Science.gov

Sample records for polymer network membrane

  1. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  2. Interpenetrating polymer network ion exchange membranes and method for preparing same

    DOEpatents

    Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip

    1989-01-01

    Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.

  3. Porphyrin network polymers prepared via a click reaction and facilitated oxygen permeation through their membranes.

    PubMed

    Chikushi, Natsuru; Ohara, Emiko; Hisama, Ayako; Nishide, Hiroyuki

    2014-05-01

    Network polymers of cobaltporphyrin derivatives are prepared by a facile click reaction via the Michael addition of acetoacetate-substituted tetraphenyl cobaltporphyrin and tri- or tetra-acrylates. The conversion is saturated for 1 h in the presence of a catalyst, which almost reaches the same gelation point of the formed network polymers. Deeply and homogeneously red-colored membranes with a sub-micrometer thickness are yielded on a porous supporting membrane. They are still tough even with a very high content of the rigid porphyrin residue. The oxygen permeability is high, at 10-100 Barrer, and the oxygen/nitrogen permselectivity (PO2/PN2) is significantly enhanced with the porphyrin content reaching 30, for the membranes with ca. 70 wt% porphyrin content.

  4. Multifunctional membranes for solvent resistant nanofiltration and pervaporation applications based on segmented polymer networks.

    PubMed

    Li, Xianfeng; Basko, Malgorzata; Du Prez, S Filip; Vankelecom, Ivo F J

    2008-12-25

    Hydrophilic bis(acrylate)-terminated poly(ethylene oxide) was used as macromolecular cross-linker of different hydrophobic polyacrylates for the synthesis of amphiphilic segmented polymer networks (SPNs). Multifunctional composite membranes with thin SPN toplayers were prepared by in situ polymerization. As the support consisted of hydrolyzed polyacrylonitrile, the high chemical resistance of the composite membrane allowed applications of the SPN-based membranes in solvent-resistant nanofiltration (SRNF) and pervaporation (PV). The membranes show very high retention on Rose Bengal (RB) in different solvents, especially in strong swelling solvents such as tetrahydrofuran (THF) and dimethylformamide (DMF). The membranes were also tested in pervaporation for dehydration of ethanol and isopropanol (IPA). The selectivity of the membranes greatly depends on the composition or the ratio of the hydrophilic and hydrophobic phases of the SPN.

  5. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  6. Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Fazeli, Mohammadreza

    In this thesis, pore network modeling was used to study how the microstructure of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) influences multiphase transport within the composite layer. An equivalent pore network of a GDL was used to study the effects of GDL/catalyst layer condensation points and contact quality on the spatial distribution of liquid water in the GDL. Next, pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures, and favorable GDL compression values for preferred liquid water distributions were found for two commercially available GDL materials. Finally, a technique was developed for calculating the oxygen diffusivity in carbon paper substrates with a microporous layer (MPL) coating through pore network modeling. A hybrid network was incorporated into the pore network model, and effective diffusivity predictions of MPL coated GDL materials were obtained.

  7. Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene.

    PubMed

    Wang, Jilin; He, Ronghuan; Che, Quantong

    2011-09-01

    Anion exchange membranes with semi-interpenetrating polymer network (semi-IPN) were prepared based on quaternized chitosan (QCS) and polystyrene (PS). The PS was synthesized by polymerization of styrene monomers in the emulsion of the QCS in an acetic acid aqueous solution under nitrogen atmosphere at elevated temperatures. The semi-IPN system was formed by post-cross-linking of the QCS. A hydroxyl ionic conductivity of 2.80×10(-2) S cm(-1) at 80°C and a tensile stress at break of 20.0 MPa at room temperature were reached, respectively, by the semi-IPN membrane containing 21 wt.% of the PS. The durability of the semi-IPN membrane in alkaline solutions was tested by monitoring the variation of the conductivity and the mechanical strength. The degradation of the conductivity at 80°C was about 5% by immersing the membrane in a 1 mol L(-1) KOH solution at room temperature for 72 h and at 60°C for 50 h, respectively. The tensile stress at break at room temperature could maintain about 20.0 MPa for the membrane soaking in a 10 mol L(-1) KOH solution at ambient temperature for more than 70 h. The water swelling of the semi-IPN membranes was discussed based on the stress relaxation model of polymer chains, and it obeyed the Schott's second-order swelling kinetics. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Semi-interpenetrating polymer network proton exchange membranes with narrow and well-connected hydrophilic channels

    NASA Astrophysics Data System (ADS)

    Fang, Chunliu; Toh, Xin Ni; Yao, Qiaofeng; Julius, David; Hong, Liang; Lee, Jim Yang

    2013-03-01

    Four series of semi-interpenetrating polymer network (SIPN) membranes are fabricated by thermally cross-linking aminated BPPO (brominated poly(2,6-dimethyl-1,4-phenylene oxide)) with different epoxide cross-linkers in the presence of sulfonated PPO (SPPO). The cross-link structure and hydrophobicity are found to impact the membrane morphology strongly - smaller and more hydrophobic cross-links form narrow and well-connected hydrophilic channels whereas bulky and less hydrophobic cross-links form wide but less-connected hydrophilic channels. The membranes of the former can support facile proton transport and suppress methanol crossover to result in higher proton conductivity and lower methanol permeability than the membranes of the latter. The membranes are also fabricated into membrane electrode assemblies (MEAs) and tested in single-stack direct methanol fuel cells (DMFCs). It is found that some of these SIPN membranes can surpass Nafion® 117 in maximum power density, demonstrating their potential as a proton exchange membrane (PEM) for the DMFCs.

  9. Highly conductive solid polymer electrolyte membranes based on polyethylene glycol-bis-carbamate dimethacrylate networks

    NASA Astrophysics Data System (ADS)

    Fu, Guopeng; Dempsey, Janel; Izaki, Kosuke; Adachi, Kaoru; Tsukahara, Yasuhisa; Kyu, Thein

    2017-08-01

    In an effort to fabricate highly conductive, stable solid-state polymer electrolyte membranes (PEM), polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction between polyethylene glycol diamine and ethylene carbonate. Subsequently, dimethacrylate groups were chemically attached to both ends of PEGBC to afford polyethylene glycol-bis-carbamate dimethacrylate (PEGBCDMA) precursor having crosslinking capability. The melt-mixed ternary mixtures consisting of PEGBCDMA, succinonitrile plasticizer, and lithium trifluorosulphonyl imide salt were completely miscible in a wide compositional range. Upon photo-crosslinking, the neat PEGBCDMA network was completely amorphous exhibiting higher tensile strength, modulus, and extensibility relative to polyethylene glycol diacrylate (PEGDA) counterpart. Likewise, the succinonitrile-plasticized PEM network containing PEGBCDMA remained completely amorphous and transparent upon photo-crosslinking, showing superionic conductivity, improved thermal stability, and superior tensile properties with improved capacity retention during charge/discharge cycling as compared to the PEGDA-based PEM.

  10. Polymers at membranes

    NASA Astrophysics Data System (ADS)

    Breidenich, Markus

    2000-11-01

    The surface of biological cells consists of a lipid membrane and a large amount of various proteins and polymers, which are embedded in the membrane or attached to it. We investigate how membranes are influenced by polymers, which are anchored to the membrane by one end. The entropic pressure exerted by the polymer induces a curvature, which bends the membrane away from the polymer. The resulting membrane shape profile is a cone in the vicinity of the anchor segment and a catenoid far away from it. The perturbative calculations are confirmed by Monte-Carlo simulations. An additional attractive interaction between polymer and membrane reduces the entropically induced curvature. In the limit of strong adsorption, the polymer is localized directly on the membrane surface and does not induce any pressure, i.e. the membrane curvature vanishes. If the polymer is not anchored directly on the membrane surface, but in a non-vanishing anchoring distance, the membrane bends towards the polymer for strong adsorption. In the last part of the thesis, we study membranes under the influence of non-anchored polymers in solution. In the limit of pure steric interactions between the membrane and free polymers, the membrane curves towards the polymers (in contrast to the case of anchored polymers). In the limit of strong adsorption the membrane bends away from the polymers. Die Oberfläche biologischer Zellen besteht aus einer Lipidmembran und einer Vielzahl von Proteinen und Polymeren, die in die Membran eingebaut sind. Die Beeinflussung der Membran durch Polymere, die mit einem Ende an der Membran verankert sind, wird im Rahmen dieser Arbeit anhand eines vereinfachten biomimetischen Systems studiert. Der entropische Druck, den das Polymer durch Stöße auf die Membran ausübt, führt dazu, dass sich die Membran vom Polymer weg krümmt. Die resultierende Membranform ist ein Kegel in der Nähe des Ankers und ein Katenoid in grossem Abstand vom Ankerpunkt. Monte Carlo-Simulationen best

  11. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Rong-Qiang; Woo, Jung-Je; Seo, Seok-Jun; Lee, Jae-Suk; Moon, Seung-Hyeon

    2008-05-01

    A series of new covalent organic/inorganic hybrid proton-conductive membranes, each with a semi-interpenetrating polymer network (semi-IPN), for direct methanol fuel cell (DMFC) applications is prepared through the following sequence: (i) copolymerization of impregnated styrene (St), p-vinylbenzyl chloride (VBC) and divinylbenzene (DVB) within a supporting polyvinyl chloride (PVC) film; (ii) reaction of the chloromethyl group with 3-(methylamine)propyl-trimethoxysilane (MAPTMS); (ii) a sol-gel process under acidic conditions; (iv) a sulfonation reaction. The developed membranes are characterized in terms of Fourier transform infrared/attenuated total reflectance (FTIR/ATR), scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDXA), elemental analysis (EA) and thermogravimetric analysis (TGA), which confirm the formation of the target membranes. The developed copolymer chains are interpenetrating with the PVC matrix to form the semi-IPN structure, and the inorganic silica is covalently bound to the copolymers. These features provide the membranes with high mechanical strength. The effect of silica content is investigated. As the silica content increases, proton conductivity and water content decrease, whereas oxidative stability is improved. In particular, methanol permeability and methanol uptake are reduced largely by the silica. The ratio of proton conductivity to methanol permeability for the hybrid membranes is higher than that of Nafion 117. All these properties make the hybrid membranes a potential candidate for DMFC applications.

