efficiency can be preserved at ca. 95% for 160 minutes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.
Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike
2015-12-22
The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.
Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes
2016-01-01
The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification. PMID:26867006
Annealed Scaling for a Charged Polymer
NASA Astrophysics Data System (ADS)
Caravenna, F.; den Hollander, F.; Pétrélis, N.; Poisat, J.
2016-03-01
This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems. What happens for the quenched free energy per monomer remains open. We state two modest results and raise a few questions.
Tsang, Sai-Wing; Chen, Song; So, Franky
2013-05-07
Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shao, Shiyang; Hu, Jun; Wang, Xingdong; Wang, Lixiang; Jing, Xiabin; Wang, Fosong
2017-12-13
We demonstrate novel molecular design for thermally activated delayed fluorescence (TADF) polymers based on a nonconjugated polyethylene backbone with through-space charge transfer effect between pendant electron donor (D) and acceptor (A) units. Different from conventional conjugated D-A polymers with through-bond charge transfer effect, the nonconjugated architecture avoids direct conjugation between D and A units, enabling blue emission. Meanwhile, spatial π-π interaction between the physically separated D and A units results in both small singlet-triplet energy splitting (0.019 eV) and high photoluminescence quantum yield (up to 60% in film state). The resulting polymer with 5 mol % acceptor unit gives efficient blue electroluminescence with Commission Internationale de l'Eclairage coordinates of (0.176, 0.269), together with a high external quantum efficiency of 12.1% and low efficiency roll-off of 4.9% (at 1000 cd m -2 ), which represents the first example of blue TADF nonconjugated polymer.
Müllner, Markus; Cui, Jiwei; Noi, Ka Fung; Gunawan, Sylvia T; Caruso, Frank
2014-06-03
We report a templating approach for the preparation of functional polymer replica particles via surface-initiated polymerization in mesoporous silica templates. Subsequent removal of the template resulted in discrete polymer particles. Furthermore, redox-responsive replica particles could be engineered to disassemble in a reducing environment. Particles, made of poly(methacryloyloxyethyl phosphorylcholine) (PMPC) or poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), exhibited very low association to human cancer cells (below 5%), which renders the reported charge-neutral polymer particles a modular and versatile class of highly functional carriers with potential applications in drug delivery.
Luminescent tunable polydots: Charge effects in confined geometry
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2017-06-28
Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. As a result, we find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.
Lawton, Jonathan M; Habib, Mariam; Ma, Bingkui; Brooks, Roger A; Best, Serena M; Lewis, Andrew L; Rushton, Neil; Bonfield, William
2017-08-17
The effect of introducing cationic charge into phosphorylcholine (PC)-based polymers has been investigated in this study with a view to using these materials as coatings to improve bone formation and osseointegration at the bone-implant interface. PC-based polymers, which have been used in a variety of medical devices to improve biocompatibility, are associated with low protein adsorption resulting in reduced complement activation, inflammatory response and cell adhesion. However, in some applications, such as orthopaedics, good integration between the implant and bone is needed to allow the distribution of loading stresses and a bioactive response is required. It has previously been shown that the incorporation of cationic charge into PC-based polymers may increase protein adsorption that stimulates subsequent cell adhesion. In this paper, the effect of cationic charge in PC-based polymers on human osteoblasts (HObs) in vitro and the effect of these polymers on bone formation in the rat tibia was assessed. Increasing PC positive surface charge increased HOb cell adhesion and stimulated increased cell differentiation and the production of calcium phosphate deposits. However, when implanted in bone these materials were at best biotolerant, stimulating the production of fibrous tissue and areas of loosely associated matrix (LAM) around the implant. Their development, as formulated in this study, as bone interfacing implant coatings is therefore not warranted.
Buyel, Johannes F; Fischer, Rainer
2014-02-01
Flocculation is a cost-effective method that is used to improve the efficiency of clarification by causing dispersed particles to clump together, allowing their removal by sedimentation, centrifugation or filtration. The efficacy of flocculation for any given process depends on the nature and concentration of the particulates in the feed stream, the concentration, charge density and length of the flocculant polymer, the shear rate, the properties of the feed stream (e.g. pH and ionic strength) and the properties of the target products. We tested a range of flocculants and process conditions using a design of experiments approach to identify the most suitable polymers for the clarification step during the production of a HIV-neutralizing monoclonal antibody (2G12) and a fluorescent marker protein (DsRed) expressed in transgenic tobacco leaves. Among the 23 different flocculants we tested, the greatest reduction in turbidity was achieved with Polymin P, a branched, cationic polyethylenimine with a charge density of 13.0 meq/g. This flocculant reduced turbidity by more than 90% under a wide range of process conditions. We developed a model that predicted its performance under different process conditions, and this enabled us to increase the depth filter capacity three-sevenfold depending on the process scale, depth filter type and plant species. The costs of filter consumables were reduced by more than 50% compared with a process without flocculant, and there was no loss of recovery for either 2G12 or DsRed. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Artificial Informational Polymers and Nanomaterials from Ring-Opening Metathesis Polymerization
NASA Astrophysics Data System (ADS)
James, Carrie Rae
Inspired by naturally occurring polymers (DNA, polypeptides, polysaccharides, etc.) that can self-assemble on the nanoscale into complex, information-rich architectures, we have synthesized nucleic acid based polymers using ROMP. These polymers were synthesized using a graft-through strategy, whereby nucleic acids bearing a strained cyclic olefin were directly polymerized. This is the first example of the graft-through polymerization of nucleic acids. Our approach takes advantage of non-charged peptide nucleic acids (PNAs) as elements to incorporate into ROMP polymer backbones. PNA is a synthetic nucleic acid analogue known for its increased affinity and specificity for complementary DNA or RNA. To accomplish the graft-through polymerization of PNA, we conjugated PNA to strained cyclic olefins using solid phase peptide conjugation chemistry. These PNA monomers were then directly polymerized into homo and block copolymers forming brushes, or comb-like arrangements, of information. Block copolymer amphiphiles of these materials, where the PNA brush served as the hydrophilic portion, were capable of self-assembly into spherical nanoparticles (PNA NPs). These PNA NPs were then studied with respect to their ability to hybridize complementary DNA sequences, as well as their ability to undergo cellular internalization. PNA NPs consisting of densely packed brushes of nucleic acids possessed increased thermal stability when mixed with their complementary DNA sequence, indicating a greater DNA binding affinity over their unpolymerized PNA counterparts. In addition, by arranging the PNA into dense brushes at the surface of the nanoparticle, Cy5.5 labeled PNA NPs were able to undergo cellular internalization into HeLa cells without the need for an additional cellular delivery device. Importantly, cellular internalization of PNA has remained a significant challenge in the literature due to the neutrally charged amino-ethyl glycine backbone of PNA. Therefore, this represents a novel way of facilitating cellular uptake of PNA. This materials strategy represents the first direct polymerization of nucleic acids, and presents a novel method for arranging biological information on the nanoscale at high density in order to confer novel attributes.
Lignin Modification for Biopolymer/Conjugated Polymer Hybrids as Renewable Energy Storage Materials.
