Sample records for polymer modified bitumen

  1. Innovative Additive for Bitumen Based on Processed Fats

    NASA Astrophysics Data System (ADS)

    Babiak, Michał; Kosno, Jacek; Ratajczak, Maria; Zieliński, Krzysztof

    2017-10-01

    Various additives, admixtures and modifiers are used to improve technical properties and strength characteristics of building materials. Manufacturers of waterproofing materials, concrete, ceramics and bitumen have to use innovative, increasingly complex and costly additives, admixtures or modifiers. As a result, simple and inexpensive substances have been replaced by complex, long chain polymers, multi component resins or plastics. For economic and ecological reasons waste materials are more frequently used as additives, admixtures and modifiers. Nowadays the most commonly used physical modifiers of bitumen belong to the group of polymers - large molecular organic compounds of natural origin or being the result of planned chemical synthesis. Polymers are substances that do not chemically react with bitumen, they act as fillers or create a spatial network within bitumen (the so called physical cross-linking). The development of organic chemistry has allowed the synthesis of a number of substances chemically modifying bitumen. The most promising are heterocyclic organic compounds belonging to the group of imidazolines. The aim of the study presented in this paper was to demonstrate the suitability of processed natural and post-refining fat waste (diamidoamine dehydrate) as bitumen modifier. This paper discusses the impact of adding technical imidazoline on selected bitumen characteristics. Samples of bitumen 160/220, which is most commonly used for the production of waterproofing products, were analysed. For base bitumen and bitumen modified with technical imidazoline the following measurements were taken: measurement of the softening point by Ball and Ring method, determination of the breaking point by Fraass method and needle penetration measurement at 25°C. Later the samples were aged using TFOT laboratory method and the basic characteristics were determined again. The results showed that a small amount of imidazoline improved bitumen thermoplastic parameters at low temperatures and had a significant impact on weakening bitumen oxidation and ageing. The addition of technical imidazoline prevents bitumen from hardening, thus increasing its flexibility and its resistance to mechanical damage. Due to many difficulties in the production of polymer bitumens and in order to find cheaper, more environment friendly solutions, the authors proposed an ecological bituminous modifier which, due to chemical reaction with binders, creates a stable and firm in time product. Imidazolines have a negative impact on bitumen softening point, which makes them impossible to use as an independent modifier. Therefore, at a later stage of the research, the authors will attempt to create a hybrid bitumen modifier which will combine the beneficial effect of polymers and imidazoline on the characteristics of bituminous binders.

  2. Improving Mechanical Properties of Hot Mix Asphalt Using Fibres and Polymers in Developing Countries

    NASA Astrophysics Data System (ADS)

    Preciado, Jaime; Martínez Arguelles, Gilberto; Dugarte, Margareth; Bonicelli, Alessandra; Cantero, Julio; Vega, Daniela; Barros, Yennis

    2017-10-01

    The enhancement of mechanical properties and long term performance of hot mix asphalt (HMA) should be considered as a goal in order to achieve a transport infrastructure really sustainable. However, this issue becomes a difficult task, if conventional HMA are used. In fact, performance of conventional HMA, usually presents poor long term performance and functional distresses related to high and low temperatures, which in turn implies higher maintenance costs and superior carbon footprints. To overcome this weaken, bitumen industry has been developing new polymer modifiers, additives to improve HMA behaviour. One of the techniques most used in developed countries to enhance HMA behaviour is the use of modified bitumen. Modifying the bitumen, and then producing modified HMA requires specific equipment and facilities that may be time-consuming, expensive and hard to manage. For instance, to warranty a successful modifying process, storage and handling of the modified bitumen are issues very complex to handle. On the other hand, producing a polymer modified HMA by adding polymers and additives directly during the bitumen/aggregate mixing process may offer very interesting advantages since the economical, production and sustainability standpoint. This paper aimed to determine the feasibility of the incorporation of fibres and plastomeric polymers into different types of HMA by means of the “dry process” (to add polymers during the mixing of aggregate and bitumen in the HMA plant) to produce polymer modified mixes. Thus, laboratory tests including Marshall Stability, Indirect Tensile Stiffness Modulus, repeated load test and Indirect Tensile Strength test were performed to assess the effect of the inclusion of fibres and plastomeric polymers on mechanical and volumetric properties of selected mixes. Results showed that the modification of bituminous mixtures following the “dry process” could be used to improve the performance and long term properties of HMA.

  3. Investigation of the Bitumen Modification Process Regime Parameters Influence on Polymer-Bitumen Bonding Qualitative Indicators

    NASA Astrophysics Data System (ADS)

    Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Belousov, O. A.; Frolov, V. A.

    2018-04-01

    The objects of this study are petroleum road bitumen and polymeric bituminous binder for road surfaces obtained by polymer materials. The subject of the study is monitoring the polymer-bitumen binder quality changes as a result of varying the bitumen modification process. The purpose of the work is to identify the patterns of the modification process and build a mathematical model that provides the ability to calculate and select technological equipment. It is shown that the polymer-bitumen binder production with specified quality parameters can be ensured in apparatuses with agitators in turbulent mode without the colloidal mills use. Bitumen mix and modifying additives limiting indicators which can be used as restrictions in the form of mathematical model inequalities are defined. A mathematical model for the polymer-bitumen binder preparation has been developed and its adequacy has been confirmed.

  4. Effect of different sizes of palm oil fuel ash (POFA) towards physical properties of modified bitumen

    NASA Astrophysics Data System (ADS)

    Raja Zulkefli, R. N. A.; Yaacob, H.; Putra Jaya, R.; Warid, M. N. M.; Hassan, N.; Hainin, M. R.; Idham, M. K.

    2018-04-01

    In the past decades, numerous numbers of studies have been carried out to find ways enhancing properties of bitumen. Other than using polymer, agricultural waste such as palm oil fuel ash (POFA) is one of the waste products that can be used to modify bitumen. In this study, the physical and rheological properties of POFA modified bitumen were examined based on different grinding hour and different percentage of POFA. The bitumen were mixed with different percentages of POFA (0, 5 and 7%) which passed through 0.075 mm sieve and grinded at different period (1 and 4 hour). The samples were then tested and compared to conventional bitumen. From TEM results, POFA grinded at 1 hour have sizes between 3-7 µm while POFA grinded for 4 hours have finer sizes between 500 nm to 3 µm. The results showed that fineness of POFA affect properties of bitumen significantly. Decreasing in penetration value and decreasing in softening temperature indicates that the modified bitumen becomes harder than conventional bitumen. Modified bitumen gives best results when added with 7% POFA sizes of 500 nm to 3 µm compared to 3 to 7 µm.

  5. Influence of Polyphosphoric Acid on the Consistency and Composition of Formulated Bitumen: Standard Characterization and NMR Insights

    PubMed Central

    Varanda, Catarina; Ribeiro, Jorge

    2016-01-01

    Over the recent years, bitumen modification with polymers, acids, or mineral fillers has gained relevance to adjust its performance properties. This work reports the use of polyphosphoric acid (PPA) for the modification of formulated bitumen. With this objective, an in-depth literature review on PPA modification was firstly performed. Subsequently, five individual refinery components were selected for the preparation of bitumen blends, namely, asphaltic residue, vacuum residue, and three lube oils extracts. Seven binary/ternary bitumen blends were prepared and then treated with PPA. Afterwards, the five components and the unmodified and PPA-modified bitumen were characterized by standard methods (penetration, softening point, and penetration index), SARA analysis, elemental analysis, and 31P and 1H nuclear magnetic resonance (NMR) spectroscopy. The results evidenced higher asphaltenes and lower saturates/resins contents in PPA-modified bitumen. The NMR data suggest that the paraffinic chains became longer, the content of condensed aromatics increased, more substituted aromatic structures appeared, and α-hydrogen in aromatic structures diminished. These findings disclosed the improved consistency and oxidation stability of PPA-modified bitumen blends. PMID:27579214

  6. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    NASA Astrophysics Data System (ADS)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-08-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  7. Impact of the Ageing on Viscoelastic Properties of Bitumen with the Liquid Surface Active Agent at Operating Temperatures

    NASA Astrophysics Data System (ADS)

    Iwański, Marek; Cholewińska, Malgorzata; Mazurek, Grzegorz

    2017-10-01

    The paper presents the influence of the ageing on viscoelastic properties of the bitumen at road pavement operating temperatures. The ageing process of bituminous binders causes changes in physical and mechanical properties of the bitumen. This phenomenon takes place in all stages of bituminous mixtures manufacturing, namely: mixing, storage, transport, placing. Nevertheless, during the service life it occurs the increase in stiffness of asphalt binder that is caused by the physical hardening of bitumen as well as the influence of oxidation. Therefore, it is important to identify the binder properties at a high and low operating temperatures of asphalt pavement after simulation of an ageing process. In the experiment as a reference bitumen, the polymer modified bitumen PMB 45/80-65 was used. The liquid surface active agent FA (fatty amine) was used as a bitumen viscosity-reducing modifier. It was added in the amount of 0,2%, 0,4% and 0,6% by the bitumen mass. All binder properties have been determined before ageing (NEAT) and after long-term ageing simulated by the Pressure Ageing Vessel method (PAV). To determine the binder properties at high temperatures the dynamic viscosity at 60°C was tested. On the basis of test results coming from the dynamic viscosity test it was calculated the binder hardening index. The properties at a low temperature were determined by measuring the creep modulus using Bending Beam Rheometer (BBR) at four temperatures: -10°C, -16°C, -22°C and -28°C. The stiffness creep modulus “S” and parameter “m” were determined. On the basis of dynamic viscosity test it was found that the ageing process caused a slight decrease in a dynamic viscosity. The level of a hardening index considerably increased at 0.6% fatty amine content. The long-term ageing process had a minor effect on stiffening of a polymer modified bitumen with FA additive regardless of a low temperature and an amount of fatty amine content.

  8. Changes of Properties of Bitumen Binders by Additives Application

    NASA Astrophysics Data System (ADS)

    Remišová, Eva; Holý, Michal

    2017-10-01

    Requirements for properties of bituminous binders are determined in the European standards. The physico-chemical behaviour of bitumen depends on its colloidal structure (asphaltenes dispersed into an oily matrix constituted by saturates, aromatics and resins) that depends primarily on its crude source and processing. Bitumen properties are evaluated by group composition, elementary analysis, but more often conventional or functional tests. Bitumen for road uses is assessed according to the physical characteristics. For the purpose of improving the qualitative properties of bitumen and asphalts the additives are applied e.g. to increase elasticity, improving the heat stability, improving adhesion to aggregate, to decrease viscosity, increasing the resistance to aging, to prevent binder drainage from the aggregate surface, etc. The objective of presented paper is to assess and compare effect of additives on properties of bitumen binders. In paper, the results of bitumen properties, penetration, softening point, and dynamic viscosity of two paving grade bitumen 35/50, 50/70 and polymer modified bitumen PmB 45/80-75 are analyzed and also the changes of these properties by the application of selected additives (Sasobit, Licomont BS100, Wetfix BE and CWM) to improve adhesion to aggregate and improve workability. Measurements of properties have been performed according to the relevant European standards. The laboratory tests showed significantly increasing the softening point of paving grade bitumen 50/70 and 35/50 by 13 to 45°C. The effect of various additives on bitumen softening point is different. Penetration varies according to type of bitumen and type of used additive. The penetration values of modified bitumen PmB 45/80-75 with additives Sasobit and Licomont BS100 show increase of bitumen stiffness of 16 0.1mm and a shift in the gradation. The changes in penetration and in softening point significantly shown when calculating on Penetration index as a parameter of temperature susceptibility. The additives changed the viscosity of bitumen to lower values mostly with modified bitumen. In case of the additive Wetfix BE mix in 35/50caused the viscosity increase. The additive changes the properties of original bituminous binders, and that can affect the properties of asphalt mixtures and asphalt layers.

  9. The use of Crumb Rubber as Substitute of Fine Aggregate for Hot Asphalt Mixture using Polymer Modified Bitumen

    NASA Astrophysics Data System (ADS)

    Setyawan, A.; Nugroho, S. K.; Irsyad, A. M.; Mutaqo, H. F.; Ramadhan, P.; Sumarsono, A.; Pramesti, F. P.

    2018-03-01

    The development of road pavement to fulfilled the need of modern life is not only focused on heavy duty road, but also a light duty road for the convenience of road users according to its function. For example the use of pavement on the jogging track, rail crossing, playground and so on. Due to the need of an alternative and the innovation of a comfortable pavement layer, but sufficiently strong in holding the load on the layer. The alternative innovation that can be used for the respective requirement is the utilization of waste old tires as substitute material in pavement construction. In this case the use of crumb rubber made from old tire rubber as an 100% fine aggregate substitute on the asphalt mixtures is investigated. To improve the strength and durability of the mixtures, the addition of polymer modified bitumen was incorporated. The two types of asphalt mixture selected in this study by using a continuous gradation of asphalt concrete and a gap gradation of hot roll asphalt. Testing to be implemented in this research is volumetric characteristics, Marshall characteristics, resistance to abrasion and impact and permeability. Replacement of fine aggregate with crumb rubber on asphalt concrete mixture with 60/70 penetration grade bitumen and polymer modified asphalt SBS E-55 in this research are expected to be an alternative in improving the quality of pavement and overcoming the environmental problems by reuse the waste materials.

  10. Influence of bitumen type on cracking resistance of asphalt mixtures used in pavement overlays

    NASA Astrophysics Data System (ADS)

    Jaskula, P.; Szydlowski, C.; Stienss, M.

    2018-05-01

    Cracking is one of the predominant distresses occurring in flexible pavements, especially in old pavements that were rehabilitated with an asphalt overlay. In such cases asphalt mixtures should be designed to ensure high resistance to reflective cracking because new asphalt layers are exposed to existing cracks of the old pavement. The nature of these cracks can be various (transverse, longitudinal as well as crazy cracking). One factor that minimizes this type of distress is the proper mix design process, which should involve selection of specific bitumen binder and mineral mix gradation. However, still there is no universally adopted laboratory test method that would allow to clearly assess resistance of asphalt mixtures to reflective cracking. This paper describes the usage of one of the devices developed to test asphalt mixtures in terms of such distress – Texas Overlay Tester. For this test, samples prepared in laboratory conditions (i.e. compacted with the use of Superpave Gyratory Compactor) as well as obtained in the field (by core drilling) can be used. The results are obtained not only quickly and easily, but also with sufficient repeatability. The described method characterizes both crack initiation and crack propagation properties of asphalt mixtures. In this work one type of mineral mixture was tested with 4 different types of bitumen (one neat bitumen, two ordinary polymer-modified and one polymer-modified with high polymer content). For selected cases extra additives (rubber and loose fibres) were also tested. In total, six asphalt mixtures were tested. A ranking of the used binders was created on the basis of the results in order to conclude which bitumen would ensure the best performance characteristics in terms of reflective cracking. The results have clearly shown that deliberate choice of the binder used in the asphalt mixture for the overlay will significantly improve its reflective cracking resistance or even fatigue resistance.

  11. Developing the multiple stress-strain creep recovery (MS-SCR) test

    NASA Astrophysics Data System (ADS)

    Elnasri, Mahmoud; Airey, Gordon; Thom, Nick

    2018-04-01

    While most published work from Europe has been concerned with evaluating binders' resistance to rutting based on their stiffness (deformation resistance), work originating in the US has mainly been concerned with ranking binders based on their recoverability in a multiple stress form. This paper details the design of a new modified multiple stress-strain creep recovery (MS-SCR) test. The test is designed to evaluate binders' rutting resistance based on two rutting resistance mechanisms: stiffness and recoverability. A preliminary investigation is presented in this paper followed by details of the design of the new modified test. A 40/60 penetration grade bitumen and bitumen-filler mastics prepared with three filler concentrations (35%, 50%, and 65% filler content by mass of mastic) were tested. In addition, two polymer modified bitumens (PMBs) using the same base bitumen type were examined for validation. Two parameters are introduced to characterise the short and long recovery in the new test. In terms of stiffness, the test allows the behaviour of binders at different stress levels and loading cycles to be studied and produces a new parameter that can quantify the degree of modification. Finally, a relationship between nonlinearity and normal force in the test was investigated.

  12. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test.

    PubMed

    Pszczola, Marek; Jaczewski, Mariusz; Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-10

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from -20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.

  13. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test

    PubMed Central

    Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-01

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from −20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis. PMID:29320443

  14. Monitoring the petroleum bitumen characteristics changes during their interaction with the polymers

    NASA Astrophysics Data System (ADS)

    Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Frolov, V. A.

    2017-08-01

    The subject of the study is the characteristics (penetration, softening temperature, ductility and elasticity) of a road binder based on petroleum bitumen. The work purpose is to monitor the changes in the characteristics of petroleum bitumen when it interacting with polymers: thermoplastic elastomer, low-density polyethylene, including the adhesive additive presence. To carry out the research a special laboratory facility was designed and manufactured with two blade mixers providing intensive turbulent mixing and the possibility to effect on the transition process of combining the components in a polymer-bitumen binder. To construct a mathematical model of the polymer-bitumen binder characteristics dependence from the composition, methods of statistical experiments planning were used. The possibility of the expensive thermoplastic elastomers replacement with polyethylene is established while maintaining acceptable polymer-bitumen binder quality parameters. The obtained results are proposed for use in road construction. They allow to reduce the roads construction cost with solving the problem of recycling long-term waste packaging from polyethylene.

  15. Practical experiences with new types of highly modified asphalt binders

    NASA Astrophysics Data System (ADS)

    Špaček, Petr; Hegr, Zdeněk; Beneš, Jan

    2017-09-01

    As a result of steadily increasing traffic load on the roads in the Czech Republic, we should be focused on the innovative technical solutions, which will lead to extending the life time of asphalt pavements. One of these ways could be the future use of bitumen with a higher degree of polymer modification. This paper discusses experience with comparison of new highly polymer modified asphalt binder type with conventional polymer modified asphalt binder and unmodified binder with penetration grade 50/70. There are compared the results of various types laboratory tests of asphalt binders, as well as the results of asphalt mixtures laboratory tests. The paper also mentions the experience with workability and compactability of asphalt mixture with highly polymer modified asphalt binder during the realization of the experimental reference road section by the Skanska company in the Czech Republic.

  16. Mathematical and experimental investigations of modeling, simulation and experiment to promote the life-cycle of polymer modified asphalt.

    DOT National Transportation Integrated Search

    2014-07-01

    The formulation of constitutive equations for asphaltic pavement is based on rheological models which include the asphalt mixture, additives, and the bitumen. In terms of the asphalt, the rheology addresses the flow and permanent deformation in time,...

  17. Influence of the association of the EVA and NBR on the characteristics of modified bitumen

    NASA Astrophysics Data System (ADS)

    Bensaada, A.; Soudani, K.; Haddadi, S.; Saoula, S.

    2015-03-01

    Durability and the performance of pavement depend mainly on the characteristics of materials which change over time like all other organic substances. They are subject to significant changes due to environmental conditions during the different phases of use. In the present work we investigated experimentally the influence of the association of ethyl vinyl acetate polymer (EVA) with an industrial waste, acrylonitrile-butadiene rubber (NBR) on the modification of bitumen AC 35-50 and its rheological behavior. The incorporation of NBR and EVA in the bitumen improved its intrinsic characteristics (softening point, penetration and ductility). In addition to improving the characteristics of bituminous binders that will affect the durability of bituminous structures, the environment will be preserved by the recycling of industrial waste.

  18. Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent

    NASA Astrophysics Data System (ADS)

    Chomicz-Kowalska, Anna; Mrugała, Justyna; Maciejewski, Krzysztof

    2017-10-01

    The article presents the analysis of the performance of foamed bitumen modified using surface active agents. Although, bitumen foaming permits production of asphalt concrete and other asphalt mix types without using chemical additives in significantly reduced temperatures, the decrease in processing temperatures still impacts the adhesion performance and bitumen coating of aggregates in final mixes. Therefore, in some cases it may be feasible to incorporate adhesion promoters and surface active agents into warm and half-warm mixes with foamed bitumen to increase their service life and resilience. Because of the various nature of the available surface active agents, varying bitumen compatibility and their possible impact on the rheological properties of bitumen, the introduction of surface active agents may significantly alter the bitumen foaming performance. The tests included basic performance tests of bitumen before and after foaming. The two tested bitumen were designated as 35/50 and 50/70 penetration grade binders, which were modified with a surface active agent widely used for improving mixture workability, compactibility and adhesion in a wide range of asphalt mixes and techniques, specifically Warm Mix Asphalt. Alongside to the reference unmodified bitumen, binders with 0.2%, 0.4% and 0.6% surface active agent concentration were tested. The analysis has shown a positive influence of the modifier on the foaming performance of both of the base bitumen increasing their maximum expansion ratio and bitumen foam halflife. In the investigations, it was found that the improvement was dependent on the bitumen type and modifier content. The improved expansion ratio and foam half-life has a positive impact on the aggregate coating and adhesion, which together with the adhesion promoting action of the modifier will have a combined positive effect on the quality of produced final asphalt mixes.

  19. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation

    PubMed Central

    Vignali, Valeria; Mazzotta, Francesco; Sangiorgi, Cesare; Simone, Andrea; Lantieri, Claudio; Dondi, Giulio

    2016-01-01

    In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene) polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures. PMID:28773965

  20. Basic Performance of Fibre Reinforced Asphalt Concrete with Reclaimed Asphalt Pavement Produced In Low Temperatures with Foamed Bitumen

    NASA Astrophysics Data System (ADS)

    Chomicz-Kowalska, Anna; Iwański, Mateusz M.; Mrugała, Justyna

    2017-10-01

    During the reconstruction of road pavements, the reclaimed asphalt pavement (RAP), which is obtained through milling of the worn out existing asphalt, is commonly used for producing new base courses in cold recycling processes. Two of these techniques are most popular: one using mineral-cement-emulsion mixes and one utilizing mineral cement mixes with foamed bitumen. Additionally, some amounts of RAP can be incorporated into traditional hot mix asphalt. The demand for energy efficient and environmentally friendly solutions however, results in a need for development of new techniques that would result in cheaper and more reliable solutions with smaller carbon footprint. The reduction of processing temperatures with simultaneous incorporation of reclaimed material is the most efficient way of obtaining these objectives, but it often results in the overall decrease of bituminous mix quality. The paper presents the possibility of using RAP for producing asphalt concrete in warm mix asphalt (WMA) production process by the use of foamed bitumen modified with Fischer-Tropsch synthetic wax and polymer-basalt fibers. Additionally, a series of reference mixtures were produced to investigate the effects of the additives and of the warm process. The carried out analyses and tests shown that the experimental warm mix asphalt produced with RAP and foamed bitumen returned satisfactory performance. The introduction of synthetic F-T wax in the warm foam bitumen mixes resulted in a significantly improved compaction levels and moisture and frost resistance and the addition of polymer-basalt fibers has further improved the permanent deformation resistance of the mixes. All of the designed and tested mixes have fulfilled the requirements for binding course asphalt concrete with medium traffic loads.

  1. Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties

    NASA Astrophysics Data System (ADS)

    Poh, Chia Chin; Hassan, Norhidayah Abdul; Raman, Noor Azah Abdul; Shukry, Nurul Athma Mohd; Warid, Muhammad Naqiuddin Mohd; Satar, Mohd Khairul Idham Mohd; Ros Ismail, Che; Asmah Hassan, Sitti; Mashros, Nordiana

    2018-04-01

    Bitumen shortage has triggered the exploration of another alternative waste material that can be blended with conventional bitumen. This study presents the performance of pyrolysis bio-oil from palm oil empty fruit bunch (EFB) as an alternative binder in modified bitumen mixtures. The palm oil EFB was first pyrolyzed using auger pyrolyzer to extract the bio-oil. Conventional bitumen 80/100 penetration grade was used as a control sample and compared with samples that were modified with different percentages, i.e., 5% and 10%, of pyrolysis EFB bio-oil. The physical and rheological properties of the control and modified bitumen samples were investigated using penetration, softening point, viscosity and dynamic shear rheometer (DSR) tests. Results showed that the addition of EFB bio-oil softened the bitumen with high penetration and a reduction in softening point, penetration index, and viscosity. However, the DSR results showed a comparable rutting resistance between the bitumen samples containing EFB bio-oil and virgin bitumen with a failure temperature achieved greater than 64°C.

  2. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.

    1994-03-01

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  3. Comparative study of modified bitumen binder properties collected from mixing plant and quarry.

    NASA Astrophysics Data System (ADS)

    Mustafa Kamal, M.; Abu Bakar, R.; Hadithon, K. A.

    2017-11-01

    Quality control and assurance are essential in pavement construction. In general, the properties of bitumen change as it ages in bulk storage, transport, and storage on site. The minimization of bituminous hardening during storing, transportation and mixing depends on careful control of binder temperature. Hence therefore, bitumen should always be stored and handled at the lowest temperature possible, consistent with efficient use. The objective of the work is to monitor the quality of bitumen samples collected from mixing plant and quarry. Results showed that, samples modified bitumen which collected from quarry showed some adverse effects on rheological properties and physical properties after subjecting to high temperature storage within a period of time. The dynamic stiffness, elastic properties and other common binder properties were deteriorated too. The chemical changes that occurred during storage were analysed using Fourier transform infra-red spectroscopy (FTIR). Thus studies developed an understanding of bitumen ageing in storage.

  4. Specifying, Installing and Maintaining Built-Up and Modified Bitumen Roofing Systems.

    ERIC Educational Resources Information Center

    Hobson, Joseph W.

    2000-01-01

    Examines built-up, modified bitumen, and hybrid combinations of the two roofing systems and offers advise on how to assure high- quality performance and durability when using them. Included is a glossary of commercial roofing terms and asphalt roofing resources to aid in making decisions on roofing and systems product selection. (GR)

  5. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen.

    PubMed

    Dehestani, M; Teimortashlu, E; Molaei, M; Ghomian, M; Firoozi, S; Aghili, S

    2017-08-01

    In this data article experimental data on the compressive strength, and the durability of styrene and bitumen modified sulfur concrete against acidic water and ignition are presented. The percent of the sulfur cement and the gradation of the aggregates used are according to the ACI 548.2R-93 and ASTM 3515 respectively. For the styrene modified sulfur concrete different percentages of styrene are used. Also for the bitumen modified sulfur concrete, different percentages of bitumen and the emulsifying agent (triton X-100) are utilized. From each batch three 10×10×10 cm cubic samples were casted. One of the samples was used for the compressive strength on the second day of casting, and one on the twenty-eighth day. Then the two samples were put under the high pressure flame of the burning liquid gas for thirty seconds and their ignition resistances were observed. The third sample was put into the acidic water and after twenty eight days immersion in water was dried in the ambient temperature. After drying its compressive strength has been evaluated.

  6. Nanosized carbon modifier used to control plastic deformations of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Vysotskaya, M. A.; Shekhovtsova, S. Yu; Barkovsky, D. V.

    2018-03-01

    Aspects related to plastic track, the formation of which directly depends on the properties of the binder in the composition of asphalt concrete, are considered in this article. The effect of primary carbon nanomaterials on the quality of polymer and bitumen binder in comparison with the traditional binder including cross-linking agent is evaluated. The influence of binders on the resistance to the track formation of type B asphalt concrete is studied. To quantify the service life of surfacing, a calculation method based on the criteria for the resistance of surfacing material to plastic deformations is used.

  7. Influence of DAD-TA temperature-reducing additive on physical and mechanical properties of bitumen and compaction of asphalt concrete.

    NASA Astrophysics Data System (ADS)

    Yadykina, V. V.; Akimov, A. E.; Trautvain, A. I.; Kholopov, V. S.

    2018-03-01

    The paper is devoted to the use of DAD-TA temperature-reducing additive for the preparation and pouring of asphalt concrete mixes at reduced temperatures. It also shows positive influence of the modified bitumen on the efficiency of organo-mineral composite compaction at reduced temperatures. Physical and mechanical properties of asphalt concrete with the use of bitumen modified by DAD-TA additive including indicators characterizing road surfacing life are presented. Arguments to use this material from the point of view of its production technology and environmental impact are given.

  8. Epoxy asphalt concrete is a perspective material for the construction of roads

    NASA Astrophysics Data System (ADS)

    Vyrozhemskyi, Valerii; Kopynets, Ivan; Kischynskyi, Sergii; Bidnenko, Nataliia

    2017-09-01

    An effective way to increase the durability of asphalt concrete pavements that are subject to high traffic loads and adverse weather and climatic factors is the use of polymer additives which drastically improve the rheological and physical-mechanical properties of bitumen. The use of thermosetting polymers including epoxy resins for asphalt and bitumen modification is seen as a perspective solution for this issue. Conducted at DerzhdorNDI SE studies have proved high riding qualities of asphalt pavements that contain epoxy resins. When replacing 20-35% of bitumen with epoxy component, a significant improvement in strength characteristics of asphalt pavement is noted, especially at elevated temperatures. Specific feature of epoxy asphalt concrete is its ability to gain strength over a long-term operation. Thus, despite the increased cost of epoxy asphalt concrete, long service life of pavements on its basis (up to 30 years as predicted) ensures a high profitability of using this material, especially on the roads with heavy traffic and severe traffic conditions.

  9. Effects of Waste Plastic on the Physical and Rheological Properties of Bitumen

    NASA Astrophysics Data System (ADS)

    Ezree Abdullah, Mohd; Asyiqin Ahmad, Nurul; Putra Jaya, Ramadhansyah; Hassan, Norhidayah Abdul; Yaacob, Haryati; Rosli Hainin, Mohd

    2017-05-01

    Plastic disposal is one of the major problems for developing countries like Malaysia, at the same time Malaysia needs a large network of roads for its smooth economic and social development. The limited source of bitumen needs a deep thinking to ensure fast road construction. Therefore, the use of plastic waste in road construction not only can help to protect environment but also able to help the road construction industry. The aims of this research are to study the effects of waste plastic on rheological properties of bitumen. Modified bitumen was prepared by using blending techniques. Bitumen was heated and plastic waste was slowly added. Rheological properties of bitumen were performance by penetration, softening point, viscosity and direct shear rheometer test. The results showed that when content of plastic waste increase, the penetration value, softening point and viscosity of bitumen also increase. Generally, plastic waste improves the performance of bitumen when it was added into bitumen. It can be said that the usage helps to improve the performance of the road pavement which also reduces the rutting effect.

  10. High temperature impact on fatigue life of asphalt mixture in Slovakia

    NASA Astrophysics Data System (ADS)

    Mandula, Ján; Olexa, Tomáš

    2017-09-01

    Temperature dependence of materials bonded with bitumen is a well-known fact. The impact of temperature changes the behaviour of asphalt mixtures from elastic to viscous state, and it also influences the complex modulus, phase angle and other properties of asphalt mixtures. This study observed the summer temperature influence on fatigue behaviour of an asphalt mixture for the surface course of roads in conditions of Slovakia. Measurements were made using the four-point bending method on the asphalt mixture with maximum grain size of 11 mm bonded with polymer modified bitumen. Summer conditions were represented by environmental temperature of 27 °C according to the Slovakian pavement design method. Ordinary temperatures for fatigue measurements are 10 °C, 15 °C and 20 °C according to European standards for asphalt mixture testing. Structural changes in the material were observed by dissipation energy calculations for each loading cycle. The aim of the study was to find out if the influence of high environmental temperature is positive or negative for the lifespan of asphalt mixtures.

  11. Surface microstructure of bitumen characterized by atomic force microscopy.

    PubMed

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition, critical technical challenges associated with AFM characterization of bitumen surface structures are discussed, with possible solutions recommended. For future work, combining AFM with other chemical analysis tools that can generate comparable high resolution to AFM would provide an avenue to linking bitumen's chemistry to its microscopic morphological and mechanical properties and consequently benefit the efforts of developing structure-related models for bituminous materials across the different length scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Investigation of the Self-Healing Behaviors of Microcapsules/Bitumen Composites by a Repetitive Direct Tension Test

    PubMed Central

    Su, Jun-Feng; Yang, Peng; Wang, Ying-Yuan; Han, Shan; Han, Ning-Xu; Li, Wei

    2016-01-01

    The aim of this work was to evaluate the self-healing behaviors of bitumen using microcapsules containing rejuvenator by a modified fracture healing–refracture method through a repetitive tension test. Microcapsules had mean size values of 10, 20 and 30 μm with a same core/shell ratio of 1/1. Various microcapsules/bitumen samples were fabricated with microcapsule contents of 1.0, 3.0 and 5.0 wt. %, respectively. Tension strength values of microcapsules/bitumen samples were measured by a reparative fracture-healing process under different temperatures. It was found that these samples had tensile strength values larger than the data of pure bitumen samples under the same conditions after the four tensile fracture-healing cycles. Fracture morphology investigation and mechanism analysis indicated that the self-healing process was a process consisting of microcapsules being broken, penetrated and diffused. Moreover, the crack healing of bitumen can be considered as a viscosity driven process. The self-healing ability partly repaired the damage of bitumen during service life by comparing the properties of virgin and rejuvenated bitumen. PMID:28773722

  13. Evaluating the Rheological Properties of Waste Natural Rubber Latex Modified Binder

    NASA Astrophysics Data System (ADS)

    Khatijah Abu Bakar, Siti; Ezree Abdulah, Mohd; Mustafa Kamal, Mazlina; Rahman, Raha Abd; Arifin Hadithon, Kamarul; Buhari, Rosnawati; Tajudin, Saiful Azhar Ahmad

    2018-03-01

    Road surface is designed to be the durable surface material to sustain the traffic loading. However, due to physical and mechanical stress, pavement deterioration is accelerated. Thus, modifying conventional bitumen by improving its properties is seen as the best method to prolong pavement in-service life. The purpose of this paper is to study the effect of waste natural rubber (NR) latex on rheological properties of bitumen. Conventional bitumen PEN 80/100 was modified with different content of waste NR latex using a high shear mixer at temperature of 150°C. The modified binder properties were characterized by conducting physical test (i.e. softening point, penetration and penetration index) and rheological test (i.e. dynamic shear rheometer, DSR). Results showed that, the addition of waste NR latex improved the rheology properties, which indicates by improving of rutting factor (G*/sin δ). This properties improvement has also shows a potential to resist deformation on road surface despite of high traffic loading.

  14. Characterization of industrial wastes as raw materials for Emulsified Modified Bitumen (EMB) formulation

    NASA Astrophysics Data System (ADS)

    Najib Razali, Mohd; Isa, Syarifah Nur Ezatie Mohd; Salehan, Noor Adilah Md; Musa, Musfafikri; Aziz, Mohd Aizudin Abd; Nour, Abdurahman Hamid; Yunus, Rosli Mohd

    2018-04-01

    This study was conducted to characterize industrial wastes for formulation of emulsified modified bitumen (EMB) in relation to their physical characteristic and elemental composition. This analysis will give information either raw materials from industrial wastes can be used for EMB formulation. Bitumen is produced from crude oil that is extracted from the ground which categorizes the crude oil as one of the non-renewable form of product. A vast environmental problem issues arises in Malaysia cause by the excessive manufacturing activity that lead to a miss-management of industrial waste has leads to the used of industrial waste in the EMB formulation. Industrial waste such as polystyrene, polyethylene and used automotive oil can be used as alternative to formulate bitumen. Then a suitable emulsifier needs to be added to produce the final product which is EMB. The emulsifier will yield a charge depends on its properties to bind the oily bitumen with water. Physical characteristic studies were performed by thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), flash point test, density rest and moisture content test. Fourier Transform Infrared Spectroscopy (FTIR) analysis was measured to determine the material’s molecular composition and structure.

  15. Valorization of phosphogypsum waste as asphaltic bitumen modifier.

    PubMed

    Cuadri, A A; Navarro, F J; García-Morales, M; Bolívar, J P

    2014-08-30

    The accumulation of phosphogypsum waste from the fertilizer industries, which remain in regulated stacks occupying considerable land resources, is causing significant environment problems worldwide. In that sense, the scientific community is being pressured to find alternative ways for their disposal. In this research, we propose a novel application for phosphogypsum waste, as a modifier of bitumen for flexible road pavements. Viscous flow tests carried out on bitumen modified with a phosphogypsum waste and doped with sulfuric acid demonstrated an extraordinary increase in viscosity, at 60°C, when compared to a counterpart sample which had been modified with gypsum, the main component of phosphogypsum. Similarly, a significant improvement in the viscoelastic response of the resulting material at high temperatures was also found. FTIR (Fourier transform infrared spectroscopy) scans provided evidences of the existence of chemical reactions involving phosphorus, as revealed by a new absorption band from 1060 to 1180cm(-1), related to COP vibrations. This result points at phosphorus contained in the phosphogypsum impurities to be the actual "modifying" substance. Furthermore, no COP band was observed in the absence of sulfuric acid, which seems to be the "promoting" agent of this type of bond. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Study of the oxidized and non- oxidized bitumen modified with additive «Adgezolin» by using electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Mukhamatdinov, I.; Gafurov, M.; Kemalov, A.; Rodionov, A.; Mamin, G.; Fakhretdinov, P.

    2018-05-01

    Cationic surfactant (adhesion additive) «Adgezolin» has been developed. It is shown that introduction of «Adgezolin» into the oxidized bitumen increases the relative amount of asphaltenes and monocyclearomatic hydrocarbons. By means of electron paramagnetic resonance (EPR) it is demonstrated that the introduction of additive «Adgezolin» increases the number of paramagnetic «free» carbon radicals (FR) in the oxidized bitumen and decreases that in the unoxidized species. In both types of bitumen shift from the Lorentzian to Gaussian EPR lineshape of FR is obtained that could be connected with as an increase of the samples homogeneity. It is supposed that while in the oxygenated bitumens introduction of additives leads to the disaggregation of asphaltene-resins compounds, in the unoxidized samples the balance is shifted towards formation of di-radicals.

  17. Initial Self-Healing Temperatures of Asphalt Mastics Based on Flow Behavior Index.

    PubMed

    Li, Chao; Wu, Shaopeng; Tao, Guanyu; Xiao, Yue

    2018-05-29

    Increasing temperature is a simple and convenient method to accelerate the self-healing process of bitumen. However, bitumen may not achieve the healing capability at lower temperature, and may be aged if temperature is too high. In addition, the bitumen is mixed with mineral filler and formed as asphalt mastic in asphalt concrete, so it is more accurate to study the initial self-healing from the perspective of asphalt mastic. The primary purpose of this research was to examine the initial self-healing temperature of asphalt mastic, which was determined by the flow behavior index obtained from the flow characteristics. Firstly, the texture and geometry characteristics of two fillers were analyzed, and then the initial self-healing temperature of nine types of asphalt mastic, pure bitumen (PB) and styrene-butadiene-styrene (SBS) modified bitumen were determined by the flow behavior index. Results demonstrate that the average standard deviation of gray-scale texture value of limestone filler (LF) is 21.24% lower than that of steel slag filler (SSF), showing that the steel slag filler has a better particle distribution and geometry characteristics. Also the initial self-healing temperatures of asphalt mastics with 0.2, 0.4 and 0.6 LF-PB volume ratio are 46.5 °C, 47.2 °C and 49.4 °C, which are 1.4 °C, 0.8 °C and 0.4 °C higher than that of asphalt mastics with SSF-PB, but not suitable for the evaluation of asphalt mastic contained SBS modified bitumen because of unique structure and performance of SBS.

  18. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    NASA Astrophysics Data System (ADS)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  19. Investigation of porous asphalt microstructure using optical and electron microscopy.

    PubMed

    Poulikakos, L D; Partl, M N

    2010-11-01

    Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure. Laboratory compaction using the gyratory method has produced more microcracks in mineral aggregates after the binder had cooled. Well-performing mixes used polymer-modified binders, had a more homogeneous void structure with fewer elongated voids and better interlocking of the aggregates. Furthermore, well-performing mixes showed better distribution of the mastic and better coverage of the aggregates with bitumen. Low vacuum scanning electron microscopy showed that styrene butadiene styrene polymer modification in binder exists in the form of discontinuous globules and not continuous networks. A reduction in the polymer phase was observed as a result of aging and in-service use. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  20. Bitumen performance and chemistry in solvent refined bitumen blends

    NASA Astrophysics Data System (ADS)

    Holleran, Glynn; Holleran, Irina; Wilson, Douglas J.

    2017-09-01

    In years gone past most oil companies in Australia and New Zealand (NZ) developed experts that bridged the divide between refining and paving. This was supported by laboratories in Australia and sometimes Asia. This is no longer the case and many refineries have ceased bitumen production or closed. With the market moving towards imports and control to supply companies disconnects on bitumen passing a national specification and performance on the road. This reduces both durability and increases costs. This has been addressed by development in NZ of a performance specification for hot mix asphalt binders (including modified) and work being done on sealing grades. This paper discusses the development of the HMA specification with respect to crude sources and the development of methodologies to assess imported binders for suitability in all applications including emulsion. The conclusion is that bitumen quality may be maintained by use of these methodologies that include, chromatographic analysis, measurement of thermodynamic internal stability (Heithaus), aging, and Dynamic Shear Rheometry testing and mix performance testing in the laboratory. This forms a regime capable of use in any context and this leads to better durability of surfaces and extended service life.

  1. Moisture Sensitivity of Crumb Rubber Modified Modifier Warm Mix Asphalt Additive for Two Different Compaction Temperatures

    NASA Astrophysics Data System (ADS)

    Bilema, Munder A.; Aman, Mohamad Y.; Hassan, Norhidayah A.; Ahmad, Kabiru A.; Elghatas, Hamza M.; Radwan, Ashraf A.; Shyaa, Ahmed S.

    2018-04-01

    Crumb rubber obtained from scrap tires has been incorporated with asphalt binder to improve the performance of asphalt mixtures in the past decades. Pavements containing crumb-rubber modified (CRM) binders present one major drawback: larger amounts of greenhouse gas emissions are produced as there is rise in the energy consumption at the asphalt plant due to the higher viscosity of these type of binders compared with a conventional mixture. The objective of this paper is to calculate the optimum bitumen content for each percentage and evaluate the moisture sensitivity of crumb rubber modified asphalt at two different compacting temperatures. In this study, crumb rubber modified percentages was 0%, 5%, 10% and 15% from the binder weight, with adding 1.5% warm mix asphalt additive (Sasobit) and crush granite aggregate of 9.5mm Nominal maximum size was used after assessing its properties. Ordinary Portland Cement (OPC) used by 2% from fine aggregate. The wet method was using to mix the CRM with bitumen, the CRM conducted at 177°C for 30 min with 700rpm and Sasobit conducted at 120°C for 10 min with 1000rpm. As a result, from this study the optimum bitumen content (OBC) was increased with increased crumb rubber content. For performance test, it was conducted using the AASHTO T283 (2007): Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. The result was as expected and it was within the specification of the test, the result show that the moisture damage increased with increased the crumb rubber content but it is not exceeding the limit of specification 80% for indirect tension strength ratio (ITSR). For the temperature was with lowing the temperature the moisture damage increased.

  2. Design of a bituminous mixture for perpetual pavement

    NASA Astrophysics Data System (ADS)

    Gireesh Kumar, S.; Satya, J.; Mittal, Kratagya; Raju, Sridhar

    2018-03-01

    The flexible pavements with a design period of 50 years without requiring major structural rehabilitation and reconstructions are called as perpetual pavements. The present study aims at designing a high modulus Dense Bituminous Macadam (DBM) mixture for perpetual pavements using Industrial Grade (IG) bitumen in combination with Viscosity Grade (VG30) bitumen. Various blending combinations were tried and the ratio of 70:30 for IG: VG30 was found to fulfill the requirements. The modified Marshall hammer was used for the preparation of specimens, as the nominal size of aggregate was 25 mm. A comparative study on DBM mixture with VG30 alone and with IG: VG30 (70:30) was done and the Optimum Binder Contents obtained were 5.0 % and 5.3 % respectively at 4 % air voids. The water sensitivity tests were carried out on the bituminous specimens in accordance with AASHTO T 283 and the Indirect Tensile Strength (ITS) ratio obtained were 80.0 % and 98.3 % respectively for specimens with VG30 and IG: VG30. The stiffness modulus of DBM specimens with IG: VG30 bitumen was 3 times higher than DBM with VG30 bitumen.

  3. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    NASA Astrophysics Data System (ADS)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  4. Evaluation of Permanent Deformation of CRM-Reinforced SMA and Its Correlation with Dynamic Stiffness and Dynamic Creep

    PubMed Central

    Mashaan, Nuha Salim; Karim, Mohamed Rehan

    2013-01-01

    Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM)), in stone mastic asphalt (SMA 20) performance. The virgin bitumen (80/100) penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness), dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture. PMID:24302883

  5. Evaluation of permanent deformation of CRM-reinforced SMA and its correlation with dynamic stiffness and dynamic creep.

    PubMed

    Mashaan, Nuha Salim; Karim, Mohamed Rehan

    2013-01-01

    Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM)), in stone mastic asphalt (SMA 20) performance. The virgin bitumen (80/100) penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness), dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.

  6. Roofing Source File.

    ERIC Educational Resources Information Center

    American School & University, 1998

    1998-01-01

    Provides guidelines for school administrators to aid in the selection of school-roofing systems, and information required to make specification and purchasing decisions. Low-slope roofing systems are examined, as are multiply systems such as modified bitumen, EPDM, thermoplastic, metal, and foam. (GR)

  7. Selecting a Roof Membrane.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1990-01-01

    Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)

  8. Utilization of polyethylene terephthalate (PET) in bituminous mixture for improved performance of roads

    NASA Astrophysics Data System (ADS)

    Ahmad, A. F.; Razali, A. R.; Razelan, I. S. M.; Jalil, S. S. A.; Noh, M. S. M.; Idris, A. A.

    2017-05-01

    Plastic bottle for recycling can be found from the household waste stream, and most of them are made from Polyethylene Terephthalate. In this research, PET is utilized to explore the potential prospects to upgrade asphalt mixture properties. The objectives include deciding the best measure of PET to be used. For experimental, Marshall mix design was utilized to determine the ideal bitumen binder content and to test the modified mixture properties. The samples were created per the requirement for aggregate course wearing (ACW14) using the Standard Specification of Road Work (SSRW) in Malaysia. 20 samples were utilized to determine the binder content, and 30 samples were used to research the impact of modifying asphalt mixtures. 2%, 5%, 10%, 15% and 20% of PET by weight of the optimum binder content (4.8%) were tested. Optimum PET content is 10%, and the result shows a good stability with 16.824kN, 2.32g/cm3 bulk density, void filled with bitumen (VFB) with 71.35%, flow with 3.2248mm, air void (AV) with 4.53%, and void of mineral aggregate (VMA) with 15.15%. The outcomes showed that PET modifier gives better engineering properties. Therefore, 10% of PET by the weight of binder content was suggested as the best amount of the modifier.

  9. Understanding Roofing Systems.

    ERIC Educational Resources Information Center

    Michelsen, Ted

    2001-01-01

    Reviews the various types of multi- and single-ply roofing commonly used today in educational facilities. Roofing types described involve built-up systems, modified bitumen systems; ethylene propylene diene terpolymer roofs; and roofs of thermoplastic, metal, and foam. A description of the Roofing Industry Educational Institute is included. (GR)

  10. A historical review of additives and modifiers used in paving asphalt refining processes in the United States.

    PubMed

    Mundt, Diane J; Adams, Robert C; Marano, Kristin M

    2009-11-01

    The U.S. asphalt paving industry has evolved over time to meet various performance specifications for liquid petroleum asphalt binder (known as bitumen outside the United States). Additives to liquid petroleum asphalt produced in the refinery may affect exposures to workers in the hot mix paving industry. This investigation documented the changes in the composition and distribution of the liquid petroleum asphalt products produced from petroleum refining in the United States since World War II. This assessment was accomplished by reviewing documents and interviewing individual experts in the industry to identify current and historical practices. Individuals from 18 facilities were surveyed; the number of facilities reporting use of any material within a particular class ranged from none to more than half the respondents. Materials such as products of the process stream, polymers, elastomers, and anti-strip compounds have been added to liquid petroleum asphalt in the United States over the past 50 years, but modification has not been generally consistent by geography or time. Modifications made to liquid petroleum asphalt were made generally to improve performance and were dictated by state specifications.

  11. Metal enrichments in solid bitumens: A review

    NASA Astrophysics Data System (ADS)

    Parnell, J.

    1988-07-01

    The association of oils and solid bitumens with ore deposits is widely recorded. The oils and bitumens may actually be enriched with metals. Unlike oils, metal enrichments within bitumens do not reflect the role of petroleum as a transporting agent for metals. By contrast, they may be a result of the reduction of metal ions on contact with bitumen, and may reach levels so high that ore mineral inclusions are precipitated. Metal determinations of British bitumens suggest that new metal anomalies can be detected by this approach, that some metal anomalies within bitumens may be related to ore mineralization, and that bitumens from different sources may be distinguished by their metal contents. The potential use of bitumen distribution and/or metal enrichment within bitumen for ore exploration is dependent on the metal concerned, and in particular whether the metal is transported by association with organic materials or reduced in the presence of organic materials.

  12. Radon diffusion coefficients in 360 waterproof materials of different chemical composition.

    PubMed

    Jiránek, M; Kotrbatá, M

    2011-05-01

    This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints.