  12. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  13. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  14. The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature

    NASA Astrophysics Data System (ADS)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Linares, José J.; Piuleac, Ciprian-George; Curteanu, Silvia

    Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 °C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs.

  15. Biodegradable mesostructured polymer membranes

    PubMed Central

    Tian, Bozhi; Shankarappa, Sahadev; Chang, Homer H.; Tong, Rong; Kohane, Daniel S.

    2013-01-01

    The extracellular matrix (ECM) has a quasi-ordered reticular mesostructure with feature sizes on the order of tenths of to a few hundred nanometers. Approaches to preparing biodegradable synthetic scaffolds for engineered tissues that have the critical mesostructure to mimic ECM are few. Here we present a simple and general solvent evaporation-induced self-assembly (EISA) approach to preparing concentrically reticular mesostructured polyol-polyester membranes. The mesostructures were formed by a novel self-assembly process without covalent or electrostatic interactions, which yielded feature sizes matching those of ECM. The mesostructured materials were nonionic, hydrophilic, and water-permeable, and could be shaped into arbitrary geometries such as conformally-molded tubular sacs and micropatterned meshes. Importantly, the mesostructured polymers were biodegradable, and were used as ultrathin temporary substrates for engineering vascular tissue constructs. PMID:23964960

  16. Biodegradable mesostructured polymer membranes.

    PubMed

    Tian, Bozhi; Shankarappa, Sahadev A; Chang, Homer H; Tong, Rong; Kohane, Daniel S

    2013-09-11

    The extracellular matrix (ECM) has a quasi-ordered reticular mesostructure with feature sizes on the order of tenths of to a few hundred nanometers. Approaches to preparing biodegradable synthetic scaffolds for engineered tissues that have the critical mesostructure to mimic ECM are few. Here we present a simple and general solvent evaporation-induced self-assembly (EISA) approach to preparing concentrically reticular mesostructured polyol-polyester membranes. The mesostructures were formed by a novel self-assembly process without covalent or electrostatic interactions, which yielded feature sizes matching those of ECM. The mesostructured materials were nonionic, hydrophilic, and water-permeable and could be shaped into arbitrary geometries such as conformally molded tubular sacs and micropatterned meshes. Importantly, the mesostructured polymers were biodegradable and were used as ultrathin temporary substrates for engineering vascular tissue constructs.

  17. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  18. Polymer Brushes for Membrane Separations: A Review.

    PubMed

    Keating, John Joseph; Imbrogno, Joseph; Belfort, Georges

    2016-10-06

    The fundamentals and applications of polymer brush modified membranes are reviewed. This new class of synthetic membranes is explored with an emphasis on tuning the membrane performance through polymer brush grafting. This work highlights the intriguing performance characteristics of polymer brush modified membranes in a variety of separations. Polymer brushes are a versatile and effective means in designing membranes for applications in protein adsorption and purification, colloid stabilization, sensors, water purification, pervaporation of organic compounds, gas separations, and as stimuli responsive materials.

  19. Polymer electrolyte membrane resistance model

    NASA Astrophysics Data System (ADS)

    Renganathan, Sindhuja; Guo, Qingzhi; Sethuraman, Vijay A.; Weidner, John W.; White, Ralph E.

    A model and an analytical solution for the model are presented for the resistance of the polymer electrolyte membrane of a H 2/O 2 fuel cell. The solution includes the effect of the humidity of the inlet gases and the gas pressure at the anode and the cathode on the membrane resistance. The accuracy of the solution is verified by comparison with experimental data. The experiments were carried out with a Nafion 112 membrane in a homemade fuel cell test station. The membrane resistances predicted by the model agree well with those obtained during the experiments.

  20. Solid polymer membrane program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented for a solid polymer electrolyte fuel cell development program. Failure mechanism was identified and resolution of the mechanism experienced in small stack testing was demonstrated. The effect included laboratory analysis and evaluation of a matrix of configurations and operational variables for effects on the degree of hydrogen fluoride released from the cell and on the degree of blistering/delamination occurring in the reactant inlet areas of the cell and to correlate these conditions with cell life capabilities. The laboratory evaluation tests were run at conditions intended to accelerate the degradation of the solid polymer electrolyte in order to obtain relative evaluations as quick as possible. Evaluation of the resolutions for the identified failure mechanism in space shuttle configuration cell assemblies was achieved with the fabrication and life testing of two small stack buildups of four cell assemblies and eight cells each.

  1. Simulated Associating Polymer Networks

    NASA Astrophysics Data System (ADS)

    Billen, Joris

    Telechelic associating polymer networks consist of polymer chains terminated by endgroups that have a different chemical composition than the polymer backbone. When dissolved in a solution, the endgroups cluster together to form aggregates. At low temperature, a strongly connected reversible network is formed and the system behaves like a gel. Telechelic networks are of interest since they are representative for biopolymer networks (e.g. F-actin) and are widely used in medical applications (e.g. hydrogels for tissue engineering, wound dressings) and consumer products (e.g. contact lenses, paint thickeners). In this thesis such systems are studied by means of a molecular dynamics/Monte Carlo simulation. At first, the system in rest is studied by means of graph theory. The changes in network topology upon cooling to the gel state, are characterized. Hereto an extensive study of the eigenvalue spectrum of the gel network is performed. As a result, an in-depth investigation of the eigenvalue spectra for spatial ER, scale-free, and small-world networks is carried out. Next, the gel under the application of a constant shear is studied, with a focus on shear banding and the changes in topology under shear. Finally, the relation between the gel transition and percolation is discussed.

  2. Influence of membrane structure on the operating current densities of non-aqueous redox flow batteries: Organic-inorganic composite membranes based on a semi-interpenetrating polymer network

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Hee; Kim, Yekyung; Yun, Sung-Hyun; Maurya, Sandip; Moon, Seung-Hyeon

    2015-11-01

    We develop three types of organic-inorganic composite membranes based on a semi-interpenetrating polymer network (SIPN) to explore the effects of membrane structure on the possible operating current densities of a non-aqueous redox flow battery (RFB) system. Poly(vinylidene fluoride) (PVdF) is selected as a supporting polymer matrix for improving the chemical and thermal stability of the organic-inorganic composite membranes. We also introduce silica nanoparticles (5 wt% of PVdF) into the membranes to ensure the low crossover of active species. The fabrication of SIPN through the addition of glycidyl methacrylate, 4-vinylpyridine, or N-vinylcarbazole enables control of the membrane structure. Depending on monomer type, the membrane structure is determined to be either aliphatic or aromatic in terms of chemical properties and either dense or porous in terms of physical properties. These chemical and physical structures affect the electrochemical properties that correspond to charge/discharge performance and to the range of possible operating current densities. An important requirement is to examine charge/discharge performance at the possible range of operating current densities by using various membrane structures. This requirement is discussed in relation to a proposed design strategy for non-aqueous RFB membranes.

  3. Interpenetrating ionomer-polymer networks obtained by the in situ polymerization in pores of PVdF sponges as potential membranes in PEMFC applications

    NASA Astrophysics Data System (ADS)

    Moszczyński, P.; Kalita, M.; Parzuchowski, P.; Siekierski, M.; Wieczorek, W.

    This article presents studies on novel composite electrolytes having the structure of semi-interpenetrating polymer networks for possible application as an electrolyte in fuel cells. The electrolytes were synthesized by soaking the macroporous Kynar-Flex ® (copolymer of vinylidene fluoride and hexafluoropropylene) sponge with water solution of the ionomer followed by the in situ free-radical polymerization of the later. Two ionomers having different acidity-methacrylic acid and p-styrenesulfonic acid were tested. The ionic conductivity of proposed membranes measured for several systems was high enough for applications in fuel cell in the 20-90 °C temperature range. For higher temperatures, the conductivity decreased because of the membrane drying. The fraction of water in the electrolytes was determined using weight loss analysis. The influence of inorganic filler addition and cross-linking ratio on physicochemical and electrochemical properties of the membranes were also tested.

  4. Electronic polymers in lipid membranes

    PubMed Central

    Johansson, Patrik K.; Jullesson, David; Elfwing, Anders; Liin, Sara I.; Musumeci, Chiara; Zeglio, Erica; Elinder, Fredrik; Solin, Niclas; Inganäs, Olle

    2015-01-01

    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes. PMID:26059023

  5. Electronic polymers in lipid membranes.

    PubMed

    Johansson, Patrik K; Jullesson, David; Elfwing, Anders; Liin, Sara I; Musumeci, Chiara; Zeglio, Erica; Elinder, Fredrik; Solin, Niclas; Inganäs, Olle

    2015-06-10

    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.

  6. Novel composite membrane coated with a poly(diallyldimethylammonium chloride)/urushi semi-interpenetrating polymer network for non-aqueous redox flow battery application

    NASA Astrophysics Data System (ADS)

    Cho, Eunhae; Won, Jongok

    2016-12-01

    Novel composite membranes of a semi-interpenetrating network (semi-IPN) coated on the surfaces of a porous Celgard 2400 support are prepared and investigate for application in a non-aqueous redox flow battery (RFB). A natural polymer, urushi, is used for the matrix because of its high mechanical robustness, and poly(diallyldimethylammonium chloride) (PDDA) provides anionic exchange sites. The PDDA/urushi (P/U) semi-IPN film is prepared by the photo polymerization of urushiol in the presence of PDDA. The thin layer composed of the P/U semi-IPN on the porous support provides selectivity while maintaining the ion conductivity. The coulombic and energy efficiencies increase with increasing amounts of PDDA in the P/U semi-IPN layer, and the values reach 69.5% and 42.5%, respectively, for the one containing 40 wt% of PDDA. These values are substantially higher than those of the Neosepta AHA membrane and the Celgard membrane, indicating that the selective layer reduces the crossover of the redox active species through the membrane. This result implies that the formation of composite membranes using semi-IPN selective layers on the dimensionally stable porous membrane enable the successful use of a non-aqueous RFB for future energy storage systems.

  7. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  8. Mechanisms of gas permeation through polymer membranes

    SciTech Connect

    Stern, S.A.