Nilsson, Ting Yang; Wagner, Michal; Inganäs, Olle
2015-12-07
Lignin derivatives, which arise as waste products from the pulp and paper industry and are mainly used for heating, can be used as charge storage materials. The charge storage function is a result of the quinone groups formed in the lignin derivative. Herein, we modified lignins to enhance the density of such quinone groups by covalently linking monolignols and quinones through phenolation. The extra guaiacyl, syringyl, and hydroquinone groups introduced by phenolation of kraft lignin derivatives were monitored by (31) P nuclear magnetic resonance and size exclusion chromatography. Electropolymerization in ethylene glycol/tetraethylammonium tosylate electrolyte was used to synthesize the kraft lignin/polypyrrole hybrid films. These modifications changed the phenolic content of the kraft lignin with attachment of hydroquinone units yielding the highest specific capacity (around 70 mA h g(-1) ). The modification of softwood and hardwood lignin derivatives yielded 50 % and 23 % higher charge capacity than the original lignin, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Materials and techniques for spacecraft static charge control
NASA Technical Reports Server (NTRS)
Amore, L. J.; Eagles, A. E.
1977-01-01
An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage.
Scanning Probe Microscopy of Organic Solar Cells
NASA Astrophysics Data System (ADS)
Reid, Obadiah G.
Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than trEFM, and of greater utility in identifying local changes in steady-state charge density that can be associated with charge trapping. In the second case, we have developed a new understanding of charge transport between a sharp AFM tip and planar substrates applicable to conductive and photoconductive atomic force microscopy, and shown that hole-only transport characteristics can be easily obtained including quantitative values of the charge carrier mobility. Finally, we have shown that intensity-dependent photoconductive atomic force microscopy measurements can be used to infer the 3D structure of organic photovoltaic materials, and gained new insight into the influence vertical composition of the these devices can have on their open-circuit voltage and its intensity dependence.
Polymer Literature and Samples for Classroom Use.
ERIC Educational Resources Information Center
Meister, John J.
1995-01-01
Updates papers published ten years ago listing suppliers of polymer samples and literature for classroom use. Provides names and addresses of societies and trade associations that will provide literature on polymers free of charge. Includes a table listing companies that provide samples of polymers or recycled polymers. Another table listing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying
2017-01-01
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor–acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π–π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment. PMID:28703136
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; ...
2017-07-13
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu
2015-07-21
Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.
NASA Technical Reports Server (NTRS)
Sechen, C. M.; Senturia, S. D.
1977-01-01
The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires.
Kang, Hyunbum; Lee, Wonho; Oh, Jiho; Kim, Taesu; Lee, Changyeon; Kim, Bumjoon J
2016-11-15
All-polymer solar cells (all-PSCs), consisting of conjugated polymers as both electron donor (P D ) and acceptor (P A ), have recently attracted great attention. Remarkable progress has been achieved during the past few years, with power conversion efficiencies (PCEs) now approaching 8%. In this Account, we first discuss the major advantages of all-PSCs over fullerene-polymer solar cells (fullerene-PSCs): (i) high light absorption and chemical tunability of P A , which affords simultaneous enhancement of both the short-circuit current density (J SC ) and the open-circuit voltage (V OC ), and (ii) superior long-term stability (in particular, thermal and mechanical stability) of all-PSCs due to entangled long P A chains. In the second part of this Account, we discuss the device operation mechanism of all-PSCs and recognize the major challenges that need to be addressed in optimizing the performance of all-PSCs. The major difference between all-PSCs and fullerene-PSCs originates from the molecular structures and interactions, i.e., the electron transport ability in all-PSCs is significantly affected by the packing geometry of two-dimensional P A chains relative to the electrodes (e.g., face-on or edge-on orientation), whereas spherically shaped fullerene acceptors can facilitate isotropic electron transport properties in fullerene-PSCs. Moreover, the crystalline packing structures of P D and P A at the P D -P A interface greatly affect their free charge carrier generation efficiencies. The design of P A polymers (e.g., main backbone, side chain, and molecular weight) should therefore take account of optimizing three major aspects in all-PSCs: (1) the electron transport ability of P A , (2) the molecular packing structure and orientation of P A , and (3) the blend morphology. First, control of the backbone and side-chain structures, as well as the molecular weight, is critical for generating strong intermolecular assembly of P A and its network, thus enabling high electron transport ability of P A comparable to that of fullerenes. Second, the molecular orientation of anisotropically structured P A should be favorably controlled in order to achieve efficient charge transport as well as charge transfer at the P D -P A interface. For instance, face-to-face stacking between P D and P A at the interface is desired for efficient free charge carrier generation because misoriented chains often cause an additional energy barrier for overcoming the binding energy of the charge transfer state. Third, large-scale phase separation often occurs in all-PSCs because of the significantly reduced entropic contribution by two macromolecular chains of P D and P A that energetically disfavors mixing. In this Account, we review the recent progress toward overcoming each recognized challenge and intend to provide guidelines for the future design of P A . We believe that by optimization of the parameters discussed above the PCE values of all-PSCs will surpass the 10% level in the near future and that all-PSCs are promising candidates for the successful realization of flexible and portable power generators.
New Secondary Batteries Utilizing Electronically Conductive Polypyrrole Cathode. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Yeu, Taewhan
1991-01-01
To gain a better understanding of the dynamic behavior in electronically conducting polypyrroles and to provide guidance toward designs of new secondary batteries based on these polymers, two mathematical models are developed; one for the potentiostatically controlled switching behavior of polypyrrole film, and one for the galvanostatically controlled charge/discharge behavior of lithium/polypyrrole secondary battery cell. The first model is used to predict the profiles of electrolyte concentrations, charge states, and electrochemical potentials within the thin polypyrrole film during switching process as functions of applied potential and position. Thus, the detailed mechanisms of charge transport and electrochemical reaction can be understood. Sensitivity analysis is performed for independent parameters, describing the physical and electrochemical characteristic of polypyrrole film, to verify their influences on the model performance. The values of independent parameters are estimated by comparing model predictions with experimental data obtained from identical conditions. The second model is used to predict the profiles of electrolyte concentrations, charge state, and electrochemical potentials within the battery system during charge and discharge processes as functions of time and position. Energy and power densities are estimated from model predictions and compared with existing battery systems. The independent design criteria on the charge and discharge performance of the cell are provided by studying the effects of design parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya
The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less
Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; ...
2016-08-09
The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less
Lei, Ting; Pochorovski, Igor; Bao, Zhenan
2017-04-18
Electronics that are soft, conformal, and stretchable are highly desirable for wearable electronics, prosthetics, and robotics. Among the various available electronic materials, single walled carbon nanotubes (SWNTs) and their network have exhibited high mechanical flexibility and stretchability, along with comparable electrical performance to traditional rigid materials, e.g. polysilicon and metal oxides. Unfortunately, SWNTs produced en masse contain a mixture of semiconducting (s-) and metallic (m-) SWNTs, rendering them unsuitable for electronic applications. Moreover, the poor solubility of SWNTs requires the introduction of insulating surfactants to properly disperse them into individual tubes for device fabrication. Compared to other SWNT dispersion and separation methods, e.g., DNA wrapping, density gradient ultracentrifugation, and gel chromatography, polymer wrapping can selectively disperse s-SWNTs with high selectivity (>99.7%), high concentration (>0.1 mg/mL), and high yield (>20%). In addition, this method only requires simple sonication and centrifuge equipment with short processing time down to 1 h. Despite these advantages, the polymer wrapping method still faces two major issues: (i) The purified s-SWNTs usually retain a substantial amount of polymers on their surface even after thorough rinsing. The low conductivity of the residual polymers impedes the charge transport in SWNT networks. (ii) Conjugated polymers used for SWNT wrapping are expensive. Their prices ($100-1000/g) are comparable or even higher than those of SWNTs ($10-300/g). These utilized conjugated polymers represent a large portion of the overall separation cost. In this Account, we summarize recent progresses in polymer design for selective dispersion and separation of SWNTs. We focus particularly on removable and/or recyclable polymers that enable low-cost and scalable separation methods. First, different separation methods are compared to show the advantages of the polymer wrapping methods. In specific, we compare different characterization methods used for purity evaluation. For s-SWNTs with high purity, i.e., >99%, short-channel (smaller than SWNT length) electrical measurement is more reliable than optical methods. Second, possible sorting mechanism and molecular design strategies are discussed. Polymer parameters such as backbone design and side chain engineering affect the polymer-SWNT interactions, leading to different dispersion concentration and selectivity. To address the above-mentioned limiting factors in both polymer contamination and cost issues, we describe two important polymer removal and cycling approaches: (i) changing polymer wrapping conformation to release SWNTs; (ii) depolymerization of conjugated polymer into small molecular units that have less affinity toward SWNTs. These methods allow the removal and recycling of the wrapping polymers, thus providing low-cost and clean s-SWNTs. Third, we discuss various applications of polymer-sorted s-SWNTs, including flexible/stretchable thin-film transistors, thermoelectric devices, and solar cells. In these applications, polymer-sorted s-SWNTs and their networks have exhibited good processability, attractive mechanical properties, and high electrical performance. An increasing number of studies have shown that the removable polymer approaches can completely remove polymer residues in SWNT networks and lead to enhanced charge carrier mobility, higher conductivity, and better heterojunction interface.
