Science.gov

Sample records for polymer nerve guides

  1. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair.

    PubMed

    Pateman, Christopher J; Harding, Adam J; Glen, Adam; Taylor, Caroline S; Christmas, Claire R; Robinson, Peter P; Rimmer, Steve; Boissonade, Fiona M; Claeyssens, Frederik; Haycock, John W

    2015-05-01

    The peripheral nervous system has a limited innate capacity for self-repair following injury, and surgical intervention is often required. For injuries greater than a few millimeters autografting is standard practice although it is associated with donor site morbidity and is limited in its availability. Because of this, nerve guidance conduits (NGCs) can be viewed as an advantageous alternative, but currently have limited efficacy for short and large injury gaps in comparison to autograft. Current commercially available NGC designs rely on existing regulatory approved materials and traditional production methods, limiting improvement of their design. The aim of this study was to establish a novel method for NGC manufacture using a custom built laser-based microstereolithography (μSL) setup that incorporated a 405 nm laser source to produce 3D constructs with ∼ 50 μm resolution from a photocurable poly(ethylene glycol) resin. These were evaluated by SEM, in vitro neuronal, Schwann and dorsal root ganglion culture and in vivo using a thy-1-YFP-H mouse common fibular nerve injury model. NGCs with dimensions of 1 mm internal diameter × 5 mm length with a wall thickness of 250 μm were fabricated and capable of supporting re-innervation across a 3 mm injury gap after 21 days, with results close to that of an autograft control. The study provides a technology platform for the rapid microfabrication of biocompatible materials, a novel method for in vivo evaluation, and a benchmark for future development in more advanced NGC designs, biodegradable and larger device sizes, and longer-term implantation studies. PMID:25725557

  2. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair.

    PubMed

    Pateman, Christopher J; Harding, Adam J; Glen, Adam; Taylor, Caroline S; Christmas, Claire R; Robinson, Peter P; Rimmer, Steve; Boissonade, Fiona M; Claeyssens, Frederik; Haycock, John W

    2015-05-01

    The peripheral nervous system has a limited innate capacity for self-repair following injury, and surgical intervention is often required. For injuries greater than a few millimeters autografting is standard practice although it is associated with donor site morbidity and is limited in its availability. Because of this, nerve guidance conduits (NGCs) can be viewed as an advantageous alternative, but currently have limited efficacy for short and large injury gaps in comparison to autograft. Current commercially available NGC designs rely on existing regulatory approved materials and traditional production methods, limiting improvement of their design. The aim of this study was to establish a novel method for NGC manufacture using a custom built laser-based microstereolithography (μSL) setup that incorporated a 405 nm laser source to produce 3D constructs with ∼ 50 μm resolution from a photocurable poly(ethylene glycol) resin. These were evaluated by SEM, in vitro neuronal, Schwann and dorsal root ganglion culture and in vivo using a thy-1-YFP-H mouse common fibular nerve injury model. NGCs with dimensions of 1 mm internal diameter × 5 mm length with a wall thickness of 250 μm were fabricated and capable of supporting re-innervation across a 3 mm injury gap after 21 days, with results close to that of an autograft control. The study provides a technology platform for the rapid microfabrication of biocompatible materials, a novel method for in vivo evaluation, and a benchmark for future development in more advanced NGC designs, biodegradable and larger device sizes, and longer-term implantation studies.

  3. Preparation of bioabsorbable nerve guide tubes.

    PubMed

    Luciano, R M; de Carvalho Zavaglia, C A; de Rezende Duek, E A

    2000-03-01

    The use of bioabsorbable polymers in applications as temporary structural function, recovering damage in live tissues, is a promising research area. Membranes of poly(lactic acid) (PLA) may act as support to adhesion and cellular invasion or as devices for guided tissue regeneration (GTR). In this study, the same casting technique used to prepare membranes was used to prepare PLA tubes. These tubes can be used for tests in nerve guided regeneration (NGR). To improve flexibility of the device, a bioabsorbable plasticizer was added to the polymer. The initial results showed that the proposed technique allowed the preparation of flexible tubes that can be used for NGR. PMID:10759642

  4. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.

    PubMed

    Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M; Downes, Sandra; Terenghi, Giorgio; Reid, Adam J

    2015-03-01

    We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair. PMID:25435096

  5. Polymer Scaffolds with Preferential Parallel Grooves Enhance Nerve Regeneration

    PubMed Central

    Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M.; Downes, Sandra; Reid, Adam J.

    2015-01-01

    We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair. PMID:25435096

  6. Multifunctional Silk Nerve Guides for Axon Outgrowth

    NASA Astrophysics Data System (ADS)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  7. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves.

    PubMed

    Meyer, Cora; Stenberg, Lena; Gonzalez-Perez, Francisco; Wrobel, Sandra; Ronchi, Giulia; Udina, Esther; Suganuma, Seigo; Geuna, Stefano; Navarro, Xavier; Dahlin, Lars B; Grothe, Claudia; Haastert-Talini, Kirsten

    2016-01-01

    Biosynthetic nerve grafts are developed in order to complement or replace autologous nerve grafts for peripheral nerve reconstruction. Artificial nerve guides currently approved for clinical use are not widely applied in reconstructive surgery as they still have limitations especially when it comes to critical distance repair. Here we report a comprehensive analysis of fine-tuned chitosan nerve guides (CNGs) enhanced by introduction of a longitudinal chitosan film to reconstruct critical length 15 mm sciatic nerve defects in adult healthy Wistar or diabetic Goto-Kakizaki rats. Short and long term investigations demonstrated that the CNGs enhanced by the guiding structure of the introduced chitosan film significantly improved functional and morphological results of nerve regeneration in comparison to simple hollow CNGs. Importantly, this was detectable both in healthy and in diabetic rats (short term) and the regeneration outcome almost reached the outcome after autologous nerve grafting (long term). Hollow CNGs provide properties likely leading to a wider clinical acceptance than other artificial nerve guides and their performance can be increased by simple introduction of a chitosan film with the same advantageous properties. Therefore, the chitosan film enhanced CNGs represent a new generation medical device for peripheral nerve reconstruction.

  8. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    PubMed Central

    Li, Hong-fei; Wang, Yi-ru; Huo, Hui-ping; Wang, Yue-xiang; Tang, Jie

    2015-01-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration. PMID:26807123

  9. Using Eggshell Membrane as Nerve Guide Channels in Peripheral Nerve Regeneration

    PubMed Central

    Farjah, Gholam Hossein; Heshmatian, Behnam; Karimipour, Mojtaba; Saberi, Ali

    2013-01-01

    Objective(s): The aim of this study was to evaluate the final outcome of nerve regeneration across the eggsell membrane (ESM) tube conduit in comparison with autograft. Materials and Methods: Thirty adult male rats (250-300 g) were randomized into (1) ESM conduit, (2) autograft, and (3) sham surgery groups. The eggs submerged in 5% acetic acid. The decalcifying membranes were cut into four pieces, rotated over the teflon mandrel and dried at 37°C. The left sciatic nerve was surgically cut. A 10-mm nerve segment was cut and removed. In the ESM group, the proximal and distal cut ends of the sciatic nerve were telescoped into the nerve guides. In the autograft group, the 10 mm nerve segment was reversed and used as an autologous nerve graft. All animals were evaluated by sciatic functional index (SFI) and electrophysiology testing. Results: The improvement in SFI from the first to the last evalution in ESM and autograft groups were evaluated. On days 49 and 60 post-operation, the mean SFI of ESM group was significantly greater than the autograft group (P< 0.05). On day 90, the mean nerve conduction velocity (NCV) of ESM group was greater than autograft group, although the difference was not statistically significant (P> 0.05). Conclusion: These findings demonstrate that ESM effectively enhances nerve regeneration and promotes functional recovery in injured sciatic nerve of rat. PMID:24106593

  10. Types of neural guides and using nanotechnology for peripheral nerve reconstruction

    PubMed Central

    Biazar, Esmaeil; Khorasani, MT; Montazeri, Naser; Pourshamsian, Khalil; Daliri, Morteza; T, Mostafa Rezaei; B, Mahmoud Jabarvand; Khoshzaban, Ahad; K, Saeed Heidari; Jafarpour, Mostafa; Roviemiab, Ziba

    2010-01-01

    Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Different methods, such as conventional allograft procedures and use of biologic tubes present problems when used for damaged peripheral nerve reconstruction. Designed scaffolds comprised of natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and nonabsorbable synthetic and natural polymers with unique characteristics can be an appropriate solution to repair damaged nerve tissues. Polymeric nanofibrous scaffolds with properties similar to neural structures can be more effective in the reconstruction process. Better cell adhesion and migration, more guiding of axons, and structural features, such as porosity, provide a clearer role for nanofibers in the restoration of neural tissues. In this paper, basic concepts of peripheral nerve injury, types of artificial and natural guides, and methods to improve the performance of tubes, such as orientation, nanotechnology applications for nerve reconstruction, fibers and nanofibers, electrospinning methods, and their application in peripheral nerve reconstruction are reviewed. PMID:21042546

  11. Biomimetic Micropatterned Multi-channel Nerve Guides by Templated Electrospinning

    PubMed Central

    Jeffries, Eric; Wang, Yadong

    2012-01-01

    This report describes a new approach for fabricating micro-channels within three-dimensional electrospun constructs. These key features serve to mimic the fascicular architecture and fibrous extracellular matrix found in native nerve. Both electrospun fibers and multi-channeled structure nerve guides have become areas of increasing interest for their beneficial roles in nerve repair. However, to the best of our knowledge, this is the first report of a guide that incorporates both. Multiple parallel channels provide a greater number of defined paths and increased surface area compared to cylindrical guides. Additionally, the fibrous nature of electrospun fibers permits better mass transport than solid-walled constructs. The flexible fabrication scheme allows tailoring of nerve guide parameters such as channel diameters ranging from 33-176μm and various wall thicknesses. Channel and fiber structures were assessed by optical and electron microscope images. Geometric calculations estimated a porosity of over 85% for these guides with 16% or less from the channels. In vitro culture with Schwann cells demonstrated cellular infiltration into channels with restricted migration between fibers. Finally, cell proliferation and survival throughout the guide indicates that this design warrants future in vivo examination. PMID:22179932

  12. The nuclear events guiding successful nerve regeneration

    PubMed Central

    Kiryu-Seo, Sumiko; Kiyama, Hiroshi

    2011-01-01

    Peripheral nervous system (PNS) neurons survive and regenerate after nerve injury, whereas central nervous system (CNS) neurons lack the capacity to do so. The inability of the CNS to regenerate presumably results from a lack of intrinsic growth activity and a permissive environment. To achieve CNS regeneration, we can learn from successful nerve regeneration in the PNS. Neurons in the PNS elicit dynamic changes in gene expression in response to permissive environmental cues following nerve injury. To switch gene expression on and off in injured neurons, transcription factors and their networks should be carefully orchestrated according to the regeneration program. This is the so-called “intrinsic power of axonal growth.” There is an increasing repertoire of candidate transcription factors induced by nerve injury. Some of them potentiate the survival and axonal regeneration of damaged neurons in vivo; however, our knowledge of transcriptional events in injured neurons is still limited. How do these transcription factors communicate with each other? How does the transcriptional machinery regulate the wide variety of regeneration-associated genes (RAGs) in the properly coordinated manner? In this review, we describe our current understanding of the injury-inducible transcriptional factors that enhance the intrinsic growth capacity, and propose a potential role for specificity protein 1 (Sp1), which provides a platform to recruit injury-inducible transcription factors, in simultaneous gene regulation. Finally, we discuss an additional mechanism that is involved in epigenetic modifications in damaged neurons. A comprehensive understanding of the nuclear events in injured neurons will provide clues to clinical interventions for successful nerve regeneration. PMID:22180737

  13. Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process.

    PubMed

    Huang, Yi-Cheng; Huang, Yi-You; Huang, Chun-Chieh; Liu, Hwa-Chang

    2005-07-01

    We have developed a method for nerve tissue regeneration using longitudinally oriented channels within biodegradable polymers created by a combined lyophilizing and wire-heating process. This type of cell-adhesive scaffold provides increased area to support and guide extending axons subsequent to nerve injury. Utilizing Ni-Cr wires as mandrels to create channels in scaffold increased safety, effectiveness, and reproducibility. The scaffolds tested were made from different biodegradable polymers, chitosan and poly(D,L-lactide-co-glycolide) (PLGA), because of their availability, ease of processing, low inflammatory response, and approval by the FDA. According to our experimental results, the high permeability and the characteristic porous structure of chitosan proved to be a better material for nerve guidance than PLGA. The scanning electron micrographs revealed that the scaffolds were consistent along the longitudinal axis with channels being distributed evenly throughout the scaffolds. There was no evidence to suggest merging or splitting of individual channels. The diameter of the channels was about 100 mum, similar to the 115 micromameter of the Ni-Cr wire. Regulating the size and quantity of the Ni-Cr wires allow us to control the number and the diameter of the channels. Furthermore, the neutralizing processes significantly influenced the porous structure of chitosan scaffolds. Using weak base (NaHCO(3) 1M) to neutralize chitosan scaffolds made the porous structure more uniform. The innovative method of using Ni-Cr wires as mandrels could be easily tailored to other polymer and solvent systems. The high permeability and the characteristic porous structure of chitosan made it a superior material for nerve tissue engineering. These scaffolds could be useful for guiding regeneration of the peripheral nerve or spinal cord after a transection injury. PMID:15909301

  14. A Biosynthetic Nerve Guide Conduit Based on Silk/SWNT/Fibronectin Nanocomposite for Peripheral Nerve Regeneration

    PubMed Central

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Zaminy, Arash; Kokabi, Mehrdad; Soleimani, Masoud; Mirahmadi, Fereshteh

    2013-01-01

    As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts. PMID:24098649

  15. Ultrasound guided nerve block for breast surgery.

    PubMed

    Diéguez, P; Casas, P; López, S; Fajardo, M

    2016-03-01

    The breast surgery has undergone changes in recent years, encouraging new initiatives for the anaesthetic management of these patients in order to achieve maximum quality and rapid recovery. The fundamental tool that has allowed a significant improvement in the progress of regional anaesthesia for breast disease has been ultrasound, boosting the description and introduction into clinical practice of interfascial chest wall blocks, although the reference standard is still the paravertebral block. It is very likely that these blocks will change the protocols in the coming years. A review is presented of the anatomy of the breast region, description of nerve blocks and techniques, as well as their indications, all according to published articles and the opinion of the authors based on their experience.

  16. Ultrasound guided nerve block for breast surgery.

    PubMed

    Diéguez, P; Casas, P; López, S; Fajardo, M

    2016-03-01

    The breast surgery has undergone changes in recent years, encouraging new initiatives for the anaesthetic management of these patients in order to achieve maximum quality and rapid recovery. The fundamental tool that has allowed a significant improvement in the progress of regional anaesthesia for breast disease has been ultrasound, boosting the description and introduction into clinical practice of interfascial chest wall blocks, although the reference standard is still the paravertebral block. It is very likely that these blocks will change the protocols in the coming years. A review is presented of the anatomy of the breast region, description of nerve blocks and techniques, as well as their indications, all according to published articles and the opinion of the authors based on their experience. PMID:26776926

  17. A guide to the evaluation of fourth cranial nerve palsies.

    PubMed

    Lee; Hayman; Beaver; Prager; Kelder; Scasta; Avilla; von Noorden GK; Tang

    1998-12-01

    PURPOSE To devise a cost-effective guide for the evaluation of fourth nerve palsies (FNP). METHODS A review of the pertinent English language literature was performed to devise a guide for the evaluation (including neuroimaging) of FNP. The authors report a retrospective review of imaging studies performed on 206 patients with FNP. RESULTS The literature was used to develop the imaging guide. In the retrospective chart review of 206 patients from two tertiary care centers, 28 patients (13.6%) underwent a computed tomography scan and/or a magnetic resonance scan. Of these patients, five had associated neurological symptoms (non-isolated), one was traumatic, five were congenital, four were vasculopathic, eleven were non-vasculopathic, and two were progressive. Following the recommendations of the imaging guide, the five isolated congenital FNP and the four isolated vasculopathic FNP would not have undergone neuroimaging studies. The total costs of these neuroimaging studies in these nine patients were 19,000 dollars. Four patients in the retrospective review with associated neurological deficits (non-isolated) should have undergone neuroimaging according to the guide, but did not. CONCLUSIONS Although the evaluation of FNP can be difficult, the decision to order neuroimaging can be improved by using an imaging guide. An imaging guide for the evaluation of FNP may allow more appropriate and cost-effective imaging of these patients. Isolated congenital, old traumatic, or vasculopathic FNP do not require neuroimaging studies. Patients with non-isolated FNP should have directed neuroimaging studies based upon the results of clinical examination.

  18. Ultrasound guided obturator nerve block: a single interfascial injection technique.

    PubMed

    Lee, Seong Heon; Jeong, Cheol Won; Lee, Hyun Jung; Yoon, Myung Ha; Kim, Woong Mo

    2011-12-01

    We describe a new technique of single interfascial injection for 25 patients scheduled for transurethral bladder tumor resection. An ultrasound probe was placed at the midline of inguinal crease and moved medially and caudally to visualize the fascial space between the adductor longus (or pectineus) and adductor brevis muscles. We injected 20 mL 1% lidocaine containing epinephrine into the interfascial space using a transverse plane approach to make an interfascial injection, not an intramuscular swelling pattern. And just distally, firm pressure was applied for 3 min. Afterwards, surgery was performed under spinal anesthesia. The time required for identification and location of the nerve was 20 ± 15 and 30 ± 15 s, respectively. Adductor muscle strength, which was measured with a sphygmomanometer, decreased in all patients, from 122 ± 26 mmHg before blockade to 63 ± 11 mmHg 5 min after blockade. No movement or palpable muscle twitching occurred in 23 cases, slight movement of the thigh not interfering with the surgical procedure was observed in 1 case, thus the obturator reflex was successfully inhibited in 96% of cases. Ultrasound-guided single interfascial injection is an easy and successful technique for obturator nerve block. PMID:21918855

  19. Risk of Encountering Dorsal Scapular and Long Thoracic Nerves during Ultrasound-guided Interscalene Brachial Plexus Block with Nerve Stimulator

    PubMed Central

    Kim, Yeon Dong; Yu, Jae Yong; Shim, Junho; Heo, Hyun Joo

    2016-01-01

    Background Recently, ultrasound has been commonly used. Ultrasound-guided interscalene brachial plexus block (IBPB) by posterior approach is more commonly used because anterior approach has been reported to have the risk of phrenic nerve injury. However, posterior approach also has the risk of causing nerve injury because there are risks of encountering dorsal scapular nerve (DSN) and long thoracic nerve (LTN). Therefore, the aim of this study was to evaluate the risk of encountering DSN and LTN during ultrasound-guided IBPB by posterior approach. Methods A total of 70 patients who were scheduled for shoulder surgery were enrolled in this study. After deciding insertion site with ultrasound, awake ultrasound-guided IBPB with nerve stimulator by posterior approach was performed. Incidence of muscle twitches (rhomboids, levator scapulae, and serratus anterior muscles) and current intensity immediately before muscle twitches disappeared were recorded. Results Of the total 70 cases, DSN was encountered in 44 cases (62.8%) and LTN was encountered in 15 cases (21.4%). Both nerves were encountered in 10 cases (14.3%). Neither was encountered in 21 cases (30.4%). The average current measured immediately before the disappearance of muscle twitches was 0.44 mA and 0.50 mA at DSN and LTN, respectively. Conclusions Physicians should be cautious on the risk of injury related to the anatomical structures of nerves, including DSN and LTN, during ultrasound-guided IBPB by posterior approach. Nerve stimulator could be another option for a safer intervention. Moreover, if there is a motor response, it is recommended to select another way to secure better safety. PMID:27413483

  20. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Bini, T. B.; Gao, Shujun; Chyan Tan, Ter; Wang, Shu; Lim, Aymeric; Ben Hai, Lim; Ramakrishna, S.

    2004-11-01

    Nanotechnology is an area receiving increasing attention as progress is made towards tailoring the morphology of polymeric biomaterial for a variety of applications. In the present study an attempt was made to electrospin poly(L-lactide-co-glycolide) biodegradable polymer nanofibres. In this process, polymer fibres with diameters down to the nanometre range are formed by subjecting a fluid jet to a high electric field. The nanofibres were collected on to a rotating Teflon mandrel and fabricated to tubes or conduits, to function as nerve guidance channels. The feasibility of in vivo nerve regeneration was investigated through several of these conduits. The biological performance of the conduits were examined in the rat sciatic nerve model with a 10 mm gap length. After implantation of the nanofibre nerve guidance conduit to the right sciatic nerve of the rat, there was no inflammatory response. One month after implantation five out of eleven rats showed successful nerve regeneration. None of the implanted tubes showed tube breakage. The nanofibre nerve guidance conduits were flexible, permeable and showed no swelling. Thus, these new poly(L-lactide-co-glycolide) nanofibre conduits can be effective aids for nerve regeneration and repair. Improvements could be done by impregnating nerve growth factors or Schwann cells and may lead to clinical applications.

  1. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    PubMed

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  2. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    SciTech Connect

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  3. Ultrasound-Guided Greater Auricular Nerve Block as Sole Anesthetic for Ear Surgery.

    PubMed

    Ritchie, Michael K; Wilson, Colin A; Grose, Brian W; Ranganathan, Pavithra; Howell, Stephen M; Ellison, Matthew B

    2016-04-26

    A greater auricular nerve (GAN) block was used as the sole anesthetic for facial surgery in an 80-year-old male patient with multiple comorbidities which would have made general anesthesia challenging. The GAN provides sensation to the ear, mastoid process, parotid gland, and angle of the mandible. In addition to anesthesia for operating room surgery, the GAN block can be used for outpatient or emergency department procedures without the need for a separate anesthesia team. Although this nerve block has been performed using landmark-based techniques, the ultrasound-guided version offers several potential advantages. These advantages include increased reliability of the nerve block, as well as prevention of inadvertent vascular puncture or blockade of the phrenic nerve, brachial plexus, or deep cervical plexus. The increasing access to ultrasound technology for medical care providers outside the operating room makes this ultrasound guided block an increasingly viable alternative. PMID:27478586

  4. Ultrasound-Guided Musculocutaneous Nerve Block in Postherpetic Neuralgia.

    PubMed

    Kuo, Ying-Chen; Hsieh, Lin-Fen; Chiou, Hong-Jen

    2016-01-01

    Postherpetic neuralgia is a common and challenging complication of herpes zoster infection, particularly in older people. In recent decades, first-line treatments, including oral or topical medication, have become well established. However, few studies have reported the efficacy of interventional procedures for the treatment of postherpetic neuralgia. Here, the authors present a case of intractable postherpetic neuralgia treated with musculocutaneous peripheral nerve block under ultrasound guidance. Symptoms remained controlled at 1 mo follow-up. Ultrasound can be readily applied to improve the accuracy and efficiency of peripheral nerve block as it is currently widely used to evaluate the musculoskeletal system in clinical settings.

  5. Preparation and characterization of electrical conductive PVA based materials for peripheral nerve tube-guides.

    PubMed

    Gonçalves, C; Ribeiro, J; Pereira, T; Luís, A L; Mauricio, A C; Santos, J D; Lopes, M A

    2016-08-01

    Peripheral nerve regeneration is a serious clinical problem. Presently, there are several nerve tube-guides available in the market, however with some limitations. The goal of this work was the development of a biomaterial with high electrical conductivity to produce tube-guides for nerve regeneration after neurotmesis injuries whenrver an end-to-end suture without tension is not possible. A matrix of poly(vinyl alcohol) (PVA) was used loaded with the following electrical conductive materials: COOH-functionalized multiwall carbon nanotubes (MWCNTs), poly(pyrrole) (PPy), magnesium chloride (MgCl2 ), and silver nitrate (AgNO3 ). The tube-guide production was carried out by a freezing/thawing process (physical crosslinking) with a final annealing treatment. After producing the tube-guide for nerve regeneration, the physicochemical characterization was performed. The most interesting results were achieved by loading PVA with 0.05% of PPy or COOH- functionalized CNTs. These tubes combined the electrical conductivity of carbon nanotubes (CNTs) and PPy with the biocompatibility of PVA matrix, with potential clinical application for nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1981-1987, 2016. PMID:27027727

  6. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.

    PubMed

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram

    2011-04-01

    Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed.

  7. Nerve-highlighting fluorescent contrast agents for image-guided surgery.

    PubMed

    Gibbs-Strauss, Summer L; Nasr, Khaled A; Fish, Kenneth M; Khullar, Onkar; Ashitate, Yoshitomo; Siclovan, Tiberiu M; Johnson, Bruce F; Barnhardt, Nicole E; Tan Hehir, Cristina A; Frangioni, John V

    2011-04-01

    Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4'-[(2-methoxy-1,4-phenylene)di-(1E)-2,1-ethenediyl]bis-benzenamine (BMB) and a newly synthesized, red-shifted derivative 4-[(1E)-2-[4-[(1E)-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082) were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. The results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE™ (Fluorescence-Assisted Resection and Exploration) imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.

  8. Design and fabrication of a nanofibrous polycaprolactone tubular nerve guide for peripheral nerve tissue engineering using a two-pole electrospinning system.

    PubMed

    Panahi-Joo, Y; Karkhaneh, A; Nourinia, A; Abd-Emami, B; Negahdari, B; Renaud, P; Bonakdar, S

    2016-04-12

    Nerve guidance conduits are considered to be the new generation of scaffolds designed for nerve disorders. A tubular construct with a highly aligned fibrous structure, mimicking the endoneurium layer surrounding inner axons of a nerve fascicle, is a suitable candidate for a nerve guide. In this paper a new approach for the fabrication of 3D tubular nerve guides is introduced using simulation of a two-pole electrospinning system and describing its mechanism. The structure of this scaffold is then optimized using the Taguchi statistical method and after morphological studies by scanning electron microscopy, the crystallinity, tensile strength and protein adsorption of these highly aligned fibres are investigated, comparing them with semi-aligned and random fibres produced via conventional mandrel electrospinning. Cell attachment, proliferation and migration of PC12 neuronal like cells are studied on highly aligned, semi aligned and random structures, and morphological change and elongation are observed in PC12 cells. The results of these studies suggest that conduits fabricated using two-pole electrospinning are a suitable and promising scaffold for peripheral and even spinal nerve regeneration. This nerve guide has a great potential for further advanced modifications and regeneration in higher levels.

  9. Ultrasound-Guided HIFU Neurolysis Of Peripheral Nerves to Treat Spasticity and Pain

    NASA Astrophysics Data System (ADS)

    Foley, Jessica L.; Little, James W.; Starr, Frank L.; Frantz, Carie; Vaezy, Shahram

    2005-03-01

    Spasticity, a major complication of disorders of the central nervous system (CNS) signified by uncontrollable muscle contractions, is difficult to treat effectively. We report on the use of image-guided high-intensity focused ultrasound (HIFU) to target and suppress the function of the sciatic nerve complex of rabbits in vivo as a possible treatment of spasticity and pain. In situ focal acoustic intensity of 1480-1850 W/cm2 was applied using a scanning method. HIFU treatment of 36 ± 14 s (mean ± standard deviation) was effective in achieving complete conduction block in 100% of the 22 nerves treated (11 rabbits). Histological examination indicated axonal demyelination as a probable mechanism of nerve block.

  10. Ultrasound-guided Pulsed Radiofrequency Lesioning of the Phrenic Nerve in a Patient with Intractable Hiccup

    PubMed Central

    Kang, Keum Nae; Park, In Kyung; Suh, Jeong Hun; Leem, Jeong Gill

    2010-01-01

    Persistent and intractable hiccups (with respective durations of more than 48 hours and 1 month) can result in depression, fatigue, impaired sleep, dehydration, weight loss, malnutrition, and aspiration syndromes. The conventional treatments for hiccups are either non-pharmacological, pharmacological or a nerve block treatment. Pulsed radiofrequency lesioning (PRFL) has been proposed for the modulation of the excited nervous system pathway of pain as a safe and nondestructive treatment method. As placement of the electrode in close proximity to the targeted nerve is very important for the success of PRFL, ultrasound appears to be well suited for this technique. A 74-year-old man suffering from intractable hiccups that had developed after a coronary artery bypass graft and had continued for 7 years was referred to our pain clinic. He had not been treated with conventional methods or medications. We performed PRFL of the phrenic nerve guided by ultrasound and the hiccups disappeared. PMID:20830266

  11. Ultrasound-guided dorsal penile nerve block for ED paraphimosis reduction.

    PubMed

    Flores, Stefan; Herring, Andrew A

    2015-06-01

    Adequate anesthesia for emergency department management of painful penile conditions such as paraphimosis or priapism is often both technically challenging and inconsistent using traditional landmark-based techniques of the dorsal penile block (DPB). The pudendal nerves branch to form the paired dorsal nerves of the penis providing sensory innervation to the skin of both the dorsal and ventral aspects of the penis. "Blind" DPB techniques tend to rely on subtle tactile feedback from the needle and visual landmark approximation to identify the appropriate subpubic fascial compartment for injection. The landmark-based DPB is not standardized with options including “10 o'clock and 2 o'clock” infrapubic injections with or without ventral infiltration or a ring block. Given the lack of standardization and inherent technical imprecision with the landmark-based DPB, large volumes of local anesthetic (up to 50 mL) are sometimes required to achieve a clinically adequate block. In addition, inadvertent injection into the corpora cavernosa may occur. More recently, an ultrasound-guided approach has been developed. Using ultrasound, the dorsal penile nerves can be precisely targeted in the fascial compartment just deep to Buck fascia, potentially increasing block success rate and reducing the need for large local anesthetic volumes. Herein, we report the first adult case of an ultrasound-guided dorsal penile nerve block performed in the emergency department for the reduction of a paraphimosis and review the relevant penile anatomy and technical details of the procedure. PMID:25605058

  12. Efficacy of ultrasound-guided obturator nerve block in transurethral surgery

    PubMed Central

    Thallaj, Ahmed; Rabah, Dany

    2011-01-01

    Background: During transurethral resection surgery (TUR), accidental stimulation of the obturator nerve can cause violent adductor contraction, leading to serious intraoperative complications. General anesthesia with muscle relaxation is currently the preferred technique for TUR surgery. Spinal anesthesia combined with obturator nerve block has also been used for TUR surgery in geriatric population. Blind, anatomical methods for identifying the obturator nerve are often unsatisfactory. Therefore, we conducted this prospective study to validate the efficacy of ultrasound-guided obturator nerve block (USONB) during TUR procedures. Methods: Eighteen male patients undergoing TURP surgery under spinal anesthesia were included in the study. Bilateral USONB with maximum 20 ml of 1% lidocaine per patient was performed. An independent observer was present to monitor any adduction movements during the operation and to record patient and surgeon satisfactions. Results: In all patients, obturator nerve was visualized from the first attempt, requiring an average of 4.3 min for blocking of each side. USONB was successful (97.2%) in preventing an adductor spasm in all except one patient. Patient’s and surgeon’s satisfaction were appropriate. In all patients, adductor muscle strength recovered fully within 2 h following the surgical procedure. Conclusions: USONB is safe and effective during TUR surgery. It provides optimal intra-and postoperative conditions. PMID:21655015

  13. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2016-03-01

    Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.

  14. Carboxylic Acid-Functionalized Conducting-Polymer Nanotubes as Highly Sensitive Nerve-Agent Chemiresistors.

    PubMed

    Kwon, Oh Seok; Park, Chul Soon; Park, Seon Joo; Noh, Seonmyeong; Kim, Saerona; Kong, Hye Jeong; Bae, Joonwon; Lee, Chang-Soo; Yoon, Hyeonseok

    2016-09-21

    Organophosphates are powerful inhibitors of acetylcholinesterase, which is critical to nerve function. Despite continuous research for detecting the highly toxic organophosphates, a new and improved methodology is still needed. Herein we demonstrate simple-to-fabricate chemiresistive gas sensors using conducting-polymer polypyrrole (PPy) nanotube transducers, which are chemically specific and capable of recognizing sub-ppb concentrations (ca. 0.5 ppb) of dimethyl methylphosphonate (DMMP), a simulant of nerve agent sarin. Interestingly, the introduction of carboxylic groups on the surface of PPy nanotube transistors resulted in enhanced sensitivity to DMMP via intermolecular hydrogen bonding. Furthermore, it was found that the sensitivity of the nanotube transducer depended on the degree of the carboxylic group introduced. Finally, a sensor array composed of 5 different transducers including the carboxylated nanotubes exhibited excellent selectivity to DMMP in 16 vapor species.

  15. Carboxylic Acid-Functionalized Conducting-Polymer Nanotubes as Highly Sensitive Nerve-Agent Chemiresistors

    PubMed Central

    Kwon, Oh Seok; Park, Chul Soon; Park, Seon Joo; Noh, Seonmyeong; Kim, Saerona; Kong, Hye Jeong; Bae, Joonwon; Lee, Chang-Soo; Yoon, Hyeonseok

    2016-01-01

    Organophosphates are powerful inhibitors of acetylcholinesterase, which is critical to nerve function. Despite continuous research for detecting the highly toxic organophosphates, a new and improved methodology is still needed. Herein we demonstrate simple-to-fabricate chemiresistive gas sensors using conducting-polymer polypyrrole (PPy) nanotube transducers, which are chemically specific and capable of recognizing sub-ppb concentrations (ca. 0.5 ppb) of dimethyl methylphosphonate (DMMP), a simulant of nerve agent sarin. Interestingly, the introduction of carboxylic groups on the surface of PPy nanotube transistors resulted in enhanced sensitivity to DMMP via intermolecular hydrogen bonding. Furthermore, it was found that the sensitivity of the nanotube transducer depended on the degree of the carboxylic group introduced. Finally, a sensor array composed of 5 different transducers including the carboxylated nanotubes exhibited excellent selectivity to DMMP in 16 vapor species. PMID:27650635

  16. Carboxylic Acid-Functionalized Conducting-Polymer Nanotubes as Highly Sensitive Nerve-Agent Chemiresistors.

    PubMed

    Kwon, Oh Seok; Park, Chul Soon; Park, Seon Joo; Noh, Seonmyeong; Kim, Saerona; Kong, Hye Jeong; Bae, Joonwon; Lee, Chang-Soo; Yoon, Hyeonseok

    2016-01-01

    Organophosphates are powerful inhibitors of acetylcholinesterase, which is critical to nerve function. Despite continuous research for detecting the highly toxic organophosphates, a new and improved methodology is still needed. Herein we demonstrate simple-to-fabricate chemiresistive gas sensors using conducting-polymer polypyrrole (PPy) nanotube transducers, which are chemically specific and capable of recognizing sub-ppb concentrations (ca. 0.5 ppb) of dimethyl methylphosphonate (DMMP), a simulant of nerve agent sarin. Interestingly, the introduction of carboxylic groups on the surface of PPy nanotube transistors resulted in enhanced sensitivity to DMMP via intermolecular hydrogen bonding. Furthermore, it was found that the sensitivity of the nanotube transducer depended on the degree of the carboxylic group introduced. Finally, a sensor array composed of 5 different transducers including the carboxylated nanotubes exhibited excellent selectivity to DMMP in 16 vapor species. PMID:27650635

  17. Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats.

    PubMed

    Shen, Chiung-Chyi; Yang, Yi-Chin; Liu, Bai-Shuan

    2011-08-01

    This study used a biodegradable composite containing genipin-cross-linked gelatin annexed with β-tricalcium phosphate ceramic particles (genipin-gelatin-tricalcium phosphate, GGT), developed in a previous study, as a nerve guide conduit. The aim of this study was to analyse the influence of a large-area irradiated aluminium-gallium-indium phosphide (AlGaInP) diode laser (660 nm) on the neural regeneration of the transected sciatic nerve after bridging the GGT nerve guide conduit in rats. The animals were divided into two groups: group 1 comprised sham-irradiated controls and group 2 rats underwent low-level laser (LLL) therapy. A compact multi-cluster laser system with 20 AlGaInP laser diodes (output power, 50mW) was applied transcutaneously to the injured peripheral nerve immediately after closing the wound, which was repeated daily for 5 min for 21 consecutive days. Eight weeks after implantation, walking track analysis showed a significantly higher sciatic function index (SFI) score (P<0.05) and better toe spreading development in the laser-treated group than in the sham-irradiated control group. For electrophysiological measurement, both the mean peak amplitude and nerve conduction velocity of compound muscle action potentials (CMAPs) were higher in the laser-treated group than in the sham-irradiated group. The two groups were found to be significantly different during the experimental period (P<0.005). Histomorphometric assessments revealed that the qualitative observation and quantitative analysis of the regenerated nerve tissue in the laser-treated group were superior to those of the sham-irradiated group. Thus, the motor functional, electrophysiologic and histomorphometric assessments demonstrate that LLL therapy can accelerate neural repair of the corresponding transected peripheral nerve after bridging the GGT nerve guide conduit in rats. PMID:21397226

  18. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life.

    PubMed

    Salvatore, L; Madaghiele, M; Parisi, C; Gatti, F; Sannino, A

    2014-12-01

    The microstructural, mechanical, compositional, and degradative properties of a nerve conduit are known to strongly affect the regenerative process of the injured peripheral nerve. Starting from the fabrication of micropatterned collagen-based nerve guides, according to a spin-casting process reported in the literature, this study further investigates the possibility to modulate the degradation rate of the scaffolds over a wide time frame, in an attempt to match different rates of nerve regeneration that might be encountered in vivo. To this aim, three different crosslinking methods, that is, dehydrothermal (DHT), carbodiimide-based (EDAC), and glutaraldehyde-based (GTA) crosslinking, were selected. The elastically effective degree of crosslinking, attained by each method and evaluated according to the classical rubber elasticity theory, was found to significantly tune the in vitro half-life (t1/2 ) of the matrices, with an exponential dependence of the latter on the crosslink density. The high crosslinking efficacy of EDAC and GTA treatments, respectively threefold and fourfold when compared to the one attained by DHT, led to a sharp increase of the corresponding in vitro half-lives (ca., 10, 172, and 690 h, for DHT, EDAC, and GTA treated matrices, respectively). As shown by cell viability assays, the cytocompatibility of both DHT and EDAC treatments, as opposed to the toxicity of GTA, suggests that such methods are suitable to crosslink collagen-based scaffolds conceived for clinical use. In particular, nerve guides with expected high residence times in vivo might be produced by finely controlling the biocompatible reaction(s) adopted for crosslinking.

  19. Ultrasound-guided Continuous Axillary Brachial Plexus Block Using a Nerve Stimulating Catheter: EpiStim® Catheter

    PubMed Central

    Lee, Mi Kyoung; Kim, Jung Eun; Kim, Se Hee; Yeo, Gwi Eun

    2015-01-01

    Brachial plexus block (BPB) under ultrasound guidance has come to be widely used. However, nerve injury has been reported following ultrasound-guided BPB. We hypothesized that BPB under ultrasound guidance in conjunction with real-time electrical nerve stimulation would help us prevent nerve injury and do more successful procedure. Here, we report the successful induction and maintenance of ultrasound-guided BPB and the achievement of good peri- and postoperative pain control using a conductive catheter, the EpiStim®. PMID:26495085

  20. In vitro and in vivo evaluation of a biodegradable chitosan-PLA composite peripheral nerve guide conduit material.

    PubMed

    Xie, Feng; Li, Qing Feng; Gu, Bin; Liu, Kai; Shen, Guo Xiong

    2008-01-01

    Chitosan, a nature biodegradable material, has good biocompatibility but poor physical properties to serve as a nerve conduit. In this study, polylactic acid (PLA) was added to chitosan to form a composite material with improved intensity and elasticity, to be used as nerve conduits. The chitosan-PLA nerve conduits were fabricated with a mold casting/infrared dehydration technique. The constituent ratio of PLA and chitosan of 1:5 (v:v) was chosen to give the composite material both good mechanical properties and good biocompatibility. An in vitro cytotoxicity test showed that the chitosan-PLA material was not cytotoxic. The conduits were proved biodegradable and had many micropores to allow permeability. We evaluated chitosan-PLA nerve conduits as a guidance channel to repair 10 mm gaps in rat sciatic nerves. Nerve autograft and silicon conduits were used as the control. After 12 weeks, the regenerating nerves in three groups succeeded in passing through the nerve gap and reinnervating the muscle. Assessments, including ECG, histomorphometric evaluation, and weighing of triceps calf muscle, showed that the functional recovery of sciatic nerve was better in chitosan-PLA conduit group than in the silicon conduit group (P < 0.05), but the differences between the chitosan-PLA conduit group and the nerve autograft group were not significant (P > 0.05). Therefore, the chitosan-PLA guide proved to be a promising nerve conduit. PMID:18623157

  1. Retrocrural splanchnic nerve alchohol neurolysis with a CT-guided anterior transaortic approach

    SciTech Connect

    Fields, S.

    1996-01-01

    Retrocrural splanchnic nerve alcohol neurolysis with a CT-guided anterior transonic approach, a new method for splanchnic block alleviation of chronic abdominal pain, is described. Ten patients with chronic abdominal pain requiring narcotic treatment, six with pancreatic carcinoma, one with gastric carcinoma, two with chronic pancreatitis, and one with pain of unknown etiology, were referred for splanchnic nerve neurolysis. With CT guidance, a 20 gauge needle was placed through the aorta into the retrocrural space at T11-T12, and 5-15 ml 96% alcohol was injected into the retrocrural space. Following the procedure, 6 of 10 patients were pain free, 2 patients had temporary pain relief, and 2 patients were without response. There were no significant complications. CT-guided anterior transaortic retrocrural splanchnic nerve alcohol neurolysis is technically feasible, easier to perform than the classic posterolateral approach, and may have less risk of complications. The success rate in this initial trial was reasonable and, therefore, this technique provides an additional method for the treatment of abdominal pain. 12 refs., 2 figs.

  2. Ultrasound guided alcohol neurolysis of musculocutaneous nerve to relieve elbow spasticity in hemiparetic stroke patients.

    PubMed

    Lee, Dong Gyu; Jang, Sung Ho

    2012-01-01

    Proper management of elbow spasticity is important in stroke rehabilitation. We investigated the effect and safety of ultrasound guided alcohol neurolysis of the MC nerve for controlling elbow flexor spasticity in hemiparetic stroke patients. Ten hemiparetic stroke patients with severe elbow spasticity were recruited for this study. We identified the MC nerve using ultrasound and performed neurolysis with 35% ethyl alcohol. The severity of spasticity was assessed using the modified Ashworth scale (MAS) score and associated reaction (AR) of elbow flexor. During the 2 months follow-up period, both MAS score and AR were reduced in all 10 patients. Before treatment, the mean MAS score was 3.4 ± 0.5, and this improved to 0.1 ± 0.3 immediately post-neurolysis, 1.8 ± 1.0 at one month and 1.9 ± 0.8 at two months (p < 0.001). The mean change of AR of the affected elbow was significantly decreased, from 75.2 ± 30.0° before neurolysis to 24.8 ± 21.3° immediately post-neurolysis, 35.5 ± 24.7° at 1 month and 40.8 ± 25.1° at 2 months (p < 0.001). Ultrasound guided MC nerve block is an effective and safe procedure for relieving localized spasticity of the elbow flexor.

  3. Computationally Guided Design of Polymer Electrolytes for Battery Applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Gang; Webb, Michael; Savoie, Brett; Miller, Thomas

    We develop an efficient computational framework for guiding the design of polymer electrolytes for Li battery applications. Short-times molecular dynamics (MD) simulations are employed to identify key structural and dynamic features in the solvation and motion of Li ions, such as the structure of the solvation shells, the spatial distribution of solvation sites, and the polymer segmental mobility. Comparative studies on six polyester-based polymers and polyethylene oxide (PEO) yield good agreement with experimental data on the ion conductivities, and reveal significant differences in the ion diffusion mechanism between PEO and the polyesters. The molecular insights from the MD simulations are used to build a chemically specific coarse-grained model in the spirit of the dynamic bond percolation model of Druger, Ratner and Nitzan. We apply this coarse-grained model to characterize Li ion diffusion in several existing and yet-to-be synthesized polyethers that differ by oxygen content and backbone stiffness. Good agreement is obtained between the predictions of the coarse-grained model and long-timescale atomistic MD simulations, thus providing validation of the model. Our study predicts higher Li ion diffusivity in poly(trimethylene oxide-alt-ethylene oxide) than in PEO. These results demonstrate the potential of this computational framework for rapid screening of new polymer electrolytes based on ion diffusivity.

  4. Three-dimensional conductive constructs for nerve regeneration.

    PubMed

    George, Paul M; Saigal, Rajiv; Lawlor, Michael W; Moore, Michael J; LaVan, David A; Marini, Robert P; Selig, Martin; Makhni, Melvin; Burdick, Jason A; Langer, Robert; Kohane, Daniel S

    2009-11-01

    The unique electrochemical properties of conductive polymers can be utilized to form stand-alone polymeric tubes and arrays of tubes that are suitable for guides to promote peripheral nerve regeneration. Noncomposite, polypyrrole (PPy) tubes ranging in inner diameter from 25 microm to 1.6 mm as well as multichannel tubes were fabricated by electrodeposition. While oxidation of the pyrrole monomer causes growth of the film, brief subsequent reduction allowed mechanical dissociation from the electrode mold, creating a stand-alone, conductive PPy tube. Conductive polymer nerve guides made in this manner were placed in transected rat sciatic nerves and shown to support nerve regeneration over an 8-week time period.

  5. Preparation of a new nerve guide from a poly(L-lactide-co-6-caprolactone).

    PubMed

    Perego, G; Cella, G D; Aldini, N N; Fini, M; Giardino, R

    1994-02-01

    A copolymer of L-lactide and 6-caprolactone (50:50, w/w) was synthesized and characterized. The thermal behaviour of this material did not show any crystallinity for several months; only after more than 1 yr of aging at room temperature and, particularly, in the in vitro degradation tests did it partially crystallize. The values of tensile strength, percent elongation at break and elastic modulus were, respectively, 25 MPa, 490% and 3 MPa. Transparent, elastic nerve guides having inner diameter of 1.3 mm and wall thickness of 175 microns were prepared.

  6. Ultrasound Guided Transversus Abdominis Plane Block for Anterior Cutaneous Nerve Entrapment Syndrome.

    PubMed

    Sahoo, Rajendra Kumar; Nair, Abhijit S

    2015-10-01

    Anterior cutaneous nerve entrapment syndrome (ACNES) is one the most common cause of chronic abdominal wall pain. The syndrome is mostly misdiagnosed, treated wrongly and inadequately. If diagnosed correctly by history, examination and a positive carnett test, the suffering of the patient can be relieved by addressing the cause i.e. local anaesthetic with steroid injection at the entrapment site. Conventionally, the injection is done by landmark technique. In this report, we have described 2 patients who were diagnosed with ACNES who were offered ultrasound guided transverses abdominis plane (TAP) injection who got significant pain relief for a long duration of time. PMID:26495084

  7. Ultrasound-Guided Pain Interventions - A Review of Techniques for Peripheral Nerves

    PubMed Central

    Soneji, Neilesh

    2013-01-01

    Ultrasound has emerged to become a commonly used modality in the performance of chronic pain interventions. It allows direct visualization of tissue structure while allowing real time guidance of needle placement and medication administration. Ultrasound is a relatively affordable imaging tool and does not subject the practitioner or patient to radiation exposure. This review focuses on the anatomy and sonoanatomy of peripheral non-axial structures commonly involved in chronic pain conditions including the stellate ganglion, suprascapular, ilioinguinal, iliohypogastric, genitofemoral and lateral femoral cutaneous nerves. Additionally, the review discusses ultrasound guided intervention techniques applicable to these structures. PMID:23614071

  8. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration

    NASA Technical Reports Server (NTRS)

    Widmer, M. S.; Gupta, P. K.; Lu, L.; Meszlenyi, R. K.; Evans, G. R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C. W. Jr; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    We have fabricated porous, biodegradable tubular conduits for guided tissue regeneration using a combined solvent casting and extrusion technique. The biodegradable polymers used in this study were poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). A polymer/salt composite was first prepared by a solvent casting process. After drying, the composite was extruded to form a tubular construct. The salt particles in the construct were then leached out leaving a conduit with an open-pore structure. PLGA was studied as a model polymer to analyze the effects of salt weight fraction, salt particle size, and processing temperature on porosity and pore size of the extruded conduits. The porosity and pore size were found to increase with increasing salt weight fraction. Increasing the salt particle size increased the pore diameter but did not affect the porosity. High extrusion temperatures decreased the pore diameter without altering the porosity. Greater decrease in molecular weight was observed for conduits manufactured at higher temperatures. The mechanical properties of both PLGA and PLLA conduits were tested after degradation in vitro for up to 8 weeks. The modulus and failure strength of PLLA conduits were approximately 10 times higher than those of PLGA conduits. Failure strain was similar for both conduits. After degradation for 8 weeks, the molecular weights of the PLGA and PLLA conduits decreased to 38% and 43% of the initial values, respectively. However, both conduits maintained their shape and did not collapse. The PLGA also remained amorphous throughout the time course, while the crystallinity of PLLA increased from 5.2% to 11.5%. The potential of seeding the conduits with cells for transplantation or with biodegradable polymer microparticles for drug delivery was also tested with dyed microspheres. These porous tubular structures hold great promise for the regeneration of tissues which require tubular scaffolds such as peripheral nerve

  9. Polymer nanofiber-guided uniform lithium deposition for battery electrodes.

    PubMed

    Liang, Zheng; Zheng, Guangyuan; Liu, Chong; Liu, Nian; Li, Weiyang; Yan, Kai; Yao, Hongbin; Hsu, Po-Chun; Chu, Steven; Cui, Yi

    2015-05-13

    Lithium metal is one of the most promising candidates as an anode material for next-generation energy storage systems due to its highest specific capacity (3860 mAh/g) and lowest redox potential of all. The uncontrolled lithium dendrite growth that causes a poor cycling performance and serious safety hazards, however, presents a significant challenge for the realization of lithium metal-based batteries. Here, we demonstrate a novel electrode design by placing a three-dimensional (3D) oxidized polyacrylonitrile nanofiber network on top of the current collector. The polymer fiber with polar surface functional groups could guide the lithium ions to form uniform lithium metal deposits confined on the polymer fiber surface and in the 3D polymer layer. We showed stable cycling of lithium metal anode with an average Coulombic efficiency of 97.4% over 120 cycles in ether-based electrolyte at a current density of 3 mA/cm(2) for a total of 1 mAh/cm(2) of lithium. PMID:25822282

  10. Polymer nanofiber-guided uniform lithium deposition for battery electrodes.

    PubMed

    Liang, Zheng; Zheng, Guangyuan; Liu, Chong; Liu, Nian; Li, Weiyang; Yan, Kai; Yao, Hongbin; Hsu, Po-Chun; Chu, Steven; Cui, Yi

    2015-05-13

    Lithium metal is one of the most promising candidates as an anode material for next-generation energy storage systems due to its highest specific capacity (3860 mAh/g) and lowest redox potential of all. The uncontrolled lithium dendrite growth that causes a poor cycling performance and serious safety hazards, however, presents a significant challenge for the realization of lithium metal-based batteries. Here, we demonstrate a novel electrode design by placing a three-dimensional (3D) oxidized polyacrylonitrile nanofiber network on top of the current collector. The polymer fiber with polar surface functional groups could guide the lithium ions to form uniform lithium metal deposits confined on the polymer fiber surface and in the 3D polymer layer. We showed stable cycling of lithium metal anode with an average Coulombic efficiency of 97.4% over 120 cycles in ether-based electrolyte at a current density of 3 mA/cm(2) for a total of 1 mAh/cm(2) of lithium.

  11. US-Guided Femoral and Sciatic Nerve Blocks for Analgesia During Endovenous Laser Ablation

    SciTech Connect

    Yilmaz, Saim Ceken, Kagan; Alimoglu, Emel; Sindel, Timur

    2013-02-15

    Endovenous laser ablation may be associated with significant pain when performed under standard local tumescent anesthesia. The purpose of this study was to investigate the efficacy of femoral and sciatic nerve blocks for analgesia during endovenous ablation in patients with lower extremity venous insufficiency. During a 28-month period, ultrasound-guided femoral or sciatic nerve blocks were performed to provide analgesia during endovenous laser ablation in 506 legs and 307 patients. The femoral block (n = 402) was performed at the level of the inguinal ligament, and the sciatic block at the posterior midthigh (n = 124), by injecting a diluted lidocaine solution under ultrasound guidance. After the blocks, endovenous laser ablations and other treatments (phlebectomy or foam sclerotherapy) were performed in the standard fashion. After the procedures, a visual analogue pain scale (1-10) was used for pain assessment. After the blocks, pain scores were 0 or 1 (no pain) in 240 legs, 2 or 3 (uncomfortable) in 225 legs, and 4 or 5 (annoying) in 41 legs. Patients never experienced any pain higher than score 5. The statistical analysis revealed no significant difference between the pain scores of the right leg versus the left leg (p = 0.321) and between the pain scores after the femoral versus sciatic block (p = 0.7). Ultrasound-guided femoral and sciatic nerve blocks may provide considerable reduction of pain during endovenous laser and other treatments, such as ambulatory phlebectomy and foam sclerotherapy. They may make these procedures more comfortable for the patient and easier for the operator.

  12. Ion implantation, a method for fabricating light guides in polymers

    NASA Astrophysics Data System (ADS)

    Kulish, J. R.; Franke, H.; Singh, Amarjit; Lessard, Roger A.; Knystautas, Emile J.