    1991-01-01

    The objective of the present study is to investigate the mechanisms of gas transport in and through polymer membranes and the dependence of these mechanisms on pressure and temperature. This information is required for the development of new, energy-efficient membrane processes for the separation of industrial gas mixtures. Such processes are based on the selective permeation of the components of gas mixtures through nonporous polymer membranes. Recent work has been focused on the permeation of gases through membranes made from glassy polymers, i.e., at temperatures below the glass transition of the polymers (Tg). Glassy polymers are very useful membrane materials for gas separations because of their high selectivity toward different gases. Gases permeate through nonporous polymer membranes by a solution-diffusion'' process. Consequently, in order to understand the characteristics of this process it is necessary to investigate also the mechanisms of gas solution and diffusion in glassy polymers. 23 refs., 10 figs., 4 tabs.

  9. Flows in Polymer Networks

    NASA Astrophysics Data System (ADS)

    Tanaka, Fumihiko

    A simple transient network model is introduced to describe creation and annihilation of junctions in the networks of associating polymers. Stationary non-linear viscosity is calculated by the theory and by Monte Carlo simulation to study shear thickening. The dynamic mechanical moduli are calculated as functions of the frequency and the chain disengagement rate. From the peak of the loss modulus, the lifetime τx of the junction is estimated, and from the high frequency plateau of the storage modulus, the number of elastically effective chains in the network is found. Transient phenomena such as stress relaxation and stress overshoot are also theoretically studied. Results are compared with the recent experimental reports on the rheological study of hydrophobically modified water-soluble polymeters.

  10. Electronically Conductive Composite Polymer Membranes.

    DTIC Science & Technology

    1985-09-20

    coats the individual fibers which make up the webs. Clearly, at this loading level ( 10 w/w S Nafion in the Gr), only a small fraction of the...NOO014-82K-0612 Task No. NR 627-838 cc TECHNICAL REPORT NO. 10 Mn Electronically Conductive Composite Polymer Membranes I- I by 0 Reginald M. Penner... 10 of Document Control Data - DO Form 1473. Copies of form available from cognizant contract administrator 85 IV, 03 O88 UNCLASSI FIED SECURITY

  11. Polymer Diffusion in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Prasad, Ashok

    2005-03-01

    Motivated by experiments on fluorescently labeled DNA molecules on a supported lipid bilayer, we have examined theoretically diffusion of polymers in two dimensions. The key experimental finding we focus on is the scaling of the diffusion constant of the center of mass, D˜1/N. This implies that no effective hydrodynamic coupling exists between the diffusing DNA segments in the membrane. We construct our theoretical model using the phenomenological hydrodynamic model of supported membranes proposed by Evans and Sackmann. Our model is based on the pre-averaged Oseen tensor, and is similar to the model of Komura and Seki, but elaborated and extended to take explicit account of self-avoidance. We find that the 1/N scaling of D can be understood as a consequence of membrane hydrodynamics in the presence of a supporting surface. Further experimental consequences of the model, in particular the diffusion constant for DNA in free standing membranes, will also be discussed. This work was supported by the NSF through grants DMR-9984471 and DMR-0403997. JK is a Cottrell Scholar of Research Corporation.

  12. Electrospun porous conductive polymer membranes

    NASA Astrophysics Data System (ADS)

    Wang, Jingwen; Naguib, Hani E.; Bazylak, Aimy

    2012-04-01

    In this work, two methodologies were used in fabricating conductive electrospun polymer fibers with nano features. We first investigated the addition of multiwall carbon nanotubes (MWCNT) as conductive fillers at concentrations ranging from 1 to 10% into a polystyrene (PS) matrix. Electrospinning conditions were tailored to produce fibers with minimal beads. Next, we investigated the effects of coating electrospun fibers with nano structured conductive polymer. Oxidant (FeCl3) fibers were electrospun in PS and then exposed to a pyrrole (Py) monomer in a vacuum chamber. As a result, polypyrrole (PPy) was coated on the fibers creating conductive pathways. In both methods, the electrospun conductive fibers were characterized in terms of their morphologies, thermal stability and electrical conductivity. Strong correlations were found among PPy coating nanostructures, oxidant concentration and polymerization time. Electrospun fibrous membranes with conductive polymer coating exhibit much higher electrical conductivities compare to fibers with conductive fillers. Highest conductivity achieved was 9.5E-4 S/cm with 40% FeCl3/PS fibers polymerized with Py for 140 min.

  13. Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning.

    PubMed

    Sehaqui, Houssine; Morimune, Seira; Nishino, Takashi; Berglund, Lars A

    2012-11-12

    Nonwoven membranes based on electrospun fibers are of great interest in applications such as biomedical, filtering, and protective clothing. The poor mechanical performance is a limitation, as is some of the electrospinning solvents. To address these problems, porous nonwoven membranes based on nanofibrillated cellulose (NFC) modified by a hydroxyethyl cellulose (HEC) polymer coating are prepared. NFC/HEC aqueous suspensions are subjected to simple vacuum filtration in a paper-making fashion, followed by supercritical CO(2) drying. These nonwoven nanocomposite membranes are truly nanostructured and exhibit a nanoporous network structure with high specific surface area, as analyzed by nitrogen adsorption and FE-SEM. Mechanical properties evaluated by tensile tests show high strength combined with remarkably high strain to failure of up to 55%. XRD analysis revealed significant fibril realignment during tensile stretching. After postdrawing of the random mats, the modulus and strength are strongly increased. The present preparation route uses components from renewable resources, is environmentally friendly, and results in permeable membranes of exceptional mechanical performance.

  14. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-09-01

    Vanadium redox flow batteries (VRFBs) with their high flexibility in configuration and operation, as well as long cycle life are competent for the requirement of future energy storage systems. Nevertheless, due to the application of perfluorinated membranes, VRFBs are plagued by not only the severe migration issue of vanadium ions, but also their high cost. Herein, we fabricate semi-interpenetrating polymer networks (SIPNs), consisting of cross-linked polyvinylpyrrolidone (PVP) and polysulfone (PSF), as alternative membranes for VRFBs. It is demonstrated that the PVP-based SIPNs exhibit extremely low vanadium permeabilities, which contribute to the well-established hydrophilic/hydrophobic microstructures and the Donnan exclusion effect. As a result, the coulombic efficiencies of VRFBs with PVP-based SIPNs reach almost 100% at 40 mA cm-2 to 100 mA cm-2; the energy efficiencies are more than 3% higher than those of VRFBs with Nafion 212. More importantly, the PVP-based SIPNs exhibit a superior chemical stability, as demonstrated both by an ex situ immersion test and continuously cycling test. Hence, all the characterizations and performance tests reported here suggest that PVP-based SIPNs are a promising alternative membrane for redox flow batteries to achieve superior cell performance and excellent cycling stability at the fraction of the cost of perfluorinated membranes.

  15. Nanostructured polymer membranes for proton conduction

    DOEpatents

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  16. Bipolar Patterning of Polymer Membranes by Pyroelectrification.

    PubMed

    Rega, Romina; Gennari, Oriella; Mecozzi, Laura; Grilli, Simonetta; Pagliarulo, Vito; Ferraro, Pietro

    2016-01-20

    Polymer freestanding membranes with permanent bipolar patterns are fabricated by "pyroelectrification". The thermal stimulation of periodically poled lithium niobate (PPLN) crystals simultaneously generates the pyroelectric effect, the glass transition of the polymer, and therefore the periodic electric poling of the polymer. The reliability of these membranes is demonstrated for applications under both dry and wet conditions, including cell patterning. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy

    2016-12-01

    Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.

  18. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  19. Anion-Conducting Polymer, Composition, and Membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  20. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  1. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  2. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  3. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  4. Spray forming polymer membranes, coatings and films

    DOEpatents

    McHugh, Kevin M.; Watson, Lloyd D.; McAtee, Richard E.; Ploger, Scott A.

    1993-01-01

    A method of forming a polymer film having controlled physical and chemical characteristics, wherein a plume of nebulized droplets of a polymer or polymer precursor is directed toward a substrate from a converging/diverging nozzle having a throat at which the polymer or a precursor thereof is introduced and an exit from which the nebulized droplets of the polymer or precursor thereof leave entrained in a carrier gas. Relative movement between the nozzle and the substrate is provided to form a polymer film. Physical and chemical characteristics can be controlled by varying the deposition parameters and the gas and liquid chemistries. Semipermeable membranes of polyphosphazene films are disclosed, as are a variety of other polymer systems, both porous and non-porous.

  5. Ending Aging in Super Glassy Polymer Membranes

    SciTech Connect

    Lau, CH; Nguyen, PT; Hill, MR; Thornton, AW; Konstas, K; Doherty, CM; Mulder, RJ; Bourgeois, L; Liu, ACY; Sprouster, DJ; Sullivan, JP; Bastow, TJ; Hill, AJ; Gin, DL; Noble, RD

    2014-04-16

    Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N-2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

  6. Spray forming polymer membranes, coatings and films

    DOEpatents

    McHugh, K.M.; Watson, L.D.; McAtee, R.E.; Ploger, S.A.

    1993-10-12

    A method is described for forming a polymer film having controlled physical and chemical characteristics, wherein a plume of nebulized droplets of a polymer or polymer precursor is directed toward a substrate from a converging/diverging nozzle having a throat at which the polymer or a precursor thereof is introduced and an exit from which the nebulized droplets of the polymer or precursor thereof leave entrained in a carrier gas. Relative movement between the nozzle and the substrate is provided to form a polymer film. Physical and chemical characteristics can be controlled by varying the deposition parameters and the gas and liquid chemistries. Semipermeable membranes of polyphosphazene films are disclosed, as are a variety of other polymer systems, both porous and non-porous. 4 figures.