Zhang, Xi; Jiang, Hongrui
2015-03-09
Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.
2016-03-23
How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electronmore » acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.« less
Xiao, Xinxin; Conghaile, Peter Ó; Leech, Dónal; Ludwig, Roland; Magner, Edmond
2017-04-15
The integration of supercapacitors with enzymatic biofuel cells (BFCs) can be used to prepare hybrid devices in order to harvest significantly higher power output. In this study, a supercapacitor/biofuel cell hybrid device was prepared by the immobilisation of redox enzymes with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and the redox polymer [Os(2,2'-bipyridine) 2 (polyvinylimidazole) 10 Cl] +/2+ (Os(bpy) 2 PVI) on dealloyed nanoporous gold. The thickness of the deposition layer can be easily controlled by tuning the deposition conditions. Once charged by the internal BFC, the device can be discharged as a supercapacitor at a current density of 2mAcm -2 providing a maximum power density of 608.8μWcm -2 , an increase of a factor of 468 when compared to the power output from the BFC itself. The hybrid device exhibited good operational stability for 50 charge/discharge cycles and ca. 7h at a discharge current density of 0.2mAcm -2 . The device could be used as a pulse generator, mimicking a cardiac pacemaker delivering pulses of 10μA for 0.5ms at a frequency of 0.2Hz. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon.
Pech, David; Brunet, Magali; Durou, Hugo; Huang, Peihua; Mochalin, Vadym; Gogotsi, Yury; Taberna, Pierre-Louis; Simon, Patrice
2010-09-01
Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s(-1), which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.
Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon
NASA Astrophysics Data System (ADS)
Pech, David; Brunet, Magali; Durou, Hugo; Huang, Peihua; Mochalin, Vadym; Gogotsi, Yury; Taberna, Pierre-Louis; Simon, Patrice
2010-09-01
Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s-1, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.
Kang, Yu Jin; Chun, Sang-Jin; Lee, Sung-Suk; Kim, Bo-Yeong; Kim, Jung Hyeun; Chung, Haegeun; Lee, Sun-Young; Kim, Woong
2012-07-24
We demonstrate all-solid-state flexible supercapacitors with high physical flexibility, desirable electrochemical properties, and excellent mechanical integrity, which were realized by rationally exploiting unique properties of bacterial nanocellulose, carbon nanotubes, and ionic liquid based polymer gel electrolytes. This deliberate choice and design of main components led to excellent supercapacitor performance such as high tolerance against bending cycles and high capacitance retention over charge/discharge cycles. More specifically, the performance of our supercapacitors was highly retained through 200 bending cycles to a radius of 3 mm. In addition, the supercapacitors showed excellent cyclability with C(sp) (~20 mF/cm(2)) reduction of only <0.5% over 5000 charge/discharge cycles at the current density of 10 A/g. Our demonstration could be an important basis for material design and development of flexible supercapacitors.
Cini, N; Ball, V
2014-07-01
Polyphosphates are important but neglected polyelectrolytes that play a major role in biology and in surface science for the stabilization of colloids against flocculation and for the preservation of food. They are also known as "Calgon" ® and intensively used as additives in washing powders. This review aims to review recent developments in which linear polyphosphates are used for the design of new functional coatings using sol-gel processes and layer-by-layer deposition methods. All these methods rely on the high charge density of polyphosphates as inorganic polyelectrolytes, therefore the structure and properties of these molecules are also reviewed. New perspectives will also been given for the design of stimuli responsive coatings at the tiny frontier between biology and materials science. Copyright © 2014 Elsevier B.V. All rights reserved.
Statistical field theory description of inhomogeneous polarizable soft matter
NASA Astrophysics Data System (ADS)
Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.
2016-10-01
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
NASA Astrophysics Data System (ADS)
Chang, Longfei; Asaka, Kinji; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Li, Dichen
2014-06-01
Ionic Polymer-Metal Composite (IPMC) has been well-documented of being a promising functional material in extensive applications. In its most popular and traditional manufacturing technique, roughening is a key process to ensure a satisfying performance. In this paper, based on a lately established multi-physical model, the effect of roughening process on the inner mass transportation and the electro-active output of IPMC were investigated. In the model, the electro-chemical field was monitored by Poisson equation and a properly simplified Nernst-Planck equation set, while the mechanical field was evaluated on the basis of volume strain effect. Furthermore, with Ramo-Shockley theorem, the out-circuit current and accumulated charge on the electrode were bridged with the inner cation distribution. Besides, nominal current and charge density as well as the curvature of the deformation were evaluated to characterize the performance of IPMC. The simulation was implemented by Finite Element Method with Comsol Multi-physics, based on two groups of geometrical models, those with various rough interface and those with different thickness. The results of how the roughening impact influences on the performance of IPMC were discussed progressively in three aspects, steady-state distribution of local potential and mass concentration, current response and charge accumulation, as well as the curvature of deformation. Detailed explanations for the performance improvement resulted from surface roughening were provided from the micro-distribution point of view, which can be further explored for the process optimization of IPMC.
Statistical field theory description of inhomogeneous polarizable soft matter.
Martin, Jonathan M; Li, Wei; Delaney, Kris T; Fredrickson, Glenn H
2016-10-21
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
Österholm, Anna M; Shen, D Eric; Dyer, Aubrey L; Reynolds, John R
2013-12-26
We report on the optimization of the capacitive behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) films as polymeric electrodes in flexible, Type I electrochemical supercapacitors (ESCs) utilizing ionic liquid (IL) and organic gel electrolytes. The device performance was assessed based on figures of merit that are critical to evaluating the practical utility of electroactive polymer ESCs. PEDOT/IL devices were found to be highly stable over hundreds of thousands of cycles and could be reversibly charged/discharged at scan rates between 500 mV/s and 2 V/s depending on the polymer loading. Furthermore, these devices exhibit leakage currents and self-discharge rates that are comparable to state of the art electrochemical double-layer ESCs. Using an IL as device electrolyte allowed an extension of the voltage window of Type I ESCs by 60%, resulting in a 2.5-fold increase in the energy density obtained. The efficacies of tjese PEDOT ESCs were assessed by using them as a power source for a high-contrast and fast-switching electrochromic device, demonstrating their applicability in small organic electronic-based devices.
Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.