    1988-04-01

    Li+ and N+ ions were implanted into aliphatic polymethylmethacrylate (PMMA), polyvinylalcohol (PVA), and aromatic polyimide (PI) polycarbonate (PC) polymers in the energy range of 100-130 keV. Planar optical waveguides guiding between one and three modes were formed. For low implantation doses (≤ 1014 ions/cm2), total waveguide loss values at λ=633 nm were found to be less than 2 dB/cm. The changes in the refractive index were found to be very large (Δn≥0.05) in the case of PMMA and PVA. We interpret this change in refractive index as being due to the formation of aromatic compounds in the regions of electronic scattering.

  13. Image-guided Nerve Cryoablation for Post-thoracotomy Pain Syndrome

    PubMed Central

    Koethe, Yilun; Mannes, Andrew J.; Wood, Bradford J.

    2015-01-01

    Chronic post-thoracotomy pain syndrome (PTPS) can cause significant patient distress and is frequently difficult to manage. Percutaneous intercostal nerve (ICN) cryoablation by palpation of surface landmarks can be risky, as inaccurate probe placement can lead to hemo- or pneumothorax. Experience with image-guided ICN cryoablation with treatment planning and device navigation is limited. A patient with intractable PTPS was treated with ICN cryoablation under cone-beam computed tomography (CBCT) guidance with software-assisted needle trajectory planning and ablation zone simulation. This procedure provided the patient approximately 8 weeks of relief. This case demonstrated that ICN cryoablation is feasible under image-guidance with device navigation and ablation simulation, and may result in a few months of pain relief in cases of intractable PTPS. PMID:23954965

  14. Peripheral nerve blocks on the upper extremity: Technique of landmark-based and ultrasound-guided approaches.

    PubMed

    Steinfeldt, T; Volk, T; Kessler, P; Vicent, O; Wulf, H; Gottschalk, A; Lange, M; Schwartzkopf, P; Hüttemann, E; Tessmann, R; Marx, A; Souquet, J; Häger, D; Nagel, W; Biscoping, J; Schwemmer, U

    2015-11-01

    The German Society of Anaesthesiology and Intensive Care Medicine (Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin, DGAI) established an expert panel to develop preliminary recommendations for the application of peripheral nerve blocks on the upper extremity. The present recommendations state in different variations how ultrasound and/or electrical nerve stimulation guided nerve blocks should be performed. The description of each procedure is rather a recommendation than a guideline. The anaesthesiologist should select the variation of block which provides the highest grade of safety according to his individual opportunities. The first section comprises recommendations regarding dosages of local anaesthetics, general indications and contraindications for peripheral nerve blocks and informations about complications. In the following sections most common blocks techniques on the upper extremity are described. PMID:26408023

  15. Presentation of Neurolytic Effect of 10% Lidocaine after Perineural Ultrasound Guided Injection of a Canine Sciatic Nerve: A Pilot Study

    PubMed Central

    Asif, Asma; Kataria, Sandeep

    2016-01-01

    Background Phenol and alcohol have been used to ablate nerves to treat pain but are not specific for nerves and can damage surrounding soft tissue. Lidocaine at concentrations > 8% injected intrathecal in the animal model has been shown to be neurotoxic. Tests the hypothesis that 10% lidocaine is neurolytic after a peri-neural blockade in an ex vivo experiment on the canine sciatic nerve. Methods Under ultrasound, one canine sciatic nerve was injected peri-neurally with 10 cc saline and another with 10 cc of 10% lidocaine. After 20 minutes, the sciatic nerve was dissected with gross inspection. A 3 cm segment was excised and preserved in 10% buffered formalin fixative solution. Both samples underwent progressive dehydration and infusion of paraffin after which they were placed on paraffin blocks. The sections were cut at 4 µm and stained with hemoxylin and eosin. Microscopic review was performed by a pathologist from Henry Ford Hospital who was blinded to which experimental group each sample was in. Results The lidocaine injected nerve demonstrated loss of gross architecture on visual inspection while the saline injected nerve did not. No gross changes were seen in the surrounding soft tissue seen in either group. The lidocaine injected sample showed basophilic degeneration with marked cytoplasmic vacuolation in the nerve fibers with separation of individual fibers and endoneurial edema. The saline injected sample showed normal neural tissue. Conclusions Ten percent lidocaine causes rapid neurolytic changes with ultrasound guided peri-neural injection. The study was limited by only a single nerve being tested with acute exposure. PMID:27413480

  16. Advantages of caudal block over intrarectal local anesthesia plus periprostatic nerve block for transrectal ultrasound guided prostate biopsy

    PubMed Central

    Wang, Na; Fu, Yaowen; Ma, Haichun; Wang, Jinguo; Gao, Yang

    2016-01-01

    Objective: To compare caudal block with intrarectal local anesthesia plus periprostatic nerve block for transrectal ultrasound guided prostate biopsy. Methods: One hundred and ninety patients scheduled for transrectal ultrasound guided prostate biopsy were randomized equally into Group-A who received caudal block (20 ml 1.2% lidocaine) and Group-B who received intrarectal local anesthesia (0.3% oxybuprocaine cream) plus periprostatic nerve block (10 ml 1% lidocaine plus 0.5% ropivacaine) before biopsy. During and after the procedure, the patients rated the level of pain/discomfort at various time points. Complications during the whole study period and the patient overall satisfaction were also evaluated. Results: More pain and discomfort was detected during periprostatic nerve block than during caudal block. Pain and discomfort was significantly lower during prostate biopsy and during the manipulation of the probe in the rectum in Group-A than in Group-B. No significant differences were detected in the pain intensity after biopsy and side effects between the two groups. Conclusions: Caudal block provides better anesthesia than periprostatic nerve block plus intrarectal local anesthesia for TRUS guided prostate biopsy without an increase of side effects. PMID:27648052

  17. Guiding mode in elliptical core microstructured polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yani; Ren, Liyong; Li, Kang; Wang, Hanyi; Zhao, Wei; Wang, Lili; Miao, Runcai; Large, Maryanne C. J.; van Eijkelenborg, Martijn A.

    2007-04-01

    A kind of microstructured polymer optical fiber with elliptical core has been fabricated by adopting in-situ chemical polymerization technology and the secondary sleeving draw-stretching technique. Microscope photography demonstrates the clear hole-structure retained in the fiber. Though the holes distortion is visible, initial laser experiment indicates that light can be strongly confined in the elliptical core region, and the mode field is split obviously and presents the multi-mode characteristic. Numerical modeling is carried out for the real fiber with the measured parameters, including the external diameter of 150 microns, the average holes diameter of 3.3 microns, and the average hole spacing of 6.3 microns by using full-vector plane wave method. The guided mode fields of the numerical simulation are consistent with the experiment result. This fiber shows the strong multi-mode and weak birefringence in the visible and near-infrared band, and has possibility for achieving the fiber mode convertors, mode selective couplers and so on.

  18. Guide wire extension for shape memory polymer occlusion removal devices

    DOEpatents

    Maitland, Duncan J.; Small, IV, Ward; Hartman, Jonathan

    2009-11-03

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  19. Ultrasound-guided continuous femoral nerve block vs continuous fascia iliaca compartment block for hip replacement in the elderly

    PubMed Central

    Yu, Bin; He, Miao; Cai, Guang-Yu; Zou, Tian-Xiao; Zhang, Na

    2016-01-01

    Abstract Background: Continuous femoral nerve block and fascia iliaca compartment block are 2 traditional anesthesia methods in orthopedic surgeries, but it is controversial which method is better. The objective of this study was to compare the practicality, efficacy, and complications of the 2 modalities in hip replacement surgery in the elderly and to assess the utility of a novel cannula-over-needle set. Methods: In this prospective, randomized controlled clinical investigation, 60 elderly patients undergoing hip replacement were randomly assigned to receive either continuous femoral nerve block or continuous fascia iliaca compartment block. After ultrasound-guided nerve block, all patients received general anesthesia for surgery and postoperative analgesia through an indwelling cannula. Single-factor analysis of variance was used to compare the outcome variables between the 2 groups. Results: There was a significant difference between the 2 groups in the mean visual analog scale scores (at rest) at 6 hours after surgery: 1.0 ± 1.3 in the femoral nerve block group vs 0.5 ± 0.8 in the fascia iliaca compartment block group (P < 0.05). The femoral nerve block group had better postoperative analgesia on the medial aspect of the thigh, whereas the fascia iliaca compartment block group had better analgesia on the lateral aspect of the thigh. There were no other significant differences between the groups. Conclusions: Both ultrasound-guided continuous femoral nerve block and fascia iliaca compartment block with the novel cannula-over-needle provide effective anesthesia and postoperative analgesia for elderly hip replacement patients. PMID:27759633

  20. Incidence of hemidiaphragmatic paresis after peripheral nerve stimulator versus ultrasound guided interscalene brachial plexus block

    PubMed Central

    Ghodki, Poonam Sachin; Singh, Noopur Dasmit

    2016-01-01

    Background and Aims: We compared interscalene brachial plexus block (ISBPB) using peripheral nerve stimulation (PNS) and ultrasound (US) techniques. The primary outcomes were the incidence of hemidiaphragmatic paresis (HDP) and the duration of the block. Secondary outcomes were the block success rate, time to conduct the block, onset of sensory block, and dermatomal spread, postoperative pain by Numeric Rating Scale (NRS), duration of postoperative analgesia and incidence of complications. Material and Methods: We conducted a prospective, randomized, and observer-blinded study in 60 patients undergoing shoulder arthroscopy under block plus general anesthesia. ISBPB was performed with 10 ml of 0.5% bupivacaine using either PNS (Group PNS, n = 30) or US (Group US, n = 30). Hemidiaphragmatic function, the primary outcome, was assessed by ultrasonographic evaluation of diaphragmatic movement and pulmonary function tests using a bedside spirometer (forced vital capacity, forced expiratory volume in 1 s and peak expiratory flow rate). General anesthesia was administered to all the patients for surgery. P < 0.05 test was considered to be statistically significant. Results: Twelve patients in Group PNS had HDP and none in Group US (P < 0.0001). PFTs were also significantly reduced in Group PNS (P < 0.0001). The time to conduct the block and sensory onset time both were less in Group US (P < 0.05). The groups did not differ in block success rate, duration of analgesia, and NRS. Other complications like incidence of Horner's syndrome and vascular puncture were comparable in both the groups. Conclusions: PNS guided ISBPB with 10 ml of 0.5% bupivacaine is associated with a higher incidence of HDP as compared to US guided ISBPB. There is no significant difference in quality or duration of analgesia in the two groups. PMID:27275045

  1. Intrathecal Spread of Injectate Following an Ultrasound-Guided Selective C5 Nerve Root Injection in a Human Cadaver Model.

    PubMed

    Falyar, Christian R; Abercrombie, Caroline; Becker, Robert; Biddle, Chuck

    2016-04-01

    Ultrasound-guided selective C5 nerve root blocks have been described in several case reports as a safe and effective means to anesthetize the distal clavicle while maintaining innervation of the upper extremity and preserving diaphragmatic function. In this study, cadavers were injected with 5 mL of 0.5% methylene blue dye under ultrasound guidance to investigate possible proximal and distal spread of injectate along the brachial plexus, if any. Following the injections, the specimens were dissected and examined to determine the distribution of dye and the structures affected. One injection revealed dye extended proximally into the epidural space, which penetrated the dura mater and was present on the spinal cord and brainstem. Dye was noted distally to the divisions in 3 injections. The anterior scalene muscle and phrenic nerve were stained in all 4 injections. It appears unlikely that local anesthetic spread is limited to the nerve root following an ultrasound-guided selective C5 nerve root injection. Under certain conditions, intrathecal spread also appears possible, which has major patient safety implications. Additional safety measures, such as injection pressure monitoring, should be incorporated into this block, or approaches that are more distal should be considered for the acute pain management of distal clavicle fractures. PMID:27311148

  2. Intrathecal Spread of Injectate Following an Ultrasound-Guided Selective C5 Nerve Root Injection in a Human Cadaver Model.

    PubMed

    Falyar, Christian R; Abercrombie, Caroline; Becker, Robert; Biddle, Chuck

    2016-04-01

    Ultrasound-guided selective C5 nerve root blocks have been described in several case reports as a safe and effective means to anesthetize the distal clavicle while maintaining innervation of the upper extremity and preserving diaphragmatic function. In this study, cadavers were injected with 5 mL of 0.5% methylene blue dye under ultrasound guidance to investigate possible proximal and distal spread of injectate along the brachial plexus, if any. Following the injections, the specimens were dissected and examined to determine the distribution of dye and the structures affected. One injection revealed dye extended proximally into the epidural space, which penetrated the dura mater and was present on the spinal cord and brainstem. Dye was noted distally to the divisions in 3 injections. The anterior scalene muscle and phrenic nerve were stained in all 4 injections. It appears unlikely that local anesthetic spread is limited to the nerve root following an ultrasound-guided selective C5 nerve root injection. Under certain conditions, intrathecal spread also appears possible, which has major patient safety implications. Additional safety measures, such as injection pressure monitoring, should be incorporated into this block, or approaches that are more distal should be considered for the acute pain management of distal clavicle fractures.

  3. Ultrasound-Guided Forearm Nerve Blocks: A Novel Application for Pain Control in Adult Patients with Digit Injuries

    PubMed Central

    Patricia Javedani, Parisa; Amini, Albert

    2016-01-01

    Phalanx fractures and interphalangeal joint dislocations commonly present to the emergency department. Although these orthopedic injuries are not complex, the four-point digital block used for anesthesia during the reduction can be painful. Additionally, cases requiring prolonged manipulation or consultation for adequate reduction may require repeat blockade. This case series reports four patients presenting after mechanical injuries resulting in phalanx fracture or interphalangeal joint dislocations. These patients received an ultrasound-guided peripheral nerve block of the forearm with successful subsequent reduction. To our knowledge, use of ultrasound-guided peripheral nerve blocks of the forearm for anesthesia in reduction of upper extremity digit injuries in adult patients in the emergency department setting has not been described before. PMID:27555971

  4. Reduction in mechanical allodynia in complex regional pain syndrome patients with ultrasound-guided pulsed radiofrequency treatment of the superficial peroneal nerve

    PubMed Central

    Chae, Won Soek; Kim, Sang Hyun; Cho, Sung Hwan; Lee, Mi Sun

    2016-01-01

    The superficial peroneal nerve is vulnerable to damage from ankle sprain injuries and fractures as well as surgery to this region. And it is also one of the most commonly involved nerves in complex regional pain syndrome type II in the foot and ankle region. We report two cases of ultrasound-guided pulsed radiofrequency treatment of superficial peroneal nerve for reduction of allodynia in CRPS patients. PMID:27738506

  5. Ultrasound-Guided Nerve Hydrodissection: What is it? A Review of the Literature.

    PubMed

    Cass, Shane P

    2016-01-01

    Nerve hydrodissection is a technique used when treating peripheral nerve entrapments. It involves using an anesthetic or solution such as saline to separate the nerve from the surrounding tissue, fascia, or adjacent structures. There are no high-level studies to determine the need or effectiveness of hydrodissection or to establish its safety. Low-level studies do demonstrate some effectiveness and safety for the technique, but further research is necessary.

  6. Ultrasound-guided continuous suprascapular nerve block for adhesive capsulitis: one case and a short topical review.

    PubMed

    Børglum, J; Bartholdy, A; Hautopp, H; Krogsgaard, M R; Jensen, K

    2011-02-01

    We present a case with an ultrasound-guided (USG) placement of a perineural catheter beneath the transverse scapular ligament in the scapular notch to provide a continuous block of the suprascapular nerve (SSN). The patient suffered from a severe and very painful adhesive capsulitis of the left shoulder secondary to an operation in the same shoulder conducted 20 weeks previously for impingement syndrome and a superior labral anterior-posterior tear. Following a new operation with capsular release, the placement of a continuous nerve block catheter subsequently allowed for nearly pain-free low impact passive and guided active mobilization by the performing physiotherapist for three consecutive weeks. This case and a short topical review on the use of SSN block in painful shoulder conditions highlight the possibility of a USG continuous nerve block of the SSN as sufficient pain management in the immediate post-operative period following capsular release of the shoulder. Findings in other painful shoulder conditions and suggestions for future studies are discussed in the text. PMID:21226866

  7. Can Biochemistry Usefully Guide the Search for Better Polymer Electrolytes?

    PubMed Central

    Halley, J. Woods

    2013-01-01

    I review some considerations that suggest that the biochemical products of evolution may provide hints concerning the way forward for the development of better electrolytes for lithium polymer batteries. PMID:24956948

  8. Novel use of biodegradable casein conduits for guided peripheral nerve regeneration.

    PubMed

    Hsiang, Shih-Wei; Tsai, Chin-Chuan; Tsai, Fuu-Jen; Ho, Tin-Yun; Yao, Chun-Hsu; Chen, Yueh-Sheng

    2011-11-01

    Recent advances in nerve repair technology have focused on finding more biocompatible, non-toxic materials to imitate natural peripheral nerve components. In this study, casein protein cross-linked with naturally occurring genipin (genipin-cross-linked casein (GCC)) was used for the first time to make a biodegradable conduit for peripheral nerve repair. The GCC conduit was dark blue in appearance with a concentric and round lumen. Water uptake, contact angle and mechanical tests indicated that the conduit had a high stability in water and did not collapse and cramped with a sufficiently high level of mechanical properties. Cytotoxic testing and terminal deoxynucleotidyl transferase dUTP nick-end labelling assay showed that the GCC was non-toxic and non-apoptotic, which could maintain the survival and outgrowth of Schwann cells. Non-invasive real-time nuclear factor-κB bioluminescence imaging accompanied by histochemical assessment showed that the GCC was highly biocompatible after subcutaneous implantation in transgenic mice. Effectiveness of the GCC conduit as a guidance channel was examined as it was used to repair a 10 mm gap in the rat sciatic nerve. Electrophysiology, labelling of calcitonin gene-related peptide in the lumbar spinal cord, and histology analysis all showed a rapid morphological and functional recovery for the disrupted nerves. Therefore, we conclude that the GCC can offer great nerve regeneration characteristics and can be a promising material for the successful repair of peripheral nerve defects.

  9. Ultrasound-guided pulsed radiofrequency ablation of the genital branch of the genitofemoral nerve for treatment of intractable orchalgia

    PubMed Central

    Terkawi, Abdullah Sulieman; Romdhane, Kamel

    2014-01-01

    Chronic orchalgia is a frustrating clinical problem for both the patient and the physician. We present a 17-year-old boy with a bilateral idiopathic chronic intractable orchalgia with failed conservative treatment. For 2 years, he suffered from severe attacks of scrotal pain that affected his daily activities and caused frequent absence from school. Ultrasound-guided pulsed radiofrequency ablation (PRF) of the genital branches of the genitofemoral nerve performed after local anesthetic nerve block confirmed the diagnosis and yielded 6 weeks of symptom relief. Seven-month follow-up revealed complete satisfactory analgesia. The use of PRF is an effective and non-invasive approach to treat intractable chronic orchalgia. PMID:24843352

  10. Nanoporous thin-film membranes from block-polymers : using self-consistent field theory calculations to guide polymer synthesis.

    SciTech Connect

    Cordaro, Joseph Gabriel

    2010-12-01

    The controlled self-assembly of polymer thin-films into ordered domains has attracted significant academic and industrial interest. Most work has focused on controlling domain size and morphology through modification of the polymer block-lengths, n, and the Flory-Huggins interaction parameter, {chi}. Models, such as Self-Consistent Field Theory (SCFT), have been successful in describing the experimentally observed morphology of phase-separated polymers. We have developed a computational method which uses SCFT calculations as a predictive tool in order to guide our polymer synthesis. Armed with this capability, we have the ability to select {chi} and then search for an ideal value of n such that a desired morphology is the most thermodynamically favorable. This approach enables us to synthesize new block-polymers with the exactly segment lengths that will undergo self-assembly to the desired morphology. As proof-of-principle we have used our model to predict the gyroidal domain for various block lengths using a fixed {chi} value. To validate our computational model, we have synthesized a series of block-copolymers in which only the total molecular length changes. All of these materials have a predicted thermodynamically favorable gyroidal morphology based on the results of our SCFT calculations. Thin-films of these polymers are cast and annealed in order to equilibrate the structure. Final characterization of the polymer thin-film morphology has been performed. The accuracy of our calculations compared to experimental results is discussed. Extension of this predictive ability to tri-block polymer systems and the implications to making functionalizable nanoporous membranes will be discussed.

  11. A Comprehensive Guide on Restoring Grasp Using Tendon Transfer Procedures for Ulnar Nerve Palsy.

    PubMed

    Diaz-Garcia, Rafael J; Chung, Kevin C

    2016-08-01

    Ulnar nerve paralysis results in classic stigmata, including weakness of grasp and pinch, poorly coordinated flexion, and clawing of digits. Restoration of grasp is a key portion of the reconstructive efforts after loss of ulnar nerve function. Improving flexion at the metacarpophalangeal joint can be done by static and dynamic means, although only the latter can improve interphalangeal extension. Deformity and digital posture are more predictably corrected with surgical intervention. Loss of strength from intrinsic muscle paralysis cannot be fully restored with tendon transfer procedures. Preoperative patient education is paramount to success if realistic expectations are to be met. PMID:27387079

  12. Electro-optic polymer modulator based on guided-wave resonance

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Cao, Zhuangqi; Shen, Qishun; Dou, Xiaoming; Chen, Yingli; Ozaki, Yukihiro

    2000-10-01

    A new type of electro-optic polymer modulator based on guided modes of the Attenuated Total Reflection (ATR) spectrum is described and fabricated. Using a prism to couple a laser beam into a poled polymer thin film, it is found in its ATR spectrum that the fall-offs of the absorbance peaks corresponding to the guided modes can be considered linear. The angular positions of these fall-offs are sensitive to the dielectric coefficient of the poled polymer. If the operating interior angle of the modulator is properly chosen at the midst of these fall-offs, the intensity of the reflected light can be directly modulated by the applied electric field due to the electric-field-induced dielectric coefficient change in the poled polymer film. Compared with the conventional Electro-optical (EO) modulator based on waveguide technology, the insertion loss of the device can be greatly reduced; Compared with the EO modulator based on surface plasmon resonance, the driven voltage can be lessen because that guided wave resonance is much sharper than the surface plasmon resonance.

  13. Ultrasound-Guided Continuous Superficial Radial Nerve Block for Complex Regional Pain Syndrome.

    PubMed

    Henshaw, Daryl S; Kittner, Sarah L; Jaffe, Jonathan D

    2016-06-01

    Although there are many potentially effective therapeutic options for complex regional pain syndrome (CRPS), no definitive treatment exists. Therefore, patients often exhaust both medical and surgical treatment options attempting to find relief for their symptoms. As pain control and restoration of physical movement are primary treatment goals, strategies that include regional anesthesia techniques are commonly employed, but potentially underutilized, treatment modalities. The authors present a patient with refractory CRPS that had significant improvement in both pain control and the ability to tolerate intensive physical therapy following the placement of a superficial radial nerve catheter and an infusion of local anesthetic for 6 days as part of a multimodal analgesic regimen. This treatment approach also assisted in the decision-making process related to future treatment options. Although the use of regional anesthesia and perineural infusions of local anesthetic have previously been described as viable treatment options for CRPS, this case report represents the first known use of a superficial radial nerve catheter for treating CRPS as well as the first description of a technique for placing a superficial radial nerve (SRN) catheter using ultrasound guidance. PMID:27159548

  14. Polymer Coatings of Cochlear Implant Electrode Surface - An Option for Improving Electrode-Nerve-Interface by Blocking Fibroblast Overgrowth.

    PubMed

    Hadler, C; Aliuos, P; Brandes, G; Warnecke, A; Bohlmann, J; Dempwolf, W; Menzel, H; Lenarz, T; Reuter, G; Wissel, K

    2016-01-01

    Overgrowth of connective tissue and scar formation induced by the electrode array insertion increase the impedance and, thus, diminish the interactions between neural probes as like cochlear implants (CI) and the target tissue. Therefore, it is of great clinical interest to modify the carrier material of the electrodes to improve the electrode nerve interface for selective cell adhesion. On one side connective tissue growth needs to be reduced to avoid electrode array encapsulation, on the other side the carrier material should not compromise the interaction with neuronal cells. The present in vitro-study qualitatively and quantitatively characterises the interaction of fibroblasts, glial cells and spiral ganglion neurons (SGN) with ultrathin poly(N,N-dimethylacrylamide) (PDMAA), poly(2-ethyloxazoline) (PEtOx) and poly([2-methacryloyloxy)ethyl]trimethylammoniumchlorid) (PMTA) films immobilised onto glass surfaces using a photoreactive anchor layer. The layer thickness and hydrophilicity of the polymer films were characterised by ellipsometric and water contact angle measurement. Moreover the topography of the surfaces was investigated using atomic force microscopy (AFM). The neuronal and non-neuronal cells were dissociated from spiral ganglions of postnatal rats and cultivated for 48 h on top of the polymer coatings. Immunocytochemical staining of neuronal and intermediary filaments revealed that glial cells predominantly attached on PMTA films, but not on PDMAA and PEtOx monolayers. Hereby, strong survival rates and neurite outgrowth were only found on PMTA, whereas PDMAA and PEtOx coatings significantly reduced the SG neuron survival and neuritogenesis. As also shown by scanning electron microscopy (SEM) SGN strongly survived and retained their differentiated phenotype only on PMTA. In conclusion, survival and neuritogenesis of SGN may be associated with the extent of the glial cell growth. Since PMTA was the only of the polar polymers used in this study bearing

  15. Polymer Coatings of Cochlear Implant Electrode Surface – An Option for Improving Electrode-Nerve-Interface by Blocking Fibroblast Overgrowth

    PubMed Central

    Hadler, C.; Aliuos, P.; Brandes, G.; Warnecke, A.; Bohlmann, J.; Dempwolf, W.; Menzel, H.; Lenarz, T.; Reuter, G.; Wissel, K.

    2016-01-01

    Overgrowth of connective tissue and scar formation induced by the electrode array insertion increase the impedance and, thus, diminish the interactions between neural probes as like cochlear implants (CI) and the target tissue. Therefore, it is of great clinical interest to modify the carrier material of the electrodes to improve the electrode nerve interface for selective cell adhesion. On one side connective tissue growth needs to be reduced to avoid electrode array encapsulation, on the other side the carrier material should not compromise the interaction with neuronal cells. The present in vitro-study qualitatively and quantitatively characterises the interaction of fibroblasts, glial cells and spiral ganglion neurons (SGN) with ultrathin poly(N,N-dimethylacrylamide) (PDMAA), poly(2-ethyloxazoline) (PEtOx) and poly([2-methacryloyloxy)ethyl]trimethylammoniumchlorid) (PMTA) films immobilised onto glass surfaces using a photoreactive anchor layer. The layer thickness and hydrophilicity of the polymer films were characterised by ellipsometric and water contact angle measurement. Moreover the topography of the surfaces was investigated using atomic force microscopy (AFM). The neuronal and non-neuronal cells were dissociated from spiral ganglions of postnatal rats and cultivated for 48 h on top of the polymer coatings. Immunocytochemical staining of neuronal and intermediary filaments revealed that glial cells predominantly attached on PMTA films, but not on PDMAA and PEtOx monolayers. Hereby, strong survival rates and neurite outgrowth were only found on PMTA, whereas PDMAA and PEtOx coatings significantly reduced the SG neuron survival and neuritogenesis. As also shown by scanning electron microscopy (SEM) SGN strongly survived and retained their differentiated phenotype only on PMTA. In conclusion, survival and neuritogenesis of SGN may be associated with the extent of the glial cell growth. Since PMTA was the only of the polar polymers used in this study bearing

  16. Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant.

    PubMed

    Jo, Seonyoung; Kim, Jongho; Noh, Jaeguk; Kim, Daigeun; Jang, Geunseok; Lee, Naeun; Lee, Eunji; Lee, Taek Seung

    2014-12-24

    A novel chemical warfare agent sensor based on conjugated polymer dots (CPdots) immobilized on the surface of poly(vinyl alcohol) (PVA)-silica nanofibers was prepared with a dots-on-fibers (DoF) hybrid nanostructure via simple electrospinning and subsequent immobilization processes. We synthesized a polyquinoxaline (PQ)-based CP as a highly emissive sensing probe and employed PVA-silica as a host polymer for the elctrospun fibers. It was demonstrated that the CPdots and amine-functionalized electrospun PVA-silica nanofibers interacted via an electrostatic interaction, which was stable under prolonged mechanical force. Because the CPdots were located on the surface of the nanofibers, the highly emissive properties of the CPdots could be maintained and even enhanced, leading to a sensitive turn-off detection protocol for chemical warfare agents. The prepared fluorescent DoF hybrid was quenched in the presence of a chemical warfare agent simulant, due to the electron transfer between the quinoxaline group in the polymer and the organophosphorous simulant. The detection time was almost instantaneous, and a very low limit of detection was observed (∼1.25 × 10(-6) M) with selectivity over other organophosphorous compounds. The DoF hybrid nanomaterial can be developed as a rapid, practical, portable, and stable chemical warfare agent-detecting system and, moreover, can find further applications in other sensing systems simply by changing the probe dots immobilized on the surface of nanofibers. PMID:25431844

  17. Ultrasound-Guided Femoral and Sciatic Nerve Blocks for Repair of Tibia and Fibula Fractures in a Bennett's Wallaby (Macropus rufogriseus)

    PubMed Central

    Campoy, Luis; Adami, Chiara

    2016-01-01

    Locoregional anesthetic techniques may be a very useful tool for the anesthetic management of wallabies with injuries of the pelvic limbs and may help to prevent capture myopathies resulting from stress and systemic opioids' administration. This report describes the use of ultrasound-guided femoral and sciatic nerve blocks in Bennett's wallaby (Macropus rufogriseus) referred for orthopaedic surgery. Ultrasound-guided femoral and sciatic nerve blocks were attempted at the femoral triangle and proximal thigh level, respectively. Whilst the sciatic nerve could be easily visualised, the femoral nerve could not be readily identified. Only the sciatic nerve was therefore blocked with ropivacaine, and methadone was administered as rescue analgesic. The ultrasound images were stored and sent for external review. Anesthesia and recovery were uneventful and the wallaby was discharged two days postoperatively. At the time of writing, it is challenging to provide safe and effective analgesia to Macropods. Detailed knowledge of the anatomy of these species is at the basis of successful locoregional anesthesia. The development of novel analgesic techniques suitable for wallabies would represent an important step forward in this field and help the clinicians dealing with these species to improve their perianesthetic management. PMID:27803817

  18. Feasibility Study on MR-Guided High-Intensity Focused Ultrasound Ablation of Sciatic Nerve in a Swine Model: Preliminary Results

    SciTech Connect

    Kaye, Elena A.; Gutta, Narendra Babu; Monette, Sebastien; Gulati, Amitabh Loh, Jeffrey; Srimathveeravalli, Govindarajan; Ezell, Paula C.; Erinjeri, Joseph P. Solomon, Stephen B. Maybody, Majid

    2015-08-15

    IntroductionSpastic patients often seek neurolysis, the permanent destruction of the sciatic nerve, for better pain management. MRI-guided high-intensity focused ultrasound (MRgHIFU) may serve as a noninvasive alternative to the prevailing, more intrusive techniques. This in vivo acute study is aimed at performing sciatic nerve neurolysis using a clinical MRgHIFU system.MethodsThe HIFU ablation of sciatic nerves was performed in swine (n = 5) using a HIFU system integrated with a 3 T MRI scanner. Acute lesions were confirmed using T1-weighted contrast-enhanced (CE) MRI and histopathology using hematoxylin and eosin staining. The animals were euthanized immediately following post-ablation imaging.ResultsReddening and mild thickening of the nerve and pallor of the adjacent muscle were seen in all animals. The HIFU-treated sections of the nerves displayed nuclear pyknosis of Schwann cells, vascular hyperemia, perineural edema, hyalinization of the collagenous stroma of the nerve, myelin sheet swelling, and loss of axons. Ablations were visible on CE MRI. Non-perfused volume of the lesions (5.8–64.6 cc) linearly correlated with estimated lethal thermal dose volume (4.7–34.2 cc). Skin burn adjacent to the largest ablated zone was observed in the first animal. Bilateral treatment time ranged from 55 to 138 min, and preparation time required 2 h on average.ConclusionThe acute pilot study in swine demonstrated the feasibility of a noninvasive neurolysis of the sciatic nerve using a clinical MRgHIFU system. Results revealed that acute HIFU nerve lesions were detectable on CE MRI, gross pathology, and histology.

  19. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2

    PubMed Central

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520

  20. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2.

    PubMed

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn; O'Connor, J Patrick

    2015-07-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation.

  1. Regenerative scaffold electrodes for peripheral nerve interfacing.

    PubMed

    Clements, Isaac P; Mukhatyar, Vivek J; Srinivasan, Akhil; Bentley, John T; Andreasen, Dinal S; Bellamkonda, Ravi V

    2013-07-01

    Advances in neural interfacing technology are required to enable natural, thought-driven control of a prosthetic limb. Here, we describe a regenerative electrode design in which a polymer-based thin-film electrode array is integrated within a thin-film sheet of aligned nanofibers, such that axons regenerating from a transected peripheral nerve are topographically guided across the electrode recording sites. Cultures of dorsal root ganglia were used to explore design parameters leading to cellular migration and neurite extension across the nanofiber/electrode array boundary. Regenerative scaffold electrodes (RSEs) were subsequently fabricated and implanted across rat tibial nerve gaps to evaluate device recording capabilities and influence on nerve regeneration. In 20 of these animals, regeneration was compared between a conventional nerve gap model and an amputation model. Characteristic shaping of regenerated nerve morphology around the embedded electrode array was observed in both groups, and regenerated axon profile counts were similar at the eight week end point. Implanted RSEs recorded evoked neural activity in all of these cases, and also in separate implantations lasting up to five months. These results demonstrate that nanofiber-based topographic cues within a regenerative electrode can influence nerve regeneration, to the potential benefit of a peripheral nerve interface suitable for limb amputees. PMID:23033438

  2. Fentanyl Patches to Supplement Ultrasound-Guided Nerve Blocks for Improving Pain Control After Foot and Ankle Surgery: A Prospective Study.

    PubMed

    Song, Jae-Hwang; Kang, Chan; Hwang, Deuk-Soo; Hwang, Jung-Mo; Shin, Byung-Kon

    2016-01-01

    The analgesic effects of preoperative ultrasound-guided nerve blocks wear off after about 12 hours, leaving some patients in substantial pain. Transdermal fentanyl concentrations peak at 12 to 24 hours after application and maintain this concentration for approximately 72 hours. We sought to determine whether combining the use of a transdermal fentanyl patch with either a sciatic or femoral-sciatic nerve block would improve pain control in patients undergoing foot and/or ankle surgery. Consecutive patients in the no-patch control group (n = 104) were enrolled from July 2011 to October 2011, and those in the treatment group (n = 232) were enrolled from November 2011 to May 2012 and received a transdermal patch (4.125 mg/7.5 cm(2) releasing 25 μg of fentanyl per hour) applied to their chest postoperatively. Pain was assessed using a visual analog scale at 6, 12, 24, and 48 hours after surgery. The primary outcome measure was the number of requests for additional postoperative pain medication. Additional postoperative analgesia was requested by 49 of the 104 control patients (47.1%) and 63 of the 232 treated patients (27.1%; p = .002). The mean pain scores were also lower in the treatment group, with a statistically significant difference (p < .05) at 12, 24, and 48 hours. Thus, patients receiving a fentanyl patch combined with an ultrasound-guided nerve block required less supplemental analgesia to maintain adequate pain control than did those receiving a nerve block alone. In conclusion, a fentanyl patch is a useful adjunct to an ultrasound-guided nerve block in foot and ankle surgery.

  3. Minimum effective local anesthetic volume for surgical anesthesia by subparaneural, ultrasound-guided popliteal sciatic nerve block: A prospective dose-finding study.

    PubMed

    Bang, Seung Uk; Kim, Dong Ju; Bae, Jin Ho; Chung, Kyudon; Kim, Yeesuk

    2016-08-01

    Because of its rapid onset time, recent years have seen an increase in the use of ultrasound (US)-guided popliteal sciatic nerve block (PSNB) via subparaneural injection for induction of surgical anesthesia. Moreover, in below-knee surgery, combined blocks, as opposed to sciatic nerve block alone, have become more common. These combined blocks often require a large volume of local anesthetic (LA), thus increasing the risk of local-anesthetic systemic toxicity (LAST). Thus, to decrease the risk of LAST, it is important to know the minimum effective volume (MEV) required for an adequate block. We, therefore, aimed to determine the MEV of ropivacaine 0.75% for induction of surgical anesthesia by the method of US-guided popliteal sciatic nerve block via subparaneural injection.Thirty patients underwent a US-guided PSNB with ropivacaine 0.75% at a 20-mL starting volume. Using a step-up/step-down method, we determined injection volumes for consecutive patients from the preceding patient's outcome. When an effective block was achieved within 40 minutes after injection, the next patient's volume was decreased by 2 mL. If the block failed, the next patient's volume was increased by 2 mL. The sensory and motor blockade was graded according to a 4-point scale. The block was considered a success if a combination of anesthesia and paresis (a score of 3 for both the sensory and motor nerves) was achieved within 40 minutes. The primary outcome measure was the MEV resulting in a successful subparaneural block of the sciatic nerve in 50% of patients (MEV50). Additionally, the data were processed with a probit regression analysis to determine the volume required to produce a complete sciatic nerve block in 90% of subjects (ED90).The MEV50 of 0.75% ropivacaine is 6.14 mL (95% confidence interval, 4.33-7.94 mL). The ED90 by probit analysis for a subparaneural injection was 8.9 mL (95% CI, 7.09-21.75 mL).The 6.14-mL MEV50 of ropivacaine 0.75% represents a 71% reduction

  4. A nanogroove-guided slot-die coating technique for highly ordered polymer films and high-mobility transistors.

    PubMed

    Kyaw, Aung Ko Ko; Lay, Lim Siew; Peng, Goh Wei; Changyun, Jiang; Jie, Zhang

    2016-01-01

    A nanogroove-guided slot-die coating technique has been developed to manipulate the alignment of polymer chains within a short processing time. A combination of directional movement of slot-die and uniaxial nanogrooves on the substrate for the unidirectional flow of solution suppresses the multiple degrees of conformational freedom, resulting in long-range oriented polymer films and a high field effect mobility of ∼5 cm(2) V(-1) s(-1).

  5. Biomaterials for the Development of Peripheral Nerve Guidance Conduits

    PubMed Central

    Nectow, Alexander R.; Marra, Kacey G.

    2012-01-01

    Currently, surgical treatments for peripheral nerve injury are less than satisfactory. The gold standard of treatment for peripheral nerve gaps >5 mm is the autologous nerve graft; however, this treatment is associated with a variety of clinical complications, such as donor site morbidity, limited availability, nerve site mismatch, and the formation of neuromas. Despite many recent advances in the field, clinical studies implementing the use of artificial nerve guides have yielded results that are yet to surpass those of autografts. Thus, the development of a nerve guidance conduit, which could match the effectiveness of the autologous nerve graft, would be beneficial to the field of peripheral nerve surgery. Design strategies to improve surgical outcomes have included the development of biopolymers and synthetic polymers as primary scaffolds with tailored mechanical and physical properties, luminal “fillers” such as laminin and fibronectin as secondary internal scaffolds, surface micropatterning, stem cell inclusion, and controlled release of neurotrophic factors. The current article highlights approaches to peripheral nerve repair through a channel or conduit, implementing chemical and physical growth and guidance cues to direct that repair process. PMID:21812591

  6. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  7. Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants dimethylmethylphosphonate and diisopropylmethylphosponate.

    PubMed

    Hopkins, A R; Lewis, N S

    2001-03-01

    Arrays of conducting polymer composite vapor detectors have been evaluated for performance in the presence of the nerve agent simulants dimethylmethylphosphonate (DMMP) and diisopropylmethylphosponate (DIMP). Limits of detection for DMMP on unoptimized carbon black/ organic polymer composite vapor detectors in laboratory air were estimated to be 0.047-0.24 mg m(-3). These values are lower than the EC50 value (where EC50 is the airborne concentration sufficient to induce severe effects in 50% of those exposed for 30 min) for the nerve agents sarin (methylphosphonofluoridic acid, 1-methylethyl ester) and soman (methylphosphonofluoridic acid, 1,2,2-trimethylpropyl ester), which has been established as approximately 0.8 mg m(-3). Arrays of these vapor detectors were easily able to resolve signatures due to exposures to DMMP from those due to DIMP or due to a variety of other test analytes (including water, methanol, benzene, toluene, diesel fuel, lighter fluid, vinegar, and tetrahydrofuran) in a laboratory air background. In addition, DMMP at 27 mg m(-3) could be detected and differentiated from the signatures of the other test analytes in the presence of backgrounds of potential interferences, including water, methanol, benzene, toluene, diesel fuel, lighter fluid, vinegar, and tetrahydrofuran, even when these interferents were present in much higher concentrations than that of the DMMP or DIMP being detected.

  8. Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants dimethylmethylphosphonate and diisopropylmethylphosponate.

    PubMed

    Hopkins, A R; Lewis, N S

    2001-03-01

    Arrays of conducting polymer composite vapor detectors have been evaluated for performance in the presence of the nerve agent simulants dimethylmethylphosphonate (DMMP) and diisopropylmethylphosponate (DIMP). Limits of detection for DMMP on unoptimized carbon black/ organic polymer composite vapor detectors in laboratory air were estimated to be 0.047-0.24 mg m(-3). These values are lower than the EC50 value (where EC50 is the airborne concentration sufficient to induce severe effects in 50% of those exposed for 30 min) for the nerve agents sarin (methylphosphonofluoridic acid, 1-methylethyl ester) and soman (methylphosphonofluoridic acid, 1,2,2-trimethylpropyl ester), which has been established as approximately 0.8 mg m(-3). Arrays of these vapor detectors were easily able to resolve signatures due to exposures to DMMP from those due to DIMP or due to a variety of other test analytes (including water, methanol, benzene, toluene, diesel fuel, lighter fluid, vinegar, and tetrahydrofuran) in a laboratory air background. In addition, DMMP at 27 mg m(-3) could be detected and differentiated from the signatures of the other test analytes in the presence of backgrounds of potential interferences, including water, methanol, benzene, toluene, diesel fuel, lighter fluid, vinegar, and tetrahydrofuran, even when these interferents were present in much higher concentrations than that of the DMMP or DIMP being detected. PMID:11289432

  9. Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants Dimethylmethylphosphonate and Diisopropy

    NASA Astrophysics Data System (ADS)

    Hopkins, Alan R.; Lewis, Nathan S.

    2002-06-01

    Arrays of conducting polymer composite vapor detectors have been evaluated for performance in the presence of the nerve agent simulants dimethylmethylphosphonate (DMMP) and diisopropylmethylphosponate (DIMP). Limits of detection for DMMP on unoptimized carbon black-organic polymer composite vapor detectors in laboratory air were estimated to be 0.047-0.24 mg m-3. These values are lower than the EC50 value for the nerve agents sarin (methylphosphonofluoridic acid, (1-methylethyl) ester) and soman, which have been established as equals 0.8 mg m-3. Arrays of these vapor detectors were easily able to resolve signatures due to exposures to DMMP from those due to DIMP or due to a variety of other test analytes in a laboratory air background. In addition, DMMP at 27 mg m-3 could be detected and differentiated from the signatures of the other test analytes in the presence of backgrounds of potential interferents in the background ambient, including water, methanol, benzene, toluene, diesel fuel, lighter fluid, vinegar and tetrahydrofuran, even when these interferents were present in much higher concentrations than that of the DMMP or DIMP being detected.

  10. Development of a CT-guided standard approach for tined lead implantation at the sacral nerve root S3 in minipigs for chronic neuromodulation

    PubMed Central

    Foditsch, Elena Esra; Zimmermann, Reinhold

    2016-01-01

    Purpose The aim of this study was to develop a controlled approach for sacral neuromodulation (SNM) to improve both nerve targeting and tined lead placement, for which a new computed tomography (CT)-guided implantation technique was analyzed in minipigs. Materials and methods This study included five female, adult Göttingen minipigs. In deep sedoanalgesia, the minipigs were placed in an extended prone position. Commercially available SNM materials were used (needle, introduction sheath, and quadripolar tined lead electrode). Gross anatomy was displayed by CT, and the nerves were bilaterally identified. The optimal angles to puncture the S3 foramen, the resulting access path, and the site for the skin incision were defined subsequently. The needle puncture and the tined lead placement were followed by successive CT scans/3D-reconstruction images. Once proper CT-guided placement of the needle and electrode was established, response to functional stimuli was intraoperatively checked to verify correct positioning. Results Successful bilateral tined lead implantation was performed in four out of five minipigs. Implantation was different from the clinical situation because the puncture was done from the contralateral side at a 30° angle to the midline and 60° horizontal angle to ensure both passage through the foramen and nerve access. Surgery time was 50–150 minutes. Stimulation response comprised a twitch of the perianal musculature and tail rotation to the contralateral side. Conclusion We have established a new, minimally invasive, highly standardized, CT-guided SNM electrode implantation technique. Functional outcomes are clearly defined and reproducible. All procedures can be performed without complications. Future chronic stimulation studies in minipigs can thereby be conducted using a controlled and highly standardized protocol. PMID:27730097

  11. Chronic recording of regenerating VIIIth nerve axons with a sieve electrode

    NASA Technical Reports Server (NTRS)

    Mensinger, A. F.; Anderson, D. J.; Buchko, C. J.; Johnson, M. A.; Martin, D. C.; Tresco, P. A.; Silver, R. B.; Highstein, S. M.

    2000-01-01

    A micromachined silicon substrate sieve electrode was implanted within transected toadfish (Opsanus tau) otolith nerves. High fidelity, single unit neural activity was recorded from seven alert and unrestrained fish 30 to 60 days after implantation. Fibrous coatings of genetically engineered bioactive protein polymers and nerve guide tubes increased the number of axons regenerating through the electrode pores when compared with controls. Sieve electrodes have potential as permanent interfaces to the nervous system and to bridge missing connections between severed or damaged nerves and muscles. Recorded impulses might also be amplified and used to control prosthetic devices.

  12. Improved perioperative analgesia with ultrasound-guided ilioinguinal/iliohypogastric nerve or transversus abdominis plane block for open inguinal surgery: a systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Wang, Yuexiang; Wu, Tao; Terry, Marisa J.; Eldrige, Jason S.; Tong, Qiang; Erwin, Patricia J.; Wang, Zhen; Qu, Wenchun

    2016-01-01

    [Purpose] Ultrasound-guided ilioinguinal/iliohypogastric (II/IH) nerve and transversus abdominis plane (TAP) blocks have been increasingly utilized in patients for perioperative analgesia. We conducted this meta-analysis to evaluate the clinical efficacy of ultrasound-guided II/IH nerve or TAP blocks for perioperative analgesia in patients undergoing open inguinal surgery. [Subjects and Methods] A systematic search was conducted of 7 databases from the inception to March 5, 2015. Randomized controlled trials (RCTs) comparing the clinical efficacy of ultrasound-guided vs. landmark-based techniques to perform II/IH nerve and TAP blocks in patients with open inguinal surgery were included. We constructed random effects models to pool the standardized mean difference (SMD) for continuous outcomes and the odds ratio (OR) for dichotomized outcomes. [Results] Ultrasound-guided II/IH nerve or TAP blocks were associated with a reduced use of intraoperative additional analgesia and a significant reduction of pain scores during day-stay. The use of rescue drugs was also significantly lower in the ultrasound-guided group. [Conclusion] The use of ultrasound-guidance to perform an II/IH nerve or a TAP block was associated with improved perioperative analgesia in patients following open inguinal surgery compared to landmark-based methods. PMID:27134411

  13. Ultrasound-guided percutaneous neuroplasty of the lateral femoral cutaneous nerve for the treatment of meralgia paresthetica: a case report and description of a new ultrasound-guided technique.

    PubMed

    Mulvaney, Sean W

    2011-01-01

    The lateral femoral cutaneous nerve (LFCN) can be visualized with ultrasound imaging using a high frequency linear transducer. The entrapment of the LFCN, often near the lateral aspect of the inguinal ligament, is accepted as an etiology of meralgia paresthetica (MP). This case report describes an ultrasound-guided, percutaneous technique that utilizes injected fluid to facilitate blunt dissection (or hydrodissection) to perform an external neuroplasty of the LFCN. This procedure resulted in immediate, long-term relief of pain associated with severe, chronic MP. This procedure may potentially represent an alternate treatment for patients with contraindications or partial contraindications to surgical neurolysis, nerve transection (usually described as being performed under general anesthesia), or corticosteroid injection, or in patients not responding to conservative treatment measures.

  14. Post-extraction inferior alveolar nerve neurosensory disturbances--a guide to their evaluation and practical management.

    PubMed

    Mahon, Nicola; Stassen, Leo F A

    2014-01-01

    Inferior alveolar nerve injuries are a recognised complication of mandibular third molar extractions. This paper describes the different types of nerve injuries that may occur. A differential of possible causes is provided and an approach to the immediate and follow-up management is outlined. The prognosis of such injuries is reviewed so that patients can be informed of the possible postoperative outcome. The algorithm shows the timeline for monitoring/referring and the included tables outline the advantages and disadvantages of surgery versus watchful waiting. PMID:25638921

  15. Polymer guided-wave integrated optics: an enabling technology for micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Hornak, Lawrence A.; Brown, Kolin S.; Taylor, B. J.; Barr, J. C.

    1997-04-01

    Efficient merging of optical, microelectromechanical (MEM) and microelectronic systems offers significant potential for achieving the microoptoelectromechanical (MOEM) system functionality necessary to meet the performance needs of a number of emerging display, sensing, communications, and control applications. Central to realization of this potential will be the development of a set o microoptical components and processes suitable for co-integration with MEMS devices and support microelectronics. The resulting MEMS 'optical toolbox' will provide the generic building blocks with which photonic functions can be achieved within MOEM systems. An extensive set of bulk and surface micromachined microoptical components supporting free-space optical beam manipulation for optical display, scan, and sense functions is currently under investigation by a number of research groups. Integrated waveguide components have ben less developed within the surface micromachined MEMS environment yet offer substantial opportunities for extending MOEM integrated system capability. This paper explores issues confronting the integration of waveguide technologies within the surface micromachined MEMS environment. Specific focus is placed on initial efforts developing processes for guided wave polymer optics cointegration with the multi-user MEMS process service surface micromachining process. Efforts studying the cointegration of polyimide waveguides with MEMS for integrated optical metrology and state feedback applications will be highlighted.

  16. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    NASA Astrophysics Data System (ADS)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  17. Cold bupivacaine versus magnesium sulfate added to room temperature bupivacaine in sonar-guided femoral and sciatic nerve block in arthroscopic anterior cruciate ligament reconstruction surgery

    PubMed Central

    Alzeftawy, Ashraf Elsayed; El-Daba, Ahmad Ali

    2016-01-01

    Background: Cooling of local anesthetic potentiates its action and increases its duration. Magnesium sulfate (MgSo4) added to local anesthetic prolongs the duration of anesthesia and postoperative analgesia with minimal side effects. Aim: The aim of this prospective, randomized, double-blind study was to compare the effect of cold to 4°C bupivacaine 0.5% and Mg added to normal temperature (20–25°C) bupivacaine 0.5% during sonar-guided combined femoral and sciatic nerve blocks on the onset of sensory and motor block, intraoperative anesthesia, duration of sensory and motor block, and postoperative analgesia in arthroscopic anterior cruciate ligament (ACL) reconstruction surgery. Patients and Methods: A total of 90 American Society of Anesthesiologists classes I and II patients who were scheduled to undergo elective ACL reconstruction were enrolled in the study. The patients were randomly allocated to 3 equal groups to receive sonar-guided femoral and sciatic nerve blocks. In Group I, 17 ml of room temperature (20–25°C) 0.5% bupivacaine and 3 ml of room temperature saline were injected for each nerve block whereas in Group II, 17 ml of cold (4°C) 0.5% bupivacaine and 3 ml of cold saline were injected for each nerve block. In Group III, 17 ml of room temperature 0.5% bupivacaine and 3 ml of MgSo4 5% were injected for each nerve block. The onset of sensory and motor block was evaluated every 3 min for 30 min. Surgery was started after complete sensory and motor block were achieved. Intraoperatively, the patients were evaluated for heart rate and mean arterial pressure, rescue analgesic and sedative requirements plus patient and surgeon satisfaction. Postoperatively, hemodynamics, duration of analgesia, resolution of motor block, time to first analgesic, total analgesic consumption, and the incidence of side effects were recorded. Results: There was no statistically significant difference in demographic data, mean arterial pressure, heart rate, and duration of

  18. Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine.