  7. Computational Methods for MOF/Polymer Membranes.

    PubMed

    Erucar, Ilknur; Keskin, Seda

    2016-04-01

    Metal-organic framework (MOF)/polymer mixed matrix membranes (MMMs) have received significant interest in the last decade. MOFs are incorporated into polymers to make MMMs that exhibit improved gas permeability and selectivity compared with pure polymer membranes. The fundamental challenge in this area is to choose the appropriate MOF/polymer combinations for a gas separation of interest. Even if a single polymer is considered, there are thousands of MOFs that could potentially be used as fillers in MMMs. As a result, there has been a large demand for computational studies that can accurately predict the gas separation performance of MOF/polymer MMMs prior to experiments. We have developed computational approaches to assess gas separation potentials of MOF/polymer MMMs and used them to identify the most promising MOF/polymer pairs. In this Personal Account, we aim to provide a critical overview of current computational methods for modeling MOF/polymer MMMs. We give our perspective on the background, successes, and failures that led to developments in this area and discuss the opportunities and challenges of using computational methods for MOF/polymer MMMs. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Macroscopic Modeling of Polymer-Electrolyte Membranes

    SciTech Connect

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  9. Light Responsive Polymer Membranes: A Review

    PubMed Central

    Nicoletta, Fiore Pasquale; Cupelli, Daniela; Formoso, Patrizia; De Filpo, Giovanni; Colella, Valentina; Gugliuzza, Annarosa

    2012-01-01

    In recent years, stimuli responsive materials have gained significant attention in membrane separation processes due to their ability to change specific properties in response to small external stimuli, such as light, pH, temperature, ionic strength, pressure, magnetic field, antigen, chemical composition, and so on. In this review, we briefly report recent progresses in light-driven materials and membranes. Photo-switching mechanisms, valved-membrane fabrication and light-driven properties are examined. Advances and perspectives of light responsive polymer membranes in biotechnology, chemistry and biology areas are discussed. PMID:24957966

  10. Porous polymer membranes via selectively wetted surfaces.

    PubMed

    Magerl, Annemarie; Goedel, Werner A

    2012-04-03

    Here, we show that porous polymeric membranes can be prepared using the principles of offset printing: an offset printing plate is structured into hydrophobic and hydrophilic regions with the help of photolithography and is selectively wetted with a solution of calcium chloride in water at the hydrophilic regions. Then, a polymer solution (poly(methyl methacrylate) in chloroform) is applied to this surface and forms a hydrophobic layer that is structured by the aqueous droplets. Deviating from standard offset printing, this layer is not transferred to another surface in its liquid state but is solidified and subsequently is separated from the printing plate. The thickness of the polymer film is chosen in such a way that the aqueous droplets on the surface protrude from the film. Thus, we obtain polymer membranes with pores in the size of the protruding aqueous droplets. These membranes are then characterized by the filtration of model dispersions.

  11. Advanced composite polymer electrolyte fuel cell membranes

    SciTech Connect

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.

    1995-09-01

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  12. Polymer synthesis toward fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Rebeck, Nathaniel T.

    Fuel cells are a promising technology that will be part of the future energy landscape. New membranes for alkaline and proton exchange membrane fuel cells are needed to improve the performance, simplify the system, and reduce cost. Polymer chemistry can be applied to develop new polymers and to assemble polymers into improved membranes that need less water, have increased performance and are less expensive, thereby removing the deficiencies of current membranes. Nucleophilic aromatic substitution polymerization typically produces thermally stable engineering polymers that can be easily functionalized. New functional monomers were developed to explore new routes to novel functional polymers. Sulfonamides were discovered as new activating groups for polymerization of high molecular weight thermooxidatively stable materials with sulfonic acid latent functionality. While the sulfonamide functional polymers could be produced, the sulfonamide group proved to be too stable to convert into a sulfonic acid after reaction. The reactivity of 2-aminophenol was investigated to search for a new class of ion conducting polymer materials. Both the amine and the phenol groups are found to be reactive in a nucleophilic aromatic substitution, however not to the extent to allow the formation of high molecular weight polymer materials. Layer-by-layer films were assembled from aqueous solutions of poly(styrene sulfonate) and trimethylammonium functionalized poly(phenylene oxide). The deposition conditions were adjusted to increase the free charge carrier content, and chloride conductivites reached almost 30 mS/cm for the best films. Block and random poly(phenylene oxide) copolymers were produced from 2,6-dimethylphenol and 2,6-diphenylphenol and the methyl substituted repeat units were functionalized with trimethylammonium bromide. The block copolymers displayed bromide conductivities up to 26 mS/cm and outperformed the random copolymers, indicating that morphology has an effect on ion

  13. Membranes and Films from Polymers.

    ERIC Educational Resources Information Center

    Blumberg, Avrom A.

    1986-01-01

    Provides background information on polymeric films and membranes including production methods, special industrial and medical applications, laboratory preparation, and an experimental investigation of a porous cellulose acetate membrane. Presents a demonstration to distinguish between high- and low-density polyethylene. (JM)

  14. Membranes and Films from Polymers.

    ERIC Educational Resources Information Center

    Blumberg, Avrom A.

    1986-01-01

    Provides background information on polymeric films and membranes including production methods, special industrial and medical applications, laboratory preparation, and an experimental investigation of a porous cellulose acetate membrane. Presents a demonstration to distinguish between high- and low-density polyethylene. (JM)

  15. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    it is no longer needed. Do not return it to the originator. ARL-TR-7612 ● FEB 2016 US Army Research Laboratory Advanced Polymer...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR

  16. Composites incorporated a conductive polymer nanofiber network

    DOEpatents

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  17. Polymer network stretching during electrospinning

    NASA Astrophysics Data System (ADS)

    Greenfeld, Israel; Arinstein, Arkadii; Fezzaa, Kamel; Rafailovich, Miriam; Zussman, Eyal

    2011-03-01

    Fast X-ray phase contrast imaging is used to observe the flow of a semi-dilute polyethylene oxide solution during electrospinning. Micron-size glass particles mixed in the polymer solution allow viewing of the jet flow field, and reveal a high-gradient flow that has both longitudinal and radial components that grow rapidly along the jet. The resulting hydrodynamic forces cause substantial longitudinal stretching and transversal contraction of the polymer network within the jet, as confirmed by random walk simulation and theoretical modeling. The polymer network therefore concentrates towards the jet center, and its conformation may transform from a free state to a fully-stretched state within a short distance from the jet start. We acknowledge the financial support of the United States - Israel Bi-National Science Foundation (grant 2006061).

  18. Polymer enrichment decelerates surfactant membranes near interfaces

    NASA Astrophysics Data System (ADS)

    Lipfert, F.; Frielinghaus, H.; Holderer, O.; Mattauch, S.; Monkenbusch, M.; Arend, N.; Richter, D.

    2014-04-01

    Close to a planar surface, lamellar structures are imposed upon otherwise bulk bicontinuous microemulsions. Thermally induced membrane undulations are modified by the presence of the rigid interface. While it has been shown that a pure membrane's dynamics are accelerated close to the interface, we observed nearly unchanged relaxation rates for membranes spiked with large amphiphilic diblock copolymers. An increase of the polymer concentration by a factor of 2-3 for the first and second surfactant membrane layers was observed. We interpret the reduced relaxation times as the result of an interplay between the bending rigidity and the characteristic distance of the first surfactant membrane to the rigid interface, which causes the hydrodynamic and steric interface effects described in Seifert's theory. The influence of these effects on decorated membranes yields a reduction of the frequencies and an amplification of the amplitudes of long-wavelength undulations, which are in accordance to our experimental findings.

  19. Membrane separations using molecularly imprinted polymers.

    PubMed

    Ulbricht, Mathias

    2004-05-05

    This review presents an overview on the promising field of molecularly imprinted membranes (MIM). The focus is onto the separation of molecules in liquid mixtures via membrane transport selectivity. First, the status of synthetic membranes and membrane separation technology is briefly summarized, emphasizing the need for novel membranes with higher selectivities. Innovative principles for the preparation of membranes with improved or novel functionality include self-assembly or supramolecular aggregation as well as the use of templates. Based on a detailed analysis of the literature, the main established preparation methods for MIM are outlined: simultaneous membrane formation and imprinting, or preparation of imprinted composite membranes. Then, the separation capability of MIM is discussed for two different types, as a function of their barrier structure. Microporous MIM can continuously separate mixtures based on facilitated diffusion of the template, or they can change their permeability in the presence of the template ("gate effect"). Macroporous MIM can be developed towards molecule-specific membrane adsorbers. Emerging further combinations of molecularly imprinted polymers (MIPs), especially MIP nanoparticles or microgels, with membranes and membrane processes are briefly outlined as well. Finally, the application potential for advanced MIM separation technologies is summarized.

  20. Polymer networks: Modeling and applications

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan

    Polymer networks are an important class of materials that are ubiquitously found in natural, biological, and man-made systems. The complex mesoscale structure of these soft materials has made it difficult for researchers to fully explore their properties. In this dissertation, we introduce a coarse-grained computational model for permanently cross-linked polymer networks than can properly capture common properties of these materials. We use this model to study several practical problems involving dry and solvated networks. Specifically, we analyze the permeability and diffusivity of polymer networks under mechanical deformations, we examine the release of encapsulated solutes from microgel capsules during volume transitions, and we explore the complex tribological behavior of elastomers. Our simulations reveal that the network transport properties are defined by the network porosity and by the degree of network anisotropy due to mechanical deformations. In particular, the permeability of mechanically deformed networks can be predicted based on the alignment of network filaments that is characterized by a second order orientation tensor. Moreover, our numerical calculations demonstrate that responsive microcapsules can be effectively utilized for steady and pulsatile release of encapsulated solutes. We show that swollen gel capsules allow steady, diffusive release of nanoparticles and polymer chains, whereas gel deswelling causes burst-like discharge of solutes driven by an outward flow of the solvent initially enclosed within a shrinking capsule. We further demonstrate that this hydrodynamic release can be regulated by introducing rigid microscopic rods in the capsule interior. We also probe the effects of velocity, temperature, and normal load on the sliding of elastomers on smooth and corrugated substrates. Our friction simulations predict a bell-shaped curve for the dependence of the friction coefficient on the sliding velocity. Our simulations also illustrate

  1. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  2. Network dynamics in nanofilled polymers

    NASA Astrophysics Data System (ADS)

    Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.

    2016-04-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ~31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which `tie' NPs together into a network.

  3. Network dynamics in nanofilled polymers

    PubMed Central

    Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.

    2016-01-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams–Landel–Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ∼31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which ‘tie' NPs together into a network. PMID:27109062

  4. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  5. Confined semiflexible polymers suppress fluctuations of soft membrane tubes.