  13. Bitumen II from the Paleoproterozoic Here’s Your Chance Pb/Zn/Ag deposit: Implications for the analysis of depositional environment and thermal maturity of hydrothermally-altered sediments

    NASA Astrophysics Data System (ADS)

    Holman, Alex I.; Grice, Kliti; Jaraula, Caroline M. B.; Schimmelmann, Arndt

    2014-08-01

    The formation of sedimentary exhalative (SEDEX) Pb/Zn deposits is linked to ocean euxinia, but recent evidence suggests that ferruginous conditions may have dominated the deep ocean during the Middle Proterozoic, a maximum period for SEDEX distribution. Biomarkers of sulfate-reducing and sulfide-oxidising bacteria are valuable indicators of euxinic conditions in such settings. Organic matter (OM) from SEDEX deposits is often affected by alteration and/or migration, but OM entrapped within the kerogen/mineral matrix (Bitumen II) may be less affected than the freely-extractable OM (Bitumen I). We analysed Bitumen II from the Paleoproterozoic Here’s Your Chance (HYC) Pb/Zn/Ag deposit to find evidence of euxinic conditions in the depositional environment. n-Alkane distributions in Bitumen II are markedly distinct from previously-reported Bitumen I. Bitumen II contains long-chain n-alkanes (up to C36 or C38) and a strong even-over-odd distribution in a number of samples, which are 4‰ to 7‰ depleted in 13C compared to n-alkanes in Bitumen I and verified as indigenous by comparison with δ13C of isolated kerogen. These features are interpreted as evidence of sulfate-reducing and sulfide-oxidising bacteria, confirming that HYC was deposited under euxinic conditions. Bitumen II has the potential to reveal information from OM that is degraded and/or overprinted in Bitumen I. Commonly-used methylphenanthrene maturity ratios give conflicting information as to the relative maturity of Bitumens I and II. Bitumen I contains a far higher proportion of methylated phenanthrenes than Bitumen II. As Bitumen II is sequestered within the kerogen/mineral matrix it may have restricted access to the ‘methyl pool’ of organic compounds that can donate methyl groups to aromatic hydrocarbons. Parameters that include both phenanthrene and methylphenanthrenes do not appear suitable to compare the maturity of Bitumens I and II; hence there is no clear evidence that Bitumen II is of lower thermal maturity than Bitumen I.

  14. Asphalt concrete modified by rubber crumbs in transport construction.

    NASA Astrophysics Data System (ADS)

    Duhovny, G. S.; Karpenko, AV

    2018-03-01

    High-temperature and low-temperature characteristics of the rubber-bitumen binder and rubber asphalt concrete based on it are researched. The determination method of binder’s low-temperature characteristics is offered. The estimation of binder’s and pavement’s stability against technological and operational aging is evaluated. Estimation of environmental and economic aspects of using rubber crumbs is made. The possibility of using rubber crumbs as modifier of organic binder for production of asphalt concrete on its base is justified.

  15. Simultaneous recovery and desulfurization of bitumen from oil sand using ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Kamal, Wan Mohamad Ikhwan bin Wan; Akazawa, Nobuyuki; Kato, Takahiro; Sugawara, Katsuyasu

    2018-07-01

    Oil sand contains bitumen, which includes a high percentage of sulfur. Before using bitumen as a fuel, it must be recovered from oil sand and desulfurized. Currently, bitumen is recovered from oil sand using hot water (<100 °C), and sulfur is removed via hydrodesulfurization (>300 °C). Both of these processes consume significant amounts of energy. In this study, we demonstrate the simultaneous recovery and desulfurization of bitumen from oil sand using oxidative desulfurization with ultrasonic irradiation and tetrahydrofuran at 20 °C. We successfully recovered 88% of the bitumen from oil sand and removed 42% of the sulfur from the bitumen.

  16. The Human Bitumen Study: executive summary.

    PubMed

    Raulf-Heimsoth, Monika; Pesch, Beate; Rühl, Reinhold; Brüning, Thomas

    2011-06-01

    Bitumen has attracted attention from the scientific community and regulating agencies. The debate on health effects of exposure to vapours and aerosols of bitumen during the hot application of bitumen ranges from respiratory and neurological effects to carcinogenicity. In 2000, the German Hazardous Substances Committee (AGS), in collaboration with the German Bitumen Forum, initiated the examination of a group of mastic asphalt workers and a same number of construction workers without exposure bitumen using a cross-shift design. The study was then extended to the Human Bitumen Study, and the recruitment was finished in 2008 after examination of 500 workers on 80 construction sites. Three hundred and twenty workers exposed to vapours and aerosols of bitumen at high processing temperatures and 118 workers at outdoor construction sites were included. In the Human Bitumen Study external exposure to vapours and aerosols of bitumen, internal exposure to PAH by analysing urinary 1-hydroxypyrene, the sum of hydroxyphenanthrenes and the sum of 1- and 2-hydroxynaphthalenes, irritative effects in the upper and lower airways and genotoxic effects in blood cells were investigated. The study turned out to be one of the largest investigations of workers exposed to vapours and aerosols of bitumen under current exposure conditions. The present paper summarizes its background and main topics.

  17. Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete

    NASA Astrophysics Data System (ADS)

    Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.

    2018-02-01

    Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.

  18. Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete

    NASA Astrophysics Data System (ADS)

    Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.

    2018-06-01

    Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.

  19. Recent trends of the emission characteristics from the road construction industry.

    PubMed

    Chauhan, Sippy K; Sharma, Sangita; Shukla, Anuradha; Gangopadhyay, S

    2010-11-01

    Bitumen is a black, thermoplastic, hydrocarbon material derived from the processing of crude oil. At ambient temperature, bitumen is solid and does not present any health/environmental risks. This is one of the main reasons that bitumen is widely used for road construction all over the world. But during manufacturing/modification according to its application, storage, transportation, and use of bitumen is heated giving off various hydrocarbons emissions. In recent years, there has been increasing interest in investigating the potential of bitumen emissions to cause health effects. This is mainly because of the reason that bitumen has small amount of poly-aromatic hydrocarbons, along with some other volatiles like benzene, toluene, etc., which are known to be carcinogenic in nature. Thus, assessment of the emission characteristics and health hazards of bitumen fumes may have far reaching industrial economic and public health implications. In this review, we will discuss about the emission characteristics from bitumen, asphalts, or road construction, which is mainly contributed by bitumen fumes. Sampling strategies and analytical methods employed are also described briefly.

  20. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    PubMed

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  1. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    PubMed Central

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-01-01

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570

  2. The extraction of bitumen from western oil sands: Volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less

  3. Effect of Temperature and Process on Quantity and Composition of Laboratory-generated Bitumen Emissions.

    PubMed

    Bolliet, Christophe; Kriech, Anthony J; Juery, Catherine; Vaissiere, Mathieu; Brinton, Michael A; Osborn, Linda V

    2015-01-01

    In this study we investigated the impact of temperature on emissions as related to various bitumen applications and processes used in commercial products. Bitumen emissions are very complex and can be influenced in quantity and composition by differences in crude source, refining processes, application temperature, and work practices. This study provided a controlled laboratory environment to study five bitumen test materials from three European refineries; three paving grade, one used for primarily roofing and some paving applications, and one oxidized industrial specialty bitumen. Emissions were generated at temperatures between 140°C and 230°C based on typical application temperatures of each product. Emissions were characterized by aerodynamic particle size, total organic matter (TOM), simulated distillation, 40 individual PACs, and fluorescence (FL-PACs) spectroscopy. Results showed that composition of bitumen emissions is influenced by temperature under studied experimental conditions. A distinction between the oxidized bitumen with flux oil (industrial specialty bitumen) and the remaining bitumens was observed. Under typical temperatures used for paving (150°C-170°C), the TOM and PAC concentrations in the emissions were low. However, bitumen with flux oil produced significantly higher emissions at 230°C, laden with high levels of PACs. Flux oil in this bitumen mixture enhanced release of higher boiling-ranged compounds during application conditions. At 200°C and below, concentrations of 4-6 ring PACs were ≤6.51 μg/m(3) for all test materials, even when flux oil was used. Trends learned about emission temperature-process relationships from this study can be used to guide industry decisions to reduce worker exposure during processing and application of hot bitumen.

  4. Siberian Platform: Geology and Natural Bitumen Resources

    USGS Publications Warehouse

    Meyer, Richard F.; Freeman, P.A.

    2006-01-01

    Summary: The Siberian platform is located between the Yenisey River on the west and the Lena River on the south and east. The Siberian platform is vast in size and inhospitable in its climate. This report is concerned principally with the setting, formation, and potential volumes of natural bitumen. In this report the volumes of maltha and asphalt referred to in the Russian literature are combined to represent natural bitumen. The generation of hydrocarbons and formation of hydrocarbon accumulations are discussed. The sedimentary basins of the Platform are described in terms of the Klemme basin classification system and the conditions controlling formation of natural bitumen. Estimates of in-place bitumen resources are reviewed and evaluated. If the bitumen volume estimate is confined to parts of identified deposits where field observations have verified rock and bitumen grades values, the bitumen resource amounts to about 62 billion barrels of oil in-place. However, estimates of an order of magnitude larger can be obtained if additional speculative and unverified rock volumes and grade measures are included.

  5. Ultrasound-assisted oxidative desulfurization of bitumen

    NASA Astrophysics Data System (ADS)

    Kamal, Wan Mohamad Ikhwan bin Wan; Okawa, Hirokazu; Kato, Takahiro; Sugawara, Katsuyasu

    2017-07-01

    Bitumen contains a high percentage of sulfur (about 4.6 wt %). A hydrodesulfurization method is used to remove sulfur from bitumen. The drawback of this method is the requirement for a high temperature of >300 °C. Most of the sulfur in bitumen exists as thiophene. Oxidative desulfurization (ODS), involving oxidizing sulfur using H2O2, then removing it using NaOH, allows the removal of sulfur in thiophene at low temperatures. We removed sulfur from bitumen using ODS treatment under ultrasound irradiation, and 52% of sulfur was successfully removed. Additionally, the physical action of ultrasound assisted the desulfurization of bitumen, even at low H2O2 concentrations.

  6. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  7. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  8. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  9. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  10. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  11. Volatility of bitumen prices and implications for the industry

    USGS Publications Warehouse

    Attanasi, E.D.

    2008-01-01

    Sustained crude oil price increases have led to increased investment in and production of Canadian bitumen to supplement North American oil supplies. For new projects, the evaluation of profitability is based on a prediction of the future price path of bitumen and ultimately light/medium crude oil. This article examines the relationship between the bitumen and light crude oil prices in the context of a simple error-correction economic-adjustment model. The analysis shows bitumen prices to be significantly more volatile than light crude prices. Also, the dominant effect of an oil price shock on bitumen prices is immediate and is amplified, both in absolute terms and percentage price changes. It is argued that the bitumen industry response to such market risks will likely be a realignment toward vertical integration via new downstream construction, mergers, or on a de facto basis by the establishment of alliances. ?? 2008 International Association for Mathematical Geology.

  12. Extraction of Peace River bitumen using supercritical ethane

    NASA Astrophysics Data System (ADS)

    Rose, Jeffrey Lawrence

    2000-10-01

    As the supply of conventional crude oil continues to decline, petroleum companies are looking for alternative hydrocarbon sources. The vast reserves of heavy oil and bitumen located in northern Alberta are among the alternatives. The challenge facing engineers is to develop a process for recovering this oil which is economic, efficient and environmentally acceptable. Supercritical fluid extraction is one method being investigated which could potentially meet all of these criteria. In this study, Peace River bitumen was extracted using supercritical ethane. The bitumen was mixed with sand and packed into a semi-batch extractor. Ethane contacted the bitumen/sand mixture and the fraction of the bitumen soluble in the ethane was removed and subsequently collected in a two phase separator. The flow of ethane was such that the experiments were governed by equilibrium and not mass transfer. Experimental temperatures and pressures were varied in order to observe the effect of these parameters on the mass and composition of the extracted material. The extraction yields increased as the temperature decreased and pressure increased. Samples were collected at various time intervals to measure changes in the properties of the extracted bitumen over the duration of the process. As the extraction proceeded, the samples became heavier and more viscous. The bitumen feed was characterised and the experimental data was then modelled using the Peng-Robinson equation of state. The characterisation process involved the distillation of the bitumen into five fractions. The distillation curve and density of each fraction was measured and this data was used in conjunction with correlations to determine the critical properties of the bitumen. Interaction parameters in the equation of state were then optimised until the predicted composition of extracted bitumen matched the experimental results.

  13. Demonstration of Cooling Savings of Light Colored Roof Surfacing in Florida Commercial Buildings: Our Savior's School.

    ERIC Educational Resources Information Center

    Parker, Danny S.; Sherwin, John R.; Sonne, Jeffrey K.; Barkaszi, Stephen F., Jr.

    A 2-year Florida study attempted to quantify air conditioning cost savings when buildings have a white reflective roof. A 10,000 square foot elementary school with a gray modified bitumen roof over plywood decking that had a solar reflectance of 23 percent was monitored for an entire year. After one year of building thermal conditions and…

  14. The increase of compressive strength of natural polymer modified concrete with Moringa oleifera

    NASA Astrophysics Data System (ADS)

    Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga

    2017-03-01

    Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens

  15. Heavy Oil and Natural Bitumen Resources in Geological Basins of the World

    USGS Publications Warehouse

    Meyer, Richard F.; Attanasi, E.D.; Freeman, P.A.

    2007-01-01

    Heavy oil and natural bitumen are oils set apart by their high viscosity (resistance to flow) and high density (low API gravity). These attributes reflect the invariable presence of up to 50 weight percent asphaltenes, very high molecular weight hydrocarbon molecules incorporating many heteroatoms in their lattices. Almost all heavy oil and natural bitumen are alteration products of conventional oil. Total resources of heavy oil in known accumulations are 3,396 billion barrels of original oil in place, of which 30 billion barrels are included as prospective additional oil. The total natural bitumen resource in known accumulations amounts to 5,505 billion barrels of oil originally in place, which includes 993 billion barrels as prospective additional oil. This resource is distributed in 192 basins containing heavy oil and 89 basins with natural bitumen. Of the nine basic Klemme basin types, some with subdivisions, the most prolific by far for known heavy oil and natural bitumen volumes are continental multicyclic basins, either basins on the craton margin or closed basins along convergent plate margins. The former includes 47 percent of the natural bitumen, the latter 47 percent of the heavy oil and 46 percent of the natural bitumen. Little if any heavy oil occurs in fore-arc basins, and natural bitumen does not occur in either fore-arc or delta basins.

  16. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    PubMed

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Solvent extraction of oil-sand components for determination of trace elements by neutron activation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, F.S.; Filby, R.H.

    Instrumental neutron activation analysis was used to measure the concentrations of 30 elements in Athabasca oil sands and oil-sand components. The oil sands were separated into solid residue, bitumen, and fines by Soxhlet extraction with toluene-bitumen extract. The mineral content of the extracted bitumen was dependent on the treatment of the oil sand prior to extraction. The geochemically important and organically associated trace element contents of the bitumen (and asphaltenes) were determined by subtracting the mineral contributions from the total measured concentrations. The method allows analysis of the bitumen without the necessity of ultracentrifugation or membrane filtration, which might removemore » geochemically important components of the bitumen. The method permits classification of trace elements into organic and inorganic combinations.« less

  18. Emissions into the Air from Bitumen and Rubber Bitumen-Implications for Asphalt Workers' Exposure.

    PubMed

    Nilsson, Patrik T; Bergendorf, Ulf; Tinnerberg, Håkan; Nordin, Erik; Gustavsson, Mats; Strandberg, Bo; Albin, Maria; Gudmundsson, Anders

    2018-06-21

    The risk among asphalt workers of developing adverse health effects may increase due to their occupational exposure. One area of special concern arises when rubber granules are mixed into bitumen to enhance asphalt properties. This research characterizes and compares bitumen and rubber bitumen regarding the emissions of and workers' exposure to particulates, polycyclic aromatic hydrocarbons (PAHs) and benzothiazole. A laboratory and a field study were carried out. In the laboratory, two types of bitumen, one with and one without rubber, were heated up to two temperatures (140°C and 160°C). The concentrations and chemical compositions of the emissions were determined. In the field at asphalt work sites, both emissions and worker exposure measurements were performed. The methods applied included direct-reading sampling techniques next to the asphalt work area and personal sampling techniques on asphalt workers. The exposure measurements on asphalt workers for respirable dust, total dust, particle number and mass, and total PAH concentrations showed similar concentrations when both standard and rubber bitumen were used. The asphalt-surfacing machine operators were the workers with the highest observed exposure followed by the screed operators and roller drivers. Both laboratory and field measurements showed higher concentrations of benzothiazole when rubber bitumen was used, up to 7.5 times higher in the laboratory. The levels of naphthalene, benzo(a)pyrene, and total particles were lower for both types compared with the Swedish occupational exposure limits, 8-h time weighted average concentrations. Benzo(a)pyrene exceeded however the health-based guideline value given by the WHO for both types of bitumen. The study concludes that several air pollutants such as benzothiazole and PAHs are emitted into the air during asphalt work, but it is not evident if exposure to rubber bitumen possesses a higher risk than exposure to standard bitumen in terms of asphalt worker exposure.

  19. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    USGS Publications Warehouse

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  20. Towards Understanding the Polymerization Process in Bitumen Bio-Fluxes.

    PubMed

    Król, Jan B; Niczke, Łukasz; Kowalski, Karol J

    2017-09-09

    Bitumen is a commonly used material for road construction. According to environmental regulations, vegetable-based materials are applied for binder modification. Fluxed road bitumen containing a bio-flux oxidation product increases the consistency over time. The efficiency of crosslinking depends on the number of double bonds and their position in the aliphatic chain of fatty acid. The main goal of this paper was to examine the structural changes taking place during hardening bitumen with bio-flux additives. Two types of road bitumens fluxed with two different oxidized methyl esters of rapeseed oil were used in this study. Various chemical and rheological tests were applied for the fluxed-bitumen at different stages of oxygen exposure. The oxidation of rapeseed oil methyl ester reduced the iodine amount by about 10%-30%. Hardening of the fluxed bitumen generally results in an increase of the resins content and a reduction of the aromatics and asphaltenes. In the temperature range of 0 °C to 40 °C, bio-flux results with a much higher increase in the phase angle than in temperatures above 40 °C in the bitumen binder. The increase in the proportion of the viscous component in the low and medium binder temperature is favorable due to the potential improvement of the fatigue resistance of the asphalt mixture with such binders.

  1. Fabrication and Characterization of Novel Electrothermal Self-Healing Microcapsules with Graphene/Polymer Hybrid Shells for Bitumenious Material.

    PubMed

    Wang, Xinyu; Guo, Yandong; Su, Junfeng; Zhang, Xiaolong; Wang, Yingyuan; Tan, Yiqiu

    2018-06-09

    Self-healing bituminous material has been a hot research topic in self-healing materials, and this smart self-healing approach is a promising a revolution in pavement material technology. Bitumen has a self-healing naturality relating to temperature, healing time, and aging degree. To date, heat induction and microencapsulation rejuvenator are two feasible approaches, which have been put into real applications. However, both methods have disadvantages limiting their practical results and efficiency. It will be an ideal method combining the advantages and avoiding the disadvantages of the above two methods at the same time. The aim of this work was to synthesize and characterize electrothermal self-healing microcapsules containing bituminous rejuvenator with graphene/organic nanohybrid structure shells. The microcapsules owned electric conductivity capability because of the advent of graphene, and realized the self-healing through the two approaches of heat induction and rejuvenation. The microcapsule shells were fabricated using a strength hexamethoxymethylmelamine (HMMM) resin and graphene by two-step hybrid polymerization. Experimental tests were carried out to character the morphology, integrity, and shell structure. It was found that the electric charge balance determined the graphene/HMMM microstructure. The graphene content in shells could not be greatly increased under an electrostatic balance in emulsion. X-ray photoelectron spectroscopy (XPS), Energy dispersive spectrometer (EDS), Transmission electron microscope (TEM) and Atomic force microscopy (AFM) results indicated that the graphene had deposited on shells. TGA/DTG tests implied that the thermal decomposition temperature of microcapsules with graphene had increased to about 350 °C. The thermal conductivity of microcapsules had been sharply increased to about 8.0 W/m²·K with 2.0 wt % graphene in shells. At the same time, electrical resistivity of microcapsules/bitumen samples had a decrease with more graphene in bitumen.

  2. An NMR (Nuclear Magnetic Resonance) Investigation of the Chemical Association and Molecular Dynamics in Asphalt Ridge Tar Sand Ore and Bitumen

    DOE R&D Accomplishments Database

    Netzel, D. A.; Coover, P. T.

    1987-09-01

    Preliminary studies on tar sand bitumen given in this report have shown that the reassociation of tar sand bitumen to its original molecular configuration after thermal stressing is a first-order process requiring nearly a week to establish equilibrium. Studies were also conducted on the dissolution of tar sand bitumen in solvents of varying polarity. At a high-weight fraction of solute to solvent the apparent molecular weight of the bitumen molecules was greater than that of the original bitumen when dissolved in chloroform-d{sub 1} and benzene-d{sub 6}. This increase in the apparent molecular weight may be due to micellar formation or a weak solute-solvent molecular complex. Upon further dilution with any of the solvents studied, the apparent molecular weight of the tar sand bitumen decreased because of reduced van der Waals forces of interaction and/or hydrogen bonding. To define the exact nature of the interactions, it will be necessary to have viscosity measurements of the solutions.

  3. Alterations in morphology and hepatorenal indices in rats subacutely exposed to bitumen extract.

    PubMed

    Otuechere, Chiagoziem A; Adesanya, Oluseyi; Otsupius, Precious; Seyitan, Nathaniel

    2016-10-01

    Bitumen is a complex mixture of dense and extremely viscous organic liquids produced by distillation of crude oil during petroleum refining. Nigeria has a large deposit of natural bitumen, yet to be fully exploited. Discharges of petroleum hydrocarbons and other petroleum-derived products have caused environmental pollution and adverse human health effects in several oil-rich communities. In this study, bitumen obtained from a seepage source in Agbabu, the town of first discovery, was used in sub-acute toxicity studies in a rat experimental model, in order to assess potential health risks posed to local populace sequel to full exploitation of bitumen. Dosages were chosen to accommodate low to high cases of environmental exposures. Male Wistar rats were administered, per os, dosages of bitumen extract at 5, 3, 2, and 1 mg/kg body weight. Following euthanasia 28 days later, histological findings revealed severe portal congestion and cellular infiltration in the liver, while in the kidney there were protein casts in the tubular lumen. The relative liver and kidney weights in the 5 mg/kg groups were 34% and 40% higher than in the controls, with a concomitant decrease in food and water consumption. Furthermore, plasma clinical analyses revealed marked elevation in aspartate aminotransferase and triglycerides levels in bitumen extract-intoxicated rats. The results indicate the potential hepatorenal toxicity in adult rats following repeated exposure to bitumen extract.

  4. Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations

    PubMed Central

    Connan, J.

    1999-01-01

    Natural asphalt (or bitumen) deposits, oil seepage and liquid oil shows are widespread in the Middle East, especially in the Zagros mountains of Iran. Ancient people from northern Iraq, south-west Iran and the Dead Sea area extensively used this ubiquitous natural resource until the Neolithic period (7000 to 6000 BC). Evidence of earlier use has been recently documented in the Syrian desert near El Kown, where bitumen-coated flint implements, dated to 40,000 BC (Mousterian period), have been unearthed. This discovery at least proves that bitumen was used by Neanderthal populations as hafting material to fix handles to their flint tools. Numerous testimonies, proving the importance of this petroleum-based material in Ancient civilizations, were brought to light by the excavations conducted in the Near East as of the beginning of the century. Bitumen remains show a wide range of uses that can be classified under several headings. First of all, bitumen was largely used in Mesopotamia and Elam as mortar in the construction of palaces (e.g. the Darius Palace in Susa), temples, ziggurats (e.g. the so-called 'Tower of Babel' in Babylon), terraces (e.g. the famous 'Hanging Gardens of Babylon') and exceptionally for roadway coating (e.g. the processional way of Babylon). Since the Neolithic, bitumen served to waterproof containers (baskets, earthenware jars, storage pits), wooden posts, palace grounds (e.g. in Mari and Haradum), reserves of lustral waters, bathrooms, palm roofs, etc. Mats, sarcophagi, coffins and jars, used for funeral practices, were often covered and sealed with bitumen. Reed and wood boats were also caulked with bitumen. Abundant lumps of bituminous mixtures used for that particular purpose have been found in storage rooms of houses at Ra's al-Junayz in Oman. Bitumen was also a widespread adhesive in antiquity and served to repair broken ceramics, fix eyes and horns on statues (e.g. at Tell al-Ubaid around 2500 BC). Beautiful decorations with stones, shells, mother of pearl, on palm trees, cups, ostrich eggs, musical instruments (e.g. the Queen's lyre) and other items, such as rings, jewellery and games, have been excavated from the Royal tombs in Ur. They are on view in the British Museum. With a special enigmatic material, commonly referred to as 'bitumen mastic', the inhabitants of Susa sculpted masterpieces of art which are today exhibited in the Louvre Museum in Paris. This unique collection is presented in a book by Connan and Deschesne (1996). Last, bitumen was also considered as a powerful remedy in medical practice, especially as a disinfectant and insecticide, and was used by the ancient Egyptians to prepare mixtures to embalm the corpses of their dead. Modern analytical techniques, currently applied in the field of petroleum geochemistry, have been adapted to the study of numerous archaeological bituminous mixtures found in excavations. More than 700 bituminous samples have been analysed during the last decade, using gas chromatography alone and gas chromatography coupled with mass spectrometry and isotopic chemistry (carbon and hydrogen mainly). These powerful tools, focused on the detailed analysis of biomarkers in hydrocarbon fractions, were calibrated on various well-known natural sources of bitumen in Iraq, Syria, Iran, Bahrain and Kuwait. These reference studies have made it possible to establish the origins of bitumen from numerous archaeological sites and to document the bitumen trade routes in the Middle East and the Arabo-Persian Gulf. Using a well-documented case history, Tell el 'Oueili (5800 to 3500 BC) in South Mesopotamia, we will illustrate in this paper how these new molecular and isotopic tools can help us to recognize different sources of bitumen and to trace the ancient trade routes through time. These import routes were found to vary with major cultural and political changes in the area under study. A second example, referring to the prehistoric period, describes bitumen traces on flint implements, dated from Mousterian times. This discovery, from the Umm El Tlel excavations near El Kown in Syria, was reported in 1996 in Boëda et al. At that time, the origin of the bitumen had not been elucidated due to contamination problems. Last year, a ball of natural oil-stained sands, unearthed from the same archaeological layer, allowed us to determine the source of the bitumen used. This source is regional and located in the Jebel Bichri, nearly 40 km from the archaeological site. The last case history was selected to illustrate another aspect of the investigations carried out. Recent geochemical studies on more than 20 balms from Egyptian mummies from the Intermediate, Ptolemaic and Roman periods have revealed that these balms are composed of various mixtures of bitumen, conifer resins, grease and beeswax. Bitumen occurs with the other ingredients and the balms studied show a great variety of molecular compositions. Bitumen from the Dead Sea area is the most common source but some other sources (Hit in Iraq?) are also revealed by different molecular patterns. The absolute amount of bitumen in balms varies from almost zero to 30% per weight.

  5. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  6. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  7. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  8. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  9. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  10. Performance evaluation of high modulus asphalt concrete mixes

    NASA Astrophysics Data System (ADS)

    Haritonovs, V.; Tihonovs, J.; Zaumanis, M.

    2016-04-01

    Dolomite is one of the most available sedimentary rocks in the territory of Latvia. Dolomite quarries contain about 1000 million tons of this material. However, according to Latvian Road Specifications, this dolomite cannot be used for average and high intensity roads because of its low quality (mainly, LA index). Therefore, mostly imported magmatic rocks (granite, diabase, gabbro, basalt) or imported dolomite are used which makes asphalt expensive. However, practical experience shows that even with these high quality materials roads exhibit rutting, fatigue and thermal cracks. The aim of the research is to develop a high performance asphalt concrete for base and binder courses using only locally available aggregates. In order to achieve resistance against deformations at a high ambient temperature, a hard grade binder was used. Workability, fatigue and thermal cracking resistance, as well as sufficient water resistance is achieved by low porosity (3-5%) and higher binder content compared to traditional asphalt mixtures. The design of the asphalt includes a combination of empirical and performance based tests, which in laboratory circumstances allow simulating traffic and environmental loads. High performance AC 16 base asphalt concrete was created using local dolomite aggregate with polymer modified (PMB 10/40-65) and hard grade (B20/30) bitumen. The mixtures were specified based on fundamental properties in accordance to EN 13108-1 standard.

  11. The influence of mixture composition, adhesion promotor and compaction degree on the groove stability of grooved Marshall asphalt

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Couscheir, Karolien; Lauriks, Leen; Van den bergh, Wim; Van Bouwel, Philippe

    2017-09-01

    After the first rehabilitation of runway 07R/25L in 2015, runway 01/19 was reconstructed in the summer of 2016, as part of a cycle where all runway pavements at Brussels airport are completely renovated each thirty years. The top layer is a Marshall asphalt with a polymer modified bitumen. To optimize the water drainage the central part of the runway (47 m wide) is grooved instead of applying an anti-skid layer. In this paper the focus is on the durability of the grooved top layer. Two different Marshall asphalt mixtures with a different maximum granulate size (10 mm or 14 mm) are compared, both in the laboratory and in a full-scale trial. In the laboratory the resistance against rutting and raveling are investigated for both mixtures with and without adhesion promotor, which did not show a positive effect. In the full-scale trial the compactability and impact of both a longer curing period and a variation in the degree of compaction on the groove stability is investigated for both mixtures using a heavy truck. No visual differences could be found except in areas which were undercompacted and showed more damage to the grooves.

  12. Effect of black rice husk ash on the physical and rheological properties of bitumen

    NASA Astrophysics Data System (ADS)

    Romastarika, Raissa; Jaya, Ramadhansyah Putra; Yaacob, Haryati; Nazri, Fadzli Mohamed; Agussabti, Ichwana, Jayanti, Dewi Sri

    2017-08-01

    Black rice husk ash (BRHA) waste product is inexpensive and can be obtained from rice mills. Reuse of waste product is ideal to reduce pollution, because disposal is decreased or eliminated. The commercial value of BRHA has increased, and it is suitable for use in road construction. In this study, BRHA waste was ground using a grinding ball mill for 120 min to form fine powder. BRHA was then sieved to less than 75 µm. At the laboratory, BRHA was mixed with bitumen to replace 2%, 4%, and 6% of the total weight, whereas 0% represented the control sample. The penetration, softening point, dynamic shear rheometer (DSR) and rolling thin film oven (RTFO) were investigated in this study. Results showed that bitumen became harder, whereas the rate of penetration decreased when the replacement amount of BRHA increased. Softening point test of bitumen also revealed an increase. The short-term aging test revealed that modification of bitumen could relieve the effect of aging. BRHA waste added into bitumen improved the performance of bitumen. Therefore, the usage of BRHA could help improve the performance of road pavement and reduce the rutting effect.

  13. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 2. Laboratory Sample Production.

    DTIC Science & Technology

    1987-07-01

    tar sand bitumen from West Central Kentucky; and Sunnyside tar sand bitumen from the Uinta Basin , Utah. Each of the feedstocks had unique...fuel and about 50 volume percent heavy gas oil (600-1000°F). The Westken bitumen was overall the heaviest of the four feedstocks evaluated. K factors...was 40 weight percent and about 20 weight percent in the total crude. 3. San Ardo Heavy oil The San Ardo field is located in the Coastal basin of the

  14. NMR measurement of bitumen at different temperatures.

    PubMed

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (<60 degrees C) was found to be underestimated. However, resulting from the remarkably lowered viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (<60 degrees C) can be corrected by Curie's Law. Consequently, some important petrophysical properties of bitumen, such as hydrogen index (HI), fluid content and viscosity were evaluated by using corrected T2.

  15. Coagulation of bitumen with kaolinite in aqueous solutions containing Ca2+, Mg2+ and Fe3+: effect of citric acid.

    PubMed

    Gan, Weibing; Liu, Qi

    2008-08-01

    Heterocoagulation experiments of kaolinite with solvent-diluted-bitumen were carried out to investigate the effect of hydrolyzable metal cations and citric acid on the liberation of bitumen from kaolinite. The adsorption of Ca(2+) and Mg(2+) on kaolinite, and zeta potentials of kaolinite and bitumen droplets in solutions containing 10(-3)mol/L of Ca(2+), Mg(2+) and Fe(3+) with or without citric acid were also measured. It was found that the heterocoagulation of bitumen with kaolinite was enhanced in the presence of the metal cations from pH 7 to pH 10.5, accompanied by a decrease in the magnitude of the zeta potentials and an increase in the adsorption of the metal cations on kaolinite and possibly on bitumen droplets. The addition of 5 x 10(-4)mol/L citric acid reduced the degree of coagulation from 90% to less than 40% in the presence of 10(-3)mol/L Ca(2+) and Mg(2+) cations at pH approximately 10, and at pH approximately 8 for Fe(3+). It was found that hydrolyzable metal cations enhanced bitumen-kaolinite interactions through electrical double layer compression and specific adsorption of the metal hydrolysis species on the surface of kaolinite. The effect of metal cations was removed by citric acid through formation of metal-citrate complexes and/or the adsorption of citrate anions, which restored the zeta potentials of both kaolinite and bitumen. Therefore, electrostatic attraction or repulsion was responsible for the coagulation or dispersion of kaolinite particles from bitumen droplets in the tested system.

  16. Radial patterns of bitumen dykes around Quaternary volcanoes, provinces of northern Neuquén and southernmost Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Cobbold, Peter R.; Ruffet, Gilles; Leith, Leslie; Loseth, Helge; Rodrigues, Nuno; Leanza, Hector A.; Zanella, Alain

    2014-12-01

    Where the Neuquén Basin of Argentina abuts the Andes, hundreds of veins of solid hydrocarbon (bitumen) are visible at the surface. Many of these veins became mines, especially in the last century. By consensus, the bitumen has resulted from maturation of organic-rich shales, especially the Vaca Muerta Fm of Late Jurassic age, but also the Agrio Fm of Early Cretaceous age. To account for their maturation, recent authors have invoked regional subsidence, whereas early geologists invoked magmatic activity. During 12 field seasons (since 1998), we have tracked down the bitumen localities, mapped the veins and host rocks, sampled them, studied their compositions, and dated some of them. In the provinces of northern Neuquén and southernmost Mendoza, the bitumen veins are mostly sub-vertical dykes. They tend to be straight and continuous, crosscutting regional structures and strata of all ages, from Jurassic to Palaeocene. Most of the localities lie within 70 km of Tromen volcano, although four are along the Rio Colorado fault zone and another two are at the base of Auca Mahuida volcano. On both volcanic edifices, lavas are of late Pliocene to Pleistocene age. Although regionally many of the bitumen dykes tend to track the current direction of maximum horizontal tectonic stress (ENE), others do not. However, most of the dykes radiate outward from the volcanoes, especially Tromen. Thicknesses of dykes tend to be greatest close to Tromen and where the host rocks are the most resistant to fracturing. Many of the dykes occur in the exhumed hanging walls of deep thrusts, especially at the foot of Tromen. Here the bitumen is in places of high grade (impsonite), whereas further out it tends to be of medium grade (grahamite). A few bitumen dykes contain fragments of Vaca Muerta shale, so that we infer forceful expulsion of source rock. At Curacó Mine, some shale fragments contain bedding-parallel veins of fibrous calcite (beef) and these contain some bitumen, which is geochemically of low grade. In contrast, a large crosscutting bitumen dyke is of higher grade and formed later. At other localities, near basement faults, bitumen dykes have cap-rocks of hydrothermal calcrete. Other dykes or their wall rocks contain hydrothermal minerals. Finally, some dykes splay upward towards the current land surface. We conclude that (1) the bitumen dykes formed during volcanic activity in Pliocene-Pleistocene times, and that (2) heat advection by hydrothermal fluids helped to generate oil, which migrated upwards or downwards from the source rock and filled intrusive veins, before solidifying to bitumen, by loss of volatile elements. This unconventional hydrocarbon system may have significant implications for regional exploration in the foothills of the Andes.

  17. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  18. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  19. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  20. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  1. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  2. Acid-degradable and bioerodible modified polyhydroxylated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frechet, Jean M. J.; Bachelder, Eric M.; Beaudette, Tristan T.

    Compositions and methods of making a modified polyhydroxylated polymer comprising a polyhydroxylated polymer having reversibly modified hydroxyl groups, whereby the hydroxyl groups are modified by an acid-catalyzed reaction between a polydroxylated polymer and a reagent such as acetals, aldehydes, vinyl ethers and ketones such that the modified polyhydroxylated polymers become insoluble in water but freely soluble in common organic solvents allowing for the facile preparation of acid-sensitive materials. Materials made from these polymers can be made to degrade in a pH-dependent manner. Both hydrophobic and hydrophilic cargoes were successfully loaded into particles made from the present polymers using single andmore » double emulsion techniques, respectively. Due to its ease of preparation, processability, pH-sensitivity, and biocompatibility, of the present modified polyhydroxylated polymers should find use in numerous drug delivery applications.« less

  3. A miniature cell for gas solubility measurements in oils and bitumen.

    PubMed

    Foroughi, Hooman; Acosta, Edgar J; Kawaji, Masahiro

    2011-03-01

    A miniature cell has been designed and constructed to measure gas solubility in crude oils and bitumen. The cell was made of stainless steel with a total internal volume of 1.835 cc and only an oil sample of 0.4 cc was required for one set of measurements at different pressures. By using this small cell, the waiting time for reaching equilibrium was less than 10 min. The technique was validated by measuring CO(2) gas solubility in two bitumen samples. The results were compared and found to be in very good agreement with available data. The apparatus was also used to study the effect of ashphaltene on CO(2) solubility in bitumen. It was shown that ashphaltene had a negligible effect on CO(2) solubility in bitumen.

  4. Biological marker distribution in coexisting kerogen, bitumen and asphaltenes in Monterey Formation diatomite, California

    NASA Technical Reports Server (NTRS)

    Tannenbaum, E.; Ruth, E.; Huizinga, B. J.; Kaplan, I. R.

    1986-01-01

    Organic-rich (18.2%) Monterey Formation diatomite from California was studied. The organic matter consist of 94% bitumen and 6% kerogen. Biological markers from the bitumen and from pyrolysates of the coexisting asphaltenes and kerogen were analyzed in order to elucidate the relationship between the various fractions of the organic matter. While 17 alpha(H), 18 alpha(H), 21 alpha(H)-28,30-bisnorhopane was present in the bitumen and in the pryolysate of the asphaltenes, it was not detected in the pyrolysates of the kerogen. A C40-isoprenoid with "head to head" linkage, however, was present in pyrolysates of both kerogen and asphaltenes, but not in the bitumen from the diatomite. The maturation level of the bitumen, based on the extent of isomerization of steranes and hopanes, was that of a mature oil, whereas the pyrolysate from the kerogen showed a considerably lower maturation level. These relationships indicate that the bitumen may not be indigenous to the diatomite and that it is a mature oil that migrated into the rock. We consider the possibility, however, that some of the 28,30-bisnorhopane-rich Monterey Formation oils have not been generated through thermal degradation of kerogen, but have been expelled from the source rock at an early stage of diagenesis.

  5. Laboratory evaluation of Honeywell polymer vs SBS polymer modified asphalt mixtures.

    DOT National Transportation Integrated Search

    2013-05-01

    The scope of the study is to evaluate the laboratory performance of two asphalt mixtures; : one modified with SBS polymer and the second modified with a polymer from : Honeywell. Both asphalt binder and mixture properties are proposed to be evaluated...

  6. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  7. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  8. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  9. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  10. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  11. Novel Chemical Methodology for Identifying Origin of Archeological Bitumen: Chasing the Trade Routes along the Japanese Archipelago and Sakhalin Island in Prehistory

    NASA Astrophysics Data System (ADS)

    Ogasawara, M.; Kato, K.

    2009-04-01

    We invented a novel methodology for identifying origin of archaeological bitumen by use of field-ionization mass spectrometry (FI-MS). In the FI-MS method, fragmentation of molecular ions is minimal and there is a unit charge on each molecule. Thus, the observed mass spectra directly reflect the distribution of the molecular weights of the alkane components in bitumen. The distribution could be a molecular criterion for characterizing the bitumen sources from which each bitumen sample was derived. Actually, we decomposed the FI-MS spectra by Z-numbers into several components: the Z-number refers to z in the formula CnH2n+z and 2n-z is equivalent to the deficit number of H atoms when compared to the corresponding saturated hydrocarbon, which, in turn, is correlated to the ring number in alkanes. The integrated intensities of the component spectra corresponding to the Z-number were compared to each other. The difference in the observed spectra is reflected by the difference in concentration of alkane groups with different Z-number. In this way, the intensities data of the component spectra were used as indexes to search for the origin of the bitumen. FI-MS measurements were performed on 67 samples from five different bitumen sources and 41 bitumen samples excavated from archaeological sites in Honshu and Hokkaido, the largest and the second largest island in Japan, and Sakhalin island in Russia. By use of the spectral intensities of the seven alkane components in each sample, multiple discriminant analysis was employed for the data of raw bitumen samples and excavated samples from archaeological sites. The GC-MS chromatograms obtained from the archaeological samples from the Honshu area were all consistent with the results obtained by multivariate analysis, and thus the validity of the newly developed Z-number analysis was confirmed. As for the archaeological bitumen samples in Hokkaido, It was found that bitumen from Niigata, one of the main sources in Honshu, spread to the north in 2000 BC. It reached a small island near the north end of Hokkaido. Bitumen from Sakhalin reached the central lowland in Hokkaido, but it did not go into Honshu. Bitumen from Akita, another main source in Honshu, was predominated in the northeastern part of Honshu and the Oshima peninsula located at the southeastern end of Hokkaido. The story is consistent with a strong cultural tie between the Oshima peninsula and the northern Honshu throughout the Jomon period, the long lasting cultural period in Japanese prehistory. The long trade route along the coast of the Sea of Japan is being argued due to the recent archaeological findings obtained by excavations. Our results will shed more light on the geopolitical situation in the Jomon period of the area.

  12. Applications of Natural Polymeric Materials in Solid Oral Modified-Release Dosage Forms.

    PubMed

    Li, Liang; Zhang, Xin; Gu, Xiangqin; Mao, Shirui

    2015-01-01

    Solid oral modified-release dosage forms provide numerous advantages for drug delivery compared to dosage forms where the drugs are released and absorbed rapidly following ingestion. Natural polymers are of particular interest as drug carriers due to their good safety profile, biocompatibility, biodegradability, and rich sources. This review described the current applications of important natural polymers, such as chitosan, alginate, pectin, guar gum, and xanthan gum, in solid oral modified-release dosage forms. It was shown that natural polymers have been widely used to fabricate solid oral modified-release dosage forms such as matrix tablets, pellets and beads, and especially oral drug delivery systems such as gastroretentive and colon drug delivery systems. Moreover, chemical modifications could overcome the shortcomings associated with the use of natural polymers, and the combination of two or more polymers presented further advantages compared with that of single polymer. In conclusion, natural polymers and modified natural polymers have promising applications in solid oral modified-release dosage forms. However, commercial products based on them are still limited. To accelerate the application of natural polymers in commercial products, in vivo behavior of natural polymers-based solid oral modified-release dosage forms should be deeply investigated, and meanwhile quality of the natural polymers should be controlled strictly, and the influence of formulation and process parameters need to be understood intensively.

  13. The role of multivalent metal cations and organic complexing agents in bitumen-mineral interactions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gan, Weibing

    A systematic investigation was carried out to study the interactions between bitumen (or hexadecane) and minerals (quartz, kaolinite and illite) in aqueous solutions containing multivalent metal cations Ca2+, Mg2+ and Fe2+/Fe3+, in the absence and presence of organic complexing agents (oxalic acid, EDTA and citric acid). A range of experimental techniques, including coagulation measurement, visualization of bitumen-mineral attachment, metal ion adsorption measurement, zeta potential measurement, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopic analyses, were employed in the investigation. Free energy changes of adsorption of metal cations on the minerals and bitumen were evaluated using the James & Healy thermodynamic model. Total interaction energies between the minerals and bitumen were calculated using classical DLVO theory. It was observed that while the tested minerals showed varying degrees of mutual-coagulation with bitumen (or hexadecane), the presence of the multivalent metal cations could prominently increase the mutual coagulation. It was also found that such enhancement of the mutual coagulation was only significant when the metal cations formed first-order hydroxyl complexes (such as CaOH +, MgOH+, etc.) or metal hydroxides (such as Fe(OH) 3, Mg(OH)2, etc.). Therefore, the increase of the bitumen-mineral mutual coagulation by the metal cations was strongly pH dependent. Organic complexing agents (oxalic acid, citric acid and EDTA) used in this study, citric acid in particular, significantly reduced or virtually eliminated the mutual coagulation between bitumen (or hexadecane) and minerals caused by metal cations Ca2+, Mg2+, Fe 2+ and Fe3+. Due to its ability to substantially lower the mutual coagulation between bitumen and mineral particles, citric acid was found the most effective in improving bitumen-mineral liberation in solutions containing the multivalent metal cations at pH 8--10. In small scale flotation experiments to recover the residual bitumen from Syncrude Froth Treatment Tailings, the addition of up to 2x10-3 mol/L citric acid improved the separation efficiency by 24 percentage points. The sequential additions of 1.5x10-3 mol/L citric acid and 30 mg/L polyacrylamide further increased the flotation separation efficiency, which was attributed to the improved liberation of bitumen from the minerals by the citric acid, and the flocculation of the liberated minerals fines by the polyacrylamide. The latter was expected to reduce the mechanical entrainment of the liberated mineral fines. Pretreatment of the Froth Treatment Tailings in an ultrasonic bath was also effective for bitumen liberation and recovery from the Froth Treatment Tailings. Through measurements of zeta potentials of the minerals and adsorption densities of the metal cations on mineral surfaces, coupled with speciation diagrams, it was shown that the multivalent metal cations functioned in the studied systems through three distinctly different mechanisms. These included electrical double layer compression by the metal cations; adsorption of the first-order metal hydroxyl species; and adsorption of the metal hydroxides on the mineral particles. Reversibility of adsorption and analyses by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that the adsorption of the first-order metal hydroxyl species on quartz and kaolinite was through electrostatic attraction, while that of metal hydroxides was possibly through chemisorption. It was also shown that classical DLVO theory could be used to describe and predict bitumen-mineral interactions with and without the presence of citric acid. The energy barriers for the interaction between bitumen and the minerals were greatly raised in the presence of citric acid, as a contribution to the repulsive electrical double layers interaction between bitumen droplets and mineral particles.

  14. 40 CFR 721.10533 - Amine-modified urea-formaldehyde polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10533 Section 721.10533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10533 Amine-modified urea-formaldehyde polymer (generic). (a) Chemical... as amine-modified urea-formaldehyde polymer (PMN P-12-182) is subject to reporting under this section...

  15. 40 CFR 721.10533 - Amine-modified urea-formaldehyde polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10533 Section 721.10533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10533 Amine-modified urea-formaldehyde polymer (generic). (a) Chemical... as amine-modified urea-formaldehyde polymer (PMN P-12-182) is subject to reporting under this section...

  16. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration

    USGS Publications Warehouse

    Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.

    2008-01-01

    Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to distinguish whether solid bitumen, either in situ or removed and concentrated from the rock matrix, was formed via the TCA or TRS process. ?? 2008 Elsevier Ltd.

  17. Characteristics Buton Natural Asphalt-Rubber (BNA-R) on the Performance Improvement of Warm Mix Asphalt Using Natural Zeolite

    NASA Astrophysics Data System (ADS)

    Wahjuningsih, Nurul; Pranowo Hadiwardoyo, Sigit; Jachrizal Sumabrata, R.

    2018-03-01

    The decrease in the ability of service of pavement can be caused by the durability factor in the pavement layer in receiving heavy traffic load and the temperature of the pavement. Permanent deformation is one of the criteria of failure of asphalt mixture. Performance assessment of the asphalt mixture can be observed from the rheological properties of asphalt binder. The use of BNA-R in this study is intended to modify the characteristics of bitumen penetration grade 60 / 70 used in warm mix asphalt. Warm mix asphalt with lower temperatures of mixing and compaction than conventional asphalt mixtures was chosen because it is more environmentally friendly. To reduce the temperature in this warm asphalt technology is achieved by using natural zeolite. Both of these materials are local materials that are widely available in Indonesia. The rheology of asphalt 60/70 modified with BNA-R indicates that the addition of BNA-R in the base asphalt increase the complex modulus value and decrease the phase angle value. These values were related to the performance of mixture in the permanent deformation criteria. Reducing the temperature of mixing and compaction should be balanced with modifying the asphalt binder used. Rutting due to permanent deformation can resulted in inconvenience to the passengers and can lead to high costs of road maintenance. To determine the permanent deformation of asphalt mix with material combinations was performed through the wheel tracking test machine with 3,780 cycles for 3 hours. The results shows that after test track over 7 thousand passes have seen permanent deformation characteristics of asphalt concrete mixture with a variation of the characteristics of bitumen.

  18. Solid colloidal particles inducing coalescence in bitumen-in-water emulsions.

    PubMed

    Legrand, J; Chamerois, M; Placin, F; Poirier, J E; Bibette, J; Leal-Calderon, F

    2005-01-04

    Silica particles are dispersed in the continuous phase of bitumen-in-water emulsions. The mixture remains dispersed in quiescent storage conditions. However, rapid destabilization occurs once a shear is applied. Observations under the microscope reveal that the bitumen droplets form a colloidal gel and coalesce upon application of a shear. We follow the kinetic evolution of the emulsions viscosity, eta, at constant shear rate: eta remains initially constant and exhibits a dramatic increase after a finite time, tau. We study the influence of various parameters on the evolution of tau: bitumen droplet size and volume fraction, silica diameter and concentration, shear rate, etc.

  19. Production of petroleum bitumen by oxidation of heavy oil residue with sulfur

    NASA Astrophysics Data System (ADS)

    Tileuberdi, Ye.; Akkazyn, Ye. A.; Ongarbayev, Ye. K.; Imanbayev, Ye. I.; Mansurov, Z. A.

    2018-03-01

    In this paper production of bitumen adding elemental sulfur at oxidation of oil residue are investigated. The objects of research were distilled residue of Karazhanbas crude oil and elemental sulfur. These oil residue characterized by a low output of easy fractions and the high content of tar-asphaltene substances, therefore is the most comprehensible feedstock for producing bitumen. The sulfur is one of the oil product collected in oil extraction regions. Oxidation process of hydrocarbons carried out at temperatures from 180 up to 210 °С without addition of sulfur and with the addition of sulfur (5-10 wt. %) for 4 hours. At 200 °С oxidation of hydrocarbons with 5, 7 and 10 wt.% sulfur within 3-4 h allows receiving paving bitumen on the mark BND 200/300, BND 130/200, BN 90/130 and BN 70/30. Physical and mechanical characteristics of oxidation products with the addition of 5-7 wt. % sulfur corresponds to grade of paving bitumen BND 40/60. At the given temperature oxidized for 2.5-3 h, addition of 10 wt. % sulfur gave the products of oxidation describing on parameters of construction grades of bitumen (BN 90/10).