    PubMed

    Liu, Jubo; Xiao, Yuehua; Allen, Christine

    2004-01-01

    To establish a method for predicting polymer-drug compatibility as a means to guide formulation development, we carried out physicochemical analyses of polymer-drug pairs and compared the difference in total and partial solubility parameters of polymer and drug. For these studies, we employed a range of biodegradable polymers and the anticancer agent Ellipticine as the model drug. The partial and total solubility parameters for the polymer and drug were calculated using the group contribution method. Drug-polymer pairs with different enthalpy of mixing values were analyzed by physicochemical techniques including X-ray diffraction and Fourier transform infrared. Polymers identified to be compatible [i.e., polycaprolactone (PCL) and poly-beta-benzyl-L-aspartate (PBLA)] and incompatible [i.e., poly (d,l-lactide (PLA)], by the above mentioned methods, were used to formulate Ellipticine. Specifically, Ellipticine was loaded into PBLA, PCL, and PLA films using a solvent casting method to produce a local drug formulation; while, polyethylene oxide (PEO)-b-polycaprolactone (PCL) and PEO-b-poly (d,l-lactide) (PLA) copolymer micelles were prepared by both dialysis and dry down methods resulting in a formulation for systemic administration. The drug release profiles for all formulations and the drug loading efficiency for the micelle formulations were also measured. In this way, we compared formulation characteristics with predictions from physicochemical analyses and comparison of total and partial solubility parameters. Overall, a good correlation was obtained between drug formulation characteristics and findings from our polymer-drug compatibility studies. Further optimization of the PEO-b-PCL micelle formulation for Ellipticine was also performed. PMID:14648643

  19. Polymer-encapsulated cells genetically modified to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons.

    PubMed Central

    Winn, S R; Hammang, J P; Emerich, D F; Lee, A; Palmiter, R D; Baetge, E E

    1994-01-01

    Effective treatments for neurodegenerative disorders are limited by our inability to alter the progression of the diseases. A number of proteins have specific neuroprotective activities in vitro; however, the delivery of these factors into the central nervous system over the long term at therapeutic levels has been difficult to achieve. BHK cells engineered to express and release human nerve growth factor were encapsulated in an immunoisolation polymeric device and transplanted into both fimbria-fornix-lesioned rat brains and naive controls. In the lesioned rat brain, chronic delivery of human nerve growth factor by the encapsulated BHK cells provided nearly complete protection of axotomized medial septal cholinergic neurons. Human nerve growth factor continued to be released by encapsulated cells upon removal from the aspirative site after 3 weeks or from normal rat striatum after 3 and 6 months in vivo. Long-term encapsulated cell survival was confirmed by histologic analysis. This encapsulated xenogeneic system may provide therapeutically effective amounts of a number of neurotrophic factors, alone or in combination, to virtually any site within the body. Images PMID:8134395

  20. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  1. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  2. Lower cranial nerves.

    PubMed

    Soldatos, Theodoros; Batra, Kiran; Blitz, Ari M; Chhabra, Avneesh

    2014-02-01

    Imaging evaluation of cranial neuropathies requires thorough knowledge of the anatomic, physiologic, and pathologic features of the cranial nerves, as well as detailed clinical information, which is necessary for tailoring the examinations, locating the abnormalities, and interpreting the imaging findings. This article provides clinical, anatomic, and radiological information on lower (7th to 12th) cranial nerves, along with high-resolution magnetic resonance images as a guide for optimal imaging technique, so as to improve the diagnosis of cranial neuropathy.

  3. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model

    PubMed Central

    Huisman, Merel; Staruch, Robert M.; Ladouceur-Wodzak, Michelle; van den Bosch, Maurice A.; Burns, Dennis K.; Chhabra, Avneesh; Chopra, Rajiv

    2015-01-01

    Purpose Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system. Methods Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160–300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson’s trichrome and toluidine blue staining. Results All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation. Conclusion Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may

  4. A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells

    NASA Astrophysics Data System (ADS)

    Jenkins, Phillip M.; Laughter, Melissa R.; Lee, David J.; Lee, Young M.; Freed, Curt R.; Park, Daewon

    2015-06-01

    Despite major advances in the pathophysiological understanding of peripheral nerve damage, the treatment of nerve injuries still remains an unmet medical need. Nerve guidance conduits present a promising treatment option by providing a growth-permissive environment that 1) promotes neuronal cell survival and axon growth and 2) directs axonal extension. To this end, we designed an electrospun nerve guidance conduit using a blend of polyurea and poly-caprolactone with both biochemical and topographical cues. Biochemical cues were integrated into the conduit by functionalizing the polyurea with RGD to improve cell attachment. Topographical cues that resemble natural nerve tissue were incorporated by introducing intraluminal microchannels aligned with nanofibers. We determined that electrospinning the polymer solution across a two electrode system with dissolvable sucrose fibers produced a polymer conduit with the appropriate biomimetic properties. Human neural stem cells were cultured on the conduit to evaluate its ability to promote neuronal growth and axonal extension. The nerve guidance conduit was shown to enhance cell survival, migration, and guide neurite extension.

  5. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Update Date 6/1/2015 ...

  6. Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy.

    PubMed

    Mieszawska, Aneta J; Kim, YongTae; Gianella, Anita; van Rooy, Inge; Priem, Bram; Labarre, Matthew P; Ozcan, Canturk; Cormode, David P; Petrov, Artiom; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2013-09-18

    For advanced treatment of diseases such as cancer, multicomponent, multifunctional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near-infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine-tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near-infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.

  7. Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration.

    PubMed

    Xu, Dingfeng; Fan, Lin; Gao, Lingfeng; Xiong, Yan; Wang, Yanfeng; Ye, Qifa; Yu, Aixi; Dai, Honglian; Yin, Yixia; Cai, Jie; Zhang, Lina

    2016-07-13

    Conducting polymers have emerged as frontrunners to be alternatives for nerve regeneration, showing a possibility of the application of polyaniline (PANI) as the nerve guidance conduit. In the present work, the cellulose hydrogel was used as template to in situ synthesize PANI via the limited interfacial polymerization method, leading to one conductive side in the polymer. PANI sub-micrometer dendritic particles with mean diameter of ∼300 nm consisting of the PANI nanofibers and nanoparticles were uniformly assembled into the cellulose matrix. The hydrophobic PANI nanoparticles were immobilized in the hydrophilic cellulose via the phytic acid as "bridge" at presence of water through hydrogen bonding interaction. The PANI/cellulose composite hydrogels exhibited good mechanical properties and biocompatibility as well as excellent guiding capacity for the sciatic nerve regeneration of adult Sprague-Dawley rats without any extra treatment. On the basis of the fact that the pure cellulose hydrogel was an inert material for the neural repair, PANI played an indispensable role on the peripheral nerve regeneration. The hierarchical micro-nanostructure and electrical conductivity of PANI could remarkably induce the adhesion and guiding extension of neurons, showing its great potential in biomedical materials.

  8. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  9. Clinical Neuropathology practice guide 3-2014: Combined nerve and muscle biopsy in the diagnostic work-up of neuropathy – the Bordeaux experience

    PubMed Central

    Vital, Anne; Vital, Claude

    2014-01-01

    Simultaneous combined superficial peroneal nerve and peroneous brevis muscle biopsy, via the same cutaneous incision, allows examination of several tissue specimens and significantly improves the diagnosis of systemic diseases with peripheral nerve involvement. Vasculitides are certainly the most frequently diagnosed on neuro-muscular biopsies, but this procedure is also well advised to asses a diagnosis of sarcoidosis or amyloidosis. More occasionally, combined nerve and muscle biopsy may reveal an unpredicted diagnosis of cholesterol embolism, intra-vascular lymphoma, or enables complementary diagnosis investigations on mitochondrial cytopathy or storage disease. PMID:24618073

  10. Real-time ultrasound-guided comparison of adductor canal block and psoas compartment block combined with sciatic nerve block in laparoscopic knee surgeries

    PubMed Central

    Messeha, Medhat M.

    2016-01-01

    Background: Lumbar plexus block, combined with a sciatic nerve block, is an effective locoregional anesthetic technique for analgesia and anesthesia of the lower extremity. The aim of this study was to compare the clinical results outcome of the adductor canal block versus the psoas compartment block combined with sciatic nerve block using real time ultrasound guidance in patients undergoing elective laparoscopic knee surgeries. Patients and Methods: Ninety patients who were undergoing elective laparoscopic knee surgeries were randomly allocated to receive a sciatic nerve block in addition to lumbar plexus block using either an adductor canal block (ACB) or a posterior psoas compartment approach (PCB) using 25 ml of bupivacine 0.5% with adrenaline 1:400,000 injection over 2-3 minutes while observing the distribution of the local anesthetic in real time. Successful nerve block was defined as a complete loss of pinprick sensation in the region that is supplied by the three nerves along with adequate motor block, 30 minutes after injection. The degree of motor block was evaluated 30 minutes after the block procedure. The results of the present study showed that the real time ultrasound guidance of PCB is more effective than ACB approach. Although the sensory blockade of the femoral nerve achieved equally by both techniques, the LFC and OBT nerves were faster and more effectively blocked with PCB technique. Also PCB group showed significant complete sensory block without need for general anesthesia, significant decrease in the post-operative VAS and significant increase time of first analgesic requirement as compared to the ACB group. Result and Conclusion: The present study demonstrates that blockade of lumber plexus by psoas compartment block is more effective in complete sensory block without general anesthesia supplementation in addition to decrease post-operative analgesic requirement than adductor canal block. PMID:27212766

  11. Nerve conduction

    MedlinePlus

    ... fascicles) that contain hundreds of individual nerve fibers (neurons). Neurons consist of dendrites, axon, and cell body. The ... tree-like structures that receive signals from other neurons and from special sensory cells that sense the ...

  12. Prevention and Management of Nerve Injuries in Thoracic Surgery.

    PubMed

    Auchincloss, Hugh G; Donahue, Dean M

    2015-11-01

    Nerve injuries can cause substantial morbidity after thoracic surgical procedures. These injuries are preventable, provided that the surgeon has a thorough understanding of the anatomy and follows important surgical principles. When nerve injuries occur, it is important to recognize the options available in the immediate and postoperative settings, including expectant management, immediate nerve reconstruction, or auxiliary procedures. This article covers the basic anatomy and physiology of nerves and nerve injuries, an overview of techniques in nerve reconstruction, and a guide to the nerves most commonly involved in thoracic operative procedures.

  13. Minimally Invasive Magnetic Resonance Imaging-Guided Free-Hand Aspiration of Symptomatic Nerve Route Compressing Lumbosacral Cysts Using a 1.0-Tesla Open Magnetic Resonance Imaging System

    SciTech Connect

    Bucourt, Maximilian de Streitparth, Florian Collettini, Federico; Guettler, Felix; Rathke, Hendrik; Lorenz, Britta; Rump, Jens; Hamm, Bernd; Teichgraeber, U. K.

    2012-02-15

    Purpose: To evaluate the feasibility of minimally invasive magnetic resonance imaging (MRI)-guided free-hand aspiration of symptomatic nerve route compressing lumbosacral cysts in a 1.0-Tesla (T) open MRI system using a tailored interactive sequence. Materials and Methods: Eleven patients with MRI-evident symptomatic cysts in the lumbosacral region and possible nerve route compressing character were referred to a 1.0-T open MRI system. For MRI interventional cyst aspiration, an interactive sequence was used, allowing for near real-time position validation of the needle in any desired three-dimensional plane. Results: Seven of 11 cysts in the lumbosacral region were successfully aspirated (average 10.1 mm [SD {+-} 1.9]). After successful cyst aspiration, each patient reported speedy relief of initial symptoms. Average cyst size was 9.6 mm ({+-}2.6 mm). Four cysts (8.8 {+-} 3.8 mm) could not be aspirated. Conclusion: Open MRI systems with tailored interactive sequences have great potential for cyst aspiration in the lumbosacral region. The authors perceive major advantages of the MR-guided cyst aspiration in its minimally invasive character compared to direct and open surgical options along with consecutive less trauma, less stress, and also less side-effects for the patient.

  14. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    NASA Astrophysics Data System (ADS)

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-07-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 composisting of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer.

  15. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    PubMed Central

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-01-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical strength to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 compositing of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer. PMID:25101261

  16. Peripheral Nerve Disorders

    MedlinePlus

    ... spinal cord. Like static on a telephone line, peripheral nerve disorders distort or interrupt the messages between the brain ... body. There are more than 100 kinds of peripheral nerve disorders. They can affect one nerve or many nerves. ...

  17. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  18. Designing ideal conduits for peripheral nerve repair

    PubMed Central

    de Ruiter, Godard C. W.; Malessy, Martijn J. A.; Yaszemski, Michael J.; Windebank, Anthony J.; Spinner, Robert J.

    2010-01-01

    Nerve tubes, guides, or conduits are a promising alternative for autologous nerve graft repair. The first biodegradable empty single lumen or hollow nerve tubes are currently available for clinical use and are being used mostly in the repair of small-diameter nerves with nerve defects of < 3 cm. These nerve tubes are made of different biomaterials using various fabrication techniques. As a result these tubes also differ in physical properties. In addition, several modifications to the common hollow nerve tube (for example, the addition of Schwann cells, growth factors, and internal frameworks) are being investigated that may increase the gap that can be bridged. This combination of chemical, physical, and biological factors has made the design of a nerve conduit into a complex process that demands close collaboration of bioengineers, neuroscientists, and peripheral nerve surgeons. In this article the authors discuss the different steps that are involved in the process of the design of an ideal nerve conduit for peripheral nerve repair. PMID:19435445

  19. Ion guiding accompanied by formation of neutrals in polyethylene terephthalate polymer nanocapillaries: Further insight into a self-organizing process

    SciTech Connect

    Juhasz, Z.; Sulik, B.; Racz, R.; Biri, S.; Bereczky, R. J.; Tokesi, K.; Koever, A.; Palinkas, J.; Stolterfoht, N.

    2010-12-15

    A relatively large yield of neutralized atoms was observed when 3 keV Ar{sup 7+} ions were guided trough polyethylene terephthalate nanocapillaries. Time and deposited-charge dependence of the angular distribution of both the guided ions and the neutrals was measured simultaneously using a two-dimensional multichannel plate detector. The yield of neutrals increased significantly faster than that of guided ions and saturated typically at a few percent level. In accordance with earlier observations, both the yield and the mean emission angle of the guided ions exhibited strong oscillations. For the atoms, the equilibrium was achieved not only faster, but also without significant oscillations in yield and angular position. A phase analysis of these time dependencies provides insight into the dynamic features of the self-organizing mechanisms, which leads to ion guiding in insulating nanocapillaries.

  20. Thermally drawn fibers as nerve guidance scaffolds.

    PubMed

    Koppes, Ryan A; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Abdolrahim Poorheravi, Negin; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina

    2016-03-01

    Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth. PMID:26717246

  1. Thermally drawn fibers as nerve guidance scaffolds.

    PubMed

    Koppes, Ryan A; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Abdolrahim Poorheravi, Negin; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina

    2016-03-01

    Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth.

  2. Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback

    NASA Astrophysics Data System (ADS)

    Ganet, F.; Le, M. Q.; Capsal, J. F.; Lermusiaux, P.; Petit, L.; Millon, A.; Cottinet, P. J.

    2015-12-01

    The development of steerable guide wire or catheter designs has been strongly limited by the lack of enabling actuator technologies. This paper presents the properties of an electrostrive actuator technology for steerable actuation. By carefully tailoring material properties and the actuator design, which can be integrated in devices, this technology should realistically make it possible to obtain a steerable guide wire design with considerable latitude. Electromechanical characteristics are described, and their impact on a steerable design is discussed.

  3. Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback

    PubMed Central

    Ganet, F.; Le, M. Q.; Capsal, J. F.; Lermusiaux, P.; Petit, L.; Millon, A.; Cottinet, P. J.

    2015-01-01

    The development of steerable guide wire or catheter designs has been strongly limited by the lack of enabling actuator technologies. This paper presents the properties of an electrostrive actuator technology for steerable actuation. By carefully tailoring material properties and the actuator design, which can be integrated in devices, this technology should realistically make it possible to obtain a steerable guide wire design with considerable latitude. Electromechanical characteristics are described, and their impact on a steerable design is discussed. PMID:26673883

  4. Ultrasound-guided femoro-sciatic nerve block for post-operative analgesia after below knee orthopaedic surgeries under subarachnoid block: Comparison between clonidine and dexmedetomidine as adjuvants to levobupivacaine

    PubMed Central

    Chaudhary, Sudarshan Kumar; Verma, Ravinder Kumar; Rana, Shelly; Singh, Jai; Gupta, Bhanu; Singh, Yuvraj

    2016-01-01

    Background and Aims: The advent of ultrasonographic-guided techniques has led to increased interest in femoro-sciatic nerve block (FSNB) for lower limb surgeries. α2-agonists have been used recently as adjuvants to local anaesthetics in nerve blocks. We aimed to compare equal doses of clonidine or dexmedetomidine as an adjuvant to levobupivacaine in FSNB for post-operative analgesia. Methods: Ninety patients scheduled to undergo below knee orthopaedic surgeries under subarachnoid block were divided into three groups: Group LL (n = 30) patients received 38 mL of 0.125% levobupivacaine with 2 mL normal saline, Group LD (n = 30) patients received 38 mL of 0.125% levobupivacaine with 0.5 μg/kg dexmedetomidine and Group LC (n = 30) received 38 mL of 0.125% levobupivacaine with 0.5 μg/kg clonidine in saline to make total drug volume of 40 mL. The primary and secondary outcome variables were duration of analgesia and rescue analgesic requirement, verbal rating score respectively. Continuous variables were analysed with analysis of variance or the Kruskal–Wallis test on the basis of data distribution. Categorical variables were analysed with the contingency table analysis and the Fisher's exact test. Results: Duration of analgesia was prolonged with dexmedetomidine (10.17 ± 2.40 h) and clonidine (7.31 ± 1.76 h) as compared to control (4.16 ± 1.04 h, P = 0.00). Significantly lower pain scores were observed in dexmedetomidine group as compared to clonidine up to 8 h post-operatively. Conclusion: Equal doses of clonidine or dexmedetomidine added to levobupivacaine prolonged the duration of analgesia, decreased requirement of rescue analgesia. Dexmedetomidine delays the requirement of rescue analgesics with better pain scores as compared to clonidine. PMID:27512164

  5. Ulnar Nerve Injury after Flexor Tendon Grafting.

    PubMed

    McCleave, Michael John

    2016-10-01

    A 43-year-old female is presented who underwent a two-stage tendon reconstruction and developed a low ulnar nerve palsy postoperatively. Exploration found that the tendon graft was passing through Guyon's canal and that the ulnar nerve was divided. This is a previously unreported complication. The reconstruction is discussed, the literature reviewed and a guide is given on how to identify the correct tissue plane when passing a tendon rod. PMID:27595967

  6. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  7. Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive liposomes with MR-guided focused ultrasound-mediated heating

    PubMed Central

    Ta, Terence; Bartolak-Suki, Elizabeth; Park, Eun-Joo; Karrobi, Kavon M.; McDannold, Nathan J.; Porter, Tyrone M.

    2014-01-01

    Thermosensitive liposomes have emerged as a viable strategy for localized delivery and triggered release of chemotherapy. MR-guided focused ultrasound (MRgFUS) has the capability of heating tumors in a controlled manner, and when combined with thermosensitive liposomes can potentially reduce tumor burden in vivo. However, the impact of this drug delivery strategy has rarely been investigated. We have developed a unique liposome formulation modified with p(NIPAAm-co-PAA), a polymer that confers sensitivity to both temperature and pH. These polymer-modified thermosensitive liposomes (PTSL) demonstrated sensitivity to focused ultrasound, and required lower thermal doses and were more cytotoxic than traditional formulations in vitro. A set of acoustic parameters characterizing optimal release from PTSL in vitro was applied in the design of a combined MRgFUS/PTSL delivery platform. This platform more effectively reduced tumor burden in vivo when compared to free drug and traditional formulations. Histological analysis indicated greater tumor penetration, more extensive ECM remodeling, and greater cell destruction in tumors administered PTSL, correlating with improved response to the therapy. PMID:25151982

  8. ECG-Guided Surveillance Technique in Cryoballoon Ablation for Paroxysmal and Persistent Atrial Fibrillation: A Strategy to Prevent From Phrenic Nerve Palsy

    PubMed Central

    Meissner, Axel; Maagh, Petra; Christoph, Arndt; Oernek, Ahmet; Plehn, Gunnar

    2016-01-01

    Aims: Phrenic nerve palsy (PNP) is still a cause for concern in Cryoballoon ablation (CBA) procedures. New surveillance techniques, such as invasive registration of the compound motor action potential (CMAP), have been thought to prevent the occurrence of PNP. The present study investigates the impact of CMAP surveillance via an alternative and non-invasive ECG-conduction technique during CBA. Methods: PVI with CBA was performed in 166 patients suffering from AF. Diaphragmal contraction was monitored by abdominal hands-on observation in Observation Group I; Observation Group II was treated using additional ECG-conduction, as a means of modified CMAP surveillance method. During the ablation of the right superior and inferior pulmonary veins, the upper extremities lead I was newly adjusted between the inferior sternum and the right chest, thereby recording the maximum CMAP. The CMAP in the above-mentioned ECG leads was continuously observed in a semi-quantitative manner. Results: PNP was observed in 10 (6%) patients in total. In Observation Group I, 6 out of 61 (9.8%) demonstrated PNP. In Observation Group II a significant decrease of PNP could be demonstrated (p <0,001) and occurred in 4 out of 105 patients (3.8%). While three patients from Observation Group I left the EP lap with an ongoing PNP, none of the patients in Observation Group II had persistent PNP outside of the EP lab. Conclusion: The present study demonstrates that additional ECG-conduction, used as modified CMAP surveillance, is an easy, effective and helpful additional safety measure to prevent PNP in CBA. PMID:27279788

  9. The efficiency of a sedative or analgesic supplement to periprostatic nerve blockage for pain control during transrectal ultrasound-guided prostate biopsy – a prospective, randomized, controlled, double blind study

    PubMed Central

    Ozok, Hakki U.; Ates, Mevlut A.; Karakoyunlu, Nihat; Topaloglu, Hikmet; Ersoy, Hamit

    2010-01-01

    Introduction The aim was to examine the effect of a sedative or analgesic supplement to periprostatic nerve blockage (PNB) on pain reduction during probe insertion and needle penetration in patients undergoing transrectal ultrasound (TRUS)-guided prostate biopsy. We also investigated the effects of this procedure on the positive response rate in re-biopsy. Material and methods One hundred TRUS-guided prostate biopsy patients due to prostate-specific antigen (PSA) levels higher than 2.5 ng/ml and/or abnormal rectal examination findings were evaluated. Group 1 (PNB) was given periprostatic lidocaine injection before the procedure. Group 2 (analgesic) was given tramadol and PNB. Group 3 (sedative) was given midazolam and PNB. Group 4 (control) was not given any anaesthesia or analgesics. Pain scores were assessed during probe insertion and needle penetration by a visual analogue scale. Results During probe insertion, the mean pain score of the sedative group was lower than that of the control, analgesic and PNB groups (p < 0.001, p = 0.009, and p < 0.001, respectively). During needle penetration, the mean pain score of the control group was higher than that of the other groups (p < 0.001). The rate of positive response to re-biopsy was found to be 56% in the control group and between 92% and 100% in the other three groups (p < 0.001). Conclusion According to our results, it can be concluded that midazolam, given supplementary to PNB, contributes as an effective and safe alternative for pain control during both probe insertion and penetration of the biopsy needle into the prostate capsule; however, tramadol supplement does not provide any additional contributions. PMID:22419940

  10. Secondary optic nerve tumors.

    PubMed

    Christmas, N J; Mead, M D; Richardson, E P; Albert, D M

    1991-01-01

    Secondary tumors of the optic nerve are more common than primary optic nerve tumors. The involvement of the optic nerve may arise from direct invasion from intraocular malignancies, from hematopoietic malignancy, from meningeal carcinomatosis, or from distant primary tumors. Orbital tumors rarely invade the optic nerve, and brain tumors involve it only in their late stages.

  11. Application of nanotubes and nanofibres in nerve repair. A review.

    PubMed

    Olakowska, Edyta; Woszczycka-Korczyńska, Izabella; Jędrzejowska-Szypułka, Halina; Lewin-Kowalik, Joanna

    2010-01-01

    Nanoscience is the science of small particles of materials on a nanometre scale in at least one dimension. Nanomaterials can interact with tissues at the molecular level with a very high degree of functional specificity and control. A large group of nanomaterials includes nanotubes, nanofibres, liposomes, nanoparticles, polymeric micelles, nanogels and dendrimers. Such materials can be tailored to react with specific biological systems at a molecular or even supra-molecular level and respond to the cell environment while minimizing undesired side effects. Neuron injuries lead to complex cellular and molecular interactions at the lesion site in an effort to repair the damaged tissue and to regenerate the axon for reconnection with its target organ. Strategies to enhance and stimulate regeneration use various nerve conduits and synthetic guidance devices. A promising strategy for treatment of neuronal injuries is to support and promote axonal growth by means of nanotubes and nanofibres. Nanotubes can be produced from various materials, such as carbon, synthetic polymers, DNA, proteins, lipids, silicon and glass. Carbon nanotubes are not biodegradable and can be used as implants. Moreover, they serve as an extracellular scaffold to guide directed axonal growth. In the review we summarize the results of nanotube and nanofibre application in nerve repair after injury.

  12. Normal and sonographic anatomy of selected peripheral nerves. Part II: Peripheral nerves of the upper limb

    PubMed Central

    Sudoł-Szopińska, Iwona

    2012-01-01

    The ultrasonographic examination is frequently used for imaging peripheral nerves. It serves to supplement the physical examination, electromyography, and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive, well-tolerated by patients, and relatively inexpensive. Part I of this article series described in detail the characteristic USG picture of peripheral nerves and the proper examination technique, following the example of the median nerve. This nerve is among the most often examined peripheral nerves of the upper limb. This part presents describes the normal anatomy and ultrasound picture of the remaining large nerve branches in the upper extremity and neck – the spinal accessory nerve, the brachial plexus, the suprascapular, axillary, musculocutaneous, radial and ulnar nerves. Their normal anatomy and ultrasonographic appearance have been described, including the division into individual branches. For each of them, specific reference points have been presented, to facilitate the location of the set trunk and its further monitoring. Sites for the application of the ultrasonographic probe at each reference point have been indicated. In the case of the ulnar nerve, the dynamic component of the examination was emphasized. The text is illustrated with images of probe positioning, diagrams of the normal course of the nerves as well as a series of ultrasonographic pictures of normal nerves of the upper limb. This article aims to serve as a guide in the ultrasound examination of the peripheral nerves of the upper extremity. It should be remembered that a thorough knowledge of the area's topographic anatomy is required for this type of examination. PMID:26674017

  13. Mind over Matter. Teacher's Guide.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This teacher's guide aims to develop an understanding among students in grades 5-9 about the biological effects of drug use. The guide provides background information on the anatomy of the brain, nerve cells and neurotransmission, and the effects of drugs on the brain. Drugs described in this guide include marijuana, opiates, inhalants,…

  14. Nonrecurrent Laryngeal Nerve in the Era of Intraoperative Nerve Monitoring

    PubMed Central

    Gurleyik, Gunay

    2016-01-01

    Nonrecurrent laryngeal nerve (non-RLN) is an anatomical variation increasing the risk of vocal cord palsy. Prediction and early identification of non-RLN may minimize such a risk of injury. This study assessed the effect of intraoperative neuromonitoring (IONM) on the detection of non-RLN. A total of 462 (236 right) nerves in 272 patients were identified and totally exposed, and all intraoperative steps of IONM were sequentially applied on the vagus nerve (VN) and RLN. Right predissection VN stimulation at a distal point did not create a sound signal in three cases (3/236; 1.27%). Proximal dissection of the right VN under IONM guidance established a proximal point, creating a positive signal. The separation point of non-RLN from VN was discovered in all three patients. Non-RLNs were exposed from separation to laryngeal entry. Positive IONM signals were obtained after resection of thyroid lobes, and postoperative period was uneventful in patients with non-RLN. Absence of distal VN signal is a precise predictor of the non-RLN. IONM-guided proximal dissection of the right VN leads to identification of the non-RLN. The prediction of non-RLN by the absence of the VN signal at an early stage of surgery may prevent or minimize the risk of nerve injury.

  15. A Novel Internal Fixator Device for Peripheral Nerve Regeneration

    PubMed Central

    Chuang, Ting-Hsien; Wilson, Robin E.; Love, James M.; Fisher, John P.

    2013-01-01

    Recovery from peripheral nerve damage, especially for a transected nerve, is rarely complete, resulting in impaired motor function, sensory loss, and chronic pain with inappropriate autonomic responses that seriously impair quality of life. In consequence, strategies for enhancing peripheral nerve repair are of high clinical importance. Tension is a key determinant of neuronal growth and function. In vitro and in vivo experiments have shown that moderate levels of imposed tension (strain) can encourage axonal outgrowth; however, few strategies of peripheral nerve repair emphasize the mechanical environment of the injured nerve. Toward the development of more effective nerve regeneration strategies, we demonstrate the design, fabrication, and implementation of a novel, modular nerve-lengthening device, which allows the imposition of moderate tensile loads in parallel with existing scaffold-based tissue engineering strategies for nerve repair. This concept would enable nerve regeneration in two superposed regimes of nerve extension—traditional extension through axonal outgrowth into a scaffold and extension in intact regions of the proximal nerve, such as that occurring during growth or limb-lengthening. Self-sizing silicone nerve cuffs were fabricated to grip nerve stumps without slippage, and nerves were deformed by actuating a telescoping internal fixator. Poly(lactic co-glycolic) acid (PLGA) constructs mounted on the telescoping rods were apposed to the nerve stumps to guide axonal outgrowth. Neuronal cells were exposed to PLGA using direct contact and extract methods, and they exhibited no signs of cytotoxic effects in terms of cell morphology and viability. We confirmed the feasibility of implanting and actuating our device within a sciatic nerve gap and observed axonal outgrowth following device implantation. The successful fabrication and implementation of our device provides a novel method for examining mechanical influences on nerve regeneration. PMID

  16. 45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Xiaolong; Jiang, Wei; Choi, Jinho; Bi, Hai; Chen, Ray

    2005-10-01

    An array of 50μm×50μm polymer waveguides with 45° total internal reflection (TIR) wideband coupling mirrors were fabricated by soft molding to achieve fully embedded boardlevel optoelectronic interconnects. The 45° TIR coupling mirrors were formed at the ends of the waveguides to provide surface normal light coupling between waveguides and optoelectronic devices. Three-dimensional optoelectronic interconnects were replicated in one-step transfer by the soft molding technique. The measured propagation loss of the multimode waveguide was 0.16dB/cm at 850nm wavelength. The coupling efficiency of the silver-coated 45° micromirrors buried under the top cladding was 92% with low polarization sensitivity.

  17. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate

    PubMed Central

    2011-01-01

    Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone) (collagen/PCL) fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it is believed that this

  18. Nerve Injuries in Athletes.

    PubMed

    Collins, K; Storey, M; Peterson, K; Nutter, P

    1988-01-01

    In brief: Nerve injuries in athletes may be serious and may delay or prevent an athlete's return to his or her sport. Over a two-year period, the authors evaluated the condition of 65 patients who had entrapments of a nerve or nerve root, documented with electromyography. They describe four case histories: Two patients had radial nerve entrapments, one caused by baseball pitching and the other by kayaking; one football player had combined suprascapular neuropathy and upper trunk brachial plexopathy; and one patient had carpal tunnel syndrome of a median nerve secondary to rowing. Sports-related peripheral nerve lesions of the lower extremity were not seen during the study period. Based on a literature review, the nerve injuries discussed represent the spectrum of nerve entrapments likely to be seen in US clinics. The authors conclude that peripheral nerve lesions should be considered in the differential diagnosis of sports injuries, particularly at the shoulder, elbow, and wrist.

  19. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers

    PubMed Central

    Yalom, Anisa; Berns, Eric J.; Stephanopoulos, Nicholas; McClendon, Mark T.; Segovia, Luis A.; Spigelman, Igor; Stupp, Samuel I.; Jarrahy, Reza

    2014-01-01

    Peripheral nerve injuries can result in lifelong disability. Primary coaptation is the treatment of choice when the gap between transected nerve ends is short. Long nerve gaps seen in more complex injuries often require autologous nerve grafts or nerve conduits implemented into the repair. Nerve grafts, however, cause morbidity and functional loss at donor sites, which are limited in number. Nerve conduits, in turn, lack an internal scaffold to support and guide axonal regeneration, resulting in decreased efficacy over longer nerve gap lengths. By comparison, peptide amphiphiles (PAs) are molecules that can self-assemble into nanofibers, which can be aligned to mimic the native architecture of peripheral nerve. As such, they represent a potential substrate for use in a bioengineered nerve graft substitute. To examine this, we cultured Schwann cells with bioactive PAs (RGDS-PA, IKVAV-PA) to determine their ability to attach to and proliferate within the biomaterial. Next, we devised a PA construct for use in a peripheral nerve critical sized defect model. Rat sciatic nerve defects were created and reconstructed with autologous nerve, PLGA conduits filled with various forms of aligned PAs, or left unrepaired. Motor and sensory recovery were determined and compared among groups. Our results demonstrate that Schwann cells are able to adhere to and proliferate in aligned PA gels, with greater efficacy in bioactive PAs compared to the backbone-PA alone. In vivo testing revealed recovery of motor and sensory function in animals treated with conduit/PA constructs comparable to animals treated with autologous nerve grafts. Functional recovery in conduit/PA and autologous graft groups was significantly faster than in animals treated with empty PLGA conduits. Histological examinations also demonstrated increased axonal and Schwann cell regeneration within the reconstructed nerve gap in animals treated with conduit/PA constructs. These results indicate that PA nanofibers may

  20. The multicellular complexity of peripheral nerve regeneration.

    PubMed

    Cattin, Anne-Laure; Lloyd, Alison C

    2016-08-01

    Peripheral nerves show a remarkable ability to regenerate following a transection injury. Downstream of the cut, the axons degenerate and so to regenerate the nerve, the severed axons need to regrow back to their targets and regain function. This requires the axons to navigate through two different environments. (1) The bridge of new tissue that forms between the two nerve stumps and (2) the distal stump of the nerve that remains associated with the target tissues. This involves distinct, complex multicellular responses that guide and sustain axonal regrowth. These processes have important implications for our understanding of the regeneration of an adult tissue and have parallels to aspects of tumour formation and spread. PMID:27128880

  1. Common peroneal nerve dysfunction

    MedlinePlus

    ... toe-out movements Tests of nerve activity include: Electromyography (EMG, a test of electrical activity in muscles) Nerve ... Peroneal neuropathy. In: Preston DC, Shapiro BE, eds. Electromyography and Neuromuscular Disorders . 3rd ed. Philadelphia, PA: Elsevier; ...

  2. Nerve conduction velocity

    MedlinePlus

    ... to measure the speed of the nerve signals. Electromyography (recording from needles placed into the muscles) is ... Often, the nerve conduction test is followed by electromyography (EMG). In this test, needles are placed into ...

  3. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  4. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  5. Distal nerve entrapment following nerve repair.

    PubMed

    Schoeller, T; Otto, A; Wechselberger, G; Pommer, B; Papp, C

    1998-04-01

    Failure of nerve repair or poor functional outcome after reconstruction can be influenced by various causes. Besides improper microsurgical technique, fascicular malalignment and unphysiologic tension, we found in our clinical series that a subclinical nerve compression distal to the repair site can seriously impair regeneration. We concluded that the injured nerve, whether from trauma or microsurgical intervention, could be more susceptible to distal entrapment in the regenerative stage because of its disturbed microcirculation, swelling and the increase of regenerating axons followed by increased nerve volume. In two cases we found the regenerating nerve entrapped at pre-existing anatomical sites of narrowing resulting in impaired functional recovery. In both cases the surgical therapy was decompression of the distal entrapped nerve and this was followed by continued regeneration. Thorough clinical and electrophysiologic follow-up is necessary to detect such adverse compression effects and to distinguish between the various causes of failed regeneration. Under certain circumstances primary preventive decompression may be beneficial if performed at the time of nerve coaptation.

  6. [Hypoglossal nerve neuropraxia after shoulder hemiarthroplasty].

    PubMed

    Pariente, L; Camarena, P; Koo, M; Sabaté, A; Armengol, J

    2014-05-01

    We report a case of hypoglossal nerve damage after shoulder hemiarthroplasty with the patient in "beach chair" position, performed with general anesthesia with orotracheal intubation, and without complications. An ultrasound-guided interscalene block was previously performed in an alert patient. After the intervention, the patient showed clinical symptomatology compatible with paralysis of the right hypoglossal nerve that completely disappeared after 4 weeks. Mechanisms such as hyperextension of the neck during intubation, endotracheal tube cuff pressure, excessive hyperextension, or head lateralization during surgery have been described as causes of this neurological damage. We discuss the causes, the associated factors and suggest preventive measures.

  7. A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration.

    PubMed

    Xu, Yunqiang; Zhang, Zhenhui; Chen, Xuyi; Li, Ruixin; Li, Dong; Feng, Shiqing

    2016-01-01

    As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body's natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs) and adipose-derived stem cells (ADSCs) as seed cells and introduced them into a silk fibroin (SF)/collagen scaffold to construct a tissue-engineered nerve conduit (TENC). Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft) were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair. PMID:26799619

  8. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.

    PubMed

    Chiono, Valeria; Tonda-Turo, Chiara

    2015-08-01

    The current trend of peripheral nerve tissue engineering is the design of advanced nerve guidance channels (NGCs) acting as physical guidance for regeneration of nerves across lesions. NGCs should present multifunctional properties aiming to direct the sprouting of axons from the proximal nerve end, to concentrate growth factors secreted by the injured nerve ends, and to reduce the ingrowth of scar tissue into the injury site. A critical aspect in the design of NGCs is conferring them the ability to provide topographic, chemotactic and haptotactic cues that lead to functional nerve regeneration thus increasing the axon growth rate and avoiding or minimizing end-organ (e.g. muscle) atrophy. The present work reviews the recent state of the art in NGCs engineering and defines the external guide and internal fillers structural and compositional requirements that should be satisfied to improve nerve regeneration, especially in the case of large gaps (>2 cm). Techniques for NGCs fabrication were described highlighting the innovative approaches direct to enhance the regeneration of axon stumps compared to current clinical treatments. Furthermore, the possibility to apply stem cells as internal cues to the NGCs was discussed focusing on scaffold properties necessary to ensure cell survival. Finally, the optimized features for NGCs design were summarized showing as multifunctional cues are needed to produce NGCs having improved results in clinics.

  9. The Furcal Nerve Revisited

    PubMed Central

    Dabke, Harshad V.

    2014-01-01

    Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked) is an independent nerve with its own ventral and dorsal branches (rootlets) and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to the lumbosacral trunk. It is most commonly found at L4 level and is the most common cause of atypical presentation of radiculopathy/sciatica. Very little is published about the furcal nerve and many are unaware of its existence. This article summarizes all the existing evidence about furcal nerve in English literature in an attempt to create awareness and offer insight about this unique entity to fellow colleagues/professionals involved in spine care. PMID:25317309

  10. Lateralization Technique and Inferior Alveolar Nerve Transposition

    PubMed Central

    Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto

    2016-01-01

    Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360

  11. Visualizing Oxazine 4 nerve-specific fluorescence ex vivo in frozen tissue sections

    NASA Astrophysics Data System (ADS)

    Barth, Connor W.; Gibbs, Summer L.

    2016-03-01

    Nerve damage plagues surgical outcomes and remains a major burden for patients, surgeons, and the healthcare system. Fluorescence image-guided surgery using nerve specific small molecule fluorophores offers a solution to diminish surgical nerve damage through improved intraoperative nerve identification and visualization. Oxazine 4 has shown superior nerve specificity in initial testing in vivo, while exhibiting a red shifted excitation and emission spectra compared to other nerve-specific fluorophores. However, Oxazine 4 does not exhibit near-infrared (NIR) excitation and emission, which would be ideal to improve penetration depth and nerve signal to background ratios for in vivo imaging. Successful development of a NIR nerve-specific fluorophore will require understanding of the molecular target of fluorophore nerve specificity. While previous small molecule nerve-specific fluorophores have demonstrated excellent ex vivo nerve specificity, Oxazine 4 ex vivo nerve specific fluorescence has been difficult to visualize. In the present study, we examined each step of the ex vivo fluorescence microscopy sample preparation procedure to discover how in vivo nerve-specific fluorescence is changed during ex vivo tissue sample preparation. Through step-by-step examination we found that Oxazine 4 fluorescence was significantly diminished by washing and mounting tissue sections for microscopy. A method to preserve Oxazine 4 nerve specific fluorescence ex vivo was determined, which can be utilized for visualization by fluorescence microscopy.

  12. Inferior alveolar nerve repositioning.

    PubMed

    Louis, P J

    2001-09-01

    Nerve repositioning is a viable alternative for patients with an atrophic edentulous posterior mandible. Patients, however, should be informed of the potential risks of neurosensory disturbance. Documentation of the patient's baseline neurosensory function should be performed with a two-point discrimination test or directional brush stroke test preoperatively and postoperatively. Recovery of nerve function should be expected in 3 to 6 months. The potential for mandibular fracture when combining nerve repositioning with implant placement also should be discussed with the patient. This can be avoided by minimizing the amount of buccal cortical plate removal during localization of the nerve and maintaining the integrity of the inferior cortex of the mandible. Additionally, avoid overseating the implant, thus avoiding stress along the inferior border of the mandible. The procedure does allow for the placement of longer implants, which should improve implant longevity. Patients undergoing this procedure have expressed overall satisfaction with the results. Nerve repositioning also can be used to preserve the inferior alveolar nerve during resection of benign tumors or cysts of the mandible. This procedure allows the surgeon to maintain nerve function in situations in which the nerve would otherwise have to be resected. PMID:11665379

  13. Cryotherapy and nerve palsy.

    PubMed

    Drez, D; Faust, D C; Evans, J P

    1981-01-01

    Ice application is one of the most extensively used treatments for athletic injuries. Frostbite is a recognized danger. Five cases of nerve palsy resulting from ice application are reported here. These palsies were temporary. They usually resolve spontaneously without any significant sequelae. This complication can be avoided by not using ice for more than 30 minutes and by guarding superficial nerves in the area.

  14. Imaging the cranial nerves.

    PubMed

    Parry, Andrew T; Volk, Holger A

    2011-01-01

    An understanding of the normal course of the cranial nerves (CN) is essential when interpreting images of patients with cranial neuropathies. CN foramina are depicted best using computed X-ray tomography, but the nerves are depicted best using magnetic resonance imaging. The function and anatomy of the CN in the dog are reviewed and selected examples of lesions affecting the CN are illustrated.

  15. [Sciatic nerve intraneural perineurioma].

    PubMed

    Bonhomme, Benjamin; Poussange, Nicolas; Le Collen, Philippe; Fabre, Thierry; Vital, Anne; Lepreux, Sébastien

    2015-12-01

    Intraneural perineurioma is a benign tumor developed from the perineurium and responsible for localized nerve hypertrophy. This uncommon tumor is characterized by a proliferation of perineural cells with a "pseudo-onion bulb" pattern. We report a sciatic nerve intraneural perineurioma in a 39-year-old patient. PMID:26586011

  16. Optic Nerve Decompression

    MedlinePlus

    ... canals). The optic nerve is the “nerve of vision” and extends from the brain, through your skull, and into your eye. A ... limited to, the following: loss of vision, double vision, inadequate ... leakage of brain fluid (CSF), meningitis, nasal bleeding, infection of the ...

  17. Ulnar nerve tuberculoma.

    PubMed

    Ramesh Chandra, V V; Prasad, Bodapati Chandramowliswara; Varaprasad, Gangumolu

    2013-01-01

    The authors report a very rare case of tuberculoma involving the ulnar nerve. The patient, a 7-year-old girl, presented with swelling over the medial aspect of her right forearm just below the elbow joint, with features of ulnar nerve palsy, including paresthesias along the little and ring fingers and claw hand deformity. There was a history of trauma and contact with a contagious case of tuberculosis. There were no other signs of tuberculosis. At surgical exploration the ulnar nerve was found to be thickened, and on opening the sheath there was evidence of caseous material enclosed in a fibrous capsule compressing and displacing the nerve fibers. The lesion, along with the capsule, was subtotally removed using curettage, and a part of the capsule that was densely adherent to the nerve fibers was left in the patient. Histopathological examination of the specimen was consistent with tuberculoma. The patient received adequate antitubercular treatment and showed significant improvement.

  18. Peripheral nerve stimulation: definition.

    PubMed

    Abejón, David; Pérez-Cajaraville, Juan

    2011-01-01

    Recently, there has been a tremendous evolution in the field of neurostimulation, both from the technological point of view and from development of the new and different indications. In some areas, such as peripheral nerve stimulation, there has been a boom in recent years due to the variations in the surgical technique and the improved results documented by in multiple published papers. All this makes imperative the need to classify and define the different types of stimulation that are used today. The confusion arises when attempting to describe peripheral nerve stimulation and subcutaneous stimulation. Peripheral nerve stimulation, in its pure definition, involves implanting a lead on a nerve, with the aim to produce paresthesia along the entire trajectory of the stimulated nerve.

  19. Purinergic nerves and receptors.

    PubMed

    Burnstock, G

    1980-01-01

    The presence of a non-cholinergic, non-adrenergic component in the vertebrate autonomic nervous system is now well established. Evidence that ATP is the transmitter released from some of these nerves (called "purinergic') includes: (a) synthesis and storage of ATP in nerves: (b) release of ATP from the nerves when they are stimulated; (c) exogenously applied ATP mimicking the action of nerve-released transmitter; (d) the presence of ectoenzymes which inactivate ATP; (e) drugs which produce similar blocking or potentiating effects on the response to exogenously applied ATP and nerve stimulation. A basis for distinguishing two types of purinergic receptors has been proposed according to four criteria: relative potencies of agonists, competitive antagonists, changes in levels of cAMP and induction of prostaglandin synthesis. Thus P1 purinoceptors are most sensitive to adenosine, are competitively blocked by methylxanthines and their occupation leads to changes in cAMP accumulation; while P2 purinoceptors are most sensitive to ATP, are blocked (although not competitively) by quinidine, 2-substituted imidazolines, 2,2'-pyridylisatogen and apamin, and their occupation leads to production of prostaglandin. P2 purinoceptors mediate responses of smooth muscle to ATP released from purinergic nerves, while P1 purinoceptors mediate the presynaptic actions of adenosine on adrenergic, cholinergic and purinergic nerve terminals. PMID:6108568

  20. Intraparotid facial nerve neurofibroma.

    PubMed

    Sullivan, M J; Babyak, J W; Kartush, J M

    1987-02-01

    Neurogenic neoplasms of the intraparotid facial nerve are uncommon and are usually diagnosed intraoperatively by tissue biopsy. Fifty-six cases of primary neurogenic neoplasms involving the facial nerve have been reported. The majority of these have been schwannomas. A case of a solitary neurofibroma involving the main trunk of the facial nerve is presented. Schwannomas and neurofibromas have distinct histological features which must be considered prior to the management of these tumors. The management of neurogenic tumors associated with normal facial function is a particularly difficult problem. A new approach for the diagnosis and management of neurogenic neoplasms is described utilizing electroneurography. PMID:3807626

  1. Radial Nerve Tendon Transfers.

    PubMed

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  2. High aspect ratio template and method for producing same for central and peripheral nerve repair

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeff S. (Inventor); Tuszynski, Mark Henry (Inventor); Gros, Thomas (Inventor); Chan, Christina (Inventor); Mehrotra, Sumit (Inventor)

    2011-01-01

    Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers. The scaffolds may be used in, among other applications, the repair of central and peripheral nerves. Scaffolds for the repair of peripheral nerves may include a reservoir for the sustained release of nerve growth factor. The scaffolds may also include a multifunctional polyelectrolyte layer for the sustained release of nerve growth factor and enhance biocompatibility.

  3. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  4. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  5. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    PubMed

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. PMID:27094893

  6. The lower cranial nerves: IX, X, XI, XII.

    PubMed

    Sarrazin, J-L; Toulgoat, F; Benoudiba, F

    2013-10-01

    The lower cranial nerves innervate the pharynx and larynx by the glossopharyngeal (CN IX) and vagus (CN X) (mixed) nerves, and provide motor innervation of the muscles of the neck by the accessory nerve (CN XI) and the tongue by the hypoglossal nerve (CN XII). The symptomatology provoked by an anomaly is often discrete and rarely in the forefront. As with all cranial nerves, the context and clinical examinations, in case of suspicion of impairment of the lower cranial nerves, are determinant in guiding the imaging. In fact, the impairment may be located in the brain stem, in the peribulbar cisterns, in the foramens or even in the deep spaces of the face. The clinical localization of the probable seat of the lesion helps in choosing the adapted protocol in MRI and eventually completes it with a CT-scan. In the bulb, the intra-axial pathology is dominated by brain ischemia (in particular, with Wallenberg syndrome) and multiple sclerosis. Cisternal pathology is tumoral with two tumors, schwannoma and meningioma. The occurrence is much lower than in the cochleovestibular nerves as well as the leptomeningeal nerves (infectious, inflammatory or tumoral). Finally, foramen pathology is tumoral with, outside of the usual schwannomas and meningiomas, paragangliomas. For radiologists, fairly hesitant to explore these lower cranial pairs, it is necessary to be familiar with (or relearn) the anatomy, master the exploratory technique and be aware of the diagnostic possibilities.

  7. Facial Nerve Neuroma Management

    PubMed Central

    Weber, Peter C.; Osguthorpe, J. David

    1998-01-01

    Three facial nerve neuromas were identified in the academic year 1994-1995. Each case illustrates different management dilemmas. One patient with a grade III facial nerve palsy had a small geniculate ganglion neuroma with the dilemma of decompression versus resection clear nerve section margins. The second patient underwent facial neuroma resection with cable graft reconstruction, but the permanent sections were positive. The last patient had a massive neuroma in which grafting versus other facial reconstructive options were considered. These three cases illustrate some of the major controversies in facial nerve neuroma management. We discuss our decision-making plan and report our results. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:17171043

  8. Diabetes and nerve damage

    MedlinePlus

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  9. Vagus Nerve Stimulation

    PubMed Central

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  10. Sacral nerve stimulation.

    PubMed

    Matzel, K E; Stadelmaier, U; Besendörfer, M

    2004-01-01

    The current concept of recruiting residual function of an inadequate pelvic organ by electrostimulation involves stimulation of the sacral spinal nerves at the level of the sacral canal. The rationale for applying SNS to fecal incontinence was based on clinical observations of its effect on bowel habits and anorectal continence function in urologic patients (increased anorectal angulation and anal canal closure pressure) and on anatomic considerations: dissection demonstrated a dual peripheral nerve supply of the striated pelvic floor muscles that govern these functions. Because the sacral spinal nerve site is the most distal common location of this dual nerve supply, stimulating here can elicit both functions. Since the first application of SNS in fecal incontinence in 1994, this technique has been improved, the patient selection process modified, and the spectrum of indications expanded. At present SNS has been applied in more than 1300 patients with fecal incontinence limited.

  11. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  12. Damaged axillary nerve (image)

    MedlinePlus

    Conditions associated with axillary nerve dysfunction include fracture of the humerus (upper arm bone), pressure from casts or splints, and improper use of crutches. Other causes include systemic disorders that cause neuritis (inflammation of ...

  13. Iatrogenic accessory nerve injury.

    PubMed Central

    London, J.; London, N. J.; Kay, S. P.

    1996-01-01

    Accessory nerve injury produces considerable disability. The nerve is most frequently damaged as a complication of radical neck dissection, cervical lymph node biopsy and other surgical procedures. The problem is frequently compounded by a failure to recognise the error immediately after surgery when surgical repair has the greatest chance of success. We present cases which outline the risk of accessory nerve injury, the spectrum of clinical presentations and the problems produced by a failure to recognise the deficit. Regional anatomy, consequences of nerve damage and management options are discussed. Diagnostic biopsy of neck nodes should not be undertaken as a primary investigation and, when indicated, surgery in this region should be performed by suitably trained staff under well-defined conditions. Awareness of iatrogenic injury and its consequences would avoid delays in diagnosis and treatment. Images Figure 2 PMID:8678450

  14. Femoral nerve dysfunction

    MedlinePlus

    Neuropathy - femoral nerve; Femoral neuropathy ... Craig EJ, Clinchot DM. Femoral neuropathy. In: Frontera WR, Silver JK, Rizzo TD Jr, eds. Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation . 3rd ...

  15. Diabetic Nerve Problems

    MedlinePlus

    ... the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. ... change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. Controlling ...

  16. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  17. Fighting nerve agent chemical weapons with enzyme technology.

    PubMed

    LeJeune, K E; Dravis, B C; Yang, F; Hetro, A D; Doctor, B P; Russell, A J

    1998-12-13

    The extreme toxicity of organophosphorous-based compounds has been known since the late 1930s. Starting in the mid-1940s, many nations throughout the world have been producing large quantities of organophosphorous (OP) nerve agents. Huge stockpiles of nerve agents have since developed. There are reportedly more than 200,000 tons of nerve agents in existence worldwide. There is an obvious need for protective clothing capable of guarding an individual from exposure to OP chemical weapons. Also, chemical processes that can effectively demilitarize and detoxify stored nerve agents are in great demand. The new and widely publicized Chemical Weapons Treaty requires such processes to soon be in place throughout the world. Biotechnology may provide the tools necessary to make such processes not only possible, but quite efficient in reducing the nerve agent dilemma. The following paper discusses some of the history in developing enzyme technology against nerve agents. Our laboratory has interest in enhancing the productivity and potential utility of these systems in both demilitarization and decontamination applications. Freeze-dried nerve agent-hydrolyzing enzyme preparations have been shown to be effective in decontaminating gaseous nerve agents. The direct incorporation of nerve agent-hydrolyzing enzymes within cross-linked polyurethane foam matrices during polymer synthesis has been shown to dramatically enhance the productivity of two different enzyme systems. The future goal of such work lies in building a bridge between the clinical application of nerve agent-hydrolyzing enzymes and practical processing techniques that may take advantage of the initial results already achieved in the laboratory.