    PubMed

    Mirzaeifard, Sina; Abel, Steven M

    2016-02-14

    We use Monte Carlo computer simulations to investigate tubular membrane structures with and without semiflexible polymers confined inside. At small values of membrane bending rigidity, empty fluid and non-fluid membrane tubes exhibit markedly different behavior, with fluid membranes adopting irregular, highly fluctuating shapes and non-fluid membranes maintaining extended tube-like structures. Fluid membranes, unlike non-fluid membranes, exhibit a local maximum in specific heat as their bending rigidity increases. The peak is coincident with a transition to extended tube-like structures. We further find that confining a semiflexible polymer within a fluid membrane tube reduces the specific heat of the membrane, which is a consequence of suppressed membrane shape fluctuations. Polymers with a sufficiently large persistence length can significantly deform the membrane tube, with long polymers leading to localized bulges in the membrane that accommodate regions in which the polymer forms loops. Analytical calculations of the energies of idealized polymer-membrane configurations provide additional insight into the formation of polymer-induced membrane deformations.

  6. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.

    PubMed

    McKeown, Neil B; Budd, Peter M

    2006-08-01

    This tutorial review describes recent research directed towards the synthesis of polymer-based organic microporous materials termed Polymers of Intrinsic Microporosity (PIMs). PIMs can be prepared either as insoluble networks or soluble polymers with both types giving solids that exhibit analogous behaviour to that of conventional microporous materials such as activated carbons. Soluble PIMs may be processed into thin films for use as highly selective gas separation membranes. Preliminary results also demonstrate the potential of PIMs for heterogeneous catalysis and hydrogen storage.

  7. Self-Healing Polymer Networks

    NASA Astrophysics Data System (ADS)

    Tournilhac, Francois

    2012-02-01

    Supramolecular chemistry teaches us to control non-covalent interactions between organic molecules, particularly through the use of optimized building blocks able to establish several hydrogen bonds in parallel. This discipline has emerged as a powerful tool in the design of new materials through the concept of supramolecular polymers. One of the fascinating aspects of such materials is the possibility of controlling the structure, adding functionalities, adjusting the macroscopic properties of and taking profit of the non-trivial dynamics associated to the reversibility of H-bond links. Applications of these compounds may include adhesives, coatings, rheology additives, high performance materials, etc. However, the synthesis of such polymers at the industrial scale still remains a challenge. Our first ambition is to design supramolecular polymers with original properties, the second ambition is to devise simple and environmentally friendly methods for their industrial production. In our endeavours to create novel supramolecular networks with rubbery elasticity, self-healing ability and as little as possible creep, the strategy to prolongate the relaxation time and in the same time, keep the system flexible was to synthesize rather than a single molecule, an assembly of randomly branched H-bonding oligomers. We propose a strategy to obtain through a facile one-pot synthesis a large variety of supramolecular materials that can behave as differently as associating low-viscosity liquids, semi-crystalline or amorphous thermoplastics, viscoelastic melts or self-healing rubbers.

  8. Water hydrogen bonding in proton exchange and neutral polymer membranes

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah Black

    qualitative observations that can be made with pure D2O or H2O. The theory and experimental practice of determining the hydrogen bonding distribution of water in a range of proton exchange membranes bearing aromatic sulfonate and perfluorosulfonate groups using this OD stretch technique is discussed. To further understand how the acidity of the sulfonate can be altered and how the acidity affects the hydrogen bonding network of water in a polymer membrane, various polymers with small chemical differences in the perfluorosulfonate sidechain were studied. In addition to the vibrational spectroscopy measurements using HOD as a probe, the partial charges of the sulfonate groups were calculating using DMol3 DFT calculations. The calculations and the experimentally determined peak position of the OD stretch both correlated to give a ranking of acidity for the various sidechains. Three sulfonated poly(arylene sulfone) based polymers were studied using FTIR and DFT calculations to better understand how the acidity of the sulfonate groups were affected by the placement on the backbone. By increasing the number of sulfone groups, which have electron withdrawing properties, flanking the sulfonated aromatic ring, the acidity was increased. The charge density of a sulfonate group flanked by two sulfone groups was -1.626 (in units of fundamental charge), while the charge density of a sulfonate group flanked by one sulfone group increased to -1.703. Additionally, if the subsequent ring was unsulfonated, the charge density further increased to -1.737, indicating that some stability is gained by both available rings being sulfonated. The differences in charge density are reflected in the water uptake and conductivity measurements, where the samples with the lowest charge density had the highest water uptake and conductivity. The deconvoluted OD peak revealed that the sample with two sulfone groups flanking the sulfonated aromatic ring contains the highest amount of bulk-like water, which led

  9. Lamellar biogels: Fluid-membrane-based hydrogels containing polymer lipids

    SciTech Connect

    Warriner, H.E.; Idziak, S.H.J.; Slack, N.L.

    1996-02-16

    A class of lamellar biological hydrogels comprised of fluid membranes of lipids and surfactants with small amounts of low molecular weight poly(ethylene glycol)-derived polymer pipids (PEG-lipids) were studied by x-ray diffraction, polarized light microscopy, and rheometry. In contrast to isotropic hydrogels of polymer networks, these membrane-based birefringent liquid crystalline biogels, labeled L{sub {alpha},g,} form the gel phase when water is added to the liquid-like lamellar L{sub {alpha}} phase, which reenters a liquid-like mixed phase upon further dilution. Furthermore, gels with larger water content require less PEG-lipid to remain stable. Although concentrated ({approx}50 weight percent) mixtures of free PEG (molecular weight, 5000) and water do not gel, gelatin does occur in mixtures containing as little as 0.5 weight percent PEG lipid. A defining signature of the L{sub {alpha}, g} regime as it sets in from the fluid lamellar L{sub {alpha}} phase is the proliferation of layer-dislocation-type defects, which are stabilized by the segregation of PEG-lipids to the defect regions of high membrane curvature that connect the membranes. 32 refs., 5 figs.

  10. Surface engineering of polymer membrane for air separation

    NASA Astrophysics Data System (ADS)

    Himma, Nurul Faiqotul; Wenten, I. Gede

    2017-05-01

    Gas separation has been an important process in chemical industries. Polymer membranes have been widely developed for gas separation due to the main advantages such as light weight, low cost, and easy preparation procedure. However, a trade-off between permeability and selectivity of the polymer membrane becomes a significant hurdle for its application in gas separation. Moreover, in the case of air separation where the oxygen and nitrogen molecules have a very close diameter, a high selectivity is more difficult to be achieved. Therefore, numerous researches were directed to improve the performance of the polymer membrane. Surface modification is an attractive way to enhance the selectivity while maintaining the high permeability of the base membrane. This paper provides a review of surface modification of polymer membrane which aims to enhance the air separation performance. The discussion includes surface engineering strategies of polymer membrane and their performances in air separation. In the end, the conclusions and future directions are pointed out.

  11. Conductivity fluctuations in polymer's networks

    NASA Astrophysics Data System (ADS)

    Samukhin, A. N.; Prigodin, V. N.; Jastrabík, L.

    1998-01-01

    A Polymer network is treated as an anisotropic fractal with fractional dimensionality D = 1 + ε close to one. Percolation model on such a fractal is studied. Using real space renormalization group approach of Migdal and Kadanoff, we find the threshold value and all the critical exponents in the percolation model to be strongly nonanalytic functions of ε, e.g. the critical exponent of the conductivity was obtained to be ε-2 exp (-1 - 1/ε). The main part of the finite-size conductivities distribution function at the threshold was found to be universal if expressed in terms of the fluctuating variable which is proportional to a large power of the conductivity, but with ε-dependent low-conductivity cut-off. Its reduced central momenta are of the order of e -1/ε up to a very high order.

  12. Do Membranes Dream of Electric Tubes? Advanced Membranes Using Carbon Nanotube - Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    de Lannoy, Charles-Francois Pedro Claude Karolek Ghislain

    Membrane technologies represent an energy efficient, effective solution for treating municipal and commercial waters/wastewaters. Membranes are predominantly polymer-based and despite steady advances in polymeric materials, they continue to suffer from operational problems including biofouling and breakages. This work addresses these two disparate problems by developing novel CNT-polymer nanocomposite materials that contain variously functionalized carbon nanotubes (fCNTs) in low quantities (<0.5wt%). Several strategies have been employed to achieve highly functional CNT-polymer nanocomposite membranes including blend mixing, ionic charge association, and covalent cross-linking with monomer and oligomer constituents. These CNT-polymer nanocomposite membranes were compared to traditional polymer membranes across various properties including increased Young's Modulus, changes in surface hydrophilicity, fine control over molecular weight cut-off and flux, and surface electrical conductivity. Membranes with high surface electrical conductivity were further tested for their anti-biofouling properties. Finally, CNT stability and polymer compatibility were evaluated throughout membrane manufacture, use, and cleaning. The incorporation of CNTs mixed in bulk phase and linked through ionic associations in polymer matrices showed significant (50%) increases in Young's modulus for certain CNT functionalizations and derivatization percent. Membranes formed with high surface electrical conductivity demonstrated almost complete resistance to biofouling (> 95%) in long-term bacterially challenged experiments. CNTs and polymer mixtures that lacked covalent or ionic bonds were susceptible to significant (up to 10%) loss of CNTs during membrane non-solvent gelation and aggressive chemical cleaning treatment. Functionalized carbon nanotubes endow polymer membranes with their unique strength and electrically conductive properties. These added properties were demonstrated to greatly

  13. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOEpatents

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  14. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes.

    PubMed

    Baul, Upayan; Kuroda, Kenichi; Vemparala, Satyavani

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  15. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    NASA Astrophysics Data System (ADS)

    Baul, Upayan; Kuroda, Kenichi; Vemparala, Satyavani

    2014-08-01

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  16. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    SciTech Connect

    Baul, Upayan Vemparala, Satyavani; Kuroda, Kenichi

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  17. Pearling instabilities of membrane tubes with anchored polymers.

    PubMed

    Tsafrir, I; Sagi, D; Arzi, T; Guedeau-Boudeville, M A; Frette, V; Kandel, D; Stavans, J

    2001-02-05

    We have studied the pearling instability induced on hollow tubular lipid vesicles by hydrophilic polymers with hydrophobic side groups along the backbone. The results show that the polymer concentration is coupled to local membrane curvature. The relaxation of a pearled tube is characterized by two different well-separated time scales, indicating two physical mechanisms. We present a model, which explains the observed phenomena and predicts polymer segregation according to local membrane curvature at late stages.

  18. Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.