  20. Repair, Evaluation, Maintenance, and Rehabilitation Research Program Overlays on Horizontal Concrete Surfaces: Case Histories

    DTIC Science & Technology

    1994-02-01

    ash, silica-fume, polymer -modified, polymer , and fiber - reinforced concretes. For some nonstructural repairs, unbonded overlays have been employed in an...which silica fume was included; polymer -modified concrete overlay, one in which a polymer admixture had been included; and fiber - reinforced concrete...of pumps. However, a determination has not been made for the source of leakage. 56 Chapter 6 Polymer -Modified Concrete Overlays 7 Fiber - Reinforced

  1. High Modulus Asphalt Concrete with Dolomite Aggregates

    NASA Astrophysics Data System (ADS)

    Haritonovs, V.; Tihonovs, J.; Smirnovs, J.

    2015-11-01

    Dolomite is one of the most widely available sedimentary rocks in the territory of Latvia. Dolomite quarries contain about 1,000 million tons of this material. However, according to Latvian Road Specifications, this dolomite cannot be used for average and high intensity roads because of its low quality, mainly, its LA index (The Los Angeles abrasion test). Therefore, mostly the imported magmatic rocks (granite, diabase, gabbro, basalt) or imported dolomite are used, which makes asphalt expensive. However, practical experience shows that even with these high quality materials roads exhibit rutting, fatigue, and thermal cracks. The aim of the research is to develop a high performance asphalt concrete for base and binder courses using only locally available aggregates. In order to achieve resistance against deformations at a high ambient temperature, a hard grade binder was used. Workability, fatigue and thermal cracking resistance, as well as sufficient water resistance is achieved by low porosity (3-5%) and higher binder content compared to traditional asphalt mixtures. The design of the asphalt includes a combination of empirical and performance based tests, which in laboratory circumstances allow simulating traffic and environmental loads. High performance AC 16 base asphalt concrete was created using local dolomite aggregate with polymer modified (PMB 10/40-65) and hard grade (B20/30) bitumen. The mixtures were specified based on fundamental properties in accordance with EN 13108-1 standard.

  2. The influence of hydrocarbons in changing the mechanical and acoustic properties of a carbonate reservoir: implications of laboratory results on larger scale processes

    NASA Astrophysics Data System (ADS)

    Trippetta, Fabio; Ruggieri, Roberta; Geremia, Davide; Brandano, Marco

    2017-04-01

    Understanding hydraulic and mechanical processes that acted in reservoir rocks and their effect on the rock properties is of a great interest for both scientific and industry fields. In this work we investigate the role of hydrocarbons in changing the petrophysical properties of rock by merging laboratory, outcrops, and subsurface data focusing on the carbonate-bearing Majella reservoir (Bolognano formation). This reservoir represents an interesting analogue for subsurface carbonate reservoirs and is made of high porosity (8 to 28%) ramp calcarenites saturated by hydrocarbon in the state of bitumen at the surface. Within this lithology clean and bitumen bearing samples were investigated. For both groups, density, porosity, P and S wave velocity, at increasing confining pressure and deformation tests were conducted on cylindrical specimens with BRAVA apparatus at the HP-HT Laboratory of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. The performed petrophysical characterization, shows a very good correlation between Vp, Vs and porosity and a pressure independent Vp/Vs ratio while the presence of bitumen within samples increases both Vp and Vs. P-wave velocity hysteresis measured at ambient pressure after 100 MPa of applied confining pressure, suggests an almost pure elastic behaviour for bitumen-bearing samples and a more inelastic behaviour for cleaner samples. Calculated dynamic Young's modulus is larger for bitumen-bearing samples and these data are confirmed by cyclic deformation tests where the same samples generally record larger strength, larger Young's modulus and smaller permanent strain respect to clean samples. Starting from laboratory data, we also derived a synthetic acoustic model highlighting an increase in acoustic impedance for bitumen-bearing samples. Models have been also performed simulating a saturation with decreasing API° hydrocarbons, showing opposite effects on the seismic properties of the reservoir respect to bitumen. In order to compare our laboratory results at larger scale we selected 11 outcrops of the same lithofacies of laboratory samples both clean and bitumen-saturated. Fractures orientations, from the scan-line method, are similar for the two types of outcrops and they follow the same trends of literature data collected on older rocks. On the other hand, spacing data show very lower fracture density for bitumen-saturated outcrops confirming laboratory observations. In conclusion, laboratory experiments highlight a more elastic behaviour for bitumen-bearing samples and saturated outcrops are less prone to fracture respect to clean outcrops. Presence of bitumen has, thus, a positive influence on mechanical properties of the reservoir while acoustic model suggests that lighter oils should have an opposite effect. Geologically, this suggests that hydrocarbons migration in the study area predates the last stage of deformation giving also clues about a relatively high density of the oil when deformation began.

  3. Polymer modified asphalt in hot mix pavement : interim report, executive summary.

    DOT National Transportation Integrated Search

    1988-11-01

    This report presents a summary of a literature review to determine the most appropriate testing procedures for use with polymer modified asphalts. In examining testing procedures, it was necessary to study the effects of polymer modifiers on both bin...

  4. Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers

    NASA Astrophysics Data System (ADS)

    Buczyński, Przemyslaw; Iwański, Marek

    2017-10-01

    The article presents the results of a cold recycled mix test with a foam bitumen including the addition of the inactive mineral filler as a dust of basalt. Basalt dust was derived from dedusting system by extraction of aggregates in the mine. Assessment of the impact of a basalt dust on the properties of a recycled base layer was carried out in terms of the amount of mineral filler (basalt) in the composition of the mineral mixture. This experiment involved a dosing of mineral filler in range from 5 to 20% with steps of 7.5% in the mineral mixture composition. The foamed bitumen was performed at optimum foaming process settings (ie. bitumen temperature, air pressure) and at 2.5% of the water content. The amount of a hydraulic binder as a Portland cement was 2.0%. The evaluation of rheological properties allowed to determine whether the addition of inactive mineral fillers can act as a stiffness modulus controller in the recycled base layer. The analysis of the rheological properties of a recycled base layer in terms of the amount of inactive fillers was performed in accordance with given standard EN 12697-26 Annex D. The study was carried out according to the direct tension-compression test methodology on cylindrical samples. The sample was subjected to the oscillatory sinusoidal strain ε0 < 25με. Studies carried out at a specific temperature set-points: - 7°C, 5°C, 13°C, 25°C and 40°C and at the frequency 0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz and 20 Hz. The obtained results allow to conclude that the use of an inactive filler can reduce the stiffness of an appropriate designed mixes of the cold recycled foundation. In addition, the analysis of the relation E‧-E″ showed a similar behaviour of a recycled base, regardless of the amount of inactive fillers in the mix composition, at high temperatures/high frequency of induced load.

  5. Is there widespread metal contamination from in-situ bitumen extraction at Cold Lake, Alberta heavy oil field?

    PubMed

    Skierszkan, Elliott K; Irvine, Graham; Doyle, James R; Kimpe, Linda E; Blais, Jules M

    2013-03-01

    The extraction of oil sands by in-situ methods in Alberta has expanded dramatically in the past two decades and will soon overtake surface mining as the dominant bitumen production process in the province. While concerns regarding regional metal emissions from oil sand mining and bitumen upgrading have arisen, there is a lack of information on emissions from the in-situ industry alone. Here we show using lake sediment records and regionally-distributed soil samples that in the absence of bitumen upgrading and surface mining, there has been no significant metal (As, Cd, Cu, Hg, Ni, Pb, V) enrichment from the Cold Lake in-situ oil field. Sediment records demonstrate post-industrial Cd, Hg and Pb enrichment beginning in the early Twentieth Century, which has leveled off or declined since the onset of commercial in-situ bitumen production at Cold Lake in 1985. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The influence of extractable organic matter on vitrinite reflectance suppression: A survey of kerogen and coal types

    USGS Publications Warehouse

    Barker, C.E.; Lewan, M.D.; Pawlewicz, M.J.

    2007-01-01

    The vitrinite reflectance suppression literature shows that while bitumen impregnation of the vitrinite group is often invoked as a significant contributor to suppression, its existence is not often supported by petrological evidence. This study examines bitumen impregnation as a factor in vitrinite suppression by comparing the vitrinite reflectance of source rock and coal samples before and after solvent-extraction. Bitumen, often defined as organic matter soluble or extractable in certain organic solvents, should be removed by Soxhlet method solvent extraction using chloroform. Removing the extractable bitumen should restore the suppressed reflectance to its true higher value. However, the solvent extracted samples averaged 0.014% Rv less than that of the unextracted samples. We conclude from these results and from other published data that reflectance suppression by bitumen impregnation in the vitrinite maceral group, above the huminite stage of gelification, is seemingly a rare phenomenon and whose effect on suppressing vitrinite reflectance is typically negligible. ?? 2006.

  7. Mineralogical, chemical and K-Ar isotopic changes in Kreyenhagen Shale whole rocks and <2 µm clay fractions during natural burial and hydrous-pyrolysis experimental maturation

    USGS Publications Warehouse

    Clauer, Norbert; Lewan, Michael D.; Dolan, Michael P.; Chaudhuri, Sambhudas; Curtis, John B.

    2014-01-01

    Large amounts of smectite layers in the illite–smectite mixed layers of the pyrolyzed outcrop <2 μm fraction remain during thermal experiments, especially above 310 °C. With no illitization detected above 310 °C, smectite appears to have inhibited rather than promoted generation of expelled oil from decomposition of bitumen. This hindrance is interpreted to result from bitumen impregnating the smectite interlayer sites and rock matrix. Bitumen remains in the <2 μm fraction despite leaching with H2O2. Its presence in the smectite interlayers is apparent by the inability of the clay fraction to fully expand or collapse once bitumen generation from the thermal decomposition of the kerogen is completed, and by almost invariable K–Ar ages confirming for the lack of any K supply and/or radiogenic 40Ar removal. This suggests that once bitumen impregnates the porosity of a progressively maturing source rock, the pore system is no longer wetted by water and smectite to illite conversion ceases. Experimental attempts to evaluate the smectite conversion to illite should preferentially use low-TOC rocks to avoid inhibition of the reaction by bitumen impregnation.

  8. Identification, Geochemical Characterisation and Significance of Bitumen among the Grave Goods of the 7th Century Mound 1 Ship-Burial at Sutton Hoo (Suffolk, UK).

    PubMed

    Burger, Pauline; Stacey, Rebecca J; Bowden, Stephen A; Hacke, Marei; Parnell, John

    2016-01-01

    The 7th century ship-burial at Sutton Hoo is famous for the spectacular treasure discovered when it was first excavated in 1939. The finds include gold and garnet jewellery, silverware, coins and ceremonial armour of broad geographical provenance which make a vital contribution to understanding the political landscape of early medieval Northern Europe. Fragments of black organic material found scattered within the burial were originally identified as 'Stockholm Tar' and linked to waterproofing and maintenance of the ship. Here we present new scientific analyses undertaken to re-evaluate the nature and origin of these materials, leading to the identification of a previously unrecognised prestige material among the treasure: bitumen from the Middle East. Whether the bitumen was gifted as diplomatic gesture or acquired through trading links, its presence in the burial attests to the far-reaching network within which the elite of the region operated at this time. If the bitumen was worked into objects, either alone or in composite with other materials, then their significance within the burial would certainly have been strongly linked to their form or purpose. But the novelty of the material itself may have added to the exotic appeal. Archaeological finds of bitumen from this and earlier periods in Britain are extremely rare, despite the abundance of natural sources of bitumen within Great Britain. This find provides the first material evidence indicating that the extensively exploited Middle Eastern bitumen sources were traded northward beyond the Mediterranean to reach northern Europe and the British Isles.

  9. Identification, Geochemical Characterisation and Significance of Bitumen among the Grave Goods of the 7th Century Mound 1 Ship-Burial at Sutton Hoo (Suffolk, UK)

    PubMed Central

    Bowden, Stephen A.; Hacke, Marei; Parnell, John

    2016-01-01

    The 7th century ship-burial at Sutton Hoo is famous for the spectacular treasure discovered when it was first excavated in 1939. The finds include gold and garnet jewellery, silverware, coins and ceremonial armour of broad geographical provenance which make a vital contribution to understanding the political landscape of early medieval Northern Europe. Fragments of black organic material found scattered within the burial were originally identified as ‘Stockholm Tar’ and linked to waterproofing and maintenance of the ship. Here we present new scientific analyses undertaken to re-evaluate the nature and origin of these materials, leading to the identification of a previously unrecognised prestige material among the treasure: bitumen from the Middle East. Whether the bitumen was gifted as diplomatic gesture or acquired through trading links, its presence in the burial attests to the far-reaching network within which the elite of the region operated at this time. If the bitumen was worked into objects, either alone or in composite with other materials, then their significance within the burial would certainly have been strongly linked to their form or purpose. But the novelty of the material itself may have added to the exotic appeal. Archaeological finds of bitumen from this and earlier periods in Britain are extremely rare, despite the abundance of natural sources of bitumen within Great Britain. This find provides the first material evidence indicating that the extensively exploited Middle Eastern bitumen sources were traded northward beyond the Mediterranean to reach northern Europe and the British Isles. PMID:27906999

  10. Mechanical properties of polymer-modified porous concrete

    NASA Astrophysics Data System (ADS)

    Ariffin, N. F.; Jaafar, M. F. Md.; Shukor Lim, N. H. Abdul; Bhutta, M. A. R.; Hussin, M. W.

    2018-04-01

    In this research work, polymer-modified porous concretes (permeable concretes) using polymer latex and redispersible polymer powder with water-cement ratio of 30 %, polymer-cement ratios of 0 to 10 % and cement content of 300 kg/m3 are prepared. The porous concrete was tested for compressive strength, flexural strength, water permeability and void ratio. The cubes size of specimen is 100 mm ×100 mm × 100 mm and 150 mm × 150 mm × 150 mm while the beam size is 100 mm × 100 mm × 500 mm was prepared for particular tests. The tests results show that the addition of polymer as a binder to porous concrete gives an improvement on the strength properties and coefficient of water permeability of polymer-modified porous concrete. It is concluded from the test results that increase in compressive and flexural strengths and decrease in the coefficient of water permeability of the polymer-modified porous concrete are clearly observed with increasing of polymer-cement ratio.

  11. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  12. A study of the natural bitumen of the Mariel deposit (Republic of Cuba)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platanov, V.V.; Ivleva, L.N.; Kalyavina, O.A.

    The bitumen of the Mariel deposit, province of Havana, Republic of Cuba, and the products of its ozonolysis and thermal degradation have been studied by a group of physicochemical and chemical methods. It has been shown that the organic part of the bitumen has an aromatic polycondensed structure with mainly short alkyl substituents and ketone, ester, phenol, and quinoid functional groups together with organic sulfur and nitrogen.

  13. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  14. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  15. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.

    1996-01-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  16. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.

    1996-10-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  17. Bitumen recovery from oil sands using deep eutectic solvent and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pulati, Nuerxida

    Oil sands compose a significant proportion of the world's known oil reserves. Oil sands are also known as tar sands and bituminous sands, are complex mixtures of sand, clays, water and bitumen, which is "heavy" and highly viscous oil. The extraction and separation of bitumen from oil sands requires significant amount of energy and large quantities of water and poses several environmental challenges. Bitumen can be successfully separated from oil sands using imidazolium based ionic liquids and nonpolar solvents, however, ionic liquids are expensive and toxic. In this thesis, the ionic liquid alternatives- deep eutectic solvent, were investigated. Oil sands separation can be successfully achieved by using deep eutectic solvents DES (choline chloride and urea) and nonpolar solvent naphtha in different types of oil sands, including Canadian ("water-wet"), Utah ("oil-wet") and low grade Kentucky oil sands. The separation quality depends on oil sands type, including bitumen and fine content, and separation condition, such as solvent ratio, temperature, mixing time and mechanical centrifuge. This separation claims to the DES ability to form ion /charge layering on mineral surface, which results in reduction of adhesion forces between bitumen and minerals and promote their separation. Addition of water to DES can reduce DES viscosity. DES water mixture as a media, oil sands separation can be achieved. However, concentration at about 50 % or higher might be required to obtain a clear separation. And the separation efficiency is oil sands sample dependent. The highest bitumen extraction yield happened at 75% DES-water solution for Utah oil sands samples, and at 50 60% DES-water solutions for Alberta oil sands samples. Force curves were measured using Atomic Force Microscopy new technique, PeakForce Tapping Quantitative Nanomechanical Mapping (PFTQNM). The results demonstrate that, by adding DES, the adhesion force between bitumen and silica and dissipation energy will decrease comparing to DI water. At higher concentration DES solution (>80%DES), the amount of decrease can be up to 80-90%. In lower concentration, at about 50% decrease was observed. The results provide fundamental insights into the mechanism of bitumen separation from oil sands. The reduction of adhesion force between bitumen and minerals (silica) in DES media is the main reason which facilitates the separation between them, which by means existence of DES will favor bitumen and minerals separation. Comparing to other techniques, DES based separation is environmentally compatible and economically viable. The separation can easily happen at room temperature. Choline chloride and urea are biodegradable, environmentally compatible, accessible in large scale and easily prepared by mixing and heating (<80 °C). Further improvement is needed regarding to separation quality and efficiency, either in the direction of developing better separation techniques or by looking for chemical additives which can improve separation and reduce environmental side-effects.

  18. Bitumen workers handling mastic versus rolled asphalt in a tunnel: assessment of exposure and biomarkers of irritation and genotoxicity.

    PubMed

    Raulf-Heimsoth, Monika; Marczynski, Boleslaw; Spickenheuer, Anne; Pesch, Beate; Welge, Peter; Rühl, Reinhold; Bramer, Rainer; Kendzia, Benjamin; Heinze, Evelyn; Angerer, Jürgen; Brüning, Thomas

    2011-06-01

    Emission levels of vapours and aerosols of bitumen are different when processing rolled asphalt compared to mastic asphalt, with working temperatures up to 180 and 250°C, respectively. During the Human Bitumen Study, we examined six workers handling rolled asphalt and mastic asphalt in two consecutive weeks at the same construction site in a tunnel. In addition to the determination of exposure to bitumen and polycyclic aromatic hydrocarbons (PAH) during shift, we examined urinary PAH metabolites, irritative and genotoxic effects before and after shift. Median personal shift concentration of vapours and aerosols of bitumen was 1.8 (range 0.9-2.4) mg/m(3) during the application of rolled asphalt and 7.9 (range 4.9-11.9) mg/m(3) when mastic asphalt was applied. Area measurement of vapours and aerosols of bitumen revealed higher concentrations than the personal measurements for mastic asphalt (mastic asphalt: 34.9 mg/m(3); rolled asphalt: 1.8 mg/m(3)). Processing mastic asphalt was associated also with higher PAH concentrations. Urinary 1-hydroxypyrene and the sum of 1-, 2+ 9-, 3- and 4-hydroxyphenanthrene increased slightly during shift without clear difference between mastic and rolled asphalt application. However, the post-shift urinary PAH-metabolite concentrations did not reflect the different PAH exposure during mastic and rolled asphalt application. Individual workers could be identified by their spirometry results indicating that these data reflect more chronic than acute effects. In most cases, an increase of 8-oxodGuo adducts was observed during shift that was independent of the asphalt application. 8-oxodGuo and (+)-anti-BPDE-DNA adducts were higher than in exposed workers of the Human Bitumen Study independent of the asphalt application. The DNA-strand breaks were considerably higher pre-shift and decreased during shift. In this study, mastic asphalt application led to significantly higher exposure to vapours and aerosols of bitumen, as well as to airborne PAH, compared to rolled asphalt application. Nevertheless, no differences in the excretion of urinary PAH metabolites, lung function impairment and genotoxic markers were detected. However, higher levels of genotoxicity markers on both examination days compared with the results of the Human Bitumen Study may indicate a possible influence of the specific tunnel setting.

  19. The significance of petroleum bitumen in ancient Egyptian mummies

    PubMed Central

    Clark, K. A.; Ikram, S.

    2016-01-01

    Mummification was practised in ancient Egypt for more than 3000 years, emerging from initial observations of buried bodies preserved by natural desiccation. The use of organic balms (and other funerary practices) was a later introduction necessitated by more humid burial environments, especially tombs. The dark colour of many mummies led to the assumption that petroleum bitumen (or natural asphalt) was ubiquitous in mummification; however, this has been questioned for more than 100 years. We test this by investigating 91 materials comprising balms, tissues and textiles from 39 mummies dating from ca 3200 BC to AD 395. Targeted petroleum bitumen biomarker (steranes and hopanes) analyses by gas chromatography-mass spectrometry selected ion monitoring (GC-MS SIM, m/z 217 and 191) showed no detectable bitumen use before the New Kingdom (ca 1550–1070 BC). However, bitumen was used in 50% of New Kingdom to Late Period mummies, rising to 87% of Ptolemaic/Roman Period mummies. Quantitative determinations using 14C analyses reveal that even at peak use balms were never more than 45% w/w bitumen. Critically, the dark colour of balms can be simulated by heating/ageing mixtures of fats, resins and beeswax known to be used in balms. The application of black/dark brown balms to bodies was deliberate after the New Kingdom reflecting changing funerary beliefs and shifts in religious ideology. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644983

  20. The significance of petroleum bitumen in ancient Egyptian mummies.

    PubMed

    Clark, K A; Ikram, S; Evershed, R P

    2016-10-28

    Mummification was practised in ancient Egypt for more than 3000 years, emerging from initial observations of buried bodies preserved by natural desiccation. The use of organic balms (and other funerary practices) was a later introduction necessitated by more humid burial environments, especially tombs. The dark colour of many mummies led to the assumption that petroleum bitumen (or natural asphalt) was ubiquitous in mummification; however, this has been questioned for more than 100 years. We test this by investigating 91 materials comprising balms, tissues and textiles from 39 mummies dating from ca 3200 BC to AD 395. Targeted petroleum bitumen biomarker (steranes and hopanes) analyses by gas chromatography-mass spectrometry selected ion monitoring (GC-MS SIM, m/z 217 and 191) showed no detectable bitumen use before the New Kingdom (ca 1550-1070 BC). However, bitumen was used in 50% of New Kingdom to Late Period mummies, rising to 87% of Ptolemaic/Roman Period mummies. Quantitative determinations using (14)C analyses reveal that even at peak use balms were never more than 45% w/w bitumen. Critically, the dark colour of balms can be simulated by heating/ageing mixtures of fats, resins and beeswax known to be used in balms. The application of black/dark brown balms to bodies was deliberate after the New Kingdom reflecting changing funerary beliefs and shifts in religious ideology.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.

  1. The role of minerals in the thermal alteration of organic matter. III - Generation of bitumen in laboratory experiments

    NASA Technical Reports Server (NTRS)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, I. R.

    1987-01-01

    A series of pyrolysis experiments, utilizing two different immature kerogens (from the Monterey and Green River Formations) mixed with common sedimentary minerals (calcite, illite, or Na-montmorillonite), was conducted to study the impact of the mineral matrix on the bitumen that was generated. Calcite has no significant influence on the thermal evolution of bitumen and also shows virtually no adsorption capacity for any of the pyrolysate. In contrast, montmorillonite (M) and illite, to a lesser extent, alter bitumen during dry pyrolysis. M and illite also display strong adsorption capacities for the polar constituents of bitumen. By this process, hydrocarbons are substantially concentrated within the pyrolysate that is not strongly adsorbed on the clay matrices. The effects of the clay minerals are significantly reduced during hydrous pyrolysis. The strong adsorption capacities of M and illite, as well as their thermocatalytic properties, may in part explain why light oils and gases are generated from certain argillaceous source-rock assemblages, whereas heavy immature oils are often derived from carbonate source rocks.

  2. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.

    PubMed

    Polacco, Giovanni; Filippi, Sara; Merusi, Filippo; Stastna, George

    2015-10-01

    During the last decades, the number of vehicles per citizen as well as the traffic speed and load has dramatically increased. This sudden and somehow unplanned overloading has strongly shortened the life of pavements and increased its cost of maintenance and risks to users. In order to limit the deterioration of road networks, it is necessary to improve the quality and performance of pavements, which was achieved through the addition of a polymer to the bituminous binder. Since their introduction, polymer-modified asphalts have gained in importance during the second half of the twentieth century, and they now play a fundamental role in the field of road paving. With high-temperature and high-shear mixing with asphalt, the polymer incorporates asphalt molecules, thereby forming a swallowed network that involves the entire binder and results in a significant improvement of the viscoelastic properties in comparison with those of the unmodified binder. Such a process encounters the well-known difficulties related to the poor solubility of polymers, which limits the number of macromolecules able to not only form such a structure but also maintain it during high-temperature storage in static conditions, which may be necessary before laying the binder. Therefore, polymer-modified asphalts have been the subject of numerous studies aimed to understand and optimize their structure and storage stability, which gradually attracted polymer scientists into this field that was initially explored by civil engineers. The analytical techniques of polymer science have been applied to polymer-modified asphalts, which resulted in a good understanding of their internal structure. Nevertheless, the complexity and variability of asphalt composition rendered it nearly impossible to generalize the results and univocally predict the properties of a given polymer/asphalt pair. The aim of this paper is to review these aspects of polymer-modified asphalts. Together with a brief description of the specification and techniques proposed to quantify the storage stability, state-of-the-art knowledge about the internal structure and morphology of polymer-modified asphalts is presented. Moreover, the chemical, physical, and processing solutions suggested in the scientific and patent literature to improve storage stability are extensively discussed, with particular attention to an emerging class of asphalt binders in which the technologies of polymer-modified asphalts and polymer nanocomposites are combined. These polymer-modified asphalt nanocomposites have been introduced less than ten years ago and still do not meet the requirements of industrial practice, but they may constitute a solution for both the performance and storage requirements. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The potential use of tar sand bitumen as paving asphalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, J.C.

    1988-01-01

    In this paper several research reports describing the preparation of potential paving asphalts from tar sand bitumen are reviewed and the results of the studies compared. The tar sand asphalts described in the studies were prepared from 1) hot water-recovered bitumen from deposits near San Luis Obispo, California (Edna deposits), and deposits near Vernal and Sunnyside, Utah; and 2) bitumen recovered from the Northwest Asphalt Ridge deposits near Vernal, Utah, by both in situ steamflood and in situ combustion recovery processes. Important properties of the tar sand asphalts compare favorably with those of specification petroleum asphalts. Laboratory data suggest thatmore » some tar sand asphalts may have superior aging characteristics and produce more water-resistant paving mixtures than typical petroleum asphalts.« less

  4. Polymer modified concrete study : final report.

    DOT National Transportation Integrated Search

    1980-04-01

    Four polymer modifiers, commercially known as: Dow SM Modifier "A", Thermoflex 8002, Arco-Dylex 1186, and Duralguard Modifier "E", were chosen to be evaluated in this study effort. The first three of these products were already approved by FHWA as al...

  5. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...

  6. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...

  7. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.

    PubMed

    Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo

    2017-03-07

    The surface characteristics of molybdenite (MoS 2 ) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer depressants and fundamental understanding of bubble-solid interactions in mineral flotation. The methodologies used in this work can be readily extended to studying similar interfacial interactions in many other engineering applications such as froth flotation deinking and bitumen extraction in oil sands industry.

  8. Detection of polymer modifiers in asphalt binder.

    DOT National Transportation Integrated Search

    2006-01-01

    This study addressed the evaluation of alternative test methods to identify the presence of polymer modifiers in performance-graded binders for the purpose of quality assurance. A method of identification is presented in AASHTO T302, Polymer Content ...

  9. 49 CFR 178.508 - Standards for fiber drums.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... corrugations) firmly glued or laminated together and may include one or more protective layers of bitumen... layers of bitumen, waxed kraft paper, metal foil, plastic material, or similar material. (3) The body and...

  10. Routine Testing of Bitumen Binders

    NASA Astrophysics Data System (ADS)

    Holý, Michal; Remišová, Eva

    2017-12-01

    The quality of bituminous binders used in the construction and maintenance of road surfaces is currently assessed by empirical testing based on obtaining one value for specific boundary conditions, which were designed about 100 years ago. Basic empirical tests include the softening point and penetration, but the practice shows that these tests appear to be inadequate. The evaluation of changes of bitumen properties during the production and paving process of bituminous mixture is also important. The paper points out how the "traditional" tests as softening point and penetration and viscosity are sufficient to evaluate properties of bitumen binders.

  11. A Case–Control Study of Lung Cancer Nested in a Cohort of European Asphalt Workers

    PubMed Central

    Olsson, Ann; Kromhout, Hans; Agostini, Michela; Hansen, Johnni; Lassen, Christina Funch; Johansen, Christoffer; Kjaerheim, Kristina; Langård, Sverre; Stücker, Isabelle; Ahrens, Wolfgang; Behrens, Thomas; Lindbohm, Marja-Liisa; Heikkilä, Pirjo; Heederik, Dick; Portengen, Lützen; Shaham, Judith; Ferro, Gilles; de Vocht, Frank; Burstyn, Igor; Boffetta, Paolo

    2010-01-01

    Background We conducted a nested case–control study in a cohort of European asphalt workers in which an increase in lung cancer risk has been reported among workers exposed to airborne bitumen fume, although potential bias and confounding were not fully addressed. Objective We investigated the contribution of exposure to bitumen, other occupational agents, and tobacco smoking to the risk of lung cancer among asphalt workers. Methods Cases were cohort members in Denmark, Finland, France, Germany, the Netherlands, Norway, and Israel who had died of lung cancer between 1980 and the end of follow-up (2002–2005). Controls were individually matched in a 3:1 ratio to cases on year of birth and country. We derived exposure estimates for bitumen fume and condensate, organic vapor, and polycyclic aromatic hydrocarbons, as well as for asbestos, crystalline silica, diesel motor exhaust, and coal tar. Odds ratios (ORs) were calculated for ever-exposure, duration, average exposure, and cumulative exposure after adjusting for tobacco smoking and exposure to coal tar. Results A total of 433 cases and 1,253 controls were included in the analysis. The OR was 1.12 [95% confidence interval (CI), 0.84–1.49] for inhalation exposure to bitumen fume and 1.17 (95% CI, 0.88–1.56) for dermal exposure to bitumen condensate. No significant trend was observed between lung cancer risk and duration, average exposure, or cumulative exposure to bitumen fume or condensate. Conclusions We found no consistent evidence of an association between indicators of either inhalation or dermal exposure to bitumen and lung cancer risk. A sizable proportion of the excess mortality from lung cancer relative to the general population observed in the earlier cohort phase is likely attributable to high tobacco consumption and possibly to coal tar exposure, whereas other occupational agents do not appear to play an important role. PMID:20529766

  12. Determination of the Degree of Gravel Aggregate-Bitumencoverage by Multi-Directional Reflectance Measurements

    NASA Astrophysics Data System (ADS)

    Mulsow, C.

    2012-07-01

    The paper describes the determination of the percentage area of bitumen on partly covered aggregate. This task is a typical issue in material testing in road construction. The asphalt components bitumen and aggregate are subjected to defined mechanical stress in the presence of water in order to test the affine properties of the components. The degree to which the bitumen separates from the aggregate surface serves as an indicator for the quality of the affinity. Until now, examiners have been judging the coverage degree of samples by visual rating. Several research projects attempted to replace the error-prone subjective assessment by automatic procedures. These procedures analyse the different chromaticities of aggregate and bitumen in RGB images. However, these approaches as a whole are not reliable enough because of the rather specific requirements that are made on the environmental conditions when the picture is taken (illumination, exclusion of extraneous light) and also on the lab assistant (manual definition of training areas, management of camera and illumination parameters). Moreover, the analysis is not suitable for all types of rock because of the necessary difference in colour between bitumen and aggregate (e.g. dark rock samples). Contrary to previous approaches, the new multi-directional reflectance measurements use the different surface characteristics of bitumen and aggregate instead of the chromaticities as separation criteria. These differences are made visible by directional lighting with a laser. The diffuse reflection from the aggregate surface and the directional reflection from the optically smoother bitumen produce definitely distinguishable brightnesses in the image. Thus the colour of the material is of no significance. The approach was used in a procedure and assessed. The paper presents the method itself, approaches for the elimination of reflections and first results. Moreover, the measuring principle is compared with existing procedures and benefits and drawbacks are outlined.

  13. A model for predicting thermal properties of asphalt mixtures from their constituents

    NASA Astrophysics Data System (ADS)

    Keller, Merlin; Roche, Alexis; Lavielle, Marc

    Numerous theoretical and experimental approaches have been developed to predict the effective thermal conductivity of composite materials such as polymers, foams, epoxies, soils and concrete. None of such models have been applied to asphalt concrete. This study attempts to develop a model to predict the thermal conductivity of asphalt concrete from its constituents that will contribute to the asphalt industry by reducing costs and saving time on laboratory testing. The necessity to do the laboratory testing would be no longer required when a mix for the pavement is created with desired thermal properties at the design stage by selecting correct constituents. This thesis investigated six existing predictive models for applicability to asphalt mixtures, and four standard mathematical techniques were used to develop a regression model to predict the effective thermal conductivity. The effective thermal conductivities of 81 asphalt specimens were used as the response variables, and the thermal conductivities and volume fractions of their constituents were used as the predictors. The conducted statistical analyses showed that the measured values of thermal conductivities of the mixtures are affected by the bitumen and aggregate content, but not by the air content. Contrarily, the predicted data for some investigated models are highly sensitive to air voids, but not to bitumen and/or aggregate content. Additionally, the comparison of the experimental with analytical data showed that none of the existing models gave satisfactory results; on the other hand, two regression models (Exponential 1* and Linear 3*) are promising for asphalt concrete.

  14. Diterpanes, triterpanes, steranes, and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals

    NASA Technical Reports Server (NTRS)

    Lu, Shan-Tan; Kaplan, Isaac R.

    1992-01-01

    Data are presented on the distribution of diterpanes, triterpanes, steranes, and aromatic hydrocarbons in the natural bitumens extracted from unheated coals identified as Rocky Mountain coal (RMC), Australian Gippsland Latrobe Eocene coal (GEC), Australian Gippsland Latrobe Cretaceous coal (GCC), and Texas Wilcox lignite (WL), as well as from pyrolysates obtained from heating of these coals. It was found that pentacyclic triterpanes are dominant in GEC, GCC, and WL, whereas diterpanes strongly predominate in the bitumen of RMC, indicating that resin is a more important constituent of RMC than of the other coals and that it releases the diterpenoids at an early stage of diagenesis. It was also found that the composition of diterpanes is different among these coals and that the distributions of sterane and triterpane in the natural bitumen of coals are very different from those of pyrolysates.

  15. Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods.

    PubMed

    Selden, Paul A; Huys, Rony; Stephenson, Michael H; Heward, Alan P; Taylor, Paul N

    2010-08-10

    Copepod crustaceans are extremely abundant but, because of their small size and fragility, they fossilize poorly. Their fossil record consists of one Cretaceous (c. 115 Ma) parasite and a few Miocene (c. 14 Ma) fossils. In this paper, we describe abundant crustacean fragments, including copepods, from a single bitumen clast in a glacial diamictite of late Carboniferous age (c. 303 Ma) from eastern Oman. Geochemistry identifies the source of the bitumen as an oilfield some 100-300 km to the southwest, which is consistent with an ice flow direction from glacial striae. The bitumen likely originated as an oil seep into a subglacial lake. This find extends the fossil record of copepods by some 188 Ma, and of free-living forms by 289 Ma. The copepods include evidence of the extant family Canthocamptidae, believed to have colonized fresh water in Pangaea during Carboniferous times.

  16. Constant strain rate experiments and constitutive modeling for a class of bitumen

    NASA Astrophysics Data System (ADS)

    Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali

    2012-08-01

    The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.

  17. Roles of Thermophiles and Fungi in Bitumen Degradation in Mostly Cold Oil Sands Outcrops

    PubMed Central

    Wong, Man-Ling; An, Dongshan; Caffrey, Sean M.; Soh, Jung; Dong, Xiaoli; Sensen, Christoph W.; Oldenburg, Thomas B. P.; Larter, Steve R.

    2015-01-01

    Oil sands are surface exposed in river valley outcrops in northeastern Alberta, where flat slabs (tablets) of weathered, bitumen-saturated sandstone can be retrieved from outcrop cliffs or from riverbeds. Although the average yearly surface temperature of this region is low (0.7°C), we found that the temperatures of the exposed surfaces of outcrop cliffs reached 55 to 60°C on sunny summer days, with daily maxima being 27 to 31°C. Analysis of the cooccurrence of taxa derived from pyrosequencing of 16S/18S rRNA genes indicated that an aerobic microbial network of fungi and hydrocarbon-, methane-, or acetate-oxidizing heterotrophic bacteria was present in all cliff tablets. Metagenomic analyses indicated an elevated presence of fungal cytochrome P450 monooxygenases in these samples. This network was distinct from the heterotrophic community found in riverbeds, which included fewer fungi. A subset of cliff tablets had a network of anaerobic and/or thermophilic taxa, including methanogens, Firmicutes, and Thermotogae, in the center. Long-term aerobic incubation of outcrop samples at 55°C gave a thermophilic microbial community. Analysis of residual bitumen with a Fourier transform ion cyclotron resonance mass spectrometer indicated that aerobic degradation proceeded at 55°C but not at 4°C. Little anaerobic degradation was observed. These results indicate that bitumen degradation on outcrop surfaces is a largely aerobic process with a minor anaerobic contribution and is catalyzed by a consortium of bacteria and fungi. Bitumen degradation is stimulated by periodic high temperatures on outcrop cliffs, which cause significant decreases in bitumen viscosity. PMID:26209669

  18. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems.

    PubMed

    Miyazaki, Maiko; Yuba, Eiji; Hayashi, Hiroshi; Harada, Atsushi; Kono, Kenji

    2018-01-17

    For the enhancement of therapeutic effects and reduction of side effects derived from anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery systems with cancer-specificity and controlled release function inside cancer cells. pH-sensitive liposomes are useful as an intracellular drug delivery system because of their abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes modified with various types of pH-sensitive polymers based on synthetic polymers and biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic acid (HA)-based pH-sensitive polymers were designed as multifunctional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic side chain structure than that of MGlu-HA, were synthesized by reaction with various dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, but showed content release under weakly acidic conditions. CHex-HA-modified liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the same liposomes were taken up only slightly by cells expressing CD44 proteins less. Competition assay using free HA or other polymers revealed that HA derivative-modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified liposomes are useful as cell-specific intracellular drug delivery systems.

  19. 40 CFR 59.401 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appurtenances, to portable buildings, to pavements, or to curbs. This definition excludes adhesives and coatings... for roofing, pavement sealing, or waterproofing that incorporates bitumens. Bitumens are black or...-component product. Conversion varnishes produce a hard, durable, clear finish designed for professional...

  20. 40 CFR 59.401 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appurtenances, to portable buildings, to pavements, or to curbs. This definition excludes adhesives and coatings... for roofing, pavement sealing, or waterproofing that incorporates bitumens. Bitumens are black or...-component product. Conversion varnishes produce a hard, durable, clear finish designed for professional...

  1. 40 CFR 59.401 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appurtenances, to portable buildings, to pavements, or to curbs. This definition excludes adhesives and coatings... for roofing, pavement sealing, or waterproofing that incorporates bitumens. Bitumens are black or...-component product. Conversion varnishes produce a hard, durable, clear finish designed for professional...

  2. 40 CFR 59.401 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... appurtenances, to portable buildings, to pavements, or to curbs. This definition excludes adhesives and coatings... for roofing, pavement sealing, or waterproofing that incorporates bitumens. Bitumens are black or...-component product. Conversion varnishes produce a hard, durable, clear finish designed for professional...

  3. 40 CFR 59.401 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appurtenances, to portable buildings, to pavements, or to curbs. This definition excludes adhesives and coatings... for roofing, pavement sealing, or waterproofing that incorporates bitumens. Bitumens are black or...-component product. Conversion varnishes produce a hard, durable, clear finish designed for professional...

  4. pH-Sensitive fusogenic polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular immunity.

    PubMed

    Yuba, Eiji; Kojima, Chie; Harada, Atsushi; Tana; Watarai, Shinobu; Kono, Kenji

    2010-02-01

    By modification of liposomes with poly(glycidol) derivatives such as succinylated poly(glycidol) and 3-methylglutarylated poly(glycidol), we have developed functional liposomes that generate fusion ability at mildly acidic pH. We investigated the feasibility of these polymer-modified liposomes as a carrier of antigenic proteins for induction of cellular immunity. These pH-sensitive fusogenic liposomes encapsulating ovalbumin (OVA) were applied to DC2.4 cells, a murine dendritic cell line. Observation with confocal laser scanning microscopy showed that these polymer-modified liposomes were taken up efficiently by the cells, thereafter delivering their contents into the cytosol, probably through fusion with endosomal membranes. Murine bone marrow-derived dendritic cells treated with polymer-modified liposomes encapsulating OVA stimulated CD8-OVA1.3 cells more strongly than OT4H.1D5 cells, indicating that the liposomes induced MHC class I-restricted presentation. Furthermore, administration of the polymer-modified, OVA-loaded liposomes from nasal cavities of mice induced stronger cellular immune responses than the OVA-loaded plain liposomes. Because the ability of the polymer-modified liposomes to activate cellular immunity was comparable to that of Freund's complete adjuvant, which is a widely used adjuvant, they potentially have use in production of efficient vaccines for immunotherapy.

  5. Surface modification of cellulose using silane coupling agent.

    PubMed

    Thakur, Manju Kumari; Gupta, Raju Kumar; Thakur, Vijay Kumar

    2014-10-13

    Recently there has been a growing interest in substituting traditional synthetic polymers with natural polymers for different applications. However, natural polymers such as cellulose suffer from few drawbacks. To become viable potential alternatives of synthetic polymers, cellulosic polymers must have comparable physico-chemical properties to that of synthetic polymers. So in the present work, cellulose polymer has been modified by a series of mercerization and silane functionalization to optimize the reaction conditions. Structural, thermal and morphological characterization of the cellulose has been done using FTIR, TGA and SEM, techniques. Surface modified cellulose polymers were further subjected to evaluation of their properties like swelling and chemical resistance behavior. Published by Elsevier Ltd.

  6. Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete

    NASA Astrophysics Data System (ADS)

    Hazimmah, Dayang; Ayob, Afizah; Sie Yee, Lau; Chee Cung, Wong

    2018-03-01

    Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH)2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber -matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.

  7. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less

  8. [Effect of bitumen fume on neurotransmitter and ultrastructure in mice brain].

    PubMed

    Li, Hai-Ling; Guo, Xiang-Yun; Feng, San-Wei; Liu, Chang-Hai

    2006-12-01

    To observe the effects of bitumen fume on neurotransmitter and ultrastructure of mice brain and to investigate the toxicity of bitumen fume on nerve system of mice brain. The experimental mice were forced to inhale the bitumen fume at different exposure level and in different time periods. The contents of the three transmitters dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT) in mice brain were measured by the fluorescence meanwhile ultrastructure of mice brain was observed by electronic microscope. The ultrastructure of mice brain was observed under transmission electron microscopy. The contents of DA, NE and 5-HT in all groups decreased with the increasing of dose and prolonging of time (after 8 week, with the increasing of exposure lever, the content of DA, NE, 5-HT was respectively 2.194, 2.190, 2.181, 2.178 microg/g and 1.148, 1.138, 1.135 and 1.407, 1.403, 1.395 microg), but the results did not show significant differences. The structure of the mitochondria changes included the swollen mitochondria, chromatin margination, pyknosis and apoptosis in neuro cells and the processes of swollen astrocyte cells. The bitumen fume could induce changes of the ultrastructure of mice brain and affect the contents of neurotransmitter of mice brain.

  9. A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy.

    PubMed

    Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Watarai, Shinobu; Kono, Kenji

    2013-04-01

    Highly pH-sensitive liposomes that deliver antigenic molecules into cytosol through fusion with or destabilization of endosome were prepared by surface modification of egg yolk phosphatidylcholine/dioleoylphosphatidylethanolamine (1/1, mol/mol) liposomes with 3-methylglutarylated poly(glycidol) of linear (MGlu-LPG) or hyperbranched structure (MGlu-HPG). These polymer-modified liposomes were stable at neutral pH, but they became strongly destabilized below pH 6, which corresponds to the pH of endosome. These polymer-modified liposomes were taken up by murine dendritic cells (DCs) more efficiently than the unmodified liposomes were through an endocytic pathway. They introduced entrapped ovalbumin (OVA) molecules into cytosol. Subcutaneous or nasal administration of the polymer-modified liposomes loaded with OVA induced generation of OVA-specific cytotoxic T cells (CTL) much more effectively than the unmodified liposomes loaded with OVA. Furthermore, administration of the polymer-modified OVA-loaded liposomes to mice bearing E.G7-OVA tumor significantly reduced the tumor burden, although the OVA-loaded unmodified liposomes only slightly affected tumor growth. Results suggest that the polymer-modified liposomes with highly pH-sensitive destabilizing property are promising as antigen carriers for efficient cancer immunotherapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  11. A comparative analysis of modified binders : original asphalts and materials extracted from existing pavements.

    DOT National Transportation Integrated Search

    2010-01-18

    This research demonstrated the application of gel permeation chromatography (GPC) as an analytical tool to : ascertain the amounts of polymer modifiers in polymer modified asphalt cements, which are soluble in eluting GPC : solvents. The technique wa...

  12. A Comparative Analysis of Modified Binders : Original Asphalt and Material Extracted from Existing Pavement

    DOT National Transportation Integrated Search

    2010-01-18

    This research demonstrated the application of gel permeation chromatography (GPC) as an analytical tool to ascertain the amounts of polymer modifiers in polymer modified asphalt cements, which are soluble in eluting GPC solvents. The technique was ap...

  13. Characterization and Behavior of Cold Lake Blend and Western Canadian Select Diluted Bitumen Products

    EPA Science Inventory

    Unconventional diluted bitumen (dilbit) oil products present an increasing environmental concern because of extensive transport in North America, recent spills into aquatic habitats, and limited understanding of environmental fate and toxicity. Dilbits are blends of highly weathe...

  14. Alkylphenol and bisphenol A contamination of urban runoff: an evaluation of the emission potentials of various construction materials and automotive supplies.

    PubMed

    Lamprea, Katerine; Bressy, Adèle; Mirande-Bret, Cécile; Caupos, Emilie; Gromaire, Marie-Christine

    2018-05-23

    Alkylphenol (AP) and bisphenol A (BPA) contamination of urban runoff has already been established. Potential sources of these contaminants in runoff are endogenous to the urban watershed and are mainly related to traffic and leaching from construction materials. This article summarizes the results of experimental work carried out on a selection of building materials, automotive materials, and consumables, which can be in contact with rain, to assess their potential emission of alkylphenols, alkylphenol ethoxylates, and bisphenol A into runoff. 36 samples of materials, new and used, across 7 major families of building materials (PVC, concrete, polycarbonate, SBS-modified bitumen, drainage materials) and automotive materials (body, tires) were subjected to leaching tests with methanol and then, for a selection of them, with water. Automotive fluids were also directly analyzed. The results demonstrate the ubiquitous presence of APs and BPA in urban materials and their extractable character with water. The compounds with the strongest emission rates were bisphenol A and nonylphenol. The most important BPA emissions into water (10 to 300 ng/g) were measured for polycarbonate, tires, some car bodies, and PVC. Nonylphenol was leached in large quantities (1 to 10 ng/g) from PVC, some concretes, SBS-modified bitumen, and body samples. The tires were the only materials having a strong emission in octylphenol (1 to 10 ng/g). The analysis of automotive fluids confirmed the presence of BPA (0.3 to 5.5 g/L) and nonylphenol (2.3 to 2.9 mg/L) in brake fluids, while APs and BPA were found at trace levels in coolants and windscreen washer. Graphical abstract ᅟ.

  15. Exposure assessment for a nested case-control study of lung cancer among European asphalt workers.

    PubMed

    Agostini, Michela; Ferro, Gilles; Olsson, Ann; Burstyn, Igor; De Vocht, Frank; Hansen, Johnni; Lassen, Christina Funch; Johansen, Christoffer; Kjaerheim, Kristina; Langard, Sverre; Stucker, Isabelle; Ahrens, Wolfgang; Behrens, Thomas; Lindbohm, Marja-Liisa; Heikkilä, Pirjo; Heederik, Dick; Portengen, Lützen; Shaham, Judith; Boffetta, Paolo; Kromhout, Hans

    2010-10-01

    Development of a method for retrospective assessment of exposure to bitumen fume, bitumen condensate, organic vapour, polycyclic aromatic hydrocarbons, and co-exposures to known or suspected lung carcinogens for a nested case-control study of lung cancer mortality among European asphalt workers. Company questionnaires and structured questionnaires used in interviews and industry-specific job-exposure matrices (JEMs) were elaborated and applied. Three sources of information were eventually used for exposure assessment and assignment: (i) data obtained in cohort phase, (ii) data from living subjects, next-of-kin, and fellow-workers questionnaires, and (iii) JEMs for bitumen exposure by inhalation and via skin and co-exposures to known or suspected lung carcinogens within and outside cohort companies. Inhalation and dermal exposure estimates for bitumen were adjusted for time trends, time spent in a job, and other determinants of exposure (e.g. oil gravel paving). Clothing patterns, personal protective devices, and personal hygiene were taken into consideration while estimating dermal exposure. Occupational exposures could be assessed for 433 cases and 1253 controls for relevant time periods. Only 43% of work histories were spent inside original asphalt and construction companies. A total of 95.8% of job periods in cohort companies could be coded at a more detailed level. Imputation of work time and 'hygienic behaviour' multipliers was needed for <10% of work history years. Overall, downward trends in exposure were present and differences existed between countries and companies. As expected, correlations were strongest (r > 0.7) among bitumen-related agents, while correlations between coal tar, bitumen-related agents, and established lung carcinogens were weaker (r < 0.4). A systematic and detailed approach was developed to estimate inhalation and dermal exposure for a nested case-control study among asphalt workers.

  16. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    PubMed

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting.