  18. CT-guided Perineural Injections for Chronic Pelvic Pain.

    PubMed

    Wadhwa, Vibhor; Scott, Kelly M; Rozen, Shai; Starr, Adam J; Chhabra, Avneesh

    2016-01-01

    Chronic pelvic pain is a disabling condition that affects a large number of men and women. It may occur after a known inciting event, or it could be idiopathic. A common cause of pelvic pain syndrome is neuropathy of the pelvic nerves, including the femoral and genitofemoral nerves, ilioinguinal and iliohypogastric nerves, pudendal nerve, obturator nerve, lateral and posterior femoral cutaneous nerves, inferior cluneal nerves, inferior rectal nerve, sciatic nerve, superior gluteal nerve, and the spinal nerve roots. Pelvic neuropathy may result from entrapment, trauma, inflammation, or compression or may be iatrogenic, secondary to surgical procedures. Imaging-guided nerve blocks can be used for diagnostic and therapeutic management of pelvic neuropathies. Ultrasonography (US)-guided injections are useful for superficial locations; however, there can be limitations with US, such as its operator dependence, the required skill, and the difficulty in depicting various superficial and deep pelvic nerves. Magnetic resonance (MR) imaging-guided injections are radiation free and lead to easy depiction of the nerve because of the superior soft-tissue contrast; although the expense, the required skill, and the limited availability of MR imaging are major hindrances to its widespread use for this purpose. Computed tomography (CT)-guided injections are becoming popular because of the wide availability of CT scanners, the lower cost, and the shorter amount of time required to perform these injections. This article outlines the technique of perineural injection of major pelvic nerves, illustrates the different target sites with representative case examples, and discusses the pitfalls. (©)RSNA, 2016. PMID:27618322

  19. Communications Between the Facial Nerve and the Vestibulocochlear Nerve, the Glossopharyngeal Nerve, and the Cervical Plexus.

    PubMed

    Hwang, Kun; Song, Ju Sung; Yang, Su Cheol

    2015-10-01

    The aim of this review is to elucidate the communications between the facial nerves or facial nerve and neighboring nerves: the vestibulocochlear nerve, the glossopharyngeal nerve, and the cervical plexus.In a PubMed search, 832 articles were searched using the terms "facial nerve and communication." Sixty-two abstracts were read and 16 full-text articles were reviewed. Among them, 8 articles were analyzed.The frequency of communication between the facial nerve and the vestibulocochlear nerve was the highest (82.3%) and the frequency of communication between the facial nerve and the glossopharyngeal nerve was the lowest (20%). The frequency of communication between the facial nerve and the cervical plexus was 65.2 ± 43.5%. The frequency of communication between the cervical branch and the marginal mandibular branch of the facial nerve was 24.7 ± 1.7%.Surgeons should be aware of the nerve communications, which are important during clinical examinations and surgical procedures of the facial nerves such as those communications involved in facial reconstructive surgery, neck dissection, and various nerve transfer procedures.

  20. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    PubMed Central

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  1. Decellularisation and histological characterisation of porcine peripheral nerves.

    PubMed

    Zilic, Leyla; Wilshaw, Stacy-Paul; Haycock, John W

    2016-09-01

    Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three-dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1%; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1% (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95% (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair. Biotechnol. Bioeng. 2016;113: 2041-2053. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. PMID:26926914

  2. Electroactive biocompatible materials for nerve cell stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Chen, Jun; Liu, Yong

    2015-04-01

    In the past decades, great efforts have been developed for neurobiologists and neurologists to restore nervous system functions. Recently much attention has been paid to electrical stimulation (ES) of the nervous system as a potential way to repair it. Various conductive biocompatible materials with good electrical conductivity, biocompatibility, and long-term ES or electrical stability have been developed as the substrates for ES. In this review, we summarized different types of materials developed in the purpose for ES of nervous system, including conducting polymers, carbon nanomaterials and composites from conducting polymer/carbon nanomaterials. The present review will give our perspective on the future research directions for further investigation on development of ES particularly on the nerve system.

  3. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  4. Advances and Future Applications of Augmented Peripheral Nerve Regeneration.

    PubMed

    Jones, Salazar; Eisenberg, Howard M; Jia, Xiaofeng

    2016-01-01

    Peripheral nerve injuries remain a significant source of long lasting morbidity, disability, and economic costs. Much research continues to be performed in areas related to improving the surgical outcomes of peripheral nerve repair. In this review, the physiology of peripheral nerve regeneration and the multitude of efforts to improve surgical outcomes are discussed. Improvements in tissue engineering that have allowed for the use of synthetic conduits seeded with neurotrophic factors are highlighted. Selected pre-clinical and available clinical data using cell based methods such as Schwann cell, undifferentiated, and differentiated stem cell transplantation to guide and enhance peripheral nerve regeneration are presented. The limitations that still exist in the utility of neurotrophic factors and cell-based therapies are outlined. Strategies that are most promising for translation into the clinical arena are suggested. PMID:27618010

  5. Advances and Future Applications of Augmented Peripheral Nerve Regeneration

    PubMed Central

    Jones, Salazar; Eisenberg, Howard M.; Jia, Xiaofeng

    2016-01-01

    Peripheral nerve injuries remain a significant source of long lasting morbidity, disability, and economic costs. Much research continues to be performed in areas related to improving the surgical outcomes of peripheral nerve repair. In this review, the physiology of peripheral nerve regeneration and the multitude of efforts to improve surgical outcomes are discussed. Improvements in tissue engineering that have allowed for the use of synthetic conduits seeded with neurotrophic factors are highlighted. Selected pre-clinical and available clinical data using cell based methods such as Schwann cell, undifferentiated, and differentiated stem cell transplantation to guide and enhance peripheral nerve regeneration are presented. The limitations that still exist in the utility of neurotrophic factors and cell-based therapies are outlined. Strategies that are most promising for translation into the clinical arena are suggested. PMID:27618010

  6. Pediatric nerve blocks: an evidence-based approach.

    PubMed

    Duchicela, Sacha; Lim, Anthoney

    2013-10-01

    Successful injury management is often dependent upon optimal pain control. Many injuries do not require procedural sedation or systemic analgesia, and emergency clinicians have used peripheral nerve blocks for several decades for these injuries. Nerve blocks deliver anesthetic to the nerve that corresponds to the sensory innervation of the area where the wound or injury is located. In the pediatric setting, some nerve block modalities require modification to the approach and techniques commonly used in adult patients due to the age and weight of the child, the ability of the patient to cooperate, and the ability of the emergency clinician to observe pain response. Peripheral nerve blocks have a high rate of success for effective local anesthesia and a low rate of complications, making them an attractive option for analgesia in the management of some injuries. This evidence-based review summarizes the advantages and disadvantages of peripheral nerve blocks, reviews commonly used local anesthetics, describes the landmark technique for the most common nerve blocks used in pediatric emergency medicine, and presents literature on ultrasound-guided technology.

  7. Focused ultrasound effects on nerve action potential in vitro

    PubMed Central

    Colucci, Vincent; Strichartz, Gary; Jolesz, Ferenc; Vykhodtseva, Natalia; Hynynen, Kullervo

    2009-01-01

    Minimally invasive applications of thermal and mechanical energy to selective areas of the human anatomy have led to significant advances in treatment of and recovery from typical surgical interventions. Image-guided focused ultrasound allows energy to be deposited deep into the tissue, completely noninvasively. There has long been interest in using this focal energy delivery to block nerve conduction for pain control and local anesthesia. In this study, we have performed an in vitro study to further extend our knowledge of this potential clinical application. The sciatic nerves from the bullfrog (Rana catesbeiana) were subjected to focused ultrasound (at frequencies of 0.661MHz and 1.986MHz) and to heated Ringer’s solution. The nerve action potential was shown to decrease in the experiments and correlated with temperature elevation measured in the nerve. The action potential recovered either completely, partially, or not at all, depending on the parameters of the ultrasound exposure. The reduction of the baseline nerve temperature by circulating cooling fluid through the sonication chamber did not prevent the collapse of the nerve action potential; but higher power was required to induce the same endpoint as without cooling. These results indicate that a thermal mechanism of focused ultrasound can be used to block nerve conduction, either temporarily or permanently. PMID:19647923

  8. Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair.

    PubMed

    Mobasseri, S A; Terenghi, G; Downes, S

    2013-07-01

    Damage to peripheral nerves can cause significant motor or sensory injuries. In serious cases, a nerve is sacrificed from another part of the body to repair a damaged nerve (autograft). The development of biodegradable polymer conduits may offer an alternative to autografts. This study investigated the surface topography and mechanical properties of smooth, pitted and grooved structures of ultra-thin poly (ε-caprolactone)/poly lactic acid blended, solvent-cast films. We have investigated the effect of the groove shape on cell morphology and alignment. Photolithography and dry/wet etching was used to develop patterned silicon substrates with grooves with accurate geometries (V shaped, sloped walls and square shaped). Using a neural cell line (NG108-15), in vitro experiments confirmed good cell attachment and proliferation on all the polymer scaffolds. Imaging techniques demonstrated that there was different cellular responses and morphology according to the shape of the groove. Studies showed that the geometry, particularly the angle of the slope and the space between grooves, affected cellular responses. In addition, biomechanical studies showed that the patterned films had excellent mechanical properties and were stronger than the natural nerve. The conduit tubes were made by rolling the films around a mandrel and using a thermal welding technique to join the edges. The promising biomechanical and in vitro results demonstrate that nerve cell responses are affected by the shape of longitudinal grooves, and particularly by the angle of the slope of the groove walls. PMID:23572143

  9. Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study.

    PubMed

    Mari, Jean Martial; Xia, Wenfeng; West, Simeon J; Desjardins, Adrien E

    2015-11-01

    Accurate and efficient identification of nerves is an essential component of peripheral nerve blocks. While ultrasound (US) imaging is increasingly used as a guidance modality, it often provides insufficient contrast for identifying nerves from surrounding tissues such as tendons. Electrical nerve stimulators can be used in conjunction with US imaging for discriminating nerves from surrounding tissues, but they are insufficient to reliably prevent neural punctures, so that alternative methods are highly desirable. In this study, an interventional multispectral photoacoustic (PA) imaging system was used to directly compare the signal amplitudes and spectra acquired from nerves and tendons ex vivo, for the first time. The results indicate that the system can provide significantly higher image contrast for discriminating nerves and tendons than that provided by US imaging. As such, photoacoustic imaging could be valuable as an adjunct to US for guiding peripheral nerve blocks. PMID:26580699

  10. Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; Xia, Wenfeng; West, Simeon J.; Desjardins, Adrien E.

    2015-11-01

    Accurate and efficient identification of nerves is an essential component of peripheral nerve blocks. While ultrasound (US) imaging is increasingly used as a guidance modality, it often provides insufficient contrast for identifying nerves from surrounding tissues such as tendons. Electrical nerve stimulators can be used in conjunction with US imaging for discriminating nerves from surrounding tissues, but they are insufficient to reliably prevent neural punctures, so that alternative methods are highly desirable. In this study, an interventional multispectral photoacoustic (PA) imaging system was used to directly compare the signal amplitudes and spectra acquired from nerves and tendons ex vivo, for the first time. The results indicate that the system can provide significantly higher image contrast for discriminating nerves and tendons than that provided by US imaging. As such, photoacoustic imaging could be valuable as an adjunct to US for guiding peripheral nerve blocks.

  11. Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study.

    PubMed

    Mari, Jean Martial; Xia, Wenfeng; West, Simeon J; Desjardins, Adrien E

    2015-11-01

    Accurate and efficient identification of nerves is an essential component of peripheral nerve blocks. While ultrasound (US) imaging is increasingly used as a guidance modality, it often provides insufficient contrast for identifying nerves from surrounding tissues such as tendons. Electrical nerve stimulators can be used in conjunction with US imaging for discriminating nerves from surrounding tissues, but they are insufficient to reliably prevent neural punctures, so that alternative methods are highly desirable. In this study, an interventional multispectral photoacoustic (PA) imaging system was used to directly compare the signal amplitudes and spectra acquired from nerves and tendons ex vivo, for the first time. The results indicate that the system can provide significantly higher image contrast for discriminating nerves and tendons than that provided by US imaging. As such, photoacoustic imaging could be valuable as an adjunct to US for guiding peripheral nerve blocks.

  12. Peripheral nerve response to injury.

    PubMed

    Steed, Martin B

    2011-03-01

    Oral and maxillofacial surgeons caring for patients who have sustained a nerve injury to a branch of the peripheral trigeminal nerve must possess a basic understanding of the response of the peripheral nerves to trauma. The series of events that subsequently take place are largely dependent on the injury type and severity. Regeneration of the peripheral nerve is possible in many instances and future manipulation of the regenerative microenvironment will lead to advances in the management of these difficult injuries.

  13. Can low dose spinal anesthesia combined with ultrasound guided bilateral ilioinguinal-iliohypogastric nerve blocks avoid use of additional epidural catheter in high risk obstetric cases? Our experience from two cases.

    PubMed

    Bhakta, P; Sharma, P K; Date, R R; Mohammad, A K

    2013-01-01

    Critical obstetric cases associated with cardiac pathology may pose real challenge for anaesthesiologist during Caesarean section. Meticulous perioperative care and suitable selection of anaesthesia technique are the key to successful outcome. Single shot spinal anaesthesia is not used any more because of serious haemodynamic consequence. Progressive and controlled epidural local anaesthetic injection is mostly used in such cases. But recently combined spinal epidural anaesthesia and continuous spinal anaesthesia are suggested due to better precise control of haemodynamics and quicker onset. However, institution of such complex technique may require time which may not be feasible in emergency situations. Use of bilateral ilioinguinal-iliohypogastric nerve block along with low dose spinal anaesthesia may obviate the need of additional epidural catheter in such complicated cases. We hereby present our experience from two cases.

  14. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  15. Optic Nerve Atrophy

    MedlinePlus

    ... with the occipital lobe (the part of the brain that interprets vision) like a cable wire. What is optic nerve ... nystagmus. In older patients, peripheral vision and color vision assessment ... around the brain and spinal cord (hydrocephalus) may prevent further optic ...

  16. Biocompatibility and Characterization of a Peptide Amphiphile Hydrogel for Applications in Peripheral Nerve Regeneration

    PubMed Central

    Black, Katie A.; Lin, Brian F.; Wonder, Emily A.; Desai, Seema S.; Chung, Eun Ji; Ulery, Bret D.; Katari, Ravi S.

    2015-01-01

    Peripheral nerve injury is a debilitating condition for which new bioengineering solutions are needed. Autografting, the gold standard in treatment, involves sacrifice of a healthy nerve and results in loss of sensation or function at the donor site. One alternative solution to autografting is to use a nerve guide conduit designed to physically guide the nerve as it regenerates across the injury gap. Such conduits are effective for short gap injuries, but fail to surpass autografting in long gap injuries. One strategy to enhance regeneration inside conduits in long gap injuries is to fill the guide conduits with a hydrogel to mimic the native extracellular matrix found in peripheral nerves. In this work, a peptide amphiphile (PA)-based hydrogel was optimized for peripheral nerve repair. Hydrogels consisting of the PA C16GSH were compared with a commercially available collagen gel. Schwann cells, a cell type important in the peripheral nerve regenerative cascade, were able to spread, proliferate, and migrate better on C16GSH gels in vitro when compared with cells seeded on collagen gels. Moreover, C16GSH gels were implanted subcutaneously in a murine model and were found to be biocompatible, degrade over time, and support angiogenesis without causing inflammation or a foreign body immune response. Taken together, these results help optimize and instruct the development of a new synthetic hydrogel as a luminal filler for conduit-mediated peripheral nerve repair. PMID:25626921

  17. Design of barrier coatings on kink-resistant peripheral nerve conduits.

    PubMed

    Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim

    2016-01-01

    Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery.

  18. Design of barrier coatings on kink-resistant peripheral nerve conduits.

    PubMed

    Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim

    2016-01-01

    Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288

  19. Design of barrier coatings on kink-resistant peripheral nerve conduits

    PubMed Central

    Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim

    2016-01-01

    Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288

  20. Challenges for Nerve Repair Using Chitosan-Siloxane Hybrid Porous Scaffolds

    PubMed Central

    Shirosaki, Yuki; Hayakawa, Satoshi; Osaka, Akiyoshi; Lopes, Maria A.; Santos, José D.; Geuna, Stefano; Mauricio, Ana C.

    2014-01-01

    The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration. PMID:25054129

  1. Allotransplanted DRG neurons or Schwann cells affect functional recovery in a rodent model of sciatic nerve injury

    PubMed Central

    Liu, Weimin; Markman, John D.; Gelbard, Harris A.; Huang, Jason H.

    2015-01-01

    Objective In this study, the functional recoveries of Sprague-Dawley rats following repair of a complete sciatic nerve transection using allotransplanted dorsal root ganglion (DRG) neurons or Schwann cells were examined using a number of outcome measures. Methods Four groups were compared: (1) repair with a nerve guide conduit seeded with allotransplanted Schwann cells harvested from Wistar rats, (2) repair with a nerve guide conduit seeded with DRG neurons, (3) repair with solely a nerve guide conduit, and (4) sham-surgery animals where the sciatic nerve was left intact. The results corroborated our previous reported histology findings and measures of immunogenicity. Results The Wistar-DRG-treated group achieved the best recovery, significantly outperforming both the Wistar-Schwann group and the nerve guide conduit group in the Von Frey assay of touch response (P < 0.05). Additionally, Wistar-DRG and Wistar-Schwann seeded repairs showed lower frequency and severity in an autotomy measure of the self-mutilation of the injured leg because of neuralgia. Conclusion These results suggest that in complete peripheral nerve transections, surgical repair using nerve guide conduits with allotransplanted DRG and Schwann cells may improve recovery, especially DRG neurons, which elicit less of an immune response. PMID:24836462

  2. Sciatic nerve repair with tissue engineered nerve: Olfactory ensheathing cells seeded poly(lactic-co-glygolic acid) conduit in an animal model

    PubMed Central

    Tan, C W; Ng, M H; Ohnmar, H; Lokanathan, Y; Nur-Hidayah, H; Roohi, S A; Ruszymah, BHI; Nor-Hazla, M H; Shalimar, A; Naicker, A S

    2013-01-01

    Background and Aim: Synthetic nerve conduits have been sought for repair of nerve defects as the autologous nerve grafts causes donor site morbidity and possess other drawbacks. Many strategies have been investigated to improve nerve regeneration through synthetic nerve guided conduits. Olfactory ensheathing cells (OECs) that share both Schwann cell and astrocytic characteristics have been shown to promote axonal regeneration after transplantation. The present study was driven by the hypothesis that tissue-engineered poly(lactic-co-glycolic acid) (PLGA) seeded with OECs would improve peripheral nerve regeneration in a long sciatic nerve defect. Materials and Methods: Sciatic nerve gap of 15 mm was created in six adult female Sprague-Dawley rats and implanted with PLGA seeded with OECs. The nerve regeneration was assessed electrophysiologically at 2, 4 and 6 weeks following implantation. Histopathological examination, scanning electron microscopic (SEM) examination and immunohistochemical analysis were performed at the end of the study. Results: Nerve conduction studies revealed a significant improvement of nerve conduction velocities whereby the mean nerve conduction velocity increases from 4.2 ΁ 0.4 m/s at week 2 to 27.3 ΁ 5.7 m/s at week 6 post-implantation (P < 0.0001). Histological analysis revealed presence of spindle-shaped cells. Immunohistochemical analysis further demonstrated the expression of S100 protein in both cell nucleus and the cytoplasm in these cells, hence confirming their Schwann-cell-like property. Under SEM, these cells were found to be actively secreting extracellular matrix. Conclusion: Tissue-engineered PLGA conduit seeded with OECs provided a permissive environment to facilitate nerve regeneration in a small animal model. PMID:24379458

  3. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds☆

    PubMed Central

    Madigan, Nicolas N.; McMahon, Siobhan; O’Brien, Timothy; Yaszemski, Michael J.; Windebank, Anthony J.

    2010-01-01

    This review highlights current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury. The concept of developing 3-dimensional polymer scaffolds for placement into a spinal cord transection model has recently been more extensively explored as a solution for restoring neurologic function after injury. Given the patient morbidity associated with respiratory compromise, the discrete tracts in the spinal cord conveying innervation for breathing represent an important and achievable therapeutic target. The aim is to derive new neuronal tissue from the surrounding, healthy cord that will be guided by the polymer implant through the injured area to make functional reconnections. A variety of naturally derived and synthetic biomaterial polymers have been developed for placement in the injured spinal cord. Axonal growth is supported by inherent properties of the selected polymer, the architecture of the scaffold, permissive microstructures such as pores, grooves or polymer fibres, and surface modifications to provide improved adherence and growth directionality. Structural support of axonal regeneration is combined with integrated polymeric and cellular delivery systems for therapeutic drugs and for neurotrophic molecules to regionalize growth of specific nerve populations. PMID:19737633

  4. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  5. Cellulose/soy protein composite-based nerve guidance conduits with designed microstructure for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Gan, Li; Zhao, Lei; Zhao, Yanteng; Li, Ke; Tong, Zan; Yi, Li; Wang, Xiong; Li, Yinping; Tian, Weiqun; He, Xiaohua; Zhao, Min; Li, Yan; Chen, Yun

    2016-10-01

    Objective. The objective of this work was to develop nerve guidance conduits from natural polymers, cellulose and soy protein isolate (SPI), by evaluating the effects of cellulose/SPI film-based conduit (CSFC) and cellulose/SPI sponge-based conduit (CSSC) on regeneration of nerve defects in rats. Approach. CSFC and CSSC with the same chemical components were fabricated from cellulose and SPI. Effects of CSSC and CSFC on regeneration of the defective nerve were comparatively investigated in rats with a 10 mm long gap in sciatic nerve. The outcomes of peripheral nerve repair were evaluated by a combination of electrophysiological assessment, Fluoro-Gold retrograde tracing, double NF200/S100 immunofluorescence analysis, toluidine blue staining, and electron microscopy. The probable molecular mechanism was investigated using quantitative real-time PCR (qPCR) analysis. Main results. Compared with CSFC, CSSC had 2.69 times higher porosity and 5.07 times higher water absorption, thus ensuring much higher permeability. The nerve defects were successfully bridged and repaired by CSSC and CSFC. Three months after surgery, the CSSC group had a higher compound muscle action potential amplitude ratio, a higher percentage of positive NF200 and S100 staining, and a higher axon diameter and myelin sheath thickness than the CSFC group, showing the repair efficiency of CSSC was higher than that of CSFC. qPCR analysis indicated the mRNA levels of nerve growth factor, IL-10, IL-6, and growth-associated protein 43 (GAP-43) were higher in the CSSC group. This also indicated that there was better nerve repair with CSSC due to the higher porosity and permeability of CSSC providing a more favourable microenvironment for nerve regeneration than CSFC. Significance. A promising nerve guidance conduit was developed from cellulose/SPI sponge that showed potential for application in the repair of nerve defect. This work also suggests that nerve guidance conduits with better repair efficiency

  6. Ultrasound of Peripheral Nerves

    PubMed Central

    Suk, Jung Im; Walker, Francis O.; Cartwright, Michael S.

    2013-01-01

    Over the last decade, neuromuscular ultrasound has emerged as a useful tool for the diagnosis of peripheral nerve disorders. This article reviews sonographic findings of normal nerves including key quantitative ultrasound measurements that are helpful in the evaluation of focal and possibly generalized peripheral neuropathies. It also discusses several recent papers outlining the evidence base for the use of this technology, as well as new findings in compressive, traumatic, and generalized neuropathies. Ultrasound is well suited for use in electrodiagnostic laboratories where physicians, experienced in both the clinical evaluation of patients and the application of hands-on technology, can integrate findings from the patient’s history, physical examination, electrophysiological studies, and imaging for diagnosis and management. PMID:23314937

  7. Cranial Nerve II: Vision.

    PubMed

    Gillig, Paulette Marie; Sanders, Richard D

    2009-09-01

    This article contains a brief review of the anatomy of the visual system, a survey of diseases of the retina, optic nerve and lesions of the optic chiasm, and other visual field defects of special interest to the psychiatrist. It also includes a presentation of the corticothalamic mechanisms, differential diagnosis, and various manifestations of visual illusions, and simple and complex visual hallucinations, as well as the differential diagnoses of these various visual phenomena. PMID:19855858

  8. [Suprascapular nerve entrapment].

    PubMed

    Fansa, H; Schneider, W

    2003-03-01

    Isolated compression of the suprascapular nerve is a rare entity, that is seldom considered in differential diagnosis of shoulder pain. Usually atrophy of supraspinatus and infraspinatus muscles is present, resulting in weakened abduction and external rotation of the shoulder. Mostly the patients do not note the paresis, but complain about a dull and burning pain over the dorsal shoulder region. In a proximal lesion (at level of the superior transverse scapular ligament) electromyography reveals changes in both muscles, while in a distal lesion (spinoglenoidal notch) only the infraspinatus shows a pathology. From 1996 to 2001 we diagnosed an isolated suprascapular entrapment in nine patients. Seven patients were operated: The ligament was removed and the nerve was neurolysed. The average age was 36 years. All patients showed pathological findings in electrophysiological and clinical examination. Five patients had an atrophy of both scapula muscles, two showed only infraspinatus muscle atrophy (one with a ganglion in the distal course of the nerve). Six patients were followed up. All showed an improvement. Pain disappeared and all patients were able to return to work and sport activities. Electrophysiological examination one year after operation revealed normal nerve conduction velocity. The number of motor units, however, showed a reduction by half compared to the healthy side. Lesions without history of trauma are usually caused by repetitive motion or posture. Weight lifting, volley ball and tennis promote the entrapment. Rarely a lesion (either idiopathic or due to external compression) is described for patients who underwent surgery. Patients with a ganglion or a defined cause of compression should be operated, patients who present without a distinct reason for compression should firstly be treated conservatively. Physiotherapy, antiphlogistic medication and avoiding of the pain triggering motion can improve the symptoms. However, if muscle atrophy is evident

  9. Dorsal clitoral nerve injury following transobturator midurethral sling

    PubMed Central

    Moss, Chailee F; Damitz, Lynn A; Gracely, Richard H; Mintz, Alice C; Zolnoun, Denniz A; Dellon, A Lee

    2016-01-01

    Introduction Transobturator slings can be successfully used to treat stress urinary incontinence and improve quality of life through a minimally invasive vaginal approach. Persistent postoperative pain can occur and pose diagnostic and therapeutic dilemmas. Following a sling procedure, a patient complained of pinching clitoral and perineal pain. Her symptoms of localized clitoral pinching and pain became generalized over the ensuing years, eventually encompassing the entire left vulvovaginal region. Aim The aim of this study was to highlight the clinical utility of conventional pain management techniques used for the evaluation and management of patients with postoperative pain following pelvic surgery. Methods We described a prototypical patient with persistent pain in and around the clitoral region complicating the clinical course of an otherwise successful sling procedure. We specifically discussed the utility of bedside sensory assessment techniques and selective nerve blocks in the evaluation and management of this prototypical patient. Results Neurosensory assessments and a selective nerve block enabled us to trace the source of the patient’s pain to nerve entrapment along the dorsal nerve of the clitoris. We then utilized a nerve stimulator-guided hydrodissection technique to release the scar contracture Conclusion This case demonstrates that the dorsal nerve of the clitoris is vulnerable to injury directly and/or indirectly. Assimilation of a time-honored pain management construct for the evaluation and management of patients’ pain may improve outcomes while obviating the need for invasive surgery. PMID:27729812

  10. Peripheral nerve hyperexcitability syndromes.

    PubMed

    Küçükali, Cem Ismail; Kürtüncü, Murat; Akçay, Halil İbrahim; Tüzün, Erdem; Öge, Ali Emre

    2015-01-01

    Peripheral nerve hyperexcitability (PNH) syndromes can be subclassified as primary and secondary. The main primary PNH syndromes are neuromyotonia, cramp-fasciculation syndrome (CFS), and Morvan's syndrome, which cause widespread symptoms and signs without the association of an evident peripheral nerve disease. Their major symptoms are muscle twitching and stiffness, which differ only in severity between neuromyotonia and CFS. Cramps, pseudomyotonia, hyperhidrosis, and some other autonomic abnormalities, as well as mild positive sensory phenomena, can be seen in several patients. Symptoms reflecting the involvement of the central nervous system occur in Morvan's syndrome. Secondary PNH syndromes are generally seen in patients with focal or diffuse diseases affecting the peripheral nervous system. The PNH-related symptoms and signs are generally found incidentally during clinical or electrodiagnostic examinations. The electrophysiological findings that are very useful in the diagnosis of PNH are myokymic and neuromyotonic discharges in needle electromyography along with some additional indicators of increased nerve fiber excitability. Based on clinicopathological and etiological associations, PNH syndromes can also be classified as immune mediated, genetic, and those caused by other miscellaneous factors. There has been an increasing awareness on the role of voltage-gated potassium channel complex autoimmunity in primary PNH pathogenesis. Then again, a long list of toxic compounds and genetic factors has also been implicated in development of PNH. The management of primary PNH syndromes comprises symptomatic treatment with anticonvulsant drugs, immune modulation if necessary, and treatment of possible associated dysimmune and/or malignant conditions. PMID:25719304

  11. Optic nerve hypoplasia

    PubMed Central

    Kaur, Savleen; Jain, Sparshi; Sodhi, Harsimrat B. S.; Rastogi, Anju; Kamlesh

    2013-01-01

    Optic nerve hypoplasia (ONH) is a congenital anomaly of the optic disc that might result in moderate to severe vision loss in children. With a vast number of cases now being reported, the rarity of ONH is obviously now refuted. The major aspects of ophthalmic evaluation of an infant with possible ONH are visual assessment, fundus examination, and visual electrophysiology. Characteristically, the disc is small, there is a peripapillary double-ring sign, vascular tortuosity, and thinning of the nerve fiber layer. A patient with ONH should be assessed for presence of neurologic, radiologic, and endocrine associations. There may be maternal associations like premature births, fetal alcohol syndrome, maternal diabetes. Systemic associations in the child include endocrine abnormalities, developmental delay, cerebral palsy, and seizures. Besides the hypoplastic optic nerve and chiasm, neuroimaging shows abnormalities in ventricles or white- or gray-matter development, septo-optic dysplasia, hydrocephalus, and corpus callosum abnormalities. There is a greater incidence of clinical neurologic abnormalities in patients with bilateral ONH (65%) than patients with unilateral ONH. We present a review on the available literature on the same to urge caution in our clinical practice when dealing with patients with ONH. Fundus photography, ocular coherence tomography, visual field testing, color vision evaluation, neuroimaging, endocrinology consultation with or without genetic testing are helpful in the diagnosis and management of ONH. (Method of search: MEDLINE, PUBMED). PMID:24082663

  12. Main trajectories of nerves that traverse and surround the tympanic cavity in the rat

    PubMed Central

    WEIJNEN, J. A. W. M.; SURINK, S.; VERSTRALEN, M. J. M.; MOERKERKEN, A.; DE BREE, G. J.; BLEYS, R. L. A. W.

    2000-01-01

    To guide surgery of nerves that traverse and surround the tympanic cavity in the rat, anatomical illustrations are required that are topographically correct. In this study, maps of this area are presented, extending from the superior cervical ganglion to the otic ganglion. They were derived from observations that were made during dissections using a ventral approach. Major blood vessels, bones, transected muscles of the tongue and neck and supra and infrahyoid muscles serve as landmarks in the illustrations. The course of the mandibular, facial, glossopharyngeal, vagus, accessory and hypoglossal nerves with their branches, and components of the sympathetic system, are shown and discussed with reference to data available in the literature. Discrepancies in this literature can be clarified and new data are presented on the trajectories of several nerves. The course of the tympanic nerve was established. This nerve originates from the glossopharyngeal nerve, enters the tympanic cavity, crosses the promontory, passes the tensor tympani muscle dorsally, and continues its route intracranially to the otic ganglion as the lesser petrosal nerve after intersecting with the greater petrosal nerve. Auricular branches of the glossopharyngeal and of the vagus nerve were noted. We also observed a pterygopalatine branch of the internal carotid nerve, that penetrates the tympanic cavity and courses across the promontory. PMID:11005717

  13. [Electrical nerve stimulation for plexus and nerve blocks].

    PubMed

    Birnbaum, J; Klotz, E; Bogusch, G; Volk, T

    2007-11-01

    Despite the increasing use of ultrasound, electrical nerve stimulation is commonly used as the standard for both plexus and peripheral nerve blocks. Several recent randomized trials have contributed to a better understanding of physiological and clinical correlations. Traditionally used currents and impulse widths are better defined in relation to the distance between needle tip and nerves. Commercially available devices enable transcutaneous nerve stimulation and provide new opportunities for the detection of puncture sites and for training. The electrically ideal position of the needle usually is defined by motor responses which can not be interpreted without profound anatomical knowledge. For instance, interscalene blocks can be successful even after motor responses of deltoid or pectoral muscles. Infraclavicular blocks should be aimed at stimulation of the posterior fascicle (extension). In contrast to multiple single nerve blocks, axillary single-shot blocks more commonly result in incomplete anaesthesia. Blockade of the femoral nerve can be performed without any nerve stimulation if the fascia iliaca block is used. Independently of the various approaches to the sciatic nerve, inversion and plantar flexion are the best options for single-shot blocks. Further clinical trials are needed to define the advantages of stimulating catheters in continuous nerve blocks.

  14. Nerves and nerve endings in the skin of tropical cattle.

    PubMed

    Amakiri, S F; Ozoya, S E; Ogunnaike, P O

    1978-01-01

    The nerves and nerve endings in the skin of tropical cattle were studied using histological and histochemical techniques. Many nerve trunks and fibres were present in the reticular and papillary dermis in both hairy and non-hairy skin sites. In non-hairy skin locations such as the muzzle and lower lip, encapsulated endings akin to Krause and Ruffini end bulbs, which arise from myelinated nerve trunks situated lower down the dermis were observed at the upper papillary layer level. Some fibre trunks seen at this level extended upwards to terminate within dermal papillae as bulb-shaped longitudinally lamellated Pacinian-type endings, while other onion-shaped lamellated nerve structures were located either within dermal papillae or near the dermo-epidermal area. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. On hairy skin sites, however, organized nerve endings or intraepidermal nerve endings were not readily identifiable. PMID:76410

  15. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration.

    PubMed

    Niu, Yuqing; Chen, Kevin C; He, Tao; Yu, Wenying; Huang, Shuiwen; Xu, Kaitian

    2014-05-01

    Nerve guide scaffolds from block polyurethanes without any additional growth factors or protein were prepared using a particle leaching method. The scaffolds of block polyurethanes (abbreviated as PUCL-ran-EG) based on poly(ɛ-caprolactone) (PCL-diol) and poly(ethylene glycol) (PEG) possess highly surface-area porous for cell attachment, and can provide biochemical and topographic cues to enhance tissue regeneration. The nerve guide scaffolds have pore size 1-5 μm and porosity 88%. Mechanical tests showed that the polyurethane nerve guide scaffolds have maximum loads of 4.98 ± 0.35 N and maximum stresses of 6.372 ± 0.5 MPa. The histocompatibility efficacy of these nerve guide scaffolds was tested in a rat model for peripheral nerve injury treatment. Four types of guides including PUCL-ran-EG scaffolds, autograft, PCL scaffolds and silicone tubes were compared in the rat model. After 14 weeks, bridging of a 10 mm defect gap by the regenerated nerve was observed in all rats. The nerve regeneration was systematically characterized by sciatic function index (SFI), histological assessment including HE staining, immunohistochemistry, ammonia silver staining, Masson's trichrome staining and TEM observation. Results revealed that polyurethane nerve guide scaffolds exhibit much better regeneration behavior than PCL, silicone tube groups and comparable to autograft. Electrophysiological recovery was also seen in 36%, 76%, and 87% of rats in the PCL, PUCL-ran-EG, and autograft groups respectively, whilst 29.8% was observed in the silicone tube groups. Biodegradation in vitro and in vivo show proper degradation of the PUCL-ran-EG nerve guide scaffolds. This study has demonstrated that without further modification, plain PUCL-ran-EG nerve guide scaffolds can help peripheral nerve regeneration excellently.

  16. Data Mining as a Guide for the Construction of Crosslinked Nanoparticles with Low Immunotoxicity via Controlling Polymer Chemistry and Supramolecular Assembly

    PubMed Central

    Elsabahy, Mahmoud; Wooley, Karen L.

    2015-01-01

    CONSPECTUS The potential immunotoxicity of nanoparticles that are currently being approved or in different phases of clinical trials or under rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger the various components of the immune system, unintentionally, and lead to serious adverse reactions. Cytokines are one of the useful biomarkers to predict the effect of biotherapeutics on modulating the immune system and for screening the immunotoxicity of nanoparticles, both in vitro and in vivo, and were found recently to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse and experiments are usually conducted using different assays and under specific conditions, making direct comparisons nearly impossible and, thus, tailoring properties of nanomaterials based on the available data is challenging. In this account, the effects of chemical structure, crosslinking, degradability, morphology, concentration and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with focus being given on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized, uniquely, to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple and easy way to compare the immunotoxicity of various nanomaterials, and the values were found to correlate-well with published data. Based on the investigated polymeric systems in this study, valuable information has been collected that aids in the

  17. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery

    PubMed Central

    Daly, W.; Yao, L.; Zeugolis, D.; Windebank, A.; Pandit, A.

    2012-01-01

    Microsurgical techniques for the treatment of large peripheral nerve injuries (such as the gold standard autograft) and its main clinically approved alternative—hollow nerve guidance conduits (NGCs)—have a number of limitations that need to be addressed. NGCs, in particular, are limited to treating a relatively short nerve gap (4 cm in length) and are often associated with poor functional recovery. Recent advances in biomaterials and tissue engineering approaches are seeking to overcome the limitations associated with these treatment methods. This review critically discusses the advances in biomaterial-based NGCs, their limitations and where future improvements may be required. Recent developments include the incorporation of topographical guidance features and/or intraluminal structures, which attempt to guide Schwann cell (SC) migration and axonal regrowth towards their distal targets. The use of such strategies requires consideration of the size and distribution of these topographical features, as well as a suitable surface for cell–material interactions. Likewise, cellular and molecular-based therapies are being considered for the creation of a more conductive nerve microenvironment. For example, hurdles associated with the short half-lives and low stability of molecular therapies are being surmounted through the use of controlled delivery systems. Similarly, cells (SCs, stem cells and genetically modified cells) are being delivered with biomaterial matrices in attempts to control their dispersion and to facilitate their incorporation within the host regeneration process. Despite recent advances in peripheral nerve repair, there are a number of key factors that need to be considered in order for these new technologies to reach the clinic. PMID:22090283

  18. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    PubMed Central

    Zhao, Qun; Li, Zhi-yue; Zhang, Ze-peng; Mo, Zhou-yun; Chen, Shi-jie; Xiang, Si-yu; Zhang, Qing-shan; Xue, Min

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury. PMID:26604912

  19. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury.

    PubMed

    Zhao, Qun; Li, Zhi-Yue; Zhang, Ze-Peng; Mo, Zhou-Yun; Chen, Shi-Jie; Xiang, Si-Yu; Zhang, Qing-Shan; Xue, Min

    2015-09-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  20. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  1. Functional regeneration of severed peripheral nerve using an implantable electrical stimulator.

    PubMed

    Lee, Tae Hyung; Pan, Hui; Kim, In Sook; Hwang, Soon Jung; Kim, Sung June

    2010-01-01

    This paper presents functional regeneration of severed peripheral nerve using a polymer-based implantable electrical stimulator. A polyimide based conduit electrode was made by micro-fabrication and a stimulation chip was designed to generate biphasic current pulse for electrical stimulation. The stimulation chip was packaged with a battery using silicone elastomer, and integrated with the electrode. The implantable electrical stimulator was implanted in the rat sciatic nerve with 7 mm gap. The electrical stimulation was applied for periods of one, two and four weeks between the proximal and the distal nerve stumps. After four weeks of post-operations, the degree of regeneration was evaluated through walking track assessments and by measuring neural response of the regenerated nerve. Based on these results, electrical stimulation, especially for two weeks of stimulation, could accelerate functional regeneration of the severed nerve.

  2. Conductive PPY/PDLLA conduit for peripheral nerve regeneration

    PubMed Central

    Xu, Haixing; Holzwarth, Jeremy M.; Yan, Yuhua; Xu, Peihu; Zheng, Hua; Yin, Yixia; Li, Shipu; Ma, Peter X.

    2013-01-01

    The significant drawbacks and lack of success associated with current methods to treat critically sized nerve defects have led to increased interest in neural tissue engineering. Conducting polymers show great promise due to their electrical properties, and in the case of polypyrrole (PPY), its cell compatibility as well. Thus, the goal of this study is to synthesize a conducting composite nerve conduit with PPY and poly(D, L-lactic acid) (PDLLA), assess its ability to support the differentiation of rat pheochromocytoma 12 (PC12) cells in vitro, and determine its ability to promote nerve regeneration in vivo. Different amounts of PPY (5%, 10%, and 15%) are used to synthesize the conduits resulting in different conductivities (5.65, 10.40, and 15.56 ms/cm, respectively). When PC12 cells are seeded on these conduits and stimulated with 100 mV for 2 h, there is a marked increase in both the percentage of neurite-bearing cells and the median neurite length as the content of PPY increased. More importantly, when the PPY/PDLLA nerve conduit was used to repair a rat sciatic nerve defect it performed similarly to the gold standard autologous graft. These promising results illustrate the potential that this PPY/PDLLA conducting composite conduit has for neural tissue engineering. PMID:24138830

  3. [Imaging anatomy of cranial nerves].

    PubMed

    Hermier, M; Leal, P R L; Salaris, S F; Froment, J-C; Sindou, M

    2009-04-01

    Knowledge of the anatomy of the cranial nerves is mandatory for optimal radiological exploration and interpretation of the images in normal and pathological conditions. CT is the method of choice for the study of the skull base and its foramina. MRI explores the cranial nerves and their vascular relationships precisely. Because of their small size, it is essential to obtain images with high spatial resolution. The MRI sequences optimize contrast between nerves and surrounding structures (cerebrospinal fluid, fat, bone structures and vessels). This chapter discusses the radiological anatomy of the cranial nerves.

  4. Metal-Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nicolais, Luigi; Carotenuto, Gianfranco

    2004-09-01

    A unique guide to an essential area of nanoscience Interest in nano-sized metals has increased greatly due to their special characteristics and suitability for a number of advanced applications. As technology becomes more refined-including the ability to effectively manipulate and stabilize metals at the nanoscale-these materials present ever-more workable solutions to a growing range of problems. Metal-Polymer Nanocomposites provides the first guide solely devoted to the unique properties and applications of this essential area of nanoscience. It offers a truly multidisciplinary approach, making the text accessible to readers in physical, chemical, and materials science as well as areas such as engineering and topology. The thorough coverage includes: * The chemical and physical properties of nano-sized metals * Different approaches to the synthesis of metal-polymer nanocomposites (MPN) * Advanced characterization techniques and methods for study of MPN * Real-world applications, including color filters, polarizers, optical sensors, nonlinear optical devices, and more * An extensive list of references on the topics covered A unique, cutting-edge resource for a vital area of nanoscience development, Metal-Polymer Nanocomposites is an invaluable text for students and practitioners of materials science, engineering, polymer science, chemical engineering, electrical engineering, and optics.

  5. Nerve-pulse interactions

    SciTech Connect

    Scott, A.C.

    1982-01-01

    Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.

  6. Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area

    PubMed Central

    Sivolella, Stefano; Brunello, Giulia; Ferrarese, Nadia; Puppa, Alessandro Della; D’Avella, Domenico; Bressan, Eriberto; Zavan, Barbara

    2014-01-01

    Injury to peripheral nerves can occur as a result of various surgical procedures, including oral and maxillofacial surgery. In the case of nerve transaction, the gold standard treatment is the end-to-end reconnection of the two nerve stumps. When it cannot be performed, the actual strategies consist of the positioning of a nerve graft between the two stumps. Guided nerve regeneration using nano-structured scaffolds is a promising strategy to promote axon regeneration. Biodegradable electrospun conduits composed of aligned nanofibers is a new class of devices used to improve neurite extension and axon outgrowth. Self assembled peptide nanofibrous scaffolds (SAPNSs) demonstrated promising results in animal models for central nervous system injuries, and, more recently, for peripheral nerve injury. Aims of this work are (1) to review electrospun and self-assembled nanofibrous scaffolds use in vitro and in vivo for peripheral nerve regeneration; and (2) its application in peripheral nerve injuries treatment. The review focused on nanofibrous scaffolds with a diameter of less than approximately 250 nm. The conjugation in a nano scale of a natural bioactive factor with a resorbable synthetic or natural material may represent the best compromise providing both biological and mechanical cues for guided nerve regeneration. Injured peripheral nerves, such as trigeminal and facial, may benefit from these treatments. PMID:24562333

  7. Accuracy of Motor Axon Regeneration Across Autograft, Single Lumen, and Multichannel Poly(lactic-co-glycolic Acid) (PLGA) Nerve Tubes

    PubMed Central

    de Ruiter, Godard C.; Spinner, Robert J.; Malessy, Martijn J. A.; Moore, Michael J.; Sorenson, Eric J.; Currier, Bradford L.; Yaszemski, Michael J.; Windebank, Anthony J.

    2012-01-01

    Objective Accuracy of motor axon regeneration becomes an important issue in the development of a nerve tube for motor nerve repair. Dispersion of regeneration across the nerve tube may lead to misdirection and polyinnervation. In this study, we present a series of methods to investigate the accuracy of regeneration, which we used to compare regeneration across autografts and single lumen poly(lactic-co-glycolic acid) (PLGA) nerve tubes. We also present the concept of the multichannel nerve tube that may limit dispersion by separately guiding groups of regenerating axons. Methods Simultaneous tracing of the tibial and peroneal nerves with fast blue (FB) and diamidino yellow (DY), 8 weeks after repair of a 1-cm nerve gap in the rat sciatic nerve, was performed to determine the percentage of double-projecting motoneurons. Sequential tracing of the peroneal nerve with DY 1 week before and FB 8 weeks after repair was performed to determine the percentage of correctly directed peroneal motoneurons. Results In the cases in which there was successful regeneration across single lumen nerve tubes, more motoneurons had double projections to both the tibial and peroneal nerve branches after single lumen nerve tube repair (21.4%) than after autograft repair (5.9%). After multichannel nerve tube repair, this percentage was slightly reduced (16.9%), although not significantly. The direction of regeneration was nonspecific after all types of repair. Conclusion Retrograde tracing techniques provide new insights into the process of regeneration across nerve tubes. The methods and data presented in this study can be used as a basis in the development of a nerve tube for motor nerve repair. PMID:18728579

  8. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  9. Differential Diagnosis and Intervention of Proximal Median Nerve Entrapment: A Resident's Case Problem.

    PubMed

    Bair, Marcus R; Gross, Michael T; Cooke, Jennifer R; Hill, Carla H

    2016-09-01

    Study Design Resident's case problem. Background Entrapment neuropathies represent a diagnostic challenge and require a comprehensive understanding of the nerve's path and the anatomical structures that may cause compression of the nerve. This resident's case problem details the evaluation and differential diagnosis process for median nerve entrapment resulting from forceful and repetitive pronation/supination motions. Diagnosis Median nerve compression syndromes include pronator syndrome, anterior interosseous nerve syndrome, and carpal tunnel syndrome. A cluster of clinical special tests were performed to determine the anatomical site of median nerve entrapment. Based on the patient's history and clinical test results, a diagnosis of pronator syndrome was determined. Provocation testing specific to pronator syndrome assisted with further localizing the site of entrapment to the pronator teres muscle, which guided effective management strategies. Discussion This resident's case problem illustrates the importance of detailed anatomical knowledge and a differential diagnostic process when evaluating a patient with signs and symptoms of an entrapment neuropathy of the median nerve. Electrodiagnostic studies are useful in ruling out carpal tunnel and anterior interosseous nerve syndromes, but are often inconclusive in cases of pronator syndrome. Therefore, a diagnosis of pronator syndrome in this case problem was based on a detailed understanding of median nerve anatomy, potential sites of compression, and unique clinical features associated with this condition. Level of Evidence Differential diagnosis, level 4. J Orthop Sports Phys Ther 2016;46(9):800-808. Epub 5 Aug 2016. doi:10.2519/jospt.2016.6723. PMID:27494058

  10. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    PubMed Central

    Yan, Sijing; LU, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-01-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093

  11. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  12. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    PubMed

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-01-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093

  13. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  14. Sports and peripheral nerve injury.

    PubMed

    Hirasawa, Y; Sakakida, K

    1983-01-01

    Peripheral nerve injury is one of the serious complications of athletic injuries; however, they have rarely been reported. According to the report by Takazawa et al., there were only 28 cases of peripheral nerve injury among 9,550 cases of sports injuries which had been treated in the previous 5 years at the clinic of the Japanese Athletic Association. The authors have encountered 1,167 cases of peripheral nerve injury during the past 18 years. Sixty-six of these cases were related to sports (5.7%). The nerves most frequently involved were: brachial plexus, radial nerve, ulnar, peroneal, and axillary nerves (in their order of frequency). The most common causes of such injuries were mountain climbing, gymnastics, and baseball. More often, peripheral nerve injury seemed to be caused by continuous compression and repeated trauma to the involved nerve. Usually it appeared as an entrapment neuropathy and the symptoms could be improved by conservative treatment. Some of the cases were complicated by fractures and surgical exploration became necessary. Results of treatment produced excellent to good improvement in 87.9% of the cases. With regard to compartment syndrome, the authors stress the importance of early and precise diagnosis and a fasciotomy.

  15. Six3 regulates optic nerve development via multiple mechanisms

    PubMed Central

    Samuel, Anat; Rubinstein, Ariel M.; Azar, Tehila T.; Ben-Moshe Livne, Zohar; Kim, Seok-Hyung; Inbal, Adi

    2016-01-01

    Malformations of the optic nerve lead to reduced vision or even blindness. During optic nerve development, retinal ganglion cell (RGC) axons navigate across the retina, exit the eye to the optic stalk (OS), and cross the diencephalon midline at the optic chiasm en route to their brain targets. Many signalling molecules have been implicated in guiding various steps of optic nerve pathfinding, however much less is known about transcription factors regulating this process. Here we show that in zebrafish, reduced function of transcription factor Six3 results in optic nerve hypoplasia and a wide repertoire of RGC axon pathfinding errors. These abnormalities are caused by multiple mechanisms, including abnormal eye and OS patterning and morphogenesis, abnormal expression of signalling molecules both in RGCs and in their environment and anatomical deficiency in the diencephalic preoptic area, where the optic chiasm normally forms. Our findings reveal new roles for Six3 in eye development and are consistent with known phenotypes of reduced SIX3 function in humans. Hence, the new zebrafish model for Six3 loss of function furthers our understanding of the mechanisms governing optic nerve development and Six3-mediated eye and forebrain malformations. PMID:26822689

  16. Photoaddressable Polymers

    NASA Astrophysics Data System (ADS)

    Bieringer, T.

    Polymers are the perfect materials for a variety of applications in almost every field of technical as well as human life. Because of their macromolecular architecture there are a lot of degrees of freedom in the synthesis of polymers. Owing to the change of their functional composition, they can be tailored even for quite difficult demands. Since a whole industry deals with the processing of polymers, cheap production lines have been developed for almost every polymer. This is the reason why not only the molecular composition but even the price of polymers has been optimized. Therefore these materials can be considered as encouraging components even in highly sophisticated areas of applications.

  17. Atraumatic Main-En-Griffe due to Ulnar Nerve Leprosy

    PubMed Central

    Aswani, Yashant; Saifi, Shenaz

    2016-01-01

    Summary Background Leprosy is the most common form of treatable peripheral neuropathy. However, in spite of effective chemotherapeutic agents, neuropathy and associated deformities are seldom ameliorated to a significant extent. This necessitates early diagnosis and treatment. Clinical examination of peripheral nerves is highly subjective and inaccurate. Electrophysiological studies are painful and expensive. Ultrasonography circumvents these demerits and has emerged as the preferred modality for probing peripheral nerves. Case Report We describe a 23-year-old male who presented with weakness and clawing of the medial digits of the right hand (main-en-griffe) and a few skin lesions since eighteen months. The right ulnar nerve was thickened and exquisitely tender on palpation. Ultrasonography revealed an extensive enlargement of the nerve with presence of intraneural color Doppler signals suggestive of acute neuritis. Skin biopsy was consistent with borderline tuberculoid leprosy with type 1 lepra reaction. The patient was started on WHO multidrug therapy for paucibacillary leprosy along with antiinflammatory drugs. Persistence of vascular signals at two months’ follow-up has led to continuation of the steroid therapy. The patient is compliant with the treatment and is on monthly follow-up. Conclusions In this manuscript, we review multitudinous roles of ultrasonography in examination of peripheral nerves in leprosy. Ultrasonography besides diagnosing enlargement of nerves in leprosy and acute neuritis due to lepra reactions, guides the duration of anti-inflammatory therapy in lepra reactions. Further, it is relatively inexpensive, non-invasive and easily available. All these features make ultrasonography a preferred modality for examination of peripheral nerves. PMID:26788223

  18. Ultrasonographic Evaluation of Peripheral Nerves.

    PubMed

    Ali, Zarina S; Pisapia, Jared M; Ma, Tracy S; Zager, Eric L; Heuer, Gregory G; Khoury, Viviane

    2016-01-01

    There are a variety of imaging modalities for evaluation of peripheral nerves. Of these, ultrasonography (US) is often underused. There are several advantages of this imaging modality, including its cost-effectiveness, time-efficient assessment of long segments of peripheral nerves, ability to perform dynamic maneuvers, lack of contraindications, portability, and noninvasiveness. It can provide diagnostic information that cannot be obtained by electrophysiologic or, in some cases, magnetic resonance imaging studies. Ideally, the neurosurgeon can use US as a diagnostic adjunct in the preoperative assessment of a patient with traumatic, neoplastic, infective, or compressive nerve injury. Perhaps its most unique use is in intraoperative surgical planning. In this article, a brief description of normal US nerve anatomy is presented followed by a description of the US appearance of peripheral nerve disease caused by trauma, tumor, infection, and entrapment.