    PubMed

    Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat

    2016-06-07

    Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions.

  19. Polymer useful for an ion exchange membrane

    DOEpatents

    Liang, Siwei; Lynd, Nathaniel A.

    2017-03-14

    The present invention provides for a polymer formed by reacting a first reactant polymer, or a mixture of first reactant polymers comprising different chemical structures, comprising a substituent comprising two or more nitrogen atoms (or a functional group/sidechain comprising a two or more nitrogen atoms) with a second reactant polymer, or a mixture of second reactant polymers comprising different chemical structures, comprising a halogen substituent (or a functional group/sidechain comprising a halogen).

  20. Nanoscale glucan polymer network causes pathogen resistance.

    PubMed

    Eggert, Dennis; Naumann, Marcel; Reimer, Rudolph; Voigt, Christian A

    2014-02-24

    Successful defence of plants against colonisation by fungal pathogens depends on the ability to prevent initial penetration of the plant cell wall. Here we report that the pathogen-induced (1,3)-β-glucan cell wall polymer callose, which is deposited at sites of attempted penetration, directly interacts with the most prominent cell wall polymer, the (1,4)-β-glucan cellulose, to form a three-dimensional network at sites of attempted fungal penetration. Localisation microscopy, a super-resolution microscopy technique based on the precise localisation of single fluorescent molecules, facilitated discrimination between single polymer fibrils in this network. Overexpression of the pathogen-induced callose synthase PMR4 in the model plant Arabidopsis thaliana not only enlarged focal callose deposition and polymer network formation but also resulted in the exposition of a callose layer on the surface of the pre-existing cellulosic cell wall facing the invading pathogen. The importance of this previously unknown polymeric defence network is to prevent cell wall hydrolysis and penetration by the fungus. We anticipate our study to promote nanoscale analysis of plant-microbe interactions with a special focus on polymer rearrangements in and at the cell wall. Moreover, the general applicability of localisation microscopy in visualising polymers beyond plant research will help elucidate their biological function in complex networks.

  1. Nanoscale glucan polymer network causes pathogen resistance

    PubMed Central

    Eggert, Dennis; Naumann, Marcel; Reimer, Rudolph; Voigt, Christian A.

    2014-01-01

    Successful defence of plants against colonisation by fungal pathogens depends on the ability to prevent initial penetration of the plant cell wall. Here we report that the pathogen-induced (1,3)-β-glucan cell wall polymer callose, which is deposited at sites of attempted penetration, directly interacts with the most prominent cell wall polymer, the (1,4)-β-glucan cellulose, to form a three-dimensional network at sites of attempted fungal penetration. Localisation microscopy, a super-resolution microscopy technique based on the precise localisation of single fluorescent molecules, facilitated discrimination between single polymer fibrils in this network. Overexpression of the pathogen-induced callose synthase PMR4 in the model plant Arabidopsis thaliana not only enlarged focal callose deposition and polymer network formation but also resulted in the exposition of a callose layer on the surface of the pre-existing cellulosic cell wall facing the invading pathogen. The importance of this previously unknown polymeric defence network is to prevent cell wall hydrolysis and penetration by the fungus. We anticipate our study to promote nanoscale analysis of plant-microbe interactions with a special focus on polymer rearrangements in and at the cell wall. Moreover, the general applicability of localisation microscopy in visualising polymers beyond plant research will help elucidate their biological function in complex networks. PMID:24561766

  2. Metals Ions Removal by Polymer Membranes of Different Porosity

    PubMed Central

    2013-01-01

    The effect of the amount of pore generating agent (polyvinylpyrrolidone) added to standard polymer membranes containing 18 wt.% of polyethersulfone on the physicochemical properties of the membranes and their capacity for removal of iron and copper ions from the liquid phase was studied. The membranes were obtained by the phase inversion method. The results have shown that the modification of polymer membranes by the use of different amounts of the pore forming agent in their syntheses leads to significant changes in porosity and has beneficial effect on equilibrium water content. The membranes studied were found to show different acid-base surface character, but for all membranes studied, a significant dominance of oxygen groups of acidic character was evidenced. The most effective were the membranes of the lowest content of polyvinylpyrrolidone, while the lowest values of resistance showed the membranes of the highest content of PVP, and so the ones of the greatest porosity. PMID:23818836

  3. Stress Relaxation of Entangled Polymer Networks

    SciTech Connect

    EVERAERS,RALF; GREST,GARY S.; KREMER,KURT; PUTZ,MATHIAS

    1999-10-22

    The non-linear stress-strain relation for crosslinked polymer networks is studied using molecular dynamics simulations. Previously we demonstrated the importance of trapped entanglements in determining the elastic and relaxational properties of networks. Here we present new results for the stress versus strain for both dry and swollen networks. Models which limit the fluctuations of the network strands like the tube model are shown to describe the stress for both elongation and compression. For swollen networks, the total modulus is found to decrease like (V{sub o}/V){sup 2/3} and goes to the phantom model result only for short strand networks.

  4. Charged Polymer Membranes for Environmental/Energy Applications.

    PubMed

    Kamcev, Jovan; Freeman, Benny D

    2016-06-07

    Ion exchange membranes are used in various membrane-based processes (e.g., electrodialysis, fuel cells). Charged solute transport is largely governed by the charged groups on the polymer backbone. In this review, fundamental relationships describing salt permeability and ionic conductivity, as well as water permeability, in charged polymers are developed within the framework of the Nernst-Planck and solution-diffusion models. The influence of fixed charge groups and polymer structure on water sorption and diffusion is discussed. Current understanding of ion partitioning in charged polymers, focusing on the use of thermodynamic models (i.e., Donnan theory) to describe such phenomena, is summarized. Ion diffusivity data from the literature are interpreted using a model developed by Mackie and Meares to assess relative and absolute effects of the polymer and fixed charge groups on ion diffusivity. Furthermore, membrane requirements for several important technologies are listed. Knowledge gaps and opportunities for fundamental research are also discussed.

  5. Physical chemistry of supramolecular polymer networks.

    PubMed

    Seiffert, Sebastian; Sprakel, Joris

    2012-01-21

    Supramolecular polymer networks are three-dimensional structures of crosslinked macromolecules connected by transient, non-covalent bonds; they are a fascinating class of soft materials, exhibiting properties such as stimuli-responsiveness, self-healing, and shape-memory. This critical review summarizes the current state of the art in the physical-chemical characterization of supramolecular networks and relates this knowledge to that about classical, covalently jointed and crosslinked networks. We present a separate focus on the formation, the structure, the dynamics, and the mechanics of both permanent chemical and transient supramolecular networks. Particular emphasis is placed on features such as the formation and the effect of network inhomogeneities, the manifestation of the crosslink relaxation dynamics in the macroscopic sample behavior, and the applicability of concepts developed for classical polymer melts, solutions, and networks such as the reptation model and the principle of time-temperature superposition (263 references).

  6. Method for dialysis on microchips using thin porous polymer membrane

    DOEpatents

    Singh, Anup K.; Kirby, Brian J.; Shepodd, Timothy J.

    2009-05-19

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  7. Dialysis on microchips using thin porous polymer membranes

    DOEpatents

    Singh, Anup K.; Kirby, Brian J.; Shepodd, Timothy J.

    2007-09-04

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and form a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  8. Structure-diffusion relationship of polymer membranes with different texture

    NASA Astrophysics Data System (ADS)

    Krasowska, Monika; Strzelewicz, Anna; Dudek, Gabriela; Cieśla, Michał

    2017-01-01

    Two-dimensional diffusion in heterogenic composite membranes, i.e., materials comprising polymer with dispersed inorganic fillers, composed of ethylcellulose and magnetic powder is studied. In the experimental part, the morphology of membranes is described by the following characteristics: the amount of polymer matrix, the fractal dimension of polymer matrix, the average size of polymer matrix domains, the average number of obstacles in the proximity of each polymer matrix pixel. The simulation work concentrates on the motion of a particle in the membrane environment. The focus is set on the relationship between membranes morphology characterized by polymer matrix density, its fractal dimension, the average size of domains, and the average number of near obstacles and the characteristics of diffusive transport in them. The comparison of diffusion driven by Gaussian random walk and Lévy flights shows that the effective diffusion exponent at long time limits is subdiffusive and it does not depend on the details of the underlying random process causing diffusion. The analysis of the parameters describing the membrane structure shows that the most important factor for the diffusion character is the average size of a domain penetrated by diffusing particles. The presented results may be used in the design and preparation of membrane structures with specific diffusion properties.

  9. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    PubMed

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols

  10. Bioinspired polymer vesicles and membranes for biological and medical applications.

    PubMed

    Palivan, Cornelia G; Goers, Roland; Najer, Adrian; Zhang, Xiaoyan; Car, Anja; Meier, Wolfgang

    2016-01-21

    Biological membranes play an essential role in living organisms by providing stable and functional compartments, preserving cell architecture, whilst supporting signalling and selective transport that are mediated by a variety of proteins embedded in the membrane. However, mimicking cell membranes - to be applied in artificial systems - is very challenging because of the vast complexity of biological structures. In this respect a highly promising strategy to designing multifunctional hybrid materials/systems is to combine biological molecules with polymer membranes or to design membranes with intrinsic stimuli-responsive properties. Here we present supramolecular polymer assemblies resulting from self-assembly of mostly amphiphilic copolymers either as 3D compartments (polymersomes, PICsomes, peptosomes), or as planar membranes (free-standing films, solid-supported membranes, membrane-mimetic brushes). In a bioinspired strategy, such synthetic assemblies decorated with biomolecules by insertion/encapsulation/attachment, serve for development of multifunctional systems. In addition, when the assemblies are stimuli-responsive, their architecture and properties change in the presence of stimuli, and release a cargo or allow "on demand" a specific in situ reaction. Relevant examples are included for an overview of bioinspired polymer compartments with nanometre sizes and membranes as candidates in applications ranging from drug delivery systems, up to artificial organelles, or active surfaces. Both the advantages of using polymer supramolecular assemblies and their present limitations are included to serve as a basis for future improvements.