Han, Mengwei; Espinosa-Marzal, Rosa M
2017-09-07
We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barone, C., E-mail: cbarone@unisa.it; Mauro, C.; Pagano, S.
Carbon nanotubes added to polymer and epoxy matrices are compounds of interest for applications in electronics and aerospace. The realization of high-performance devices based on these materials can profit from the investigation of their electric noise properties, as this gives a more detailed insight of the basic charge carriers transport mechanisms at work. The dc and electrical noise characteristics of different polymer/carbon nanotubes composites have been analyzed from 10 to 300 K. The results suggest that all these systems can be regarded as random resistive networks of tunnel junctions formed by adjacent carbon nanotubes. However, in the high-temperature regime, contributions derivingmore » from other possible mechanisms cannot be separated using dc information alone. A transition from a fluctuation-induced tunneling process to a thermally activated regime is instead revealed by electric noise spectroscopy. In particular, a crossover is found from a two-level tunneling mechanism, operating at low temperatures, to resistance fluctuations of a percolative network, in the high-temperature region. The observed behavior of 1/f noise seems to be a general feature for highly conductive samples, independent on the type of polymer matrix and on the nanotube density.« less
Electrochemical properties of lithium iron phosphate cathode material using polymer electrolyte
NASA Astrophysics Data System (ADS)
Kim, Jae-Kwang; Choi, Jae-Won; Cheruvally, Gouri; Shin, Yong-Jo; Ahn, Jou-Hyeon; Cho, Kwon-Koo; Ahn, Hyo-Jun; Kim, Ki-Won
2007-12-01
Carbon-coated lithium iron phosphate (LiFePO4/C) cathode material was synthesized by mechano-chemical activation method. The performance of LiFePO4/C in lithium battery was tested with an electrospun polymer-based electrolyte. Liquid electrolyte of 1M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) (1 : 1vol) was incorporated in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-HFP)) microfibrous membrane to prepare the polymer electrolyte (PE). The cell based on Li|PE|Li FePO4/C exhibited an initial discharge capacity of 142 mAh g-1 at 0.1 C-rate at room temperature. Good cycling performance even under the high current density of 2 C could be obtained. Impedance spectroscopy was applied to investigate the material behavior during 0.1 C-rate charge-discharge cycling. When the fresh cell and the cell after different cycles were compared, impedance resistance was found to decrease with cycling. Impedance study indicated good cycle life for the cell when tested at room temperature.
Yusuf, S N F; Azzahari, A D; Selvanathan, V; Yahya, R; Careem, M A; Arof, A K
2017-02-10
A binary salt system utilizing lithium iodide (LiI) as the auxiliary component has been introduced to the N-phthaloylchitosan (PhCh) based gel polymer electrolyte consisting of ethylene carbonate (EC), dimethylformamide (DMF), tetrapropylammonium iodide (TPAI), and iodine (I 2 ) in order to improve the performance of dye-sensitized solar cell (DSSC) with efficiency of 6.36%, photocurrent density, J SC of 17.29mAcm -2 , open circuit voltage, V OC of 0.59V and fill factor, FF of 0.62. This efficiency value is an improvement from the 5.00% performance obtained by the DSSC consisting of only TPAI single salt system. The presence of the LiI in addition to the TPAI improves the charge injection rates and increases the iodide contribution to the total conductivity and both factors contribute to the increase in efficiency of the DSSC. The interaction behavior between polymer-plasticizer-salt was thoroughly investigated using EIS, FTIR spectroscopy and XRD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li
2011-09-01
Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuning; Zuo, Xiaobing; Xie, Shenkun
Photovoltaic characteristics, recombination and charge transport properties are investigated. The determined recombination reduction factor can reconcile the supreme device performance in organic solar cells using non-fullerene ITIC acceptor and severe carrier losses in all-polymer devices with P(NDI2OD-T2).
NASA Astrophysics Data System (ADS)
Zhang, Ling; Khani, Mohammad M.; Krentz, Timothy M.; Huang, Yanhui; Zhou, Yuanxiang; Benicewicz, Brian C.; Nelson, J. Keith; Schadler, Linda S.
2017-03-01
Incorporating inorganic nanoparticles (NPs) into polymer matrices provides a promising solution for suppressing space charge effects that can lead to premature failure of electrical insulation used in high voltage direct current engineering. However, realizing homogeneous NP dispersion is a great challenge especially in high-molecular-weight polymers. Here, we address this issue in crosslinked polyethylene by grafting matrix-compatible polymer brushes onto spherical colloidal SiO2 NPs (10-15 nm diameter) to obtain a uniform NP dispersion, thus achieving enhanced space charge suppression, improved DC breakdown strength, and restricted internal field distortion (≤10.6%) over a wide range of external DC fields from -30 kV/mm to -100 kV/mm at room temperature. The NP dispersion state is the key to ensuring an optimized distribution of deep trapping sites. A well-dispersed system provides sufficient charge trapping sites and shows better performance compared to ones with large aggregates. This surface ligand strategy is attractive for future nano-modification of many engineering insulating polymers.
NASA Astrophysics Data System (ADS)
Bhowal, Ashim Chandra; Kundu, Sarathi
2018-04-01
PEDOT:PSS is a water soluble conducting polymer consists of positively charged PEDOT and negatively charged PSS. However, this polymer suffers low conductivity problem which restrict its use. In this paper, electrical conductivity of PEDOT:PSS thin films is improved by using charged gold nanoparticles. The nanoparticles used are synthesized using lysozyme protein. The nanoparticles coated with lysozyme protein possess positive zeta potential. In the presence of gold nanoparticles due to electrostatic interaction between positively charged nanoparticles and negatively charged PSS chains, modification takes place in the surface morphology and electrical behaviors of PEDOT:PSS thin films. The changes in the polymer matrix conformations in the presence of nanoparticles are studied by Fourier transformed Infra-red (FTIR) spectroscopy, whereas the surface morphology of prepared thin films before and after interaction with nanoparticles is investigated through atomic force microscopy (AFM). Four probe method is used to measure the variation of electrical conductivity from I-V characteristics curves.
NASA Astrophysics Data System (ADS)
Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick
2018-05-01
We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.
A nonconjugated radical polymer glass with high electrical conductivity
NASA Astrophysics Data System (ADS)
Joo, Yongho; Agarkar, Varad; Sung, Seung Hyun; Savoie, Brett M.; Boudouris, Bryan W.
2018-03-01
Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.
Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review
Wang, Hsing-Ju; Chen, Chih-Ping; Jeng, Ru-Jong
2014-01-01
Polythiophene (PT) is one of the widely used donor materials for solution-processable polymer solar cells (PSCs). Much progress in PT-based PSCs can be attributed to the design of novel PTs exhibiting intense and broad visible absorption with high charge carrier mobility to increase short-circuit current density (Jsc), along with low-lying highest occupied molecular orbital (HOMO) levels to achieve large open circuit voltage (Voc) values. A promising strategy to tailor the photophysical properties and energy levels via covalently attaching electron donor and acceptor pendants on PTs backbone has attracted much attention recently. The geometry, electron-donating capacity, and composition of conjugated pendants are supposed to be the crucial factors in adjusting the conformation, energy levels, and photovoltaic performance of PTs. This review will go over the most recent approaches that enable researchers to obtain in-depth information in the development of PTs comprising conjugated pendants for PSCs. PMID:28788575
Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei
2012-12-01
We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.
Li, Wanwan; Lu, Han; Zhang, Ning; Ma, Mingming
2017-06-14
We report that a postsynthesis physical process (freeze-thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline-poly(vinyl alcohol) hydrogel after five freeze-thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g -1 ). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm -2 and 210 F·g -1 ) and high energy density (18.7 W·h·kg -1 ), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge-discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze-thaw cycles for enhancing the performance of functional hydrogels.
Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy
Niklas, Jens; Poluektov, Oleg
2017-03-03
Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less
Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity
Skotheim, Terje
1986-01-01
There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity
Skotheim, T.
1984-09-28
There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
Highly stretchable polymer semiconductor films through the nanoconfinement effect
NASA Astrophysics Data System (ADS)
Xu, Jie; Wang, Sihong; Wang, Ging-Ji Nathan; Zhu, Chenxin; Luo, Shaochuan; Jin, Lihua; Gu, Xiaodan; Chen, Shucheng; Feig, Vivian R.; To, John W. F.; Rondeau-Gagné, Simon; Park, Joonsuk; Schroeder, Bob C.; Lu, Chien; Oh, Jin Young; Wang, Yanming; Kim, Yun-Hi; Yan, He; Sinclair, Robert; Zhou, Dongshan; Xue, Gi; Murmann, Boris; Linder, Christian; Cai, Wei; Tok, Jeffery B.-H.; Chung, Jong Won; Bao, Zhenan
2017-01-01
Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.
Oriented Liquid Crystalline Polymer Semiconductor Films with Large Ordered Domains.
Xue, Xiao; Chandler, George; Zhang, Xinran; Kline, R Joseph; Fei, Zhuping; Heeney, Martin; Diemer, Peter J; Jurchescu, Oana D; O'Connor, Brendan T
2015-12-09
Large strains are applied to liquid crystalline poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) (pBTTT) films when held at elevated temperatures resulting in in-plane polymer alignment. We find that the polymer backbone aligns significantly in the direction of strain, and that the films maintain large quasi-domains similar to that found in spun-cast films on hydrophobic surfaces, highlighted by dark-field transmission electron microscopy imaging. The highly strained films also have nanoscale holes consistent with dewetting. Charge transport in the films is then characterized in a transistor configuration, where the field effect mobility is shown to increase in the direction of polymer backbone alignment, and decrease in the transverse direction. The highest saturated field-effect mobility was found to be 1.67 cm(2) V(-1) s(-1), representing one of the highest reported mobilities for this material system. The morphology of the oriented films demonstrated here contrast significantly with previous demonstrations of oriented pBTTT films that form a ribbon-like morphology, opening up opportunities to explore how differences in molecular packing features of oriented films impact charge transport. Results highlight the role of grain boundaries, differences in charge transport along the polymer backbone and π-stacking direction, and structural features that impact the field dependence of charge transport.
Tian, Hongmiao; Wang, Chunhui; Shao, Jinyou; Ding, Yucheng; Li, Xiangming
2014-10-28
Electrically induced structure formation (EISF) is an interesting and unique approach for generating a microstructured duplicate from a rheological polymer by a spatially modulated electric field induced by a patterned template. Most of the research on EISF have so far used various dielectric polymers (with an electrical conductivity smaller than 10(-10) S/m that can be considered a perfect dielectric), on which the electric field induces a Maxwell stress only due to the dipoles (or bounded charges) in the polymer molecules, leading to a structure with a small aspect ratio. This paper presents a different approach for improving the aspect ratio allowed in EISF by doping organic salt into the perfect dielectric polymer, i.e., turning the perfect dielectric into a leaky dielectric, considering the fact that the free space charges enriched in the leaky dielectric polymer can make an additional contribution to the Maxwell stress, i.e., electrohydrodynamic pressure, which is desirable for high aspect ratio structuring. Our numerical simulations and experimental tests have shown that a leaky dielectric polymer, with a small conductivity comparable to that of deionized water, can be much more effective at being electrohydrodynamically deformed into a high aspect ratio in comparison with a perfect dielectric polymer when both of them have roughly the same dielectric constant.
Exact density functional theory for ideal polymer fluids with nearest neighbor bonding constraints.
Woodward, Clifford E; Forsman, Jan
2008-08-07
We present a new density functional theory of ideal polymer fluids, assuming nearest-neighbor bonding constraints. The free energy functional is expressed in terms of end site densities of chain segments and thus has a simpler mathematical structure than previously used expressions using multipoint distributions. This work is based on a formalism proposed by Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005)]. Those authors obtain an approximate free energy functional for ideal polymers in terms of monomer site densities. Calculations on both repulsive and attractive surfaces show that their theory is reasonably accurate in some cases, but does differ significantly from the exact result for longer polymers with attractive surfaces. We suggest that segment end site densities, rather than monomer site densities, are the preferred choice of "site functions" for expressing the free energy functional of polymer fluids. We illustrate the application of our theory to derive an expression for the free energy of an ideal fluid of infinitely long polymers.
Enhanced polymer capture speed and extended translocation time in pressure-solvation traps
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin
2018-06-01
The efficiency of nanopore-based biosequencing techniques requires fast anionic polymer capture by like-charged pores followed by a prolonged translocation process. We show that this condition can be achieved by setting a pressure-solvation trap. Polyvalent cation addition to the KCl solution triggers the like-charge polymer-pore attraction. The attraction speeds-up the pressure-driven polymer capture but also traps the molecule at the pore exit, reducing the polymer capture time and extending the polymer escape time by several orders of magnitude. By direct comparison with translocation experiments [D. P. Hoogerheide et al., ACS Nano 8, 7384 (2014), 10.1021/nn5025829], we characterize as well the electrohydrodynamics of polymers transport in pressure-voltage traps. We derive scaling laws that can accurately reproduce the pressure dependence of the experimentally measured polymer translocation velocity and time. We also find that during polymer capture, the electrostatic barrier on the translocating molecule slows down the liquid flow. This prediction identifies the streaming current measurement as a potential way to probe electrostatic polymer-pore interactions.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Background Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Methods Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. Results The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. Conclusion The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection. PMID:23028220
Kostritskii, Andrei Yu; Kondinskaia, Diana A; Nesterenko, Alexey M; Gurtovenko, Andrey A
2016-10-11
Although synthetic cationic polymers represent a promising class of effective antibacterial agents, the molecular mechanisms behind their antimicrobial activity remain poorly understood. To this end, we employ atomic-scale molecular dynamics simulations to explore adsorption of several linear cationic polymers of different chemical structure and protonation (polyallylamine (PAA), polyethylenimine (PEI), polyvinylamine (PVA), and poly-l-lysine (PLL)) on model bacterial membranes (4:1 mixture of zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) lipids). Overall, our findings show that binding of polycations to the anionic membrane surface effectively neutralizes its charge, leading to the reorientation of water molecules close to the lipid/water interface and to the partial release of counterions to the water phase. In certain cases, one has even an overcharging of the membrane, which was shown to be a cooperative effect of polymer charges and lipid counterions. Protonated amine groups of polycations are found to interact preferably with head groups of anionic lipids, giving rise to formation of hydrogen bonds and to a noticeable lateral immobilization of the lipids. While all the above findings are mostly defined by the overall charge of a polymer, we found that the polymer architecture also matters. In particular, PVA and PEI are able to accumulate anionic PG lipids on the membrane surface, leading to lipid segregation. In turn, PLL whose charge twice exceeds charges of PVA/PEI does not induce such lipid segregation due to its considerably less compact architecture and relatively long side chains. We also show that partitioning of a polycation into the lipid/water interface is an interplay between its protonation level (the overall charge) and hydrophobicity of the backbone. Therefore, a possible strategy in creating highly efficient antimicrobial polymeric agents could be in tuning these polycation's properties through proper combination of protonated and hydrophobic blocks.