  19. Teeth and tooth nerves.

    PubMed

    Hildebrand, C; Fried, K; Tuisku, F; Johansson, C S

    1995-02-01

    (1) Although our knowledge on teeth and tooth nerves has increased substantially during the past 25 years, several important issues remain to be fully elucidated. As a result of the work now going on at many laboratories over the world, we can expect exciting new findings and major break-throughs in these and other areas in a near future. (2) Dentin-like and enamel-like hard tissues evolved as components of the exoskeletal bony armor of early vertebrates, 500 million years ago, long before the first appearance of teeth. It is possible that teeth developed from tubercles (odontodes) in the bony armor. The presence of a canal system in the bony plates, of tubular dentin, of external pores in the enamel layer and of a link to the lateral line system promoted hypotheses that the bony plates and tooth precursors may have had a sensory function. The evolution of an efficient brain, of a head with paired sense organs and of toothed jaws concurred with a shift from a sessile filter-feeding life to active prey hunting. (3) The wide spectrum of feeding behaviors exhibited by modern vertebrates is reflected by a variety of dentition types. While the teeth are continuously renewed in toothed non-mammalian vertebrates, tooth turnover is highly restricted in mammals. As a rule, one set of primary teeth is replaced by one set of permanent teeth. Since teeth are richly innervated, the turnover necessitates a local neural plasticity. Another factor calling for a local plasticity is the relatively frequent occurrence of age-related and pathological dental changes. (4) Tooth development is initiated through interactions between the oral epithelium and underlying neural crest-derived mesenchymal cells. The interactions are mediated by cell surface molecules, extracellular matrix molecules and soluble molecules. The possibility that the initiating events might involve a neural component has been much discussed. With respect to mammals, the experimental evidence available does not

  20. Peripheral nerve blocks for distal extremity surgery.

    PubMed

    Offierski, Chris

    2013-10-01

    Peripheral nerve block is well suited for distal extremity surgery. Blocking the nerves at the distal extremity is easily done. It does not require ultrasound or stimulators to identify the nerve. Blocking nerves in the distal extremity is safe with low risk of toxicity. The effect of the nerve block is limited to the distribution of the nerve. The distal nerves in the lower extremity are sensory branches of the sciatic nerve. This provides a sensory block only. This has the advantage of allowing the patient to actively contract tendons in the foot and ambulate more quickly after surgery. PMID:24093651

  1. Diabetic neuropathy increases stimulation threshold during popliteal sciatic nerve block†

    PubMed Central

    Heschl, S.; Hallmann, B.; Zilke, T.; Gemes, G.; Schoerghuber, M.; Auer-Grumbach, M.; Quehenberger, F.; Lirk, P.; Hogan, Q.; Rigaud, M.

    2016-01-01

    Background Peripheral nerve stimulation is commonly used for nerve localization in regional anaesthesia, but recommended stimulation currents of 0.3–0.5 mA do not reliably produce motor activity in the absence of intraneural needle placement. As this may be particularly true in patients with diabetic neuropathy, we examined the stimulation threshold in patients with and without diabetes. Methods Preoperative evaluation included a neurological exam and electroneurography. During ultrasound-guided popliteal sciatic nerve block, we measured the current required to produce motor activity for the tibial and common peroneal nerve in diabetic and non-diabetic patients. Proximity to the nerve was evaluated post-hoc using ultrasound imaging. Results Average stimulation currents did not differ between diabetic (n=55) and non-diabetic patients (n=52). Although the planned number of patients was not reached, the power goal for the mean stimulation current was met. Subjects with diminished pressure perception showed increased thresholds for the common peroneal nerve (median 1.30 vs. 0.57 mA in subjects with normal perception, P=0.042), as did subjects with decreased pain sensation (1.60 vs. 0.50 mA in subjects with normal sensation, P=0.038). Slowed ulnar nerve conduction velocity predicted elevated mean stimulation current (r=−0.35, P=0.002). Finally, 15 diabetic patients required more than 0.5 mA to evoke a motor response, despite intraneural needle placement (n=4), or required currents ≥2 mA despite needle-nerve contact, vs three such patients (1 intraneural, 2 with ≥2 mA) among non-diabetic patients (P=0.003). Conclusions These findings suggest that stimulation thresholds of 0.3–0.5 mA may not reliably determine close needle-nerve contact during popliteal sciatic nerve block, particularly in patients with diabetic neuropathy. Clinical trial registration NCT01488474 PMID:26994231

  2. Nerve endoneurial microstructure facilitates uniform distribution of regenerative fibers: a post hoc comparison of midgraft nerve fiber densities.

    PubMed

    Johnson, Philip J; Newton, Piyaraj; Hunter, Daniel A; Mackinnon, Susan E

    2011-02-01

    Despite their inferiority to nerve autograft, clinical alternatives are commonly used for reconstruction of peripheral nerve injuries because of their convenient off-the-shelf availability. Previously, our group compared isografts with NeuraGen(®) (Integra, Plainsboro, NJ) nerve guides, which are a commercially available type I collagen conduit and processed rat allografts comparable to Avance(®) (AxoGen, Alachua, FL) human decellularized allograft product. From this study, qualitative observations were made of distinct differences in the pattern of regenerating fibers within conduits, acellular allografts, and isografts. In the current post hoc analysis, these observations were quantified. Using nerve density, we statistically compared the differential pattern of regenerating axon fibers within grafts and conduit. The conduits exhibited a consistent decrease in midgraft density when compared with the isograft and acellularized allografts at two gap lengths (14 mm and 28 mm) and time points (12 and 22 weeks). The decrease in density was accompanied by clustered distribution of nerve fibers in conduits, which contrasted the evenly distributed regeneration seen in processed allografts and isografts. We hypothesize that the lack of endoneurial microstructure of conduits results in the clustering regenerating fibers, and that the presence of microstructure in the acellularized allograft and isografts facilitates even distribution of regenerating fibers.

  3. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.

    PubMed

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad-Hossein; Ramakrishna, Seeram

    2008-12-01

    Nerve tissue engineering is one of the most promising methods to restore nerve systems in human health care. Scaffold design has pivotal role in nerve tissue engineering. Polymer blending is one of the most effective methods for providing new, desirable biocomposites for tissue-engineering applications. Random and aligned PCL/gelatin biocomposite scaffolds were fabricated by varying the ratios of PCL and gelatin concentrations. Chemical and mechanical properties of PCL/gelatin nanofibrous scaffolds were measured by FTIR, porometry, contact angle and tensile measurements, while the in vitro biodegradability of the different nanofibrous scaffolds were evaluated too. PCL/gelatin 70:30 nanofiber was found to exhibit the most balanced properties to meet all the required specifications for nerve tissue and was used for in vitro culture of nerve stem cells (C17.2 cells). MTS assay and SEM results showed that the biocomposite of PCL/gelatin 70:30 nanofibrous scaffolds enhanced the nerve differentiation and proliferation compared to PCL nanofibrous scaffolds and acted as a positive cue to support neurite outgrowth. It was found that the direction of nerve cell elongation and neurite outgrowth on aligned nanofibrous scaffolds is parallel to the direction of fibers. PCL/gelatin 70:30 nanofibrous scaffolds proved to be a promising biomaterial suitable for nerve regeneration. PMID:18757094

  4. Viscoelasticity of repaired sciatic nerve by poly(lactic-co-glycolic acid) tubes

    PubMed Central

    Piao, Chengdong; Li, Peng; Liu, Guangyao; Yang, Kun

    2013-01-01

    Medical-grade synthetic poly(lactic-co-glycolic acid) polymer can be used as a biomaterial for nerve repair because of its good biocompatibility, biodegradability and adjustable degradation rate. The stress relaxation and creep properties of peripheral nerve can be greatly improved by repair with poly(lactic-co-glycolic acid) tubes. Ten sciatic nerve specimens were harvested from fresh corpses within 24 hours of death, and were prepared into sciatic nerve injury models by creating a 10 mm defect in each specimen. Defects were repaired by anastomosis with nerve autografts and poly(lactic-co-glycolic acid) tubes. Stress relaxation and creep testing showed that at 7 200 seconds, the sciatic nerve anastomosed by poly(lactic-co-glycolic acid) tubes exhibited a greater decrease in stress and increase in strain than those anastomosed by nerve autografts. These findings suggest that poly(lactic-co-glycolic acid) exhibits good viscoelasticity to meet the biomechanical require-ments for a biomaterial used to repair sciatic nerve injury. PMID:25206634

  5. Viscoelasticity of repaired sciatic nerve by poly(lactic-co-glycolic acid) tubes.

    PubMed

    Piao, Chengdong; Li, Peng; Liu, Guangyao; Yang, Kun

    2013-11-25

    Medical-grade synthetic poly(lactic-co-glycolic acid) polymer can be used as a biomaterial for nerve repair because of its good biocompatibility, biodegradability and adjustable degradation rate. The stress relaxation and creep properties of peripheral nerve can be greatly improved by repair with poly(lactic-co-glycolic acid) tubes. Ten sciatic nerve specimens were harvested from fresh corpses within 24 hours of death, and were prepared into sciatic nerve injury models by creating a 10 mm defect in each specimen. Defects were repaired by anastomosis with nerve autografts and poly(lactic-co-glycolic acid) tubes. Stress relaxation and creep testing showed that at 7 200 seconds, the sciatic nerve anastomosed by poly(lactic-co-glycolic acid) tubes exhibited a greater decrease in stress and increase in strain than those anastomosed by nerve autografts. These findings suggest that poly(lactic-co-glycolic acid) exhibits good viscoelasticity to meet the biomechanical require-ments for a biomaterial used to repair sciatic nerve injury.

  6. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration.

    PubMed

    Dinis, T M; Elia, R; Vidal, G; Dermigny, Q; Denoeud, C; Kaplan, D L; Egles, C; Marin, F

    2015-01-01

    Despite technological advances over the past 25 years, a complete recovery from peripheral nerve injuries remains unsatisfactory today. The autograft is still considered the "gold standard" in clinical practice; however, postoperative complications and limited availability of nerve tissue have motivated the development of alternative approaches. Among them, the development of biomimetic nerve graft substitutes is one of the most promising strategies. In this study, multichanneled silk electrospun conduits bi-functionalized with Nerve Growth Factor (NGF) and Ciliary Neurotropic Factor (CNTF) were fabricated to enhance peripheral nerve regeneration. These bioactive guides consisting of longitudinally oriented channels and aligned nanofibers were designed in order to mimic the fascicular architecture and fibrous extracellular matrix found in native nerve. The simple use of the electrospinning technique followed by a manual manipulation to manufacture these conduits provides tailoring of channel number and diameter size to create perineurium-like structures. Functionalization of the silk fibroin nanofiber did not affect its secondary structure and chemical property. ELISA assays showed the absence of growth factors passive release from the functionalized fibers avoiding the topical accumulation of proteins. In addition, our biomimetic multichanneled functionalized nerve guides displayed a mechanical behavior comparable to that of rat sciatic nerve with an ultimate peak stress of 4.0 ± 0.6 MPa and a corresponding elongation at failure of 156.8 ± 46.7%. Taken together, our results demonstrate for the first time our ability to design and characterize a bi-functionalized nerve conduit consisting of electrospun nanofibers with multichannel oriented and nanofibers aligned for peripheral regeneration. Our bioactive silk tubes thus represent a new and promising technique towards the creation of a biocompatible nerve guidance conduit. PMID:25460402

  7. Recent advances in nerve tissue engineering.

    PubMed

    Zhang, Bill G X; Quigley, Anita F; Myers, Damian E; Wallace, Gordon G; Kapsa, Robert M I; Choong, Peter F M

    2014-04-01

    Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.

  8. Malignant Peripheral Nerve Sheath Tumor.

    PubMed

    James, Aaron W; Shurell, Elizabeth; Singh, Arun; Dry, Sarah M; Eilber, Fritz C

    2016-10-01

    Malignant peripheral nerve sheath tumor (MPNST) is the sixth most common type of soft tissue sarcoma. Most MPNSTs arise in association with a peripheral nerve or preexisting neurofibroma. Neurofibromatosis type is the most important risk factor for MPNST. Tumor size and fludeoxyglucose F 18 avidity are among the most helpful parameters to distinguish MPNST from a benign peripheral nerve sheath tumor. The histopathologic diagnosis is predominantly a diagnosis of light microscopy. Immunohistochemical stains are most helpful to distinguish high-grade MPNST from its histologic mimics. Current surgical management of high-grade MPNST is similar to that of other high-grade soft tissue sarcomas. PMID:27591499

  9. Polymer adsorption

    NASA Astrophysics Data System (ADS)

    Joanny, Jean-Francois

    2008-03-01

    The aim of this talk is to review Pierre-Gilles deGennes' work on polymer adsorption and the impact that it has now in our understanding of this problem. We will first present the self-consistent mean-field theory and its applications to adsorption and depletion. De Gennes most important contribution is probably the derivation of the self-similar power law density profile for adsorbed polymer layers that we will present next, emphasizing the differences between the tail sections and the loop sections of the adsorbed polymers. We will then discuss the kinetics of polymer adsorption and the penetration of a new polymer chain in an adsobed layer that DeGennes described very elegantly in analogy with a quantum tunneling problem. Finally, we will discuss the role of polymer adsorption for colloid stabilization.

  10. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  11. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  12. Solitary fibrous tumour of the vagus nerve.

    PubMed

    Scholsem, Martin; Scholtes, Felix

    2012-04-01

    We describe the complete removal of a foramen magnum solitary fibrous tumour in a 36-year-old woman. It originated on a caudal vagus nerve rootlet, classically described as the 'cranial' accessory nerve root. This ninth case of immunohistologically confirmed cranial or spinal nerve SFT is the first of the vagus nerve.

  13. Management of traumatic facial nerve injuries.

    PubMed

    Greywoode, Jewel D; Ho, Hao H; Artz, Gregory J; Heffelfinger, Ryan N

    2010-12-01

    Management of facial nerve injuries requires knowledge and skills that should be in every facial plastic surgeon's armamentarium. This article will briefly review the anatomy of the facial nerve, discuss the assessment of facial nerve injury, and describe the management of facial nerve injury after soft tissue trauma. PMID:21086238

  14. Nerve Transfers for the Restoration of Wrist, Finger, and Thumb Extension After High Radial Nerve Injury.

    PubMed

    Pet, Mitchell A; Lipira, Angelo B; Ko, Jason H

    2016-05-01

    High radial nerve injury is a common pattern of peripheral nerve injury most often associated with orthopedic trauma. Nerve transfers to the wrist and finger extensors, often from the median nerve, offer several advantages when compared to nerve repair or grafting and tendon transfer. In this article, we discuss the forearm anatomy pertinent to performing these nerve transfers and review the literature surrounding nerve transfers for wrist, finger, and thumb extension. A suggested algorithm for management of acute traumatic high radial nerve palsy is offered, and our preferred surgical technique for treatment of high radial nerve palsy is provided. PMID:27094891

  15. Ultrasound-Guided Interventions in the Midfoot and Forefoot.

    PubMed

    Nwawka, O Kenechi; Endo, Yoshimi

    2016-04-01

    Pathologic conditions in the midfoot and forefoot may be diagnosed and treated using image-guided intervention. Image-guided techniques to treat arthrosis, tendinopathy, nerve disorders, and other miscellaneous midfoot and forefoot conditions are described, with a focus on sonographic guidance. PMID:27336455

  16. [Nerve-sparing radical prostatectomy].

    PubMed

    Okada, K; Tada, M; Nakano, A; Konno, T

    1988-04-01

    The neuroanatomy of the pelvic space was studied in order to clarify the course of cavernous nerves responsible for erectile function. The cavernous nerves travel along the dorsolateral portion at the base toward the apex of the prostate, then penetrate urogenital diaphragm at the lateral aspect of the membranous urethra. According to the anatomical findings, nerve-sparing radical prostatectomy was performed through the antegrade approach in 28 patients with prostate cancer. No significant surgical complications were encountered in the present series. Of the 28, evaluable cases were limited to 22 in terms of erection. Fifteen patients (68%) recovered their erectile function after nerve-sparing surgery. Therefore, the present surgical technique seems to be effective for the preservation of male sexual function following radical pelvic surgery.

  17. Schwannomatosis of Cervical Vagus Nerve

    PubMed Central

    Sasi, M. P.

    2016-01-01

    Cervical vagal schwannoma is a rare entity among lesions presenting as a neck mass. They are usually slow-growing benign lesions closely associated with the vagus nerve. They are usually solitary and asymptomatic. Multiple schwannomas occurring in patients without neurofibromatosis (NF) are rare and have recently been referred to as schwannomatosis. Here, we present a case of a neck mass that had imaging features suggestive of vagal schwannoma and was operated upon. Intraoperatively, it was discovered to be a case of multiple vagal cervical schwannoma, all directly related to the right vagus nerve, and could be resected from the nerve in toto preserving the function of the vagus nerve. Final HPR confirmed our pre-op suspicion of vagal schwannomatosis.

  18. Ion Channels in Nerve Membranes

    ERIC Educational Resources Information Center

    Ehrenstein, Gerald

    1976-01-01

    Discusses research that indicates that nerve membranes, which play a key role in the conduction of impulses, are traversed by protein channels with ion pathways opened and closed by the membrane electric field. (Author/MLH)

  19. Optic Nerve Monitoring

    PubMed Central

    Schumann, Paul; Kokemüller, Horst; Tavassol, Frank; Lindhorst, Daniel; Lemound, Juliana; Essig, Harald; Rücker, Martin; Gellrich, Nils-Claudius

    2013-01-01

    Orbital and anterior skull base surgery is generally performed close to the prechiasmatic visual pathway, and clear strategies for detecting and handling visual pathway damage are essential. To overcome the common problem of a missed clinical examination because of an uncooperative or unresponsive patient, flash visual evoked potentials and electroretinograms should be used. These electrophysiologic examination techniques can provide evidence of intact, pathologic, or absent conductivity of the visual pathway when clinical assessment is not feasible. Visual evoked potentials and electroretinograms are thus essential diagnostic procedures not only for primary diagnosis but also for intraoperative evaluation. A decision for or against treatment of a visual pathway injury has to be made as fast as possible due to the enormous importance of the time elapsed with such injuries; this can be achieved additionally using multislice spiral computed tomography. The first-line conservative treatment of choice for such injuries is megadose methylprednisolone therapy. Surgery is used to decompress the orbital compartment by exposure of the intracanalicular part of the optic nerve in the case of optic canal compression. Modern craniomaxillofacial surgery requires detailed consideration of the diagnosis and treatment of traumatic visual pathway damage with the ultimate goal of preserving visual acuity. PMID:24436741

  20. Mechanisms of trigeminal nerve injuries.

    PubMed

    Ziccardi, V B; Assael, L A

    2001-09-01

    Injuries to the trigeminal nerve branches are a known and accepted risk in oral and maxillofacial surgery. It is prudent for the practitioner to explain the risks to patients as part of the informed consent process and to recognize and document the presence of nerve injury postoperatively. Patients should be referred to a surgeon experienced in microsurgical techniques in a timely fashion for evaluation and possible surgical intervention if an injury is not resolving.

  1. [Peripheral Nerve Injuries in Sports].

    PubMed

    Tettenborn, B; Mehnert, S; Reuter, I

    2016-09-01

    Peripheral nerve injuries due to sports are relatively rare but the exact incidence is not known due to a lack of epidemiological studies. Particular sports activities tend to cause certain peripheral nerve injuries including direct acute compression or stretching, repetitive compression and stretching over time, or another mechanism such as ischemia or laceration. These nerve lesions may be severe and delay or preclude the athlete's return to sports, especially in cases with delayed diagnosis. Repetitive and vigorous use or overuse makes the athlete vulnerable to disorders of the peripheral nerves, and sports equipment may cause compression of the nerves. Depending on etiology, the treatment is primarily conservative and includes physiotherapy, modification of movements and sports equipment, shoe inserts, splinting, antiphlogistic drugs, sometimes local administration of glucocorticoids or, lately, the use of extracorporeal shock waves. Most often, cessation of the offending physical activity is necessary. Surgery is only indicated in the rare cases of direct traumatic nerve injury or when symptoms are refractory to conservative therapy. Prognosis mainly depends on the etiology and the available options of modifying measures.This article is based on the publications "Reuter I, Mehnert S. Engpasssyndrome peripherer Nerven bei Sportlern". Akt Neurol 2012;39:292-308 and Sportverl Sportschad 2013;27:130-146. PMID:27607069

  2. Noninvasive imaging of peripheral nerves.

    PubMed

    Rangavajla, Gautam; Mokarram, Nassir; Masoodzadehgan, Nazanin; Pai, S Balakrishna; Bellamkonda, Ravi V

    2014-01-01

    Recent developments in the field of peripheral nerve imaging extend the capabilities of imaging modalities to assist in the diagnosis and treatment of patients with peripheral nerve maladies. Methods such as magnetic resonance imaging (MRI) and its derivative diffusion tensor imaging (DTI), ultrasound (US) and positron emission tomography (PET) are capable of assessing nerve structure and function following injury and relating the state of the nerve to electrophysiological and histological analysis. Of the imaging methods surveyed here, each offered unique and interesting advantages related to the field. MRI offered the opportunity to visualize immune activity on the injured nerve throughout the course of the regeneration process, and DTI offered numerical characterization of the injury and the ability to develop statistical bases for diagnosing injury. US extends imaging to the treatment phase by enabling more precise analgesic applications following surgery, and PET represents a novel method of assessing nerve injury through analysis of relative metabolism rates in injured and healthy tissue. Exciting new possibilities to enhance and extend the abilities of imaging methods are also discussed, including innovative contrast agents, some of which enable multimodal imaging approaches and present opportunities for treatment application. PMID:25766202

  3. Sciatic nerve injury: a simple and subtle model for investigating many aspects of nervous system damage and recovery.

    PubMed

    Savastano, Luis E; Laurito, Sergio R; Fitt, Marcos R; Rasmussen, Jorge A; Gonzalez Polo, Virginia; Patterson, Sean I

    2014-04-30

    Sciatic nerve injury has been used for over a century to investigate the process of nerve damage, to assess the absolute and relative capacity of the central and peripheral nervous systems to recover after axotomy, and to understand the development of chronic pain in many pathologies. Here we provide a historical review of the contributions of this experimental model to our current understanding of fundamental questions in the neurosciences, and an assessment of its continuing capacity to address these and future problems. We describe the different degrees of nerve injury - neurapraxia, axonotmesis, neurotmesis - together with the consequences of selective damage to the different functional and anatomic components of this nerve. The varied techniques used to model different degrees of nerve injury and their relationship to the development of neuropathic pain states are considered. We also provide a detailed anatomical description of the sciatic nerve from the spinal cord to the peripheral branches in the leg. A standardized protocol for carrying out sciatic nerve axotomy is proposed, with guides to assist in the accurate and reliable dissection of the peripheral and central branches of the nerve. Functional, histological, and biochemical criteria for the validation of the injury are described. Thus, this paper provides a review of the principal features of sciatic nerve injury, presents detailed neuroanatomical descriptions of the rat's inferior limb and spine, compares different modes of injury, offers material for training purposes, and summarizes the immediate and longterm consequences of damage to the sciatic nerve.

  4. Sciatic nerve injury: a simple and subtle model for investigating many aspects of nervous system damage and recovery.

    PubMed

    Savastano, Luis E; Laurito, Sergio R; Fitt, Marcos R; Rasmussen, Jorge A; Gonzalez Polo, Virginia; Patterson, Sean I

    2014-04-30

    Sciatic nerve injury has been used for over a century to investigate the process of nerve damage, to assess the absolute and relative capacity of the central and peripheral nervous systems to recover after axotomy, and to understand the development of chronic pain in many pathologies. Here we provide a historical review of the contributions of this experimental model to our current understanding of fundamental questions in the neurosciences, and an assessment of its continuing capacity to address these and future problems. We describe the different degrees of nerve injury - neurapraxia, axonotmesis, neurotmesis - together with the consequences of selective damage to the different functional and anatomic components of this nerve. The varied techniques used to model different degrees of nerve injury and their relationship to the development of neuropathic pain states are considered. We also provide a detailed anatomical description of the sciatic nerve from the spinal cord to the peripheral branches in the leg. A standardized protocol for carrying out sciatic nerve axotomy is proposed, with guides to assist in the accurate and reliable dissection of the peripheral and central branches of the nerve. Functional, histological, and biochemical criteria for the validation of the injury are described. Thus, this paper provides a review of the principal features of sciatic nerve injury, presents detailed neuroanatomical descriptions of the rat's inferior limb and spine, compares different modes of injury, offers material for training purposes, and summarizes the immediate and longterm consequences of damage to the sciatic nerve. PMID:24487015

  5. Nanohelices from planar polymer self-assembled in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fu, Hongjin; Xu, Shuqiong; Li, Yunfang

    2016-07-01

    The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas.

  6. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  7. Electrophysiological evaluation of nerve function in inferior alveolar nerve injury: relationship between nerve action potentials and histomorphometric observations.

    PubMed

    Murayama, M; Sasaki, K; Shibahara, T

    2015-12-01

    The objective of this study was to improve the accuracy of diagnosis of inferior alveolar nerve (IAN) injury by determining degrees of nerve disturbance using the sensory nerve action potential (SNAP) and sensory nerve conduction velocity (SCV). Crush and partial and complete nerve amputation injuries were applied to the IAN of rabbits, then SNAPs and histomorphometric observations were recorded at 1, 5, and 10 weeks. For crush injury, most nerves were smaller in diameter at 5 weeks than at 1 week, however after 10 weeks, extensive nerve regeneration was observed. The SNAP showed a decrease in SCV at weeks 1 and 5, followed by an increase at week 10. For partial nerve amputation, small to medium-sized nerve fibres were observed at weeks 1 and 5, then larger nerves were seen at week 10. Minimal changes in SCV were observed at weeks 1 and 5, however SCV increased at week 10. For complete nerve amputation, nerve fibres were sparse at week 1, but gradual nerve regeneration was observed at weeks 5 and 10. SNAPs were detectable from week 10, however the SCV was extremely low. This study showed SCV to be an effective factor in the evaluation of nerve injury and regeneration. PMID:26433750

  8. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  9. Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair.

    PubMed

    Arslantunali, D; Budak, G; Hasirci, V

    2014-03-01

    A nerve conduit is designed to improve peripheral nerve regeneration by providing guidance to the nerve cells. Conductivity of such guides is reported to enhance this process. In the current study, a nerve guide was constructed from poly(2-hydroxyethyl methacrylate) (pHEMA), which was loaded with multiwalled carbon nanotubes (mwCNT) to introduce conductivity. PHEMA hydrogels were designed to have a porous structure to facilitate the transportation of the compounds needed for cell nutrition and growth and also for waste removal. We showed that when loaded with relatively high concentrations of mwCNTs (6%, w/w in hydrogels), the pHEMA guide was more conductive and more hydrophobic than pristine pHEMA hydrogel. The mechanical properties of the composites were better when they carried mwCNT. Elastic modulus of 6% mwCNT loaded pHEMA was twofold higher (0.32 ± 0.06 MPa) and similar to that of the soft tissues. Electrical conductivity was significantly improved (11.4-fold) from 7 × 10(-3) Ω(-1).cm(-1) (pHEMA) to 8.0 × 10(-2) Ω(-1).cm(-1) (6% mwCNT loaded pHEMA). On application of electrical potential, the SHSY5Y neuroblastoma cells seeded on mwCNTs carrying pHEMA maintained their viability, whereas those on pure pHEMA could not, indicating that mwCNT helped conduct electricity and make them more suitable as nerve conduits. PMID:23554154

  10. Cranial Nerves IX, X, XI, and XII

    PubMed Central

    Sanders, Richard D.

    2010-01-01

    This article concludes the series on cranial nerves, with review of the final four (IX–XII). To summarize briefly, the most important and common syndrome caused by a disorder of the glossopharyngeal nerve (craniel nerve IX) is glossopharyngeal neuralgia. Also, swallowing function occasionally is compromised in a rare but disabling form of tardive dyskinesia called tardive dystonia, because the upper motor portion of the glossopharyngel nerve projects to the basal ganglia and can be affected by lesions in the basal ganglia. Vagus nerve funtion (craniel nerve X) can be compromised in schizophrenia, bulimia, obesity, and major depression. A cervical lesion to the nerve roots of the spinal accessory nerve (craniel nerve XI) can cause a cervical dystonia, which sometimes is misdiagnosed as a dyskinesia related to neuroleptic use. Finally, unilateral hypoglossal (craniel nerve XII) nerve palsy is one of the most common mononeuropathies caused by brain metastases. Supranuclear lesions of cranial nerve XII are involved in pseudobulbar palsy and ALS, and lower motor neuron lesions of cranial nerve XII can also be present in bulbar palsy and in ALS patients who also have lower motor neuron involvement. This article reviews these and other syndromes related to cranial nerves IX through XII that might be seen by psychiatry. PMID:20532157

  11. The polymer converter for effectively connecting polymer with silica optical fibres

    NASA Astrophysics Data System (ADS)

    Pura-Pawlikowska, P.; Dudek, M.; Wonko, R.; Marć, P.; Kujawińska, M.; Jaroszewicz, L. R.

    2016-09-01

    We present a micrometer-size polymer converter (microbridge) for connecting polymer optical fibres with silica fibres. The procedure of preparing such microstructure is based on a process of photopolymerization. A polymer converter grows as an extension of the fibres' cores due to a self-guiding effect of the light beam in a photopolymerizable medium. Since the polymer microbridge has refractive index greater inside than outside, such a structure works as a waveguide leading the light beam between connected optical fibres. By selection of time of light exposition to the mixture and optical power of the incident light beam, it is possible to obtain a polymer converter with very good optical and mechanical characteristics. Possibility of using polymer microbridges grown directly from the fibres' core as coupling elements between silica and polymer fibres is a good alternative for obtaining permanent coupling of such fibres.

  12. Biological activity of ionene polymers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1973-01-01

    Ionene polymers are polyammonium salts with positive nitrogens in the backbone, resulting from the polycondensation of diamines with dihalides or from the polycondensation of halo amines. The mechanism of formation of ionene polymers of different structures and their biological activity is reviewed. The antimicrobial and antifungal properties are compared with low molecular weight ammonium salts. Ionenes were found to combine with DNA by means of ionic bonds to yield similar complexes to those obtained with polyamines (spermine and spermidine). They also combine with nerve cell receptors and exercise a more powerful and longer duration ganglionic blocking action than their monomeric analogs. The antiheparin activity of ionenes and the thromboresistance of elastomeric ionene heparin coatings is described. The enhanced biological activity of ionenes as compared with low molecular weight compounds is attributed to a cooperative effect of a large number of positive charges on the polymeric chains.

  13. Rehabilitation of the trigeminal nerve

    PubMed Central

    Iro, Heinrich; Bumm, Klaus; Waldfahrer, Frank

    2005-01-01

    When it comes to restoring impaired neural function by means of surgical reconstruction, sensory nerves have always been in the role of the neglected child when compared with motor nerves. Especially in the head and neck area, with its either sensory, motor or mixed cranial nerves, an impaired sensory function can cause severe medical conditions. When performing surgery in the head and neck area, sustaining neural function must not only be highest priority for motor but also for sensory nerves. In cases with obvious neural damage to sensory nerves, an immediate neural repair, if necessary with neural interposition grafts, is desirable. Also in cases with traumatic trigeminal damage, an immediate neural repair ought to be considered, especially since reconstructive measures at a later time mostly require for interposition grafts. In terms of the trigeminal neuralgia, commonly thought to arise from neurovascular brainstem compression, a pharmaceutical treatment is considered as the state of the art in terms of conservative therapy. A neurovascular decompression of the trigeminal root can be an alternative in some cases when surgical treatment is sought after. Besides the above mentioned therapeutic options, alternative treatments are available. PMID:22073060

  14. Retinal and optic nerve diseases.

    PubMed

    Margalit, Eyal; Sadda, Srinivas R

    2003-11-01

    A variety of disease processes can affect the retina and/or the optic nerve, including vascular or ischemic disease, inflammatory or infectious disease, and degenerative disease. These disease processes may selectively damage certain parts of the retina or optic nerve, and the specific areas that are damaged may have implications for the design of potential therapeutic visual prosthetic devices. Outer retinal diseases include age-related macular degeneration, pathologic myopia, and retinitis pigmentosa. Although the retinal photoreceptors may be lost, the inner retina is relatively well-preserved in these diseases and may be a target for retinal prosthetic devices. Inner retinal diseases include retinal vascular diseases such as diabetic retinopathy, retinal venous occlusive disease, and retinopathy of prematurity. Other retinal diseases such as ocular infections (retinitis, endophthalmitis) may affect all retinal layers. Because the inner retinal cells, including the retinal ganglion cells, may be destroyed in these diseases (inner retinal or whole retinal), prosthetic devices that stimulate the inner retina may not be effective. Common optic nerve diseases include glaucoma, optic neuritis, and ischemic optic neuropathy. Because the ganglion cell nerve fibers themselves are damaged, visual prosthetics for these diseases will need to target more distal portions of the visual pathway, such as the visual cortex. Clearly, a sound understanding of retinal and optic nerve disease pathophysiology is critical for designing and choosing the optimal visual prosthetic device.

  15. Polymer nanolithography

    NASA Astrophysics Data System (ADS)

    Vance, Jennifer M.

    Nanolithography involves making patterns of materials with at least one dimension less than 100 nanometers. Surprisingly, writable CDs can provide polymer nanostructures for pennies a piece. Building on work previously done in the Drain lab, with an inherited home-built oven press, this research will explore the relationships between polymer chemical reactivity, polymer printing, and material surface energies. In addition, a relatively inexpensive entry point into high school and undergraduate education in nanolithography is presented. The ability to pattern cheaply at the nanoscale and microscale is necessary and attractive for many technologies towards biosensors, organic light emitting diodes, identification tags, layered devices, and transistors.

  16. Five Roots Pattern of Median Nerve Formation.

    PubMed

    Natsis, Konstantinos; Paraskevas, George; Tzika, Maria

    2016-01-01

    An unusual combination of median nerve's variations has been encountered in a male cadaver during routine educational dissection. In particular, the median nerve was formed by five roots; three roots originated from the lateral cord of the brachial plexus joined individually the median nerve's medial root. The latter (fourth) root was united with the lateral (fifth) root of the median nerve forming the median nerve distally in the upper arm and not the axilla as usually. In addition, the median nerve was situated medial to the brachial artery. We review comprehensively the relevant variants, their embryologic development and their potential clinical applications. PMID:27131354

  17. Rod guide

    SciTech Connect

    Sable, D.E.

    1988-11-29

    This patent describes a rod guide assembly for a sucker rod longitudinally reciprocably movable in a well flow conductor comprising: a pair of longitudinally spaced upper and lower stops rigidly secured to a sucker rod; and a guide body movably mounted on the rod between the stops. The stops being spaced from each other a distance slightly greater than the length of the guide body, the upper stop engaging the guide body to move the guide body downwardly with the rod after an initial short downward movement of the rod after initiation of each downward movement of the rod and the lower stop engaging the guide body to move the second guide body upwardly with the rod after initial short upward movement of the rod after initiation of each upward movement of the rod during the longitudinal reciprocatory movement of the rod in a well flow conductor.

  18. Facial nerve paralysis in children.

    PubMed

    Ciorba, Andrea; Corazzi, Virginia; Conz, Veronica; Bianchini, Chiara; Aimoni, Claudia

    2015-12-16

    Facial nerve palsy is a condition with several implications, particularly when occurring in childhood. It represents a serious clinical problem as it causes significant concerns in doctors because of its etiology, its treatment options and its outcome, as well as in little patients and their parents, because of functional and aesthetic outcomes. There are several described causes of facial nerve paralysis in children, as it can be congenital (due to delivery traumas and genetic or malformative diseases) or acquired (due to infective, inflammatory, neoplastic, traumatic or iatrogenic causes). Nonetheless, in approximately 40%-75% of the cases, the cause of unilateral facial paralysis still remains idiopathic. A careful diagnostic workout and differential diagnosis are particularly recommended in case of pediatric facial nerve palsy, in order to establish the most appropriate treatment, as the therapeutic approach differs in relation to the etiology. PMID:26677445

  19. Facial nerve paralysis in children

    PubMed Central

    Ciorba, Andrea; Corazzi, Virginia; Conz, Veronica; Bianchini, Chiara; Aimoni, Claudia

    2015-01-01

    Facial nerve palsy is a condition with several implications, particularly when occurring in childhood. It represents a serious clinical problem as it causes significant concerns in doctors because of its etiology, its treatment options and its outcome, as well as in little patients and their parents, because of functional and aesthetic outcomes. There are several described causes of facial nerve paralysis in children, as it can be congenital (due to delivery traumas and genetic or malformative diseases) or acquired (due to infective, inflammatory, neoplastic, traumatic or iatrogenic causes). Nonetheless, in approximately 40%-75% of the cases, the cause of unilateral facial paralysis still remains idiopathic. A careful diagnostic workout and differential diagnosis are particularly recommended in case of pediatric facial nerve palsy, in order to establish the most appropriate treatment, as the therapeutic approach differs in relation to the etiology. PMID:26677445

  20. Facial nerve paralysis in children.

    PubMed

    Ciorba, Andrea; Corazzi, Virginia; Conz, Veronica; Bianchini, Chiara; Aimoni, Claudia

    2015-12-16

    Facial nerve palsy is a condition with several implications, particularly when occurring in childhood. It represents a serious clinical problem as it causes significant concerns in doctors because of its etiology, its treatment options and its outcome, as well as in little patients and their parents, because of functional and aesthetic outcomes. There are several described causes of facial nerve paralysis in children, as it can be congenital (due to delivery traumas and genetic or malformative diseases) or acquired (due to infective, inflammatory, neoplastic, traumatic or iatrogenic causes). Nonetheless, in approximately 40%-75% of the cases, the cause of unilateral facial paralysis still remains idiopathic. A careful diagnostic workout and differential diagnosis are particularly recommended in case of pediatric facial nerve palsy, in order to establish the most appropriate treatment, as the therapeutic approach differs in relation to the etiology.

  1. Embryonic anastomosis between hypoglossal nerves.

    PubMed

    Rodríguez-Vázquez, J F; Mérida-Velasco, J R; Verdugo-López, S; Sanz-Casado, J V; Jiménez-Collado, J

    2009-12-01

    This article presents two cases of anastomosis of hypoglossal nerves in the suprahyoid region in human embryos of CR length 10.75 and 17.5 mm. This variation was studied in two human specimens at this stage of development and compared with the normal arrangement of the hypoglossal nerves in embryos at the same stage. The anastomotic branches were of similar caliber to the main trunks. In both cases the anastomosis was located dorsal to the origin of the geniohyoid muscles and caudal to the genioglossus muscles, lying transversally over the cranial face of the body of the hyoid bone anlage. The anastomosis formed a suprahyoid nerve chiasm on the midline in the embryo of 10.75 mm CR length.

  2. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  3. Polymeric Micelles as Carriers for Nerve-Highlighting Fluorescent Probe Delivery.

    PubMed

    Hackman, Kayla M; Doddapaneni, Bhuvana Shyam; Barth, Connor W; Wierzbicki, Igor H; Alani, Adam W G; Gibbs, Summer L

    2015-12-01

    Nerve damage during surgery is a common morbidity experienced by patients that leaves them with chronic pain and/or loss of function. Currently, no clinically approved imaging technique exists to enhance nerve visualization in the operating room. Fluorescence image-guided surgery has gained in popularity and clinical acceptance over the past decade with a handful of imaging systems approved for clinical use. However, contrast agent development to complement these fluorescence-imaging systems has lagged behind with all currently approved fluorescent agents providing untargeted blood pool information. Nerve-specific fluorophores are known, however translations of these agents to the clinic has been complicated by their lipophilic nature, which necessitates specialized formulation strategies for successful systemic administration. To date the known nerve-specific fluorophores have only been demonstrated preclinically due to the necessity of a dimethyl sulfoxide containing formulation for solubilization. In the current study, a polymeric micellar (PM) formulation strategy was developed for a representative nerve-specific fluorophore from the distyrylbenzene family, BMB. The PM formulation strategy was able to solubilize BMB and demonstrated improved nerve-specific accumulation and fluorescence intensity when the same fluorophore dose was administered to mice utilizing the previous formulation strategy. The success of the PM formulation strategy will be important for moving toward clinical translation of these novel nerve-specific probes as it is nontoxic and biodegradable and has the potential to decrease the necessary dose for imaging while also improving the safety profile.

  4. Polymeric Micelles as Carriers for Nerve-Highlighting Fluorescent Probe Delivery

    PubMed Central

    2015-01-01

    Nerve damage during surgery is a common morbidity experienced by patients that leaves them with chronic pain and/or loss of function. Currently, no clinically approved imaging technique exists to enhance nerve visualization in the operating room. Fluorescence image-guided surgery has gained in popularity and clinical acceptance over the past decade with a handful of imaging systems approved for clinical use. However, contrast agent development to complement these fluorescence-imaging systems has lagged behind with all currently approved fluorescent agents providing untargeted blood pool information. Nerve-specific fluorophores are known, however translations of these agents to the clinic has been complicated by their lipophilic nature, which necessitates specialized formulation strategies for successful systemic administration. To date the known nerve-specific fluorophores have only been demonstrated preclinically due to the necessity of a dimethyl sulfoxide containing formulation for solubilization. In the current study, a polymeric micellar (PM) formulation strategy was developed for a representative nerve-specific fluorophore from the distyrylbenzene family, BMB. The PM formulation strategy was able to solubilize BMB and demonstrated improved nerve-specific accumulation and fluorescence intensity when the same fluorophore dose was administered to mice utilizing the previous formulation strategy. The success of the PM formulation strategy will be important for moving toward clinical translation of these novel nerve-specific probes as it is nontoxic and biodegradable and has the potential to decrease the necessary dose for imaging while also improving the safety profile. PMID:26485440

  5. Rehabilitation of peripheral nerve injuries.

    PubMed

    Robinson, Michael D; Shannon, Steven

    2002-02-01

    Traumatic injuries to peripheral nerves pose complex challenges to both military and civilian physicians. Treatment of nerve injuries must consider all aspects of the inherent disability. Pain control is of paramount importance. Little will be accomplished until pain is brought down to tolerable levels. Rehabilitation needs to be instituted as first-line treatment. Focus must be first placed on protection of the affected area from complications stemming from disuse and immobility and then on enhancement of strength, flexibility, sensory discrimination, and dexterity. Early intervention sets the stage for optimal physiologic and functional recovery. PMID:11878078

  6. Nerve lesioning with direct current

    NASA Astrophysics Data System (ADS)

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  7. Peripheral nerve disease in pregnancy.

    PubMed

    Klein, Autumn

    2013-06-01

    Neuropathies during pregnancy and the postpartum period are common and are usually due to compression around pregnancy and childbirth. The most common peripheral neuropathies are Bell's palsy, carpal tunnel syndrome (CTS), and lower extremity neuropathies. Although most neuropathies are usually reversible, associated disabilities or morbidities can limit functioning and require therapy. Nerve conduction study tests and imaging should only be considered if symptoms are unusual or prolonged. Some neuropathies may be associated with preeclampsia or an inherent underlying neuropathy that increases the risk of nerve injury. All neuropathies in pregnancy should be followed as some may be persistent and require follow-up. PMID:23563878

  8. Real-Time Visualization of Ultrasonography Guided Cubital Tunnel Injection: A Cadaveric Study

    PubMed Central

    Kim, Jae Min; Kim, Min-Wook

    2012-01-01

    Objective To describe an ultrasonography-guided technique for cubital tunnel injection. Method The ulnar nerves from 12 elbows of 6 adult cadavers were scanned, and the cross-sectional areas of the ulnar nerves, cubital tunnel inlets and outlets were measured by using ultrasonography. All elbows were dissected after an ultrasonography-guided dye injection at the inlet of the cubital tunnel. The dissectors evaluated the spread of dye and the coloration of the nerve and remeasured the cross-sectional areas of the cubital tunnel inlets and outlets. Results After a real-time visualization of an ultrasonography-guided injection, the ulnar nerves were seperated from the medial groove for the ulnar nerve. All the ulnar nerves of the cadavers were successfully colored with the dye, from the inlet to oulet of the cubital tunnel. The post-injection cross-sectional areas were significantly larger than the pre-injection cross-sectional areas. No significant differences were detected in the post-injection cross-sectional areas of the cubital tunnel outlet and the ulnar nerve as compared with the pre-injection areas. Conclusion Clinicians should consider real-time visualization of ultrasonography for guided injection around the ulnar nerve at the inlet of the cubital tunnel. PMID:22977775

  9. Proximal Sciatic Nerve Intraneural Ganglion Cyst

    PubMed Central

    Swartz, Karin R.; Wilson, Dianne; Boland, Michael; Fee, Dominic B.

    2009-01-01

    Intraneural ganglion cysts are nonneoplastic, mucinous cysts within the epineurium of peripheral nerves which usually involve the peroneal nerve at the knee. A 37-year-old female presented with progressive left buttock and posterior thigh pain. Magnetic resonance imaging revealed a sciatic nerve mass at the sacral notch which was subsequently revealed to be an intraneural ganglion cyst. An intraneural ganglion cyst confined to the proximal sciatic nerve has only been reported once prior to 2009. PMID:20069041

  10. Patterned substrates and methods for nerve regeneration

    DOEpatents

    Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija

    2004-01-13

    Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.

  11. Effect of Artificial Nerve Conduit Vascularization on Peripheral Nerve in a Necrotic Bed

    PubMed Central

    Iijima, Yuki; Murayama, Akira; Takeshita, Katsushi

    2016-01-01

    Background: Several types of artificial nerve conduit have been used for bridging peripheral nerve gaps as an alternative to autologous nerves. However, their efficacy in repairing nerve injuries accompanied by surrounding tissue damage remains unclear. We fabricated a novel nerve conduit vascularized by superficial inferior epigastric (SIE) vessels and evaluated whether it could promote axonal regeneration in a necrotic bed. Methods: A 15-mm nerve conduit was implanted beneath the SIE vessels in the groin of a rat to supply it with blood vessels 2 weeks before nerve reconstruction. We removed a 13-mm segment of the sciatic nerve and then pressed a heated iron against the dorsal thigh muscle to produce a burn. The defects were immediately repaired with an autograft (n = 10), nerve conduit graft (n = 8), or vascularized nerve conduit graft (n = 8). Recovery of motor function was examined for 18 weeks after surgery. The regenerated nerves were electrophysiologically and histologically evaluated. Results: The vascularity of the nerve conduit implanted beneath the SIE vessels was confirmed histologically 2 weeks after implantation. Between 14 and 18 weeks after surgery, motor function of the vascularized conduit group was significantly better than that of the nonvascularized conduit group. Electrophysiological and histological evaluations revealed that although the improvement did not reach the level of reinnervation achieved by an autograft, the vascularized nerve conduit improved axonal regeneration more than did the conduit alone. Conclusion: Vascularization of artificial nerve conduits accelerated peripheral nerve regeneration, but further research is required to improve the quality of nerve regeneration. PMID:27257595

  12. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering

    PubMed Central

    Zilic, Leyla; Garner, Philippa E; Yu, Tong; Roman, Sabiniano; Haycock, John W; Wilshaw, Stacy-Paul

    2015-01-01

    Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons. PMID:26200940

  13. Overview of Optic Nerve Disorders

    MedlinePlus

    ... pathways to the brain results in loss of vision. At a structure in the brain called the optic chiasm, each optic nerve splits, ... both eyes, and the left side of the brain receives information from the right visual field of both eyes. ... occurs. Resources ...

  14. Cryoanalgesia for painful peripheral nerve lesions.

    PubMed

    Wang, J K

    1985-06-01

    Twelve patients with chronically painful peripheral nerve lesions were treated with cryoanalgesia. The pain was relieved in 6 patients for 1-12 months. Although the pain eventually recurred, the patients resumed normal activities during remission. It is necessary to improve the techniques of nerve localization and to determine the proper mode of nerve freezing. PMID:2995903

  15. Altered peripheral nerve function resulting from haemodialysis.

    PubMed

    Stanley, E; Brown, J C; Pryor, J S

    1977-01-01

    The amplitudes of muscle and nerve action potentials evoked median nerve stimulation were recorded just before and immediately after haemodialysis. These revealed a growht of action potential amplitude during dialysis. It is suggested that some component of the defective peripheral nerve function that inevitably accompanies uraemia is temporarily improved during dialysis. PMID:845605

  16. Trigeminal nerve: Anatomic correlation with MR imaging

    SciTech Connect

    Daniels, D.L.; Pech, P.; Pojunas, K.W.; Kilgore, D.P.; Williams, A.L.; Haughton, V.M.

    1986-06-01

    Through correlation with cryomicrotic sections, the appearance of the trigeminal nerve and its branches on magnetic resonance images is described in healthy individuals and in patients with tumors involving this nerve. Coronal images are best for defining the different parts of the nerve and for making a side-to-side comparison. Sagittal images are useful to demonstrate tumors involving the Gasserian ganglion.

  17. 21 CFR 882.5275 - Nerve cuff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve cuff. 882.5275 Section 882.5275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5275 Nerve cuff. (a) Identification. A nerve...

  18. Ephaptic coupling of myelinated nerve fibers

    NASA Astrophysics Data System (ADS)

    Binczak, S.; Eilbeck, J. C.; Scott, A. C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used to study ephaptic (nonsynaptic) interactions between impulses on parallel fibers, which may play a functional role in neural processing.

  19. Detection of peripheral nerve pathology

    PubMed Central

    Seelig, Michael J.; Baker, Jonathan C.; Mackinnon, Susan E.; Pestronk, Alan

    2013-01-01

    Objective: To compare accuracy of ultrasound and MRI for detecting focal peripheral nerve pathology, excluding idiopathic carpal or cubital tunnel syndromes. Methods: We performed a retrospective review of patients referred for neuromuscular ultrasound to identify patients who had ultrasound and MRI of the same limb for suspected brachial plexopathy or mononeuropathies, excluding carpal/cubital tunnel syndromes. Ultrasound and MRI results were compared to diagnoses determined by surgical or, if not performed, clinical/electrodiagnostic evaluation. Results: We identified 53 patients who had both ultrasound and MRI of whom 46 (87%) had nerve pathology diagnosed by surgical (n = 39) or clinical/electrodiagnostic (n = 14) evaluation. Ultrasound detected the diagnosed nerve pathology (true positive) more often than MRI (43/46 vs 31/46, p < 0.001). Nerve pathology was correctly excluded (true negative) with equal frequency by MRI and ultrasound (both 6/7). In 25% (13/53), ultrasound was accurate (true positive or true negative) when MRI was not. These pathologies were typically (10/13) long (>2 cm) and only occasionally (2/13) outside the MRI field of view. MRI missed multifocal pathology identified with ultrasound in 6 of 7 patients, often (5/7) because pathology was outside the MRI field of view. Conclusions: Imaging frequently detects peripheral nerve pathology and contributes to the differential diagnosis in patients with mononeuropathies and brachial plexopathies. Ultrasound is more sensitive than MRI (93% vs 67%), has equivalent specificity (86%), and better identifies multifocal lesions than MRI. In sonographically accessible regions ultrasound is the preferred initial imaging modality for anatomic evaluation of suspected peripheral nervous system lesions. PMID:23553474

  20. In vivo application of poly-3-hydroxyoctanoate as peripheral nerve graft

    PubMed Central

    Hazer, D. Burcu; Bal, Ercan; Nurlu, Gülay; Benli, Kemal; Balci, Serdar; Öztürk, Feral; Hazer, Baki

    2013-01-01

    Objective: This study aims to investigate the degree of biocompatibility and neuroregeneration of a polymer tube, poly-3-hydroxyoctanoate (PHO) in nerve gap repair. Methods: Forty Wistar Albino male rats were randomized into two groups: autologous nerve gap repair group and PHO tube repair group. In each group, a 10-mm right sciatic nerve defect was created and reconstructed accordingly. Neuroregeneration was studied by sciatic function index (SFI), electromyography, and immunohistochemical studies on Days 7, 21, 45 and 60 of implantation. Biocompatibility was analyzed by the capsule formation around the conduit. Biodegradation was analyzed by the molecular weight loss in vivo. Results: Electrophysiological and histomorphometric assessments demonstrated neuroregeneration in both groups over time. In the experimental group, a straight alignment of the Schwann cells parallel to the axons was detected. However, autologous nerve graft seems to have a superior neuroregeneration compared to PHO grafts. Minor biodegradation was observed in PHO conduit at the end of 60 d. Conclusions: Although neuroregeneration is detected in PHO grafts with minor degradation in 60 d, autologous nerve graft is found to be superior in axonal regeneration compared to PHO nerve tube grafts. PHO conduits were found to create minor inflammatory reaction in vivo, resulting in good soft tissue response. PMID:24190445

  1. Effects of gabapentin on thermal sensitivity following spinal nerve ligation or spinal cord compression.

    PubMed

    Yezierski, Robert P; Green, Megan; Murphy, Karen; Vierck, Charles J

    2013-10-01

    Neuropathic pain challenges healthcare professionals and researchers to develop new strategies of treatment and experimental models to better understand the pathophysiology of this condition. In the present study, the efficacy of gabapentin on thermal sensitivity following spinal nerve ligation and spinal cord compression was evaluated. The method of behavioral assessment was a well-validated cortically dependent operant escape task. Spinal nerve ligation produced peripheral neuropathic pain whereas spinal cord compression, achieved with an expanding polymer placed extradurally, produced a condition of central neuropathic pain. Changes in thermal sensitivity were also observed in animals undergoing nerve ligation surgery without nerve injury. Gabapentin (50 and 100 mg/kg) significantly reduced thermal sensitivity to 10 and 44.5 °C in surgically naive animals as well as those undergoing spinal nerve ligation and spinal cord compression. In conclusion, an operant method of behavioral assessment was used to show that spinal nerve ligation and spinal cord compression produced increases in sensitivity to noxious cold and heat stimuli. A decrease in thermal sensitivity was observed following administration of gabapentin. The results achieved with these methods are consistent with the clinical profile of gabapentin in treating conditions of neuropathic pain.