    PubMed

    Liu, S X; Kim, J-T; Kim, S

    2008-04-01

    Surface modification of flat sheet ultrafiltration membranes, polyethersulfone (PES), was investigated to improve the hydrophilicity of the membrane surface thereby reducing adsorption of the proteins onto the membrane. Grafting of hydrophilic polymers onto UV/ozone-treated PES was used to improve the hydrophilicity of the commercial PES membranes. Hydrophilic polymers, that is, poly(vinyl alcohol) (PVA), polyethylene glycol (PEG), and chitosan, were employed to graft onto PES membrane surfaces because of their excellent hydrophilic property. The surfaces of modified PES membranes were characterized by contact angle measurement, FTIR, and AFM. The FTIR spectra indicated that PES membranes were successfully modified by grafting of the hydrophilic polymers. The modified PES membranes showed 20% to 50% reduction in contact angle measurements in comparison with those of the virgin PES membrane. The tapping mode AFM technique was employed to investigate the changes of surface topography, cross-section, and root mean square roughness of the modified PES membrane surfaces. The modified PES membranes showed elevated roughness (ranging from 7.0 to 25.7 nm) compared with that of the virgin PES membrane (2.1 nm). It is concluded that grafting of PVA, PEG, or chitosan onto UV/ozone-treated PES membranes increases hydrophilicity and lowers protein adsorption by 20% to 60% compared to the virgin PES membrane. Among the 3 hydrophilic polymers studied, PEG showed the most favorable result in terms of contact angle and protein adsorption.

  18. Nature of migrabitumen and their relation to regional thermal maturity, Ouachita Mountains, Oklahoma

    USGS Publications Warehouse

    Cardott, Brian J.; Ruble, Tim E.; Suneson, Neil H.

    1993-01-01

    Two grahamite and three impsonite localities are within an 82-km-long segment of the Ouachita Mountains of southeastern Oklahoma. Grab samples were collected to study the petrographic and geochemical characteristics of the migrabitumen at the grahamite-impsonite transition and the relation of the migrabitumen to the regional thermal maturity pattern. Maximum and random bitumen reflectance values increased from 0.75 to 1.80% from west to east, consistent with the regional thermal maturation trend. Mean bireflectance values increased from 0.04 to 0.38%. The two grahamite samples are classified at the grahamite-impsonite boundary with conflicting petrographic (bitumen reflectance) and bulk chemical (volatile matter) maturity indicators. The regional maturation trend, based on vitrinite reflectance and bitumen reflectance values, was confirmed by a detailed geochemical investigation of bitumen extracts. Although biomarker analyses were influenced by extensive biodegradation effects, molecular parameters based on the phenanthrenes, dibenzothiophenes, and tricyclic terpanes were identified as useful maturity indicators.

  19. Evolution of sulfur speciation in bitumen through hydrous pyrolysis induced thermal maturation of Jordanian Ghareb Formation oil shale

    USGS Publications Warehouse

    Birdwell, Justin E.; Lewan, Michael; Bake, Kyle D.; Bolin, Trudy B.; Craddock, Paul R.; Forsythe, Julia C.; Pomerantz, Andrew E.

    2018-01-01

    Previous studies on the distribution of bulk sulfur species in bitumen before and after artificial thermal maturation using various pyrolysis methods have indicated that the quantities of reactive (sulfide, sulfoxide) and thermally stable (thiophene) sulfur moieties change following consistent trends under increasing thermal stress. These trends show that sulfur distributions change during maturation in ways that are similar to those of carbon, most clearly illustrated by the increase in aromatic sulfur (thiophenic) as a function of thermal maturity. In this study, we have examined the sulfur moiety distributions of retained bitumen from a set of pre- and post-pyrolysis rock samples in an organic sulfur-rich, calcareous oil shale from the Upper Cretaceous Ghareb Formation. Samples collected from outcrop in Jordan were subjected to hydrous pyrolysis (HP). Sulfur speciation in extracted bitumens was examined using K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The most substantial changes in sulfur distribution occurred at temperatures up to the point of maximum bitumen generation (∼300 °C) as determined from comparison of the total organic carbon content for samples before and after extraction. Organic sulfide in bitumen decreased with increasing temperature at relatively low thermal stress (200–300 °C) and was not detected in extracts from rocks subjected to HP at temperatures above around 300 °C. Sulfoxide content increased between 200 and 280 °C, but decreased at higher temperatures. The concentration of thiophenic sulfur increased up to 300 °C, and remained essentially stable under increasing thermal stress (mg-S/g-bitumen basis). The ratio of stable-to-reactive+stable sulfur moieties ([thiophene/(sulfide+sulfoxide+thiophene)], T/SST) followed a sigmoidal trend with HP temperature, increasing slightly up to 240 °C, followed by a substantial increase between 240 and 320 °C, and approaching a constant value (∼0.95) at temperatures above 320 °C. This sulfur moiety ratio appears to provide complementary thermal maturity information to geochemical parameters derived from other analyses of extracted source rocks.

  20. A comparative analysis of modified binders : original asphalts and materials extracted from existing pavements : technical summary.

    DOT National Transportation Integrated Search

    2010-01-01

    The initial objective of this research was to develop procedures and standards for applying GPC as an analytical tool to define the percentage amounts of polymer modifiers in polymer modified asphalt cements soluble in eluting GPC solvents. Quantific...

  1. Estimation of porphyrin concentration in the kerogen fraction of shales using high-resolution reflectance spectroscopy

    NASA Technical Reports Server (NTRS)

    Holden, Peter N.; Gaffey, Michael J.; Sundararaman, P.

    1991-01-01

    An interpretive model for estimating porphyrin concentration in bitumen and kerogen from spectral reaflectance data in the visible and near-ultraviolet region of the spectrum is derived and calibrated. Preliminary results obtained using the model are consistent with concentrations determined from the bitumen extract and suggest that 40 to 60 percent of the total porphyrin concentration remains in the kerogen after extraction of bitumen from thermally immature samples. The reflectance technique will contribute to porphyrin and kerogen studies and can be applied at its present level of development to several areas of geologic and paleo-oceanographic research.

  2. Terrestrial bitumen analogue of orgueil organic material demonstrates high sensitivity to usual HF-HCl treatment

    NASA Technical Reports Server (NTRS)

    Korochantsev, A. V.; Nikolaeva, O. V.

    1993-01-01

    The relationship between the chemical composition and the interlayer spacing (d002) of organic materials (OM's) is known for various terrestrial OM's. We improved this general trend by correlation with corresponding trend of natural solid bitumens (asphaltite-kerite-anthraxolite) up to graphite. Using the improved trend we identified bitumen analogs of carbonaceous chondrite OM's residued after HF-HCl treatment. Our laboratory experiment revealed that these analogs and, hence, structure and chemical composition of carbonaceous chondrite OM's are very sensitive to the HF-HCl treatment. So, usual extraction of OM from carbonaceous chondrites may change significantly structural and chemical composition of extracted OM.

  3. Determination of Failure Point of Asphalt-Mixture Fatigue-Test Results Using the Flow Number Method

    NASA Astrophysics Data System (ADS)

    Wulan, C. E. P.; Setyawan, A.; Pramesti, F. P.

    2018-03-01

    The failure point of the results of fatigue tests of asphalt mixtures performed in controlled stress mode is difficult to determine. However, several methods from empirical studies are available to solve this problem. The objectives of this study are to determine the fatigue failure point of the results of indirect tensile fatigue tests using the Flow Number Method and to determine the best Flow Number model for the asphalt mixtures tested. In order to achieve these goals, firstly the best asphalt mixture of three was selected based on their Marshall properties. Next, the Indirect Tensile Fatigue Test was performed on the chosen asphalt mixture. The stress-controlled fatigue tests were conducted at a temperature of 20°C and frequency of 10 Hz, with the application of three loads: 500, 600, and 700 kPa. The last step was the application of the Flow Number methods, namely the Three-Stages Model, FNest Model, Francken Model, and Stepwise Method, to the results of the fatigue tests to determine the failure point of the specimen. The chosen asphalt mixture is EVA (Ethyl Vinyl Acetate) polymer -modified asphalt mixture with 6.5% OBC (Optimum Bitumen Content). Furthermore, the result of this study shows that the failure points of the EVA-modified asphalt mixture under loads of 500, 600, and 700 kPa are 6621, 4841, and 611 for the Three-Stages Model; 4271, 3266, and 537 for the FNest Model; 3401, 2431, and 421 for the Francken Model, and 6901, 6841, and 1291 for the Stepwise Method, respectively. These different results show that the bigger the loading, the smaller the number of cycles to failure. However, the best FN results are shown by the Three-Stages Model and the Stepwise Method, which exhibit extreme increases after the constant development of accumulated strain.

  4. Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions.

    PubMed

    Orellana, Andrea; Laurenzi, Ian J; MacLean, Heather L; Bergerson, Joule A

    2018-02-06

    Greenhouse gas (GHG) emissions associated with extraction of bitumen from oil sands can vary from project to project and over time. However, the nature and magnitude of this variability have yet to be incorporated into life cycle studies. We present a statistically enhanced life cycle based model (GHOST-SE) for assessing variability of GHG emissions associated with the extraction of bitumen using in situ techniques in Alberta, Canada. It employs publicly available, company-reported operating data, facilitating assessment of inter- and intraproject variability as well as the time evolution of GHG emissions from commercial in situ oil sands projects. We estimate the median GHG emissions associated with bitumen production via cyclic steam stimulation (CSS) to be 77 kg CO 2 eq/bbl bitumen (80% CI: 61-109 kg CO 2 eq/bbl), and via steam assisted gravity drainage (SAGD) to be 68 kg CO 2 eq/bbl bitumen (80% CI: 49-102 kg CO 2 eq/bbl). We also show that the median emissions intensity of Alberta's CSS and SAGD projects have been relatively stable from 2000 to 2013, despite greater than 6-fold growth in production. Variability between projects is the single largest source of variability (driven in part by reservoir characteristics) but intraproject variability (e.g., startups, interruptions), is also important and must be considered in order to inform research or policy priorities.

  5. Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy

    NASA Astrophysics Data System (ADS)

    Matveeva, Larisa; Belentsov, Yuri

    2017-10-01

    The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.

  6. A modified dynamical model of drying process of polymer blend solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2008-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.

  7. Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes.

    PubMed

    Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Kono, Kenji

    2011-01-05

    Previous reports by the authors described intracellular delivery using liposomes modified with various carboxylated poly(glycidol) derivatives. These linear polymer-modified liposomes exhibited a pH-dependent membrane fusion behavior in cellular acidic compartments. However, the effect of the backbone structure on membrane fusion activity remains unknown. Therefore, this study specifically investigated the backbone structure to obtain pH-sensitive polymers with much higher fusogenic activity and to reveal the effect of the polymer backbone structure on the interaction with the membrane. Hyperbranched poly(glycidol) (HPG) derivatives were prepared as a new type of pH-sensitive polymer and used for the modification of liposomes. The resultant HPG derivatives exhibited high hydrophobicity and intensive interaction with the membrane concomitantly with the increasing degree of polymerization (DP). Furthermore, HPG derivatives showed a stronger interaction with the membrane than the linear polymers show. Liposomes modified with HPG derivatives of high DP delivered contents into the cytosol of DC2.4 cells, a dendritic cell line, more effectively than the linear polymer-modified liposomes do. Results show that the backbone structure of pH-sensitive polymers affected their pH-sensitivity and interaction with liposomal and cellular membranes. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Method for filtering solvent and tar sand mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelterborn, J. C.; Stone, R. A.

    1985-09-03

    A method for filtering spent tar sands from a bitumen and organic solvent solution comprises separating the solution into two streams wherein the bulk of the coarser spent tar sand is in a first stream and has an average particle size of about 10 to about 100 mesh and the bulk of the finer spent tar sand is in a second stream; producing a filter cake by filtering the coarser spent tar sand from the first stream; and filtering the finer spent tar sand from the second stream with the filter cake. The method is particularly useful for filtering solutionsmore » of bitumen extracted from bitumen containing diatomite, spent diatomite and organic solvent.« less

  9. Efficiency of pH-Sensitive Fusogenic Polymer-Modified Liposomes as a Vaccine Carrier

    PubMed Central

    Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji

    2013-01-01

    The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses. PMID:23431260

  10. Efficiency of pH-sensitive fusogenic polymer-modified liposomes as a vaccine carrier.

    PubMed

    Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji

    2013-01-01

    The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses.

  11. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes.

    PubMed

    Kierstead, Paul H; Okochi, Hideaki; Venditto, Vincent J; Chuong, Tracy C; Kivimae, Saul; Fréchet, Jean M J; Szoka, Francis C

    2015-09-10

    A variety of water-soluble polymers, when attached to a liposome, substantially increase liposome circulation half-life in animals. However, in certain conditions, liposomes modified with the most widely used polymer, polyethylene glycol (PEG), induce an IgM response resulting in an accelerated blood clearance (ABC) of the liposome upon the second injection. Modification of liposomes with other water-soluble polymers: HPMA (poly[N-(2-hydroxypropyl) methacrylamide]), PVP (poly(vinylpyrrolidone)), PMOX (poly(2-methyl-2-oxazoline)), PDMA (poly(N,N-dimethyl acrylamide)), and PAcM (poly(N-acryloyl morpholine)), increases circulation times of liposomes; but a precise comparison of their ability to promote long circulation or induce the ABC effect has not been reported. To obtain a more nuanced understanding of the role of polymer structure/MW to promote long circulation, we synthesized a library of polymer diacyl chain lipids with low polydispersity (1.04-1.09), similar polymer molecular weights (2.1-2.5kDa) and incorporated them into 100nm liposomes of a narrow polydispersity (0.25-1.3) composed of polymer-lipid/hydrogenated soy phosphatidylcholine/cholesterol/diD: 5.0/54.5/40/0.5. We confirm that HPMA, PVP, PMOX, PDMA and PAcM modified liposome have increased circulation times in rodents and that PVP, PDMA, and PAcM do not induce the ABC effect. We demonstrate for the first time, that HPMA does not cause an ABC effect whereas PMOX induces a pronounced ABC effect in rats. We find that a single dose of liposomes coated with PEG and PMOX generates an IgM response in rats towards the respective polymer. Finally, in this homologous polymer series, we observe a positive correlation (R=0.84 in rats, R=0.92 in mice) between the circulation time of polymer-modified liposomes and polymer viscosity; PEG and PMOX, the polymers that can initiate an ABC response were the two most viscous polymers. Our findings suggest that polymers that do not cause an ABC effect such as, HPMA or PVP, deserve further consideration as polymer coatings to improve the circulation of liposomes and other nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Polymer blend compositions and methods of preparation

    DOEpatents

    Naskar, Amit K.

    2016-09-27

    A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  13. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  14. Uraniferous bitumen nodules in the Talvivaara Ni-Zn-Cu-Co deposit (Finland): influence of metamorphism on uranium mineralization in black shales

    NASA Astrophysics Data System (ADS)

    Lecomte, Andreï; Cathelineau, Michel; Deloule, Etienne; Brouand, Marc; Peiffert, Chantal; Loukola-Ruskeeniemi, Kirsti; Pohjolainen, Esa; Lahtinen, Hannu

    2014-04-01

    In the central part of the Fennoscandian Shield, the Talvivaara Ni-Zn-Cu-Co deposit, hosted by Palaeoproterozoic metamorphosed black schists, contains low uranium concentrations ranging from 10 to 30 ppm. The Talvivaara black schists were deposited 2.0-1.9 Ga ago and underwent subsequent metamorphism during the 1.9-1.79 Ga Svecofennian orogeny. Anhedral uraninite crystals rimmed by bitumen constitute the main host of uranium. U-Pb secondary ion mass spectrometry dating indicates that uraninite crystals were formed between 1,878 ± 17 and 1,871 ± 43 Ma, during peak metamorphism. Rare earth element patterns and high Th content (average 6.38 wt%) in disseminated uraninite crystals indicate that U was concentrated during high temperature metamorphism (>400 °C). The formation of bitumen rims around uraninite may be explained by two distinct scenarios: (a) a transport of U coincident with the migration of hydrocarbons or (b) post-metamorphic formation of bitumen rims, through radiolytic polymerization of gaseous hydrocarbons at the contact with uraninite.

  15. Estimating exposures in the asphalt industry for an international epidemiological cohort study of cancer risk.

    PubMed

    Burstyn, Igor; Boffetta, Paolo; Kauppinen, Timo; Heikkilä, Pirjo; Svane, Ole; Partanen, Timo; Stücker, Isabelle; Frentzel-Beyme, Rainer; Ahrens, Wolfgang; Merzenich, Hiltrud; Heederik, Dick; Hooiveld, Mariëtte; Langård, Sverre; Randem, Britt G; Järvholm, Bengt; Bergdahl, Ingvar; Shaham, Judith; Ribak, Joseph; Kromhout, Hans

    2003-01-01

    An exposure matrix (EM) for known and suspected carcinogens was required for a multicenter international cohort study of cancer risk and bitumen among asphalt workers. Production characteristics in companies enrolled in the study were ascertained through use of a company questionnaire (CQ). Exposures to coal tar, bitumen fume, organic vapor, polycyclic aromatic hydrocarbons, diesel fume, silica, and asbestos were assessed semi-quantitatively using information from CQs, expert judgment, and statistical models. Exposures of road paving workers to bitumen fume, organic vapor, and benzo(a)pyrene were estimated quantitatively by applying regression models, based on monitoring data, to exposure scenarios identified by the CQs. Exposures estimates were derived for 217 companies enrolled in the cohort, plus the Swedish asphalt paving industry in general. Most companies were engaged in road paving and asphalt mixing, but some also participated in general construction and roofing. Coal tar use was most common in Denmark and The Netherlands, but the practice is now obsolete. Quantitative estimates of exposure to bitumen fume, organic vapor, and benzo(a)pyrene for pavers, and semi-quantitative estimates of exposure to these agents among all subjects were strongly correlated. Semi-quantitative estimates of exposure to bitumen fume and coal tar exposures were only moderately correlated. EM assessed non-monotonic historical decrease in exposures to all agents assessed except silica and diesel exhaust. We produced a data-driven EM using methodology that can be adapted for other multicenter studies. Copyright 2003 Wiley-Liss, Inc.

  16. Incorporation of bitumen and calcium silicate in cement and lime stabilized soil blocks

    NASA Astrophysics Data System (ADS)

    Kwan, W. H.; Cheah, C. B.; Ramli, M.; Al-Sakkaf, Y. K.

    2017-04-01

    Providing affordable housing is the most critical problem in many of the developing countries. Using earth materials in building construction is one of the feasible methods to address this issue and it can be a way towards sustainable construction as well. However, the published information on the stabilized soil blocks is limited. Therefore, the present study is conducted to examine the characterization of the soils and engineering properties of the stabilized soil blocks. Four types of stabilizer were used in the study, namely; cement, slaked lime, bitumen emulsion and calcium silicate. Cement and slaked lime were added at different percentages in the range of 5% to 15%, with interval of 2.5%. The percentage was determined based on weight of soil. Meanwhile, bitumen emulsion and calcium silicate were incorporated at various percentages together with 10% of cement. Dosage of bitumen emulsion is in the range of 2% to 10% at interval of 2% while calcium silicate was incorporated at 0.50%, 0.75%, 1.00%, 1.25%, 1.50% and 2.00%. Results show that cement is the most viable stabilizer for the soil block among all stabilizers in this study. The bulk density, optimum moisture content and compressive strengths were increased with the increasing cement content. The most suitable cement content was 10% added at moisture content of 12%. Lime, bitumen and calcium contents were recommended at 5.0%, 6.0% and 1.25%, respectively.

  17. Polymer modified hot mix asphalt field trial.

    DOT National Transportation Integrated Search

    1999-12-01

    A problem plaguing HMA pavements is rutting, which develops because of the high summer temperatures and heavy trucks. Many different : polymer modifiers for asphalt cement have been developed to help improve both the rutting and thermal cracking prob...

  18. The study of stiffness modulus values for AC-WC pavement

    NASA Astrophysics Data System (ADS)

    Lubis, AS; Muis, Z. A.; Iskandar, T. D.

    2018-02-01

    One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.

  19. Exploring ways to control the properties of polymer thin films

    NASA Astrophysics Data System (ADS)

    Clough, Andrew R.

    Understanding the causes of deviations from bulk-like properties observed in polymer thin films is of interest both from a fundamental standpoint and in order to tailor the properties of polymer thin films used by industry as coatings and in the production of microelectronic devices. As thicknesses are decreased below 100 nm, interfacial effects start to become important. In addition, a confinement effect occurs when the film thickness becomes comparable to the unperturbed size of the polymer chain. In this thesis, we modify polymer films in a controllable way in order to study how some of these properties may be related and potentially adjusted. One of these properties is the glass transition temperature, which is seen to vary with the film thickness for films thinner than 100 nm. While there appears to be a consensus that the variation is attributable to the interactions the polymer has with the film interfaces, important questions concerning how the observed changes may affect the onset of large scale, liquid-like motions in the films have been seldom investigated. We modify the substrate interface with grafted polymer chains, which is known to instill interfacial slippage, to investigate the relation, if any, between the glass transition temperature and large scale chain motions in the films. As another part of the effort to find ways to control the properties of polymer films, we study the effect of swelling films with solvents of different qualities. Studies have shown that modifying the solvent quality used when preparing films by spin-coating, in which solvent from a polymer solution is rapidly removed to form thin uniform films, can affect some properties by modifying the degree of inter-chain entanglement in the film. As it is often difficult to spin-coat films when the solvent is poor, we investigate whether solvent swelling can also be used to modify this entanglement. We find that solvent swelling is able to modify the degree of entanglement in the films. Most importantly, swelling with a poor solvent allows us to reduce the degree of inter-chain entanglement, bringing the film further from equilibrium.

  20. Tuning the thermal conductivity of solar cell polymers through side chain engineering.

    PubMed

    Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei

    2014-05-07

    Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

  1. 21 CFR 177.1635 - Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polymerization of p-methylstyrene. (2) Rubber-modified poly(p-methylstyrene) (CAS Reg. No. 33520-88-6) polymer... during or after polymerization of the poly(p-methylstyrene), such that the finished polymers contain not...

  2. Performance-based analysis of polymer-modified emulsions in asphalt surface treatments.

    DOT National Transportation Integrated Search

    2009-10-01

    Chip seals provide a durable and functional pavement surface and serve as a highly economical highway : maintenance option when constructed properly. Data and literature suggest that chip seal sections constructed with : polymer-modified emulsions (P...

  3. Fluorescent Sensing of Chlorophenols in Water Using an Azo Dye Modified β-Cyclodextrin Polymer

    PubMed Central

    Ncube, Phendukani; Krause, Rui W.; Mamba, Bhekie B.

    2011-01-01

    A water soluble azo dye modified β-cyclodextrin polymer 4 was synthesized and used as a chemosensor for the detection of chlorinated phenols, model chlorinated by-products (CBPs) of water treatment for drinking purposes. The characterization of the intermediates and the azo dye modified β-CD polymer was done by UV/Vis Spectrophotometry, FT-IR and 1H-NMR spectroscopies. The chlorophenols were capable of quenching the fluorescence of the polymer. The polymer showed greater sensitivity towards 2,4-dichlorophenol, with a sensitivity factor of 0.35 compared to 0.05 and 0.12 for phenol and 4-chlorophenol, respectively. The stability constants (Ks) of the pollutants were also determined by the Benesi-Hildebrand method to be 2.104 × 103 M−1 for 2,4-dichlorophenol and 1.120 × 102 M−1 for 4-chlorophenol. PMID:22163864

  4. Report of the Polymer Core Course Committee: Inclusion of Polymer Topics into Undergraduate Inorganic Chemistry Courses.

    ERIC Educational Resources Information Center

    Miller, Norman E.; And Others

    1984-01-01

    Suggests polymer topics for study in inorganic chemistry courses. Commercial materials (including list of inorganic compounds utilized in polymer industry), anchored metal catalysis, polymers modified or formed by coordination, polysiloxanes, phosphazene or phosphonitrilic halide polymers, and hetergeneous polymerization catalysts are considered.…

  5. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW).

    PubMed

    Arshad, Muhammad; Khosa, M A; Siddique, Tariq; Ullah, Aman

    2016-11-01

    Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Environmental and biological monitoring of occupational exposure to polynuclear aromatic hydrocarbons during highway pavement construction in Italy.

    PubMed

    Fostinelli, Jacopo; Madeo, Egidio; Toraldo, Emanuele; Sarnico, Michela; Luzzana, Giorgio; Tomasi, Cesare; De Palma, Giuseppe

    2018-06-09

    We performed a cross-sectional study with the main aim of evaluating occupational exposure to polycyclic aromatic hydrocarbons (PAHs) in workers involved in the pavement construction of a new highway in Northern Italy, where modified bitumen was used as binder for Hot Mix Asphalt. We applied a combined approach of air and biological monitoring. Both the aerosol and vapour phases of bitumen were collected applying the NIOSH 5506 method. The 16 PAHs listed as high priority by EPA were determined by HPLC-UV. End-of-shift urine samples were collected from 144 workers to determine 1-hydroxypyrene (1-OHP) and 2-naphthol (2-NAP) concentrations after enzyme digestion and HPLC-UV analysis. Socio-demographic and lifestyle information was collected by a questionnaire. Paving workers were actually exposed to PAHs, including carcinogenic compounds, that were measurable only in the aerosol phase. Higher exposure as well as dose levels were measured for the paver group. Biological monitoring confirmed that 1-OHP was less affected by smoking habits as compared to 2-NAP and showed a higher association with occupational exposure. Carcinogenic PAH compounds were detectable only in the aerosol phase and this must be taken into account in the adoption of preventive measures. Biomonitoring supported the superiority of 1-OHP as compared to 2-NAP in assessing the internal dose in such workers. Copyright © 2018. Published by Elsevier B.V.

  7. Investigation of the use of recycled polymer-modified asphalt in asphaltic concrete pavements.

    DOT National Transportation Integrated Search

    2004-06-30

    This report presents issues associated with recycling polymer modified asphalt cements (PMACs), particularly blending aged PMAC with new PMAC. A styrene-butadiene-styrene (SBS) PMAC was selected and graded using the Superpave Performance Grading (PG)...

  8. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Treesearch

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  9. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery.

    PubMed

    He, Bingwei; Wang, Yitong; Shao, Naimin; Chang, Hong; Cheng, Yiyun

    2015-08-01

    Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Response to Oil Sands Products Assessment

    DTIC Science & Technology

    2015-09-01

    volume of the spill, its duration, and the viscosity and density of the crude oil involved. The denser components of a Dilbit spill would be difficult...C-4 Figure ‎C-2. Viscosity change for the three types of diluted bitumen. ......................................................... C...specific gravity) approaching or even exceeding the density of water. As a result of their high viscosity , bitumen cannot be produced by conventional

  11. Literature review of levels and determinants of exposure to potential carcinogens and other agents in the road construction industry.

    PubMed

    Burstyn, I; Kromhout, H; Boffetta, P

    2000-01-01

    Workers in the road construction industry include asphalt plant, ground construction, and road paving workers. These individuals can be exposed to a wide range of potentially hazardous substances. A summary of levels of exposure to different substances measured during road construction is presented. In modern road paving, workers typically are exposed to 0.1 to 2 mg/m3 of bitumen fume, which includes 10 to 200 ng/m3 of benzo(a)pyrene. Sampling strategies and analytical methods employed in each reviewed survey are described briefly. The published reports provide some insight into the identity of factors that influence exposure to bitumen among road construction workers: type of work performed, meteorological conditions, temperature of paved asphalt. However, there is a lack of (a) comprehensive and well-designed studies that evaluate determinants of exposure to bitumen in road construction, and (b) standard methods for bitumen sampling and analysis. Information on determinants of other exposures in road construction is either absent or limited. It is concluded that data available through published reports have limited value in assessing historical exposure levels in the road construction industry.

  12. Geological criteria and geophysical methods of natural bitumen deposits preparation to the development

    NASA Astrophysics Data System (ADS)

    Uspensky, B. V.; Borovsky, M. Ya; Vafin, R. F.; Valeeva, S. E.; Mudarisova, R. A.

    2018-05-01

    The article considers the provisions of the ontogenesis of the following factors in the formation of natural bitumen clusters in the Permian deposits of the Melekesskiy region: genetic, geodynamic, structural and hydrogeological. It is shown that tectonically weakened zones and zones of Neogene incisions development are fixed by high-precision gravimetry in the form of intense local minima of gravity. A favorable factor contributing to the "strengthening" of anomalous geophysical effects is the coincidence of the locations of these geological section heterogeneities in the plan. It is recommended at the stage of experimental-industrial operation a complex of geophysical methods for monitoring the processes of natural bitumen deposits development by means of secondary impact on the formation. High-precision magnetic, thermal and electrical prospecting in various modifications are used.

  13. Small cell foams and blends and a process for their preparation

    DOEpatents

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-07

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents. These modified dense star polymers or dendrimers are particularly effective for the production of small cell foams.

  14. Small cell foams and blends and a process for their preparation

    DOEpatents

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents. These modified dense star polymers or dendrimers are particularly effective for the production of small cell foams.

  15. Performance of polymer modified hot mix asphalt pavements : an extended evaluation.

    DOT National Transportation Integrated Search

    2004-03-01

    In the summer of 1996, the Mississippi Department of Transportation (MDOT) initiated a field trial (MDOT : State Study No. 111) and a laboratory study (MDOT State Study No. 123) to evaluate the use of polymer : modified asphalts in hot mix asphalt pa...

  16. Structure-Property Relationships of Polymer Brushes in Restricted Geometries and their Utilization as Ultra-Low Lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, Tonya Lynn; Faller, Roland

    2015-09-28

    Though polymer films are widely used to modify or tailor the physical, chemical and mechanical properties of interfaces in both solid and liquid systems, the rational design of interface- or surface-active polymer modifiers has been hampered by a lack of information about the behavior and structure-property relationships of this class of molecules. This is especially true for systems in which the role of the polymer is to modify the interaction between two solid surfaces in intimate contact and under load, to cause them to be mechanically coupled (e.g. to promote adhesion and wetting) or to minimize their interaction (e.g. lubrication,more » colloidal stabilization, etc.). Detailed structural information on these systems has largely been precluded by the many difficulties and challenges associated with direct experimental measurements of polymer structure in these geometries. As a result, many practitioners have been forced to employ indirect measurements or rely wholly on theoretical modeling. This has resulted in an incomplete understanding of the structure-property relationships, which are relied upon for the rational design of improved polymer modifiers. Over the course of this current research program, we made direct measurements of the structure of polymers at the interface between two solid surfaces under confinement and elucidated the fundamental physics behind these phenomena using atomistic and coarse grained simulations. The research has potential to lead to new lubricants and wear reducing agents to improve efficiency.« less

  17. Evidence and characteristics of hydrolytic disproportionation of organic matter during metasomatic processes

    USGS Publications Warehouse

    Price, L.C.; Dewitt, E.

    2001-01-01

    Petroleum-geochemical analyses of carbonaceous regionally metamorphosed rocks, carbonaceous rocks from ore deposits, and alkalic plutonic rocks from diverse settings, demonstrated the presence of very low to moderately low concentrations of solvent-extractable organic matter, this observation in spite of the fact that some of these rocks were exposed to extremely high metamorphic temperatures. Biomarker and ??13C analyses established that the extractable organic matter originated as sedimentary-derived hydrocarbons. However, the chemistry of the extractable bitumen has been fundamentally transformed from that found in sediment bitumen and oils. Asphaltenes and resins, as defined in the normal petroleum-geochemical sense, are completely missing. The principal aromatic hydrocarbons present in oils and sediment bitumens (especially the methylated naphthalenes) are either in highly reduced concentrations or are missing altogether, Instead, aromatic hydrocarbons typical of sediment bitumens and oils are very minor, and a number of unidentified compounds and oxygen-bearing compounds are dominant. Relatively high concentrations of alkylated benzenes are typical. The polar "resin" fraction, eluted during column chromatography, is the principal compound group, by weight, being composed of six to eight dominant peaks present in all samples, despite the great geologic diversity of the samples. These, and other, observations suggest that a strong drive towards equilibrium exists in the "bitumen." Gas chromatograms of the saturated hydrocarbons commonly have a pronounced hump in both the n-paraffins and naphthenes, centered near the C19 to C26 carbon numbers, and a ubiquitos minimum in the n-paraffin distribution near n-C12 to n-C14. Multiple considerations dictate that the bitumen in the samples is indigenous and did not originate from either surficial field contamination or from laboratory procedures. Our observations are consistent with the hydrolytic disproportion of organic matter (HDOM), in which water and organic matter, including hydrocarbons, easily exchange hydrogen or oxygen with one another under certain conditions (Helgeson et al., 1993). The process appears to take place via well-known organic-chemical redox reaction pathways and is most evident in open-fluid systems. The conclusion that HDOM took place in the analyzed samples, thus producing the chemistry of the extractable bitumen, is supported by numerous previously published organic-geochemical studies of metamorphic, volcanic, plutonic, and ore-deposit-related rocks by other investigators. HDOM is suggested as an unrecognized geologic agent of fundamental importance. The process appears to control major chemical reactions in diverse geologic environments including, but not limited to, petroleum geology and geochemistry, regional metamorphism, and base- and precious-metal ore deposition. Copyright ?? 2001 Elsevier Science Ltd.

  18. Properties of the Mean Momentum Balance in Polymer Drag Reduced Channel Flow

    NASA Astrophysics Data System (ADS)

    White, Christopher; Dubief, Yves; Klewicki, Joseph

    2014-11-01

    The redistribution of mean momentum and the underlying mechanisms of the redistribution process in polymer drag reduced channel flow are investigated by employing a mean momentum equation based analysis. The work is motivated by recent studies that showed (contrary to long-held views) that polymers modify the von Karman coefficient, κ, at low drag reduction, and at some relatively high drag reduction eradicate the inertially dominated logarithmic region. Since κ is a manifestation of the underlying dynamical behaviors of wall-bounded flow, understanding how polymers modify κ is inherently important to understanding the dynamics of polymer drag reduced flow, and, consequently, the phenomenon of polymer drag reduction. The goal of the present study is to explore and quantify these effects within the framework of a mean momentum based analysis.

  19. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.

    PubMed

    Pöller, Sascha; Beyl, Yvonne; Vivekananthan, Jeevanthi; Guschin, Dmitrii A; Schuhmann, Wolfgang

    2012-10-01

    A new synthesis route for Os-complex modified redox polymers was developed. Instead of ligand exchange reactions for coordinative binding of suitable precursor Os-complexes at the polymer, Os-complexes already exhibiting the final ligand shell containing a suitable functional group were bound to the polymer via an epoxide opening reaction. By separation of the polymer synthesis from the ligand exchange reaction at the Os-complex, the modification of the same polymer backbone with different Os-complexes or the binding of the same Os-complex to a number of different polymer backbones becomes feasible. In addition, the Os-complex can be purified and characterized prior to its binding to the polymer. In order to further understand and optimize suitable enzyme/redox polymer systems concerning their potential application in biosensors or biofuel cells, a series of redox polymers was synthesized and used as immobilization matrix for Trametes hirsuta laccase. The properties of the obtained biofuel cell cathodes were compared with similar biocatalytic interfaces derived from redox polymers obtained via ligand exchange reaction of the parent Os-complex with a ligand integrated into the polymer backbone during the polymer synthesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.

    2018-01-01

    A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.

  1. Natural and synthetic polymers in fabric and home care applications

    NASA Astrophysics Data System (ADS)

    Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana

    2017-07-01

    Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, H.R.

    This study examines several mechanisms by which the fatigue crack propagation (FCP) resistance of shear-yielding thermoset polymers can be improved. Specifically, this research has four objectives as follows: first, to develop a mechanistic understanding of the FCP behavior of rubber-modified thermoset polymers; second, to understand the effect of strength and shape of the inorganic fillers on the FCP resistance and micromechanisms in filled epoxy polymers; third, to elucidate the nature of the interactions among the crack-tip shielding mechanisms in thermoset polymers subjected to cyclic loading and synergistically toughened with both rubber and inorganic particles (i.e., hybrid composites); fourth, to studymore » the role of interfaces on the synergistic interactions in FCP behavior of hybrid composites. The model - matrix material consists of a diglycidyl ether of bisphenol A (DGEBA) based type epoxy cured with piperidine. Parallel to the first objective, the epoxy matrix was modified with rubber while changing volume fraction, type, and size of the rubber particles. To accomplish the second goal, the epoxy polymers were modified by a total 10 volume percent of either one of the following three types of inorganic modifiers: hollow glass spheres (HGS); solid glass spheres (SGS); and short glass fibers (SGF). The third goal was met by processing three different systems of hybrid epoxy composites modified by (1) CTBN rubber and HGS, (2) CTBN rubber and SGS, and (3) CTBN rubber and SGF. The total volume fraction of the two modifiers in each hybrid system was kept constant at 10 percent while systematically changing their ratio. To meet the fourth objective, the surface properties of the SGS particles in the hybrid system were altered using adhesion promoter. A mechanistic understanding of the FCP behavior of rubber-modified epoxies was achieved by relating fractographs to observed FCP behavior.« less

  3. Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils.

    PubMed

    Li, Shuai; Ogunkoya, Dolanimi; Fang, Tiegang; Willoughby, Julie; Rojas, Orlando J

    2016-11-15

    Kraft and organosolv lignins were subjected to carboxymethylation to produce fractions that were soluble in water, displayed a minimum surface tension as low as 34mN/m (25°C) and a critical aggregation concentration of ∼1.5wt%. The carboxymethylated lignins (CML), which were characterized in terms of their degree of substitution ((31)P NMR), elemental composition, and molecular weight (GPC), were found suitable in the formulation of emulsions with bitumens of ultra-high viscosity, such as those from the Canadian oil sands. Remarkably, the interfacial features of the CML enabled fuel emulsions that were synthesized in a very broad range of internal phase content (30-70%). Cryo-replica transmission electron microscopy, which was used here the first time to assess the morphology of the lignin-based emulsions, revealed the droplets of the emulsion stabilized with the modified lignin. The observed drop size (diameters<2μm) was confirmed by light scattering, which revealed a normal size distribution. Such characteristics led to stable emulsified systems that are amenable for a wide range of applications. Emulsification with CML afforded bitumen emulsions with very high colloidal stability (no change was noted for over one month) and with a strong shear thinning behavior. Both features indicate excellent prospects for storage, transport and spraying, which are relevant in operations for power generation, which also take advantage of the high heating value of the emulsion components. The ability of CML to stabilize emulsions and to contribute in their combustion was tested with light fuels (kerosene, diesel, and jet fuel) after formulation of high internal phase systems (70% oil) that enabled operation of a fuel engine. A significant finding is that under certain conditions and compared to the respective pure fuel, combustion of the O/W emulsions stabilized by CML presented lower NOx and CO emissions and maintained a relatively high combustion efficiency. The results highlight the possibilities in high volume application for lignin biomacromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Chemical reactivity of nitrates and nitrites towards TBP and potassium nickel ferrocyanide between 30 and 300 deg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambertin, D.; Chartier, D.; Joussot-Dubien, C.

    2007-07-01

    Since the late sixties, bitumen has been widely used by the nuclear industry as a matrix for the immobilization of low- and intermediate level radioactive waste originating mainly from the nuclear activities: precipitation or evaporator concentrates, ion exchange resins, incinerator ashes, and filter materials. Depending on bitumen and operating conditions, bituminization of radioactive waste can be operated between 130 and 180 deg. C, so chemical reaction can be induced with nitrate or nitrite towards elements contained in waste (TPB, potassium nickel ferrocyanide and cobalt compound) and bitumen. These reactions are mainly exothermic this is the reason why the enthalpy reactionmore » and their temperature of initiation have to be determined independently of their concentration in waste. In this work, we have studied by Calvet Calorimetry at 0.1 deg. C/min heating rates, the behaviour of chemical elements especially oxido-reduction couples that can react at a temperature range 100- 300 deg. C (Nitrate/PPFeNi, Nitrite/PPFeNi, Nitrate/TBP, Nitrite/TBP, Nitrate/bitumen and Nitrite/bitumen). The initial temperature reaction of nitrates or nitrites towards potassium nickel ferrocyanide (PPFeNi) has been studied and is equal respectively to 225 deg. C and 175 deg. C. Because of the large scale temperature reaction of nitrate and PPFeNi, enthalpy reaction can not be calculated, although enthalpy reaction of nitrite and PPFeNi is equal to 270 kJ/mol of nitrite. Sodium Nitrate and TBP behaviour has been investigated, and an exothermic reaction at 135 deg. C until 250 deg. C is evidenced. The exothermic energy reaction is a function of TBP concentration and the enthalpy reaction has been determined. (authors)« less

  5. An oil spill decision matrix in response to surface spills of various bitumen blends.

    PubMed

    King, Thomas L; Robinson, Brian; Cui, Fangda; Boufadel, Michel; Lee, Kenneth; Clyburne, Jason A C

    2017-07-19

    Canada's production, transport, and sale of diluted bitumen (dilbit) products are expected to increase by a million barrels per day over the next decade. The anticipated growth in oil production and transport increases the risk of oil spills in aquatic areas and places greater demands on oil spill capabilities to respond to spills, which have raised stakeholder concerns. Current oil spill models only predict the transport of bitumen blends that are used in contingency plans and oil spill response strategies, rather than changes in the oil's physical properties that are relevant to spill response. We conducted weathering studies of five oil products (two conventional oils and three bitumen blends) in the Department of Fisheries and Oceans' flume tank. We also considered two initial oil slick thicknesses, 4.0 mm and 7.0 mm. We found that there is a major difference in the time evolution of oil properties (density and viscosity), raising doubts on weathering models that do not consider the thickness of oil. We also developed empirical expressions for the evolution of the density and viscosity of these oil products. The findings from the 4.0 mm results were incorporated with data from the literature to provide an update on the factors to consider during the decision making for spills of diluted bitumen products. The matrix indicated that most response options, including chemical dispersants, work much more effectively within 48 hours of the initiation of weathering. After this window of opportunity closes, natural attenuation or in situ burning is the only option remaining, but containment of oil is a limiting factor for in situ burning.

  6. An Embryonic Field of Study: The Aquatic Fate and Toxicity of Diluted Bitumen.

    PubMed

    Alsaadi, Ftoon; Hodson, Peter V; Langlois, Valerie S

    2018-01-01

    Canada has experienced a significant increase in the transport of diluted bitumen (dilbit), a predominant oil sands product that combines bitumen with diluents derived from oil-gas condensates and other proprietary compounds. The proportion of diluent and the chemical composition of dilbit vary to meet seasonal transport requirements. While the toxic effects of a variety of crude and refined oils are well-studied, the toxicity of dilbit to aquatic species is less well known. This focused review summarizes dilbit production, chemistry, and the few data on toxicity to aquatic species. These data suggest that un-weathered dilbit would cause effects on fish equivalent to those of conventional oils, but its toxicity may be lower, depending on interactions among test conditions, the behavior of dilbit added to water and the species tested.

  7. Interconnected Porous Polymers with Tunable Pore Throat Size Prepared via Pickering High Internal Phase Emulsions.

    PubMed

    Xu, Hongyun; Zheng, Xianhua; Huang, Yifei; Wang, Haitao; Du, Qiangguo

    2016-01-12

    Interconnected macroporous polymers were prepared by copolymerizing methyl acrylate (MA) via Pickering high internal phase emulsion (HIPE) templates with modified silica particles. The pore structure of the obtained polymer foams was observed by field-emission scanning electron microscopy (FE-SEM). Gas permeability was characterized to evaluate the interconnectivity of macroporous polymers. The polymerization shrinkage of continuous phase tends to form open pores while the solid particles surrounding the droplets act as barriers to produce closed pores. These two conflicting factors are crucial in determining the interconnectivity of macroporous polymers. Thus, poly-Pickering HIPEs with high permeability and well-defined pore structure can be achieved by tuning the MA content, the internal phase fraction, and the content of modified silica particles.

  8. Screening of anionic-modified polymers in terms of stability, disintegration, and swelling behavior.

    PubMed

    Laffleur, Flavia; Ijaz, Muhammad; Menzel, Claudia

    2017-11-01

    This study aimed to screen the stability, disintegration, and swelling behavior of chemically modified anionic polymers. Investigated polymers were well-known and widely used staples of the pharmaceutical and medical field, namely, alginate (AL), carboxymethyl cellulose (CMC), polycarbophil (PC), and hyaluronic acid (HA). On the basis of amide bond formation between the carboxylic acid moieties of anionic polymers and the primary amino group of the modification ligand cysteine (CYS), the modified polymers were obtained. Unmodified polymers served as controls throughout all studies. With the Ellman's assay, modification degrees were determined of synthesized polymeric excipients. Stability assay in terms of erosion study at physiological conditions were performed. Moreover, water uptake of compressed polymeric discs were evaluated and further disintegration studies according to the USP were carried out to define the potential ranking. Results ranking figured out PCCYS > CMCCYS > HACYS > ALCYS in terms of water uptake capacity compared to respective controls. Cell viability assays on Caco-2 cell line as well as on RPMI 2650 (ATTC CCL30) proved modification not being harmful to those. Due to the results of this study, an intense screening of prominent anionic polymer derivate was performed in order to help the pharmaceutical research for the best choice of polymeric excipients for developments of controlled drug release systems.

  9. Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    A previously developed analytical formulation has been modified in order to more accurately account for the effects of hydrostatic stresses on the nonlinear, strain rate dependent deformation of polymer matrix composites. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical J2 plasticity theory definitions of effective stress and effective inelastic strain, along with the equations used to compute the components of the inelastic strain rate tensor, are appropriately modified. To verify the revised formulation, the shear and tensile deformation of two representative polymers are computed across a wide range of strain rates. Results computed using the developed constitutive equations correlate well with experimental data. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite for several fiber orientation angles across a variety of strain rates. The computed values compare well to experimentally obtained results.

  10. Molecular Biogeochemistry of Modern and Ancient Marine Microbes

    DTIC Science & Technology

    2010-02-01

    number distributions in the late Archean bitumens fall within the range of compositions of Phanerozoic petroleum ( gray line in Fig. 7), suggesting that...bitumen extracts. The gray line indicates the range of compositions observed in Phanerozoic petroleum systems, from the GeoMark Reservoir Fluid Database...than that of mRNA are attributable to noisy, non-cycling protein timecourses ( gray points above 1:1 line). For clarity, only genes whose protein

  11. Inhibition of MMP-13 with modified polymer particles

    NASA Astrophysics Data System (ADS)

    Tran, Hai; Bratlie, Kaitlin M.

    2016-06-01

    Matrix metalloproteinases (MMPs) are proteases that destroy the extracellular matrix and have important roles in the foreign body response, wound healing, and disease. Of particular importance is the chronic wound environment in which MMP activity is increased, resulting in destruction of the de novo extracellular matrix. One potential treatment of these wounds would be to use dressings that are capable of inhibiting MMP activity. In this study, we examined the effect of seven polymer modifiers (2-amino-3-guanidinopropionic acid, arginine, carnitine, citrulline, creatine, 3-guanidino propionic acid, and Nw-nitro-L-arginine) on MMP-13 activity. MMP-13 is a collagenase that is present in chronic wounds and is zinc dependent. Our results showed that these polymer modifiers were able to inhibit MMP-13 activity to varying degrees. The mechanism of inhibition appears to be binding zinc to the modifiers.

  12. PTFE-nanocomposites structure and wear-resistance changing in various methods of structural modification

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu K.; Ruban, A. S.; Rogachev, E. A.; Chemisenko, O. V.

    2018-01-01

    Conditions of polymer materials usage containing nanoelements as modifiers significantly affect the requirements for their physic-mechanical and tribological properties. However, the mechanisms of nanoparticles effect to the polymers tribotechnical properties have not been studied enough. The article aim is to analyze the results of studying polytetrafluoroethylene modified with cryptocrystalline graphite and silicon dioxide and to determine the effectiveness of the modification methods used and methods for further improving filled PTFE mechanical and tribotechnical properties. The effect of modifiers to PCM supramolecular structure was analyzed with SEM methods. The results of modifying the PCM samples surface by depositing a copper film with ion-vacuum deposition methods and changing the structural-phase composition and tribological characteristics are considered. The findings make possible to characterize the physicochemical processes under frictional interaction in metal polymer tribosystems.

  13. Thickening compositions, and related materials and processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Michael Joseph; Perry, Robert James; Enick, Robert Michael

    A silicone polymer is provided, modified with at least one functional group from the class of anthraquinone amide groups; anthraquinone sulfonamide groups; thioxanthone amide groups; or thioxanthone sulfone amide groups. The polymer can be combined with a hydrocarbon solvent or with supercritical carbon dioxide (CO.sub.2), and is very effective for increasing the viscosity of either medium. A process for the recovery of oil from a subterranean, oil-bearing formation is also described, using supercritical carbon dioxide modified with the functionalized silicone polymer. A process for extracting natural gas or oil from a bedrock-shale formation is also described, again using the modifiedmore » silicone polymer.« less

  14. Polymer-modified opal nanopores.

    PubMed

    Schepelina, Olga; Zharov, Ilya

    2006-12-05

    The surface of nanopores in opal films, assembled from 205 nm silica spheres, was modified with poly(acrylamide) brushes using surface-initiated atom transfer radical polymerization. The colloidal crystal lattice remained unperturbed by the polymerization. The polymer brush thickness was controlled by polymerization time and was monitored by measuring the flux of redox species across the opal film using cyclic voltammetry. The nanopore size and polymer brush thickness were calculated on the basis of the limiting current change. Polymer brush thickness increased over the course of 26 h of polymerization in a logarithmic manner from 1.3 to 8.5 nm, leading to nanopores as small as 7.5 nm.

  15. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  16. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  17. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  18. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  19. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  20. Reexamination of the Classical View of how Drag-Reducing Polymer Solutions Modify the Mean Velocity Profile: Baseline Results

    NASA Astrophysics Data System (ADS)

    Farsiani, Yasaman; Baade, Jacquelyne; Elbing, Brian

    2016-11-01

    Recent numerical and experimental data have shown that the classical view of how drag-reducing polymer solutions modify the mean turbulent velocity profile is incorrect. The classical view is that the log-region is unmodified from the traditional law-of-the-wall for Newtonian fluids, though shifted outward. Thus the current study reexamines the modified velocity distribution and its dependence on flow and polymer properties. Based on previous work it is expected that the behavior will depend on the Reynolds number, Weissenberg number, ratio of solvent viscosity to the zero-shear viscosity, and the ratio between the coiled and fully extended polymer chain lengths. The long-term objective for this study includes a parametric study to assess the velocity profile sensitivity to each of these parameters. This study will be performed using a custom design water tunnel, which has a test section that is 1 m long with a 15.2 cm square cross section and a nominal speed range of 1 to 10 m/s. The current presentation focuses on baseline (non-polymeric) measurements of the velocity distribution using PIV, which will be used for comparison of the polymer modified results. Preliminary polymeric results will also be presented. This work was supported by NSF Grant 1604978.