Kini, Gururaj P; Oh, Sora; Abbas, Zaheer; Rasool, Shafket; Jahandar, Muhammad; Song, Chang Eun; Lee, Sang Kyu; Shin, Won Suk; So, Won-Wook; Lee, Jong-Cheol
2017-04-12
A series of four donor-acceptor alternating copolymers based on dialkyloxy-benzothiadiazole (ROBT) as an acceptor and thienoacenes as donor units were synthesized and tested for polymer solar cells (PSCs). These new polymers had different donor units with varied electron-donating ability (thieno[3,2-b]thiophene (TT), dithieno[3,2-b:2',3'-d]thiophene (DTT), benzo[1,2-b:4,5-b']dithiophene (BDT), and naphtha[1,2-b:5,6-b']dithiophene (NDT)) in the polymer backbone. To understand the effect of these thienoacenes on the optoelectronic and photovoltaic properties of the copolymers, we systematically analyzed and compared the energy levels, crystallinity, morphology, charge recombination, and charge carrier mobility in the resulting polymers. In this series, optimized photovoltaic cells yielded power conversion efficiency (PCE) values of 6.25% (TT), 9.02% (DTT), 6.34% (BDT), and 2.29% (NDT) with different thienoacene donors. The introduction of DTT into the thienoacene-ROBT polymer enabled the generation of well-ordered molecular packings with a π-π stacking distance of 3.72 Å, high charge mobilities, and an interconnected nanofibrillar morphology in blend films. As a result, the PSC employing the polymer with DTT exhibited the highest PCE of 9.02%. Thus, our structure-property relationship studies of thienoacene-ROBT-based polymers emphasize that the molecular design of the polymers must be carefully optimized to develop high efficient PSCs. These findings will help us to understand the impact of the donor thienoacene on the optoelectronic and photovoltaic performance of polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Held, Martin; Schießl, Stefan P.; Gannott, Florentina
Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states atmore » the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.« less
Riga, Esther K; Vöhringer, Maria; Widyaya, Vania Tanda; Lienkamp, Karen
2017-10-01
Contact-active antimicrobial polymer surfaces bear cationic charges and kill or deactivate bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). The exact mechanism of this interaction is still under debate. While cationic antimicrobial polymer surfaces can be very useful for short-term applications, they lose their activity once they are contaminated by a sufficiently thick layer of adhering biomolecules or bacterial cell debris. This layer shields incoming bacteria from the antimicrobially active cationic surface moieties. Besides discussing antimicrobial surfaces, this feature article focuses on recent strategies that were developed to overcome the contamination problem. This includes bifunctional materials with simultaneously presented antimicrobial and protein-repellent moieties; polymer surfaces that can be switched from an antimicrobial, cell-attractive to a cell-repellent state; polymer surfaces that can be regenerated by enzyme action; degradable antimicrobial polymers; and antimicrobial polymer surfaces with removable top layers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formation of low charge state ions of synthetic polymers using quaternary ammonium compounds.
Nasioudis, Andreas; Joyce, William F; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F
2010-07-01
Factors such as high polymer dispersity and variation in elemental composition (of copolymers) often complicate the electrospray ionization mass spectrometry (ESI-MS) analysis of synthetic polymers with high molar mass. In the experiments described in this study, quaternary ammonium compounds were observed to facilitate the production of low charge state pseudomolecular ions when added to the spray solution for ESI-MS. This approach was then used for the ESI time-of-flight mass spectrometry (TOF-MS) analysis of synthetic polymers. Hexadecyltrimethylammonium chloride permitted the successful analysis of poly(ethylene glycol) of 2-40 kDa, poly(propylene glycol) and poly(tetramethylene glycol) oligomers. Increasing the quaternary ammonium compounds' concentration results in the production of low charge state pseudomolecular ions. A comparison of structurally different quaternary ammonium compounds showed that the best performance is expected from large molecules with specific charge localization, which leaves the charge available for interactions. The applicability of the method for the MS analysis of other polymeric systems was also studied. In the case of poly(tetramethylene glycol), the method not only shifted the distributions to higher m/z values but also allowed the detection of high molecular weight material that was not observed without addition of the modifier to the spray solution.
Tracking the coherent generation of polaron pairs in conjugated polymers
NASA Astrophysics Data System (ADS)
de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph
2016-12-01
The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.
Steyrleuthner, Robert; Di Pietro, Riccardo; Collins, Brian A; Polzer, Frank; Himmelberger, Scott; Schubert, Marcel; Chen, Zhihua; Zhang, Shiming; Salleo, Alberto; Ade, Harald; Facchetti, Antonio; Neher, Dieter
2014-03-19
We investigated the correlation between the polymer backbone structural regularity and the charge transport properties of poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)], a widely studied semiconducting polymer exhibiting high electron mobility and an unconventional micromorphology. To understand the influence of the chemical structure and crystal packing of conventional regioregular P(NDI2OD-T2) [RR-P(NDI2OD-T2)] on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, we quantitatively characterized the aggregation, crystallization, and backbone orientation of all of the polymer films, which were then correlated to the electron mobilities in electron-only diodes. By carefully selecting the preparation conditions, we were able to obtain RR-P(NDI2OD-T2) films with similar crystalline structure along the three crystallographic axes but with different orientations of the polymer chains with respect to the substrate surface. RI-P(NDI2OD-T2), though exhibiting a rather similar LUMO structure and energy compared with the regioregular counterpart, displayed a very different packing structure characterized by the formation of ordered stacks along the lamellar direction without detectible π-stacking. Vertical electron mobilities were extracted from the space-charge-limited currents in unipolar devices. We demonstrate the anisotropy of the charge transport along the different crystallographic directions and how the mobility depends on π-stacking but is insensitive to the degree or coherence of lamellar stacking. The comparison between the regioregular and regioirregular polymers also shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene).
NASA Astrophysics Data System (ADS)
Wu, Tao
We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the substrate after completion of polymerization, we show the grafting density of the polymers grafted to flexible substrates can be tuned as a function of Deltax.
Wang, Xiuhua; Zhang, Xiao; Fan, Linlin; He, Huan; Zhang, Xiaofei; Zhang, Yuyang; Mao, Shirui
2018-02-01
The objective of this study was to investigate the influence of differently charged biocompatible polymers, including chitosan (CS), hyaluronic acid (HA), and hydroxypropyl cellulose (HPC), on the disposition and retention of 20(R)-ginsenoside-rg3 (Rg3)-loaded swellable microparticles in the lung. A high-pressure homogenization method combined with spray drying was used to prepare Rg3-loaded microparticles. In vitro aerodynamic performance of different microparticles was characterized by the Next Generation Impactor (NGI). Retention of the swellable microparticles in the rat lung was investigated using bronchoalveolar lavage fluid method. Influence of drug loading, polymer molecular weight, and polymer charge on the properties of the swellable microparticles was investigated. It was found that drug loading had no significant influence on experimental mass median aerodynamic diameter (MMAD e ) and fine particle fraction (FPF). Increasing polymer molecular weight caused no remarkable change in MMAD e value, but the FPF value decreased with the increase of polymer molecular weight. At the same molecular weight level, polymer structure and charge had no statistical influence on the in vitro aerodynamic properties of the microparticles and lung disposition, but it influenced the swelling and bioadhesion behavior and therefore lung retention profile. Desirable phagocytosis escapement and inhibition of A549 cell proliferation were achieved for the developed swellable microparticles. In conclusion, the lung retention of swellable microparticles can be adjusted by selecting polymeric carriers with different structure and charge.