  2. Preoperative evaluation of peripheral nerve injuries: What is the place for ultrasound?

    PubMed

    Toia, Francesca; Gagliardo, Andrea; D'Arpa, Salvatore; Gagliardo, Cesare; Gagliardo, Giuseppe; Cordova, Adriana

    2016-09-01

    entrapment neuropathies (43.8%). CONCLUSIONS Ultrasound is a powerful, noninvasive tool for the examination of peripheral nerve injuries, and can guide diagnosis of and surgical strategy for focal peripheral nerve injuries. It allows direct visualization of the cause and extent of nerve lesions and finds its place between electrodiagnostic tests and exploratory surgery. It can provide invaluable information, such as the presence and extent of a mass, scar compression, or neuromas. The authors recommend it as a complement to routine clinical and neurophysiological evaluation and as the first-line imaging modality for masses of suspected nerve origin. PMID:26799303

  3. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  4. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  5. Application of implantable wireless biomicrosystem for monitoring nerve impedance of rat after sciatic nerve injury.

    PubMed

    Li, Yu-Ting; Peng, Chih-Wei; Chen, Lung-Tai; Lin, Wen-Shan; Chu, Chun-Hsun; Chen, Jia-Jin Jason

    2013-01-01

    Electrical stimulation is usually applied percutaneously for facilitating peripheral nerve regeneration. However, few studies have conducted long-term monitoring of the condition of nerve regeneration. This study implements an implantable biomicrosystem for inducing pulse current for aiding nerve repair and monitoring the time-course changes of nerve impedance for assessing nerve regeneration in sciatic nerve injury rat model. For long-term implantation, a transcutaneous magnetic coupling technique is adopted for power and data transmission. For in vivo study, the implanted module was placed in the rat's abdomen and the cuff electrode was wrapped around an 8-mm sciatic nerve gap of the rat for nerve impedance measurement for 42 days. One group of animals received monophasic constant current via the cuff electrode and a second group had no stimulation between days 8-21. The nerve impedance increased to above 150% of the initial value in the nerve regeneration groups with and without stimulation whereas the group with no nerve regeneration increased to only 113% at day 42. The impedance increase in nerve regeneration groups can be observed before evident functional recovery. Also, the nerve regeneration group that received electrical stimulation had relatively higher myelinated fiber density than that of no stimulation group, 20686 versus 11417 fiber/mm (2). The developed implantable biomicrosystem is proven to be a useful experimental tool for long-term stimulation in aiding nerve fiber growth as well as impedance assessment for understanding the time-course changes of nerve regeneration. PMID:23060343

  6. Morphological studies of the vestibular nerve

    NASA Technical Reports Server (NTRS)

    Bergstroem, B.

    1973-01-01

    The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.

  7. Inferior alveolar and lingual nerve imaging.

    PubMed

    Miloro, Michael; Kolokythas, Antonia

    2011-03-01

    At present, there are no objective testing modalities available for evaluation of iatrogenic injury to the terminal branches of the trigeminal nerve, making such clinical diagnosis and management complicated for the oral and maxillofacial surgeon. Several imaging modalities can assist in the preoperative risk assessment of the trigeminal nerve as related to commonly performed procedures in the vicinity of the nerve, mostly third molar surgery. This article provides a review of all available imaging modalities and their clinical application relative to preoperative injury risk assessment of the inferior alveolar nerve and lingual nerve, and postinjury and postsurgical repair recovery status.

  8. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    SciTech Connect

    Tsoumakidou, Georgia Garnon, Julien Ramamurthy, Nitin Buy, Xavier Gangi, Afshin

    2013-12-15

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO{sub 2} insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve.

  9. Ultrasonographic evaluation of neck hematoma and block salvage after failed neurostimulation-guided interscalene block.

    PubMed

    Howell, Stephen M; Unger, M W Todd; Colson, James D; Serafini, Mario

    2010-11-01

    Ultrasound-guided regional anesthetic techniques have shown some advantages over conventional paresthesia and neurostimulation techniques. We report the case of a neurostimulation-guided continuous interscalene block that would have ended in complication were it not for experience with ultrasound-guided regional anesthesia. Familiarity with ultrasound-guided block techniques permitted assessment of a neck hematoma during interscalene block and ultimately allowed successful peripheral nerve block.

  10. Improved technique for CT-guided celiac ganglia block

    SciTech Connect

    Haaga, J.R.; Kori, S.H.; Eastwood, D.W.; Borowski, G.P.

    1984-06-01

    Celiac nerve blocks have been performed without radiologic guidance, but recently several groups have reported computed tomography (CT)-guided techniques. The authors present a new technique of CT-guided celiac nerve block using an 18 gauge Teflon catheter, which permits a test block dose and permanent alcohol block with one procedure. The results of this new technique were very encouraging. Of nine cancer patients who had the test block, seven had good pain relief; these same patients had good pain control with the permanent block. Of six patients with pancreatitis, six had good pain relief from the test block, and three had some long-term relief from the permanent block.

  11. Parotid lymphangioma associated with facial nerve paralysis.

    PubMed

    Imaizumi, Mitsuyoshi; Tani, Akiko; Ogawa, Hiroshi; Omori, Koichi

    2014-10-01

    Parotid lymphangioma is a relatively rare disease that is usually detected in infancy or early childhood, and which has typical features. Clinical reports of facial nerve paralysis caused by lymphangioma, however, are very rare. Usually, facial nerve paralysis in a child suggests malignancy. Here we report a very rare case of parotid lymphangioma associated with facial nerve paralysis. A 7-year-old boy was admitted to hospital with a rapidly enlarging mass in the left parotid region. Left peripheral-type facial nerve paralysis was also noted. Computed tomography and magnetic resonance imaging also revealed multiple cystic lesions. Open biopsy was undertaken in order to investigate the cause of the facial nerve paralysis. The histopathological findings of the excised tumor were consistent with lymphangioma. Prednisone (40 mg/day) was given in a tapering dose schedule. Facial nerve paralysis was completely cured 1 month after treatment. There has been no recurrent facial nerve paralysis for eight years.

  12. Pulp Fibroblasts Control Nerve Regeneration through Complement Activation.

    PubMed

    Chmilewsky, F; About, I; Chung, S-H

    2016-07-01

    Dentin-pulp regeneration is closely linked to the presence of nerve fibers in the pulp and to the healing mechanism by sprouting of the nerve fiber's terminal branches beneath the carious injury site. However, little is known about the initial mechanisms regulating this process in carious teeth. It has been recently demonstrated that the complement system activation, which is one of the first immune responses, contributes to tissue regeneration through the local production of anaphylatoxins such as C5a. While few pulp fibroblasts in intact teeth and in untreated fibroblast cultures express the C5a receptor (C5aR), here we show that all dental pulp fibroblasts, localized beneath the carious injury site, do express this receptor. This observation is consistent with our in vitro results, which showed expression of C5aR in lipoteichoic acid-stimulated pulp fibroblasts. The interaction of C5a, produced after complement synthesis and activation from pulp fibroblasts, with the C5aR of these cells mediated the local brain-derived neurotropic factor (BDNF) secretion. Overall, this activation guided the neuronal growth toward the lipoteichoic acid-stimulated fibroblasts. Thus, our findings highlight a new mechanism in one of the initial steps of the dentin-pulp regeneration process, linking pulp fibroblasts to the nerve sprouting through the complement system activation. This may provide a useful future therapeutic tool in targeting the fibroblasts in the dentin-pulp regeneration process. PMID:27053117

  13. Polymer Science.

    ERIC Educational Resources Information Center

    Frank, Curtis W.

    1979-01-01

    Described is a series of four graduate level courses in polymer science, offered or currently in preparation, at Stanford University. Course descriptions and a list of required and recommended texts are included. Detailed course outlines for two of the courses are presented. (BT)

  14. Functional polymers

    SciTech Connect

    Wegner, G.

    2000-01-01

    Improving the existing polymer materials and the designing of model polymers need fundamental insights into the structure and dynamics over a large range of length and time scales. Consequently, a host of quite different methods needs to be applied to gain insights into the molecular and supramolecular structures and interactions that determine the performance of these materials. Supramolecular structures derived from shape persistent (stiff) macromolecules are used as examples to demonstrate the correlation between chemical structure, order phenomena and performance in applications concerning advanced or developing technologies: organic light emitting diodes (OLEDs) and separator membranes in lithium based batteries and fuel cells. Polymers are also important as additives in the manufacture and the processing of other materials. The design of block copolymers to control the nucleation and growth of inorganic particles precipitating from aqueous solutions (mineralization) is discussed as well as the use of block copolymers to optimize the processing of ceramic pieces and objects. Finally, the modification of surfaces by polymers including aspects of biocompatibility is discussed. Some remarks concerning the importance of recent developments and advances in synthesis of macromolecular materials are also given.

  15. Polymer solutions

    DOEpatents

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  16. Polymer thin-film distributed feedback tunable lasers

    NASA Astrophysics Data System (ADS)

    Dumarcher, Vincent; Rocha, Licinio; Denis, Christine; Fiorini, Céline; Nunzi, Jean-Michel; Sobel, Frank; Sahraoui, Bouchta; Gindre, Denis

    2000-07-01

    We report on measurements of laser emission from poly-methylmethacrylate and poly-vinyl carbazole polymer films doped with rhodamine-6G, DCM and coumarin laser dyes in an optically pumped distributed feedback scheme. We obtain tunability on a broad spectral range for all samples. We show the impact of waveguiding in the polymer film on reducing the laser threshold. We also show that the number of laser modes increases with the polymer film thickness, following the guided mode dispersion.

  17. Pleiotrophin and peripheral nerve injury.

    PubMed

    Jin, Li; Jianghai, Chen; Juan, Liu; Hao, Kang

    2009-10-01

    The proto-oncogene pleiotrophin, discovered in 1989, was considered as a multifunctional growth factor, which played an important role in tumor occurrence, development, and central nervous system. The latest research showed that pleiotrophin signal pathway probably participated in neural repair after peripheral nerve injury, especially in the following critical points, such as the protection of spinal cord neuron, the promotion of the speed of neuron axon regeneration, the guidance of neuron axon regeneration, skeleton muscle reinnervation, and so on. It potentially plays a key role in the guidance of neural axon regeneration in peripheral nervous system and muscle reinnervation. With the deepening of related researches, pleiotrophin gene would become a controllable target for improving the repairing effect of peripheral nerve injury and reconstruction of the neuromuscular junction.

  18. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    PubMed Central

    Li, Guang-shuai; Li, Qing-feng; Dong, Ming-min; Zan, Tao; Ding, Shuang; Liu, Lin-bo

    2016-01-01

    Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8β and complement factor D) in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration. PMID:27212935

  19. Alcohol neurolysis of digital nerves

    PubMed Central

    Wright, Garrett K.; Burnett, Christopher J.

    2016-01-01

    Alcohol neurolysis is a well-established treatment in chronic pain management, often used in cases of intractable cancer-related pain that is refractory to other management therapies. We describe a 76-year-old woman with chronic toe neuritis who failed multiple treatments, including oral and topical analgesics, nerve blocks, and radiofrequency ablations. Alcohol neurolysis was performed via digit block of the toe resulting in 100% pain relief. PMID:27365891

  20. Exogenous nerve growth factor protects the hypoglossal nerve against crush injury

    PubMed Central

    Fan, Li-yuan; Wang, Zhong-chao; Wang, Pin; Lan, Yu-yan; Tu, Ling

    2015-01-01

    Studies have shown that sensory nerve damage can activate the p38 mitogen-activated protein kinase (MAPK) pathway, but whether the same type of nerve injury after exercise activates the p38MAPK pathway remains unclear. Several studies have demonstrated that nerve growth factor may play a role in the repair process after peripheral nerve injury, but there has been little research focusing on the hypoglossal nerve injury and repair. In this study, we designed and established rat models of hypoglossal nerve crush injury and gave intraperitoneal injections of exogenous nerve growth factor to rats for 14 days. p38MAPK activity in the damaged neurons was increased following hypoglossal nerve crush injury; exogenous nerve growth factor inhibited this increase in acitivity and increased the survival rate of motor neurons within the hypoglossal nucleus. Under transmission electron microscopy, we found that the injection of nerve growth factor contributed to the restoration of the morphology of hypoglossal nerve after crush injury. Our experimental findings indicate that exogenous nerve growth factor can protect damaged neurons and promote hypoglossal nerve regeneration following hypoglossal nerve crush injury. PMID:26889186

  1. The longitudinal epineural incision and complete nerve transection method for modeling sciatic nerve injury

    PubMed Central

    Cheng, Xing-long; Wang, Pei; Sun, Bo; Liu, Shi-bo; Gao, Yun-feng; He, Xin-ze; Yu, Chang-yu

    2015-01-01

    Injury severity, operative technique and nerve regeneration are important factors to consider when constructing a model of peripheral nerve injury. Here, we present a novel peripheral nerve injury model and compare it with the complete sciatic nerve transection method. In the experimental group, under a microscope, a 3-mm longitudinal incision was made in the epineurium of the sciatic nerve to reveal the nerve fibers, which were then transected. The small, longitudinal incision in the epineurium was then sutured closed, requiring no stump anastomosis. In the control group, the sciatic nerve was completely transected, and the epineurium was repaired by anastomosis. At 2 and 4 weeks after surgery, Wallerian degeneration was observed in both groups. In the experimental group, at 8 and 12 weeks after surgery, distinct medullary nerve fibers and axons were observed in the injured sciatic nerve. Regular, dense myelin sheaths were visible, as well as some scarring. By 12 weeks, the myelin sheaths were normal and intact, and a tight lamellar structure was observed. Functionally, limb movement and nerve conduction recovered in the injured region between 4 and 12 weeks. The present results demonstrate that longitudinal epineural incision with nerve transection can stably replicate a model of Sunderland grade IV peripheral nerve injury. Compared with the complete sciatic nerve transection model, our method reduced the difficulties of micromanipulation and surgery time, and resulted in good stump restoration, nerve regeneration, and functional recovery. PMID:26692866

  2. Effect of oblique nerve grafting on peripheral nerve regeneration in rats.

    PubMed

    Kotulska, Katarzyna; Marcol, Wiesław; Larysz-Brysz, Magdalena; Tendera, Zofia; Malinowska-Kołodziej, Izabela; Slusarczyk, Wojciech; Jedrzejowska-Szypułka, Halina; Lewin-Kowalik, Joanna

    2006-01-01

    Current methods of peripheral nerve repair are to rejoin cut nerve stumps directly or to bridge large gaps with autologous nerve grafts. In both cases the surface of nerve stump endings is typically cut perpendicularly to the long axis of the nerve. The outcome of such operations, however, is still not satisfactory. In this study, we examine the effect of oblique nerve cutting and grafting on morphological as well as functional features of regeneration. In adult rats, sciatic nerve was cut and rejoined either directly or using an autologous graft, at 90 degrees or 30 degrees angle. Functional regeneration was assessed by walking track analysis during 12-week follow-up. Afterwards muscle weight was measured and histological studies were performed. The latter included nerve fibers and Schwann cells counting, as well as visualization of scar formation and epineural fibrosis. Nerves cut obliquely and rejoined showed better functional recovery than perpendicularly transected. Similar effect was observed after oblique grafting when compared to perpendicular one. Numbers of nerve fibers growing into the distal stump of the nerve as well as the number of Schwann cells were significantly higher in obliquely than in perpendicularly operated nerves. Moreover, growing axons were arranged more regularly following oblique treatment. These data indicate that joining or grafting the nerve stumps at acute angle is a more profitable method of nerve repair than the standard procedure performed at right angle. PMID:17066410

  3. Pressure Monitoring of Intraneural an Perineural Injections Into the Median, Radial, and Ulnar Nerves; Lessons From a Cadaveric Study

    PubMed Central

    Krol, Andrzej; Szarko, Matthew; Vala, Arber; De Andres, Jose

    2015-01-01

    Background: Nerve damage after regional anesthesia has been of great concern to anesthetists. Various modalities have been suggested to recognize and prevent its incidence. An understudied area is the measurement of intraneural pressure during peripheral nerve blockade. Previous investigations have produced contradicting results with only one study being conducted on human cadavers. Objectives: The purpose of this investigation was to systematically record intraneural and perineural injection pressures on the median, ulnar, and radial nerves exclusively as a primary outcome. Materials and Methods: Ultrasonography-guided injections of 1 mL of 0.9% NaCl over ten seconds were performed on phenol glycerine embalmed cadaveric median, ulnar, and radial nerves. A total of 60 injections were performed, 30 intraneural and 30 perineural injections. The injections pressure was measured using a controlled disc stimulation device. Anatomic dissection was used to confirm needle placement. Results: Intraneural needle placement produced significantly greater pressures than perineural injections did. The mean generated pressures in median, radial, and ulnar nerves were respectively 29.4 ± 9.3, 27.3 ± 8.5, and 17.9 ± 7.0 pound per square inch (psi) (1 psi = 51.7 mmHg) for the intraneural injections and respectively 7.2 ± 2.5, 8.3 ± 2.5, and 6.7 ± 1.8 psi for perineural injections. Additionally the intraneural injection pressures of the ulnar nerve were lower than those of the median and radial nerves. Conclusions: Obtained results demonstrate significant differences between intraneural and perineural injection pressures in the median, ulnar, and radial nerves. Intraneural injection pressures show low specificity but high sensitivity suggesting that pressure monitoring might be a valuable tool in improving the safety and efficacy of peripheral nerve blockade in regional anesthesia. Peripheral nerves “pressure mapping” hypothetically might show difference amongst various

  4. The efficacy of combined regional nerve blocks in awake orotracheal fiberoptic intubation

    PubMed Central

    Chatrath, Veena; Sharan, Radhe; Jain, Payal; Bala, Anju; Ranjana; Sudha

    2016-01-01

    Aims of Study: To evaluate the efficacy, hemodynamic changes, and patient comfort during awake fiberoptic intubation done under combined regional blocks. Materials and Methods: In the present observational study, 50 patients of American Society of Anesthesiologists ( ASA) Grade I–II, Mallampati Grade I–IV were given nerve blocks - bilateral glossopharyngeal nerve block, bilateral superior laryngeal nerve block, and recurrent laryngeal nerve block before awake fiberoptic intubation using 2% lidocaine. Results: Procedure was associated with minimal increases in hemodynamic parameters during the procedure and until 3 min after it. Most of the intubations were being carried out within 3 min. Patient comfort was satisfactory with 90% of patients having favorable grades. Discussion: The most common cause of mortality and serious morbidity due to anesthesia is from airway problems. One-third of all anesthetic deaths are due to failure to intubate and ventilate. Awake flexible fiberoptic intubation under local anesthesia is now an accepted technique for managing such situations. In awake patient's anatomy, muscle tone, airway protection, and ventilation are preserved, but it is essential to sufficiently anesthetize the upper airway before the performance of awake fiberoptic bronchoscope-guided intubation to ensure patient comfort and cooperation for which in our study we used the nerve block technique. Conclusion: A properly performed technique of awake fiberoptic intubation done under combined regional nerve blocks provides good intubating conditions, patient comfort and safety and results in minimal hemodynamic changes. PMID:27212757

  5. Inside-out autologous vein grafts fail to restore erectile function in a rat model of cavernous nerve crush injury after nerve-sparing prostatectomy.

    PubMed

    Bessede, T; Moszkowicz, D; Alsaid, B; Zaitouna, M; Diallo, D; Peschaud, F; Benoit, G; Droupy, S

    2015-01-01

    Some autologous tissues can restore erectile function (EF) in rats after a resection of the cavernous nerve (CN). However, a cavernous nerve crush injury (CNCI) better reproduces ED occurring after a nerve-sparing radical prostatectomy (RP). The aim was to evaluate the effect on EF of an autologous vein graft after CNCI, compared with an artificial conduit. Five groups of rats were studied: those with CN exposure, exposure+vein, crush, crush+guide and crush+vein. Four weeks after surgery, the EF of rats was assessed by electrical stimulation of the CNs. The intracavernous pressure (ICP) and mean arterial pressure (MAP) were monitored during stimulations at various frequencies. The main outcome, that is, the rigidity of the erections, was defined as the ICP/MAP ratio. At 10 Hz, the ICP/MAP ratios were 41.8%, 34.7%, 20.9%, 33.9% and 20.5%, respectively. The EF was significantly lower in rats if the CNCI was treated with a vein graft instead of an artificial guide. Contrary to cases of CN resection, autologous vein grafts did not improve EF after CNCI. In terms of clinical use, the study suggests to limit an eventual use of autologous vein grafts to non-nerve-sparing RPs.

  6. Motor nerve conduction velocity (MCV) and lead content in sciatic nerve of lead-exposed rats

    SciTech Connect

    Maehara, N.; Uchino, E.; Terayama, K.; Ohno, H.; Yamamura, K.

    1986-07-01

    There have been many pathological and electrophysiological studies of peripheral nerves in inorganic lead intoxication. Peripheral nerve conduction velocity (NCV) has been used as an objective measure of the effects of lead on the peripheral nerve function and has been examined with blood lead content. There have been few reports on the changes in NCV related to lead content in the peripheral nerve tissue under lead poisoning. In the present study, the authors have examined motor nerve conduction velocity (MCV) of the tail by a non-invasive method and lead content of the peripheral nerve in lead-exposed rats. Furthermore, they have attempted to assess the relationship between these two parameters.

  7. Mechanisms of nerve injury in leprosy.

    PubMed

    Scollard, David M; Truman, Richard W; Ebenezer, Gigi J

    2015-01-01

    All patients with leprosy have some degree of nerve involvement. Perineural inflammation is the histopathologic hallmark of leprosy, and this localization may reflect a vascular route of entry of Mycobacterium leprae into nerves. Once inside nerves, M. leprae are ingested by Schwann cells, with a wide array of consequences. Axonal atrophy may occur early in this process; ultimately, affected nerves undergo segmental demyelination. Knowledge of the mechanisms of nerve injury in leprosy has been greatly limited by the minimal opportunities to study affected nerves in man. The nine-banded armadillo provides the only animal model of the pathogenesis of M. leprae infection. New tools available for this model enable the study and correlation of events occurring in epidermal nerve fibers, dermal nerves, and nerve trunks, including neurophysiologic parameters, bacterial load, and changes in gene transcription in both neural and inflammatory cells. The armadillo model is likely to enhance understanding of the mechanisms of nerve injury in leprosy and offers a means of testing proposed interventions. PMID:25432810

  8. Inferior alveolar nerve block: Alternative technique

    PubMed Central

    Thangavelu, K.; Kannan, R.; Kumar, N. Senthil

    2012-01-01

    Background: Inferior alveolar nerve block (IANB) is a technique of dental anesthesia, used to produce anesthesia of the mandibular teeth, gingivae of the mandible and lower lip. The conventional IANB is the most commonly used the nerve block technique for achieving local anesthesia for mandibular surgical procedures. In certain cases, however, this nerve block fails, even when performed by the most experienced clinician. Therefore, it would be advantageous to find an alternative simple technique. Aim and Objective: The objective of this study is to find an alternative inferior alveolar nerve block that has a higher success rate than other routine techniques. To this purpose, a simple painless inferior alveolar nerve block was designed to anesthetize the inferior alveolar nerve. Materials and Methods: This study was conducted in Oral surgery department of Vinayaka Mission's dental college Salem from May 2009 to May 2011. Five hundred patients between the age of 20 years and 65 years who required extraction of teeth in mandible were included in the study. Out of 500 patients 270 were males and 230 were females. The effectiveness of the IANB was evaluated by using a sharp dental explorer in the regions innervated by the inferior alveolar, lingual, and buccal nerves after 3, 5, and 7 min, respectively. Conclusion: This study concludes that inferior alveolar nerve block is an appropriate alternative nerve block to anesthetize inferior alveolar nerve due to its several advantages. PMID:25885503

  9. Specificity of peripheral nerve regeneration: interactions at the axon level.

    PubMed

    Allodi, Ilary; Udina, Esther; Navarro, Xavier

    2012-07-01

    Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs. PMID:22609046

  10. A Polymer "Pollution Solution" Classroom Activity.

    ERIC Educational Resources Information Center

    Helser, Terry L.

    1996-01-01

    Explains an approach to presenting polymer chemistry to nonmajors that employs polystyrene foam, foam peanuts made from water soluble starch, and water soluble plastic bags. Students are presented with a pollution scenario and are guided to the discovery of solutions. (DDR)

  11. Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects

    PubMed Central

    Biazar, Esmaeil; Keshel, Saeed Heidari; Pouya, Majid; Rad, Hadi; Nava, Melody Omrani; Azarbakhsh, Mohammad; Hooshmand, Shirin

    2013-01-01

    It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve defects needs to be assessed. In this study, we used a nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit to bridge a 30-mm-long gap in the rat sciatic nerve. At 4 months after nerve conduit implantation, regenerated nerves were cally observed and histologically assessed. In the nanofibrous graft, the rat sciatic nerve trunk had been reconstructed by restoration of nerve continuity and formation of myelinated nerve fiber. There were Schwann cells and glial cells in the regenerated nerves. Masson's trichrome staining showed that there were no pathological changes in the size and structure of gastrocnemius muscle cells on the operated side of rats. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit is suitable for repair of long-segment sciatic nerve defects. PMID:25206536

  12. Phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    A method of forming 4,4',4'',4''' -tetraamino phthalocyanines involves reducing 4,4',4'',4''' -tetranitro phthalocyanines, polymerizing the metal tetraamino phthalocyanines with a tetracarboxylic dianhydride (preferably aromatic) or copolymerizing with a tetracarboxylic dianhydride and a diamine (preferably also aromatic) to produce amic acids which are then dehydrocyclized to imides. Thermally and oxidatively stable polymers result which form tough, flexible films, varnishes, adhesives, and fibers.

  13. Periodic Polymers

    NASA Astrophysics Data System (ADS)

    Thomas, Edwin

    2013-03-01

    Periodic polymers can be made by self assembly, directed self assembly and by photolithography. Such materials provide a versatile platform for 1, 2 and 3D periodic nano-micro scale composites with either dielectric or impedance contrast or both, and these can serve for example, as photonic and or phononic crystals for electromagnetic and elastic waves as well as mechanical frames/trusses. Compared to electromagnetic waves, elastic waves are both less complex (longitudinal modes in fluids) and more complex (longitudinal, transverse in-plane and transverse out-of-plane modes in solids). Engineering of the dispersion relation between wave frequency w and wave vector, k enables the opening of band gaps in the density of modes and detailed shaping of w(k). Band gaps can be opened by Bragg scattering, anti-crossing of bands and discrete shape resonances. Current interest is in our group focuses using design - modeling, fabrication and measurement of polymer-based periodic materials for applications as tunable optics and control of phonon flow. Several examples will be described including the design of structures for multispectral band gaps for elastic waves to alter the phonon density of states, the creation of block polymer and bicontinuous metal-carbon nanoframes for structures that are robust against ballistic projectiles and quasi-crystalline solid/fluid structures that can steer shock waves.

  14. Conductive Polymers

    SciTech Connect

    Bohnert, G.W.

    2002-11-22

    Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

  15. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  16. Microsurgical anatomy of the trochlear nerve.

    PubMed

    Joo, Wonil; Rhoton, Albert L

    2015-10-01

    The trochlear nerve is the cranial nerve with the longest intracranial course, but also the thinnest. It is the only nerve that arises from the dorsal surface of the brainstem and decussates in the superior medullary velum. After leaving the dorsal surface of the brainstem, it courses anterolaterally around the lateral surface of the brainstem and then passes anteriorly just beneath the free edge of the tentorium. It passes forward to enter the cavernous sinus, traverses the superior orbital fissure and terminates in the superior oblique muscle in the orbit. Because of its small diameter and its long course, the trochlear nerve can easily be injured during surgical procedures. Therefore, precise knowledge of its surgical anatomy and its neurovascular relationships is essential for approaching and removing complex lesions of the orbit and the middle and posterior fossae safely. This review describes the microsurgical anatomy of the trochlear nerve and is illustrated with pictures involving the nerve and its surrounding connective and neurovascular structures.

  17. Imaging the Facial Nerve: A Contemporary Review

    PubMed Central

    Gupta, Sachin; Mends, Francine; Hagiwara, Mari; Fatterpekar, Girish; Roehm, Pamela C.

    2013-01-01

    Imaging plays a critical role in the evaluation of a number of facial nerve disorders. The facial nerve has a complex anatomical course; thus, a thorough understanding of the course of the facial nerve is essential to localize the sites of pathology. Facial nerve dysfunction can occur from a variety of causes, which can often be identified on imaging. Computed tomography and magnetic resonance imaging are helpful for identifying bony facial canal and soft tissue abnormalities, respectively. Ultrasound of the facial nerve has been used to predict functional outcomes in patients with Bell's palsy. More recently, diffusion tensor tractography has appeared as a new modality which allows three-dimensional display of facial nerve fibers. PMID:23766904

  18. Neurophysiological approach to disorders of peripheral nerve.

    PubMed

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves, plexus, or root lesions). Furthermore pathological processes may result in either demyelination, axonal degeneration or both. In order to reach an exact diagnosis of any neuropathy electrophysiological studies are crucial to obtain information about these variables. Conventional electrophysiological methods including nerve conduction studies and electromyography used in the study of patients suspected of having a neuropathy and the significance of the findings are discussed in detail and more novel and experimental methods are mentioned. Diagnostic considerations are based on a flow chart classifying neuropathies into eight categories based on mode of onset, distribution, and electrophysiological findings, and the electrophysiological characteristics in each type of neuropathy are discussed. PMID:23931776

  19. Cardiovascular effects of afferent renal nerve stimulation.

    PubMed

    Stella, A; Weaver, L; Golin, R; Genovesi, S; Zanchetti, A

    1987-01-01

    Electrical stimulation of afferent renal nerves elicits an increase in arterial pressure and heart rate. The hypertensive response is presumably due to the widespread activation of the sympathetic nervous system leading to peripheral vasoconstriction. Interestingly, the kidney does not appear involved in this reflex excitatory response to afferent renal nerve stimulation since changes in vascular conductances and excretory functions are equal in both the innervated and denervated kidney, and secondary to changes in renal perfusion pressure. In addition, no changes in renin release from either kidneys are observed during afferent renal nerve stimulation. It is likely that the electrical stimulation of afferent renal nerves activates other reflexes exerting an inhibitory influence on efferent renal nerve activity. Indeed, neural renorenal reflexes which tonically inhibit renal functions have clearly been demonstrated. Furthermore, preferential inhibition of efferent renal nerve activity by cardiopulmonary and sinoaortic receptors has recently been shown during activation of other visceral afferents.

  20. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.

    PubMed

    Xu, Lai; Li, Youyong

    2016-06-30

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.

  1. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers

    PubMed Central

    Xu, Lai; Li, Youyong

    2016-01-01

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers. PMID:27356483

  2. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers

    NASA Astrophysics Data System (ADS)

    Xu, Lai; Li, Youyong

    2016-06-01

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.

  3. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.

    PubMed

    Xu, Lai; Li, Youyong

    2016-01-01

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers. PMID:27356483

  4. [Obturator nerve block in transurethral surgery].

    PubMed

    Rubial Alvarez, M; Molins Gauna, N; Rubio Pascual, P; Martín Bermejo, P; Pamplona Casamayor, M

    1989-01-01

    The obturator nerve passes in close proximity to the bladder as it courses through the pelvis. During transurethral operations, resection may result in stimulation of the obturator nerve, causing violent adductor contraction. Bladder perforation and incomplete tumor resection are the most important complications. All techniques proposed since transurethral surgery began, until nowadays are reviewed: neuromuscular blockade, electric circuit modifications, transparietal endoscopic blockade, periprostatic and subvesical infiltration, obturator nerve blockade and the "3 in 1 block" described by Winnie. Practical advices are proposed finally.

  5. Tissue engineered constructs for peripheral nerve surgery

    PubMed Central

    Johnson, P. J.; Wood, M. D.; Moore, A. M.; Mackinnon, S. E.

    2013-01-01

    Summary Background Tissue engineering has been defined as “an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ”. Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. Methods A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. Results Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. Conclusions The field of tissue engineering should consider its challenge to not only meet the autograft “gold standard” but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft. PMID:24385980

  6. Peripheral nerve injuries in the athlete.

    PubMed

    Feinberg, J H; Nadler, S F; Krivickas, L S

    1997-12-01

    Peripheral nerves are susceptible to injury in the athlete because of the excessive physiological demands that are made on both the neurological structures and the soft tissues that protect them. The common mechanisms of injury are compression, traction, ischaemia and laceration. Seddon's original classification system for nerve injuries based on neurophysiological changes is the most widely used. Grade 1 nerve injury is a neuropraxic condition, grade 2 is axonal degeneration and grade 3 is nerve transection. Peripheral nerve injuries are more common in the upper extremities than the lower extremities, tend to be sport specific, and often have a biomechanical component. While the more acute and catastrophic neurological injuries are usually obvious, many remain subclinical and are not recognised before neurological damage is permanent. Early detection allows initiation of a proper rehabilitation programme and modification of biomechanics before the nerve injury becomes irreversible. Recognition of nerve injuries requires an understanding of peripheral neuroanatomy, knowledge of common sites of nerve injury and an awareness of the types of peripheral nerve injuries that are common and unique to each sport. The electrodiagnostic exam, usually referred to as the 'EMG', consists of nerve conduction studies and the needle electrode examination. It is used to determine the site and degree of neurological injury and to predict outcome. It should be performed by a neurologist or physiatrist (physician specialising in physical medicine and rehabilitation), trained and skilled in this procedure. Timing is essential if the study is to provide maximal information. Findings such as decreased recruitment after injury and conduction block at the site of injury may be apparent immediately after injury but other findings such as abnormal spontaneous activity may take several weeks to develop. The electrodiagnostic test assists with both diagnosis of the injury and in predicting

  7. Raman microspectroscopy for visualization of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  8. Ulnar nerve entrapment syndrome in baseball players.

    PubMed

    Del Pizzo, W; Jobe, F W; Norwood, L

    1977-01-01

    Ulnar nerve entrapment at the elbow has been described in the literature. This paper deals with 19 skeletally mature baseball players with ulnar nerve entrapment who underwent surgery for correction of the problem. The surgery consisted of anterior transfer of the nerve and placement deep to the flexor muscles. Six players quit baseball because of continuing elbow problems, nine returned to playing, and four were lost to follow-up. Ulnar nerve entrapment is thought to represent one syndrome in a spectrum of diseases involving the medial side of the elbow in baseball players. The lesion is amenable to surgery.

  9. Nerve Transfers to Restore Shoulder Function.

    PubMed

    Leechavengvongs, Somsak; Malungpaishorpe, Kanchai; Uerpairojkit, Chairoj; Ng, Chye Yew; Witoonchart, Kiat

    2016-05-01

    The restoration of shoulder function after brachial plexus injury represents a significant challenge facing the peripheral nerve surgeons. This is owing to a combination of the complex biomechanics of the shoulder girdle, the multitude of muscles and nerves that could be potentially injured, and a limited number of donor options. In general, nerve transfer is favored over tendon transfer, because the biomechanics of the musculotendinous units are not altered. This article summarizes the surgical techniques and clinical results of nerve transfers for restoration of shoulder function. PMID:27094888

  10. Interventional nerve visualization via the intrinsic anisotropic optical properties of the nerves

    NASA Astrophysics Data System (ADS)

    Chin, Kenneth W.; Meijerink, Andries; Chin, Patrick T. K.

    2015-07-01

    We present an optical concept to visualize nerves during surgical interventions. The concept relies on the anisotropic optical properties of the nerves which allows for specific switching of the optical reflection by the nervous tissue. Using a low magnification polarized imaging system we are able to visualize the on and off switching of the optical reflection of the nervous tissue, enabling a non-invasive nerve specific real-time nerve visualization during surgery.

  11. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb.

    PubMed

    Kowalska, Berta; Sudoł-Szopińska, Iwona

    2012-06-01

    The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the "elevator technique". All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the "Journal of Ultrasonography".

  12. A compact fluorescence and white light imaging system for intraoperative visualization of nerves

    NASA Astrophysics Data System (ADS)

    Gray, Dan; Kim, Evgenia; Cotero, Victoria; Staudinger, Paul; Yazdanfar, Siavash; Tan Hehir, Cristina

    2012-03-01

    Fluorescence image guided surgery (FIGS) allows intraoperative visualization of critical structures, with applications spanning neurology, cardiology and oncology. An unmet clinical need is prevention of iatrogenic nerve damage, a major cause of post-surgical morbidity. Here we describe the advancement of FIGS imaging hardware, coupled with a custom nerve-labeling fluorophore (GE3082), to bring FIGS nerve imaging closer to clinical translation. The instrument is comprised of a 405nm laser and a white light LED source for excitation and illumination. A single 90 gram color CCD camera is coupled to a 10mm surgical laparoscope for image acquisition. Synchronization of the light source and camera allows for simultaneous visualization of reflected white light and fluorescence using only a single camera. The imaging hardware and contrast agent were evaluated in rats during in situ surgical procedures.

  13. Compact fluorescence and white-light imaging system for intraoperative visualization of nerves

    NASA Astrophysics Data System (ADS)

    Gray, Dan; Kim, Evgenia; Cotero, Victoria; Staudinger, Paul; Yazdanfar, Siavash; tan Hehir, Cristina

    2012-02-01

    Fluorescence image guided surgery (FIGS) allows intraoperative visualization of critical structures, with applications spanning neurology, cardiology and oncology. An unmet clinical need is prevention of iatrogenic nerve damage, a major cause of post-surgical morbidity. Here we describe the advancement of FIGS imaging hardware, coupled with a custom nerve-labeling fluorophore (GE3082), to bring FIGS nerve imaging closer to clinical translation. The instrument is comprised of a 405nm laser and a white light LED source for excitation and illumination. A single 90 gram color CCD camera is coupled to a 10mm surgical laparoscope for image acquisition. Synchronization of the light source and camera allows for simultaneous visualization of reflected white light and fluorescence using only a single camera. The imaging hardware and contrast agent were evaluated in rats during in situ surgical procedures.

  14. Peroneal Nerve Palsy After Cryotherapy.

    PubMed

    Collins, K; Storey, M; Peterson, K

    1986-05-01

    In brief: Cryotherapy, a common treatment method for sports injuries, could result in peroneal nerve palsy. In this case a 26-year-old basketball coach who sustained a hamstring strain applied ice circumferentially around his knee on two occasions for one hour each. He subsequently suffered a severe peroneal neuropathy with weakness of the ankle, ankle evertors, and toe dorsiflexors. Electromyographic studies showed axonotmesis three months after the injury. Four months after the injury the patient was still recovering. This case demonstrates the importance of using cryotherapy cautiously. PMID:27442936

  15. Low Median Nerve Transfers (Opponensplasty).

    PubMed

    Chadderdon, Robert Christopher; Gaston, R Glenn

    2016-08-01

    Opposition is the placement of the thumb opposite the fingers into a position from which it can work. This motion requires thumb palmar abduction, flexion, and pronation, which are provided by the abductor pollicis brevis, flexor pollicis brevis (FPB), and opponens pollicis. In the setting of a median nerve palsy, this function is typically lost, although anatomic variations and the dual innervation of the FPB may prevent complete loss at times. There are multiple well described and accepted tendon transfers to restore opposition, none of which have been proven to be superior to the others. PMID:27387078

  16. Peroneal Nerve Palsy After Cryotherapy.

    PubMed

    Collins, K; Storey, M; Peterson, K

    1986-05-01

    In brief: Cryotherapy, a common treatment method for sports injuries, could result in peroneal nerve palsy. In this case a 26-year-old basketball coach who sustained a hamstring strain applied ice circumferentially around his knee on two occasions for one hour each. He subsequently suffered a severe peroneal neuropathy with weakness of the ankle, ankle evertors, and toe dorsiflexors. Electromyographic studies showed axonotmesis three months after the injury. Four months after the injury the patient was still recovering. This case demonstrates the importance of using cryotherapy cautiously.

  17. Polymer Electronics: Power from Polymers

    SciTech Connect

    Venkataraman, D.; Russell, Thomas P.

    2012-06-19

    We review polymer-based electronics and photovoltaics to provide the reader with a sense of how the field has developed, where we stand at present, and what possibilities are looming in the future. Expertise in areas ranging from synthesis to morphology to device design was sought to achieve this end. While these reviews cannot be exhaustive, they do provide a snapshot of the field at present and give some sense of where the key impediments are.

  18. Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering.

    PubMed

    Kijeńska, Ewa; Prabhakaran, Molamma P; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof J; Ramakrishna, Seeram

    2012-05-01

    One of the biggest challenges in peripheral nerve tissue engineering is to create an artificial nerve graft that could mimic the extracellular matrix (ECM) and assist in nerve regeneration. Bio-composite nanofibrous scaffolds made from synthetic and natural polymeric blends provide suitable substrate for tissue engineering and it can be used as nerve guides eliminating the need of autologous nerve grafts. Nanotopography or orientation of the fibers within the scaffolds greatly influences the nerve cell morphology and outgrowth, and the alignment of the fibers ensures better contact guidance of the cells. In this study, poly (L-lactic acid)-co-poly(ε-caprolactone) or P(LLA-CL), collagen I and collagen III are utilized for the fabrication of nanofibers of different compositions and orientations (random and aligned) by electrospinning. The morphology, mechanical, physical, and chemical properties of the electrospun scaffolds along with their biocompatibility using C17.2 nerve stem cells are studied to identify the suitable material compositions and topography of the electrospun scaffolds required for peripheral nerve regeneration. Aligned P(LLA-CL)/collagen I/collagen III nanofibrous scaffolds with average diameter of 253 ± 102 nm were fabricated and characterized with a tensile strength of 11.59 ± 1.68 MPa. Cell proliferation studies showed 22% increase in cell proliferation on aligned P(LLA-CL)/collagen I/collagen III scaffolds compared with aligned pure P(LLA-CL) scaffolds. Results of our in vitro cell proliferation, cell-scaffold interaction, and neurofilament protein expression studies demonstrated that the electrospun aligned P(LLA-CL)/collagen I/collagen III nanofibrous scaffolds mimic more closely towards the ECM of nerve and have great potential as a substrate for accelerated regeneration of the nerve.

  19. The Cranial Nerve Skywalk: A 3D Tutorial of Cranial Nerves in a Virtual Platform

    ERIC Educational Resources Information Center

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways…

  20. One-stage human acellular nerve allograft reconstruction for digital nerve defects

    PubMed Central

    Li, Xue-yuan; Hu, Hao-liang; Fei, Jian-rong; Wang, Xin; Wang, Tian-bing; Zhang, Pei-xun; Chen, Hong

    2015-01-01

    Human acellular nerve allografts have a wide range of donor origin and can effectively avoid nerve injury in the donor area. Very little is known about one-stage reconstruction of digital nerve defects. The present study observed the feasibility and effectiveness of human acellular nerve allograft in the reconstruction of < 5-cm digital nerve defects within 6 hours after injury. A total of 15 cases of nerve injury, combined with nerve defects in 18 digits from the Department of Emergency were enrolled in this study. After debridement, digital nerves were reconstructed using human acellular nerve allografts. The patients were followed up for 6–24 months after reconstruction. Mackinnon-Dellon static two-point discrimination results showed excellent and good rates of 89%. Semmes-Weinstein monofilament test demonstrated that light touch was normal, with an obvious improvement rate of 78%. These findings confirmed that human acellular nerve allograft for one-stage reconstruction of digital nerve defect after hand injury is feasible, which provides a novel trend for peripheral nerve reconstruction. PMID:25788927

  1. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    EPA Science Inventory

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  2. Changes in nerve function and nerve fibre structure induced by acute, graded compression.

    PubMed Central

    Rydevik, B; Nordborg, C

    1980-01-01

    Rabbit tibial nerves were subjected to direct, acute graded compression by means of an inflatable compression chamber. The acute and long term effects of 50, 200 and 400 mmHg applied for two hours on nerve function and nerve fibre structure were investigated. A pressure of 50 mmHg applied for two hours induced only minimal or no acute deterioration of maximal conduction velocity and nerve fibre structure. Conduction velocity was gradually reduced during compression at 200-400 mmHg pressure for two hours and in those cases the recovery of nerve conduction after pressure release was incomplete. Ultrastructural analysis revealed pronounced, early nerve fibre damage in these nerves. Three weeks after compression, nerves compressed at 50 mmHg for two hours had normal afferent and motor conduction velocity, although there were morphological signs of slight nerve fibre damage. Nerves compressed at 200 mmHg for two hours exhibited reduction of conduction velocity only at the level of compression, in contrast to the nerves compressed at 400 mmHg for two hours in which conduction velocity was reduced both at the level of compression and distal to the compressed segment. Morphologically, the nerves compressed at 200-400 mmHg for two hours showed varying degrees of demyelination and axonal degeneration three weeks after compression. Images PMID:7217952

  3. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps.

    PubMed

    Whitlock, Elizabeth L; Tuffaha, Sami H; Luciano, Janina P; Yan, Ying; Hunter, Daniel A; Magill, Christina K; Moore, Amy M; Tong, Alice Y; Mackinnon, Susan E; Borschel, Gregory H

    2009-06-01

    Autografting is the gold standard in the repair of peripheral nerve injuries that are not amenable to end-to-end coaptation. However, because autografts result in donor-site defects and are a limited resource, an effective substitute would be valuable. In a rat model, we compared isografts with Integra NeuraGen (NG) nerve guides, which are a commercially available type I collagen conduit, with processed rat allografts comparable to AxoGen's Avance human decellularized allograft product. In a 14-mm sciatic nerve gap model, isograft was superior to processed allograft, which was in turn superior to NG conduit at 6 weeks postoperatively (P < 0.05 for number of myelinated fibers both at midgraft and distal to the graft). At 12 weeks, these differences were no longer apparent. In a 28-mm graft model, isografts again performed better than processed allografts at both 6 and 22 weeks; regeneration through the NG conduit was often insufficient for analysis in this long graft model. Functional tests confirmed the superiority of isografts, although processed allografts permitted successful reinnervation of distal targets not seen in the NG conduit groups. Processed allografts were inherently non-immunogenic and maintained some internal laminin structure. We conclude that, particularly in a long gap model, nerve graft alternatives fail to confer the regenerative advantages of an isograft. However, AxoGen processed allografts are superior to a currently available conduit-style nerve guide, the Integra NeuraGen. They provide an alternative for reconstruction of short nerve gaps where a conduit might otherwise be used.

  4. Mind Over Matter: The Brain's Response to Drugs. Teacher's Guide.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This teacher's guide aims to develop an understanding among students grades 5 through 9 of the physical reality of drug use. Contents include: (1) "Brain Anatomy"; (2) "Nerve Cells and Neurotransmission"; (3) "Effects of Drugs on the Brain"; (4) "Marijuana"; (5) "Opiates"; (6) "Inhalants"; (7) "Hallucinogens"; (8) "Steroids"; (9) "Stimulants";…

  5. Evolution of rapid nerve conduction.

    PubMed

    Castelfranco, Ann M; Hartline, Daniel K

    2016-06-15

    Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution.

  6. Optogenetic control of nerve growth

    PubMed Central

    Park, Seongjun; Koppes, Ryan A.; Froriep, Ulrich P.; Jia, Xiaoting; Achyuta, Anil Kumar H.; McLaughlin, Bryan L.; Anikeeva, Polina

    2015-01-01

    Due to the limited regenerative ability of neural tissue, a diverse set of biochemical and biophysical cues for increasing nerve growth has been investigated, including neurotrophic factors, topography, and electrical stimulation. In this report, we explore optogenetic control of neurite growth as a cell-specific alternative to electrical stimulation. By investigating a broad range of optical stimulation parameters on dorsal root ganglia (DRGs) expressing channelrhodopsin 2 (ChR2), we identified conditions that enhance neurite outgrowth by three-fold as compared to unstimulated or wild-type (WT) controls. Furthermore, optogenetic stimulation of ChR2 expressing DRGs induces directional outgrowth in WT DRGs co-cultured within a 10 mm vicinity of the optically sensitive ganglia. This observed enhancement and polarization of neurite growth was accompanied by an increased expression of neural growth and brain derived neurotrophic factors (NGF, BDNF). This work highlights the potential for implementing optogenetics to drive nerve growth in specific cell populations. PMID:25982506

  7. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Molamma P.; Venugopal, J.; Chan, Casey K.; Ramakrishna, S.

    2008-11-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ɛ-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  8. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering.

    PubMed

    Prabhakaran, Molamma P; Venugopal, J; Chan, Casey K; Ramakrishna, S

    2008-11-12

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration. PMID:21832761

  9. Facial nerve palsy associated with underwater barotrauma.

    PubMed

    Whelan, T R

    1990-06-01

    This report describes a case of facial nerve palsy following barotitis media sustained at shallow depth. The neuropraxia is likely to have been due to the direct effect of pressure, facilitated by a congenital hiatus in the bony canal protecting the facial nerve in the middle ear.

  10. Maternal anticonvulsants and optic nerve hypoplasia.

    PubMed Central

    Hoyt, C. S.; Billson, F. A.

    1978-01-01

    Seven patients with optic nerve hypoplasia, born of epileptic mothers, are presented. All the mothers took anticonvulsants during pregnancy. The possibility that maternal anticonvulsant therapy may play a role in the genesis of optic nerve hypoplasia is discussed in the light of what is known about the teratogenicity of these agents. Images PMID:415754

  11. A Safe Lab on Nerve Gases.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1988-01-01

    Describes an experiment involving pineapples and gelatin that allows students to investigate the conditions that typically render an enzyme functionless, similar to the effect of nerve gasses. Discusses the materials, procedures, and results, drawing analogies to the effects of a nerve gas. (CW)

  12. Facial nerve paralysis after cervical traction.

    PubMed

    So, Edmund Cheung

    2010-10-01

    Cervical traction is a frequently used treatment in rehabilitation clinics for cervical spine problems. This modality works, in principle, by decompressing the spinal cord or its nerve roots by applying traction on the cervical spine through a harness placed over the mandible (Olivero et al., Neurosurg Focus 2002;12:ECP1). Previous reports on treatment complications include lumbar radicular discomfort, muscle injury, neck soreness, and posttraction pain (LaBan et al., Arch Phys Med Rehabil 1992;73:295-6; Lee et al., J Biomech Eng 1996;118:597-600). Here, we report the first case of unilateral facial nerve paralysis developed after 4 wks of intermittent cervical traction therapy. Nerve conduction velocity examination revealed a peripheral-type facial nerve paralysis. Symptoms of facial nerve paralysis subsided after prednisolone treatment and suspension of traction therapy. It is suspected that a misplaced or an overstrained harness may have been the cause of facial nerve paralysis in this patient. Possible causes were (1) direct compression by the harness on the right facial nerve near its exit through the stylomastoid foramen; (2) compression of the right external carotid artery by the harness, causing transient ischemic injury at the geniculate ganglion; or (3) coincidental herpes zoster virus infection or idiopathic Bell's palsy involving the facial nerve.

  13. Medication Guide

    MedlinePlus

    ... Quit Smoking Benefits of Quitting Health Effects of Smoking Secondhand Smoke Withdrawal Ways to Quit QuitGuide Pregnancy & Motherhood Pregnancy & Motherhood Before Your Baby is Born From Birth to 2 Years Quitting for Two SmokefreeMom Healthy Kids Parenting & ... Weight Management Weight Management ...

  14. Homebuyer's Guide.

    ERIC Educational Resources Information Center

    Sindt, Roger P.; Harris, Jack

    Designed to assist prospective buyers in making such important decisions as whether to buy a new or older home and within what price range, the guide provides information on the purchase process. Discussion of the purchase process covers the life-cycle costs (recurring homeownership costs that must be met every month); selection of a home;…

  15. Freestyle Guide.

    ERIC Educational Resources Information Center

    Science Research Associates, Inc., Chicago, IL.

    This booklet serves as an introduction to the concept of Freestyle, a career awareness project designed to encourage nine- to twelve-year-olds to freely explore their interests, develop their skills, and choose their career paths. The booklet includes an explanation of the Freestyle project, goals, and components (t.v. programs, project guide,…

  16. Teachers Guide.

    ERIC Educational Resources Information Center

    Linsky, Ronald B.; Schnitger, Ronald L.

    This guide provides teachers with copies of the materials given to students participating in the oceanography program of the Orange County Floating Laboratory Program and provides information concerning colleges and universities offering courses in oceanography and marine science, source of films, and sources of publications concerning the Navy's…

  17. Cross-Face Nerve Grafting with Infraorbital Nerve Pathway Protection: Anatomic and Histomorphometric Feasibility Study

    PubMed Central

    Catapano, Joseph; Demsey, Daniel R.B.; Ho, Emily S.; Zuker, Ronald M.