  1. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation

    PubMed Central

    Fuoco, Alessio; Khdhayyer, Muhanned R.; Attfield, Martin P.; Esposito, Elisa; Jansen, Johannes C.; Budd, Peter M.

    2017-01-01

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability. PMID:28208658

  2. Double-Polymer-Modified Pencil Lead for Stripping Voltammetry of Perchlorate in Drinking Water

    ERIC Educational Resources Information Center

    Izadyar, Anahita; Kim, Yushin; Ward, Michelle M.; Amemiya, Shigeru

    2012-01-01

    The inexpensive and disposable electrode based on a double-polymer-modified pencil lead is proposed for upper-division undergraduate instrumental laboratories to enable the highly sensitive detection of perchlorate. Students fabricate and utilize their own electrodes in the 3-4 h laboratory session to learn important concepts and methods of…

  3. Novel one-pot facile technique for preparing nanoparticles modified with hydrophilic polymers on the surface via block polymer-assisted emulsification/evaporation process.

    PubMed

    Kanakubo, Yurie; Ito, Fuminori; Murakami, Yoshihiko

    2010-06-15

    In this paper, we describe the novel facile technique for preparing surface-modified nanoparticles via newly developed amphiphilic block polymer-assisted emulsification/evaporation process. The effects of both organic solvents (the dispersed phase) and stabilizer in the external continuous phase on the stability of o/w emulsion was firstly investigated to clarify the optimal conditions for stable emulsification/evaporation processes. We found that the organic solvent mixture having a density adjusted to be 1.00 g/cm(3) gave the highly stable o/w emulsion. Under the optimal conditions, the relatively monodisperse poly(ethylene glycol) (PEG)-modified poly(lactide-co-glycolide) (PLGA) nanoparticle was obtained and characterized. The introduction of PEG to the particle surface was suggested by the fact that the diameter and zeta potential of the particle increased as the amount of added block polymer increased. The facile method presented in this paper can be a universal tool for modifying the surface of nanoparticles, even though reactive groups are not present on the surface. Copyright 2010 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, A.; Devenny, D.; Porcari, G.

    The activities carried out and the results obtained from a 15 tons/hour oil sands extraction pilot plant operated in Fort McMurray in Northern Alberta are described. The process is the Rio Tinto TIL Holding S.A. (RTR)/Gulf Canada Lt. Oil Sands Extraction Process. It is a modified hot water extraction process. It is used to extract bitumen from Athabasca oil sands. The test ran from July to December 1981 through ambient conditions ranging from plus 38/sup 0/C to minus 30/sup 0/C (100/sup 0/F to -22/sup 0/F). The process, the on-site facilities, the test program, an analysis of plant performance, an appraisalmore » of the process economics, and an evaluation of its potential application are described.« less

  5. Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli.

    PubMed

    Mallakpour, Shadpour; Mansourzadeh, Soheila

    2018-05-01

    The aim of this paper was to blend the polymers, poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) to produce a novel composite materials possessing the benefits of both. CuO nanoparticles (NPs) were used as a suitable filler to fabricate the blend nanocomposites (NCs) with desired properties. First, the surface of NPs, was modified with vitamin B 1 (VB 1 ) as a bio-safe coupling agent. Then, the blend NCs with various ratios of modified CuO (3, 5, and 7 wt%) were fabricated under ultrasonic irradiations followed by casting/solvent evaporation method. These processes are fast and green way to disperse the NPs sufficiently. Several techniques were applied for the characterization of the obtained NCs. morphology examination demonstrated the morphology of NCs and compatibility of NPs with the blend polymer. EDX results indicated the weight and atomic percentage of the achieved materials. TGA analysis verified that the NCs show higher thermal properties than the neat blend polymer. Also embedding the modified NPs into the blend polymer had effected on optical absorbance of the obtained NCs. The contact angle measurements confirmed that the hydrophilicity decreased for different proportions of the modified NPs loaded in the blend polymer. Finally, NCs show better bactericidal effects against gram-positive than gram-negative bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Verification of the modified model of the drying process of a polymer liquid film on a flat substrate by experiment (2): through more accurate experiment

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2006-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through Photomask Japan 2002, 2003, 2004 and so on. And for example numerical simulation of the model qualitatively reappears a typical thickness profile of the polymer film formed after drying, that is, the profile that the edge of the film is thicker and just the region next to the edge's bump is thinner. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of many numerical simulations. Then we done a few kinds of experiments so as to verify the modified model and reported the initial result of them through Photomask Japan 2005. Through the initial result we could observe some results supporting the modified model. But we could not observe a characteristic region of a valley next to the edge's bump of a polymer film after drying because a shape of a solution's film coated on a substrate in the experiment was different from one in resists' coating and drying process or imagined in the modified model. In this study, we improved above difference between experiment and the model and did experiments for verification again with a shape of a solution's film coated on a substrate coincident with one imagined in the modified model and using molar concentration. As a result, some were verified more strongly and some need to be examined again. That is, we could confirm like results of last experiment that the smaller average molecular weight of Metoloses was, the larger the gradient of thickness profile of a polymer thin film was. But we could not observe a depression just inside the edge of the thin film also in this improved experiment. We may be able to enumerate the fact that not an organic solution but an aqueous solution was used in the experiment as the cause of non-formation of the depression.

  7. New urea-absorbing polymers for artificial kidney machines

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr.

    1975-01-01

    Etherified polymer is made from modified cellulose derivative which is reacted with periodate. It will absorb 2 grams of urea per 100 grams of polymer. Indications are that polymers could be used to help remove uremic wastes in artificial kidneys, or they could be administered orally as therapy for uremia.

  8. Laboratory Tests of Bitumen Samples Elasticity

    NASA Astrophysics Data System (ADS)

    Ziganshin, E. R.; Usmanov, S. A.; Khasanov, D. I.; Khamidullina, G. S.

    2018-05-01

    This paper is devoted to the study of the elastic and acoustic properties of bitumen core samples. The travel velocities of the ultrasonic P- and S-waves were determined under in-situ simulation conditions. The resulting data were then used to calculate dynamic Young's modulus and Poisson's ratio. The authors studied the correlation between the elasticity and the permeability and porosity. In addition, the tests looked into how the acoustic properties had changed with temperature rise.

  9. Changes in the composition and properties of Ashalchinskoye bitumen-saturated sandstones when exposed to water vapor

    NASA Astrophysics Data System (ADS)

    Korolev, E.; Eskin, A.; Kolchugin, A.; Morozov, V.; Khramchenkov, M.; Gabdelvalieva, R.

    2018-05-01

    Ashalchinskoye bitumen deposit is an experimental platform for testing technology of high-viscosity oil extraction from reservoir rocks. Last time for enhanced of oil recovery in reservoir used pressurization a water vapor with a temperature of ∼ 180 ° C (SAGD technology). However, what happens in sandstone reservoir is little known. We did a study of the effects of water vapor on the structural components of bitumen saturated sandstone. In paper were studied the rock samples at base condition and after one week exposure by water vapour. The thermal analysis showed that steaming helps to removes light and middle oil fractions with a boiling point up to 360 ° C from oil saturated sandstones. Content of heavy oil fractions virtually unchanged. Studying the composition of water extractions of samples showed that the process of aquathermolysis of oil is accompanied by a lowering of the pH of the pore solution from 7.4 to 6.5 and rise content in several times of mobile cations Ca2+, Mg2+ and HCO3 -, SO4 2- anions. Follows from this that the thermal steam effect by bitumen saturated sandstones leads to partial oxidation of hydrocarbons with to form a carbon dioxide. The source of sulfate ions were oxidized pyrite aggregates. Due to the increasing acidity of condensed water, which fills the pore space of samples, pore fluid becomes aggressive to calcite and dolomite cement of bitumen saturated sandstones. As a result of the dissolution of carbonate cement the pore fluid enriched by calcium and magnesium cations. Clearly, that the process is accompanied by reduction of contact strength between fragments of minerals and rocks. Resulting part of compounds is separated from the outer side of samples and falls to bottom of water vapor container. Decreasing the amount of calcite and dolomite anions in samples in a steam-treated influence is confirmed by X-Ray analysis. X-Ray analysis data of study adscititious component of rocks showed that when influenced of water vapor to bitumen saturated sandstones there are the processes of transformation of clay minerals. Mixed-illite-montmorillonite phase is primarily exposed to changes. In this case we fix initial stage of the destruction of polycrystalline particles mixed-mineral. Reducing the size of clay minerals particles along the normal to the layers (L001) is the result from lower energy costs of delamination and disintegration the crystallites along this direction, in comparison with others. Thus, using of SAGD technology at exploitation of Ashalchinskoye bitumen saturated reservoir will be followed by acidification of the pore fluid, activation processes of dissolution calcite cement and transformation of mixed-layers clays minerals.

  10. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    PubMed

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  11. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose.

    PubMed

    Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T

    2009-04-07

    We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1-2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips.

  12. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose

    PubMed Central

    Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T.

    2009-01-01

    We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1–2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips. PMID:19294306

  13. Preparation and rheological behavior of polymer-modified asphalts

    NASA Astrophysics Data System (ADS)

    Yousefi, Ali Akbar

    1999-09-01

    Different materials and methods were used to prepare and stabilize polymer-modified asphalts. Addition of thermoplastic elastomers improved some technically important properties of asphalt. Due to inherent factors like large density difference between asphalt and polyethylene, many physical methods in which the structure of asphalt is unchanged, failed to stabilize this system. The effect of addition of copolymers and a pyrolytic oil residue derived from used tire rubber were also studied and found to be ineffective on the storage stability of the polymer-asphalt emulsions while high and moderate temperature properties of the asphalt were found to be improved. Finally, the technique of catalytic grafting of polymer on the surface of high-density particles (e.g. carbon black) was used to balance the large density difference between asphalt and polymer. The resulting polymer-asphalts were stable at high temperatures and showed enhanced properties at low and high temperatures.

  14. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOEpatents

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  15. pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2017-10-01

    Efficient vaccine carriers for cancer immunotherapy require two functions: antigen delivery to dendritic cells (DCs) and the activation of DCs, a so-called adjuvant effect. We previously reported antigen delivery system using liposomes modified with pH-sensitive polymers, such as 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG), for the induction of antigen-specific immune responses. We reported that inclusion of cationic lipids to MGlu-HPG-modified liposomes activates DCs and enhances antitumor effects. In this study, CpG-DNA, a ligand to Toll-like receptor 9 (TLR9) expressing in endosomes of DCs, was introduced to MGlu-HPG-modified liposomes containing cationic lipids using two complexation methods (Pre-mix and Post-mix) for additional activation of antigen-specific immunity. For Pre-mix, thin membrane of lipids and polymers were dispersed by a mixture of antigen/CpG-DNA. For Post-mix, CpG-DNA was added to pre-formed liposomes. Both Pre-mix and Post-mix delivered CpG-DNA to DC endosomes, where TLR9 is expressing, more efficiently than free CpG-DNA solution did. These liposomes promoted cytokine production from DCs and the expression of co-stimulatory molecules in vitro and induced antigen-specific immune responses in vivo. Both Pre-mix and Post-mix exhibited strong antitumor effects compared with conventional pH-sensitive polymer-modified liposomes. Results show that inclusion of multiple adjuvant molecules into pH-sensitive polymer-modified liposomes and suitable CpG-DNA complexation methods are important to design potent vaccine carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of chemiresponsive sensors for detection of common homemade explosives.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brotherton, Christopher M.; Wheeler, David Roger

    2012-05-01

    Field-structured chemiresistors (FSCRs) are polymer based sensors that exhibit a resistance change when exposed to an analyte of interest. The amount of resistance change depends on the polymer-analyte affinity. The affinity can be manipulated by modifying the polymer within the FSCRs. In this paper, we investigate the ability of chemically modified FSCRs to sense hydrogen peroxide vapor. Five chemical species were chosen based on their hydrophobicity or reactivity with hydrogen peroxide. Of the five investigated, FSCRs modified with allyl methyl sulfide exhibited a significant response to hydrogen peroxide vapor. Additionally, these same FSCRs were evaluated against a common interferrant inmore » hydrogen peroxide detection, water vapor. For the conditions investigated, the FSCRs modified with allyl methyl sulfide were able to successfully distinguish between water vapor and hydrogen peroxide vapor. A portion of the results presented here will be submitted to the Sensors and Actuators journal.« less

  17. Purification of boron nitride nanotubes via polymer wrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jin-Hyuk; Kim, Jaewoo; WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353

    2013-03-15

    Highlights: ► Surface modification of boron nitride nanotubes using polymeric materials. ► Surface-modified BNNT was purified with a simple dilution-centrifugation step. ► Surface-modified BNNT can be directly used for polymer composite fabrication ► Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitoredmore » by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.« less

  18. Effect of mixing proportion on the properties of seaweed modified sustainable concrete

    NASA Astrophysics Data System (ADS)

    Siddique, Md Nurul Islam; Wahid, Zularisam bin Abd

    2017-10-01

    Although the application of organic polymer has already been reported in the development of polymer modification process the use of carbohydrate polymer hasn't been reported till date. The effect of mixing ratio of seaweed modified mortar on the properties of sustainable concrete was investigated. A number of mixing ratios of seaweed (gel) with cement, sand and water (such as 0.1; 0.6; 1.1; 6) was studied in this work. In addition, a range of mixing ratios of seaweed (powder) with cement, sand and water (such as 0.1; 0.3; 0.6; 1.1; 2.1, 5.1) was examined. The performance of the seaweed modified sustainable concrete was evaluated by compressive and splitting strength. Results revealed that seaweed modified concrete with mixing ratio (0.6) was optimum. This ratio produced significant compressive and splitting strength of 30 MPa and 5 MPa for 28 days, respectively.

  19. Porous polymer coatings on metal microneedles for enhanced drug delivery

    NASA Astrophysics Data System (ADS)

    Ullah, Asad; Kim, Chul Min; Kim, Gyu Man

    2018-04-01

    We present a simple method to coat microneedles (MNs) uniformly with a porous polymer (PLGA) that can deliver drugs at high rates. Stainless steel (SS) MNs of high mechanical strength were coated with a thin porous polymer layer to enhance their delivery rates. Additionally, to improve the interfacial adhesion between the polymer and MNs, the MN surface was modified by plasma treatment followed by dip coating with polyethyleneimine, a polymer with repeating amine units. The average failure load (the minimum force sufficient for detaching the polymer layer from the surface of SS) recorded for the modified surface coating was 25 N, whereas it was 2.2 N for the non-modified surface. Calcein dye was successfully delivered into porcine skin to a depth of 750 µm by the porous polymer-coated MNs, demonstrating that the developed MNs can pierce skin easily without deformation of MNs; additional skin penetration tests confirmed this finding. For visual comparison, rhodamine B dye was delivered using porous-coated and non-coated MNs in gelatin gel which showed that delivery with porous-coated MNs penetrate deeper when compared with non-coated MNs. Finally, lidocaine and rhodamine B dye were delivered in phosphate-buffered saline (PBS) medium by porous polymer-coated and non-coated MNs. For rhodamine B, drug delivery with the porous-coated MNs was five times higher than that with the non-coated MNs, whereas 25 times more lidocaine was delivered by the porous-coated MNs compared with the non-coated MNs.

  20. Fix it first : utilizing the seismic property analyzer and MMLS to develop guidelines for the use of polymer modified thin lift HMA vs. surface treatments.

    DOT National Transportation Integrated Search

    2012-09-01

    The main objective of this study was to develop thin lift overlay mixtures with polymer modified asphalt for use in New England. As part of this : research a comprehensive literature review and internet survey was conducted. Moreover, laboratory test...

  1. Trace Detection of Metalloporphyrin-Based Coordination Polymer Particles via Modified Surface-Enhanced Raman Scattering Assisted by Surface Metallization.

    PubMed

    Sun, Yu; Caravella, Alessio

    2016-01-01

    This study proposed a facile method to detect metalloporphyrin-based coordination polymer particles (Z-CPPs) in aqueous solution by modified surface-enhanced Raman scattering (SERS). The SERS-active particles are photodeposited on the surface of Z-CPPs, offering an enhanced Raman signal for the trace detection of Z-CPPs.

  2. Development of bio-based polymers for use in asphalt.

    DOT National Transportation Integrated Search

    2014-02-01

    Asphalt binder is typically modified with poly type (styrene-butadiene-styrene or SBS) polymers to improve its rheological properties and performance grade. The elastic and principal component of SBS polymers is butadiene. For the last decade, butadi...

  3. Induced Infiltration of Hole-Transporting Polymer into Photocatalyst for Staunch Polymer-Metal Oxide Hybrid Solar Cells.

    PubMed

    Park, Jong Hwan; Jung, Youngsuk; Yang, Yooseong; Shin, Hyun Suk; Kwon, Soonchul

    2016-10-05

    For efficient solar cells based on organic semiconductors, a good mixture of photoactive materials in the bulk heterojunction on the length scale of several tens of nanometers is an important requirement to prevent exciton recombination. Herein, we demonstrate that nanoporous titanium dioxide inverse opal structures fabricated using a self-assembled monolayer method and with enhanced infiltration of electron-donating polymers is an efficient electron-extracting layer, which enhances the photovoltaic performance. A calcination process generates an inverse opal structure of titanium dioxide (<70 nm of pore diameters) providing three-dimensional (3D) electron transport pathways. Hole-transporting polymers was successfully infiltrated into the pores of the surface-modified titanium dioxide under vacuum conditions at 200 °C. The resulting geometry expands the interfacial area between hole- and electron-transport materials, increasing the thickness of the active layer. The controlled polymer-coating process over titanium dioxide materials enhanced photocurrent of the solar cell device. Density functional theory calculations show improved interfacial adhesion between the self-assembled monolayer-modified surface and polymer molecules, supporting the experimental result of enhanced polymer infiltration into the voids. These results suggest that the 3D inverse opal structure of the surface-modified titanium dioxide can serve as a favorable electron-extracting layer in further enhancing optoelectronic performance based on organic or organic-inorganic hybrid solar cell.

  4. Geochemical assessment of hydrocarbon migration phenomena: Case studies from the south-western margin of the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Sokol, Ella; Kozmenko, Olga; Smirnov, Sergey; Sokol, Ivan; Novikova, Sofya; Tomilenko, Anatoliy; Kokh, Svetlana; Ryazanova, Tatyana; Reutsky, Vadim; Bul'bak, Taras; Vapnik, Yevgeny; Deyak, Michail

    2014-10-01

    Calcite veins with fluid and solid bitumen inclusions have been discovered in the south-western shoulder of the Dead Sea rift within the Masada-Zohar block, where hydrocarbons exist in small commercial gas fields and non-commercial fields of heavy and light oils. The gas-liquid inclusions in calcite are dominated either by methane or CO2, and aqueous inclusions sometimes bear minor dissolved hydrocarbons. The enclosed flake-like solid bitumen matter is a residue of degraded oil, which may be interpreted as “dead carbon”. About 2/3 of this matter is soot-like amorphous carbon and 1/3 consists of n-C8sbnd C18 carboxylic acids and traces of n-alkanes, light dicarboxylic acids, and higher molecular weight (>C20) branched and/or cyclic carboxylic acids. Both bitumen and the host calcites show genetic relationship with mature Maastrichtian chalky source rocks (MCSRs) evident in isotopic compositions (δ13C, δ34S, and δ18O) and in REE + Y patterns. The bitumen precursor may have been heavy sulfur-rich oil which was generated during the burial compaction of the MCSR strata within the subsided blocks of the Dead Sea graben. The δ18O and δ13C values and REE + Y signatures in calcites indicate mixing of deep buried fluids equilibrated with post-mature sediments and meteoric waters. The temperatures of fluid generation according to Mg-Li-geothermometer data range from 55 °С to 90 °С corresponding to the 2.5-4.0 km depths, and largely overlap with the oil window range (60-90 °С) in the Dead Sea rift (Hunt, 1996; Gvirtzman and Stanislavsky, 2000; Buryakovsky et al., 2005). The bitumen-rich vein calcites originated in the course of Late Cenozoic rifting and related deformation, when tectonic stress triggers damaged small hydrocarbon reservoirs in the area, produced pathways, and caused hydrocarbon-bearing fluids to rise to the subsurface; the fluids filled open fractures and crystallized to calcite with entrapped bitumen. The reported results are in good agreement with the existing views of maturation, migration, and accumulation of hydrocarbons, as well as basin fluid transport processes in the Dead Sea area.

  5. Selected annotated bibliography of the geology of uraniferous and radioactive native bituminous substances, exclusive of coals, in the United States

    USGS Publications Warehouse

    Jones, Harriet Nell

    1956-01-01

    Native bituminous substances are divided into two groups, 1) bitumens and, 2) pyrobitumens. Bitumens are composed principally of hydrocarbons substantially free from oxygenated bodies, are fusible, and are soluble in carbon disulfide. Native bitumens occur in liquid and solid forms. The native liquid bitumens include all petroleums or crude oils. Native solid bitumens include native waxes such as ozocerite, asphalts or petroleum tars, and asphaltites such as gilsonite and grahamite. Pyrobitumens are composed principally of hydrocarbons which may contain oxygenated bodies. They are infusible and are insoluble, or nearly insoluble, in carbon disulfide. Native pyrobitumens are divided into an oxygen-containing group including peats, lignites, and coals, and an essentially oxygen-free, asphaltic group including such substances as wurtzilite, albertite, impsonite, and ingramite. Thucholites, which are carbonaceous substances that may contain uranium, thorium, and rare earths, commonly are considered to be pyrobitumens. Their compositions are variable and may fall into either the oxygen-containing or oxygen-free group. All varieties of native bituminous substances may be associated with mineral matter. The nomenclature of bitumens and pyrobitumens is used very loosely in the literature. This circumstance arises from the difficulty in recognizing many of these substances by visual examination, and because many of them can be identified accurately only by chemical methods. Inasmuch as some of the chemical procedures are time-consuming and satisfactory analytical methods have not been devised for all these substances, geologists generally have not obtained precise identifications but rather have used names that appeared most appropriate to the circumstances. It is expected that future research will show many substances called "asphaltite," "thucholite," etc., to be incorrectly identified. The nomenclature used by the authors of the various references of this bibliography is followed without deviation or further discussion. The stratigraphic nomenclature also is that used by the authors. In this bibliography emphasis is placed on reports dealing with the uranium contents and radioactivity of native bituminous substances rather than on mineralogical and chemical studies of these substances. The distribution of the substances described in the references is shown on the accompanying map. The indicated presence of these substances does not infer that they contain sufficient radioactive elements to constitute ores.

  6. A Langevin dynamics simulation study of the tribology of polymer loop brushes.

    PubMed

    Yin, Fang; Bedrov, Dmitry; Smith, Grant D; Kilbey, S Michael

    2007-08-28

    The tribology of surfaces modified with doubly bound polymer chains (loops) has been investigated in good solvent conditions using Langevin dynamics simulations. The density profiles, brush interpenetration, chain inclination, normal forces, and shear forces for two flat substrates modified by doubly bound bead-necklace polymers and equivalent singly bound polymers (twice as many polymer chains of 12 the molecular weight of the loop chains) were determined and compared as a function of surface separation, grafting density, and shear velocity. The doubly bound polymer layers showed less interpenetration with decreasing separation than the equivalent singly bound layers. Surprisingly, this difference in interpenetration between doubly bound polymer and singly bound polymer did not result in decreased friction at high shear velocity possibly due to the decreased ability of the doubly bound chains to deform in response to the applied shear. However, at lower shear velocity, where deformation of the chains in the flow direction is less pronounced and the difference in interpenetration is greater between the doubly bound and singly bound chains, some reduction in friction was observed.

  7. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    PubMed

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  8. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 3. Laboratory Sample Production.

    DTIC Science & Technology

    1987-12-01

    FILD7 ar Sands, Heavy Ois Jet Fue - - - etF IE L D G R O U P S U B -G R O U P , u e -. IT - 3 seC m ) A s h l GROUP SB-RP Fue-i-T-33-A Reduced Crude...connec- tion with processes for heavy oil cracking and related catalysts. * program which allowed processing of bitumen stocks . The overall process flow

  9. Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Phase I. Preliminary Process Analysis.

    DTIC Science & Technology

    1985-04-09

    OIL RESERVOIRS OF THE UNITED STATES Resource: Oil -in-Place State Field Name (County) (Million Bbls.) Arkansas Smackover Old (Union) 1,6U0 California...Flow Schematic for Gas Oil Feed Hydrotreater 94 14 Summary of Case Studies for Processing Bitumen from New Mexico 95 15 Summary of Case Studies for...Naphtha Hydrotreating Process Estimates 112 14 Gas Oil Hydrocracking Process Estimates 113 l! Gas Oil Hydrotreating Process Estimate 114 16 Fluid

  10. Diffusibility Enhancement of Rejuvenator by Epoxidized Soybean Oil and Its Influence on the Performance of Recycled Hot Mix Asphalt Mixtures

    PubMed Central

    Kuang, Dongliang; Jiao, Yuan; Ye, Zhou; Lu, Zaihong; Chen, Huaxin; Yu, Jianying; liu, Ning

    2018-01-01

    Epoxidized soybean oil (ESO) was employed as a novel penetrant cooperating with a conventional rejuvenator (CR) for the recycling of reclaimed asphalt pavement (RAP). The influence of ESO on the diffusibility and the regenerating effects of CR on RAP were investigated. The diffusibility testing result shows that the diffusibility of CR is enhanced by the addition of ESO because the epoxy group in ESO can facilitate asphaltene dispersion due to its high polarity, which simultaneously reduces the viscosity and improves the fluidity of aged bitumen so as to allow diffusion of the rejuvenator into the aged bitumen. Road performance testing of a recycled hot mix asphalt mixture (RHMA) indicates that the fatigue and cracking resistance properties as well as the water stability of RHMA containing CR can be improved by the addition of ESO due to the diffusibility enhancement of CR, which boosts the regenerating effect of CR on aged bitumen in RAP. The fatigue and cracking resistance properties as well as the water stability of the recycled hot mix asphalt mixture containing CR with 7 wt % ESO approximate those of the hot mix asphalt mixture composed of the same virgin aggregates and bitumen. Taking into account the rutting resistance decline versus the addition of ESO, the content of ESO should not exceed 7 wt % of the conventional rejuvenator. PMID:29783675

  11. Diffusibility Enhancement of Rejuvenator by Epoxidized Soybean Oil and Its Influence on the Performance of Recycled Hot Mix Asphalt Mixtures.

    PubMed

    Kuang, Dongliang; Jiao, Yuan; Ye, Zhou; Lu, Zaihong; Chen, Huaxin; Yu, Jianying; Liu, Ning

    2018-05-18

    Epoxidized soybean oil (ESO) was employed as a novel penetrant cooperating with a conventional rejuvenator (CR) for the recycling of reclaimed asphalt pavement (RAP). The influence of ESO on the diffusibility and the regenerating effects of CR on RAP were investigated. The diffusibility testing result shows that the diffusibility of CR is enhanced by the addition of ESO because the epoxy group in ESO can facilitate asphaltene dispersion due to its high polarity, which simultaneously reduces the viscosity and improves the fluidity of aged bitumen so as to allow diffusion of the rejuvenator into the aged bitumen. Road performance testing of a recycled hot mix asphalt mixture (RHMA) indicates that the fatigue and cracking resistance properties as well as the water stability of RHMA containing CR can be improved by the addition of ESO due to the diffusibility enhancement of CR, which boosts the regenerating effect of CR on aged bitumen in RAP. The fatigue and cracking resistance properties as well as the water stability of the recycled hot mix asphalt mixture containing CR with 7 wt % ESO approximate those of the hot mix asphalt mixture composed of the same virgin aggregates and bitumen. Taking into account the rutting resistance decline versus the addition of ESO, the content of ESO should not exceed 7 wt % of the conventional rejuvenator.

  12. Morphology and structure of polymer layers protecting dental enamel against erosion.

    PubMed

    Beyer, Markus; Reichert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2012-10-01

    Human dental erosion caused by acids is a major factor for tooth decay. Adding polymers to acidic soft drinks is one important approach to reduce human dental erosion caused by acids. The aim of this study was to investigate the thickness and the structure of polymer layers adsorbed in vitro on human dental enamel from polymer modified citric acid solutions. The polymers propylene glycol alginate (PGA), highly esterified pectin (HP) and gum arabic (GA) were used to prepare polymer modified citric acids solutions (PMCAS, pH 3.3). With these PMCAS, enamel samples were treated for 30, 60 and 120s respectively to deposit polymer layers on the enamel surface. Profilometer scratches on the enamel surface were used to estimate the thickness of the polymer layers via atomic force microscopy (AFM). The composition of the deposited polymer layers was investigated with X-ray photoelectron spectroscopy (XPS). In addition the polymer-enamel interaction was investigated with zeta-potential measurements and scanning electron microscopy (SEM). It has been shown that the profilometer scratch depth on the enamel with deposited polymers was in the range of 10nm (30s treatment time) up to 25nm (120s treatment time). Compared to this, the unmodified CAS-treated surface showed a greater scratch depth: from nearly 30nm (30s treatment time) up to 60nm (120s treatment time). Based on XPS measurements, scanning electron microscopy (SEM) and zeta-potential measurements, a model was hypothesized which describes the layer deposited on the enamel surface as consisting of two opposing gradients of polymer molecules and hydroxyapatite (HA) particles. In this study, the structure and composition of polymer layers deposited on in vitro dental enamel during treatment with polymer modified citric acid solutions were investigated. Observations are consistent with a layer consisting of two opposing gradients of hydroxyapatite particles and polymer molecules. This leads to reduced erosive effects of citric acid solutions on dental enamel surfaces. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges.

    PubMed

    Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian

    Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA < GO-PAM < GO-PEG < GO-pSB. Thus, zwitterionic polymer-modified GO is superior to other GO derivatives with different charges in enhancing the specificity of PCR. GO derivatives are also successfully used to enhance the specificity of PCR for the amplification of human mitochondrial DNA using blood genomic DNA as template. Molecular dynamics simulations and molecular docking are performed to elucidate the interaction between the polymers and Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR.

  14. Effects of added surfactant on swelling and molecular transport in drug-loaded tablets based on hydrophobically modified poly(acrylic acid).

    PubMed

    Knöös, Patrik; Wahlgren, Marie; Topgaard, Daniel; Ulvenlund, Stefan; Piculell, Lennart

    2014-08-14

    A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.

  15. New synthesis of maleic anhydride modified polyolefins and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Bing

    Maleic anhydride (MA) modified polyolefins are the most useful commercial functional polyolefins. The current technology of producing MA modified polyolefins, mainly free radical modification, usually results in low MA graft contents, extensive side reactions, and poor control of graft structures. In this thesis, we show a new synthetic route for preparing MA modified polyolefins with excellent control of polymer structures and MA concentrations. The synthesis is based on the "reactive" polyolefin copolymers, i.e. polyolefins containing p-methylstyrene or alkylborane groups. The p-methylstyrene copolymers lead to selectively grafting reactions on the p-methyl groups, greatly reducing the side reactions on the polyolefin backbone. The MA graft content was proportional to the concentration of p-methylstyrene. In the borane approach, under controlled selective oxidation, the alkylborane containing PP polymers formed the "stable" polymeric radical in situ which initiated the graft-from reaction. By varying the monomer concentrations of MA and styrene, reaction time and temperature, a broad range of MA modified PP polymers were prepared from a single MA terminated or grafted PP to a very long SMA segment blocked or grafted PP, and there is no detectable side reaction on the PP backbone. MA modified polyolefins were investigated in the applications of glass fiber reinforced PP, elastomer toughened Nylon, and polyolefin/Nylon blends. The MA modified polyolefin compatibilizers showed the significant improved mechanical properties and morphology of the blends. The effectiveness of compatibilization depends on the MA concentration, molecular weight of the polyolefin segments, the structure of the compatibilizers, and the composition of the blend. By amidation or imidation reaction of MA modified PP with amine terminated PP, long chain branched PP polymers were also prepared. The results of IR, GPC, intrinsic viscosity and DSC studies clearly indicate the formation of long chain branched PP.

  16. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP.

    PubMed

    Jiang, Yuchen; Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Ding, Chunmei; Luo, Jianbin; Li, Jianshu

    2017-08-01

    Choline phosphate (CP) containing polymers modified surfaces have been shown good resist to the adhesion of proteins while prompt the attaching of mammalian cells due to the dipole pairing between the CP groups of the polymer and the phosphorylcholine (PC) groups on the cell membrane. However, the antifouling activities of CP modified surface against microbes have not been investigated at present. In addition, CP containing polymers modified surface with different molecular architectures has not been prepared and studied. To this end, glass slides surface modified with two different 2-(meth-acryloyloxy)ethyl cholinephosphate (MCP) containing polymer (PMCP) structures, i.e. brush-like (Glass-PMCP) and bottle brush-like (Glass-PHEMA-g-PMCP) architectures, were prepared in this work by surface-initiated atom transfer radical polymerization (SI-ATRP). The surface physichemical and antifouling properties of the prepared surfaces were characterized and studied. The Glass-PMCP shows improved antifouling properties against proteins and bacteria as compared to pristine glass slides (Glass-OH) and glass slides grafted with poly(2-hydroxyethyl methacrylate) (Glass-PHEMA). Notably, a synergetic fouling resistant properties of PHEMA and PMCP is presented for Glass-PHEMA-g-PMCP, which shows superior antifouling activities over Glass-PHEMA and Glass-PMCP. Furthermore, glass slides containing PMCP, i.e. Glass-PMCP and Glas-PHEMA-g-PMCP, decrease platelet adhesion and prevent their activation significantly. Therefore, the combination of antifouling PHEMA and PMCP into one system holds potential for prevention of bacterial fouling and biomaterial-centered infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection.

    PubMed

    Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza

    2011-07-20

    A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.

  18. Characterization of a sustainable sulfur polymer concrete using activated fillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence

    Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analysesmore » was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.« less

  19. Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant

    NASA Astrophysics Data System (ADS)

    Widi, R. K.; Trisulo, D. C.; Budhyantoro, A.; Chrisnasari, R.

    2017-07-01

    Wafer glucose oxidase (GOx) enzymes was produced by addition of PAH (Poly-Allyamine Hydrochloride) polymer into immobilized GOx enzyme on modified-Tetramethylammonium Hydroxide (TMAH) 5%-calsium-bentonite. The use of surfactant molecul (TMAH) is to modify the surface properties and pore size distribution of the Ca-bentonite. These properties are very important to ensure GOx molecules can be bound on the Ca-bentonit surface to be immobilized. The addition of the polymer (PAH) is expected to lead the substrates to be adsorbed onto the enzyme. In this study, wafer enzymes were made in various concentration ratio (Ca-bentonite : PAH) which are 1:0, 1:1, 1:2 and 1:3. The effect of PAH (Poly-Allyamine Hydrochloride) polymer added with various ratios of concentrations can be shown from the capacitance value on LCR meter and enzyme activity using DNS method. The addition of the polymer (PAH) showed effect on the activity of GOx, it can be shown from the decreasing of capacitance value by increasing of PAH concentration.

  20. Characterization of a sustainable sulfur polymer concrete using activated fillers

    DOE PAGES

    Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence; ...

    2016-01-02

    Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analysesmore » was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.« less

  1. Safety assessment of modified terephthalate polymers as used in cosmetics.

    PubMed

    Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-01-01

    The safety of 6 modified terephthalate polymers as cosmetic ingredients was assessed. These ingredients mostly function as exfoliants, bulking agents, hair fixatives, and viscosity-increasing agents-nonaqueous. Polyethylene terephthalate (PET) is used in leave-on products up to 100% and in rinse-off products up to 2%. The Cosmetic Ingredient Review Expert Panel (Panel) considered that the PET used in cosmetics is chemically equivalent to that used in medical devices. The Panel determined that the Food and Drug Administration's determination of safety of PET in several medical devices, which included human and animal safety data, can be used as the basis for the determination of safety of PET and related polymers used in cosmetics. Use studies of cosmetic eye products that contain PET demonstrated no ocular irritation or dermal sensitization. The Panel concluded that modified terephthalate polymers were safe as cosmetic ingredients in the practices of use and concentration described in this safety assessment. © The Author(s) 2014.

  2. The effect on the radon diffusion coefficient of long-term exposure of waterproof membranes to various degradation agents.

    PubMed

    Navrátilová Rovenská, Katerina

    2014-07-01

    Waterproofing, usually made of bitumen or polymers with various additives, is used to protect buildings mainly against dampness, but also against radon transported from the soil beneath the building. The radon diffusion coefficient is a material property which is considered to be strongly influenced by the inner structure (chemical composition, crystallinity) of a measured sample. We have used this parameter together with measurements of mechanical properties (hardness, tensile strength, elongation at break, etc.) and FTIR spectroscopy has been used in order to describe the changes in material properties induced by long-term degradation. This paper summarizes the results of radon diffusion coefficient measurements of waterproof materials exposed to radon, soil bacteria, high temperature and combinations of these factors. We have discovered changes as high as 83 % have been discovered compared to virgin samples. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation

    USGS Publications Warehouse

    Lewan, M.D.; Roy, S.

    2011-01-01

    Hydrous and anhydrous closed-system pyrolysis experiments were conducted on a sample of Mahogany oil shale (Eocene Green River Formation) containing Type-I kerogen to determine whether the role of water had the same effect on petroleum generation as reported for Type-II kerogen in the Woodford Shale. The experiments were conducted at 330 and 350??C for 72h to determine the effects of water during kerogen decomposition to polar-rich bitumen and subsequent bitumen decomposition to hydrocarbon-rich oil. The results showed that the role of water was more significant in bitumen decomposition to oil at 350??C than in kerogen decomposition to bitumen at 330??C. At 350??C, the hydrous experiment generated 29% more total hydrocarbon product and 33% more C15+ hydrocarbons than the anhydrous experiment. This is attributed to water dissolved in the bitumen serving as a source of hydrogen to enhance thermal cracking and facilitate the expulsion of immiscible oil. In the absence of water, cross linking is enhanced in the confines of the rock, resulting in formation of pyrobitumen and molecular hydrogen. These differences are also reflected in the color and texture of the recovered rock. Despite confining liquid-water pressure being 7-9 times greater in the hydrous experiments than the confining vapor pressure in the anhydrous experiments, recovered rock from the former had a lighter color and expansion fractures parallel to the bedding fabric of the rock. The absence of these open tensile fractures in the recovered rock from the anhydrous experiments indicates that water promotes net-volume increase reactions like thermal cracking over net-volume decrease reactions like cross linking, which results in pyrobitumen. The results indicate the role of water in hydrocarbon and petroleum formation from Type-I kerogen is significant, as reported for Type-II kerogen. ?? 2010.

  4. Electrospray painted article containing thermally exfoliated graphite oxide and method for their manufacture

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor)

    2011-01-01

    A painted polymer part containing a conductive polymer composition containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the painted polymer part has been electrospray painted.

  5. Turbulent channel flow under moderate polymer drag reduction

    NASA Astrophysics Data System (ADS)

    Elsnab, John; Monty, Jason; White, Christopher; Koochesfahani, Manoochehr; Klewicki, Joseph

    2017-11-01

    Streamwise velocity profiles and their wall-normal derivatives are used to investigate the properties of turbulent channel flow under the moderate polymer drag reduction (DR) conditions of 6-27%. Velocity data were obtained over a friction Reynolds number (Re) from 650-1800 using the single velocity component version of molecular tagging velocimetry (MTV). This adaptation of the MTV technique captures instantaneous profiles at high spatial resolution (>800 data points per profile), thus generating well-resolved derivative information. The mean velocity profiles indicate that the extent of the logarithmic region diminishes with increasing polymer concentration, while the logarithmic profile slope increases for drag reductions greater than about 20%. The measurements allow reconstruction of the mean momentum balance for channel flow that provides additional insights regarding the physics described by previous numerical simulation analyses that examined the mean dynamical structure of polymer laden channel flow at low Re. The present findings indicate that the polymer modifies the onset of the inertial domain, and that the extent of this domain shrinks with increasing DR. Once on the inertial domain, self-similar behaviors occur, but modified (sometimes subtly) by the modified distribution of characteristic y-scaling behavior of the Reynolds stress motions.

  6. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    USGS Publications Warehouse

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to illite. As a result, illitization only reaches 35% to 40% at 310°C for 72 hr and remains unchanged to 365°C for 72 hr. Bitumen generation before or during early illitization in these experiments emphasizes the importance of knowing when and to what degree illitization occurs in natural maturation of a smectite-rich source rock to determine its expulsion efficiency. Complete illitization prior to bitumen generation is common for Paleozoic source rocks (e.g., Woodford Shale and Retort Phosphatic Shale Member of the Phosphoria Formation), and expulsion efficiencies can be determined on immature samples by hydrous pyrolysis. Conversely, smectite is more common in Cenozoic source rocks like the Kreyenhagen Shale, and expulsion efficiencies determined by hydrous pyrolysis need to be made on samples that reflect the level of illitization at or near bitumen generation in the subsurface.

  7. Process for making polymers comprising derivatized carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved.

  8. Round-patterned ZnO nanostructure coated with siloxane-based polymer for nerve agent detection

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Ji; Lee, Ji Won; Jeong, Dong-Cheol; Ha, Seonggyun; Song, Changsik; Boo, Jin-Hyo

    2018-01-01

    The alignment of zinc oxide (ZnO) nanostructures is expected to improve device sensitivities due to large surface areas which can be utilized to capture significant quantities of gas particles. In this study, we investigated patterned ZnO nanorods modified with polystyrene monolayers synthesized directly onto a quartz crystal microbalance (QCM) cell to increase the coating surface area of the sensing material. Also, we designed and synthesized a siloxane-based polymer (S1 polymer) as a sensing material. The patterned ZnO nanorods coated with S1 polymers were fabricated and used for the detection of dimethyl methylphosphonate (DMMP). The resonance frequency of QCM was shifted due to the adsorption and desorption of a compound at the surface of the modified electrodes. We have synthesized an S1 polymer that exhibited high sensitivity to DMMP. The patterned ZnO nanorods coated with the polymer also exhibited improved sensitivity due to an enhanced surface area capable of adsorbing more DMMP vapor.

  9. Solid-phase synthesis of protein-polymers on reversible immobilization supports.

    PubMed

    Murata, Hironobu; Carmali, Sheiliza; Baker, Stefanie L; Matyjaszewski, Krzysztof; Russell, Alan J

    2018-02-27

    Facile automated biomacromolecule synthesis is at the heart of blending synthetic and biologic worlds. Full access to abiotic/biotic synthetic diversity first occurred when chemistry was developed to grow nucleic acids and peptides from reversibly immobilized precursors. Protein-polymer conjugates, however, have always been synthesized in solution in multi-step, multi-day processes that couple innovative chemistry with challenging purification. Here we report the generation of protein-polymer hybrids synthesized by protein-ATRP on reversible immobilization supports (PARIS). We utilized modified agarose beads to covalently and reversibly couple to proteins in amino-specific reactions. We then modified reversibly immobilized proteins with protein-reactive ATRP initiators and, after ATRP, we released and analyzed the protein polymers. The activity and stability of PARIS-synthesized and solution-synthesized conjugates demonstrated that PARIS was an effective, rapid, and simple method to generate protein-polymer conjugates. Automation of PARIS significantly reduced synthesis/purification timelines, thereby opening a path to changing how to generate protein-polymer conjugates.

  10. Synthesis of surface molecular imprinted polymers based on carboxyl-modified silica nanoparticles with the selective detection of dibutyl phthalate from tap water samples

    NASA Astrophysics Data System (ADS)

    Xu, Wanzhen; Zhang, Xiaoming; Huang, Weihong; Luan, Yu; Yang, Yanfei; Zhu, Maiyong; Yang, Wenming

    2017-12-01

    In this work, the molecular imprinted polymers were synthesized with the low monomer concentrations for dibutyl phthalate (DBP). The polymers were prepared over carboxyl-modified silica nanoparticle, which used methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker agent and azoisobutyronitrile as the initiator in the process of preparation. Various measures were used to characterize the structure and morphology in order to get the optimal polymer. The characterization results show that the optimal polymer has suitable features for further adsorption process. And adsorption capacity experiments were evaluated to analyze its adsorption performance, through adsorption isotherms/kinetics, selectivity adsorption and desorption and regeneration experiments. These results showed that the molecular imprinted polymers had a short equilibrium time about 60 min and high stability with 88% after six cycles. Furthermore, the molecular imprinted polymers were successfully applied to remove dibutyl phthalate. The concentration range was 5.0-30.0 μmol L-1, and the limit of detection was 0.06 μmol L-1 in tap water samples.

  11. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  12. Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion.

    PubMed

    Wang, Jinquan; Sng, Waihong; Yi, Guangshun; Zhang, Yugen

    2015-08-04

    A new type of imidazolium salt-modified porous hypercrosslinked polymer (BET surface area up to 926 m(2) g(-1)) was reported. These porous materials exhibited good CO2 capture capacities (14.5 wt%) and catalytic activities for the conversion of CO2 into various cyclic carbonates under metal-free conditions. The synergistic effect of CO2 capture and conversion was observed.

  13. Marine Exposure of Preservative-Treated Small Wood Panels.

    DTIC Science & Technology

    1984-10-01

    oxide (table 5) are unattacked after 5-1/2 years. Impregnation with tributyltin ( TBT ) oxide (table 6-1), TBT -modified methacrylate polymers (table 6...1), or TBT - modified monomers (with subsequent polymerization) (tables 6-2, 6-3) has prevented borer damage for 6 to 6-112 years. Methacrylates...copper zinc 5 arsenate 3-10 Polymers Prepolymerized tributyltin Dual treatments methacrylate and Chromated copper methyl methacrylate arsenate (B

  14. New polymer of lactic-co-glycolic acid-modified polyethylenimine for nucleic acid delivery

    PubMed Central

    Lü, Jian-Ming; Liang, Zhengdong; Wang, Xiaoxiao; Gu, Jianhua; Yao, Qizhi; Chen, Changyi

    2016-01-01

    Aim: To develop an improved delivery system for nucleic acids. Materials & methods: We designed, synthesized and characterized a new polymer of lactic-co-glycolic acid-modified polyethylenimine (LGA-PEI). Functions of LGA-PEI polymer were determined. Results: The new LGA-PEI polymer spontaneously formed nanoparticles (NPs) with DNA or RNA, and showed higher DNA or RNA loading efficiency, higher or comparable transfection efficacy, and lower cytotoxicity in several cell types including PANC-1, Jurkat and HEK293 cells, when compared with lipofectamine 2000, branched or linear PEI (25 kDa). In nude mouse models, LGA-PEI showed higher delivery efficiency of plasmid DNA or miRNA mimic into pancreatic and ovarian xenograft tumors. LGA-PEI/DNA NPs showed much lower toxicity than control PEI NPs in mouse models. Conclusion: The new LGA-PEI polymer is a safer and more effective system to deliver DNA or RNA than PEI. PMID:27456396

  15. Piezoelectric biosensor with a ladder polymer substrate coating

    DOEpatents

    Renschler, Clifford L.; White, Christine A.; Carter, Robert M.

    1998-01-01

    A piezoelectric biosensor substrate useful for immobilizing biomolecules in an oriented manner on the surface of a piezoelectric sensor has a ladder polymer of polyacrylonitrile. To make the substrate, a solution of an organic polymer, preferably polyacrylonitrile, is applied to the surface of a piezoelectric sensor. The organic polymer is modifying by heating the polymer in a controlled fashion in air such that a ladder polymer is produced which, in turn, forms the attachment point for the biomolecules comprising the piezoelectric biosensor.

  16. Piezoelectric biosensor with a ladder polymer substrate coating

    DOEpatents

    Renschler, C.L.; White, C.A.; Carter, R.M.

    1998-09-29

    A piezoelectric biosensor substrate useful for immobilizing biomolecules in an oriented manner on the surface of a piezoelectric sensor has a ladder polymer of polyacrylonitrile. To make the substrate, a solution of an organic polymer, preferably polyacrylonitrile, is applied to the surface of a piezoelectric sensor. The organic polymer is modifying by heating the polymer in a controlled fashion in air such that a ladder polymer is produced which, in turn, forms the attachment point for the biomolecules comprising the piezoelectric biosensor. 3 figs.

  17. Amylose-Based Cationic Star Polymers for siRNA Delivery.

    PubMed

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials.

  18. Voids characteristics of asphaltic concrete containing coconut shell

    NASA Astrophysics Data System (ADS)

    Ezree Abdullah, Mohd; Hannani Madzaili, Amirah; Putra Jaya, Ramadhansyah; Yaacob, Haryati; Hassan, Norhidayah Abdul; Nazri, Fadzli Mohamed

    2017-07-01

    Asphalt durability is often linked to the thickness of the asphalt coating on the aggregate particles. In order to have adequate film thickness in asphaltic concrete, there must be sufficient space between the aggregate particles in the compacted pavement. This void space is referred to as voids in total mix (VTM), voids with filled bitumen (VFB), and voids in mineral aggregate (VMA). Hence, this study investigates the performance of coconut shell (CS) as coarse aggregate replacement on voids characteristics of asphaltic concrete. Four CS were used as coarse aggregates replacement in asphalt mixture namely 0%, 10%, 20%, 30%, and 40% (by weight volume). The voids properties of asphalt mixture were determined based on Marshall Mix design test. Test results show that VTM and VMA values were decrease with the increasing bitumen content where VFB was increase with increasing bitumen content. Furthermore, increasing the percentage of coconut shell in asphalt mixture was found to increases the voids value up to a peak level and then decreases with further additions of CS.

  19. Geochemical study of the organic matter from Querecual formation, Anzoategui State, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garban, G.; Lopez, L.; Lo Monaco, S.