  11. Entanglement network in nanoparticle reinforced polymers.

    PubMed

    Riggleman, Robert A; Toepperwein, Gregory; Papakonstantopoulos, George J; Barrat, Jean-Louis; de Pablo, Juan J

    2009-06-28

    Polymer nanocomposites have been widely studied in efforts to engineer materials with mechanical properties superior to those of the pure polymer, but the molecular origins of the sought-after improved properties have remained elusive. An ideal polymer nanocomposite model has been conceived in which the nanoparticles are dispersed throughout the polymeric matrix. A detailed examination of topological constraints (or entanglements) in a nanocomposite glass provides new insights into the molecular origin of the improved properties in polymer nanocomposites by revealing that the nanoparticles impart significant enhancements to the entanglement network. Nanoparticles are found to serve as entanglement attractors, particularly at large deformations, altering the topological constraint network that arises in the composite material.

  12. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mulijani, S.

    2016-11-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  13. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  14. Flexible solid polymer electrolyte membran formed by photopolymerization

    NASA Astrophysics Data System (ADS)

    Cao, Jinwei; Kyu, Thein

    2014-03-01

    Binary and ternary phase diagrams of poly(ethylene glycol) dimethacrylate (PEGDMA,succinonitrile(SCN), and bis(trifluoromethane)sulfonimide (LiTFSI) blends have been established to provide guidance to fabricationof polymer electrolyte membrane (PEM). The phase diagram of binary PEGDMA/SCN mixture is of a typical eutectic typ, whereas the binary PEGDMA/LiTFSI mixture reveals a eutectic trend exhibiting a wide single phase region at intermediate composition. Likewise, the ternary phase diagram of PEGDMA/SCN/LiTFSI mixture shows a wide isotropic regio. The PEM network, formed by UV-crosslinking of PEGDMA in the isotropic region, is a solid amorphous network, but flexible and stretchable. Ion conductivity of PEMwas measured as a function of temperature at different ratios of PEGDMA/SCN and SCN/LiTFSI. Of particular importance is that these PEM networks possessvery high roo-temperature ion conductivity on the order of 10-3 S cm-1, which reaches the level of 10-2 S cm-1 at elevated temperatures of 60-70 °C. The electrochemical stability of the solid PEM will be evaluated by cyclic voltammetry and its potential applicabilityinflexible lithium ion battery will be discussed.

  15. Biopores/membrane proteins in synthetic polymer membranes.

    PubMed

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  16. Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes.

    PubMed

    Wei, Shuya; Choudhury, Snehashis; Xu, Jun; Nath, Pooja; Tu, Zhengyuan; Archer, Lynden A

    2017-01-23

    A sodium metal anode protected by an ion-rich polymeric membrane exhibits enhanced stability and high-Columbic efficiency cycling. Formed in situ via electropolymerization of functional imidazolium-type ionic liquid monomers, the polymer membrane protects the metal against parasitic reactions with electrolyte and, for fundamental reasons, inhibits dendrite formation and growth. The effectiveness of the membrane is demonstrated using direct visualization of sodium electrodeposition.

  17. Composite Block Polymer-Microfabricated Silicon Nanoporous Membrane

    PubMed Central

    Nuxoll, Eric E.; Hillmyer, Marc A.; Wang, Ruifang; Leighton, C.

    2009-01-01

    Block polymers offer an attractive route to densely-packed, monodisperse nanoscale pores. However, their fragility as thin films complicates their use as membranes. By integrating a block polymer film with a thin (100 μm) silicon substrate, we have developed a composite membrane providing both nanoscale size exclusion and fast transport of small molecules. Here we describe the fabrication of this membrane, evaluate its mechanical integrity, and demonstrate its transport properties for model solutes of large and small molecular weight. The ability to block large molecules without hindering smaller ones, coupled with the potential for surface modification of the polymer and the MEMS style of the support make this composite membrane an attractive candidate for interfacing implantable sensing and drug delivery devices with biological hosts. PMID:20160882

  18. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  19. Genistein Modified Polymer Blends for Hemodialysis Membranes

    NASA Astrophysics Data System (ADS)

    Chang, Teng; Kyu, Thein; Define, Linda; Alexander, Thomas

    2012-02-01

    A soybean-derived phytochemical called genistein was used as a modifying agent to polyether sulfone/polyvinyl pyrrolidone (PES/PVP) blends to produce multi-functional hemodialysis membranes. With the aid of phase diagrams of PES/PVP/genistein blends, asymmetric porous membranes were fabricated by coagulating in non-solvent. Both unmodified and genistein modified PES/PVP membranes were shown to be non-cytotoxic to the blood cells. Unmodified PES/PVP membranes were found to reduce reactive oxygen species (ROS) levels, whereas the genistein modified membranes exhibited suppression for ˜60% of the ROS levels. Also, the genistein modified membranes revealed significant suppression of pro-inflammatory cytokines: IL-1β, IL-6, and TNF-α. Moreover, addition of PVP to PES showed the reduced trend of platelet adhesion and then leveled off. However, the modified membranes exhibited suppression of platelet adhesion at low genistein loading, but beyond 15 wt%, the platelet adhesion level rised up.

  20. Nonaffine rubber elasticity for stiff polymer networks.

    PubMed

    Heussinger, Claus; Schaefer, Boris; Frey, Erwin

    2007-09-01

    We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.

  1. Environmental memory of polymer networks under stress.

    PubMed

    Quitmann, Dominik; Gushterov, Nikola; Sadowski, Gabriele; Katzenberg, Frank; Tiller, Joerg C

    2014-06-04

    Generally reversible stimuli-responsive materials do not memorize the stimulus. In this study we describe an example in which stretched and constrained semi-crystalline polymer networks respond to solvent gases with stress and simultaneously memorize the concentration and the chemical nature of the solvent itself in their microstructure. This written solvent signature can even be deleted by temperature.

  2. Enabling Nanoparticle Networking in Semicrystalline Polymer Matrices

    SciTech Connect

    Kaur, Jasmeet; Lee, Ji Hoon; Bucknall, David G.; Shofner, Meisha L.

    2012-10-23

    Among the physical and chemical attributes of the nanocomposite components and their interactions that contribute to the ultimate material properties, nanoparticle arrangement in the matrix is a key contributing factor that has been targeted through materials choices and processing strategies in numerous previous studies. Often, the desired nanocomposite morphology contains individually dispersed and distributed nanoparticles. In this research, a phase-segregated morphology containing nanoparticle networks was studied. A model nanocomposite system composed of calcium phosphate nanoparticles and a poly(3-hydroxybutyrate) matrix was produced to understand how polymer crystallization and crystal structure can facilitate the formation of a phase-segregated morphology containing nanoparticle networks. Two chemically similar calcium phosphate nanoparticle systems with different shapes, near-spherical and nanofiber, were synthesized for use in the nanocomposites. The different shapes were used independently in nanocomposites in an attempt to understand the effect of the nanoparticle shapes on crystallization-mediated nanoparticle network formation. The resulting nanocomposites were characterized to establish the effects of component interactions on the polymer structure. Additionally from the viscoelastic properties, structure-property relationships in these materials can be defined as a function of nanoparticle shape and concentration. The results of this research suggest that when the nanocomposite components are not strongly interacting, polymer crystallization may be used as a forced assembly method for nanoparticle networks. Such a methodology has applications to the design of functional polymer nanocomposites such as biomedical implant materials and organic photovoltaic materials where judicious choice of nanoparticle-polymer pairs and control of polymer crystal nucleation and growth processes could be used to control the length scale of phase segregation.

  3. Polymer and Membrane Design for Low Temperature Catalytic Reactions.

    PubMed

    Villalobos, Luis Francisco; Xie, Yihui; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-04-01

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane's ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The influence of the membrane-polymer interface on colloidal membrane dynamics and phase behavior

    NASA Astrophysics Data System (ADS)

    Zakhary, Mark J.

    A primary challenge in the field of self-assembly is to identify simple interactions that produce well-defined, complex, and controllable materials. A large part of this task is to creatively engineer appropriate assembly components with such suitable interactions built-in. Here, we demonstrate that rod-like subunits, experimentally modeled by fd bacteriophage viruses, with simple and predictable hard-core repulsive interactions, exhibit a great wealth of fascinating self-assembly behavior. These rods form two-dimensional liquid crystalline colloidal membranes consisting of monolayers of aligned particles owing purely to entropic considerations. Due to surface tension, rods near the edge of the monolayers twist, resulting in an elastic nematic ring surrounding the fluid-like membrane interior, and it is the rich phenomena rooted in the interplay between the edge and the interior that is the subject of this thesis. The chiral nature of the fd subunits causes a symmetry breaking at the membrane edge, which leads to chiral control of interfacial tension and resultantly a controllable, reversible morphological transition between membranes and one-dimensional twisted ribbons. Using optical microscopic and optical tweezer techniques, we show that a nucleation barrier exists in association with the membrane-ribbon transition, and investigate this barrier using fluctuation analysis as well as highly controlled force-extension experiments. The finite bending rigidity of the membrane edge is studied, and we show that long filamentous polymers spontaneously adhere to the edge, introducing the concept of geometrical edge-active agents. By analyzing the suppressed edge fluctuations of filament-bound membranes, it is found that the edge bending rigidity varies by up to an order of magnitude in a predictable and controllable way. Finally, we study the effect of the monolayer edge on the membrane coalescence, and observe two types of stable liquid crystalline defects that form at

  5. UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nair, J. R.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.

    In this paper, we report the synthesis and characterisation of novel methacrylic based polymer electrolyte membranes for lithium batteries. The method adopted for preparing the solid polymer electrolyte was the UV-curing process, which is well known for being easy, low cost, fast and reliable. It consists of a free radical photo polymerisation of poly-functional monomers: Bisphenol A ethoxylate (15 EO/phenol) dimethacrylate (BEMA) was chosen, as it can readily form flexible 3D networks and has long poly-ethoxy chains which can enhance the movement of Li +-ions inside the polymer matrix. The preliminary results reported here refer to systems where LiPF 6 solutions swelled the preformed polymer membranes. The tests on the conductivity, stability and cyclability of the membranes put in evidence the importance of the polymerisation in presence of mono-methacrylates acting as reactive diluents. Good values of ionic conductivity have been found, especially at ambient temperature. Much better results can be expected by choosing an appropriate mono-methacrylate to modify the polymeric membrane properties and by modifying the methodology of Li +-ions incorporation inside the polymer matrix.