    2016-01-01

    Smiling is an important aspect of emotional expression and social interaction, leaving facial palsy patients with impaired social functioning and decreased overall quality of life. Although there are several techniques available for facial reanimation, staged facial reanimation using donor nerve branches from the contralateral, functioning facial nerve connected to a cross-face nerve graft (CFNG) is the only technique that can reliably reproduce an emotionally spontaneous smile. Although CFNGs provide spontaneity, they typically produce less smile excursion than when the subsequent free functioning muscle flap is innervated with the motor nerve to the masseter muscle. This may be explained in part by the larger number of donor motor axons when using the masseter nerve, as studies have shown that only 20% to 50% of facial nerve donor axons successfully cross the nerve graft to innervate their targets. As demonstrated in our animal studies, increasing the number of donor axons that grow into and traverse the CFNG to innervate the free muscle transfer increases muscle movement, and this phenomenon may provide patients with the benefit of improved smile excursion. We have previously shown in animal studies that sensory nerves, when coapted to a nerve graft, improve axonal growth through the nerve graft and improve muscle excursion. Here, we describe the feasibility of and our experience in translating these results clinically by coapting the distal portion of the CFNG to branches of the infraorbital nerve. PMID:27757349

  18. Interpretations of Polymer-Polymer Miscibility.

    ERIC Educational Resources Information Center

    Olabisi, Olagoke

    1981-01-01

    Discusses various aspects of polymeric mixtures, mixtures of structurally different homopolymers, copolymers, terpolymers, and the like. Defines concepts of polymer-polymer miscibility from practical and theoretical viewpoints, and ways of predicting such miscibility. (JN)

  19. Lost in Translation: Ambiguity in Nerve Sheath Tumor Nomenclature and Its Resultant Treatment Effect

    PubMed Central

    Bernthal, Nicholas M.; Jones, Kevin B.; Monument, Michael J.; Liu, Ting; Viskochil, David; Randall, R. Lor

    2013-01-01

    There is much ambiguity surrounding the diagnosis of nerve sheath tumors, including atypical neurofibroma and low-grade MPNST, and yet, the distinction between these entities designates either benign or malignant behavior and thus carries presumed profound prognostic importance that often guides treatment. This study reviews the diagnostic criteria used to designate atypical neurofibroma from low-grade MPNSTs and reviews existing literature the natural history of each of these tumors to see if the distinction is, in fact, of importance. PMID:24216989

  20. Lost in translation: ambiguity in nerve sheath tumor nomenclature and its resultant treatment effect.

    PubMed

    Bernthal, Nicholas M; Jones, Kevin B; Monument, Michael J; Liu, Ting; Viskochil, David; Randall, R Lor

    2013-05-08

    There is much ambiguity surrounding the diagnosis of nerve sheath tumors, including atypical neurofibroma and low-grade MPNST, and yet, the distinction between these entities designates either benign or malignant behavior and thus carries presumed profound prognostic importance that often guides treatment. This study reviews the diagnostic criteria used to designate atypical neurofibroma from low-grade MPNSTs and reviews existing literature the natural history of each of these tumors to see if the distinction is, in fact, of importance.

  1. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration.

    PubMed

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-01-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed "lock and key" moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use. PMID:27572698

  2. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration

    PubMed Central

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-01-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use. PMID:27572698

  3. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration.

    PubMed

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-01-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed "lock and key" moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.

  4. Effectively Axonal-supercharged Interpositional Jump-Graft with an Artificial Nerve Conduit for Rat Facial Nerve Paralysis

    PubMed Central

    Niimi, Yosuke; Takeuchi, Yuichi; Sasaki, Ryo; Watanabe, Yorikatsu; Yamato, Masayuki; Miyata, Mariko; Sakurai, Hiroyuki

    2015-01-01

    Background: Interpositional jump graft (IPJG) is a nerve graft axonally supercharged from the hypoglossal nerve. However, for using the technique, an autologous nerve, which should contain the great auricular and sural nerves, must be obtained. Depending on the donor site, unavoidable issues such as nerve disorders and postoperative scarring may appear. To reduce the issues, in this study, the authors developed an end-to-side neurorrhaphy technique with the recipient nerve and an artificial nerve conduit and investigated the efficacy of an IPJG with an artificial nerve conduit in a rat facial nerve paresis model. Methods: A ligature clip was used to crush the facial nerve trunk, thereby creating a partial facial nerve paresis model. An artificial nerve conduit was then prepared with a 10-mm-long silicone tube containing 10 μL type I collagen and used to create an IPJG between the facial nerve trunk and the hypoglossal nerve (the silicone tube group). Thirteen weeks after the surgery, the outcome was histologically and physiologically compared with conventional IPJG with autograft using the great auricular nerve. Results: Retrograde tracer test confirmed a double innervation by the facial and hypoglossal nerve nuclei. In the autograft and silicone tube groups, the regeneration of myelinated axons was observed. Conclusion: In this study, the authors successfully developed an end-to-side neurorrhaphy technique with the recipient nerve and an artificial nerve conduit, and revealed that an IPJG in the conduit was effective in the rat facial nerve paresis model. PMID:26180717

  5. Bio-inspired tactile sensor with arrayed structures based on electroactive polymers

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sato, Hiroshi; Taya, Minoru

    2009-03-01

    We reported some work on flexible tactile sensors based on Flemion ionic polymer metal composites previously. In this work, we compared the signals in both voltage and current with the signals obtained from a giant nerve fiber reported previously by other researchers. We found some similarities between the artificial tactile sensor and the nerve fiber, in both of which ionic movement play a very important role. This bio-inspired Flemion based ionic polymer metal composites would be a good candidate for bio-related sensors especially for prosthetic limb socket interface applications.

  6. Sensory recovery following decellularized nerve allograft transplantation for digital nerve repair.

    PubMed

    Guo, Yang; Chen, Gary; Tian, Guanglei; Tapia, Carla

    2013-12-01

    This study reported preliminary clinical experience of using decelluarised nerve allograft material for repair of digital nerve defect in five hand injury patients. From October 2009 to July 2010, five patients with traumatic nerve defect were treated with nerve repair using AxoGen® nerve allograft (AxoGen Inc, Alachua, FL) in California Hospital Medical Center. All patients were followed at least for 12 months, and sensory recovery and signs of infection or rejection were documented by a hand therapist. Average two-point discrimination was 6 mm, and average Semmes-Weinstein Monofilaments test was 4.31. No wound infections or signs of rejections were observed at wound site. All patients reported sensory improvement during the follow-up period after operation. It is believed that decellularised nerve allografts may provide a readily available option for repair of segmental nerve defect.

  7. [Inferior alveolar nerve repositioning in implant surgery].

    PubMed

    Ardekian, L; Salnea, J; Abu el-Naaj, I; Gutmacher, T; Peled, M

    2001-04-01

    Severe resorption of the posterior mandible possesses one of the most difficult restorative challenges to the implant surgery today. This resorption may prevent the placement of dental implants without the potentially damage to the inferior alveolar nerve. To create the opportunity of insertion dental implants of adequately length in those cases, the technique of nerve repositioning has been advocated. The purpose of this article is to describe two cases of nerve repositioning combined with placement of dental implants. Both cases showed appropriate postoperative healing without damage to the inferior alveolar nerve. The inferior alveolar nerve repositioning technique seems to be an acceptable alternative to augmentation procedure prior to dental implants placement in cases exhibiting atrophic posterior mandibular ridges. PMID:11494807

  8. On the terminology of cranial nerves.

    PubMed

    Simon, František; Marečková-Štolcová, Elena; Páč, Libor

    2011-10-20

    The present contribution adopts various points of view to discuss the terminology of the twelve nervi craniales. These are paired nerves and have dual names, terms with Roman ordinal numerals, i.e., the nerves are numbered in the top-to-bottom direction, and descriptive historical names. The time of origin and motivation behind the investigated terms are determined. The majority of terms come from the 17th and 18th centuries. The motivation behind most of them is (a) nerve localization, as this is in conformity with anatomical nomenclature in general, (b) nerve function, and rarely (c) nerve appearance. The occurrence of synonymous names and variants is also a focus of attention. In several cases, reference is made to the process called terminologization, meaning when a certain expression acquires technical meaning and the characteristic/feature of the term. PMID:21724380

  9. Peripheral nerve morphogenesis induced by scaffold micropatterning

    PubMed Central

    Memon, Danish; Boneschi, Filippo Martinelli; Madaghiele, Marta; Brambilla, Paola; Del Carro, Ubaldo; Taveggia, Carla; Riva, Nilo; Trimarco, Amelia; Lopez, Ignazio D.; Comi, Giancarlo; Pluchino, Stefano; Martino, Gianvito; Sannino, Alessandro; Quattrini, Angelo

    2014-01-01

    Several bioengineering approaches have been proposed for peripheral nervous system repair, with limited results and still open questions about the underlying molecular mechanisms. We assessed the biological processes that occur after the implantation of collagen scaffold with a peculiar porous microstructure of the wall in a rat sciatic nerve transection model compared to commercial collagen conduits and nerve crush injury using functional, histological and genome wide analyses. We demonstrated that within 60 days, our conduit had been completely substituted by a normal nerve. Gene expression analysis documented a precise sequential regulation of known genes involved in angiogenesis, Schwann cells/axons interactions and myelination, together with a selective modulation of key biological pathways for nerve morphogenesis induced by porous matrices. These data suggest that the scaffold’s microstructure profoundly influences cell behaviors and creates an instructive micro-environment to enhance nerve morphogenesis that can be exploited to improve recovery and understand the molecular differences between repair and regeneration. PMID:24559639

  10. OCT image segmentation of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-08-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. In this study, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. Three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The features were segmented using a nearestneighbor classifier. N-ary morphological post-processing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058 +/- 0.019.

  11. Differential Reanimation of the Upper and Lower Face Using 2 Interpositional Nerve Grafts in Total Facial Nerve Reconstruction

    PubMed Central

    Nishibayashi, Akimitsu; Yano, Kenji; Hosokawa, Ko

    2015-01-01

    Summary: Radical parotidectomy often results in complex facial nerve defects involving the main nerve trunk and multiple distal nerve branches. Although cable nerve grafting often leads to good nerve regeneration, severe synkinesis due to aberrant axonal regrowth is inevitable. In such situations, the use of 2 motor sources to differentially reanimate the upper and lower face could minimize synkinesis. Here we describe a method of total facial nerve reconstruction in which the upper and lower face are differentially reconstructed with the hypoglossal nerve and facial nerve, respectively, using 2 interpositional nerve grafts. Reconstruction of the lower face with the facial nerve restored voluntary and coordinated animation, and reconstruction of the upper face with the hypoglossal nerve restored frontalis muscle tone and eye closure. These results suggest that our method could serve as an alternative to conventional techniques that use only the facial or hypoglossal nerve. PMID:26579350

  12. The use of the phrenic nerve communicating branch to the fifth cervical root for nerve transfer to the suprascapular nerve in infants with obstetric brachial plexus palsy.

    PubMed

    Al-Qattan, M M; El-Sayed, A A F

    2014-01-01

    Traditionally, suprascapular nerve reconstruction in obstetric brachial plexus palsy is done using either the proximal C5 root stump or the spinal accessory nerve. This paper introduces another potential donor nerve for neurotizing the suprascapular nerve: the phrenic nerve communicating branch to the C5 root. The prevalence of this communicating branch ranges from 23% to 62% in various anatomical dissections. Over the last two decades, the phrenic communicating branch was used to reconstruct the suprascapular nerve in 15 infants. Another 15 infants in whom the accessory nerve was used to reconstruct the suprascapular nerve were selected to match the former 15 cases with regard to age at the time of surgery, type of palsy, and number of avulsed roots. The results showed that there is no significant difference between the two groups with regard to recovery of external rotation of the shoulder. It was concluded that the phrenic nerve communicating branch may be considered as another option to neurotize the suprascapular nerve.

  13. Peripheral nerve imaging: Not only cross-sectional area.

    PubMed

    Tagliafico, Alberto Stefano

    2016-08-28

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called "nerve density". For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves.

  14. Peripheral nerve imaging: Not only cross-sectional area

    PubMed Central

    Tagliafico, Alberto Stefano

    2016-01-01

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called “nerve density”. For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves.

  15. Cadaveric nerve allotransplantation in the treatment of persistent thoracic neuralgia.

    PubMed

    Barbour, John R; Yee, Andrew; Moore, Amy M; Trulock, Elbert P; Buchowski, Jacob M; Mackinnon, Susan E

    2015-04-01

    When relief from neuralgia cannot be achieved with traditional methods, neurectomy may be considered to abate the stimulus, and primary opposition of the terminal nerve ending is recommended to prevent neuroma. Nerve repair with autograft is limited by autologous nerves available for large nerve defects. Cadaveric allografts provide an unlimited graft source without donor-site morbidities, but are rapidly rejected unless appropriate immunosuppression is achieved. An optimal treatment method for nerve allograft transplantation would minimize rejection while simultaneously permitting nerve regeneration. This report details a novel experience of nerve allograft transplantation using cadaveric nerve grafts to desensitize persistent postoperative thoracic neuralgia.

  16. Peripheral nerve imaging: Not only cross-sectional area.

    PubMed

    Tagliafico, Alberto Stefano

    2016-08-28

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called "nerve density". For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves. PMID:27648165

  17. Peripheral nerve imaging: Not only cross-sectional area

    PubMed Central

    Tagliafico, Alberto Stefano

    2016-01-01

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called “nerve density”. For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves. PMID:27648165

  18. Technology for Peripheral Nerve Stimulation.

    PubMed

    Parker, John L; Cameron, Tracy

    2015-01-01

    Peripheral nerve stimulation (PNS) has been in use for over 50 years to treat patients suffering from chronic pain who have failed conservative treatments. Despite this long history, the devices being used have changed very little. In fact, current PNS technology was developed specifically for spinal cord stimulation. The use of technology developed for other applications in PNS has led to an unnecessary number of device complications and the limited adoption of this promising therapy. The following chapter provides an overview of PNS technology throughout the years, outlining both the benefits and limitations. We will briefly explore the electrophysiology of PNS stimulation, with an emphasis on technology and indication-specific devices. Finally, design and technical requirements of an ideal PNS device will be discussed.

  19. Modeling leukocyte trafficking at the human blood-nerve barrier in vitro and in vivo geared towards targeted molecular therapies for peripheral neuroinflammation.

    PubMed

    Greathouse, Kelsey M; Palladino, Steven P; Dong, Chaoling; Helton, Eric S; Ubogu, Eroboghene E

    2016-01-01

    Peripheral neuroinflammation is characterized by hematogenous mononuclear leukocyte infiltration into peripheral nerves. Despite significant clinical knowledge, advancements in molecular biology and progress in developing specific drugs for inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis, there are currently no specific therapies that modulate pathogenic peripheral nerve inflammation. Modeling leukocyte trafficking at the blood-nerve barrier using a reliable human in vitro model and potential intravital microscopy techniques in representative animal models guided by human observational data should facilitate the targeted modulation of the complex inflammatory cascade needed to develop safe and efficacious therapeutics for immune-mediated neuropathies and chronic neuropathic pain. PMID:26732309

  20. From Commodity Polymers to Functional Polymers

    PubMed Central

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-01-01

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications. PMID:24710333

  1. From Commodity Polymers to Functional Polymers

    NASA Astrophysics Data System (ADS)

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-04-01

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications.

  2. Touching polymer chains by organic field-effect transistors

    PubMed Central

    Shao, Wei; Dong, Huanli; Wang, Zhigang; Hu, Wenping

    2014-01-01

    Organic field-effect transistors (OFETs) are used to directly “touch” the movement and dynamics of polymer chains, and then determine Tg. As a molecular-level probe, the conducting channel of OFETs exhibits several unique advantages: 1) it directly detects the motion and dynamics of polymer chain at Tg; 2) it allows the measurement of size effects in ultrathin polymer films (even down to 6 nm), which bridges the gap in understanding effects between surface and interface. This facile and reliable determination of Tg of polymer films and the understanding of polymer chain dynamics guide a new prospect for OFETs besides their applications in organic electronics and casting new light on the fundamental understanding of the nature of polymer chain dynamics. PMID:25227159

  3. Nanohelices from planar polymer self-assembled in carbon nanotubes

    PubMed Central

    Fu, Hongjin; Xu, Shuqiong; Li, Yunfang

    2016-01-01

    The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas. PMID:27440493

  4. Nanohelices from planar polymer self-assembled in carbon nanotubes.

    PubMed

    Fu, Hongjin; Xu, Shuqiong; Li, Yunfang

    2016-01-01

    The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas. PMID:27440493

  5. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    SciTech Connect

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; Hong, Kunlun; Bonnesen, Peter V.; Sumpter, Bobby G.; Smith, Gregory Scott; Ivanov, Ilia N.; Do, Changwoo

    2015-07-17

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution, we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.

  6. Optical Biopsy of Peripheral Nerve Using Confocal Laser Endomicroscopy: A New Tool for Nerve Surgeons?

    PubMed Central

    Liao, Joseph C; Curtin, Catherine M

    2015-01-01

    Peripheral nerve injuries remain a challenge for reconstructive surgeons with many patients obtaining suboptimal results. Understanding the level of injury is imperative for successful repair. Current methods for distinguishing healthy from damaged nerve are time consuming and possess limited efficacy. Confocal laser endomicroscopy (CLE) is an emerging optical biopsy technology that enables dynamic, high resolution, sub-surface imaging of live tissue. Porcine sciatic nerve was either left undamaged or briefly clamped to simulate injury. Diluted fluorescein was applied topically to the nerve. CLE imaging was performed by direct contact of the probe with nerve tissue. Images representative of both damaged and undamaged nerve fibers were collected and compared to routine H&E histology. Optical biopsy of undamaged nerve revealed bands of longitudinal nerve fibers, distinct from surrounding adipose and connective tissue. When damaged, these bands appear truncated and terminate in blebs of opacity. H&E staining revealed similar features in damaged nerve fibers. These results prompt development of a protocol for imaging peripheral nerves intraoperatively. To this end, improving surgeons' ability to understand the level of injury through real-time imaging will allow for faster and more informed operative decisions than the current standard permits. PMID:26430636

  7. Successful obturator nerve repairing: Intraoperative sural nerve graft harvesting in endometrium cancer patient

    PubMed Central

    Harma, Müge; Sel, Görker; Açıkgöz, Bektaş; Harma, Mehmet İbrahim

    2014-01-01

    INTRODUCTION Intraoperative injury of obturator nerve is a rare complication of gynecologic surgeries, it has been reported especially in patients with endometriosis and genitourinary malignancies. Gynecologic patients undergoing open lymphadenectomy are at increased risk of obturator nerve injury. PRESENTATION OF CASE A 60-year-old woman with FIGO stage II Grade II endometrial adenocarcinoma underwent bilateral pelvic paraaortic lymphadenectomy. During right obturator lymph node dissection, the right obturator nerve was inadvertently transected with Harmonic scalpel sealing system. The graft was used to anastomose epyneurium of distal segment of obturator nerve to its counterpart in the proximal segment with 10–0 prolen suture. DISCUSSION In case of iatrogenic nerve transection, microsurgical end to end tension-free coaptation is advocated. In case of the obturator nerve is fixed and because of the thermal injury end to end alignment can not be achieved, nerve grafting is necessary. CONCLUSION According to our knowledge, successful immediate grafting of iatrogenically damaged obturator nerve during pelvic lymphadenectomy in our patient is the third report of such a case, but also it has a unique feature of being the first obturator nerve repairing case after dissected with tissue sealing system which causes large sealed area that does not make it possible to make end-to-end anastomosis without nerve harvesting. PMID:24814984

  8. Surgical management of third nerve palsy

    PubMed Central

    Singh, Anupam; Bahuguna, Chirag; Nagpal, Ritu; Kumar, Barun

    2016-01-01

    Third nerve paralysis has been known to be associated with a wide spectrum of presentation and other associated factors such as the presence of ptosis, pupillary involvement, amblyopia, aberrant regeneration, poor bell's phenomenon, superior oblique (SO) overaction, and lateral rectus (LR) contracture. Correction of strabismus due to third nerve palsy can be complex as four out of the six extraocular muscles are involved and therefore should be approached differently. Third nerve palsy can be congenital or acquired. The common causes of isolated third nerve palsy in children are congenital (43%), trauma (20%), inflammation (13%), aneurysm (7%), and ophthalmoplegic migraine. Whereas, in adult population, common etiologies are vasculopathic disorders (diabetes mellitus, hypertension), aneurysm, and trauma. Treatment can be both nonsurgical and surgical. As nonsurgical modalities are not of much help, surgery remains the main-stay of treatment. Surgical strategies are different for complete and partial third nerve palsy. Surgery for complete third nerve palsy may involve supra-maximal recession - resection of the recti. This may be combined with SO transposition and augmented by surgery on the other eye. For partial third nerve, palsy surgery is determined according to nature and extent of involvement of extraocular muscles. PMID:27433033

  9. Surgical management of third nerve palsy.

    PubMed

    Singh, Anupam; Bahuguna, Chirag; Nagpal, Ritu; Kumar, Barun

    2016-01-01

    Third nerve paralysis has been known to be associated with a wide spectrum of presentation and other associated factors such as the presence of ptosis, pupillary involvement, amblyopia, aberrant regeneration, poor bell's phenomenon, superior oblique (SO) overaction, and lateral rectus (LR) contracture. Correction of strabismus due to third nerve palsy can be complex as four out of the six extraocular muscles are involved and therefore should be approached differently. Third nerve palsy can be congenital or acquired. The common causes of isolated third nerve palsy in children are congenital (43%), trauma (20%), inflammation (13%), aneurysm (7%), and ophthalmoplegic migraine. Whereas, in adult population, common etiologies are vasculopathic disorders (diabetes mellitus, hypertension), aneurysm, and trauma. Treatment can be both nonsurgical and surgical. As nonsurgical modalities are not of much help, surgery remains the main-stay of treatment. Surgical strategies are different for complete and partial third nerve palsy. Surgery for complete third nerve palsy may involve supra-maximal recession - resection of the recti. This may be combined with SO transposition and augmented by surgery on the other eye. For partial third nerve, palsy surgery is determined according to nature and extent of involvement of extraocular muscles. PMID:27433033

  10. Electrophysiology of corneal cold receptor nerve terminals.

    PubMed

    Carr, Richard W; Brock, James A

    2002-01-01

    The mechanisms of sensory transduction in the fine nerve terminals of free nerve endings supplied by Adelta and C sensory axons are largely a matter of speculation. This is because the nerve terminals are small and inaccessible, particularly in intact tissues like skin. However, some of the difficulties associated with investigating the physiology of fine nerve terminals have recently been overcome using an in vitro preparation of the guinea-pig cornea that allows nerve terminal impulses (NTIs) to be recorded extracellularly from single polymodal and cold receptor nerve terminals. For cold receptors, the rate of spontaneously occurring NTIs is increased during cooling and decreased during heating. In addition, heating and cooling differentially modulate the shape of the recorded NTI. At the same temperature, NTIs are larger in amplitude and faster in time course during heating than those during cooling. The differential effect of heating and cooling on NTI shape is not considered to result simply from the temperature dependence of voltage-activated conductance kinetics or activity dependent changes in membrane excitability. Instead, changes in NTI shape may reflect changes in nerve terminal membrane potential that underlie the process of thermal transduction.

  11. Nerve injuries due to obstetric trauma.

    PubMed

    Bhat, V; Ravikumara; Oumachigui, A

    1995-01-01

    The incidence of nerve injuries among 32,637 deliveries over a period of ten years was 1.81/1000. Brachial plexus injury (1/1000) and facial nerve injury (0.74/1000) accounted for 98% of nerve injuries. Both the right and left side were involved equally. Bilateral nerve injury was not seen. Lack of antenatal care, macrosomia, abnormal presentations, and operative vaginal deliveries significantly increased the risk of nerve injuries. These babies had significantly higher incidence of meconium stained liquor and intrapartum asphyxia. Parity of the mother, gestational age and sex of the baby did not have significant role in the causation of nerve injuries. Injuries to brachial plexus and facial nerve were seen even in babies born by caesarean section, when it was performed for obstructed labour caused by cephalo-pelvic disproportion and abnormal presentations. Three babies with injuries expired and forty-three could be followed up for varying periods. None of the babies had residual defects. Detection of cephalopelvic disproportion and abnormal lie in the third trimester and their appropriate management would decrease the incidence of obstetric palsies to a significant extent. PMID:10829869

  12. Further Development of Scaffolds for Regeneration of Nerves

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Tuszynski, Mark

    2009-01-01

    Progress has been made in continuing research on scaffolds for the guided growth of nerves to replace damaged ones. The scaffolds contain pores that are approximately cylindrical and parallel, with nearly uniform widths ranging from tens to hundreds of microns. At the earlier stage of development, experimental scaffolds had been made from agarose hydrogel. Such a scaffold was made in a multistep process in which poly(methyl methacrylate) [PMMA] fibers were used as templates for the pores. The process included placement of a bundle of the PMMA fibers in a tube, filling the interstices in the tube with a hot agarose solution, cooling to turn the solution into a gel, and then immersion in acetone to dissolve the PMMA fibers. The scaffolds were typically limited to about 25 pores per scaffold, square cross sections of no more than about 1.5 by 1.5 mm, and lengths of no more than about 2 mm.

  13. Conduction Properties Of Decellularized Nerve Biomaterials.

    PubMed

    Urbanchek, M G; Shim, B S; Baghmanli, Z; Wei, B; Schroeder, K; Langhals, N B; Miriani, R M; Egeland, B M; Kipke, D R; Martin, D C; Cederna, P S

    2010-04-30

    The purpose of this study is to optimize poly(3,4,-ethylenedioxythiophene) (PEDOT) polymerization into decellular nerve scaffolding for interfacing to peripheral nerves. Our ultimate aim is to permanently implant highly conductive peripheral nerve interfaces between amputee, stump, nerve fascicles and prosthetic electronics. Decellular nerve (DN) scaffolds are an FDA approved biomaterial (Axogen ) with the flexible tensile properties needed for successful permanent coaptation to peripheral nerves. Biocompatible, electroconductive, PEDOT facilitates electrical conduction through PEDOT coated acellular muscle. New electrochemical methods were used to polymerize various PEDOT concentrations into DN scaffolds without the need for a final dehydration step. DN scaffolds were then tested for electrical impedance and charge density. PEDOT coated DN scaffold materials were also implanted as 15-20mm peripheral nerve grafts. Measurement of in-situ nerve conduction immediately followed grafting. DN showed significant improvements in impedance for dehydrated and hydrated, DN, polymerized with moderate and low PEDOT concentrations when they were compared with DN alone (a ≤ 0.05). These measurements were equivalent to those for DN with maximal PEDOT concentrations. In-situ, nerve conduction measurements demonstrated that DN alone is a poor electro-conductor while the addition of PEDOT allows DN scaffold grafts to compare favorably with the "gold standard", autograft (Table 1). Surgical handling characteristics for conductive hydrated PEDOT DN scaffolds were rated 3 (pliable) while the dehydrated models were rated 1 (very stiff) when compared with autograft ratings of 4 (normal). Low concentrations of PEDOT on DN scaffolds provided significant increases in electro active properties which were comparable to the densest PEDOT coatings. DN pliability was closely maintained by continued hydration during PEDOT electrochemical polymerization without compromising electroconductivity.

  14. Conduction Properties Of Decellularized Nerve Biomaterials

    PubMed Central

    Urbanchek, M.G.; Shim, B.S.; Baghmanli, Z.; Wei, B.; Schroeder, K.; Langhals, N.B.; Miriani, R.M.; Egeland, B.M.; Kipke, D.R.; Martin, D.C.; Cederna, P.S.

    2011-01-01

    The purpose of this study is to optimize poly(3,4,-ethylenedioxythiophene) (PEDOT) polymerization into decellular nerve scaffolding for interfacing to peripheral nerves. Our ultimate aim is to permanently implant highly conductive peripheral nerve interfaces between amputee, stump, nerve fascicles and prosthetic electronics. Decellular nerve (DN) scaffolds are an FDA approved biomaterial (Axogen ) with the flexible tensile properties needed for successful permanent coaptation to peripheral nerves. Biocompatible, electroconductive, PEDOT facilitates electrical conduction through PEDOT coated acellular muscle. New electrochemical methods were used to polymerize various PEDOT concentrations into DN scaffolds without the need for a final dehydration step. DN scaffolds were then tested for electrical impedance and charge density. PEDOT coated DN scaffold materials were also implanted as 15–20mm peripheral nerve grafts. Measurement of in-situ nerve conduction immediately followed grafting. DN showed significant improvements in impedance for dehydrated and hydrated, DN, polymerized with moderate and low PEDOT concentrations when they were compared with DN alone (a ≤ 0.05). These measurements were equivalent to those for DN with maximal PEDOT concentrations. In-situ, nerve conduction measurements demonstrated that DN alone is a poor electro-conductor while the addition of PEDOT allows DN scaffold grafts to compare favorably with the “gold standard”, autograft (Table 1). Surgical handling characteristics for conductive hydrated PEDOT DN scaffolds were rated 3 (pliable) while the dehydrated models were rated 1 (very stiff) when compared with autograft ratings of 4 (normal). Low concentrations of PEDOT on DN scaffolds provided significant increases in electro active properties which were comparable to the densest PEDOT coatings. DN pliability was closely maintained by continued hydration during PEDOT electrochemical polymerization without compromising

  15. Selective Guide to Literature on Chemical Engineering. Engineering Literature Guides, Number 9.

    ERIC Educational Resources Information Center

    Rousseau, Rosemary, Comp.

    The material in this guide covers areas important to the chemical industries. Topics such as heat and mass transfer, plastics, polymers, fluid flow, and process engineering are included. This document is a survey of information sources in chemical engineering and is intended to identify those core resources which can help engineers and librarians…

  16. Shape memory polymers

    SciTech Connect

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  17. Management of Pain in Complex Nerve Injuries.

    PubMed

    Davis, Gabrielle; Curtin, Catherine M

    2016-05-01

    Traumatic nerve injuries can be devastating and life-changing events, leading to functional morbidity and psychological stress and social constraints. Even in the event of a successful surgical repair with recovered motor function, pain can result in continued disability and poor quality of life. Pain after nerve injury can also prevent recovery and return to preinjury life. It is difficult to predict which patients will develop persistent pain; once incurred, pain can be even challenging to manage. This review seeks to define the types of pain following peripheral nerve injuries, investigate the pathophysiology and causative factors, and evaluate potential treatment options. PMID:27094896

  18. Facial Nerve Laceration and its Repair

    PubMed Central

    Shafaiee, Yousef; Shahbazzadegan, Bita

    2016-01-01

    Introduction Facial paralysis is a devastating condition with profound functional, aesthetic and psychosocial consequences. Tumors within or outside the skull, Bell’s palsy and trauma are the most common causes of facial paralysis in adults. Case Presentation Our patient was a 35-year-old man with deep laceration wounds. The patient was taken to the operating room and the nerves were repaired. We observed gradual improvement of muscle performance except branches of the frontal nerve. Conclusions Complete rupture of the facial nerve is challenging and the treatment is surgery, which requires careful planning. PMID:27626005

  19. Facial Nerve Laceration and its Repair

    PubMed Central

    Shafaiee, Yousef; Shahbazzadegan, Bita

    2016-01-01

    Introduction Facial paralysis is a devastating condition with profound functional, aesthetic and psychosocial consequences. Tumors within or outside the skull, Bell’s palsy and trauma are the most common causes of facial paralysis in adults. Case Presentation Our patient was a 35-year-old man with deep laceration wounds. The patient was taken to the operating room and the nerves were repaired. We observed gradual improvement of muscle performance except branches of the frontal nerve. Conclusions Complete rupture of the facial nerve is challenging and the treatment is surgery, which requires careful planning.

  20. Benign glandular inclusions in parotid nerve.

    PubMed

    Cramer, S F; Heggeness, L M

    1988-08-01

    Benign salivary ductular and acinar structures were demonstrated within an enlarged, disorderly intraparotid nerve in association with a mucoepidermoid carcinoma that did not, itself, manifest perineural invasion. Salivary gland can thus be added to the growing list of tissues in which "perineural invasion" by noncancerous epithelium has been observed. The proliferative features of the neural tissue in this case support the notion that neural elements may play an active role in the establishment of intimate neural-epithelial relationships. The mechanism for this phenomenon in the present case is postulated to be proliferation and ingrowth of the nerve tissue, possibly mediated by nerve growth factor or some related substance.

  1. Rehabilitation of Supinator Nerve to Posterior Interosseous Nerve Transfer in Individuals With Tetraplegia.

    PubMed

    Hahn, Jodie; Cooper, Catherine; Flood, Stephen; Weymouth, Michael; van Zyl, Natasha

    2016-06-01

    Despite being a routine part of the early surgical management of brachial plexus injury, nerve transfers have only recently been used as a reconstructive option for those with tetraplegia. Subsequently, there is limited published literature on the rehabilitation theories and techniques for optimizing outcomes in this population. This article seeks to address this void by presenting our centers' working model for rehabilitation after nerve transfers for individuals with tetraplegia. The model is illustrated with the example of the rehabilitation process after a supinator nerve to posterior interosseous nerve transfer. This nerve transfer reconstructs wrist, finger, and thumb extension. The topics covered in the model include the following: patient selection and presurgical planning/intervention, managing the postoperative healing phase of an individual who is wheelchair dependent, maximizing motor reeducation, increasing muscle strength, and ensuring use in functional tasks. This article provides a platform for further development and collaboration to improve the outcomes of patients who undergo nerve transfers after tetraplegia. PMID:27233591

  2. Nerve transfers and neurotization in peripheral nerve injury, from surgery to rehabilitation.

    PubMed

    Korus, Lisa; Ross, Douglas C; Doherty, Christopher D; Miller, Thomas A

    2016-02-01

    Peripheral nerve injury (PNI) and recent advances in nerve reconstruction (such as neurotization with nerve transfers) have improved outcomes for patients suffering peripheral nerve trauma. The purpose of this paper is to bridge the gap between the electromyographer/clinical neurophysiologist and the peripheral nerve surgeon. Whereas the preceding literature focuses on either the basic science behind nerve injury and reconstruction, or the surgical options and algorithms, this paper demonstrates how electromyography is not just a 'decision tool' when deciding whether to operate but is also essential to all phases of PNI management including surgery and rehabilitation. The recent advances in the reconstruction and rehabilitation of PNI is demonstrated using case examples to assist the electromyographer to understand modern surgical techniques and the unique demands they ask from electrodiagnostic testing.

  3. Tendon Transfers Part II: Transfers for Ulnar Nerve Palsy and Median Nerve Palsy

    PubMed Central

    Sammer, Douglas M.; Chung, Kevin C.

    2009-01-01

    Objectives After reading this article (part II of II), the participant should be able to: 1. Describe the anatomy and function of the median and ulnar nerves in the forearm and hand. 2. Describe the clinical deficits associated with injury to each nerve. 3. Describe the indications, benefits, and drawbacks for various tendon transfer procedures used to treat median and ulnar nerve palsy.4. Describe the treatment of combined nerve injuries. 5. Describe postoperative care and possible complications associated with these tendon transfer procedures. Summary This article discusses the use of tendon transfer procedures for treatment of median and ulnar nerve palsy as well as combined nerve palsies. Postoperative management and potential complications are also discussed. PMID:19730287

  4. [Anatomical study of the cavernous nerve in relation to nerve sparing operation].

    PubMed

    Hanawa, K

    1994-08-01

    Recently, nerve sparing radical prostatectomy has became widely considered as the primary goal for maintaining a high standard of quality of life (QOL). However, anatomical localization of the cavernous nerve has not yet been precisely clarified in terms of the terminal end in the corpus cavernous penis distal to the urogenital membrane. Here in attempt to demonstrate the precise localization of the cavernous nerve, in six adult male cadaver. The cavernous nerves ran between the prostatic capsule and the prostatic fascia, through the capsule of the seminal vesicle. The nerves penetrated the membranous urethra at 8 mm from the margin of the urethra at the position of 5 and 7 o'clock. Therefore, the following procedures are critical to achieve successful nerve sparing: 1) meticulous division of the seminal-vesicle, 2) precise separation of the neurovascular bundle between the prostatic capsule and fascia, and 3) the careful transaction of the membranous urethra.

  5. A polylactic acid non-woven nerve conduit for facial nerve regeneration in rats.

    PubMed

    Matsumine, Hajime; Sasaki, Ryo; Yamato, Masayuki; Okano, Teruo; Sakurai, Hiroyuki

    2014-06-01

    This study developed a biodegradable nerve conduit with PLA non-woven fabric and evaluated its nerve regeneration-promoting effect. The buccal branch of the facial nerve of 8 week-old Lewis rats was exposed, and a 7 mm nerve defect was created. A nerve conduit made of either PLA non-woven fabric (mean fibre diameter 460 nm), or silicone tube filled with type I collagen gel, or an autologous nerve, was implanted into the nerve defect, and their nerve regenerative abilities were evaluated 13 weeks after the surgery. The number of myelinated neural fibres in the middle portion of the regenerated nerve was the highest for PLA tubes (mean ± SD, 5051 ± 2335), followed by autologous nerves (4233 ± 590) and silicone tubes (1604 ± 148). Axon diameter was significantly greater in the PLA tube group (5.17 ± 1.69 µm) than in the silicone tube group (4.25 ± 1.60 µm) and no significant difference was found between the PLA tube and autograft (5.53 ± 1.93 µm) groups. Myelin thickness was greatest for the autograft group (0.65 ± 0.24 µm), followed by the PLA tube (0.54 ± 0.18 µm) and silicone tube (0.38 ± 0.12 µm) groups, showing significant differences among the three groups. The PLA non-woven fabric tube, composed of randomly-connected PLA fibres, is porous and has a number of advantages, such as sufficient strength to maintain luminal structure. The tube has demonstrated a comparable ability to induce peripheral nerve regeneration following autologous nerve transplantation.

  6. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  7. Ultrasound-guided airway blocks using a curvilinear probe.

    PubMed

    Krause, Martin; Khatibi, Bahareh; Sztain, Jacklynn F; Rahman, Pariza; Shapiro, Anna B; Sandhu, NavParkash S

    2016-09-01

    We describe a novel technique of real-time ultrasound-guided superior laryngeal nerve and translaryngeal blocks in 4 patients with anticipated difficult airways. All patients had altered neck anatomy, and 1 had a prior unsuccessful awake fiberoptic bronchoscopic intubation. For block performance, an 11-mm broadband curved array transducer with a scanning frequency between 8 and 5 MHz (Sonosite, Bothell, WA) was used for anatomical structure identification, needle guidance toward each superior laryngeal nerve and through the cricothyroid membrane, and deposition of local anesthetic in the appropriate location. This was followed by successful awake fiberoptic bronchoscopic endotracheal intubation in all cases.

  8. Sonographically guided cryoneurolysis: preliminary experience and clinical outcomes.

    PubMed

    Friedman, Talia; Richman, Daniel; Adler, Ronald

    2012-12-01

    Chronic peripheral nerve pain is a common problem that can arise from numerous causes, for which neurolysis is a therapeutic option. It is postulated that cryotherapy will have less adverse events than other methods of nerve ablation. A retrospective case series review was performed in patients who had undergone sonographically guided cryoneurolysis for Morton neuromas, postsurgical and posttraumatic neuromas, and idiopathic neuralgia. Fifteen of 20 patients had a positive response to cryoneurolysis, as did 2 of 4 patients with borderline symptoms for chronic regional pain syndrome. In view of our positive results, we believe that cryoneurolysis should be considered a reasonable option in performing neurolytic therapy.

  9. Cnidarian Nerve Nets and Neuromuscular Efficiency.

    PubMed

    Satterlie, Richard A

    2015-12-01

    Cnidarians are considered "nerve net animals" even though their nervous systems include various forms of condensation and centralization. Yet, their broad, two-dimensional muscle sheets are innervated by diffuse nerve nets. Do the motor nerve nets represent a primitive organization of multicellular nervous systems, do they represent a consequence of radial symmetry, or do they offer an efficient way to innervate a broad, two-dimensional muscle sheet, in which excitation of the muscle sheet can come from multiple sites of initiation? Regarding the primitive nature of cnidarian nervous systems, distinct neuronal systems exhibit some adaptations that are well known in higher animals, such as the use of oversized neurons with increased speed of conduction, and condensation of neurites into nerve-like tracts. A comparison of neural control of two-dimensional muscle sheets in a mollusc and jellyfish suggests that a possible primitive feature of cnidarian neurons may be a lack of regional specialization into conducting and transmitting regions.

  10. Ulnar nerve paralysis after forearm bone fracture.

    PubMed

    Schwartsmann, Carlos Roberto; Ruschel, Paulo Henrique; Huyer, Rodrigo Guimarães

    2016-01-01

    Paralysis or nerve injury associated with fractures of forearm bones fracture is rare and is more common in exposed fractures with large soft-tissue injuries. Ulnar nerve paralysis is a rare condition associated with closed fractures of the forearm. In most cases, the cause of paralysis is nerve contusion, which evolves with neuropraxia. However, nerve lacerations and entrapment at the fracture site always need to be borne in mind. This becomes more important when neuropraxia appears or worsens after reduction of a closed fracture of the forearm has been completed. The importance of diagnosing this injury and differentiating its features lies in the fact that, depending on the type of lesion, different types of management will be chosen.

  11. Ulnar nerve paralysis after forearm bone fracture.

    PubMed

    Schwartsmann, Carlos Roberto; Ruschel, Paulo Henrique; Huyer, Rodrigo Guimarães

    2016-01-01

    Paralysis or nerve injury associated with fractures of forearm bones fracture is rare and is more common in exposed fractures with large soft-tissue injuries. Ulnar nerve paralysis is a rare condition associated with closed fractures of the forearm. In most cases, the cause of paralysis is nerve contusion, which evolves with neuropraxia. However, nerve lacerations and entrapment at the fracture site always need to be borne in mind. This becomes more important when neuropraxia appears or worsens after reduction of a closed fracture of the forearm has been completed. The importance of diagnosing this injury and differentiating its features lies in the fact that, depending on the type of lesion, different types of management will be chosen. PMID:27517030

  12. Investigation of nerve injury through microfluidic devices

    PubMed Central

    Siddique, Rezina; Thakor, Nitish

    2014-01-01

    Traumatic injuries, both in the central nervous system (CNS) and peripheral nervous system (PNS), can potentially lead to irreversible damage resulting in permanent loss of function. Investigating the complex dynamics involved in these processes may elucidate the biological mechanisms of both nerve degeneration and regeneration, and may potentially lead to the development of new therapies for recovery. A scientific overview on the biological foundations of nerve injury is presented. Differences between nerve regeneration in the central and PNS are discussed. Advances in microtechnology over the past several years have led to the development of invaluable tools that now facilitate investigation of neurobiology at the cellular scale. Microfluidic devices are explored as a means to study nerve injury at the necessary simplification of the cellular level, including those devices aimed at both chemical and physical injury, as well as those that recreate the post-injury environment. PMID:24227311

  13. Nerve damage from diabetes - self-care

    MedlinePlus

    ... and bloating Nausea, constipation, or diarrhea Swallowing problems Throwing up undigested food several hours after a meal Heart- ... are: Sudden fatigue Sweating Shortness of breath Nausea Vomiting Other symptoms of nerve damage are: Sexual problems. ...

  14. Effects of Laser Irradiation on Peripheral Nerve

    NASA Astrophysics Data System (ADS)

    Baxter, G. D.; Chow, R.; Armati, P.; Bjordal, J. M.; Laakso, L.

    2009-06-01

    A literature review was undertaken to determine the electrophysiological effects of Laser Irradiation (LI) on peripheral mammalian nerves, as a means of elucidating the potential mechanisms underlying pain relief associated with laser therapy. Relevant computerized databases and reference lists were searched, and experts consulted for further articles. A total of 38 studies, comprising 82 separate experiments were identified. In human studies, all types of LI (red and infrared, pulsed and cw) slowed nerve conduction velocity, and reduced compound action potential of irradiated nerves. In animal studies, infrared LI suppressed conduction velocity, as well as noxious stimulation evoked potential. This review thus indicates the potential of laser irradiation to inhibit activity in peripheral nerves, and highlights one potential mechanism of action for laser-mediated pain relief.

  15. Optic Nerve Sheath Mechanics in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Raykin, Julia; Feola, Andrew; Gleason, Rudy; Mulugeta, Lealem; Myers, Jerry; Nelson, Emily; Samuels, Brian; Ethier, C. Ross

    2015-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome results in a loss of visual function and occurs in astronauts following long-duration spaceflight. Understanding the mechanisms that lead to the ocular changes involved in VIIP is of critical importance for space medicine research. Although the exact mechanisms of VIIP are not yet known, it is hypothesized that microgravity-induced increases in intracranial pressures (ICP) drive the remodeling of the optic nerve sheath, leading to compression of the optic nerve which in turn may reduce visual acuity. Some astronauts present with a kink in the optic nerve after return to earth, suggesting that tissue remodeling in response to ICP increases may be taking place. The goal of this work is to characterize the mechanical properties of the optic nerve sheath (dura mater) to better understand its biomechanical response to increased ICP.

  16. Nerve injuries from mandibular third molar removal.

    PubMed

    Meyer, Roger A; Bagheri, Shahrokh C

    2011-03-01

    Injuries to peripheral branches (IAN, LN, LBN) of the trigeminal nerve during the removal of M3s are known and accepted risks in oral and maxillofacial surgery practice. These risks might be reduced by modifications of evaluation or surgical techniques, depending on the surgeon's judgment in individual patients. If a nerve injury does occur, prompt recognition, subjective and objective evaluation,and development of a treatment plan, if the sensory deficit fails to resolve in a reasonable period and is unacceptable to the patient, give the patient the best chance of achieving improvement or recovery of sensory function in the distribution of the injured nerve. Microneurosurgery may produce return of useful sensory function or complete sensory recovery, if done in a timely fashion by an experienced microsurgeon, in greater than 80% of patients who sustain nerve injuries during the removal of M3s.

  17. Intraoperative ultrasound-assisted peripheral nerve surgery.

    PubMed

    Haldeman, Clayton L; Baggott, Christopher D; Hanna, Amgad S

    2015-09-01

    Historically, peripheral nerve surgery has relied on landmarks and fairly extensive dissection for localization of both normal and pathological anatomy. High-resolution ultrasonography is a radiation-free imaging modality that can be used to directly visualize peripheral nerves and their associated pathologies prior to making an incision. It therefore helps in localization of normal and pathological anatomy, which can minimize the need for extensive exposures. The authors found intraoperative ultrasound (US) to be most useful in the management of peripheral nerve tumors and neuromas of nerve branches that are particularly small or have a deep location. This study presents the use of intraoperative US in 5 cases in an effort to illustrate some of the applications of this useful surgical adjunct.

  18. Nerve abscess in primary neuritic leprosy.

    PubMed

    Rai, Dheeraj; Malhotra, Hardeep Singh; Garg, Ravindra Kumar; Goel, Madhu Mati; Malhotra, Kiran Preet; Kumar, Vijay; Singh, Arun Kumar; Jain, Amita; Kohli, Neera; Singh, Shailesh Kumar

    2013-06-01

    Nerve abscess is an infrequently reported complication of leprosy. We describe a patient with a pure neuritic type of leprosy with multiple nerve abscesses, who presented with tingling and numbness in the medial aspect of his right forearm and hand. Subsequently he developed pain, redness and swelling over the medial side of his right elbow and the flexor aspect of his right wrist. High-resolution ultrasound showed diffuse thickening of the right ulnar nerve with hypoechoic texture housing a cystic lesion with internal debris suggesting an abscess, at the cubital tunnel. Histopathological examination of the pus and tissue obtained from the abscess revealed presence of granulomas with lepra bacilli. The patient responded to surgery and multidrug therapy. In conclusion, the nerve abscess as the first manifestation of leprosy is uncommon and a high index of suspicion is required to make a correct diagnosis. PMID:24171239

  19. Trochlear Nerve Schwannoma With Repeated Intratumoral Hemorrhage.

    PubMed

    Liu, Pengfei; Bao, Yuhai; Zhang, Wenchuan

    2016-09-01

    Trochlear nerve schwannoma is extremely rare, with only 35 pathologically confirmed patients being reported in the literature. Here, the authors report a patient of trochlear nerve schwannoma in the prepontine cistern manifesting as facial pain and double vision and presenting the image characteristics of repeated intratumoral hemorrhage, which has never been reported in the literature. Total tumor along with a portion of the trochlear nerve was removed by using a retrosigmoid approach. Facial pain disappeared after operation, and the diplopia remained. Follow-up studies have shown no tumor recurrence for 2 years and the simultaneous alleviation of diplopia. Information regarding the clinical presentation, radiological features and surgical outcomes of trochlear nerve schwannoma are discussed and reviewed in the paper. PMID:27607129

  20. Low intensity laser treatment of nerve injuries

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Guang; Liu, Timon Cheng-Yi; Luo, Qing-Ming

    2007-05-01

    The neural regeneration and functional recovery after nerve injuries has long been an important field in neuroscience. Low intensity laser (LIL) irradiation is a novel and useful tool for the treatment of many injuries and disorders. The aim of this study was to assess the role of LIL irradiation in the treatment of peripheral and central nerve injuries. Some animal experiments and clinical investigations have shown beneficial effects of LIL irradiation on neural tissues, but its therapeutic value and efficacy are controversial. Reviewing the data of experimental and clinical studies by using the biological information model of photobiomodulation, we conclude that LIL irradiation in specific parameters can promote the regeneration of injured peripheral and central nerves and LIL therapy is a safe and valuable treatment for superficial peripheral nerve injuries and spinal cord injury. The biological effects of LIL treatment depend largely on laser wavelength, power and dose per site and effective irradiation doses are location-specific.

  1. Facial nerve palsy due to birth trauma

    MedlinePlus

    ... way on both sides while crying No movement (paralysis) on the affected side of the face (from the forehead to the chin in severe ... relieve pressure on the nerve. Infants with permanent paralysis need special therapy.

  2. Neurologic complication after anterior sciatic nerve block.

    PubMed

    Shah, Shruti; Hadzic, Admir; Vloka, Jerry D; Cafferty, Maureen S; Moucha, Calin S; Santos, Alan C

    2005-05-01

    The lack of reported complications related to lower extremity peripheral nerve blocks (PNBs) may be related to the relatively infrequent application of these techniques and to the fact that most such events go unpublished. Our current understanding of the factors that lead to neurologic complications after PNBs is limited. This is partly the result of our inability to conduct meaningful retrospective studies because of a lack of standard and objective monitoring and documentation procedures for PNBs. We report a case of permanent injury to the sciatic nerve after sciatic nerve block through the anterior approach and discuss mechanisms that may have led to the injury. Intraneural injection and nerve injury can occur in the absence of pain on injection and it may be heralded by high injection pressure (resistance).

  3. Let-7 microRNAs Regenerate Peripheral Nerve Regeneration by Targeting Nerve Growth Factor

    PubMed Central

    Li, Shiying; Wang, Xinghui; Gu, Yun; Chen, Chu; Wang, Yaxian; Liu, Jie; Hu, Wen; Yu, Bin; Wang, Yongjun; Ding, Fei; Liu, Yan; Gu, Xiaosong

    2015-01-01

    Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to each other. Let-7 microRNAs (miRNAs) significantly reduced cell proliferation and migration of primary Schwann cells (SCs) by directly targeting NGF and suppressing its protein translation. Following sciatic nerve injury, the temporal change in let-7 miRNA expression was negatively correlated with that in NGF expression. Inhibition of let-7 miRNAs increased NGF secretion by primary cultured SCs and enhanced axonal outgrowth from a coculture of primary SCs and dorsal root gangalion neurons. In vivo tests indicated that let-7 inhibition promoted SCs migration and axon outgrowth within a regenerative microenvironment. In addition, the inhibitory effect of let-7 miRNAs on SCs apoptosis might serve as an early stress response to nerve injury, but this effect seemed to be not mediated through a NGF-dependent pathway. Collectively, our results provide a new insight into let-7 miRNA regulation of peripheral nerve regeneration and suggest a potential therapy for repair of peripheral nerve injury. PMID:25394845

  4. Treatment of peroneal nerve injuries with simultaneous tendon transfer and nerve exploration

    PubMed Central

    2014-01-01

    Background Common peroneal nerve palsy leading to foot drop is difficult to manage and has historically been treated with extended bracing with expectant waiting for return of nerve function. Peroneal nerve exploration has traditionally been avoided except in cases of known traumatic or iatrogenic injury, with tendon transfers being performed in a delayed fashion after exhausting conservative treatment. We present a new strategy for management of foot drop with nerve exploration and concomitant tendon transfer. Method We retrospectively reviewed a series of 12 patients with peroneal nerve palsies that were treated with tendon transfer from 2005 to 2011. Of these patients, seven were treated with simultaneous peroneal nerve exploration and repair at the time of tendon transfer. Results Patients with both nerve repair and tendon transfer had superior functional results with active dorsiflexion in all patients, compared to dorsiflexion in 40% of patients treated with tendon transfers alone. Additionally, 57% of patients treated with nerve repair and tendon transfer were able to achieve enough function to return to running, compared to 20% in patients with tendon transfer alone. No patient had full return of native motor function resulting in excessive dorsiflexion strength. Conclusion The results of our limited case series for this rare condition indicate that simultaneous nerve repair and tendon transfer showed no detrimental results and may provide improved function over tendon transfer alone. PMID:25099247

  5. Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration.