    1996-08-01

    Kerogen and bitumen fractions extracted from twenty-one limestone samples from kind section of Querecual formation (Querecual River, Anzoategui State, Venezuela) were analyzed for their content of Co, Cr, Fe, Mn, Mo, Ni, S, Sr, V and Zn. S and trace-metals content from the kerogen fraction were used to obtain information about paleoenvironmental sedimentation conditions of the Querecual formation. Based on these data, and especially on the V and S content variations plus V/Ni, VIV+Ni and Mo/Mo+Cr ratios, we confirm an ancient-reducer condition on this region according with a sulfur-reducer environment. Trace-metals content variations from the bitumen fraction along the studymore » section were used as possible primary migration indicators. V and Ni were the only elements showing a clear tendency to be used as primary migration indicators. The observed tendency allows us to postulate a vertical migration of the bitumen, from center to the extremes of the section.« less

  20. Localized enrichment of polycyclic aromatic hydrocarbons in soil, spruce needles, and lake sediments linked to in-situ bitumen extraction near Cold Lake, Alberta.

    PubMed

    Korosi, J B; Irvine, G; Skierszkan, E K; Doyle, J R; Kimpe, L E; Janvier, J; Blais, J M

    2013-11-01

    The extraction of bitumen from the Alberta oil sands using in-situ technologies is expanding at a rapid rate; however, investigations into the environmental impacts of oil sands development have focused on surface mining in the Athabasca region. We measured polycyclic aromatic hydrocarbons (PAH) in soils, spruce needles, and lake sediment cores in the Cold Lake oil sands region to provide a historical and spatial perspective on PAH contamination related to in-situ extraction activities. A pronounced increase in PAH concentrations was recorded in one of two study lakes (Hilda Lake) corresponding to the onset of commercial bitumen production in ~1985. Distance from extraction rigs was not an important predictor of PAH concentrations in soils, although two samples located near installations were elevated in alkyl PAHs. Evidence of localized PAH contamination in Hilda Lake and two soil samples suggests that continued environmental monitoring is justified to assess PAH contamination as development intensifies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Origin, mode of emplacement, and trace element geochemistry of albertite at the type locality, Albert Mines, southeastern New Brunswick, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, K.P.J.; Mossman, D.J.

    1995-07-01

    Fracturing of oil shale was coeval with albertite vein formation at Albert Mines early in the diagenetic history of the Lower Carboniferous (Tourmasian) Albert Formation. Albertite of this type locality is a pre-oil bitumen produced as a result of overpressuring due to a high rate of hydrocarbon generation and, as such, is largely preserved in an immature source rock. Dolomite precipitated in albertite during emplacement of the latter, and was sourced from an accompanying CO{sub 2}-rich fluid phase. Trace element contents of albertite are within the range of selected other major bitumen occurrences and, except for nickel, are lower thanmore » those of the host rock. Ratios of Ni/V are elevated in comparison with the host oil shale and with other bitumen occurrences. Carbon isotope values for albertite range from 27.92 to 30.80 {per_thousand}, {delta} {sup 13}C, within the range of most conventional crudes.« less

  2. Review on State-of-the-art in Polymer Based pH Sensors

    PubMed Central

    Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian

    2007-01-01

    This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277

  3. Seven years of radionuclide laboratory at IMC - important achievements.

    PubMed

    Hrubý, M; Kučka, J; Pánek, J; Štěpánek, P

    2016-10-20

    For many important research topics in polymer science the use of radionuclides brings significant benefits concerning nanotechnology, polymer drug delivery systems, tissue engineering etc. This contribution describes important achievements of the radionuclide laboratory at Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic (IMC) in the area of polymers for biomedical applications. Particular emphasis will be given to water-soluble polymer carriers of radionuclides, thermoresponsive polymer radionuclide carriers, thermoresponsive polymers for local brachytherapy, polymer scaffolds modified with (radiolabeled) peptides and polymer copper chelators for the therapy of Wilson´s disease.

  4. Could the Health Decline of Prehistoric California Indians be Related to Exposure to Polycyclic Aromatic Hydrocarbons (PAHs) from Natural Bitumen?

    PubMed Central

    Sholts, Sabrina B.; Erlandson, Jon M.; Gjerdrum, Thor; Westerholm, Roger

    2011-01-01

    Background: The negative health effects of polycyclic aromatic hydrocarbons (PAHs) are well established for modern human populations but have so far not been studied in prehistoric contexts. PAHs are the main component of fossil bitumen, a naturally occurring material used by past societies such as the Chumash Indians in California as an adhesive, as a waterproofing agent, and for medicinal purposes. The rich archaeological and ethnohistoric record of the coastal Chumash suggests that they were exposed to multiple uptake pathways of bituminous PAHs, including direct contact, fume inhalation, and oral uptake from contaminated water and seafood. Objectives: We investigated the possibility that PAHs from natural bitumen compromised the health of the prehistoric Chumash Indians in California. Conclusions: Exposure of the ancient Chumash Indians to toxic PAHs appears to have gradually increased across a period of 7,500 years because of an increased use of bitumen in the Chumash technology, together with a dietary shift toward PAH-contaminated marine food. Skeletal analysis indicates a concurrent population health decline that may be related to PAH uptake. However, establishing such a connection is virtually impossible without knowing the actual exposure levels experienced by these populations. Future methodological research may provide techniques for determining PAH levels in ancient skeletal material, which would open new avenues for research on the health of prehistoric populations and on the long-term effects of human PAH exposure. PMID:21596651

  5. A new modification of the individually designed polymer implant visible in X-ray for orbital reconstruction.

    PubMed

    Jazwiecka-Koscielniak, Ewa; Kozakiewicz, Marcin

    2014-10-01

    Orbital reconstruction makes higher demands on symmetry and axial precision than other parts of the skull, because the position of the eye globe determines proper vision. The aim of this study is to evaluate titanium surface marking of polymers (UHMW-PE and PA6) to check implants position in CT examination and clinical application of such modified individual implant. One hundred and twenty-four polymer blocks were prepared. New method of ultrasounds welding to connect the titanium markers to the polymer surface was developed and tested. Titanium marked polymer blocks were examined by CT to evaluate the quality of the cover. Then, two modified UHMW-PE individual implants were applied clinically and implant position was checked by CT. The biggest titanium cover was in PA6 [25 ± 18% of processed surface] and for UHMW-PE [19 ± 12%] without significance [p = 0.14]. Both covers were visible in CT. Clinical application revealed proper reconstruction, uneventful post-operational outcome and well visible surface of the implants in CT. The conducted tests make it possible to determine the suitability of ultrasonic technology for the deposition of titanium markers in polymer. The clinical use of modified individual implants allows to confirm the correct position of the implants because they are accurate visible in CT. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Verification of the modified model of drying process of a polymer liquid film on a flat substrate by experiment (3) - using organic solvent

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2007-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through Photomask Japan 2002, 2003, 2004, Smart Materials, Nano-, and Micro-Smart Systems 2006 and so on. And for example numerical simulation of the model qualitatively reappears a typical thickness profile of the polymer film formed after drying, that is, the profile that the edge of the film is thicker and just the region next to the edge's bump is thinner. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of many numerical simulations. Then we did a few kinds of experiments so as to verify the modified model and reported the results of them through Photomask Japan 2005 and 2006. We could observe some results supporting the modified model. But we could not observe a characteristic region of a valley next to the edge's bump of a polymer film after drying. After some trial of various improved experiments we reached the conclusion that the characteristic region didn't appear by reason that water which vaporized slower than organic solvent was used as solvent. Then, in this study, we adopted organic solvent instead of water as solvent for experiments. As a result, that the characteristic region as mentioned above could be seen and we could verify the model more accurately. In this paper, we present verification of the model through above improved experiments for verification using organic solvent.

  7. Designing polymers with sugar-based advantages for bioactive delivery applications.

    PubMed

    Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E

    2015-12-10

    Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.

  8. Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2014-05-01

    Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials. Electronic supplementary information (ESI) available: Methods, additional gels, kinetics, mass spectrum. See DOI: 10.1039/c4nr00867g

  9. Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates.

    PubMed

    Liu, Chih-Ting; Tsai, Chia-Chan; Chu, Chien-Wei; Chi, Mu-Huan; Chung, Pei-Yun; Chen, Jiun-Tai

    2018-04-18

    We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.

  10. Ionic liquid-functionalized carbon nanoparticles-modified cathode for efficiency enhancement in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Yang, Jiaxiang; Lu, Jiong; Manga, Kiran Kumar; Loh, Kian Ping; Zhu, Furong

    2009-09-01

    The power conversion efficiency (PCE) of regioregular poly(3-hexylthiophene) (P3HT) and {6,6}-phenyl C61-butyric acid methylester (PCBM)-based polymer solar cells was increased using an ionic liquid-functionalized carbon nanoparticles (ILCNs) thin film-modified cathode. The PCE of P3HT:PCBM based-polymer solar cells with a conventional aluminum (Al)-only cathode was increased by 20%-30% when the identical devices were made with an ILCNs-modified Al cathode, but its PCE was 10% lower than that of devices with LiF/Al cathode, measured under AM1.5G illumination of 100 mW/cm2. The ILCN interlayer approach, however, offers practical advantages to LiF in terms of its solution-processability, which is compatible with low cost, large area, and flexible solar cell fabrication.

  11. Influence of selected test parameters on measured values during the MSCR test

    NASA Astrophysics Data System (ADS)

    Benešová, Lucie; Valentin, Jan

    2017-09-01

    One of today’s most commonly used test on a Dynamic Shear Rheometer (DSR) is the Multiple Stress Creep Recovery (MSCR) test. The test is described in the standard EN 16659, which is valid in the Czech Republic since October 2016. The principle of the test is based on repeated loading and recovering of a bitumen sample, according to which it is possible to determine the percentage of elastic recovery (R) and non-recoverable creep compliance (Jnr) of the bituminous binder. This method has been recently promoted as the most suitable test for assessing the resistance of bituminous binders to permanent deformation. The test is performed at higher temperatures and is particularly suitable for modified bituminous binders. The paper deals with the comparison of the different input parameters set on the DSR device - different levels of stress, temperature of test, the geometry of the measuring device and also a comparison of the results for a different number of loading cycles. The research study was focused mainly on modified bituminous binders, but to compare the MSCR test it is performed even with conventional paving grade binders.

  12. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such... weight-percent of polymer units derived from butadiene-styrene copolymers. (c) No chemical reactions...

  13. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such... weight-percent of polymer units derived from butadiene-styrene copolymers. (c) No chemical reactions...

  14. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials.

    PubMed

    Maharaj, Rean; Ramjattan-Harry, Vitra; Mohamed, Nazim

    2015-01-01

    The influence of waste cooking oil (WCO) on the performance characteristics of asphaltic materials indigenous to Trinidad, namely, Trinidad Lake Asphalt (TLA), Trinidad Petroleum Bitumen (TPB), and TLA : TPB (50 : 50) blend, was investigated to deduce the applicability of the WCO as a performance enhancer for the base asphalt. The rheological properties of complex modulus (G (∗) ) and phase angle (δ) were measured for modified base asphalt blends containing up to 10% WCO. The results of rheology studies demonstrated that the incremental addition of WCO to the three parent binders resulted in incremental decreases in the rutting resistance (decrease in G (∗) /sinδ values) and increases in the fatigue cracking resistance (decrease in G (∗) sinδ value). The fatigue cracking resistance and rutting resistance for the TLA : TPB (50 : 50) blends were between those of the blends containing pure TLA and TPB. As operating temperature increased, an increase in the resistance to fatigue cracking and a decrease in the rutting resistance were observed for all of the WCO modified asphaltic blends. This study demonstrated the capability to create customized asphalt-WCO blends to suit special applications and highlights the potential for WCO to be used as an environmentally attractive option for improving the use of Trinidad asphaltic materials.

  15. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials

    PubMed Central

    Maharaj, Rean; Ramjattan-Harry, Vitra; Mohamed, Nazim

    2015-01-01

    The influence of waste cooking oil (WCO) on the performance characteristics of asphaltic materials indigenous to Trinidad, namely, Trinidad Lake Asphalt (TLA), Trinidad Petroleum Bitumen (TPB), and TLA : TPB (50 : 50) blend, was investigated to deduce the applicability of the WCO as a performance enhancer for the base asphalt. The rheological properties of complex modulus (G ∗) and phase angle (δ) were measured for modified base asphalt blends containing up to 10% WCO. The results of rheology studies demonstrated that the incremental addition of WCO to the three parent binders resulted in incremental decreases in the rutting resistance (decrease in G ∗/sinδ values) and increases in the fatigue cracking resistance (decrease in G ∗sinδ value). The fatigue cracking resistance and rutting resistance for the TLA : TPB (50 : 50) blends were between those of the blends containing pure TLA and TPB. As operating temperature increased, an increase in the resistance to fatigue cracking and a decrease in the rutting resistance were observed for all of the WCO modified asphaltic blends. This study demonstrated the capability to create customized asphalt-WCO blends to suit special applications and highlights the potential for WCO to be used as an environmentally attractive option for improving the use of Trinidad asphaltic materials. PMID:26336652

  16. A strategy to synthesize graphene-incorporated lignin polymer composite materials with uniform graphene dispersion and covalently bonded interface engineering

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Duong, Le Dai; Ma, Yifei; Sun, Yan; Hong, Sung Yong; Kim, Ye Chan; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    Graphene-incorporated polymer composites have been demonstrated to have excellent mechanical and electrical properties. In the field of graphene-incorporated composite material synthesis, there are two main obstacles: Non-uniform dispersion of graphene filler in the matrix and weak interface bonding between the graphene filler and polymer matrix. To overcome these problems, we develop an in-situ polymerization strategy to synthesize uniformly dispersed and covalently bonded graphene/lignin composites. Graphene oxide (GO) was chemically modified by 4,4'-methylene diphenyl diisocyanate (MDI) to introduce isocyanate groups and form the urethane bonds with lignin macromonomers. Subsequential polycondensation reactions of lignin groups with caprolactone and sebacoyl chloride bring about a covalent network of modified GO and lignin-based polymers. The flexible and robust lignin polycaprolactone polycondensate/modified GO (Lig-GOm) composite membranes are achieved after vacuum filtration, which have tunable hydrophilicity and electrical resistance according to the contents of GOm. This research transforms lignin from an abundant biomass into film-state composite materials, paving a new way for the utilization of biomass wastes.

  17. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  18. Role of minerals in thermal alteration of organic matter. II - A material balance

    NASA Technical Reports Server (NTRS)

    Tannenbaum, Eli; Huizinga, Bradley J.; Kaplan, I. R.

    1986-01-01

    The paper presents the results of pyrolysis experiments which were carried out on Green River and Monterey Formation kerogens with and without calcite, illite, or montmorillonite at 300 C for 2 to 1,000 hours under dry and hydrous conditions. The data reveal significant differences in the products generated by pyrolysis of kerogens with and without minerals. Both illite and montmorillonite adsorb a considerable portion of the generated bitumen. In the case of calcite, the pyrolysis products are similar to those from kerogen heated alone, and bitumen adsorption is negligible.

  19. Fabrication and characterization of polymer gel for MRI phantom with embedded lesion particles

    NASA Astrophysics Data System (ADS)

    In, Eunji; Naguib, Hani E.; Haider, Masoom

    2012-04-01

    Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology to visualize the detailed internal structure and body soft tissues in complete 3D image. MRI performs best when optimal imaging parameters such as contrast, signal to noise ratio (SNR), spatial resolution and total scan time are utilized. However, due to a variety of imaging parameters that differ with the manufacturer, a calibration medium that allows the control of these parameters is necessary. Therefore, a phantom that behaves similar to human soft tissue is developed to replace a real human. Polymer gel is novel material that has great potential in the medical imaging. Since very few have focused on examining the behavior of polymer lesions, the motivation of this study is to develop a polymer gel phantom, especially for liver, with embedded lesions. Both the phantom and lesions should be capable of reflecting T1 and T2 relaxation values through various characterization processes. In this paper, phantom and lesion particles were fabricated with carrageenan as a gelling agent by physical aggregation. Agar was used as supplementary gelling agent and T2 modifier and Gd-DTPA as T1 modifier. The polymer gel samples were fabricated by varying the concentrations of the gelling agent, and T1 and T2 modifiers. The lesion particles were obtained by extracting molten polymer gel solution in chilled oil bath to obtain spherical shape. The polymer gel properties including density, elastic modulus, dielectric constant and optical properties were measured to compare with human tissue values for long period of time.

  20. Biofouling-resistant ceragenin-modified materials and structures for water treatment

    DOEpatents

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  1. Amylose-Based Cationic Star Polymers for siRNA Delivery

    PubMed Central

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548

  2. Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu. K.

    2017-02-01

    The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.

  3. Highly sensitive and selective hyphenated technique (molecularly imprinted polymer solid-phase microextraction-molecularly imprinted polymer sensor) for ultra trace analysis of aspartic acid enantiomers.

    PubMed

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-03-29

    The present work is related to combination of molecularly imprinted solid-phase microextraction and complementary molecularly imprinted polymer-sensor. The molecularly imprinted polymer grafted on titanium dioxide modified silica fiber was used for microextraction, while the same polymer immobilized on multiwalled carbon nanotubes/titanium dioxide modified pencil graphite electrode served as a detection tool. In both cases, the surface initiated polymerization was found to be advantageous to obtain a nanometer thin imprinted film. The modified silica fiber exhibited high adsorption capacity and enantioselective diffusion of aspartic acid isomers into respective molecular cavities. This combination enabled double preconcentrations of d- and l-aspartic acid that helped sensing both isomers in real samples, without any cross-selectivity and matrix complications. Taking into account 6×10(4)-fold dilution of serum and 2×10(3)-fold dilution of cerebrospinal fluid required by the proposed method, the limit of detection for l-aspartic acid is 0.031ngmL(-1). Also, taking into account 50-fold dilution required by the proposed method, the limit of detection for d-aspartic acid is 0.031ngmL(-1) in cerebrospinal fluid. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor); Rembaum, Alan (Inventor); Richards, Gil F. (Inventor)

    1987-01-01

    Metal oxide containing polymers and particularly styrene, acrylic or protein polymers containing fine, magnetic iron oxide particles are formed by combining a NO.sub.2 -substituted polymer with an acid such as hydrochloric acid in the presence of metal, particularly iron particles. The iron is oxidized to fine, black Fe.sub.3 O.sub.4 particles which deposit selectively on the polymer particles. Nitrated polymers are formed by reacting functionally substituted, nitrated organic compounds such as trinitrobenzene sulfonate or dinitrofluoro benzene with a functionally coreactive polymer such as an amine modified acrylic polymer or a protein. Other transition metals such as cobalt can also be incorporated into polymers using this method.

  5. Cloning strategy for producing brush-forming protein-based polymers.

    PubMed

    Henderson, Douglas B; Davis, Richey M; Ducker, William A; Van Cott, Kevin E

    2005-01-01

    Brush-forming polymers are being used in a variety of applications, and by using recombinant DNA technology, there exists the potential to produce protein-based polymers that incorporate unique structures and functions in these brush layers. Despite this potential, production of protein-based brush-forming polymers is not routinely performed. For the design and production of new protein-based polymers with optimal brush-forming properties, it would be desirable to have a cloning strategy that allows an iterative approach wherein the protein based-polymer product can be produced and evaluated, and then if necessary, it can be sequentially modified in a controlled manner to obtain optimal surface density and brush extension. In this work, we report on the development of a cloning strategy intended for the production of protein-based brush-forming polymers. This strategy is based on the assembly of modules of DNA that encode for blocks of protein-based polymers into a commercially available expression vector; there is no need for custom-modified vectors and no need for intermediate cloning vectors. Additionally, because the design of new protein-based biopolymers can be an iterative process, our method enables sequential modification of a protein-based polymer product. With at least 21 bacterial expression vectors and 11 yeast expression vectors compatible with this strategy, there are a number of options available for production of protein-based polymers. It is our intent that this strategy will aid in advancing the production of protein-based brush-forming polymers.

  6. Ferritin nanocontainers that self-direct in synthetic polymer systems

    NASA Astrophysics Data System (ADS)

    Sengonul, Merih C.

    Currently, there are many approaches to introduce functionality into synthetic polymers. Among these, for example, are copolymerization, grafting, and blending methods. However, modifications made by such methods also change the thermodynamics and rheological properties of the polymer system of interest, and each new modification often requires a costly reoptimization of polymer processing. Such a reoptimalization would not be necessary if new functionality could be introduced via a container whose external surface is chemically and physically tuned to interact with the parent polymer. The contents of the container could then be changed without changing other important properties of the parent polymer. In this context this thesis project explores an innovative nanocontainer platform which can be introduced into phase-separating homopolymer blends. Ferritin is a naturally existing nanocontainer that can be used synthetically to package and selectively transport functional moieties to a particular phase that is either in the bulk or on the surface of a homopolymer blend system. The principal focus of this work centers on modifying the surface of wild ferritin to: (1) render modified ferritin soluble in a non-aqueous solvent; and (2) impart it with self-directing properties when exposed to a homopolymer blend surface or incorporated into the bulk of a homopolymer blend. Wild ferritin is water soluble, and this research project successfully modified wild ferritin by grafting either amine-functional poly(ethylene glycol) (PEG) or short-chain alkanes to carbodiimide activated carboxylate groups on ferritin's surface. Such modified ferritin is soluble in dichloromethane (DCM). Modification was confirmed by ion-exchange chromatography, zeta-potential measurements, and electrospray mass spectroscopy. FT-IR was used to quantify the extent of PEGylation of the reaction products through area ratios of the -C-O-C asymmetric stretching vibration of the grafted PEG chains to the carbonyl stretching vibration (amide I band) of the protein. The dimensionless grafting density after PEGylation was found to be 0.13 with 120 average grafted PEG chains per ferritin nanocontainer. Modified ferritin was used for bulk modification of a phase-separated polymer blend of poly(desaminotyrosyl tyrosine dodecyl ester carbonate) [PDTD] and PEG. TEM micrographs showed remarkable selectivity of PEGylated ferritin to PEG domains, while alkylated ferritin self-directs to the PDTD matrix. We explain this strong selectivity by the favourable interaction energies between the grafted and free matrix chains. In addition, both modified and wild ferritin were used for surface modification of the phase-separated homopolymer blend of PDTD and poly(ε-caprolactone) (PCL). At physiological pH wild ferritin selectively adsorbed onto the PDTD phase, while alkylated ferritin showed a striking selectivity to PCL phase. We attribute this behavior to the increase in protein's pI point above physiological pH after modification, which changes the electrostatic interactions between the ferritin and the polymer surface. Collectively, these results demonstrate the versatile use of ferritin as a model nanocontainer for the selective modification of surface and bulk properties of polymers.

  7. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  8. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    NASA Technical Reports Server (NTRS)

    Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  9. Targeted Therapies for Myeloma and Metastatic Bone Cancers

    DTIC Science & Technology

    2010-09-01

    to produce NPs for in-vivo studies compatible with the short half life of Tc99m. (Fig 6,7) Developed methods to radiolabel polymer nanoparticles...fully characterize PLA-b-PEG-Maleimide block Polymer (PLA-b-PEG-MAL) Propose: To synthesize Maleimide modified PLGA-b-PEG 2000 for NPs bone-targeted... polymer was synthesized and characterized by H-NMR. (Appendix 2) Improved lyostability of polymer nanoparticles, with and without PEG modification

  10. Laser synthesis of aluminium nanoparticles in biocompatible polymer solutions

    NASA Astrophysics Data System (ADS)

    Singh, Rina; Soni, R. K.

    2014-08-01

    Pulsed laser ablation of Aluminium (Al) in pure water rapidly forms a thin alumina (Al2O3) layer which drastically modifies surface plasmon resonance (SPR) absorption characteristics in deep-UV region. Initially, pure aluminium nanoparticles (NPs) are generated in water without any stabilizers or surfactants at low laser fluence which gradually transform to stable Al-Al2O3 core-shell nanostructure with increasing either residency time or fluence. The role of laser wavelength and fluence on the SPR properties and oxidation characteristics of Al NPs has been investigated in detail. We also present a one-step in situ synthesis of oxide-free stable Al NPs in biocompatible polymer solutions using laser ablation in liquid method. We have used nonionic polymers (PVP, PVA and PEG) and anionic surfactant (SDS) stabilizer to suppress the Al2O3 formation and studied the effect of polymer functional group, polymeric chain length, polymer concentration and anionic surfactant on the incipient embryonic aluminium particles and their sizes. The different functional groups of polymers resulted in different oxidation states of Al. PVP and PVA polymers resulted in pure Al NPs; however, PEG and SDS resulted in alumina-modified Al NPs. The Al nanoparticles capped with PVP, PVA, and PEG show a good correlation between nanoparticle stability and monomeric length of the polymer chain.

  11. Field test method to determine presence and quantity of modifiers in liquid asphalt.

    DOT National Transportation Integrated Search

    2015-05-01

    Asphalt modified with styrene butadiene styrene (SBS) polymer and/or ground tire rubber (GTR) is widely used in the U.S. : to enhance its performance. However, there are very few field tests developed to verify the content of modifier(s) in asphalt :...

  12. [Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].

    PubMed

    You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue

    2015-04-01

    Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific basis for rapid estimation of oil content in oil sands in future.

  13. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  14. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  15. Application of pH-sensitive fusogenic polymer-modified liposomes for development of mucosal vaccines.

    PubMed

    Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji; Sekiya, Yukio

    2014-03-15

    To evaluate the usefulness of pH-sensitive fusogenic polymer (succinylated poly(glycidol) (SucPG) and 3-methylglutarylated poly(glycidol) (MGluPG))-modified liposomes as mucosal vaccine in the induction of a protective immune responses was evaluated. Mice were nasally immunized with OVA-containing SucPG-modified liposomes. After immunization, significant Ag-specific Abs were detected in the serum and intestine. When sera were analyzed for isotype distribution, antigen-specific IgG1 Ab responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ and IL-4 mRNA were detected. The same result was obtained also in the mouse immunized with OVA-containing MGluPG-modified liposomes. Furthermore, we examined the induction of immune responses in chickens following intraocular immunization with Salmonella Enteritidis Ag-containing MGluPG-modified liposomes, and the protective effect against the challenge with S. Enteritidis. Immunization with S. Enteritidis Ag-containing MGluPG-modified liposomes induced significant Ab responses against S. Enteritidis in the serum and intestine. Less fecal excretion of bacteria was observed in chickens immunized with S. Enteritidis Ag-containing MGluPG-modified liposomes after challenge. The numbers of bacteria in the caecum were also lower in immunized chickens than in unimmunized controls. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Impact of some field factors on inhalation exposure levels to bitumen emissions during road paving operations.

    PubMed

    Deygout, François; Auburtin, Guy

    2015-03-01

    Variability in occupational exposure levels to bitumen emissions has been observed during road paving operations. This is due to recurrent field factors impacting the level of exposure experienced by workers during paving. The present study was undertaken in order to quantify the impact of such factors. Pre-identified variables currently encountered in the field were monitored and recorded during paving surveys, and were conducted randomly covering current applications performed by road crews. Multivariate variance analysis and regressions were then used on computerized field data. The statistical investigations were limited due to the relatively small size of the study (36 data). Nevertheless, the particular use of the step-wise regression tool enabled the quantification of the impact of several predictors despite the existing collinearity between variables. The two bitumen organic fractions (particulates and volatiles) are associated with different field factors. The process conditions (machinery used and delivery temperature) have a significant impact on the production of airborne particulates and explain up to 44% of variability. This confirms the outcomes described by previous studies. The influence of the production factors is limited though, and should be complemented by studying factors involving the worker such as work style and the mix of tasks. The residual volatile compounds, being part of the bituminous binder and released during paving operations, control the volatile emissions; 73% of the encountered field variability is explained by the composition of the bitumen batch. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Graphene Oxide-Polymer Composite Langmuir Films Constructed by Interfacial Thiol-Ene Photopolymerization

    NASA Astrophysics Data System (ADS)

    Luo, Xiaona; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Zhang, Lexin; Zhou, Jingxin; Li, Bingbing

    2017-02-01

    The effective synthesis and self-assembly of graphene oxide (GO) nanocomposites are of key importance for a broad range of nanomaterial applications. In this work, a one-step chemical strategy is presented to synthesize stable GO-polymer Langmuir composite films by interfacial thiol-ene photopolymerization at room temperature, without use of any crosslinking agents and stabilizing agents. It is discovered that photopolymerization reaction between thiol groups modified GO sheets and ene in polymer molecules is critically responsible for the formation of the composite Langmuir films. The film formed by Langmuir assembly of such GO-polymer composite films shows potential to improve the mechanical and chemical properties and promotes the design of various GO-based nanocomposites. Thus, the GO-polymer composite Langmuir films synthesized by interfacial thiol-ene photopolymerization with such a straightforward and clean manner, provide new alternatives for developing chemically modified GO-based hybrid self-assembled films and nanomaterials towards a range of soft matter and graphene applications.

  18. Surface Modification of SiO2 Microchannels with Biocompatible Polymer Using Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuro; Momose, Takeshi; Hoshi, Toru; Takai, Madoka; Ishihara, Kazuhiko; Shimogaki, Yukihiro

    2010-11-01

    The surface of 500-mm-long microchannels in SiO2 microchips was modified using supercritical CO2 (scCO2) and a biocompatible polymer was coated on it to confer biocompatibility to the SiO2 surface. In this method, the SiO2 surface of a microchannel was coated with poly(ethylene glycol monomethacrylate) (PEGMA) as the biocompatible polymer using allyltriethoxysilane (ATES) as the anchor material in scCO2 as the reactive medium. Results were compared with those using the conventional wet method. The surface of a microchannel could not be modified by the wet method owing to the surface tension and viscosity of the liquid, but it was modified uniformly by the scCO2 method probably owing to the near-zero surface tension, low viscosity, and high diffusivity of scCO2. The effect of the surface modification by the scCO2 method to prevent the adsorption of protein was as high as that of the modification by the wet method. Modified microchips can be used in biochemical and medical analyses.

  19. Cyclodextrin modified hydrogels of PVP/PEG for sustained drug release.

    PubMed

    Nielsen, Anne Louise; Madsen, Flemming; Larsen, Kim Lambertsen

    2009-02-01

    Hydrogels are water swollen networks of polymers and especially hydrogels consisting of poly vinylpyrrolidone/poly ethyleneglycol-dimethacrylate (PVP/PEG-DMA) blends show promising wound care properties. Enhanced functionality of the hydrogels can be achieved by incorporating drugs and other substances that may assist wound healing into the gel matrix. Controlling the release of active compounds from the hydrogels may be possible by carefully modifying the polymer matrix. For this purpose, cyclodextrins (CD) were grafted to the polymer matrix in 4-5 w/w% in an attempt to retard the release of water-soluble drugs. Ibuprofenate (IBU) was chosen as model drug and loaded in IBU/CD ratios of 0.6, 1.2, and 2.5. Vinyl derivatives of alpha-, beta- and gamma-CD were produced, added to the prepolymer blend and cured by UV-light. During this curing process the CD derivatives were covalently incorporated into the hydrogel matrix. The modified hydrogels were loaded with ibuprofenate by swelling. The release of the model drug from CD modified hydrogels show that especially covalently bonded beta-cyclodextrin can change both the release rate and the release profile of ibuprofen.

  20. Geochemistry of radioactive elements in bituminous sands and sandstones of Permian bitumen deposits of Tatarstan (east of the Russian plate)

    NASA Astrophysics Data System (ADS)

    Mullakaev, A. I.; Khasanov, R. R.; Badrutdinov, O. R.; Kamaletdinov, I. R.

    2018-05-01

    The article investigates geochemical features of Permian (Cisuralian, Ufimian Stage and Biarmian, Kazanian Stage of the General Stratigraphic Scale of Russia) bituminous sands and sandstones located on the territory of the Volga-Ural oil and gas province (Republic of Tatarstan). Natural bitumens are extracted using thermal methods as deposits of high-viscosity oils. In the samples studied, the specific activity of natural radionuclides from the 238U (226Ra), 232Th, and 40K series was measured using gamma spectrometry. As a result of the precipitation of uranium and thorium and their subsequent decay, the accumulation of radium (226Ra and 228Ra) has been shown to occur in the bituminous substance. In the process of exploitation of bitumen-bearing rock deposits (as an oil fields) radium in the composition of a water-oil mixture can be extracted to the surface or deposited on sulfate barriers, while being concentrated on the walls of pipes and other equipment. This process requires increased attention to monitoring and inspection the environmental safety of the exploitation procedure.

  1. Advances in multiphase flow measurements using magnetic resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Kantzas, Apostolos; Kryuchkov, Sergey; Chandrasekaran, Blake

    2009-02-01

    When it comes to the measurement of bitumen and water content as they are produced from thermally exploited reservoirs (cyclic steam stimulation or steam assisted gravity drainage) most of the current tools that are available in the market fail. This was demonstrated previously when our group introduced the first concept of a magnetic resonance based water-cut meter. The use of magnetic resonance as a potential tool for fluid cut metering from thermally produced heavy oil and bitumen reservoirs is revisited. At first a review of the work to date is presented. Our recent approach in the tackling of this problem follows. A patented process is coupled with a patented pipe design that can be used inside a magnetic field and can capture fluids up to 260°C and 4.2MPa. The paper describes the technical advances to this goal and offers a first glimpse of field data from an actual thermal facility for bitumen production. The paper also addresses an approach for converting the current discrete measurement device into a continuous measurement system. Preliminary results for this new concept are also presented.

  2. Flume tank studies to elucidate the fate and behavior of diluted bitumen spilled at sea.

    PubMed

    King, Thomas L; Robinson, Brian; Boufadel, Michel; Lee, Kenneth

    2014-06-15

    An economical alternative to conventional crudes, Canadian bitumen, harvested as a semi-liquid, is diluted with condensate to make it viable to transport by pipeline to coastal areas where it would be shipped by tankers to global markets. Not much is known about the fate of diluted bitumen (dilbit) when spilled at sea. For this purpose, we conducted dilbit (Access Western Blend; AWB and Cold Lake Blend; CLB) weathering studies for 13 days in a flume tank containing seawater. After six days of weathering, droplets detached from the AWB slick and were dense enough to sink in seawater. The density of CLB also increased, but at a slower rate compared to AWB, which was attributed to the high concentration of alkylated polycyclic aromatic hydrocarbons in it, which are more resistant to weathering. An empirical, Monod-type model was introduced and was found to closely simulate the increase in oil density with time. Such a model could be used within oil spill models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nanostructural surface engineering of grafted polymers on inorganic oxide substrates for membrane separations

    NASA Astrophysics Data System (ADS)

    Yoshida, Wayne Hiroshi

    Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of gyration 4.5--6.8 times larger than the membrane pore radius. Methanol separation factors for the PVP and PVAc-grafted alumina pervaporation membranes reached values of 26 and 100 (respectively) at total permeate fluxes of 0.055--1.26 kg/m 2 hr and 0.55--6.19 kg/m2 hr. The present study demonstrated that selective pervaporation membranes for separation of both organic/organic and organic/aqueous mixtures can be effectively designed by careful selection of the surface-grafted polymer chain density and the ratio of the polymer chain size to the native support pore size.

  4. Grafted functional groups on expanded tetrafluoroethylene (ePTFE) support for fuel cell and water transport membranes

    DOEpatents

    Fuller, Timothy J.; Jiang, Ruichun

    2017-01-24

    A method for forming a modified solid polymer includes a step of contacting a solid fluorinated polymer with a sodium sodium-naphthalenide solution to form a treated fluorinated solid polymer. The treated fluorinated solid polymer is contacted with carbon dioxide, sulfur dioxide, or sulfur trioxide to form a solid grafted fluorinated polymer. Characteristically, the grafted fluorinated polymer includes appended CO.sub.2H or SO.sub.2H or SO.sub.3H groups. The solid grafted fluorinated polymer is advantageously incorporated into a fuel cell as part of the ion-conducting membrane or a water transport membrane in a humidifier.

  5. Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor

    PubMed Central

    Srivastava, Alok; Singh, Virendra; Dhand, Chetna; Kaur, Manindar; Singh, Tejvir; Witte, Karin; Scherer, Ulrich W.

    2006-01-01

    A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas.

  6. Do the Modified Uncertainty Principle and Polymer Quantization predict same physics?

    NASA Astrophysics Data System (ADS)

    Majumder, Barun; Sen, Sourav

    2012-10-01

    In this Letter we study the effects of the Modified Uncertainty Principle as proposed in Ali et al. (2009) [5] in simple quantum mechanical systems and study its thermodynamic properties. We have assumed that the quantum particles follow Maxwell-Boltzmann statistics with no spin. We compare our results with the results found in the GUP and polymer quantum mechanical frameworks. Interestingly we find that the corrected thermodynamic entities are exactly the same compared to the polymer results but the length scale considered has a theoretically different origin. Hence we express the need of further study for an investigation whether these two approaches are conceptually connected in the fundamental level.

  7. Fast and Selective Preconcentration of Europium from Wastewater and Coal Soil by Graphene Oxide/Silane@Fe3O4 Dendritic Nanostructure.

    PubMed

    Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K

    2015-05-19

    In this study, nanocomposite of graphene oxide and silane modified magnetic nanoparticles (silane@Fe3O4) were synthesized in a form of dendritic structure. For this, silane@Fe3O4 nanoparticle gets sandwiched between two layers of graphene oxide by chemical synthesis route. The synthesized dendritic structure was used as a monomer for synthesis of europium ion imprinted polymer. The synthesis of imprinted polymer was contemplated onto the surface of the vinyl group modified silica fiber by activated generated free radical atom-transfer radical polymerization, that is, AGET-ATRP technique. The synthesized dendritic monomer was characterized by XRD, FT-IR, VSM, FE-SEM, and TEM analyses. The imprinted polymer modified silica fiber was first validated in the aqueous and blood samples for successful extraction and detection of europium ion with limit of detection = 0.050 pg mL(-1) (signal/noise = 3). The imprinted polymer modified silica fiber was also used for preconcentration and separation of europium metal ion from various soil samples of coal mine areas. However, the same silica fiber was also used for wastewater treatment and shows 100% performance for europium removal. The findings herein suggested that dendritic nanocomposite could be potentially used as a highly effective material for the enrichment and preconcentration of europium or other trivalent lanthanides/actinides in nuclear waste management.

  8. Conductive Circuit Containing a Polymer Composition Containing Thermally Exfoliated Graphite Oxide and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)

    2017-01-01

    A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 sq m/g to 2600 sq m/g, and a method of making the same.

  9. Conductive Circuit Containing a Polymer Composition Containing Thermally Exfoliated Graphite Oxide and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2014-01-01

    A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 m(sup.2)/g to 2600 m(sup.2)/g, and a method of making the same.

  10. Super p53 for Treatment of Ovarian Cancer

    DTIC Science & Technology

    2016-07-01

    WSLP ( polymer ) has been successfully synthesized, and a subset of adenoviral constructs have been cloned (p53, p53-CC, EGFP control). Major results...therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer -adenovirus hybrid 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...modified p53, tumor suppressor, high grade serous carcinoma, combination therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer

  11. Laboratory study of test methods for polymer modified asphalt in hot mix pavement.

    DOT National Transportation Integrated Search

    1989-11-01

    Increasing use of asphalt binders modified with elastomeric or plastic modifiers makes the specification of binders a difficult task. Ideally, a generic specification would allow various suppliers and additives to compete based on expected performanc...

  12. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  13. Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle.

    PubMed

    Li, Guizhen; Wang, Wei; Wang, Qian; Zhu, Tao

    2016-02-01

    Deep eutectic solvents (DES) were synthesized with choline chloride (ChCl), and DES modified molecular imprinted polymers (DES-MIPs), DES modified non-imprinted polymers (DES-NIPs, without template), MIPs and NIPs were prepared in an identical procedure. Fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained polymers. Rebinding experiment and solid-phase extraction (SPE) were used to prove the high selectivity adsorption properties of the polymers. Box-Behnken design (BBD) with three factors was used to optimize the extraction condition of chlorogenic acid (CA) from honeysuckles. The optimum extraction conditions were found to be ultrasonic time optimized (20 min), the volume fraction of ethanol (60%) and ratio of liquid to material (15 mL g(-1)). Under these conditions, the mean extraction yield of CA was 12.57 mg g(-1), which was in good agreement with the predicted BBD model value. Purification of hawthorn extract was achieved by SPE process, and SPE recoveries of CA were 72.56, 64.79, 69.34 and 60.08% by DES-MIPs, DES-NIPs, MIPs and NIPs, respectively. The results showed DES-MIPs had potential for promising functional adsorption material for the purification of bioactive compounds. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles.

    PubMed

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-04-01

    Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.

  15. Use of improved materials systems in marine piling : final report.

    DOT National Transportation Integrated Search

    1982-12-01

    This report contains the results of a study to evaluate the feasibility of manufacturing precast, prestressed marine pile from polymer concrete, polymer impregnated concrete, internally sealed concrete and latex modified concrete. Included in the rep...

  16. Alternative materials for sustainable transportation.

    DOT National Transportation Integrated Search

    2012-08-01

    A shortage of asphalt and polymers is creating opportunities for engineers to utilize alternative pavement materials. Three types of bio oil, untreated bio oil (UTB), treated bio oil (TB) and polymer-modified bio oil (PMB) were studied in this resear...

  17. Antifouling Thin-Film Composite Membranes by Controlled Architecture of Zwitterionic Polymer Brush Layer.

    PubMed

    Liu, Caihong; Lee, Jongho; Ma, Jun; Elimelech, Menachem

    2017-02-21

    In this study, we demonstrate a highly antifouling thin-film composite (TFC) membrane by grafting a zwitterionic polymer brush via atom-transfer radical-polymerization (ATRP), a controlled, environmentally benign chemical process. Initiator molecules for polymerization were immobilized on the membrane surface by bioinspired catechol chemistry, leading to the grafting of a dense zwitterionic polymer brush layer. Surface characterization revealed that the modified membrane exhibits reduced surface roughness, enhanced hydrophilicity, and lower surface charge. Chemical force microscopy demonstrated that the modified membrane displayed foulant-membrane interaction forces that were 1 order of magnitude smaller than those of the pristine TFC membrane. The excellent fouling resistance imparted by the zwitterionic brush layer was further demonstrated by significantly reduced adsorption of proteins and bacteria. In addition, forward osmosis fouling experiments with a feed solution containing a mixture of organic foulants (bovine-serum albumin, alginate, and natural organic matter) indicated that the modified membrane exhibited significantly lower water flux decline compared to the pristine TFC membrane. The controlled architecture of the zwitterionic polymer brush via ATRP has the potential for a facile antifouling modification of a wide range of water treatment membranes without compromising intrinsic transport properties.

  18. Redox electrodes comprised of polymer-modified carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  19. Precipitation of lamellar gold nanocrystals in molten polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomba, M.; Carotenuto, G., E-mail: giancaro@unina.it

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  20. Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum.

    PubMed

    Sadeghi, Susan; Motaharian, Ali

    2013-12-01

    A new sensitive voltammetric sensor for determination of sulfadiazine is described. The developed sensor is based on carbon paste electrode modified with sulfadiazine imprinted polymer (MIP) as a recognition element. For comparison, a non-imprinted polymer (NIP) modified carbon paste electrode was prepared. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods were performed to study the binding event and electrochemical behavior of sulfadiazine at the modified carbon paste electrodes. The determination of sulfadiazine after its extraction onto the electrode surface was carried out by DPV at 0.92 V vs. Ag/AgCl owing to oxidation of sulfadiazine. Under the optimized operational conditions, the peak current obtained at the MIP modified carbon paste electrode was proportional to the sulfadiazine concentration within the range of 2.0×10(-7)-1.0×10(-4) mol L(-1) with a detection limit and sensitivity of 1.4×10(-7) mol L(-1) and 4.2×10(5) μA L mol(-1), respectively. The reproducibility of the developed sensor in terms of relative standard deviation was 2.6%. The sensor was successfully applied for determination of sulfadiazine in spiked cow milk and human serum samples with recovery values in the range of 96.7-100.9%. © 2013.

  1. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes.

    PubMed

    Hasan, Kamrul; Bekir Yildiz, Huseyin; Sperling, Eva; Conghaile, Peter Ó; Packer, Michael A; Leech, Dónal; Hägerhäll, Cecilia; Gorton, Lo

    2014-12-07

    Photosynthetic microbial fuel cells (PMFCs) are an emerging technology for renewable solar energy conversion. Major efforts have been made to explore the electrogenic activity of cyanobacteria, mostly using practically unsustainable reagents. Here we report on photocurrent generation (≈8.64 μA cm(-2)) from cyanobacteria immobilized on electrodes modified with an efficient electron mediator, an Os(2+/3+) redox polymer. Upon addition of ferricyanide to the electrolyte, cyanobacteria generate the maximum current density of ≈48.2 μA cm(-2).

  2. Investigation of the Effluents Produced during the Functioning of Black and White Colored Smoke Devices.

    DTIC Science & Technology

    1986-01-31

    and 4% diatomaceous earth (binder). Modified EPA Method 5 Sampling Train F The modified EPA Method 5 sampling train used was similar to the one...the fiber glass filter paper were taken by the Amberlite XAD-2. The XAD-2 is a porous polymer adsorbent used to sample organic vapors in effluents...from different kinds of combustion processes. Although a careful clean-up procedure was taken to wash the adsorbents before using, the polymer may still

  3. Preparation of Novel Hydrolyzing Urethane Modified Thiol-Ene Networks

    DTIC Science & Technology

    2011-10-25

    EtO EtO EtO Si EtO OEt OEt O OEt Si OEt OEt OEt HO HOEt H H O H H H Si OEt EtO EtO ... EtO H H SiO H H OEt OEt OEt H Polymers 2011, 3 1851 Thiol-ene “click” chemistry, as a means to form polymer networks...Table 3. Analysis of kinetic rates for fluorine modified systems. Sample name a Zero order k r2 First order k r2 Higuchi KH r2

  4. The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR,more » specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.« less

  5. Conductive ink containing thermally exfoliated graphite oxide and method a conductive circuit using the same

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A conductive ink containing a conductive polymer, wherein the conductive polymer contains at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, and it use in a method for making a conductive circuit.

  6. Laser-induced structure formation on stretched polymer foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter

    2007-04-15

    Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.

  7. Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2002-01-01

    The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.

  8. Organic metamorphism in the California petroleum basins; Chapter B, Insights from extractable bitumen and saturated hydrocarbons

    USGS Publications Warehouse

    Price, Leigh C.

    2000-01-01

    Seventy-five shales from the Los Angeles, Ventura, and Southern San Joaquin Valley Basins were extracted and analyzed. Samples were chosen on the basis of ROCK-EVAL analyses of a much larger sample base. The samples ranged in burial temperatures from 40 ? to 220 ? C, and contained hydrogen-poor to hydrogen-rich organic matter (OM), based on OM visual typing and a correlation of elemental kerogen hydrogen to carbon ratios with ROCK-EVAL hydrogen indices. By extractable bitumen measurements, rocks with hydrogen- poor OM in the Los Angeles Basin began mainstage hydrocarbon (HC) generation by 90 ? C. The HC concentrations maximized by 165 ? C, and beyond 165 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all began decreasing to low values reached by 220 ? C, where HC generation was largely complete. Rocks with hydrogen-poor OM in the Southern San Joaquin Valley Basin commenced mainstage HC generation at 135 ? C and HC concentrations maximized by 180 ? C. Above 180 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all decreased to low values reached by 214 ? C, again the process of HC generation being largely complete. In both cases, bell-shaped HC-generation curves were present versus depth (burial temperature). Mainstage HC generation had not yet begun in Ventura Basin rocks with hydrogen-poor OM by 140 ? C. The apparent lower temperature for initiation of mainstage generation in the Los Angeles Basin is attributed to very recent cooling in that basin from meteoric-water flow. Thus, HC generation there most probably occurred at higher burial temperatures. In contrast, mainstage HC generation, and all aspects of organic metamorphism, were strongly suppressed in rocks with hydrogen-rich OM at temperatures as high as 198 ? C. For example, shales from the Wilmington field (Los Angeles Basin) from 180 ? to 198 ? C retained ROCK-EVAL hydrogen indices of 550- 700 and had saturated-HC coefficients of only 4-15 mg/g organic carbon. The rocks with hydrogen-rich OM were subjected to the same burial conditions as the rocks with hydrogenpoor OM. We attribute this suppression of organic metamorphism in this study primarily to much stronger bonds in the hydrogen-rich OM compared to the bonds in hydrogen-poor OM. Trends in bitumen compositions (qualitative characteristics) versus burial temperature were also very different for rocks with hydrogen-poor OM compared to that in rocks with hydrogen- rich OM. This observation demonstrated that the two OM types also had significantly different reaction pathways, in addition to different reaction kinetics. Strong exploration implications arise from these observations. Above 40?C, but before mainstage HC generation, a lowtemperature (pre-mainstage) HC generation occurred in all rocks, and all OM types, studied. This low-temperature generation resulted in significant qualitative changes in the bitumen and HCS (hydrocarbons) from rocks of all OM types, especially in rocks with hydrogen-rich OM, from 40 ? to 70 ? C. This, and previous studies, document that very high carbon-normalized concentrations of indigenous bitumen and HCS occur in late Neogene immature rocks of any OM type in all southern California basins. This characteristic is attributed to the low-temperature generation occurring in both sulfur-poor and sulfur-rich kerogens, which originally had unusually high concentrations of weak (15-40 Kcal/mole) bonds. These observations and considerations have marked relevance to exploration regarding the possible formation of commercial oil deposits at immature ranks in these basins. Other significant geochemical observations also result from this study.

  9. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Tompkins, Brendan D.