Surface-potential decay of biased-probe contact-charged amorphous polymer films
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Nelles, Gabriele
2010-03-01
We have investigated the decay of scanning Kelvin probe force microscopy (KPFM) and electric force microscopy (EFM) signals from biased-probe contact-charged films of three different amorphous polymers representing wide-ranging water absorption capabilities. The surface-potential decay (SPD) has been measured by repeatedly scanning the charge pattern as a function of dissipation time t while varying the relative humidity (RH), the film thickness d, the temperature, the charging voltage, and the load on the scanning probe. Whereas increases in KPFM and EFM peak widths are appreciable only in the long run, the decay in the peak heights is rapid at the beginning and then strongly slowing down with time. Peak heights can be approximated for t <1 hour by power laws of negative exponents (-β), with 0<β<0.5 in dry conditions. β increases for thinner films and when scanning with higher probe loads. Raising the humidity or heating to temperatures well below the glass transition temperature of the polymer considerably increases β, with much stronger impacts for polymers with a higher water uptake capability. From the findings, we conclude that ionic charge carriers are trapped by the charge injection process in the volume of the polymers at low depths. A main contribution to SPD is by drift of the ions in their own space-charge field, mutually repelling each other and being attracted by their mirror charge in the grounded back electrode. Lateral drifts for small t are not resolved, increases in peak widths for t ≫1 h are predominantly due to increased probe—charge carrier distances. We interpret the power law approximation in terms of dispersive transport theory. We approximate trap-controlled apparent mobilities μ from isothermal KPFM peak height data, taken within a few minutes after charging, by a linear and a hyperbolic SPD model. Both models yield μ ≈10-14 cm2/(V s) for thin films (d ≈50 nm) in dry conditions. For mobilities derived similarly from isohumid measurements series, we find an exponential increase as a function of RH%. We furthermore suggest that two more mechanisms contributing to SPD are: first, by potential shielding of charge carriers by water dipoles, and second, in an indirect manner, by diffusion of injected water.
Charge transport in organic multi-layer devices under electric and optical fields
NASA Astrophysics Data System (ADS)
Park, June Hyoung
2007-12-01
Charge transport in small organic molecules and conjugated conducting polymers under electric or optical fields is studied by using field effect transistors and photo-voltaic cells with multiple thin layers. With these devices, current under electric field, photo-current under optical field, and luminescence of optical materials are measured to characterize organic and polymeric materials. For electric transport studies, poly(3,4-ethylenedioxythiophene) doped by polystyrenesulfonic acid is used, which is conductive with conductivity of approximately 25 S/cm. Despite their high conductance, field effect transistors based on the films are successfully built and characterized by monitoring modulations of drain current by gate voltage and IV characteristic curves. Due to very thin insulating layers of poly(vinylphenol), the transistors are relative fast under small gate voltage variation although heavy ions are involved in charge transport. In IV characteristic curves, saturation effects can be observed. Analysis using conventional field effect transistor model indicates high mobility of charge carriers, 10 cm2/V·sec, which is not consistent with the mobility of the conducting polymer. It is proposed that the effect of a small density of ions injected via polymer dielectric upon application of gate voltage and the ion compensation of key hopping sites accounts for the operation of the field effect transistors. For the studies of transport under optical field, photovoltaic cells with 3 different dendrons, which are efficient to harvest photo-excited electrons, are used. These dendrons consist of two electron-donors (tetraphenylporphyrin) and one electron-accepter (naphthalenediimide). Steady-state fluorescence measurements show that inter-molecular interaction is dominant in solid dendron film, although intra-molecular interaction is still present. Intra-molecular interaction is suggested by different fluorescence lifetimes between solutions of donor and dendrons. This intra-molecular interaction has two processes, transport via pi-stackings and transport via linking functional groups in the dendrons. IV characteristic spectra of the photovoltaic cells suggest that the transport route of photo-excited charges depends on wavelength of incident light on the cells. For excitation by the Soret band and the lowest Q band, a photo-excited electron can transport directly to a neighbor dendron. For excitation by high-energy Q bands, a photo-excited electron transports via the electron-accepters.
Skotheim, T.
A polymer blend is disclosed of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
Cullen, D Kacy; R Patel, Ankur; Doorish, John F; Smith, Douglas H; Pfister, Bryan J
2008-12-01
Neural-electrical interface platforms are being developed to extracellularly monitor neuronal population activity. Polyaniline-based electrically conducting polymer fibers are attractive substrates for sustained functional interfaces with neurons due to their flexibility, tailored geometry and controlled electro-conductive properties. In this study, we addressed the neurobiological considerations of utilizing small diameter (<400 microm) fibers consisting of a blend of electrically conductive polyaniline and polypropylene (PA-PP) as the backbone of encapsulated tissue-engineered neural-electrical relays. We devised new approaches to promote survival, adhesion and neurite outgrowth of primary dorsal root ganglion neurons on PA-PP fibers. We attained a greater than ten-fold increase in the density of viable neurons on fiber surfaces to approximately 700 neurons mm(-2) by manipulating surrounding surface charges to bias settling neuronal suspensions toward fibers coated with cell-adhesive ligands. This stark increase in neuronal density resulted in robust neuritic extension and network formation directly along the fibers. Additionally, we encapsulated these neuronal networks on PA-PP fibers using agarose to form a protective barrier while potentially facilitating network stability. Following encapsulation, the neuronal networks maintained integrity, high viability (>85%) and intimate adhesion to PA-PP fibers. These efforts accomplished key prerequisites for the establishment of functional electrical interfaces with neuronal populations using small diameter PA-PP fibers-specifically, improved neurocompatibility, high-density neuronal adhesion and neuritic network development directly on fiber surfaces.
NASA Astrophysics Data System (ADS)
Gadinski, Matthew R.