    PubMed

    Kuihua, Zhang; Chunyang, Wang; Cunyi, Fan; Xiumei, Mo

    2014-08-01

    Artificial nerve guidance conduits (NGCs) containing bioactive neurotrophic factors and topographical structure to biomimic native tissues are essential for efficient regeneration of nerve gaps. In this study, aligned SF/P(LLA-CL) nanofibers encapsulating nerve growth factor (NGF), which was stabilized by SF in core, were fabricated via a coaxial electrospinning technique. The controlled release of NGF from the nanofibers was evaluated using enzyme-linked immune sorbent assay (ELISA) and PC12 cell-based bioassay over a 60-day time period. The results demonstrated that NGF presented a sustained release and remained biological activity over 60 days. Nerve guidance conduits (NGCs) were fabricated by reeling the aligned SF/P(LLA-CL) nanofibrous scaffolds encapsulating NGF and then used as a bridge implanted across a 15-mm defect in the sciatic nerve of rats to promote nerve regeneration. The outcome in terms of regenerated nerve at 12 weeks was evaluated by a combination of electrophysiological assessment, histochemistry, and electron microscopy. All results clarified that the NGF-encapsulated-aligned SF/P(LLA-CL) NGCs promoted peripheral nerve regeneration significantly better than the aligned SF/P(LLA-CL) NGCs, suggesting that the released NGF from nanofibers could effectively promote the regeneration of peripheral nerve.

  6. Peripheral nerve lipoma: Case report of an intraneural lipoma of the median nerve and literature review

    PubMed Central

    Teles, Alisson Roberto; Finger, Guilherme; Schuster, Marcelo N.; Gobbato, Pedro Luis

    2016-01-01

    Adipose lesions rarely affect the peripheral nerves. This can occur in two different ways: Direct compression by an extraneural lipoma, or by a lipoma originated from the adipose cells located inside the nerve. Since its first description, many terms have been used in the literature to mention intraneural lipomatous lesions. In this article, the authors report a case of a 62-year-old female who presented with an intraneural median nerve lipoma and review the literature concerning the classification of adipose lesions of the nerve, radiological diagnosis and treatment. PMID:27695575

  7. Peripheral nerve lipoma: Case report of an intraneural lipoma of the median nerve and literature review

    PubMed Central

    Teles, Alisson Roberto; Finger, Guilherme; Schuster, Marcelo N.; Gobbato, Pedro Luis

    2016-01-01

    Adipose lesions rarely affect the peripheral nerves. This can occur in two different ways: Direct compression by an extraneural lipoma, or by a lipoma originated from the adipose cells located inside the nerve. Since its first description, many terms have been used in the literature to mention intraneural lipomatous lesions. In this article, the authors report a case of a 62-year-old female who presented with an intraneural median nerve lipoma and review the literature concerning the classification of adipose lesions of the nerve, radiological diagnosis and treatment.

  8. Clinical outcomes for Conduits and Scaffolds in peripheral nerve repair

    PubMed Central

    Gerth, David J; Tashiro, Jun; Thaller, Seth R

    2015-01-01

    The gold standard of peripheral nerve repair is nerve autograft when tensionless repair is not possible. Use of nerve autograft has several shortcomings, however. These include limited availability of donor tissue, sacrifice of a functional nerve, and possible neuroma formation. In order to address these deficiencies, researchers have developed a variety of biomaterials available for repair of peripheral nerve gaps. We review the clinical studies published in the English literature detailing outcomes and reconstructive options. Regardless of the material used or the type of nerve repaired, outcomes are generally similar to nerve autograft in gaps less than 3 cm. New biomaterials currently under preclinical evaluation may provide improvements in outcomes. PMID:25685760

  9. Endoscopically Assisted Anterior Subcutaneous Transposition of Ulnar Nerve.

    PubMed

    Lui, Tun Hing

    2016-06-01

    Ulnar nerve compression at the elbow is the most common neuropathy of the upper extremity. Surgical options include in situ decompression, decompression with anterior transposition of the ulnar nerve, and medial epicondylectomy with or without decompression. With the advancement of endoscopic surgery, techniques of endoscopic in situ decompression of the ulnar nerve and endoscopic anterior transposition of ulnar nerve have been reported. This article describes a technique of endoscopically assisted anterior subcutaneous transposition of ulnar nerve that is composed of an open release and mobilization of the ulnar nerve at and distal to the cubital tunnel and endoscopic release and mobilization of the ulnar nerve proximal to the cubital tunnel. PMID:27656391

  10. Malignant Peripheral Nerve Sheath Tumors.

    PubMed

    Durbin, Adam D; Ki, Dong Hyuk; He, Shuning; Look, A Thomas

    2016-01-01

    Malignant peripheral nerve sheath tumors (MPNST) are tumors derived from Schwann cells or Schwann cell precursors. Although rare overall, the incidence of MPNST has increased with improved clinical management of patients with the neurofibromatosis type 1 (NF1) tumor predisposition syndrome. Unfortunately, current treatment modalities for MPNST are limited, with no targeted therapies available and poor efficacy of conventional radiation and chemotherapeutic regimens. Many murine and zebrafish models of MPNST have been developed, which have helped to elucidate the genes and pathways that are dysregulated in MPNST tumorigenesis, including the p53, and the RB1, PI3K-Akt-mTOR, RAS-ERK and Wnt signaling pathways. Preclinical results have suggested that new therapies, including mTOR and ERK inhibitors, may synergize with conventional chemotherapy in human tumors. The discovery of new genome editing technologies, like CRISPR-cas9, and their successful application to the zebrafish model will enable rapid progress in the faithful modeling of MPNST molecular pathogenesis. The zebrafish model is especially suited for high throughput screening of new targeted therapeutics as well as drugs approved for other purposes, which may help to bring enhanced treatment modalities into human clinical trials for this devastating disease. PMID:27165368

  11. Parietal eye nerve in the fence lizard.

    PubMed

    EAKIN, R M; STEBBINS, R C

    1959-12-01

    A nerve from the parietal eye of the western fence lizard, Sceloporus occidentalis, is described as leaving inconspicuously from the third-eye and extending caudally under the dura mater and then ventrally along the left anterolateral surface of the epiphysis to the habenular commissure of the brain. The existence of a parietal nerve must be considered in interpreting the effects of parietalectomy. PMID:13819089

  12. Multicomponent polymer materials

    SciTech Connect

    Paul, D.R.; Sperling, L.H.

    1986-01-01

    Interpenetrating polymer networks are discussed, taking into account interpenetrating polymer networks based on polybutadiene and polystyrene, polyurethane-polysiloxane simultaneous interpenetrating polymer networks, extraction studies and morphology of physical-chemical interpenetrating polymer networks based on block polymer and polystyrene, twoand three-component interpenetrating polymer networks, and poly(acrylourethane)-polyepoxide semiinterpenetrating networks formed by electron-beam curing. Other topics studied are related to the characterization of polymer blends, the characterization of block copolymers, the mechanical behavior, and rheology and applications. Attention is given to a new silicone flame-retardant system for thermoplastics, recent developments in interpenetrating polymer networks and related materials, miscibility in random copolymer blends, crystallization and melting in compatible polymer blends, and fatigue in rubber-modified epoxies and other polyblends.

  13. Non-Invasive Imaging of Peripheral Nerves

    PubMed Central

    Rangavajla, Gautam; Mokarram, Nassir; Masoodzadehgan, Nazanin; Pai, S. Balakrishna; Bellamkonda, Ravi V.

    2015-01-01

    Recent developments in the field of peripheral nerve imaging extend the capabilities of imaging modalities to assist in the diagnosis and treatment of patients with peripheral nerve maladies. Methods such as MRI and its derivative DTI, ultrasound, and PET are capable of assessing nerve structure and function following injury and relating the state of the nerve to electrophysiological and histological analysis. Of the imaging methods surveyed here, each offered unique and interesting advantages related to the field. MRI offered the opportunity to visualize immune activity on the injured nerve throughout the course of the regeneration process, and DTI offered numerical characterization of the injury and the ability to develop statistical bases for diagnosing injury. Ultrasound extends imaging to the treatment phase by enabling more precise analgesic applications following surgery, and PET represents a novel method of assessing nerve injury through analysis of relative metabolism rates in injured and healthy tissue. Exciting new possibilities to enhance and extend the abilities of imaging methods are also discussed here, including innovative contrast agents, some of which enable multimodal imaging approaches and present opportunities for treatment application. PMID:25766202

  14. Primary brain targets of nerve agents

    PubMed Central

    Aroniadou-Anderjaska, Vassiliki; Figueiredo, Taiza H.; Apland, James P.; Qashu, Felicia; Braga, Maria F.M.

    2009-01-01

    Exposure to nerve agents and other organophosphorus acetylcholinesterases used in industry and agriculture can cause death, or brain damage, producing long-term cognitive and behavioral deficits. Brain damage is primarily caused by the intense seizure activity induced by these agents. Identifying the brain regions that respond most intensely to nerve agents, in terms of generating and spreading seizure activity, along with knowledge of the physiology and biochemistry of these regions, can facilitate the development of pharmacological treatments that will effectively control seizures even if administered when seizures are well underway. Here, we contrast the pathological (neuronal damage) and pathophysiological (neuronal activity) findings of responses to nerve agents in the amygdala and the hippocampus, the two brain structures that play a central role in the generation and spread of seizures. The evidence so far suggests that the amygdala suffers the most extensive damage by nerve agent exposure, which appears consistent with the tendency of the amygdala to generate prolonged, seizure-like neuronal discharges in vitro in response to the nerve agent soman, at a time when the hippocampus generates only interictal-like activity. In vivo experiments are now required to confirm the primary role that the amygdala seems to play in nerve agent-induced seizure generation. PMID:19591865

  15. Nerve fibre proliferation in interstitial cystitis.

    PubMed

    Christmas, T J; Rode, J; Chapple, C R; Milroy, E J; Turner-Warwick, R T

    1990-01-01

    The aetiology of pain in interstitial cystitis is not understood, although it has been reported to be due to release of mediators from mast cell granules. Cystolysis and intravesical instillation of dimethyl sulphoxide have been shown to relieve pain in this condition. We have studied the nerve population within the bladder wall using immunohistochemical stains for protein gene product 9.5. A group of 18 cases of chronic interstitial cystitis and 12 controls; neuropathic bladder (n = 1), chronic bacterial cystitis (n = 3), systemic lupus erythematosus cystitis (n = 2) and normals (n = 6), were investigated. There were significantly more nerve fibres within the sub-urothelial and detrusor muscle layers in chronic interstitial cystitis than there were in normals. Patients with chronic cystitis of other aetiology did not have a significant increase in nerve fibre density within the bladder wall suggesting a specific association between nerve fibre proliferation and interstitial cystitis. Cystolysis is shown to deplete selectively the submucosal nerve plexuses without altering the nerve density within detrusor muscle. This finding explains the desensitisation of the bladder without impairment of detrusor function after this procedure.

  16. Management of mandibular nerve injuries from dental implants.

    PubMed

    Bagheri, Shahrokh C; Meyer, Roger A

    2011-03-01

    Treatment of the patient who has sustained a nerve injury from dental implant procedures involves prompt recognition of this complication, evaluation of sensory dysfunction, the position of the nerve vis-à-vis the implant, and timely management of the injured nerve. In some patients, removal or repositioning of the implant and surgical exploration and repair of the injured nerve will maximize the implant patient's potential for a successful recovery from nerve injury.

  17. Arterial supply of the upper cranial nerves: a comprehensive review.

    PubMed

    Hendrix, Philipp; Griessenauer, Christoph J; Foreman, Paul; Shoja, Mohammadali M; Loukas, Marios; Tubbs, R Shane

    2014-11-01

    The arterial supply to the upper cranial nerves is derived from a complex network of branches derived from the anterior and posterior cerebral circulations. We performed a comprehensive literature review of the arterial supply of the upper cranial nerves with an emphasis on clinical considerations. Arteries coursing in close proximity to the cranial nerves regularly give rise to small vessels that supply the nerve. Knowledge of the arteries supplying the cranial nerves is of particular importance during surgical approaches to the skull base.

  18. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  19. Communications Between the Trigeminal Nerve and the Facial Nerve in the Face: A Systematic Review.

    PubMed

    Hwang, Kun; Yang, Su Cheol; Song, Ju Sung

    2015-07-01

    The aim of the article is to elucidate the communications between the trigeminal nerve and facial nerve in the face. In a PubMed search, 328 studies were found using the terms 'trigeminal nerve, facial nerve, and communication.' The abstracts were read and 39 full-text articles were reviewed. Among them, 11 articles were analyzed. In the studies using dissection, the maxillary branch (V2) had the highest frequency (95.0% ± 8.0%) of communication with the facial nerve, followed by the mandibular branch (V3) (76.7% ± 38.5%). The ophthalmic branch (V1) had the lowest frequency of communication (33.8% ± 19.5%). In a Sihler stain, all of the maxillary branches and mandibular branches had communications with the facial nerve and 85.7% (12/14 hemifaces) of the ophthalmic branches had communications. The frequency of communications between the trigeminal nerve and facial nerve were significantly higher (P = 0.00, t-test) in the studies using a Sihler stain (94.7% ± 1.1%) than the studies using dissection (76.9 ± 35.8). The reason for the significantly higher frequency of trigeminal-facial communication in the studies using a Sihler stain is because of the limitation of the Sihler stain itself. This technique cannot differentiate the motor nerves from sensory nerves at the periphery, and a crossover can be misinterpreted as communication near to nerve terminal.

  20. Transversus Abdominis Plane Versus Ilioinguinal and Iliohypogastric Nerve Blocks for Analgesia Following Open Inguinal Herniorrhaphy*

    PubMed Central

    Stav, Anatoli; Reytman, Leonid; Stav, Michael-Yohay; Troitsa, Anton; Kirshon, Mark; Alfici, Ricardo; Dudkiewicz, Mickey; Sternberg, Ahud

    2016-01-01

    Objectives We hypothesized that preoperative (pre-op) ultrasound (US)-guided posterior transversus abdominis plane block (TAP) and US-guided ilioinguinal and iliohypogastric nerve block (ILI+IHG) will produce a comparable analgesia after Lichtenstein patch tension-free method of open inguinal hernia repair in adult men. The genital branch of the genitofemoral nerve will be blocked separately. Methods This is a prospective, randomized, controlled, and observer-blinded clinical study. A total of 166 adult men were randomly assigned to one of three groups: a pre-op TAP group, a pre-op ILI+IHG group, and a control group. An intraoperative block of the genital branch of the genitofemoral nerve was performed in all patients in all three groups, followed by postoperative patient-controlled intravenous analgesia with morphine. The pain intensity and morphine consumption immediately after surgery and during the 24 hours after surgery were compared between the groups. Results A total of 149 patients completed the study protocol. The intensity of pain immediately after surgery and morphine consumption were similar in the two “block” groups; however, they were significantly decreased compared with the control group. During the 24 hours after surgery, morphine consumption in the ILI+IHG group decreased compared with the TAP group, as well as in each “block” group versus the control group. Twenty-four hours after surgery, all evaluated parameters were similar. Conclusion Ultrasound-guided ILI+IHG provided better pain control than US-guided posterior TAP following the Lichtenstein patch tension-free method of open inguinal hernia repair in men during 24 hours after surgery. (ClinicalTrials.gov number: NCT01429480.) PMID:27487311

  1. Human Vagus Nerve Branching in the Cervical Region

    PubMed Central

    Hammer, Niels; Glätzner, Juliane; Feja, Christine; Kühne, Christian; Meixensberger, Jürgen; Planitzer, Uwe; Schleifenbaum, Stefan; Tillmann, Bernhard N.; Winkler, Dirk

    2015-01-01

    Background Vagus nerve stimulation is increasingly applied to treat epilepsy, psychiatric conditions and potentially chronic heart failure. After implanting vagus nerve electrodes to the cervical vagus nerve, side effects such as voice alterations and dyspnea or missing therapeutic effects are observed at different frequencies. Cervical vagus nerve branching might partly be responsible for these effects. However, vagus nerve branching has not yet been described in the context of vagus nerve stimulation. Materials and Methods Branching of the cervical vagus nerve was investigated macroscopically in 35 body donors (66 cervical sides) in the carotid sheath. After X-ray imaging for determining the vertebral levels of cervical vagus nerve branching, samples were removed to confirm histologically the nerve and to calculate cervical vagus nerve diameters and cross-sections. Results Cervical vagus nerve branching was observed in 29% of all cases (26% unilaterally, 3% bilaterally) and proven histologically in all cases. Right-sided branching (22%) was more common than left-sided branching (12%) and occurred on the level of the fourth and fifth vertebra on the left and on the level of the second to fifth vertebra on the right side. Vagus nerves without branching were significantly larger than vagus nerves with branches, concerning their diameters (4.79 mm vs. 3.78 mm) and cross-sections (7.24 mm2 vs. 5.28 mm2). Discussion Cervical vagus nerve branching is considerably more frequent than described previously. The side-dependent differences of vagus nerve branching may be linked to the asymmetric effects of the vagus nerve. Cervical vagus nerve branching should be taken into account when identifying main trunk of the vagus nerve for implanting electrodes to minimize potential side effects or lacking therapeutic benefits of vagus nerve stimulation. PMID:25679804

  2. Effect of optic nerve sheath fenestration for idiopathic intracranial hypertension on retinal nerve fiber layer thickness.

    PubMed

    Starks, Victoria; Gilliland, Grant; Vrcek, Ivan; Gilliland, Connor

    2016-01-01

    The objective of the study was to evaluate whether optic nerve sheath fenestration in patients with idiopathic intracranial hypertension was associated with improvement in visual field pattern deviation and optical coherence tomography retinal nerve fiber layer thickness.The records of 13 eyes of 11 patients who underwent optic nerve sheath fenestration were reviewed. The subjects were patients of a clinical practice in Dallas, Texas. Charts were reviewed for pre- and postoperative visual field pattern deviation (PD) and retinal nerve fiber layer thickness (RNFL).PD and RNFL significantly improved after surgery. Average PD preoperatively was 8.51 DB and postoperatively was 4.80 DB (p = 0.0002). Average RNFL preoperatively was 113.63 and postoperatively was 102.70 (p = 0.01). The preoperative PD and RNFL did not correlate strongly.Our results demonstrate that PD and RNFL are improved after optic nerve sheath fenestration. The pre- and postoperative RNFL values were compared to the average RNFL value of healthy optic nerves obtained from the literature. Post-ONSF RNFL values were significantly closer to the normal value than preoperative. RNFL is an objective parameter for monitoring the optic nerve after optic nerve sheath fenestration. This study adds to the evidence that OCT RNFL may be an effective monitoring tool for patients with IIH and that it continues to be a useful parameter after ONSF.

  3. Polymer Fluid Dynamics.

    ERIC Educational Resources Information Center

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  4. Introduction to Polymer Chemistry.

    ERIC Educational Resources Information Center

    Harris, Frank W.

    1981-01-01

    Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)

  5. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  6. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  7. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  8. Playing with Polymers.

    ERIC Educational Resources Information Center

    Chemecology, 1997

    1997-01-01

    Presents an activity that enables students to gain a better understanding of the importance of polymers. Students perform an experiment in which polymer chains of polyvinyl acetate form crosslinks. Includes background information and discussion questions. (DDR)

  9. New approaches to bridge nerve gaps: development of a novel drug-delivering nerve conduit.

    PubMed

    Lin, Keng-Min; Sant, Himanshu J; Gale, Bruce K; Agarwal, Jayant P

    2012-01-01

    Contemporary bridging techniques for repairing nerve gaps caused by trauma require autologous nerve grafts, which are difficult to harvest and handle and result in significant donor site deficit. Several nerve conduits with axon growth-enhancing potential have been proposed, developed and tested over the past fifteen years. In this work, prototypes of a nerve conduit designed to bridge large nerve gaps (≥10mm) end-to-end were incorporated with concentric drug reservoirs for constant and controlled drug delivery to enhance axon growth. These devices were designed, fabricated and tested in vitro in amber glass vials with bovine serum albumin in order to determine the drug release kinetics for future application. Our devices have shown the capability to deliver the drug of interest over a 6-day period.

  10. A Controlled Design of Aligned and Random Nanofibers for 3D Bi-functionalized Nerve Conduits Fabricated via a Novel Electrospinning Set-up

    PubMed Central

    Kim, Jeong In; Hwang, Tae In; Aguilar, Ludwig Erik; Park, Chan Hee; Kim, Cheol Sang

    2016-01-01

    Scaffolds made of aligned nanofibers are favorable for nerve regeneration due to their superior nerve cell attachment and proliferation. However, it is challenging not only to produce a neat mat or a conduit form with aligned nanofibers but also to use these for surgical applications as a nerve guide conduit due to their insufficient mechanical strength. Furthermore, no studies have been reported on the fabrication of aligned nanofibers and randomly-oriented nanofibers on the same mat. In this study, we have successfully produced a mat with both aligned and randomly-oriented nanofibers by using a novel electrospinning set up. A new conduit with a highly-aligned electrospun mat is produced with this modified electrospinning method, and this proposed conduit with favorable features, such as selective permeability, hydrophilicity and nerve growth directional steering, were fabricated as nerve guide conduits (NGCs). The inner surface of the nerve conduit is covered with highly aligned electrospun nanofibers and is able to enhance the proliferation of neural cells. The central part of the tube is double-coated with randomly-oriented nanofibers over the aligned nanofibers, strengthening the weak mechanical strength of the aligned nanofibers. PMID:27021221

  11. Photolithographic patterning of 3D-formed polycarbonate films for targeted cell guiding.

    PubMed

    Hirschbiel, Astrid F; Geyer, Simone; Yameen, Basit; Welle, Alexander; Nikolov, Pavel; Giselbrecht, Stefan; Scholpp, Steffen; Delaittre, Guillaume; Barner-Kowollik, Christopher

    2015-04-24

    A facile photolithographic platform for the design of cell-guiding polymeric substrates is introduced. Specific areas of the substrate are photo-deactivated for the subsequent growth of bioresistant polymer brushes, creating zones for cell proliferation, and protein adhesion.

  12. How electrodiagnosis predicts clinical outcome of focal peripheral nerve lesions.

    PubMed

    Robinson, Lawrence R

    2015-09-01

    This article reviews the electrodiagnostic (EDX) prognostic factors for focal traumatic and nontraumatic peripheral nerve injuries. Referring physicians and patients often benefit from general and nerve-specific prognostic information from the EDX consultant. Knowing the probable outcome from a nerve injury allows the referring physician to choose the best treatment options for his/her patients. Nerve injuries are variable in their mechanism, location, and pathophysiology. The general effects of the injuries on nerve and muscle are well known, but more research is needed for nerve-specific information. Several factors currently known to influence prognosis include: nature of the nerve trauma, amount of axon loss, recruitment in muscles supplied by the nerve, the extent of demyelination, and the distance to reinnervate functional muscles. This article reviews these general concepts and also nerve-specific EDX measures that predict outcome after focal neuropathies.

  13. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    PubMed Central

    Cui, Wei-ling; Qiu, Long-hai; Lian, Jia-yan; Li, Jia-chun; Hu, Jun; Liu, Xiao-lin

    2016-01-01

    Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group) alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group). As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves. PMID:27127495

  14. In vivo evaluation of nerve guidance channels of PTMC/PLLA porous biomaterial

    PubMed Central

    Adamus, Agnieszka; Kowalska-Ludwicka, Karolina; Grobelski, Bartlomiej; Cala, Jaroslaw; Rosiak, Janusz M.; Pasieka, Zbigniew

    2013-01-01

    Introduction Peripheral nerve disruptions, frequently occurring during limb injuries, give rise to serious complications of patients recovery resulting from limitations in neural tissue regeneration capabilities. To overcome this problem bridging techniques utilizing guidance channels gain their importance. Biodegradable polymeric tubes seem to be more prospective then non-degradable materials – no necessity of implant removal and possibilities of release of incorporated drugs or biologically active agents that may support nerve regeneration process are the main advantages. Material and methods Polymer blend of commercial poly(L-lactic acid) (PLLA) and in-house synthesized poly(trimethylene carbonate) (PTMC) were processed in an organic solvent – phase inversion process on a supporting rod – to form a guidance porous tube of 1.1 mm inner diameter. In vivo experiments on rat's cut femoral nerve by using either the tubes or end-to-end suturing (control group) involved 22 and 19 rats, respectively. Motor recovery of operated limbs, neuroma occurrence and histopathology of explanted nerves were evaluated after 30, 60 and 90 days of implantation. Results Motor recovery of the limbs was of similar rate for the two animal groups. The neuroma formation was evident in over 90% control specimens, while for the bridging group it was less than 40% of all evaluable samples (p = 0.0022). Biocompatibility of applied materials was affirmed by moderate tissue response. Conclusions Application of the biodegradable PLLA/PTMC polymeric tubes effectively supports regeneration of discontinued nerves. The applied material prevents neuroma formation, by reducing the scar tissue formation time and, thus, accelerating the process of neural tissue restoration. PMID:25861309

  15. Dendritic polyurea polymers.

    PubMed

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  16. Clinical and electrophysiological assessment of inferior alveolar nerve function after lateral nerve transposition.

    PubMed

    Nocini, P F; De Santis, D; Fracasso, E; Zanette, G

    1999-04-01

    Inferior alveolar nerve (IAN) transposition surgery may cause some degree of sensory impairment. Accurate and reproducible tests are mandatory to assess IAN conduction capacity following nerve transposition. In this study subjective (heat, pain and tactile-discriminative tests) and objective (electrophysiological) assessments were performed in 10 patients receiving IAN transposition (bilaterally in 8 cases) in order to evaluate any impairment of the involved nerves one year post-operatively. All patients reported a tingling, well-tolerated sensation in the areas supplied by the mental nerve with no anaesthesia or burning paresthesia. Tactile discrimination was affected the most (all but 1 patient). No action potential was recorded in 4 patients' sides (23.5%); 12 sides showed a decreased nerve conduction velocity (NCV) (70.5%) and 1 side normal NCV values (6%). There was no significant difference in NCV decrease between partial and total transposition sides, if examined separately. Nerve conduction findings were related 2-point discrimination scores, but not to changes in pain and heat sensitivity. These findings show that lateral nerve transposition, though resulting in a high percentage of minor IAN injuries, as determined by electrophysiological testing, provides a viable surgical procedure to allow implant placement in the posterior mandible without causing severe sensory complaints. Considering ethical and forensic implications, patients should be fully informed that a certain degree of nerve injury might be expected to occur from the procedure. Electrophysiological evaluation is a reliable way to assess the degree of IAN dysfunction, especially if combined with a clinical examination. Intraoperative monitoring of IAN conduction might help identify the pathogenetic mechanisms of nerve injury and the surgical steps that are most likely to harm nerve integrity. PMID:10219131

  17. Comparison of nerve, vessel, and cartilage grafts in promoting peripheral nerve regeneration.

    PubMed

    Firat, Cemal; Geyik, Ylmaz; Aytekin, Ahmet Hamdi; Gül, Mehmet; Kamşl, Suat; Yiğitcan, Birgül; Ozcan, Cemal

    2014-07-01

    Peripheral nerve injury primarily occurs due to trauma as well as factors such as tumors, inflammatory diseases, congenital deformities, infections, and surgical interventions. The surgical procedure to be performed as treatment depends on the etiology, type of injury, and the anatomic region. The goal of treatment is to minimize loss of function due to motor and sensory nerve loss at the distal part of the injury. Regardless of the cause of the injury, the abnormal nerve regeneration due to incomplete nerve regeneration, optimal treatment of peripheral nerve injuries should provide adequate coaptation of proximal and distal sides without tension, preserving the neurotrophic factors within the repair line. The gold standard for the treatment of nerve defects is the autograft; however, due to denervation of the donor site, scarring, and neuroma formation, many studies have aimed to develop simpler methods, better functional results, and less morbidity. In this study, a defect 1 cm in length was created on the sciatic nerve of rats. The rats were treated with the following procedures: group 1, autograft; group 2, allogeneic aorta graft; group 3, diced cartilage graft in allogeneic aorta graft; and group 4, tubularized cartilage graft in allogeneic aorta graft. Group 5 was the control group. The effects of cartilage tissue in nerve regeneration were evaluated by functional and histomorphological methods.Group 1, for which the repair was performed with an autograft, was evaluated to be the most similar to the control group. There was not a statistically significant difference in myelination and Schwann cell rates between group 2, in which an allogeneic aorta graft was used, and group 3, in which diced cartilage in an allogeneic aorta graft was used. In group 4, myelination and Schwann cell formation were observed; however, they were scattered and irregular, likely due to increased fibrosis.In all of the groups, nerve regeneration at various rates was observed both

  18. Endocrine tumors associated with the vagus nerve.

    PubMed

    Varoquaux, Arthur; Kebebew, Electron; Sebag, Fréderic; Wolf, Katherine; Henry, Jean-François; Pacak, Karel; Taïeb, David

    2016-09-01

    The vagus nerve (cranial nerve X) is the main nerve of the parasympathetic division of the autonomic nervous system. Vagal paragangliomas (VPGLs) are a prime example of an endocrine tumor associated with the vagus nerve. This rare, neural crest tumor constitutes the second most common site of hereditary head and neck paragangliomas (HNPGLs), most often in relation to mutations in the succinate dehydrogenase complex subunit D (SDHD) gene. The treatment paradigm for VPGL has progressively shifted from surgery to abstention or therapeutic radiation with curative-like outcomes. Parathyroid tissue and parathyroid adenoma can also be found in close association with the vagus nerve in intra or paravagal situations. Vagal parathyroid adenoma can be identified with preoperative imaging or suspected intraoperatively by experienced surgeons. Vagal parathyroid adenomas located in the neck or superior mediastinum can be removed via initial cervicotomy, while those located in the aortopulmonary window require a thoracic approach. This review particularly emphasizes the embryology, molecular genetics, and modern imaging of these tumors. PMID:27406876

  19. [Third cranial nerve palsy in sphenoid sinusitis].

    PubMed

    Dores, Luís Almeida; Simão, Marco Alveirinho; Marques, Marta Canas; Dias, Éscar

    2014-01-01

    Sphenoid sinus disease is particular not only for its clinical presentation, as well as their complications. Although rare, these may present as cranial nerve deficits, so it is important to have a high index of suspicion and be familiar with its diagnosis and management. Symptoms are often nonspecific, but the most common are headache, changes in visual acuity and diplopia due to dysfunction of one or more ocular motor nerves. The authors report a case of a 59 years-old male, who was referred to the ENT emergency department with frontal headaches for one week which had progressively worsened and were associated, since the last 12 hours, with diplopia caused by left third cranial nerve palsy. Neurologic examination was normal aside from the left third cranial nerve palsy. Anterior and posterior rhinoscopy excluded the presence of nasal masses and purulent rhinorrhea. The CT scan revealed a soft tissue component and erosion of the roof of the left sphenoid sinus. Patient was admitted for intravenous antibiotics and steroids treatment without any benefit after 48 hours. He was submitted to endoscopic sinus surgery with resolution of the symptoms 10 days after surgery. The authors present this case for its rarity focusing on the importance of differential diagnosis in patients with headaches and cranial nerves palsies.

  20. [Functional anatomy of the trigeminal nerve].

    PubMed

    Leston, J M

    2009-04-01

    The cranial nerve (CN) V is a mixed nerve that consists primarily of sensory neurons. It exits the brain on the lateral surface of the pons, entering the trigeminal ganglion within a few millimeters. Three major branches emerge from the trigeminal ganglion. The first division (V1, the ophthalmic nerve) exits the cranium through the superior orbital fissure, entering the orbit to innervate the globe and skin in the area above the eye and forehead. The second division (V2, the maxillary nerve) exits through a round hole, the foramen rotundum, into a space posterior to the orbit, the pterygopalatine fossa. It then re-enters a canal running inferior to the orbit, the infraorbital canal, and exits through a small hole, the infraorbital foramen, to innervate the skin below the eye and above the mouth. The third division (V3, the mandibular nerve) exits the cranium through an oval hole, the foramen ovale. The third division also has an additional motor component, which may run in a separate fascial compartment. Most fibers travel directly to their target tissues. Sensory axons innervate skin on the lateral side of the head, the tongue, and the mucosal wall of the oral cavity. Motor fibers innervate the muscles that are attached to the mandible. Some sensory axons enter in the mandible to innervate the teeth and emerge from the mental foramen to innervate the skin of the lower jaw.

  1. Lithium enhances remyelination of peripheral nerves

    PubMed Central

    Makoukji, Joelle; Belle, Martin; Meffre, Delphine; Stassart, Ruth; Grenier, Julien; Shackleford, Ghjuvan'Ghjacumu; Fledrich, Robert; Fonte, Cosima; Branchu, Julien; Goulard, Marie; de Waele, Catherine; Charbonnier, Frédéric; Sereda, Michael W.; Baulieu, Etienne-Emile; Schumacher, Michael; Bernard, Sophie; Massaad, Charbel

    2012-01-01

    Glycogen synthase kinase 3β (GSK3β) inhibitors, especially the mood stabilizer lithium chloride, are also used as neuroprotective or anti-inflammatory agents. We studied the influence of LiCl on the remyelination of peripheral nerves. We showed that the treatment of adult mice with LiCl after facial nerve crush injury stimulated the expression of myelin genes, restored the myelin structure, and accelerated the recovery of whisker movements. LiCl treatment also promoted remyelination of the sciatic nerve after crush. We also demonstrated that peripheral myelin gene MPZ and PMP22 promoter activities, transcripts, and protein levels are stimulated by GSK3β inhibitors (LiCl and SB216763) in Schwann cells as well as in sciatic and facial nerves. LiCl exerts its action in Schwann cells by increasing the amount of β-catenin and provoking its nuclear localization. We showed by ChIP experiments that LiCl treatment drives β-catenin to bind to T-cell factor/lymphoid-enhancer factor response elements identified in myelin genes. Taken together, our findings open perspectives in the treatment of nerve demyelination by administering GSK3β inhibitors such as lithium. PMID:22355115

  2. Mandibular nerve entrapment in the infratemporal fossa.

    PubMed

    Piagkou, Maria N; Demesticha, T; Piagkos, G; Androutsos, G; Skandalakis, P

    2011-05-01

    The posterior trunk of the mandibular nerve (V(3)) comprises of three main branches. Various anatomic structures may entrap and potentially compress the mandibular nerve branches. A usual position of mandibular nerve (MN) compression is the infratemporal fossa (ITF) which is one of the most difficult regions of the skull base to access surgically. The anatomical positions of compression are: the incomplete or complete ossified pterygospinous (LPs) or pterygoalar (LPa) ligament, the large lamina of the lateral plate of the pterygoid process and the medial fibres of the lower belly of the lateral pterygoid (LPt). A contraction of the LPt, due to the connection between nerve and anatomic structures (soft and hard tissues), might lead to MN compression. Any variations of the course of the MN branches can be of practical significance to surgeons and neurologists who are dealing with this region, because of possibly significant complications. The entrapment of the MN motor branches can lead to paresis or weakness in the innervated muscle. Compression of the sensory branches can provoke neuralgia or paraesthesia. Lingual nerve (LN) compression causes numbness, hypoesthesia or even anaesthesia of the mucous of the tongue, anaesthesia and loss of taste in the anterior two-thirds of the tongue, anaesthesia of the lingual gums, as well as pain related to speech articulation disorders. Dentists should be very suspicious of possible signs of neurovascular compression in the region of the ITF.

  3. Peripheral nerve regeneration and neurotrophic factors

    PubMed Central

    TERENGHI, GIORGIO

    1999-01-01

    The role of neurotrophic factors in the maintenance and survival of peripheral neuronal cells has been the subject of numerous studies. Administration of exogenous neurotrophic factors after nerve injury has been shown to mimic the effect of target organ-derived trophic factors on neuronal cells. After axotomy and during peripheral nerve regeneration, the neurotrophins NGF, NT-3 and BDNF show a well defined and selective beneficial effect on the survival and phenotypic expression of primary sensory neurons in dorsal root ganglia and of motoneurons in spinal cord. Other neurotrophic factors such as CNTF, GDNF and LIF also exert a variety of actions on neuronal cells, which appear to overlap and complement those of the neurotrophins. In addition, there is an indirect contribution of GGF to nerve regeneration. GGF is produced by neurons and stimulates proliferation of Schwann cells, underlining the close interaction between neuronal and glial cells during peripheral nerve regeneration. Different possibilities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. The studies reviewed in this article show the therapeutic potential of neurotrophic factors for the treatment of peripheral nerve injury and for neuropathies. PMID:10227662

  4. Radiation therapy for primary optic nerve meningiomas

    SciTech Connect

    Smith, J.L.; Vuksanovic, M.M.; Yates, B.M.; Bienfang, D.C.

    1981-06-01

    Optic nerve sheath meningiomas, formerly thought to be rare, have been encountered with surprising frequency since the widespread use of computed tomography. Early diagnosis led to an enthusiastic surgical approach to these lesions, but this has been tempered by the realization that even in the best of hands, blindness followed such surgery with distressing frequency. Optic nerve sheath meningiomas may be divided into primary, secondary, and multiple meningioma groups. Five patients with primary optic nerve sheath meningiomas treated with irradiation therapy are presented in this report. Improvement in visual acuity, stabilization to increase in the visual field, and decrease in size to total regression of optociliary veins, have been documented following irradiation therapy of the posterior orbital and intracanalicular portions of the optic nerve in some of these cases. Although each patient must be carefully individualized, there is no question that visual palliation can be achieved in some cases of optic nerve sheath meningioma. Further investigation of this therapeutic modality in selected cases in advised.

  5. Evaluating optic nerve damage: pearls and pitfalls.

    PubMed

    Mackenzie, Paul J; Mikelberg, Frederick S

    2009-01-01

    Primary open-angle glaucoma is a progressive optic neuropathy involving loss of retinal ganglion cells and their axons at the level of the optic nerve head. This change manifests as thinning and excavation of the neural tissues and nerve fiber layer. Therefore, it has long been known that the structural appearance of the optic nerve head is paramount to both glaucoma diagnosis and to the detection of progression [1-4]. Quantitative imaging methods such as Heidelberg Retinal Tomography (HRT) and Ocular Coherence Tomography (OCT) show great promise for the diagnosis and management of glaucoma and as these technologies continue to improve, they will become more important in the care of glaucoma. However, these tests cannot replace good clinical examination and indeed they depend upon clinical correlation for correct interpretation. Thus, careful and systematic clinical examination of the optic nerve remains a cornerstone of glaucoma management. In this paper, we outline a few pearls for the examination of the optic nerve and some of the pitfalls to be avoided in optic disc examination. PMID:19834565

  6. Regeneration of the Nerves in the Aerial Cavity with an Artificial Nerve Conduit -Reconstruction of Chorda Tympani Nerve Gaps-

    PubMed Central

    Yamanaka, Toshiaki; Hosoi, Hiroshi; Murai, Takayuki; Kobayashi, Takehiko; Inada, Yuji; Nakamura, Tatsuo

    2014-01-01

    Objectives/Hypothesis Due to its anatomical features, the chorda tympani nerve (CTN) is sometimes sacrificed during middle ear surgery, resulting in taste dysfunction. We examined the effect of placing an artificial nerve conduit, a polyglycolic acid (PGA)-collagen tube, across the gap in the section of the resected chorda tympani nerve (CTN) running through the tympanic cavity. Methods The CTN was reconstructed with a PGA-collagen tube in three patients with taste disturbance who underwent CTN resection. To evaluate the effect of the reconstruction procedure on the patients' gustatory function, we measured the patients' electrogustometry (EGM) thresholds. The patients were followed-up for at least two years. Results Gustatory function was completely restored in all of the patients after the reconstruction. The patients' EGM thresholds exhibited early improvements within one to two weeks and had returned to their normal ranges within three months. They subsequently remained stable throughout the two-year follow-up period. In a patient who underwent a second surgical procedure, it was found that the PGA-collagen tube used in the first surgical procedure had been absorbed and replaced by new CTN fibers with blood vessels on their surfaces. Conclusion These results suggest that reconstruction of the CTN with an artificial nerve conduit, a PGA-collagen tube, allows functional and morphological regeneration of the nerve and facilitates the recovery of taste function. PGA-collagen tubes might be useful for repairing CTNs that are resected during middle ear surgery. Further research is required to confirm these preliminary results although this is the first report to describe the successful regeneration of a nerve running through an aerial space. PMID:24691095

  7. COATING ALTERNATIVES GUIDE (CAGE) USER'S GUIDE

    EPA Science Inventory

    The guide provides instructions for using the Coating Alternatives GuidE (CAGE) software program, version 1.0. It assumes that the user is familiar with the fundamentals of operating an IBM-compatible personal computer (PC) under the Microsoft disk operating system (MS-DOS). CAGE...

  8. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts

    PubMed Central

    Boyer, Richard B.; Sexton, Kevin W.; Rodriguez-Feo, Charles L.; Nookala, Ratnam; Pollins, Alonda C.; Cardwell, Nancy L.; Tisdale, Keonna Y.; Nanney, Lillian B.; Shack, R. Bruce; Thayer, Wesley P.

    2014-01-01

    Background Acellular nerve allografts are now standard tools in peripheral nerve repair due to decreased donor site morbidity and operative time savings. Preparation of nerve allografts involves several steps of decellularization and modification of extracellular matrix to remove chondroitin sulfate proteoglycans (CSPGs), which have been shown to inhibit neurite outgrowth through a poorly understood mechanism involving RhoA and ECM-integrin interactions. Chondroitinase ABC (ChABC) is an enzyme that degrades CSPG molecules and has been shown to promote neurite outgrowth following injury of the central and peripheral nervous systems. Variable results following chondroitinase ABC treatment make it difficult to predict the effects of this drug in human nerve allografts, especially in the presence of native extracellular signaling molecules. Several studies have shown cross-talk between neurotrophic factor and CSPG signaling pathways, but their interaction remains poorly understood. In this study, we examined the adjuvant effects of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth post-injury in CSPG-reduced substrates and acellular nerve allografts. Materials and Methods E12 chicken DRG explants were cultured in medium containing ChABC, ChABC + NGF, ChABC + GDNF or control media. Explants were imaged at 3 d and neurite outgrowths measured. The rat sciatic nerve injury model involved a 1-cm sciatic nerve gap that was microsurgically repaired with ChABC pre-treated acellular nerve allografts. Prior to implantation, nerve allografts were incubated in NGF, GDNF or sterile water. Nerve histology was evaluated at 5d and 8wk post-injury. Results The addition of GDNF in vitro produced significant increase in sensory neurite length at 3 d compared to ChABC alone (P < 0.01), while NGF was not significantly different from control. In vivo adjuvant NGF produced increases in total myelinated axon count (P < 0.005) and motor axon

  9. Measurement of cochlea to facial nerve canal with thin-section computed tomographic image.

    PubMed

    Jiang, Ying; Liu, Xiangliang; Yao, Jihang; Tian, Yong; Xia, Changli; Li, Youqiong; Fu, Yan; Luo, Qi

    2013-03-01

    Facial nerve (FN) paralysis is a rare but devastating complication of cochlear implant surgery. This study aimed to measure the cupula of the cochlea to the tympanic segment of the FN canal, cupula of the cochlea to the mastoid segment of the FN canal, and the geniculate ganglion to provide a more secure and accurate orientation of the FN canal and to facilitate operation on the cochlea by avoiding potential damage to FN. Using computed tomography, we scanned skulls of 120 volunteers who suffer no cases of skull base lesions. Multiplane reconstruction images were prepared with high-resolution computed tomography. Preoperative evaluation of the FN anatomy within the temporal bone by high-resolution computed tomography helps in minimizing surgical trauma to the nerve, and these results can help guide clinical surgery on the cochlea.

  10. Injury of the peripheral cranial nerves during carotid endarterectomy.

    PubMed

    Theodotou, B; Mahaley, M S

    1985-01-01

    The incidence of local nerve injury among 192 consecutive carotid endarterectomies in 162 patients between 1977-1983 was determined from review of the medical records. Two facial nerve, 5 hypoglossal nerve, and 2 vagus nerve injuries were discovered for a total incidence of 4.7%. Only the 2 facial nerve injuries failed to improve over 2 years. Followup ranged from 1 to 60 months in this group of patients. Careful attention to details of tissue dissection at surgery should lower the incidence of nerve injury during carotid endarterectomy. PMID:4049454

  11. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  12. Nerve repair and cable grafting for facial paralysis.

    PubMed

    Humphrey, Clinton D; Kriet, J David

    2008-05-01

    Facial nerve injury and facial paralysis are devastating for patients. Although imperfect, primary repair is currently the best option to restore facial nerve function. Cable, or interposition, nerve grafting is an acceptable alternative when primary repair is not possible. Several donor nerves are at the surgeon's disposal. Great auricular, sural, or medial and lateral antebrachial cutaneous nerves are all easily obtained. Both primary repair and interposition grafting typically result in better facial function than do other dynamic and static rehabilitation strategies. Proficient anastomotic technique and, when necessary, selection of an appropriate interposition graft will optimize patient outcomes. Promising research is under way that will enhance future nerve repair and grafting efforts.

  13. Fire-safe polymers and polymer composites

    NASA Astrophysics Data System (ADS)

    Zhang, Huiqing

    The intrinsic relationships between polymer structure, composition and fire behavior have been explored to develop new fire-safe polymeric materials. Different experimental techniques, especially three milligram-scale methods---pyrolysis-combustion flow calorimetry (PCFC), simultaneous thermal analysis (STA) and pyrolysis GC/MS---have been combined to fully characterize the thermal decomposition and flammability of polymers and polymer composites. Thermal stability, mass loss rate, char yield and properties of decomposition volatiles were found to be the most important parameters in determining polymer flammability. Most polymers decompose by either an unzipping or a random chain scission mechanism with an endothermic decomposition of 100--900 J/g. Aromatic or heteroaromatic rings, conjugated double or triple bonds and heteroatoms such as halogens, N, O, S, P and Si are the basic structural units for fire-resistant polymers. The flammability of polymers can also be successfully estimated by combining pyrolysis GC/MS results or chemical structures with TGA results. The thermal decomposition and flammability of two groups of inherently fire-resistant polymers---poly(hydroxyamide) (PHA) and its derivatives, and bisphenol C (BPC II) polyarylates---have been systematically studied. PHA and most of its derivatives have extremely low heat release rates and very high char yields upon combustion. PHA and its halogen derivatives can completely cyclize into quasi-polybenzoxazole (PBO) structures at low temperatures. However, the methoxy and phosphate derivatives show a very different behavior during decomposition and combustion. Molecular modeling shows that the formation of an enol intermediate is the rate-determining step in the thermal cyclization of PHA. BPC II-polyarylate is another extremely flame-resistant polymer. It can be used as an efficient flame-retardant agent in copolymers and blends. From PCFC results, the total heat of combustion of these copolymers or blends

  14. Smart polymers for implantable electronics

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.

    Neural interfaces have been heavily investigated due to their unique ability to tap into the communication system of the body. Substrates compatible with microelectronics processing are planar and 5-7 orders of magnitude stiffer than the tissue with which they interact. This work enables fabrication of devices by photolithography that are stiff enough to penetrate soft tissue, change in stiffness to more closely match the modulus of tissue after implantation and adopt shapes to conform to tissue. Several classes of physiologically-responsive, amorphous polymer networks with the onset of the glass transition above 37 °C are synthesized and thermomechanically characterized. These glassy networks exhibit an isothermal reduction in modulus due to plasticization in the presence of aqueous fluids. Modulus after plasticization can be tuned by the dry glass transition temperature, degree of plasticization and crosslink density. Acrylic shape memory polymer based intracortical probes, which can change in modulus from above 1 GPa to less than 1 MPa, are fabricated through a transfer process that shields the substrate from processing and enhances adhesion to the microelectronics. Substrates capable of withstanding the conditions of photolithography are fabricated "thiol-ene" and "thiol-epoxy" substrates. These materials provide processing windows that rival engineering thermoplastics, swell less than 6% in water, and exhibit a controllable reduction in modulus from above 1 GPa to between 5 and 150 MPa. Substrates, planar for processing, that subsequently recover 3D shapes are synthesized by the formation of post-gelation crosslinks either covalent or supramolecular in nature. Acrylics with varied supramolecular, based on ureidopyrimidone moieties, and covalent crosslink density demonstrate triple-shape memory behavior. Post-gelation covalent crosslinks are established to permanently fix 3D shapes in thiol-ene networks. Devices fabricated include intracortical and nerve cuff

  15. Studies on nerve growth and repair

    SciTech Connect

    Ignatius, M.J.

    1985-01-01

    The transition of nerve cell from a dividing undifferentiated cell to a morphologically differentiated nondividing cell was studied. Pheochromocytoma (PC12) cells respond to nerve growth factor (NGF) by extending electrically excitable neurites. Yet by labeling these cells with /sup 3/H-thymidine and examining them autoradiographically, evidence for continued DNA replication in neurite bearing neurons was found. NGF receptors of two classes are expressed on PC12 cells and other NGF dependent neurons. By labeling differentiated PC12s in culture with /sup 125/I-NGF and examining them autoradiographically both receptor classes were found evenly distributed on the growth cones, neurites and cell bodies. Cytoskeletal associated receptors were found in these areas as well. The purification and identification of a soluble, extracellular protein of 37,000 molecular weight whose synthesis and accumulation is increased after injury of a rat sciatic nerve is described.

  16. Ulnar nerve entrapment at the wrist.

    PubMed

    Earp, Brandon E; Floyd, W Emerson; Louie, Dexter; Koris, Mark; Protomastro, Paul

    2014-11-01

    Presentation of ulnar nerve entrapment at the wrist varies based on differential anatomy and the site or sites of compression. Therefore, an understanding of the anatomy of the Guyon canal is essential for diagnosis in patients presenting with motor and/or sensory deficits in the hand. The etiologies of ulnar nerve compression include soft-tissue tumors; repetitive or acute trauma; the presence of anomalous muscles and fibrous bands; arthritic, synovial, endocrine, and metabolic conditions; and iatrogenic injury. In addition to a thorough history and physical examination, which includes motor, sensory, and vascular assessments, imaging and electrodiagnostic studies facilitate the diagnosis of ulnar nerve lesions at the wrist. Nonsurgical management is appropriate for a distal compression lesion caused by repetitive activity, but surgical decompression is indicated if symptoms persist or worsen over 2 to 4 months. PMID:25344595

  17. Optimizing skeletal muscle reinnervation with nerve transfer.

    PubMed

    Lien, Samuel C; Cederna, Paul S; Kuzon, William M

    2008-11-01

    Denervation as a consequence of nerve injury causes profound structural and functional changes within skeletal muscle and can lead to a marked impairment in function of the affected limb. Prompt reinnervation of a muscle with a sufficient number of motion-specific motor axons generally results in good structural and functional recovery, whereas long-term denervation or insufficient or improper axonal recruitment uniformly results in poor functional recovery. Only nerve transfer has been highly efficacious in changing the clinical outcomes of patients with skeletal muscle denervation, especially in the case of proximal limb nerve injuries. Rapid reinnervation with an abundant number of motor axons remains the only clinically effective means to restore function to denervated skeletal muscles. PMID:18928892

  18. Discrete impulses in ephaptically coupled nerve fibers.

    PubMed

    Maïna, I; Tabi, C B; Ekobena Fouda, H P; Mohamadou, A; Kofané, T C

    2015-04-01

    We exclusively analyze the condition for modulated waves to emerge in two ephaptically coupled nerve fibers. Through the multiple scale expansion, it is shown that a set of coupled cable-like Hodgkin-Huxley equations can be reduced to a single differential-difference nonlinear equation. The standard approach of linear stability analysis of a plane wave is used to predict regions of parameters where nonlinear structures can be observed. Instability features are shown to be importantly controlled not only by the ephaptic coupling parameter, but also by the discreteness parameter. Numerical simulations, to verify our analytical predictions, are performed, and we explore the longtime dynamics of slightly perturbed plane waves in the coupled nerve fibers. On initially exciting only one fiber, quasi-perfect interneuronal communication is discussed along with the possibility of recruiting damaged or non-myelinated nerve fibers, by myelinated ones, into conduction.

  19. Nerve Injury in Athletes Caused by Cryotherapy

    PubMed Central

    Malone, Terry R.; Engelhardt, David L.; Kirkpatrick, John S.; Bassett, Frank H.

    1992-01-01

    Cryotherapy is a therapeutic modality frequently used in the treatment of athletic injuries. In very rare circumstances, inappropriate use in some individuals can lead to nerve injury resulting in temporary or permanent disability of the athlete. Six cases of cold-induced peripheral nerve injury from 1988 to 1991 at the Sports Medicine Center at Duke University are reported. Although disability can be severe and can render an athlete unable to compete for several months, each of these cases resolved spontaneously. Whereas the application of this modality is typically quite safe and beneficial, clinicians must be aware of the location of major peripheral nerves, the thickness of the overlying subcutaneous fat, the method of application (with inherent or additional compression), the duration of tissue cooling, and the possible cryotherapy sensibility of some individuals. PMID:16558167

  20. Intraneural Venous Malformations of the Median Nerve

    PubMed Central

    González Rodríguez, Alba; Midón Míguez, José

    2016-01-01

    Venous malformations arising from the peripheral nerve are a rare type of vascular malformation. We present the first case of an intraneural venous malformation of the median nerve to be reported in a child and review the previous two cases of median nerve compression due to a venous malformation that have been reported. These cases presented with painless masses in the volar aspect of the wrist or with symptoms suggestive of carpal tunnel syndrome. Clinical suspicion should lead to the use of Doppler ultrasonography as the first-line diagnostic tool. Magnetic resonance imaging and histopathology can confirm the diagnosis, as phleboliths are pathognomonic of venous malformations. Surgical treatment appears to be the only modality capable of successfully controlling the growth of an intraneural malformation. Sclerotherapy and radiotherapy have never been used to treat this type of malformation. PMID:27462571