    This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the membrane surfaces was significantly improved by plasma treatment. XPS and SEM analyses revealed increased oxygen incorporation onto the surface of the membranes, without any damage to the surface or pore structure. Contact angle measurements on a membrane treated in a stacked assembly suggest the plasma effectively modified the entire pore cross section. Plasma treatment also increased water flux through the membranes, with results from plasma modified membranes matching those from commercially available hydrophilic membranes (treated with wetting agent). Mechanisms for the observed modification are discussed in terms of OH and O radicals implanting oxygen functionality into the polymers. Oxidizing plasma systems (O2, CO2, H2O vapor, and formic acid vapor) were used to modify track-etched polycarbonate membranes and explore the mechanisms and species responsible for etching polycarbonate during plasma processing. Etch rates were measured using scanning electron microscopy; modified polycarbonate surfaces were further characterized using x-ray photoelectron spectroscopy and water contact angles. Etch rates and surface characterization results were combined with optical emission spectroscopy data used to identify gas-phase species and their relative densities. Although the oxide functionalities implanted by each plasma system were similar, the H2O vapor and formic acid vapor plasmas yielded the lowest contact angles after treatment. The CO2, H2O vapor, and formic acid vapor plasma-modified surfaces were, however, found to be similarly stable one month after treatment. Overall, etch rate correlated directly to the relative gas-phase density of atomic oxygen and, to a lesser extent, hydroxyl radicals. PECVD of acetic acid vapor (CH3COOH) was used to deposit films on PC-TE and silicon wafer substrates. The CH3COOH films were characterized using XPS, wCA, and SEM. This modification technique resulted in continuous deposition and self-limiting deposition of a-CxO yHz films on Si wafers and PC-TE, respectively. The self-limiting deposition on PC-TE revealed that resulting films have minimal impact on 3D PC structures. This technique would allow for more precise fabrication of patterned or nano-textured PC. PECVD is used to synthesize hydrocarbon/fluorocarbon thin films with compositional gradients by continuously changing the ratio of gases in a C 3F8/H2 plasma. The films are characterized using variable angle spectroscopic ellipsometry (VASE), Fourier transform infrared spectroscopy (FTIR), XPS, wCA, and SEM. These methods revealed that shifting spectroscopic signals can be used to characterize organization in the deposited film. Using these methods, along with gas-phase diagnostics, film chemistry and the underlying deposition mechanisms are elucidated, leading to a model that accurately predicts film thickness.

  10. Impact of polymer modification on mechanical and viscoelastic properties.

    DOT National Transportation Integrated Search

    2015-10-01

    This study was initiated with the aim of evaluating the relative impact of different cross-linking agents : on the rheological and morphological properties of polymer modified asphalt binders (PMAs). To : complete this objective, two cross-linking ag...

  11. Use of improved structural materials systems in marine piling : interim report.

    DOT National Transportation Integrated Search

    1982-09-01

    This report contains the results of a study to evaluate the feasibility of manufacturing precast, prestressed marine pile from polymer concrete, polymer impregnated concrete, internally sealed concrete and latex modified concrete. Included in the rep...

  12. The use of DMA to characterize the aging of asphalt binders.

    DOT National Transportation Integrated Search

    2010-06-01

    This report presents issues associated with long-term aging of polymer modified asphalt cements (PMACs) as : reflected by dynamic mechanical analysis (DMA) data. In this study a standard SBS (styrene-butadiene-styrene block : copolymer) polymer modif...

  13. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.

    2002-01-01

    We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.

  14. Geothermal waste heat utilization from in situ thermal bitumen recovery operations.

    PubMed

    Nakevska, Nevenka; Schincariol, Robert A; Dehkordi, S Emad; Cheadle, Burns A

    2015-01-01

    In situ thermal methods for bitumen extraction introduce a tremendous amount of energy into the reservoirs raising ambient temperatures of 13 °C to as high as 200 °C at the steam chamber edge and 50 °C along the reservoir edge. In essence these operations have unintentionally acted as underground thermal energy storage systems which can be recovered after completion of bitumen extraction activities. Groundwater flow and heat transport models of the Cold Lake, Alberta, reservoir, coupled with a borehole heat exchanger (BHE) model, allowed for investigating the use of closed-loop geothermal systems for energy recovery. Three types of BHEs (single U-tube, double U-tube, coaxial) were tested and analyzed by comparing outlet temperatures and corresponding heat extraction rates. Initial one year continuous operation simulations show that the double U-tube configuration had the best performance producing an average temperature difference of 5.7 °C, and an average heat extraction of 41 W/m. Given the top of the reservoir is at a depth of 400 m, polyethylene piping provided for larger extraction gains over more thermally conductive steel piping. Thirty year operation simulations illustrate that allowing 6 month cyclic recovery periods only increases the loop temperature gain by a factor of 1.2 over continuous operation. Due to the wide spacing of existing boreholes and reservoir depth, only a small fraction of the energy is efficiently recovered. Drilling additional boreholes between existing wells would increase energy extraction. In areas with shallower bitumen deposits such as the Athabasca region, i.e. 65 to 115 m deep, BHE efficiencies should be larger. © 2014, National Ground Water Association.

  15. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    PubMed

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of surface modification of fibers with a polymer coating on the interlaminar shear strength of a composite and the translation of fiber strength in an F-12 aramid/epoxy composite vessel

    NASA Astrophysics Data System (ADS)

    Shu-hui, Zhang; Guo-zheng, Liang; Wei, Zhang; Jin-fang, Zeng

    2006-11-01

    The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed.

  17. Nanomodified polymer materials for regenerative heat exchangers

    NASA Astrophysics Data System (ADS)

    Shchegolkov, Alexander; Shchegolkov, Alexey; Dyachkova, Tatyana

    2017-11-01

    The paper presents thermophysical properties of nanomodified paraffin mixed with polymers as polyethylene or fluoroplastic, which may be effectively used for the development of heat exchange elements of personal protective equipment. It has been experimentally shown that the heat exchangers based on the nanomodified polymer composites have twofold mass compared to the standard regenerative heat exchanger with comparable dimensions. The best result has been obtained on the basis of composite containing polyethylene and paraffin modified with CNTs, which thermal conductivity is 1.6 times higher than forconventional paraffin. The application of carbon nanostructures as the modifiers of heat storage materials improves cooling efficiency by 14.9-17.9 °C by creating more comfortable conditions for breathing via personal protective equipment.

  18. Composite materials with improved phyllosilicate dispersion

    DOEpatents

    Chaiko, David J.

    2004-09-14

    The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

  19. Isopropyl Myristate-Modified Polyether-Urethane Coatings as Protective Barriers for Implantable Medical Devices

    PubMed Central

    Roohpour, Nima; Wasikiewicz, Jaroslaw M.; Moshaverinia, Alireza; Paul, Deepen; Rehman, Ihtesham U.; Vadgama, Pankaj

    2009-01-01

    Polyurethane films have potential applications in medicine, especially for packaging implantable medical devices. Although polyether-urethanes have superior mechanical properties and are biocompatible, achieving water resistance is still a challenge. Polyether based polyurethanes with two different molecular weights (PTMO1000, PTMO2000) were prepared from 4,4’-diphenylmethane diisocyanate and poly(tetra-methylene oxide). Polymer films were introduced using different concentrations (0.5-10 wt %) of isopropyl myristate lipid (IPM) as a non-toxic modifying agent. The physical and mechanical properties of these polymers were characterised using physical and spectroscopy techniques (FTIR, Raman, DSC, DMA, tensile testing). Water contact angle and water uptake of the membranes as a function of IPM concentration was also determined accordingly. The FTIR and Raman data indicate that IPM is dispersed in polyurethane at ≤ 2wt% and thermal analysis confirmed this miscibility to be dependent on soft segment length. Modified polymers showed increased tensile strength and failure strain as well as reduced water uptake by up to 24% at 1-2 wt% IPM.

  20. Determination of fenitrothion in water using a voltammetric sensor based on a polymer-modified glassy carbon electrode.

    PubMed

    Amare, Meareg; Abicho, Samuel; Admassie, Shimelis

    2014-01-01

    A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.

  1. Functional interface of polymer modified graphite anode

    NASA Astrophysics Data System (ADS)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  2. Fabrication of γ-MPS-Modified HNT-PMMA Nanocomposites by Ultrasound-Assisted Miniemulsion Polymerization

    NASA Astrophysics Data System (ADS)

    Buruga, Kezia; Kalathi, Jagannathan T.

    2018-04-01

    Halloysite nanotubes (HNTs) were modified with γ-methacryloxypropyltrimethoxysilane (γ-MPS) to improve their interaction with the polymer, and the modified HNTs (MHNTs) were subsequently used for the synthesis of MHNT-polymethylmethacrylate (PMMA) nanocomposites by miniemulsion polymerization assisted by ultrasound. Reduced agglomeration of HNTs due to modification with γ-MPS was evident from scanning electron microscopy analysis. Modification of HNTs and exfoliation of MHNTs in the polymer nanocomposite were confirmed by the presence of their respective characteristic peaks in Fourier-transform infrared spectra and x-ray diffraction patterns. Transmission electron microscopic analysis showed that the surface of the MHNTs differed significantly from that of unmodified HNTs. MHNT-PMMA nanocomposite exhibited significantly higher glass-transition temperature (T g) compared with neat PMMA or unmodified HNT-PMMA nanocomposite. Hence, such modification of HNTs along with miniemulsion polymerization assisted by ultrasound is a promising approach to achieve better dispersion of HNTs in the polymer and to obtain nanocomposites with enhanced properties.

  3. Novel approach for modifying microporous filters for virus concentration from water.

    PubMed Central

    Preston, D R; Vasudevan, T V; Bitton, G; Farrah, S R; Morel, J L

    1988-01-01

    Electronegative microporous filters composed of epoxyfiberglass (Filterite) were treated with cationic polymers to enhance their virus-adsorbing properties. This novel and inexpensive approach to microporous filter modification entails soaking filters in an aqueous solution of a cationic polymer such as polyethyleneimine (PEI) for 2 h at room temperature and then allowing the filters to air dry overnight on absorbent paper towels. PEI-treated filters were evaluated for coliphage (MS2, T2, and phi X174) and enterovirus (poliovirus type 1 and coxsackievirus type B5) adsorption from buffer at pH 3.5 to 9.0 and for indigenous coliphages from unchlorinated secondary effluent at ambient pH. Adsorbed viruses were recovered with 3% beef extract (pH 9). Several other cationic polymers were used to modify epoxyfiberglass filters and were evaluated for their ability to concentrate viruses from water. Zeta potentials of disrupted filter material indicated that electronegative epoxyfiberglass filters were made more electropositive when treated with cationic polymers. In general, epoxyfiberglass filters treated with cationic polymers were found to adsorb a greater percentage of coliphages and enteroviruses than were untreated filters. PMID:2843091

  4. Cell-polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene oxide)-macromonomer.

    PubMed

    Vihola, Henna; Marttila, Anna-Kaisa; Pakkanen, Jukka S; Andersson, Mirja; Laukkanen, Antti; Kaukonen, Ann Marie; Tenhu, Heikki; Hirvonen, Jouni

    2007-10-01

    Cell-polymer interactions of thermosensitive poly(N-isopropylacrylamide) (PNIPAM) or poly(N-vinylcaprolactam) (PVCL) coated particles with RAW264.7 macrophages and intestinal Caco-2 cells were evaluated. Nanosized particles were prepared by modifying the surface of fluorescent polystyrene (FPS) particles with the thermosensitive polymer gels or with poly(ethylene oxide) (PEO)-macromonomer grafts. The particles were characterized by IR-spectroscopy for functional groups, light scattering for size distribution and zeta-potential for surface charge. Effects of temperature and polymer coating/grafting on the cellular interactions were evaluated by cell association/uptake and visualized by confocal scanning microscope. PEO and PNIPAM inhibited the polymer-cell contact by steric repulsion, evidenced by weak attachment of the particles. PVCL-coated FPS was adsorbed on the cells more strongly, especially at 37 degrees C, because of more hydrophobic nature at higher temperatures. The results suggest feasibility of the PNIPAM and PVCL for biotechnological/pharmaceutical applications, as the cell-particle interactions may be modified by size, surface charge, hydrophobicity, steric repulsion and temperature.

  5. Enhancing the chroma of pigmented polymers using antireflective surface structures.

    PubMed

    Clausen, Jeppe S; Christiansen, Alexander B; Kristensen, Anders; Mortensen, N Asger

    2013-11-10

    In this paper we investigate how the color of a pigmented polymer is affected by reduction of the reflectance at the air-polymer interface. Both theoretical and experimental investigations show modified diffuse-direct reflectance spectra when the reflectance of the surface is lowered. Specifically it is found that the color change is manifested as an increase in chroma, leading to a clearer color experience. The experimental implementation is done using random tapered surface structures replicated in polymer from silicon masters using hot embossing.

  6. Installation and laboratory evaluation of alternatives to conventional polymer modification for asphalt.

    DOT National Transportation Integrated Search

    2015-01-01

    The Virginia Department of Transportation (VDOT) specifies polymer-modified asphalt binders for certain asphalt : mixtures used on high-volume, high-priority routes. These binders must meet performance grade (PG) requirements for a PG : 76-22 binder ...

  7. Gelatin-Modified Polyurethanes for Soft Tissue Scaffold

    PubMed Central

    Kucińska-Lipka, Justyna; Janik, Helena

    2013-01-01

    Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility. PMID:24363617

  8. Static and Dynamic Mechanical Characteristics of Ionic Liquid Modified MWCNT-SBR Composites: Theoretical Perspectives for the Nanoscale Reinforcement Mechanism.

    PubMed

    Abraham, Jiji; Thomas, Jince; Kalarikkal, Nandakumar; George, Soney C; Thomas, Sabu

    2018-02-01

    Well-dispersed, robust, mechanicaly long-term stable functionalized multiwalled carbon nanotube (f-MWCNT)-styrene butadiene rubber (SBR) nanocomposites were fabricated via a melt mixing route with the assistance of ionic liquid as a dispersing agent. The mechanical properties of f-MWCNT/SBR vulcanizates were compared over a range of loadings, and it was found that the network morphology was highly favorable for mechanical performance with enlarged stiffness. A comparative investigation of composite models found that modified Kelly-Tyson theory gave an excellent fit to tensile strength data of the composites considering the effect of the interphase between polymer and f-MWCNT. Dynamic mechanical analysis highlighted the mechanical reinforcement due to the improved filler-polymer interactions which were the consequence of proper dispersion of the nanotubes in the SBR matrix. Effectiveness of filler, entanglement density, and adhesion factor were evaluated to get an in depth understanding of the reinforcing mechanism of modified MWCNT. The amount of polymer chains immobilized by the filler surface computed from dynamic mechanical analysis further supports a substantial boost up in mechanics. The Cole-Cole plot shows an imperfect semicircular curve representing the heterogeneity of the system and moderately worthy filler polymer bonding. The combined results of structural characterizatrion by Raman spectroscopy, cure characteristics, mechanical properties, and scanning and transmission electron microscopy (SEM, TEM) confirm the role of ionic liquid modified MWCNT as a reinforcing agent in the present system.

  9. Repair and Rehabilitation of Dams: Case Studies

    DTIC Science & Technology

    1999-09-01

    with fiber - reinforced , acrylic- polymer modi- fied concrete (FRAPMC) and eliminating leakage into the trunnion recesses. FRAPMC consists of mortar...coarse aggregate, and reinforcement fibers . It is mixed in a mortar mixer as a two-component system consisting of a liquid polymer emulsion of...seat was removed and replaced with fiber - reinforced , acrylic- polymer modified concrete (FRAPMC). New bridge seats were installed, allowing for more

  10. Methods and Materials for Selective Modification of Photopatterned Polymer Films.

    DTIC Science & Technology

    1999-06-28

    reactivity templates (see below) formed by patterned irradiation of polymer films. In particular, the invention describes binding materials and processes ...image of the attached functional group) or that region of the polymer film left unexposed and unchanged during the aforementioned patterning process ...invention are accomplished by the structures and processes hereinafter 15 described. An aspect of the present invention is a process for modifying a

  11. Analytical Model of Steam Chamber Evolution from Vertical Well

    NASA Astrophysics Data System (ADS)

    Shevchenko, D. V.; Usmanov, S. A.; Shangaraeva, A. I.; Murtaizin, T. A.

    2018-05-01

    This paper is aimed to check the possibility of applying the Steam Assisted Gravity Drainage in vertical wells. This challenge seems to be vital because most of the natural bitumen reservoirs are found to occur above the oil fields being developed so that a well system is already available at the stage of field management. The existing vertical wells are hard to be used for horizontal sidetracking in most of cases as the bitumen reservoir occurs at a shallow depth. The matter is to use the existing wells as vertical ones. At the same time, it is possible to drill an additional sidetrack as a producer or an injector.

  12. Viscoelastic behaviour of cold recycled asphalt mixes

    NASA Astrophysics Data System (ADS)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  13. Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment.

    PubMed

    Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy

    2017-04-01

    We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.

  14. Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy

    2017-04-01

    We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.

  15. Evaluation of moisture-induced damage of dense graded and gap graded asphalt mixture with nanopolymer modified binder

    NASA Astrophysics Data System (ADS)

    Shaffie, E.; Arshad, A. K.; Ahmad, J.; Hashim, W.

    2018-04-01

    The purpose of this research is to study the moisture induce damage performance of dense graded (AC14) and stone mastic asphalt (SMA14) asphalt pavement using Nanolyacrylate polymer modified asphalt binder. The physical properties of aggregate, volumetric and performance of asphalt mixes were assessed and evaluated with the laboratory tests. The study investigates fourteenth different asphalt mixtures consisting of NP modified asphalt binder formulations at 2%, 4% and 6%. Two types of asphalt binder, penetration grade PEN 80-100 and performance grade PG 76 were added with Nanopolyacrylate as asphalt modifier. The modified asphalt binder was prepared by adding 6 percent of Nanopolyacrylate (NP) to the asphalt binder. Both AC14 and SMA14 mixtures passed the Marshall requirements which indicate that these mixtures were good with respect to durability and flexibility. In terms of moisture induce damage, it was observed that the strength of the asphalt mixes increased with the addition of NP polymer modified asphalt binder. Similar trend could also be seen for SMA14 mixes, where the ITS value of SMA14 showed a significant difference compared to AC14 and all the mixtures exceeded the minimum requirement value as specified in the specification. Thus, addition of nanopolyacrylate polymer to the asphalt binder has significantly improved the cohesion as well as adhesion properties of the asphalt binder, and hence the stripping performance. Therefore, it can be concluded that the nanopolyacylate is suitable to be used as a modifier to the modified asphalt binder in order to enhance the properties of the asphalt binder and thus improving the performance of asphalt in both AC14 and SMA14 mixes.

  16. Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode.

    PubMed

    Lakshmi, Dhana; Prasad, Bhim Bali; Sharma, Piyush Sindhu

    2006-09-15

    Molecularly imprinted polymers (MIP) have been elucidated to work as artificial receptors. In our present study, a MIP was applied as a molecular recognition element to a chemical sensor. We have constructed a creatinine sensor based on a MIP layer selective for creatinine and its differential pulse, cathodic stripping voltammetric detection (DPCSV) on a hanging mercury drop electrode (HMDE). The creatinine sensor was fabricated by the drop coating of dimethylformamide (DMF) solution of a creatinine-imprinted polymer onto the surface of HMDE. The modified-HMDE, preanodised in neutral medium at +0.4V versus Ag/AgCl for 120s, exhibited a marked enhancement in DPCSV current in comparison to the less anodised (

  17. Research notes : polymer modified emulsions for chip seals.

    DOT National Transportation Integrated Search

    1991-12-01

    The Research Unit is conducting a study of chip seal emulsions using asphalts containing polymers on test sections that were built in 1987 on Oregon Route 22 near Stayton in Marion County. A commonly used emulsion in the 1987 OSHD Specifications for ...

  18. Field test method to determine presence and quantity of modifiers in liquid asphalt - follow-up data analysis : [technical summary].

    DOT National Transportation Integrated Search

    2015-09-01

    Asphalt modified with styrene butadiene styrene (SBS) polymer and/or ground tire rubber : (GTR) is widely used in the U.S. to improve asphalt concrete performance. The high cost and : proven performance benefits of modified binders make it important ...

  19. Functionalized graphene with polymer toughener as novel interface modifier for property-tailored poly(lactic acid)/graphene nanocomposites

    USDA-ARS?s Scientific Manuscript database

    In this work, an effective strategy for engineering the interfacial compatibility between graphene and polylactic acid (PLA) was developed by manipulating the functionalization of graphene and introducing an epoxy-containing elastomer modifier. Curing between the functional groups of the modified gr...

  20. Preactivated thiolated poly(methacrylic acid-co-ethyl acrylate): synthesis and evaluation of mucoadhesive potential.

    PubMed

    Hauptstein, Sabine; Bonengel, Sonja; Rohrer, Julia; Bernkop-Schnürch, Andreas

    2014-10-15

    The study was aimed to developed and investigate a novel polymer for intestinal drug delivery with improved mucoadhesive properties. Therefore Eudragit® L 100-55 (poly(methacrylic acid-co-ethyl acrylate)) was thiolated by covalent attachment of L-cysteine. The immobilized thiol groups were preactivated by disulfide bond formation with 2-mercaptonicotinic acid. Resulting derivative (Eu-S-MNA) was investigated in terms of mucoadhesion via three different methods: tensile studies, rotating cylinder studies and rheological synergism method, as well as water-uptake capacity and cytotoxicity. Different derivatives were obtained with increasing amount of bound L-cysteine (60, 140 and 266 μmol/g polymer) and degree of preactivation (33, 45 and 51 μmol/g polymer). Tensile studies revealed a 30.5-, 35.3- and 52.2-fold rise of total work of adhesion for the preactivated polymers compared to the unmodified Eudragit. The adhesion time on the rotating cylinder was prolonged up to 17-fold in case of thiolated polymer and up to 34-fold prolonged in case of the preactivated polymer. Rheological synergism revealed remarkable interaction of all investigated modified derivatives with mucus. Further, water-uptake studies showed an over 7h continuing weight gain for the modified polymers whereat disintegration took place for the unmodified polymer within the first hour. Cell viability studies revealed no impact of modification. Accordingly, the novel preactivated thiolated Eudragit-derivative seems to be a promising excipient for intestinal drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) as a probe of macromolecule adsorption kinetics at functionalized interfaces.

    PubMed

    O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R

    2012-05-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

  2. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  3. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer.

    PubMed

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.

  4. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer

    PubMed Central

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  5. Thiolated and S-protected hydrophobically modified cross-linked poly(acrylic acid)--a new generation of multifunctional polymers.

    PubMed

    Bonengel, Sonja; Haupstein, Sabine; Perera, Glen; Bernkop-Schnürch, Andreas

    2014-10-01

    The aim of this study was to create a novel multifunctional polymer by covalent attachment of l-cysteine to the polymeric backbone of hydrophobically modified cross-linked poly(acrylic acid) (AC1030). Secondly, the free thiol groups of the resulting thiomer were activated using 2-mercaptonicotinic acid (2-MNA) to provide full reactivity and stability. Within this study, 1167.36 μmol cysteine and 865.72 μmol 2-MNA could be coupled per gram polymer. Studies evaluating mucoadhesive properties revealed a 4-fold extended adherence time to native small intestinal mucosa for the thiomer (AC1030-cysteine) as well as an 18-fold prolonged adhesion for the preactivated thiomer (AC1030-Cyst-2-MNA) compared to the unmodified polymer. Modification of the polymer led to a higher tablet stability concerning the thiomer and the S-protected thiomer, but a decelerated water uptake could be observed only for the preactivated thiomer. Neither the novel conjugates nor the unmodified polymer showed severe toxicity on Caco-2 cells. Evaluation of emulsification capacity proofed the ability to incorporate lipophilic compounds like medium chain triglycerides and the preservation of the emulsifying properties after the modifications. According to these results thiolated AC1030 as well as the S-protected thiolated polymer might provide a promising tool for solid and semisolid formulations in pharmaceutical development. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content

    PubMed Central

    Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi

    2015-01-01

    We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ≥21 MPa and a flexural strength of ≥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ≥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.29. The mixture exhibited a flexural strength of ≥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ≤0.29. PMID:28793596

  7. A review study of (bio)sensor systems based on conducting polymers.

    PubMed

    Ates, Murat

    2013-05-01

    This review article concentrates on the electrochemical biosensor systems with conducting polymers. The area of electro-active polymers confined to different electrode surfaces has attracted great attention. Polymer modified carbon substrate electrodes can be designed through polymer screening to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the electrode response to detect a variety of analytes. The electro-active films have been used to entrap different enzymes and/or proteins at the electrode surface, but without obvious loss of their bioactivity for the development of biosensors. Electropolymerization is a well-known technique used to immobilize biomaterials to the modified electrode surface. Polymers might be covalently bonding to enzymes or proteins; therefore, thickness, permeation and charge transport characteristics of the polymeric films can be easily and precisely controlled by modulating the electrochemical parameters for various electrochemical techniques, such as chronoamperometry, chronopotentiometry, cyclic voltammetry, and differential pulse voltammetry. This review article is divided into three main parts as given in the table of contents related to the immobilization process of some important conducting polymers, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol, poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives. A total of 216 references are cited in this review article. The literature reviewed covers a 7 year period beginning from 2005. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content.

    PubMed

    Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi

    2015-10-01

    We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ¥21 MPa and a flexural strength of ¥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ¥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.29. The mixture exhibited a flexural strength of ¥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ¤0.29.

  9. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  10. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging.

    PubMed

    Mieszawska, Aneta J; Gianella, Anita; Cormode, David P; Zhao, Yiming; Meijerink, Andries; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2012-06-14

    Polylactic-co-glycolic acid (PLGA) based nanoparticles are biocompatible and biodegradable and therefore have been extensively investigated as therapeutic carriers. Here, we engineered diagnostically active PLGA nanoparticles that incorporate high payloads of nanocrystals into their core for tunable bioimaging features. We accomplished this through esterification reactions of PLGA to generate polymers modified with nanocrystals. The PLGA nanoparticles formed from modified PLGA polymers that were functionalized with either gold nanocrystals or quantum dots exhibited favorable features for computed tomography and optical imaging, respectively.

  11. Preparation and Characterization of Hydrophilically Modified PVDF Membranes by a Novel Nonsolvent Thermally Induced Phase Separation Method

    PubMed Central

    Hu, Ningen; Xiao, Tonghu; Cai, Xinhai; Ding, Lining; Fu, Yuhua; Yang, Xing

    2016-01-01

    In this study, a nonsolvent thermally-induced phase separation (NTIPS) method was first proposed to fabricate hydrophilically-modified poly(vinylidene fluoride) (PVDF) membranes to overcome the drawbacks of conventional thermally-induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) methods. Hydrophilically-modified PVDF membranes were successfully prepared by blending in hydrophilic polymer polyvinyl alcohol (PVA) at 140 °C. A series of PVDF/PVA blend membranes was prepared at different total polymer concentrations and blend ratios. The morphological analysis via SEM indicated that the formation mechanism of these hydrophilically-modified membranes was a combined NIPS and TIPS process. As the total polymer concentration increased, the tensile strength of the membranes increased; meanwhile, the membrane pore size, porosity and water flux decreased. With the PVDF/PVA blend ratio increased from 10:0 to 8:2, the membrane pore size and water flux increased. The dynamic water contact angle of these membranes showed that the hydrophilic properties of PVDF/PVA blend membranes were prominently improved. The higher hydrophilicity of the membranes resulted in reduced membrane resistance and, hence, higher permeability. The total resistance Rt of the modified PVDF membranes decreased significantly as the hydrophilicity increased. The irreversible fouling related to pore blocking and adsorption fouling onto the membrane surface was minimal, indicating good antifouling properties. PMID:27869711

  12. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies.

  13. Preparation and Characterization of Hydrophilically Modified PVDF Membranes by a Novel Nonsolvent Thermally Induced Phase Separation Method.

    PubMed

    Hu, Ningen; Xiao, Tonghu; Cai, Xinhai; Ding, Lining; Fu, Yuhua; Yang, Xing

    2016-11-18

    In this study, a nonsolvent thermally-induced phase separation (NTIPS) method was first proposed to fabricate hydrophilically-modified poly(vinylidene fluoride) (PVDF) membranes to overcome the drawbacks of conventional thermally-induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) methods. Hydrophilically-modified PVDF membranes were successfully prepared by blending in hydrophilic polymer polyvinyl alcohol (PVA) at 140 °C. A series of PVDF/PVA blend membranes was prepared at different total polymer concentrations and blend ratios. The morphological analysis via SEM indicated that the formation mechanism of these hydrophilically-modified membranes was a combined NIPS and TIPS process. As the total polymer concentration increased, the tensile strength of the membranes increased; meanwhile, the membrane pore size, porosity and water flux decreased. With the PVDF/PVA blend ratio increased from 10:0 to 8:2, the membrane pore size and water flux increased. The dynamic water contact angle of these membranes showed that the hydrophilic properties of PVDF/PVA blend membranes were prominently improved. The higher hydrophilicity of the membranes resulted in reduced membrane resistance and, hence, higher permeability. The total resistance R t of the modified PVDF membranes decreased significantly as the hydrophilicity increased. The irreversible fouling related to pore blocking and adsorption fouling onto the membrane surface was minimal, indicating good antifouling properties.

  14. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces, the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.

  15. Silica nanoparticles carrying boron-containing polymer brushes

    NASA Astrophysics Data System (ADS)

    Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya

    2014-05-01

    A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.

  16. Automotive body panel containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor); Prud'Homme, Robert K. (Inventor); Adamson, Douglas (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  17. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  18. International Symposium on Polymer Electrolytes (1st)

    DTIC Science & Technology

    1987-06-01

    second order transitions, and chemical stability, e.g. dehydration or chemical decomposition . This is a powerful technique which can be used...References (M.Watanabe et. al) 1) Polym.J., 15, 65, 175 (1983). 2) Polym.J., 16, 711 (1984); 17, 549 (1985). 3) Macromolecules, 18, 1945 (1985). 4) Nippon...material is an organically modified silicate which gives, alter hydrolysis and condensation, an organic-inorganic glass. The silica network gives good

  19. Improved flexoelectricity in PVDF/barium strontium titanate (BST) nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Xinping; Zhou, Yang; Liu, Jie; Chu, Baojin

    2018-04-01

    The flexoelectric effect of polymers is normally much weaker than that of ferroelectric oxides. In order to improve the flexoelectric response of the poly(vinylidene fluoride) (PVDF) ferroelectric polymer, PVDF/Ba0.67Si0.33TiO3 (BST) nanocomposites were fabricated. BST nanofibers were prepared by the electrospinning method, and the fibers were further surface modified with H2O2 to achieve a stronger interfacial interaction between the fibers and polymer matrix. Due to the high dielectric properties and strong flexoelectric effect of the BST, both dielectric constant and flexoelectric response of the composite with 25 vol. % surface modified BST are 3-4 times higher than those of PVDF. The dependence of the dielectric constant and the flexoelectric coefficient on the composition of the nanocomposites can be fitted by the empirical Yamada model, and the dielectric constant and the flexoelectric coefficient are correlated by a linear relationship. This study provides an approach to enhance the flexoelectric response of PVDF-based polymers.

  20. Associative polymers bridging between layers of multilamellar vesicles.

    NASA Astrophysics Data System (ADS)

    Choi, Seo; Bhatia, Surita

    2006-03-01

    Multilamellar vesicles can be found in a variety of pharmaceutical formulations, personal care products, and home care products. Hydrophobically modified associative polymers are often used to stabilize the vesicles or to control the rheological properties of these formulations. The hydrophobic groups are expected to insert themselves into the vesicle bilayers. Recent experimental work shows that hydrophobically modified polymers may from bridges between vesicles or may bridge between layers of a single vesicle. The latter configuration forces an interlayer spacing roughly equal to the radius of gyration of the backbone between associative groups. We have performed simple mean-field calculations on ideal telechelic associative polymers between concentric spherical surfaces. We find that the free energy per chain has an attractive minimum when the layer spacing is approximately N^1/2l, which is consistent with experimental results. The depth of the minimum depends on both chain length and curvature, and as expected when the curvature becomes small, the result for telechelic chains between flat surfaces is recovered.

  1. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  2. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry.

    PubMed

    Xiang, Tao; Lu, Ting; Xie, Yi; Zhao, Wei-Feng; Sun, Shu-Dong; Zhao, Chang-Sheng

    2016-08-01

    The chemical compositions are very important for designing blood-contacting membranes with good antifouling property and blood compatibility. In this study, we propose a method combining ATRP and click chemistry to introduce zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA), negatively charged polymers of poly(sodium methacrylate) (PNaMAA) and/or poly(sodium p-styrene sulfonate) (PNaSS), to improve the antifouling property and blood compatibility of polysulfone (PSf) membranes. Attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy and water contact angle results confirmed the successful grafting of the functional polymers. The antifouling property and blood compatibility of the modified membranes were systematically investigated. The zwitterionic polymer (PSBMA) grafted membranes showed good resistance to protein adsorption and bacterial adhesion; the negatively charged polymer (PNaSS or PNaMAA) grafted membranes showed improved blood compatibility, especially the anticoagulant property. Moreover, the PSBMA/PNaMAA modified membrane showed both antifouling property and anticoagulant property, and exhibited a synergistic effect in inhibiting blood coagulation. The functionalization of membrane surfaces by a combination of ATRP and click chemistry is demonstrated as an effective route to improve the antifouling property and blood compatibility of membranes in blood-contact. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Methacrylated monosaccharides as the modifiers for carbochain polymers: Synthesis, mechanical/thermal properties and biodegradability of hybrids

    NASA Astrophysics Data System (ADS)

    Yakushev, P.; Bershtein, V.; Bukowska-Śluz, I.; Sobiesiak, M.; Gawdzik, B.

    2016-05-01

    Methacrylated derivatives of glucose (MGLU) and galactose (MGAL) were synthesized by the procedure described by Vogel, and their copolymers with methyl methacrylate (MMA) and MMA/N-vinyl pyrrolidone (MMA/NVP) (1:1) mixture were obtained with the aim to modify some properties of carbochain polymers, in particular to generate their biodegradability. These hybrids of synthetic and natural products, with 10, 20 or 30 wt. % modifiers, were characterized by DMA and TGA methods and in the biodegradation tests. Increasing Tg values by 20-30°C was registered in all cases whereas thermal stability was improved only for PMMA due to modification. On the contrary, only for hybrids based on hygroscopic MMA/NVP copolymer the essential biodegradability could be generated.

  4. Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection.

    PubMed

    Teo, Pei Yun; Yang, Chuan; Hedrick, James L; Engler, Amanda C; Coady, Daniel J; Ghaem-Maghami, Sadaf; George, Andrew J T; Yang, Yi Yan

    2013-10-01

    Hydrophobic modification of low molecular weight (LMW) polyethylenimine (PEI) is known to increase gene transfection efficiency of LMW PEI. However, few studies have explored how the conjugated hydrophobic groups influence the properties of the modified LMW PEI mainly due to difficulties in obtaining well defined final product compositions and limitations in current chemical synthesis routes. The aim of this study was to modify LMW PEI (Mn 1.8 kDa, PEI-1.8) judiciously with different hydrophobic functional groups and to investigate how hydrophobicity, molecular structure and inclusion of hydrogen bonding properties in the conjugated side groups as well as the conjugation degree (number of primary amine groups of PEI-1.8 modified with hydrophobic groups) influence PEI-1.8 gene transfection efficiency. The modified polymers were characterized for DNA binding ability, particle size, zeta potential, in vitro gene transfection efficiency and cytotoxicity in SKOV-3 human ovarian cancer and HepG2 human liver carcinoma cell lines. The study shows that modified PEI-1.8 polymers are able to condense plasmid DNA into cationic nanoparticles, of sizes ~100 nm, whereas unmodified polymer/DNA complexes display larger particle sizes of 2 μm. Hydrophobic modification also increases the zeta potential of polymer/DNA complexes. Importantly, modified PEI-1.8 shows enhanced transfection efficiency over the unmodified counterpart. Higher transfection efficiency is obtained when PEI-1.8 is modified with shorter hydrophobic groups (MTC-ethyl) as opposed to longer ones (MTC-octyl and MTC-deodecyl). An aromatic structured functional group (MTC-benzyl) also enhances transfection efficiency more than an alkyl functional group (MTC-octyl). An added hydrogen-bonding urea group in the conjugated functional group (MTC-urea) does not enhance transfection efficiency over one without urea (MTC-benzyl). The study also demonstrates that modification degree greatly influences gene transfection, and ~100% substitution of primary amine groups leads to significantly lower gene transfection efficiency. These findings provide insights to modification of PEI for development of effective and non-cytotoxic non-viral vectors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Soiling of building envelope surfaces and its effect on solar reflectance. Part I: Analysis of roofing product databases

    DOE PAGES

    Sleiman, Mohamad; Ban-Weiss, George; Gilbert, Haley E.; ...

    2011-12-01

    The use of highly reflective “cool” roofing materials can decrease demand for air conditioning, mitigate the urban heat island effect, and potentially slow global warming. However, initially high roof solar reflectance can be degraded by natural soiling and weathering processes. We evaluated solar reflectance losses after three years of natural exposure reported in two separate databases: the Rated Products Directory of the US Cool Roof Rating Council (CRRC) and information reported by manufacturers to the US Environmental Protection Agency (EPA)’s ENERGY STAR® rating program. Many product ratings were culled because they were duplicative (within a database) or not measured. Amore » second, site-resolved version of the CRRC dataset was created by transcribing from paper records the site-specific measurements of aged solar reflectance in Florida, Arizona and Ohio. Products with high initial solar reflectance tended to lose reflectance, while those with very low initial solar reflectance tended to become more reflective as they aged. Within the site-resolved CRRC database, absolute solar reflectance losses for samples of medium-to-high initial solar reflectance were 2 - 3 times greater in Florida (hot and humid) than in Arizona (hot and dry); losses in Ohio (temperate but polluted) were intermediate. Disaggregating results by product type, factory-applied coating, field-applied coating, metal, modified bitumen, shingle, singleply membrane and tile, revealed that absolute solar reflectance losses were largest for fieldapplied coating, modified bitumen and single-ply membrane products, and smallest for factoryapplied coating and metal products.The 2008 Title 24 provisional aged solar reflectance formula overpredicts the measured aged solar reflectance of 0% to 30% of each product type in the culled public CRRC database. The rate of overprediction was greatest for field-applied coating and single-ply membrane products and least for factory-applied coating, shingle, and metal products. New product-specific formulas can be used to estimate provisional aged solar reflectance from initial solar reflectance pending measurement of aged solar reflectance. The appropriate value of soiling resistance varies by product type and is selected to attain some desired overprediction rate for the formula. The correlations for shingle products presented in this paper should not be used to predict aged solar reflectance or estimate provisional aged solar reflectance because the data set is too small and too limited in range of initial solar reflectance.« less

  6. Chelate-modified polymers for atmospheric gas chromatography

    NASA Technical Reports Server (NTRS)

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  7. Fabrication of polyaniline-HCl cladding modified fiber optic intrinsic biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Pahurkar, Vikas; Tamgadge, Yuoraj; Muley, Gajanan

    2016-05-01

    In the present study, we have fabricated and studied response of cladding modified fiber optic intrinsic glucose biosensor (FOIGB). The optical fiber was used as a light transforming waveguide and sensing element fabricated over it by applying a thin layer of polymer. The cladding of the sensor was modified with the polyaniline-hydrochloric acid (PANI-HCl) polymer matrix. The PANI-HCl matrix provides an amorphous morphology useful to immobilize glucose oxidase (GOx) biomolecules through cross-linking technique via glutaraldehyde. The present sensor was used to detect the glucose analyte in the solution. In the sensing response study of FOIGB toward glucose, novel modal power distribution (MPD) technique was used. The reaction between GOx and glucose changes the optical properties of prepared FOIGB and hence modify MPD at output as a function of glucose concentration. The nature and surface morphology of PANI-HCl matrix has been studied.

  8. Magnetic polymer nanospheres for anticancer drug targeting

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  9. Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells.

    PubMed

    Pashkuleva, I; Marques, A P; Vaz, F; Reis, R L

    2005-01-01

    The surface modification of three starch based polymeric biomaterials, using a KMnO4/HNO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows--starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds. The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.

  10. THE ELECTROCHEMISTRY OF ANTIBODY-MODIFIED CONDUCTING POLYMER ELECTRODES. (R825323)

    EPA Science Inventory

    Abstract

    The modification of conducting polymer electrodes with antibodies (i.e. proteins) by means of electrochemical polymerization is a simple step that can be used to develop an immunological sensor. However, the electrochemical processes involved leading to the ge...

  11. Pigment Identification on "The Ecstasy of St. Theresa" Painting by Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Marano, D.; Marmontelli, M.; De Benedetto, G. E.; Catalano, I. M.; Sabbatini, L.; Vona, F.

    A study of the pigments of "The Ecstasy of St. Theresa," a seventeenth century oil painting on canvas, was performed by Raman microscopy. Lazurite was identified in both Jesus Christ's and St. Theresa's mantles as the pigment responsible for the blue coloration. Litharge was identified inside the black bitumen layer. Usually the bitumen needed a lot of time to dry in the air when mixed with drying oil. Litharge was used by the artist to decrease the oil drying time. A complementary study, using micro-Raman and SEM, allowed us to identify red ochre as the pigment responsible for the red coloration in the altar on the left side of the painting.

  12. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  13. Protection of oxidative hair color fading from shampoo washing by hydrophobically modified cationic polymers.

    PubMed

    Zhou, Y; Foltis, L; Moore, D J; Rigoletto, R

    2009-01-01

    The fading of oxidative color in hair as a result of daily shampoo washing activities has become a common problem and a source of frequent complaints by consumers. The fading occurs primarily through hair dye solubility in water. One aspect of the current study investigates the physical and chemical factors that influence hair color fading during the washing process. This is accomplished by testing hair dye dissolution in water from dyed hair samples with variation of surfactant type, pH, and hair type. Furthermore, a new approach to preventing color fading is developed aiming to provide an effective barrier function for hair dye from dissolving into water. The preliminary investigation of a series of polymers with various functional groups indicates that polymers with hydrophobically modified and cationic functionalities are most effective in preventing hair dye dissolution in water. It is also evident that a synergistic effect of the polymer's hydrophobic moieties and cationic charges are important on hair color protection during shampoo washing processes. A primary example of a polymer within this category is a cationic terpolymer of vinylpyrrolidone, dimethylaminopropyl methacrylamide, and methacryloylaminopropyl lauryldimonium chloride (INCI: Polyquaternium-55). The color protection benefit of this polymer is evaluated using newly developed methodologies for evaluating hair color changes, such as hair color fading tests through multiple shampoo washes with mannequin heads and hair tresses, both derived from human hair, colorimetry, and quantitative digital image analysis. In addition, new infrared spectroscopic imaging techniques are used to detect the hair dye deposition behavior inside hair fibers both with and without the color protection treatment. Both visual and instrumental measurement results indicate that Polyquaternium-55 provides a high level of color protection when formulated in a hair color protection regimen with up to 50% color protection. This regimen significantly outperforms commercial products that were tested containing a color protection claim. The proposed mechanism for the anti-fading action of hydrophobically modified polymers includes a cationic charge-reinforced hydrophobic barrier. This model is supported by evaluating the color fastness effect of several different polymer chemistries and by measuring hair surface hydrophobicity changes.

  14. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    PubMed

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation

    PubMed Central

    Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-ping

    2014-01-01

    Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications. PMID:24759082

  16. Molecular weight distribution characterization of hydrophobe-modified hydroxyethyl cellulose by size-exclusion chromatography.

    PubMed

    Li, Yongfu; Meunier, David M; Partain, Emmett M

    2014-09-12

    Size-exclusion chromatography (SEC) of hydrophobe-modified hydroxyethyl cellulose (HmHEC) is challenging because polymer chains are not isolated in solution due to association of hydrophobic groups and hydrophobic interaction with column packing materials. An approach to neutralize these hydrophobic interactions was developed by adding β-cyclodextrin (β-CD) to the aqueous eluent. SEC mass recovery, especially for the higher molecular weight chains, increased with increasing concentration of β-CD in the eluent. A β-CD concentration of 0.75wt% in the eluent was determined to be optimal for the HmHEC polymers studied. These conditions enabled precise determinations of apparent molecular weight distributions exhibiting less than 2% relative standard deviation in the measured weight-average molecular weight (MW) for five injections on three studied samples and showed no significant differences in MW determined on two different days. The developed technology was shown to be very robust for characterizing HmHEC having MW from 500kg/mol to 2000kg/mol, and it can be potentially applied to other hydrophobe-modified polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Dual-Responsive SPMA-Modified Polymer Photonic Crystals and Their Dynamic Display Patterns.

    PubMed

    Gao, Zewen; Gao, Dongsheng; Huang, Chao; Zhang, Hanbing; Guo, Jinbao; Wei, Jie

    2018-05-28

    Light and electrothermal responsive polymer photonic crystals (PCs) modified with 1'-acryloyl chloride-3',3'-dimethyl-6-nitro-spiro(2H-1-benzopyran-2,2'-indoline) (SPMA) are proposed, and their dynamic display patterns are achieved through the combination of the SPMA-modified PCs and a patterned graphite layer. These PCs exhibit fluorescence under UV light irradiation because of the isomerization of the SPMA, which is restricted in the shell of the polymer colloidal spheres. After a voltage is applied to the patterned graphite layer, the fluorescence of PCs in the specific area disappears, and dynamic display patterns are obtained. Under UV light irradiation, the PCs change from the "partial-fluorescence" state to the initial "fluorescence" state, and the patterns disappear. Using this technique, the PC pattern "M L N" on the glass substrate and PC patterns from "0" to "9" on the paper substrate are fabricated. Thus, these dual-responsive PCs have potential applications in information recording, anticounterfeiting, dynamic display, and photoelectric devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Suppressing recombination in polymer photovoltaic devices via energy-level cascades.

    PubMed

    Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H

    2013-08-14

    An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    PubMed

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  20. Variation in emulsion stabilization behavior of hybrid silicone polymers with change in molecular structure: Phase diagram study.

    PubMed

    Mehta, Somil C; Somasundaran, P; Kulkarni, Ravi

    2009-05-15

    Silicone oils are widely used in cosmetics and personal care applications to improve softness and condition skin and hair. Being insoluble in water and most hydrocarbons, a common mode of delivering them is in the form of emulsions. Currently most applications use polyoxyethylene (non-ionic) modified siloxanes as emulsifiers to stabilize silicone oil emulsions. However, ionically grafted silicone polymers have not received much attention. Ionic silicones have significantly different properties than the non-ionic counterpart. Thus considerable potential exists to formulate emulsions of silicones with different water/silicone oil ratios for novel applications. In order to understand the mechanisms underlying the effects of hydrophilic modifications on the ability of hybrid silicone polymers to stabilize various emulsions, this article focuses on the phase diagram studies for silicone emulsions. The emulsifying ability of functional silicones was seen to depend on a number of factors including hydrophilicity of the polymer, nature of the functional groups, the extent of modification, and the method of emulsification. It was observed that the region of stable emulsion in a phase diagram expanded with increase in shear rate. At a given shear rate, the region of stable emulsion and the nature of emulsion (water-in-oil or oil-in-water) was observed to depend on hydrophilic-hydrophobic balance of the hybrid silicone emulsifier. At a fixed amount of modification, the non-ionically modified silicone stabilized an oil-in-water emulsion, whereas the ionic silicones stabilized inverse water-in-oil emulsions. This was attributed to the greater hydrophilicity of the polyoxyethylene modified silicones than the ionic counterparts. In general, it is postulated that with progressive increase in hydrophilicity of hybrid silicone emulsifiers, their tendency to stabilize water-in-oil emulsion decreases with corresponding increase in oil-in-water emulsion. Further, this behavior is hypothesized to depend on the nature of modifying functional groups. Thus a hybrid silicone polymer can be tailored by selecting the nature and degree of hydrophilicity to obtain a desired silicone emulsion.

  1. Surface modification for interaction study with bacteria and preosteoblast cells

    NASA Astrophysics Data System (ADS)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted on the polyelectrolyte modified HA scaffolds. The mineralized scaffolds stimulated osteogenesis of preosteoblast cells compared with the control HA scaffolds. Therefore, the surface modification through vapor deposition of polyelectrolytes and polymer-controlled mineralization can improve osteoinduction of bone materials. In summary, the iCVD-mediated surface modification is a simple and promising approach to biofunctionalizing various structured substrates and generating antimicrobial and biocompatible biomaterials.

  2. The evaluation and specification development of alternate modified asphalt binders in South Carolina : final report.

    DOT National Transportation Integrated Search

    2014-11-01

    In this research project, asphalt binders containing various polymer modifiers were investigated through : examining both binder and mixture properties.Two additional topics were also investigated, including: a) the : effects of liquid antistr...

  3. Expedient Repair Materials for Roadway Pavements

    DTIC Science & Technology

    2005-03-01

    SILSPEC 900 PNS Patch/spall SSI Const. & Indus. Elastomeric conc. Matls Sikadur 22 Lo-Mod Sika Corp. Epoxy polymer concrete SikaTop 123 Plus Thin...patch Sika 2-component, polymer- 15 min modified Sikaset Roadway Patch Patch/spall Sika 1-comp. with high 15-25 min (15 min) (2000) alumina cement (not

  4. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), (ii), and (iii) of this section; provided that no chemical reactions, other than addition reactions... their polymerization with butadiene-styrene copolymers; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such combined polymers may contain 50 weight-percent or...

  5. Small-Angle Neutron Scattering Investigation of Growth Modifiers on Hydrate Crystal Surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Thomas; Hutter, Jeffrey L.; Lin, M.; King, H. E., Jr.

    1998-03-01

    Hydrates are crystals consisting of small molecules enclathrated within an ice-like water cage. Suppression of their growth is important in the oil industry. The presence of small quantities of specific polymers during hydrate crystallization can induce a transition from an octahedral to planar growth habit. This symmetry breaking is surprising because of the suppression of two 111 planes relative to the other six crystallographically equivalent faces. To better understand the surface effects leading to this behavior, we have studied the surface adsorption of these growth-modifing polymers onto the hydrate crytals using SANS. The total hydrate surface area, as measured by Porod scattering, increases in the presence of the growth modifier, but, no significant increase in polymer concentration on the crystal surfaces is found. Implications for possible growth mechanisms will be discussed.