As the world begins to turn to alternative energy technologies and our electronic devices have become more both mobile and integral to everyday life, increasing interest has been focused on energy storage technologies. Capacitors are one of these energy storage technologies that utilize the polarization of an insulating material sandwiched by two electrodes as a means to store electric charge. Polymers are a preferred dielectric material for capacitors because of both their performance and practicality. However, polymer dielectrics are limited in energy density by low dielectric constant, and high loss at elevated temperature. This work aims to address these issues in order to enable polymer dielectrics for future applications and demands. As most polymer tend to have low dielectric constants (˜2-3), but impressive breakdown strengths, only a moderate improvement in dielectric constant has the potential to vastly improve the energy density of polymer capacitors. As such tremendous interest has been placed on poly(vinylidene fluoride) (PVDF) which has a dielectric of 10+ due to the highly polar C-F bonds of its backbone. To improve PVDF's performance defect monomers have been introduced to tailor the polymorphic crystalline phase to tune its properties. Additionally, this defect modification has implications for piezoelectric, electrocaloric, and thermoelectric applications of PVDF. In Chapter 2 a copolymer of VDF and bromotrifluoroethylene (BTFE) was produced. The effect of BTFE on the structure and dielectric properties of the resulting copolymer had not been previously evaluated, and its synthesis allowed for the comparison to previously reported VDF based copolymers including P(VDF-CTFE) and P(VDF-HFP). Through 19F NMR it was determined due to reactivity ratio differences of BTFE in comparison to previously explored copolymers, BTFE during synthesis is much more likely to link with itself. This results in long runs of BTFE-BTFE defects along with isolated single defects. These long runs are found to have dramatic effects on the distribution of chain conformations determined from FTIR, the melting temperature and total crystallinity determined by DSC, and the crystallite size, lattice spacing, and crystalline phase as determined by XRD. These results indicate that P(VDF-BTFE) has a mix of both included (single) and excluded defects (runs of defects) that rapidly inhibit crystallinity and alter phase. The dielectric analysis also confirmed this by a broadening of the Tg peak in the temperature dependent dielectric spectroscopy with increasing BTFE content in the monomer feed indicative of expansion of the interlamellar region due to defect exclusion. Chapter 3 explores P(VDF-BTFE) copolymers for capacitive energy storage. Due to the rapid decrease in crystallinity only low concentration copolymers (>2 mol %) BTFE were used. This was ultimately a result of stretching being required for high energy density to be exhibited. The 0.5 mol% BTFE copolymer samples was found to possess a discharge energy density of 20.8 J/cm 3 at 750 MV/m along with the highest breakdown strength of any reported PVDF based copolymer. It was found that for this small amount of defect monomer the gamma phase of PVDF was stabilized and mixed with beta phase and along with small crystallite size accounted for the high breakdown strength and energy density. Additionally, by utilizing only a small amount of defect monomer the decrease in crystallinity and melting temperature observed in previously examined PVDF copolymers was avoided. Chapter 4 examines a terpolymer of VDF, trifluoroethylene (TrFE), and chlorotrifluoroethylene (CTFE). The terpolymers of VDF have gained extensive interest as the use of the two defect monomer increases the dielectric constant to 40+ along with altering the polarization behavior from a normal ferroelectric to a relaxor ferroelectric characterized by a slim hysteresis loop. The current understanding of this behavior suggests that only the size of the third bulky monomer (CTFE in this case) determines whether a single hysteresis (SHL) or double hysteresis loop (DHL) will develop. This chapter shows that for a single composition of the terpolymer normal ferroelectric, SHL, and DHL behavior can be tuned through processing of the film. This was rationalized as films give long times to crystallize developed large ferroelectric domains within a paraelectric matrix resulting in the DHL behavior due to reversible switching of these domains. While if these films were stretched below the Tc SHL behavior was observed as this had the effect of dispersing these domains within the crystal. Chapter 5 changes focus to high temperature performance of polymer capacitors. The primary strategy to enable high temperature polymer capacitors has been the utilization of high Tg polymers because of their thermal stability. While these polymers have demonstrated stable dielectric properties at low field and high breakdown strengths at elevated temperatures, the high field loss limits their use at even mildly elevated temperature well below T g. Additionally, these polymers are expensive, brittle, and difficult to process, essentially defeating some of the primary reasons for utilizing a polymer in the first place. This chapter examines a commercially available, extrudable, high temperature fluoropolymer, known as polychlorotrifluoroethylene (PCTFE). The same defect monomer discussed with PVDF above. While this polymer showed comparable performance to BOPP at room temperature, it showed equally susceptible to high field loss at elevated temperature. However, the chlorine of the monomers allow for crosslinking of this polymer by commercially used peroxide/co-agent chemistry. Crosslinking lead to a substantial improvement of the crosslinked film over the pristine polymer, and superior energy density to the commercial high Tg polymers up to 150 °C. The reason for the improvement was found to be the formation of chemical defects produced during the crosslinking that were excluded from the crystalline phase. Through TSDC it was found that these defects concentrated in the interlamellar region led to a substantial enhancement of the charge trapping properties of this relaxation.
Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J.
2013-01-01
Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior. PMID:24062459
Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J
2013-10-08
Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior.
Aggregate-mediated charge transport in ionomeric electrolytes
NASA Astrophysics Data System (ADS)
Lu, Keran; Maranas, Janna; Milner, Scott
Polymers such PEO can conduct ions, and have been studied as possible replacements for organic liquid electrolytes in rechargeable metal-ion batteries. More generally, fast room-temperature ionic conduction has been reported for a variety of materials, from liquids to crystalline solids. Unfortunately, polymer electrolytes generally have limited conductivity; these polymers are too viscous to have fast ion diffusion like liquids, and too unstructured to promote cooperative transport like crystalline solids. Ionomers are polymer electrolytes in which ionic groups are covalently bound to the polymer backbone, neutralized by free counterions. These materials also conduct ions, and can exhibit strong ionic aggregation. Using coarse-grained molecular dynamics, we explore the forces driving ionic aggregation, and describe the role ion aggregates have in mediating charge transport. The aggregates are string-like such that ions typically have two neighbors. We find ion aggregates self-assemble like worm-like micelles. Excess charge, or free ions, occasionally coordinate with aggregates and are transported along the chain in a Grotthuss-like mechanism. We propose that controlling ionomer aggregate structure through materials design can enhance cooperative ion transport.
Heinicke, Grant; Matthews, Frank; Schwartz, Joseph B
2005-01-01
Drugs layering experiments were performed in a fluid bed fitted with a rotor granulator insert using diltiazem as a model drug. The drug was applied in various quantities to sugar spheres of different mesh sizes to give a series of drug-layered sugar spheres (cores) of different potency, size, and weight per particle. The drug presence lowered the bulk density of the cores in proportion to the quantity of added drug. Polymer coating of each core lot was performed in a fluid bed fitted with a Wurster insert. A series of polymer-coated cores (pellets) was removed from each coating experiment. The mean diameter of each core and each pellet sample was determined by image analysis. The rate of change of diameter on polymer addition was determined for each starting size of core and compared to calculated values. The core diameter was displaced from the line of best fit through the pellet diameter data. Cores of different potency with the same size distribution were made by layering increasing quantities of drug onto sugar spheres of decreasing mesh size. Equal quantities of polymer were applied to the same-sized core lots and coat thickness was measured. Weight/weight calculations predict equal coat thickness under these conditions, but measurable differences were found. Simple corrections to core charge weight in the Wurster insert were successfully used to manufacture pellets having the same coat thickness. The sensitivity of the image analysis technique in measuring particle size distributions (PSDs) was demonstrated by measuring a displacement in PSD after addition of 0.5% w/w talc to a pellet sample.
Lego, Béatrice; François, Marion; Skene, W G; Giasson, Suzanne
2009-05-05
The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces. The resulting polymer layer thickness was measured by AFM using a step-height method. Linear relationships of the polymer thickness with respect to the molecular weight of the free polymer and with respect to the monomer conversion were observed, suggesting that ATRP is well controlled and relatively densely end-grafted layers were obtained. The polymer grafting density controlled by adjusting the initiator surface coverage was confirmed by the polymer layer swelling capacity and film thickness measurements.
Polyaniline-Manganese dioxide nanorods nanocomposite as an electrode material for supercapacitors
NASA Astrophysics Data System (ADS)
Ahirrao, Dinesh J.; Jha, Neetu
2017-05-01
Supercapacitors (SC) are energy storage devices with long durability, and high power density. Metal oxides, conducting polymers and carbon based nanomaterials are generally used as an electrode material in SC due to their high charge storage properties. Superior performance of SC can be achieved by making a composite of metal oxides with conducting polymer or with carbon based nanomaterials in order achieve synergy. Herein, we report a low temperature hydrothermal method for the synthesis of α-MnO2 nanorods (α-MnO2-NR) and the composite was prepared by in situ polymerization of polyaniline (PANT) with α-MnO2-NR. Uniform distribution of MnO2-NR on the PANI granules was observed in composite. Material characterization was carried out by using XRD, FTIR and scanning electron microscopy (SEM). Electrochemical performance of the as-prepared materials was evaluated by using cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements in potential range of 0 to 0.8 V. PANI-α-MnO2-NR showed improved specific capacitance of 605 F/g at 1 A/g which is higher than that of individual component like pure PANI (515 F/g) and pure MnO2-NR (141 F/g) at 1A/g.