  6. Exposure to bitumen fumes and genotoxic effects on Turkish asphalt workers.

    PubMed

    Karaman, Ali; Pirim, Ibrahim

    2009-04-01

    Bitumen fumes consist essentially of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, some of which are known to be carcinogenic or cocarcinogenic in humans. The aim of this study was to investigate exposure to asphalt fumes among Turkish asphalt workers and determine whether any effects could be detected with genotoxic tests. The study included 26 asphalt workers and 24 control subjects. Sister chromatid exchange (SCE) and micronucleus (MN) were determined in peripheral lymphocytes. Urinary 1-hydroxypyrene (1-OHP) excretion was used as a biomarker of occupational exposure to PAHs. The asphalt workers had a significant increase in SCEs and MN (for each, p < 0.001). A positive correlation existed between the duration of exposure and rates of SCE or MN frequencies (r = 0.49, p < 0.05; r = 0.53, p < 0.05, respectively). The concentration of 1-OHP in urine was higher for the asphalt workers than for the controls (p < 0.001). However, we found that there was no statistically significant correlation between the urinary 1-OHP concentration and SCEs or MN frequencies (r = 0.25, p > 0.5; r = 0.17, p > 0.5, respectively). This study shows that Turkish asphalt workers have an increased exposure to PAHs from bitumen fumes, and genotoxic effects could be detected by SCEs and MN tests.

  7. Asphalt and risk of cancer in man.

    PubMed Central

    Chiazze, L; Watkins, D K; Amsel, J

    1991-01-01

    Epidemiological publications regarding the carcinogenic potential of asphalt (bitumen) are reviewed. In 1984 the International Agency for Research on Cancer (IARC) stated that there is "inadequate evidence that bitumens alone are carcinogenic to humans." They did, however, conclude that animal data provided sufficient evidence for the carcinogenicity of certain extracts of steam refined and air refined bitumens. In the absence of data on man, IARC considered it reasonable to regard chemicals with sufficient evidence of carcinogenicity in animals as if they presented a carcinogenic risk to man. Epidemiological data for man accumulated since the IARC report do not fulfil the criteria for showing a causal association between exposure to asphalt and development of cancer. The studies cited all suffer from a lack of data on exposure or potential confounders, which are necessary to establish whether or not such an association may or may not exist. In view of the evidence (or lack thereof) regarding asphalt today, an appropriate public health attitude suggests at least that action be taken to protect those working with asphalt by monitoring the workplace, taking whatever steps are possible to minimise exposures and to inform workers of potential hazards. At the same time, a need exists for well designed analytical epidemiological studies to determine whether a risk of cancer in man exists from exposure to asphalt. PMID:1878310

  8. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes

    PubMed Central

    Clafshenkel, William P.; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Russell, Alan J.

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system. PMID:27331401

  9. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    PubMed

    Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  10. Monodispersed molecularly imprinted polymer for creatinine by modified precipitation polymerization.

    PubMed

    Haginaka, Jun; Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami

    2012-01-01

    A monodispersed molecularly imprinted polymer (MIP) for creatinine was prepared by modified precipitation polymerization. The retention and molecular-recognition properties of the prepared MIP were evaluated by the hydrophilic interaction chromatography mode using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase in liquid chromatography. The MIP had a specific recognition ability for creatinine, while other structurally related compounds, such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine, could not be recognized on the MIP. In addition to shape recognition, hydrophilic interactions could work for the recognition of creatinine on the MIP.

  11. Achieving high efficiency laminated polymer solar cell with interfacial modified metallic electrode and pressure induced crystallization

    NASA Astrophysics Data System (ADS)

    Yuan, Yongbo; Bi, Yu; Huang, Jinsong

    2011-02-01

    We report efficient laminated organic photovoltaic device with efficiency approach the optimized device by regular method based on Poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The high efficiency is mainly attributed to the formation of a concrete polymer/metal interface mechanically and electrically by the use of electronic-glue, and using the highly conductive and flexible silver film as anode to reduce photovoltage loss and modifying its work function for efficiency hole extraction by ultraviolet/ozone treatment, and the pressure induced crystallization of PCBM.

  12. Study of thermal stability of (3-aminopropyl)trimethoxy silane-grafted titanate nanotubes for application as nanofillers in polymers.

    PubMed

    Plodinec, Milivoj; Gajović, Andreja; Iveković, Damir; Tomašić, Nenad; Zimmermann, Boris; Macan, Jelena; Haramina, Tatjana; Su, D S; Willinger, Marc

    2014-10-31

    Protonated titanate nanotubes (TiNT-H) were surface-modified with (3-aminopropyl)trimethoxy silane (APTMS) by a novel method suitable for the syntheses of large amounts of materials at a low cost. The usage of prepared nanotubes for polymer reinforcement was studied. Since the thermal stability of the nanofiller was important to preserve its functional properties, its stability was studied by in situ high-temperature measurements. The most thermally stable nanotubes were silanized for 20 min and used for the preparation of epoxy-based nanocomposites. The nanofiller formed smaller (a few hundred nm) and larger (a few μm) aggregates in the polymer matrix, and the amount of aggregates increased as the nanofiller content increased. The APTMS-modified titanate nanotubes bonded well with the epoxy matrix since amine groups on the TiNT's surface can react with an epoxy group to form covalent bonds between the matrix and the nanofiller. A very small addition (0.19-1.52 wt%) of the nanotubes significantly increased the glass transition temperature and the modulus in the rubbery state of the epoxy-based polymer. Smaller nanofiller content leads to a larger increase in these parameters and therefore better dynamic mechanical properties due to the smaller amount of large aggregates. APTMS-modified titanate nanotubes have proven to be a promising nanofiller in epoxy-based nanocomposites.

  13. Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH2)

    PubMed Central

    Ouyang, Liangqi; Wei, Bin; Kuo, Chin-chen; Pathak, Sheevangi; Farrell, Brendan; Martin, David C.

    2017-01-01

    Conjugated polymers, such as poly(3,4-ethylene dioxythiophene) (PEDOT), have emerged as promising materials for interfacing biomedical devices with tissue because of their relatively soft mechanical properties, versatile organic chemistry, and inherent ability to conduct both ions and electrons. However, their limited adhesion to substrates is a concern for in vivo applications. We report an electrografting method to create covalently bonded PEDOT on solid substrates. An amine-functionalized EDOT derivative (2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methanamine (EDOT-NH2), was synthesized and then electrografted onto conducting substrates including platinum, iridium, and indium tin oxide. The electrografting process was performed under slightly basic conditions with an overpotential of ~2 to 3 V. A nonconjugated, cross-linked, and well-adherent P(EDOT-NH2)–based polymer coating was obtained. We found that the P(EDOT-NH2) polymer coating did not block the charge transport through the interface. Subsequent PEDOT electrochemical deposition onto P(EDOT-NH2)–modified electrodes showed comparable electroactivity to pristine PEDOT coating. With P(EDOT-NH2) as an anchoring layer, PEDOT coating showed greatly enhanced adhesion. The modified coating could withstand extensive ultrasonication (1 hour) without significant cracking or delamination, whereas PEDOT typically delaminated after seconds of sonication. Therefore, this is an effective means to selectively modify microelectrodes with highly adherent and highly conductive polymer coatings as direct neural interfaces. PMID:28275726

  14. A Study of Shrinkage Stress Reduction and Mechanical Properties of Nanogel-Modified Resin Systems

    PubMed Central

    Liu, JianCheng; Howard, Gregory D.; Lewis, Steven H.; Barros, Matthew D.; Stansbury, Jeffrey W.

    2012-01-01

    A series of nanogel compositions were prepared from urethane dimethacrylate (UDMA) and isobornyl methacrylate (IBMA) in the presence of a thiol chain transfer agent. The linear oligomer of IBMA was synthesized by a similar solution polymerization technique. The nanogels were prepared with different crosslinker concentrations to achieve varied branching densities and molecular weights. The prepolymers were dispersed in triethylene glycol dimethacrylate at loading levels ranging from 10 wt% to 50 wt%. Photopolymerization reaction kinetics of all prepolymer modified systems were enhanced relative to the nanogel-free control during early stage polymerization while limiting conversion was similar for most samples. Volumetric polymerization shrinkage was reduced proportionally with the prepolymer content while the corresponding decrease in polymerization stress was potentially greater than an additive linear behavior. Flexural strength for inert linear polymer-modified systems decreased significantly with the increase in the prepolymer content; however, with an increase in the crosslinker concentration within the nanogel additives, and an increase in the concentration of residual pendant reactive sites, flexural strength was maintained or improved regardless of the nanogel loading level. This demonstrates that covalent attachment rather than just physical entanglement with the polymer matrix is important for effective polymer mechanical reinforcement by nanogel additives. Reactive nanogel additives can be considered as a practical, generic means to achieve substantial reductions in polymerization shrinkage and shrinkage stress in common polymers. PMID:23109731

  15. Has Alberta Oil Sands Development Altered Delivery of Polycyclic Aromatic Compounds to the Peace-Athabasca Delta?

    PubMed Central

    Hall, Roland I.; Wolfe, Brent B.; Wiklund, Johan A.; Edwards, Thomas W. D.; Farwell, Andrea J.; Dixon, D. George

    2012-01-01

    Background The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north) is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs) has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels. Methods/Principal Findings Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport. Conclusions/Significance Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and federal regulatory agencies and industry, and for designing effective long-term monitoring programs for the lower Athabasca River watershed. PMID:23049946

  16. Ancient water bottle use and polycyclic aromatic hydrocarbon (PAH) exposure among California Indians: a prehistoric health risk assessment.

    PubMed

    Sholts, Sabrina B; Smith, Kevin; Wallin, Cecilia; Ahmed, Trifa M; Wärmländer, Sebastian K T S

    2017-06-23

    Polycyclic aromatic hydrocarbons (PAHs) are the main toxic compounds in natural bitumen, a fossil material used by modern and ancient societies around the world. The adverse health effects of PAHs on modern humans are well established, but their health impacts on past populations are unclear. It has previously been suggested that a prehistoric health decline among the native people living on the California Channel Islands may have been related to PAH exposure. Here, we assess the potential health risks of PAH exposure from the use and manufacture of bitumen-coated water bottles by ancient California Indian societies. We replicated prehistoric bitumen-coated water bottles with traditional materials and techniques of California Indians, based on ethnographic and archaeological evidence. In order to estimate PAH exposure related to water bottle manufacture and use, we conducted controlled experiments to measure PAH contamination 1) in air during the manufacturing process and 2) in water and olive oil stored in a completed bottle for varying periods of time. Samples were analyzed with gas chromatography/mass spectrometry (GC/MS) for concentrations of the 16 PAHs identified by the US Environmental Protection Agency (EPA) as priority pollutants. Eight PAHs were detected in concentrations of 1-10 μg/m 3 in air during bottle production and 50-900 ng/L in water after 2 months of storage, ranging from two-ring (naphthalene and methylnaphthalene) to four-ring (fluoranthene) molecules. All 16 PAHs analyzed were detected in olive oil after 2 days (2 to 35 μg/kg), 2 weeks (3 to 66 μg/kg), and 2 months (5 to 140 μg/kg) of storage. For ancient California Indians, water stored in bitumen-coated water bottles was not a significant source of PAH exposure, but production of such bottles could have resulted in harmful airborne PAH exposure.

  17. Chemical modification of wood

    Treesearch

    Roger M. Rowell

    2005-01-01

    The properties of any resource are, in general, a result of the chemistry of the components of that resource. In the case of wood, the cell wall polymers (cellulose, hemicelluloses, and lignin) are the components that, if modified, would change the properties of the resource. If the properties of the wood are modified, the performance of the modified wood would be...

  18. Implementation of GPC characterization of asphalt binders at Louisiana Materials Laboratory : research project capsule.

    DOT National Transportation Integrated Search

    2010-10-01

    Louisiana has been using polymer modified asphalt cement (PMAC) increasingly for : better pavement performance. More often than not, elastomers became the : asphalt modifiers of choice due to their excellent elasticity and good compatibility : with a...

  19. SITE DEMONSTRATION CAPSULE --MATCON MODIFIED ASPHALT FOR WASTE CONTAINMENT

    EPA Science Inventory

    MatCon is a polymer modified asphalt material designed specifically for waste contaminment applications. The modifications to the material differentiate it from conventional paving asphalt by minimizing the damaging effects of environmental exposure that could detract from the d...

  20. MATCON MODIFIED ASPHALT COVER CONTAINMENT SYSTEM DEMONSTRATION

    EPA Science Inventory

    In order to make improvements to conventional paving asphalt to make it more suitable for containment applications, Wilder Construction Co. of Everett, WA offers MatCon, a polymer modified asphalt system comprised of proprietary binder, when coupled with a selected aggregate type...

  1. Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency.

    PubMed

    Zhao, Wenchao; Li, Sunsun; Zhang, Shaoqing; Liu, Xiaoyu; Hou, Jianhui

    2017-01-01

    Ternary polymer solar cells are fabricated based on one donor PBDB-T and two acceptors (a methyl-modified small-molecular acceptor (IT-M) and a bis-adduct of Bis[70]PCBM). A high power conversion efficiency of 12.2% can be achieved. The photovoltaic performance of the ternary polymer solar cells is not sensitive to the composition of the blend. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors

    NASA Astrophysics Data System (ADS)

    El Rhazi, Mama; Majid, Sanaa; Elbasri, Miloud; Salih, Fatima Ezzahra; Oularbi, Larbi; Lafdi, Khalid

    2018-06-01

    Over the years, intensive research works have been devoted to conducting polymers due to their potential application in many fields such as fuel cell, sensors, and capacitors. To improve the properties of these compounds, several new approaches have been developed which consist in combining conducting polymers and nanoparticles. Then, this review intends to give a clear overview on nanocomposites based on conducting polymers, synthesis, characterization, and their application as electrochemical sensors. For this, the paper is divided into two parts: the first part will highlight the nanocomposites synthesized by combination of carbon nanomaterials (CNMs) and conducting polymers. The preparation of polymer/CNMs such as graphene and carbon nanotube modified electrode is presented coupled with relevant applications. The second part consists of a review of nanocomposites synthesized by combination of metal nanoparticles and conducting polymers.

  3. Polymer as permeability modifier in porous media for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Parsa, Shima; Weitz, David

    2017-11-01

    We use confocal microscopy to directly visualize the changes in morphology and mobilization of trapped oil ganglia within a 3D micromodel of porous media upon polymer flooding. Enhanced oil recovery is achieved in polymer flooding with large molecular weight at concentrations close or higher than a critical concentration of polymer. We also measure the fluctuations of the velocity of the displacing fluid and show that the velocities change upon polymer flooding in the whole medium. The changes in the fluid velocities are heterogeneous and vary in different pores, hence only providing enough pressure gradient across a few of the trapped oil ganglia and mobilize them. Our measurements show that polymer flooding is an effective method for enhancing oil recovery due to retention of polymer on the solid surfaces and changing the resistances of the available paths to water.

  4. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    NASA Astrophysics Data System (ADS)

    Antonov, E. N.; Krotova, L. I.; Minaev, N. V.; Minaeva, S. A.; Mironov, A. V.; Popov, V. K.; Bagratashvili, V. N.

    2015-11-01

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 - 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering.

  5. Polymer Brushes Containing Sulfonated Sugar Repeat Units: Synthesis, Characterization and In Vitro Testing of Blood Coagulation Activation

    PubMed Central

    Ayres, N.; Holt, D. J.; Jones, C.F.; Corum, L. E.; Grainger, D. W.

    2009-01-01

    A new polymer brush chemistry containing sulfonated carbohydrate repeat units has been synthesized from silicon substrates using ATRP methods and characterized both in bulk and using surface analysis. The polymer brush was designed to act as a mimic for the naturally occurring sulfonated glycosaminoglycan, heparin, commonly used for modifying blood-contacting surfaces both in vitro and in vivo. Surface analysis showed conversion of brush saccharide precursor chemistry to the desired sulfonated polymer product. The sulfonated polymer brush surface was further analyzed using three conventional in vitro tests for blood compatibility -- plasma recalcification times, complement activation, and thrombin generation. The sulfonated polymer brush films on silicon oxide wafers exhibited better assay performance in these blood component assays than the unsulfonated sugar functionalized polymer brush in all tests performed. PMID:19859552

  6. Developing Novel Fluorescent Materials with Near Infrared Emission by Using m-Phenylene

    NASA Technical Reports Server (NTRS)

    Pang, Yi; Liao, Ling; Meador, Michael A.

    2003-01-01

    Our research focuses on development of novel p-conjugated polymers with desired emission. In the current study, the structure of a highly green-emitting poly[(m-phenylenevinylene)- alt-( p-phenylenevinylene)] has been modified by increasing the content of p-phenylene to achieve red- and infrared-emission. The polymer is synthesized via Wittig-Horner condensation, which is known to lead to trans-olefin linkage. The polymer is soluble in common organic solvents such as toluene, chloroform and THF. The spectroscopic properties of the polymer in both solution and film states will be discussed in comparison with its model compound.

  7. Polymer as Permeability Modifier in Porous Media

    NASA Astrophysics Data System (ADS)

    Parsa, S.; Weitz, D.

    2017-12-01

    Polymer flow through porous media is of particular interest in applications such as enhanced oil recovery and ground water remediation. We measure the effects of polymer flow on the permeability and local velocity distribution of a single phase flow in 3D micromodel of porous media using confocal microscopy and bulk permeability measurement. Our measurements show considerable reduction in permeability and increased velocity fluctuations with fluid velocities being diverted in some pores after polymer flow. We also find that the average velocity in the medium at constant imposed flow rate scales with the inverse square root of permeability.

  8. Experiments on the role of water in petroleum formation

    NASA Astrophysics Data System (ADS)

    Lewan, M. D.

    1997-09-01

    Pyrolysis experiments were conducted on immature petroleum source rocks under various conditions to evaluate the role of water in petroleum formation. At temperatures less than 330°C for 72 h, the thermal decomposition of kerogen to bitumen was not significantly affected by the presence or absence of liquid water in contact with heated gravel-sized source rock. However, at 330 and 350°C for 72 h, the thermal decomposition of generated bitumen was significantly affected by the presence or absence of liquid water. Carbon-carbon bond cross linking resulting in the formation of an insoluble bitumen (i.e., pyrobitumen) is the dominant reaction pathway in the absence of liquid water. Conversely, thermal cracking of carbon-carbon bonds resulting in the generation of saturate-enriched oil, which is similar to natural crude oils, is the dominant reaction pathway in the presence of liquid water. This difference in reaction pathways is explained by the availability of an exogenous source of hydrogen, which reduces the rate of thermal decomposition, promotes thermal cracking, and inhibits carbon-carbon bond cross linking. The distribution of generated n-alkanes is characteristic of a free radical mechanism, with a broad carbon-number distribution (i.e., C 5 to C 35) and only minor branched alkanes from known biological precursors (i.e., pristane and phytane). The generation of excess oxygen in the form of CO 2 in hydrous experiments and the high degree of hydrocarbon deuteration in a D 2O experiment indicate that water dissolved in the bitumen is an exogenous source of hydrogen. The lack of an effect on product composition and yield with an increase in H + activity by five orders of magnitude in a hydrous experiment indicates that an ionic mechanism for water interactions with thermally decomposing bitumen is not likely. Several mechanistically simple and thermodynamically favorable reactions that are consistent with the available experimental data are envisaged for the generation of exogenous hydrogen and excess oxygen as CO 2. One reaction series involves water oxidizing existing carbonyl groups to form hydrogen and car☐yl groups, with the latter forming CO 2 by decar☐ylation with increasing thermal stress. Another reaction series involves either hydrogen or oxygen in dissolved water molecules directly interacting with unpaired electrons to form a hydrogen-terminated free-radical site or an oxygenated functional group, respectively. The latter is expected to be susceptible to oxidation by other dissolved water molecules to generate additional hydrogen and CO 2. In addition to water acting as an exogenous source of hydrogen, it is also essential to the generation of an expelled saturate-enriched oil that is similar to natural crude oil. This role of water is demonstrated by the lack of an expelled oil in an experiment where a liquid Ga sbnd In alloy is substituted for liquid water. Experiments conducted with high salinity water and high water/rock ratios indicate that selective aqueous solubility of hydrocarbons is not responsible for the expelled oil generated in hydrous pyrolysis experiments. Similarly, a hydrous pyrolysis experiment conducted with isolated kerogen indicates that expelled oil in hydrous pyrolysis is not the result of preferential sorption of polar organic components by the mineral matrix of a source rock. It is envisaged that dissolved water in the bitumen network of a source rock causes an immiscible saturate-enriched oil to become immiscible with the thermally decomposing polar-enriched bitumen. The overall geochemical implication of these results is that it is essential to consider the role of water in experimental studies designed to understand natural rates of petroleum generation, expulsion mechanisms of primary migration, thermal stability of crude oil, reaction kinetics of biomarker transformations, and thermal maturity indicators in sedimentary basins.

  9. Experiments on the role of water in petroleum formation

    USGS Publications Warehouse

    Lewan, M.D.

    1997-01-01

    Pyrolysis experiments were conducted on immature petroleum source rocks under various conditions to evaluate the role of water in petroleum formation. At temperatures less than 330??C for 72 h, the thermal decomposition of kerogen to bitumen was not significantly affected by the presence or absence of liquid water in contact with heated gravel-sized source rock. However, at 330 and 350??C for 72 h, the thermal decomposition of generated bitumen was significantly affected by the presence or absence of liquid water. Carbon-carbon bond cross linking resulting in the formation of an insoluble bitumen (i.e., pyrobitumen) is the dominant reaction pathway in the absence of liquid water. Conversely, thermal cracking of carbon-carbon bonds resulting in the generation of saturate-enriched oil, which is similar to natural crude oils, is the dominant reaction pathway in the presence of liquid water. This difference in reaction pathways is explained by the availability of an exogenous source of hydrogen, which reduces the rate of thermal decomposition, promotes thermal cracking, and inhibits carbon-carbon bond cross linking. The distribution of generated n-alkanes is characteristic of a free radical mechanism, with a broad carbon-number distribution (i.e., C5 to C35) and only minor branched alkanes from known biological precursors (i.e., pristane and phytane). The generation of excess oxygen in the form of CO2 in hydrous experiments and the high degree of hydrocarbon deuteration in a D2O experiment indicate that water dissolved in the bitumen is an exogenous source of hydrogen. The lack of an effect on product composition and yield with an increase in H+ activity by five orders of magnitude in a hydrous experiment indicates that an ionic mechanism for water interactions with thermally decomposing bitumen is not likely. Several mechanistically simple and thermodynamically favorable reactions that are consistent with the available experimental data are envisaged for the generation of exogenous hydrogen and excess oxygen as CO2. One reaction series involves water oxidizing existing carbonyl groups to form hydrogen and carboxyl groups, with the latter forming CO2 by decarboxylation with increasing thermal stress. Another reaction series involves either hydrogen or oxygen in dissolved water molecules directly interacting with unpaired electrons to form a hydrogen-terminated free-radical site or an oxygenated functional group, respectively. The latter is expected to be susceptible to oxidation by other dissolved water molecules to generate additional hydrogen and CO2. In addition to water acting as an exogenous source of hydrogen, it is also essential to the generation of an expelled saturate-enriched oil that is similar to natural crude oil. This role of water is demonstrated by the lack of an expelled oil in an experiment where a liquid Ga-In alloy is substituted for liquid water. Experiments conducted with high salinity water and high water/rock ratios indicate that selective aqueous solubility of hydrocarbons is not responsible for the expelled oil generated in hydrous pyrolysis experiments. Similarly, a hydrous pyrolysis experiment conducted with isolated kerogen indicates that expelled oil in hydrous pyrolysis is not the result of preferential sorption of polar organic components by the mineral matrix of a source rock. It is envisaged that dissolved water in the bitumen network of a source rock causes an immiscible saturate-enriched oil to become immiscible with the thermally decomposing polar-enriched bitumen. The overall geochemical implication of these results is that it is essential to consider the role of water in experimental studies designed to understand natural rates of petroleum generation, expulsion mechanisms of primary migration, thermal stability of crude oil, reaction kinetics of biomarker transformations, and thermal maturity indicators in sedimentary basins. Copyright ?? 1997 Elsevier Science Ltd.

  10. Novel conjugates of peptides and conjugated polymers for optoelectronics and neural interfaces

    NASA Astrophysics Data System (ADS)

    Bhagwat, Nandita

    Peptide-polymer conjugates are a novel class of hybrid materials that take advantage of each individual component giving the opportunity to generate materials with unique physical, chemical, mechanical, optical, and electronic properties. In this dissertation peptide-polymer conjugates for two different applications are discussed. The first set of peptide-polymer conjugates were developed as templates to study the intermolecular interactions between electroactive molecules by manipulating the intermolecular distances at nano-scale level. A PEGylated, alpha-helical peptide template was employed to effectively display an array of organic chromophores (oxadiazole containing phenylenevinylene oligomers, Oxa-PPV). Three Oxa-PPV chromophores were strategically positioned on each template, at distances ranging from 6 to 17 A from each other, as dictated by the chemical and structural properties of the peptide. The Oxa-PPV modified PEGylated helical peptides (produced via Heck coupling strategies) were characterized by a variety of spectroscopic methods. Electronic contributions from multiple pairs of chromophores on a scaffold were detectable; the number and relative positioning of the chromophores dictated the absorbance and emission maxima, thus confirming the utility of these polymer--peptide templates for complex presentation of organic chromophores. The rest of the thesis is focused on using poly(3,4-alkylenedioxythiophene) based conjugated polymers as coatings for neural electrodes. This thiophene derivative is of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics, specifically neural bio-electrodes. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). The chemical surface characterization of the films confirmed the presence of both EODT and EDOTacid units. Cyclic voltammetry showed that the films had comparable charge storage capacities regardless of their composition. The morphology of the films varied depending on the monomer feed ratio. Thus we were able to develop a method for synthesizing electrically active carboxylic acid functional poly(3,4-ethylenedioxythiophene) copolymer films with tunable hydrophilicities and surface morphologies. For longer lifetime devices incorporating a biomolecule via covalent immobilization techniques are preferred over physical adsorption or entrapment. We took advantage of the carboxylic acid group on the PEDOTacid copolymer films to modify the surface of these films with a laminin based peptide, the nonapeptide sequence CDPGYIGSR. XPS and toluidine blue O assay proved the presence of the peptide on the surface and electrochemical analysis demonstrated unaltered properties of the peptide modified films. The bioactivity of the peptide along with the need of a spacer molecule for cell adhesion and differentiation was tested using the rat pheochromocytoma (PC12) cells. Films modified with the longest poly(ethylene glycol) spacer used in this study, a 3 nm long molecule, demonstrated the best attachment and neurite outgrowth compared to films with peptides with no spacer and a 1 nm spacer, PEG3. The films with PEG10-CDPGYISGR covalently modified to the surface demonstrated 11.5% neurite expression with the mean neurite length of 90 microm. Along with the acid functionalized PEDOT films, vinyl terminated ProDOT films were also investigated as coatings for neural electrodes. The vinyl group was successfully modified with a RGD peptide via thiol-ene click chemistry. Both the acid and vinyl functional conducting polymer films provide an effective approach to biofunctionalize conducting polymer films.

  11. Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer.

    PubMed

    Bakhshi, Raheleh; Darbyshire, Arnold; Evans, James Eaton; You, Zhong; Lu, Jian; Seifalian, Alexander M

    2011-08-01

    Stent angioplasty is a successful treatment for arterial occlusion, particularly in coronary artery disease. The clinical communities were enthusiastic about the use of drug-eluting stents; however, these stents have a tendency to be a contributory factor towards late stage thrombosis, leading to mortality in a significant number of patients per year. This work presents an innovative approach in self-expanding coronary stents preparation. We developed a new nanocomposite polymer based on polyhedral oligomeric silsesquioxanes (POSS) and poly(carbonate-urea)urethane (PCU), which is an antithrombogenic and a non-biodegradable polymer with in situ endothelialization properties. The aim of this work is to coat a NiTi stent alloy with POSS-PCU. In prolonged applications in the human body, the corrosion of the NiTi alloy can result in the release of deleterious ions which leads to unwanted biological reactions. Coating the nitinol (NiTi) surface with POSS-PCU can enhance surface resistance and improve biocompatibility. Electrohydrodynamic spraying was used as the polymer deposition process and thus a few experiments were carried out to compare this process with casting. Prior to deposition the NiTi has been surface modified. The peel strength of the deposit was studied before and after degradation of the coating. It is shown that the surface modification enhances the peel strength by 300%. It is also indicated how the adhesion strength of the POSS-PCU coating changes post-exposure to physiological solutions comprised of hydrolytic, oxidative, peroxidative and biological media. This part of the study shows that the modified NiTi presents far greater resistance to decay in peel strength compared to the non-modified NiTi. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2014-09-01

    Cationic lipid-incorporated liposomes modified with pH-sensitive polymers were prepared by introducing 3, 5-didodecyloxybenzamidine as a cationic lipid to egg yolk phosphatidylcholine liposomes modified with 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG) as a pH-sensitive polymer. These liposomes were stable at neutral pH, but were destabilized below pH 6.0 because MGlu-HPG changed its characteristics from hydrophilic to hydrophobic in response to the pH decrease. Cationic lipid inclusion improved their pH sensitivity at weakly acidic pH and association of liposomes with murine dendritic cell (DC) lines. Cationic lipid-incorporated liposomes delivered entrapped ovalbumin (OVA) molecules not only to cytosol but also to endosome/lysosome. Treatment with cationic lipid-incorporated liposomes induced up-regulation of antigen presentation-involved molecules on DCs, the promotion of cytokine production, and antigen presentation via both major histocompatibility complex (MHC) class I and II molecules. Especially, antigen presentation via MHC class II was promoted by cationic lipid inclusion, which might correspond to efficient endosome/lysosome delivery of OVA. Subcutaneous administration of OVA-loaded cationic lipid-incorporated liposomes induced antigen-specific antibody production in serum and Th1-dominant immune responses in the spleen. Furthermore, administration of the cationic lipid-incorporated liposomes to mice bearing E.G7-OVA tumor more significantly reduced the tumor volume than liposomes without cationic lipids. Therefore, cationic lipid inclusion into pH-sensitive polymer-modified liposomes, which can achieve both efficient antigen intracellular delivery and activation of antigen presenting cell, is an effective approach to develop antigen carriers for efficient cancer immunotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Field test of polymer modified asphalt concrete : Murphy Road to Lava Butte Section, The Dalles - California Highway, Deschutes County, Oregon : construction report.

    DOT National Transportation Integrated Search

    1990-12-01

    This report covers the construction of open-graded asphalt concrete test sections using one conventional and three different polymerized binders. The binders were: 1) Chevron's conventional AC-20 as a control, 2) Elf Aquitane's Styrelf with SB polyme...

  14. Design of Hybrid Solid Polymer Electrolytes: Structure and Properties

    NASA Technical Reports Server (NTRS)

    Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.

    2003-01-01

    This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.

  15. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  16. Imprinted polymer-modified hanging mercury drop electrode for differential pulse cathodic stripping voltammetric analysis of creatine.

    PubMed

    Lakshmi, Dhana; Sharma, Piyush S; Prasad, Bhim B

    2007-06-15

    The molecularly imprinted polymer [poly(p-aminobenzoicacid-co-1,2-dichloroethane)] film casting was made on the surface of a hanging mercury drop electrode by drop-coating method for the selective and sensitive evaluation of creatine in water, blood serum and pharmaceutical samples. The molecular recognition of creatine by the imprinted polymer was found to be specific via non-covalent (electrostatic) imprinting. The creatine binding could easily be detected by differential pulse, cathodic stripping voltammetric signal at optimised operational conditions: accumulation potential -0.01 V (versus Ag/AgCl), polymer deposition time 15s, template accumulation time 60s, pH 7.1 (supporting electrolyte< or =5 x 10(-4)M NaOH), scan rate 10 mV s(-1), pulse amplitude 25 mV. The modified sensor in the present study was found to be highly reproducible and selective with detection limit 0.11 ng mL(-1) of creatine. Cross-reactivity studies revealed no response to the addition of urea, creatinine and phenylalanine; however, some insignificant magnitude of current was observed for tryptophan and histidine in the test samples.

  17. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    PubMed

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    Polymers that possess highly nucleophilic pyrrolidinopyridine (Pyr) and primary amino (vinylamine, VAm) groups were prepared by free-radical copolymerization of N,N-diallylpyridin-4-amine (DAAP) and N-vinylformamide (NVF) followed by acidic hydrolysis of NVF into VAm. The resulting poly(DAAP-co-VAm-co-NVF) copolymers were water-soluble and reacted with water-dispersible polyurethane possessing a high content of unreacted isocyanate groups. Spray-coating of the nylon-cotton (NYCO), rayon, and poly(p-phenylene terephthalamide) (Kevlar 119) fibers pretreated with phosphoric acid resulted in covalent bonding of the polyurethane with the hydroxyl groups on the fiber surface. A second spray-coating of aqueous solutions of poly(DAAP-co-VAm-co-NVF) on the polyurethane-coated fiber enabled formation of urea linkages between unreacted isocyanate groups of the polyurethane layer and the amino groups of poly(DAAP-co-VAm-co-NVF). Fibers with poly(DAAP-co-VAm-co-NVF) attached were compared with fibers modified by adsorption of water-insoluble poly(butadiene-co-pyrrolidinopyridine) (polyBPP) in terms of the stability against polymer leaching in aqueous washing applications. While the fibers modified by attachment of poly(DAAP-co-VAm-co-NVF) exhibited negligible polymer leaching, over 65% of adsorbed polyBPP detached and leached from the fibers within 7 days. Rayon fibers modified by poly(DAAP-co-VAm-co-NVF) were tested for sorption of dimethyl methylphosphonate (DMMP) in the presence of moisture using dynamic vapor sorption technique. Capability of the fibers modified with poly(DAAP-co-VAm-co-NVF) to facilitate hydrolysis of the sorbed DMMP in the presence of moisture was uncovered. The self-decontaminating property of the modified fibers against chemical threats was tested using a CWA simulant diisopropylfluorophosphate (DFP) in aqueous media at pH 8.7. Fibers modified with poly(DAAP-co-VAm-co-NVF) facilitated hydrolysis of DFP with the half-lives up to an order of magnitude shorter than that of the unmodified fibers. The presented polymers and method of multilayer coating can lead to a development of self-decontaminating textiles and other materials.

  18. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  19. Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres

    DOE PAGES

    Narayanan, Badri; Deshmukh, Sanket A.; Shrestha, Lok Kumar; ...

    2016-07-25

    Sonochemical synthesis can lead to a dramatic increase in the kinetics of formation of polymer spheres (templates for carbon spheres) compared to the modified Stober silica method applied to produce analogous polymer spheres. Reactive molecular dynamics simulations of the sonochemical process indicate a significantly enhanced rate of polymer sphere formation starting from resorcinol and formaldehyde precursors. The associated chemical reaction kinetics enhancement due to sonication is postulated to arise from the localized lowering of atomic densities, localized heating, and generation of radicals due to cavitation collapse in aqueous systems. This dramatic increase in reaction rates translates into enhanced nucleation andmore » growth of the polymer spheres. Finally, the results are of broad significance to understanding mechanisms of sonication induced synthesis as well as technologies utilizing polymers spheres.« less

  20. Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Badri, E-mail: bnarayanan@anl.gov; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S., E-mail: ssankaranarayanan@anl.gov

    2016-07-25

    Sonochemical synthesis can lead to a dramatic increase in the kinetics of formation of polymer spheres (templates for carbon spheres) compared to the modified Stöber silica method applied to produce analogous polymer spheres. Reactive molecular dynamics simulations of the sonochemical process indicate a significantly enhanced rate of polymer sphere formation starting from resorcinol and formaldehyde precursors. The associated chemical reaction kinetics enhancement due to sonication is postulated to arise from the localized lowering of atomic densities, localized heating, and generation of radicals due to cavitation collapse in aqueous systems. This dramatic increase in reaction rates translates into enhanced nucleation andmore » growth of the polymer spheres. The results are of broad significance to understanding mechanisms of sonication induced synthesis as well as technologies utilizing polymers spheres.« less

  1. A novel technique for finding gas bubbles in the nuclear waste containers using Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Dobrowolska, M.; Velthuis, J.; Frazão, L.; Kikoła, D.

    2018-05-01

    Nuclear waste is deposited for many years in the concrete or bitumen-filled containers. With time hydrogen gas is produced, which can accumulate in bubbles. These pockets of gas may result in bitumen overflowing out of the waste containers and could result in spread of radioactivity. Muon Scattering Tomography is a non-invasive scanning method developed to examine the unknown content of nuclear waste drums. Here we present a method which allows us to successfully detect bubbles larger than 2 litres and determine their size with a relative uncertainty resolution of 1.55 ± 0.77%. Furthermore, the method allows to make a distinction between a conglomeration of bubbles and a few smaller gas volumes in different locations.

  2. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  3. UV resistance and dimensional stability of wood modified with isopropenyl acetate.

    PubMed

    Nagarajappa, Giridhar B; Pandey, Krishna K

    2016-02-01

    Chemical modification of Rubberwood (Hevea brasiliensis Müll.Arg) with isopropenyl acetate (IPA) in the presence of anhydrous aluminum chloride as a catalyst has been carried out under solvent free conditions. The level of modification was estimated by determining the weight percent gain and modified wood was characterized by FTIR-ATR and CP/MAS (13)C NMR spectroscopy. The effect of catalyst concentration on WPG was studied. UV resistance, moisture adsorption and dimensional stability of modified wood were evaluated. UV resistance of modified wood was evaluated by exposing unmodified and modified wood to UV irradiation in a QUV accelerated weathering tester. Unmodified wood showed rapid color changes and degradation of lignin upon exposure to UV light. Chemical modification of wood polymers with IPA was effective in reducing light induced color changes (photo-yellowing) at wood surfaces. In contrast to unmodified wood, modified wood exhibited bleaching. FTIR analysis of modified wood exposed to UV light indicated stabilization of wood polymers against UV degradation. Modified wood showed good dimensional stability and hydrophobicity. Thermogravimetric analysis showed that modification with IPA improved thermal stability of wood. Improved dimensional stability and UV resistance of modified wood indicates IPA as a promising reagent since there is no acid byproduct of reaction as observed in case of other esterification reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation.

    PubMed

    Bykova, Iu; Weinhardt, V; Kashkarova, A; Lebedev, S; Baumbach, T; Pichugin, V; Zaitsev, K; Khlusov, I

    2014-08-01

    The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.

  5. Solvent-modified ultrafast decay dynamics in conjugated polymer/dye labeled single stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Kang, Mijeong; Woo, Han Young; Oh, Jin-Woo; Kyhm, Kwangseuk

    2015-07-01

    We have investigated that organic solvent (DMSO, dimethyl sulfoxide) modifies energy transfer efficiency between conjugated polymers (donors) and fluorescein-labeled single stranded DNAs (acceptors). In a mixture of buffer and organic solvent, fluorescence of the acceptors is significantly enhanced compared to that of pure water solution. This result can be attributed to change of the donor-acceptor environment such as decreased hydrophobicity of polymers, screening effect of organic solvent molecules, resulting in an enhanced energy transfer efficiency. Time-resolved fluorescence decay of the donors and the acceptors was modelled by considering the competition between the energy harvesting Foerster resonance energy transfer and the energy-wasting quenching. This enables to quantity that the Foerster distance (R0 = 43.3 Å) and resonance energy transfer efficiency (EFRET = 58.7 %) of pure buffer solution become R0 = 38.6 Å and EFRET = 48.0 % when 80% DMSO/buffer mixture is added.

  6. Phase Transition in Biopolymer Hydrogels Based on Glycine (g), Valine (v), Proline (p), and Isoleucine (i)

    NASA Astrophysics Data System (ADS)

    Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.

    2000-03-01

    Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.

  7. Preparation of novel beta-cyclodextrin functionalized monolith and its application in chiral separation.

    PubMed

    Lv, Yongqin; Mei, Danping; Pan, Xinxin; Tan, Tianwei

    2010-09-15

    A novel beta-cyclodextrin (beta-CD) functionalized organic polymer monolith was prepared by covalently bonding ethylenediamine-beta-CD (EDA-beta-CD) to poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) monolith via ring opening reaction of epoxy groups. SEM characterization was performed to confirm the homogeneity of the monolithic polymer. The resulting monolith was then characterized by DSC and XPS elemental analysis to study the thermal stability of the monolith, and to prove the successful immobilization of beta-CD on the polymer substrate. The beta-CD ligand density of 0.68 mmol g(-1) was obtained for the modified monolith, indicating the high reactivity and efficiency of the EDA-beta-CD modifier. The ethylenediamine-beta-CD functionalized monoliths were used for the chiral separation of ibuprofen racemic mixture and showed promising results. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Gelatin modified lipid nanoparticles for anti- viral drug delivery.

    PubMed

    K S, Joshy; S, Snigdha; Kalarikkal, Nandakumar; Pothen, Laly A; Thomas, Sabu

    2017-10-01

    The major challenges to clinical application of zidovudine are its moderate aqueous solubility and relative short half-life and serious side effects due to frequent administrations. We investigated the preparation of zidovudine-loaded nanoparticles based on lipids which were further modified with the polymer gelatin. Formulation and stability of the modified nanoparticles were analysed from the physico-chemical characterizations. The interactions of nanoparticles with blood components were tested by haemolysis and aggregation studies. The drug content and entrapment efficiencies were assessed by UV analysis. The effect of nanoparticles on protein adsorption was assessed by native polyacrylamide gel electrophoresis (PAGE). In vitro release studies showed a sustained release profile of zidovudine. In vitro cytotoxicity and cellular uptake of the zidovudine-loaded nanoparticles were performed in MCF-7 and neuro 2a brain cells. The enhanced cellular internalization of drug loaded modified nanoparticles in both the cell lines were revealed by fluorescence microscopy. Hence the present study focuses on the feasibility of zidovudine-loaded polymer modified lipid nanoparticles as carriers for safe and efficient HIV/AIDS therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Poly(aryloxyphosphazenes) with Phenylphenoxy and Related Bulky Side Groups, Synthesis, Thermal Transition Behavior, and Optical Properties

    DTIC Science & Technology

    1989-06-09

    revealed by differential scanning calorimetry. However, films of these polymers were not birefringent when viewed between crossed polarizers. Reports...C to 57*C. We intepret this to mean that the rigidity of the poly- mer and the intermolecular interactions are dominated by the one p-phenylphenoxy...of polymers 1-40 were measured at )-632nm using a modified critical angle method 32 (Figure 3). Films of the polymers were cast on one surface of a

  10. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  11. Jacket-free stir bar sorptive extraction with bio-inspired polydopamine-functionalized immobilization of cross-linked polymer on stainless steel wire.

    PubMed

    Zhang, Zixin; Zhang, Wenpeng; Bao, Tao; Chen, Zilin

    2015-08-14

    Stainless steel wire (SSW) is a good substrate for stir bar sorptive extraction (SBSE). However, it is still a challenge to immobilize commonly used cross-linked polymers onto SSW. In this work, we present a new approach for immobilization of the cross-linked organic polymer onto SSW for jacket-free SBSE. A dopamine derivative was firstly synthesized; by introducing a mussel-inspired polydopamine process, a stable coating layer was finally generated on the surface of SSW. Secondly, the cross-linked polymer was synthesized on the polydopamine-modified SSW by using acetonitrile as the porogen, acrylamide (AA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker and 2,2'-azobis (2-methylpropionitrile) as the initiator. A diluted pre-polymerization solution was carefully prepared to generate a thin layer of the polymer. The prepared poly(EGDMA-AA)-modified stir bar showed high stability and good tolerance toward stirring, ultrasonication, organic solvents, and strong acidic and basic conditions. Morphology and structure characterization of coatings were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The prepared poly(EGDMA-AA)-modified stir bar showed great extraction efficiency toward protoberberines, with enrichment factors of 19-42. An SBSE-HPLC method was also developed for quantitative analysis of protoberberines. The method showed low limits of detection (0.06-0.15 ng mL(-1)), wide linear range (0.5-400 ng mL(-1)), good linearity (R≥0.9980) and good reproducibility (RSD≤3.60% for intra-day, RSD≤4.73% for inter-day). The developed method has been successfully applied to determine protoberberines in herb and rat plasma samples, with recoveries of 88.53-114.61%. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques

    PubMed Central

    Jeong, Jin-Oh; Park, Jong-Seok; Lim, Youn-Mook

    2016-01-01

    Polyurethane (PU) is the fifth most common polymer in the general consumer market, following Polypropylene (PP), Polyethylene (PE), Polyvinyl chloride (PVC), and Polystyrene (PS), and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR). Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA) and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques. PMID:28773561

  13. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    PubMed

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  14. Synthesis and Characterization of Electroresponsive Materials with Applications In: Part I. Second Harmonic Generation. Part II. Organic-Lanthanide Ion Complexes for Electroluminescence and Optical Amplifiers.

    NASA Astrophysics Data System (ADS)

    Claude, Charles

    1995-01-01

    Materials for optical waveguides were developed from two different approaches, inorganic-organic composites and soft gel polymers. Inorganic-organic composites were developed from alkoxysilane and organically modified silanes based on nonlinear optical chromophores. Organically modified silanes based on N-((3^' -trialkoxysilyl)propyl)-4-nitroaniline were synthesized and sol-gelled with trimethoxysilane. After a densification process at 190^circC with a corona discharge, the second harmonic of the film was measured with a Nd:YAG laser with a fundamental wavelength of 1064nm, d_{33} = 13pm/V. The decay of the second harmonic was expressed by a stretched bi-exponential equation. The decay time (tau _2) was equal to 3374 hours, and was comparable to nonlinear optical systems based on epoxy/Disperse Orange 1. The processing temperature of the organically modified silane was limited to 200^circC due to the decomposition of the organic chromophore. Soft gel polymers were synthesized and characterized for the development of optical waveguides with dc-electrical field assisted phase-matching. Polymers based on 4-nitroaniline terminated poly(ethylene oxide-co-propylene oxide) were shown to exhibit second harmonic generation that were optically phase-matched in an electrical field. The optical signals were stable and reproducible. Siloxane polymers modified with 1-mercapto-4-nitrobenzene and 1-mercapto-4-methylsulfonylstilbene nonlinear optical chromophores were synthesized. The physical and the linear and nonlinear optical properties of the polymers were characterized. Waveguides were developed from the polymers which were optically phase -matched and had an efficiency of 8.1%. The siloxane polymers exhibited optical phase-matching in an applied electrical field and can be used with a semiconductor laser. Organic lanthanide ion complexes for electroluminescence and optical amplifiers were synthesized and characterized. The complexes were characterized for their thermal and oxidative stability and for their optical properties. Organic-europium ion complexes based on derivatives of 2-benzoyl benzoate are stable to a temperature 70^circ C higher than the europium beta -diketonate complexes. The optical and fluorescence properties of the organic-europium ion complexes were characterized. The methoxy and the t-butyl derivatives of the europium 2-benzoylbenzoate complexes exhibited fluorescence quantum efficiencies that were comparable to europium tris(thenoyl trifluoroacetonate) in methylene chloride but the extinction coefficient was two-thirds of the europium thenoyltrifluoroacetonate complexes. The last complex characterized was the europium bis(diphenylphosphino)imine complex. The complex exhibited thermal stability to 550 ^circC under nitrogen.

  15. Field test method to determine presence and quantity of modifiers in liquid asphalt : [summary].

    DOT National Transportation Integrated Search

    2015-05-01

    Approximately five million tons of asphalt mix are produced each year for the Florida : Department of Transportation (FDOT), of which 60% is modified with styrene butadiene : styrene (SBS) polymer and/or ground tire rubber (GTR). Asphalt binders are ...

  16. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.

    1989-01-01

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.

  17. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.

    1989-11-21

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.

  18. Nitrogen-containing polymers as a platform for CO2 electroreduction.

    PubMed

    Ponnurangam, Sathish; Chernyshova, Irina V; Somasundaran, Ponisseril

    2017-06-01

    Heterogeneous electroreduction of CO 2 has received considerable attention in the past decade. However, none of the earlier reviews has been dedicated to nitrogen-containing polymers (N-polymers) as an emerging platform for conversion of CO 2 to industrially useful chemicals. The term 'platform' is used here to underscore that the role of N-polymers is not only to serve as direct catalysts (through loaded metals) but also as co-catalysts/promoters and stabilizing agents. This review covers the current state, advantages, challenges, and prospects of the application of N-polymer-metal composites, also referred as polymer functionalized, coated, or modified electrodes, as well as functional hybrid materials, for the electrocatalytic conversion of CO 2 . It briefly surveys the efficiencies of the N-polymer-metal electrodes already used for this application, methods of their fabrication, and proposed mechanisms of their catalytic activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Water adsorption on surface-modified cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Wei, Zonghui; Sinko, Robert; Keten, Sinan; Luijten, Erik

    Cellulose nanocrystals (CNCs) have attracted much attention as a filler phase for polymer nanocomposites due to their impressive mechanical properties, low cost, and environmental sustainability. Despite their promise for this application, there are still numerous obstacles that prevent optimal performance of CNC-polymer nanocomposites, such as poor filler dispersion and high levels of water absorption. One way to mitigate these negative effects is to modify CNC surfaces. Computational approaches can be utilized to obtain direct insight into the properties of modified CNC surfaces and probe the interactions of CNCs with other materials to facilitate the experimental design of nanocomposites. We use atomistic grand-canonical Monte Carlo simulations to study how surface modification of ion-exchanged sulfated cellulose nanocrystals (Na-CNCs) impacts water adsorption. We find that methyl(triphenyl)phosphonium-exchanged CNCs adsorb less water than Na-CNCs at the same relative humidity, supporting recent experimental dynamic vapor sorption measurements. By characterizing the distribution and configuration of water molecules near the modified CNC surfaces we determine how surface modifications disrupt CNC-water interactions.

  20. Multifunctional Composites for Improved Polyimide Thermal Stability

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.

    2007-01-01

    The layered morphology of silicate clay provides an effective barrier to oxidative degradation of the matrix resin. However, as resin thermal stability continues to reach higher limits, development of an organic modification with comparable temperature capabilities becomes a challenge. Typically, phyllosilicates used in polymer nanocomposites are modified with an alkyl ammonium ion. Such organic modifiers are not suited for incorporation into high temperature polymers as they commonly degrade below 200oC. Therefore, the development of nanoparticle specifically suited for high temperature applications is necessary. Several nanoparticles were investigated in this study, including pre-exfoliated synthetic clay, an organically modified clay, and carbon nanofiber. Dispersion of the layered silicate increases the onset temperature of matrix degradation as well as slows oxidative degradation. The thermally stable carbon nanofibers are also observed to significantly increase the resin thermal stability.

Top