  6. Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins

    PubMed Central

    Picard, Martin; Duval-Terrié, Caroline; Dé, Emmanuelle; Champeil, Philippe

    2004-01-01

    Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C10, was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrié et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca2+-dependent ATPase and Ca2+-pumping activity. We found that 18C10-mediated solubilization of these SR membranes did not occur. Simultaneously, however, we found that low amounts of this hydrophobically modified pullulan were very efficient at preventing long-term aggregation of these SR membranes. This presumably occurred because the negatively charged polymer coated the membranous vesicles with a hydrophilic corona (a property shared by many other amphipathic polymers), and thus minimized their flocculation. Reminiscent of the old Arabic gum, which stabilizes Indian ink by coating charcoal particles, the newly designed amphipathic polymers might therefore unintentionally prove useful also for stabilization of membrane suspensions. PMID:15459343

  7. Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins.

    PubMed

    Picard, Martin; Duval-Terrié, Caroline; Dé, Emmanuelle; Champeil, Philippe

    2004-11-01

    Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C(10), was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrie et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca(2+)-dependent ATPase and Ca(2+)-pumping activity. We found that 18C(10)-mediated solubilization of these SR membranes did not occur. Simultaneously, however, we found that low amounts of this hydrophobically modified pullulan were very efficient at preventing long-term aggregation of these SR membranes. This presumably occurred because the negatively charged polymer coated the membranous vesicles with a hydrophilic corona (a property shared by many other amphipathic polymers), and thus minimized their flocculation. Reminiscent of the old Arabic gum, which stabilizes Indian ink by coating charcoal particles, the newly designed amphipathic polymers might therefore unintentionally prove useful also for stabilization of membrane suspensions.

  8. A Monte Carlo study of fluctuating polymer-grafted membranes.

    PubMed

    Laradji, Mohamed

    2004-07-15

    Using Monte Carlo simulations of an off-lattice model, we study the elastic properties of polymer-grafted membranes. Our results are found to be in good agreement with those predicted by the classical path approximation of the self-consistent field theory and scaling theory based on de Gennes' blob picture. In particular, we found that when the membrane is grafted on both sides by brushes with same molecular weight N and grafting density sigma, the excess bending modulus induced by the polymers scales as N3 sigmaalpha where alpha is consistent with 7/3, as predicted by the self-consistent field theory, and 5/2, as predicted by the scaling theory. When the polymers are grafted to one side of the membrane only, the membrane bends away from the polymers with a spontaneous curvature with a scaling that is consistent with both scaling and self-consistent field theories. When the thickness of the brush exceeds the membrane's spontaneous radius of curvature, the bending modulus approaches a constant which is of the same order as the bending modulus of the bare membrane.

  9. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  10. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  11. Inorganic polymer-derived ceramic membranes

    SciTech Connect

    Brinker, C.J.; Sehgal, R.; Raman, N.; Schunk, P.R.; Headley, T.J.

    1993-12-31

    Polymeric silica sols were used to prepare membranes on commercial {gamma}-A1{sub 2}O{sub 3} supports. Aging of the silica sols was shown to be effective to form discrete membrane layers. He/N{sub 2} selectivity factors exceeding ideal Knudsen values were observed when the sols were prepared under conditions in which the condensation rate was minimized. It is proposed that the average pore size of the membrane depends on the balance of capillary pressure and modulus during membrane deposition and that the breadth of the pore size distribution might be influenced by the extent of condensation accompanying membrane deposition. The use of organic templates may allow independent control of pore size, pore shape, and pore volume. The membranes are to be used in processing natural gas (gas separation/purification).

  12. An efficient polymer molecular sieve for membrane gas separations.

    PubMed

    Carta, Mariolino; Malpass-Evans, Richard; Croad, Matthew; Rogan, Yulia; Jansen, Johannes C; Bernardo, Paola; Bazzarelli, Fabio; McKeown, Neil B

    2013-01-18

    Microporous polymers of extreme rigidity are required for gas-separation membranes that combine high permeability with selectivity. We report a shape-persistent ladder polymer consisting of benzene rings fused together by inflexible bridged bicyclic units. The polymer's contorted shape ensures both microporosity-with an internal surface area greater than 1000 square meters per gram-and solubility so that it is readily cast from solution into robust films. These films demonstrate exceptional performance as molecular sieves with high gas permeabilities and good selectivities for smaller gas molecules, such as hydrogen and oxygen, over larger molecules, such as nitrogen and methane. Hence, this polymer has excellent potential for making membranes suitable for large-scale gas separations of commercial and environmental relevance.

  13. Rubber elasticity for incomplete polymer networks

    NASA Astrophysics Data System (ADS)

    Nishi, Kengo; Chijiishi, Masashi; Katsumoto, Yukiteru; Nakao, Toshio; Fujii, Kenta; Chung, Ung-il; Noguchi, Hiroshi; Sakai, Takamasa; Shibayama, Mitsuhiro

    2012-12-01

    We investigated the relationship between the elastic modulus, G and the reaction probability, p for polymer networks. First, we pointed out that the elastic modulus is expressed by G = {(fp/2 - 1) + O((p - 1)2)} NkBT/V (percolated network law), which does not depend on the local topology of the network structure or the existence of the loops. Here, N is the number of lattice point, V is the system volume, f is the functionality of the cross-link, kB is the Boltzmann constant, and T is the absolute temperature. We also conducted simulations for polymer networks with triangular and diamond lattices, and mechanical testing experiments on tetra-poly(ethylene glycol) (PEG) gel with systematically tuning the reaction probability. Here, the tetra-PEG gel was confirmed to be a potential candidate for ideal polymer networks consisting of unimodal strands free from defects and entanglements. From the results of simulations and experiments, it was revealed, for the first time, that the elastic modulus obeys this law in the wide range of p (pc ≪ p ≤ 1), where pc is the reaction probability at gelation threshold.

  14. Nanoparticle-polymer composite membranes: Synthesis, characterization, and environmental applications

    NASA Astrophysics Data System (ADS)

    Taurozzi, Julian S.

    Advances in nanotechnology and materials science offer new possibilities for the development of novel water treatment technologies A salient example is the emergence of a new generation of nanostructured membranes with improved separation properties and, in some cases, multifunctional capabilities. The present work explores different aspects of the formation of nanoparticle-enabled membranes, focusing on the dependence between synthetic methods, nanoparticle properties, and the performance of the obtained membranes. The effects of nanoparticle loading, size and morphology, and methods of nanoparticle incorporation on the functional properties of the resulting nanocomposite membranes are studied. Additionally, empirical predictors of membrane performance for the rational design of nanocomposite membranes and novel strategies for the manufacture of membrane-based sensors and biofouling resistant membrane spacers are presented. The first chapter of the dissertation provides an overview of the theory of phase inversion in polymer blends -- one of the main methods for the fabrication of ultrafiltration membranes. The second chapter describes the study of the effect of shape and loading of carbon nanoparticle fillers on the hydraulic properties of nanocomposite membranes. In the third chapter, the effects of casting mixture composition and nanoparticle incorporation route on the morphological structure and separation performance of nanocomposite membranes are described and the potential use of these nanocomposites for the mitigation of membrane biofouling is discussed. Finally, in the last chapter, a method for the synthesis of a nanoparticle-enabled, membrane-based sensor for water quality control is presented.

  15. A novel method for producing microspheres with semipermeable polymer membranes

    NASA Technical Reports Server (NTRS)

    Lin, K. C.; Wang, Taylor G.

    1992-01-01

    A new and systematic approach for producing polymer microspheres has been demonstrated. The membrane of the microsphere is formed by immersing the polyanionic droplet into a collapsing annular sheet, which is made of another polycation polymer solution. This method minimizes the impact force during the time when the chemical reaction takes place, hence eliminating the shortcomings of the current encapsulation techniques. The results of this study show the feasibility of this method for mass production of microcapsules.

  16. Dynamic mechanical response of polymer networks

    NASA Astrophysics Data System (ADS)

    Edwards, S. F.; Takano, H.; Terentjev, E. M.

    2000-10-01

    The dynamic-mechanical response of flexible polymer networks is studied in the framework of the tube model, in the limit of small affine deformations, using the approach based on Rayleighian dissipation function. The dynamic complex modulus G*(ω) is calculated from the analysis of a network strand relaxation to the new equilibrium conformation around the distorted primitive path. Chain equilibration is achieved via a sliding motion of polymer segments along the tube, eliminating the inhomogeneity of the polymer density caused by the deformation. The characteristic relaxation time of this motion τe separates the low-frequency limit of the complex modulus from the high-frequency one, where the main role is played by chain entanglements, analogous to the rubber plateau in melts. The dependence of storage and loss moduli, G'(ω) and G″(ω), on crosslink and entanglement densities gives an interpolation between polymer melts and crosslinked networks. We discuss the experimental implications of the rather short relaxation time and the slow square-root variation of the moduli and the loss factor tan δ(ω) at higher frequencies.

  17. Development of Nanoporous Polymer Membranes by Swift Heavy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Dinesh, Divya; Predeep, P.

    2011-10-01

    This study reveals the preparation of conical pores in polyethylene terephthalate (PET) by track etching. The polymer membrane is etched from one side by keeping between the clamps of conductivity cell followed by irradiation with swift heavy ion of 197Au. Electrical stopping supports chemical stopping. During etching process current is measured as a function of time till a sharp increase -breakthrough-observed. After etching membranes are thoroughly washed with stopping solution and water. Resultant films are characterized using Optical microscope and field emission scanning electron microscopy. Polymer films with uniform pores can be a cheaper templating material in the fields of photonic crystals and micro- electronics.

  18. Development of polymer membranes for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Eschbach, Florence; Tregub, Alex; Orvek, Kevin; Foster, Corey; Lo, Fu-Chang; Matsukura, Ikuo; Tsushima, Nana

    2004-05-01

    Fluoropolymers were/are successfully used for pellicle manufacturing in 248 and 193 nm lithography. However, all known fluoropolymers rapidly degrade when exposed to high-energy 157 nm irradiation. Lack of suitable polymer "soft" pellicle has become one of the major obstacles for implementing 157 nm lithography. The goal of this research was to investigate the photodegradation mechanisms in fluoropolymers under 157 nm irradiation using various analytical techniques, and establish correlation between polymer structure and transparency/durability. Various polymer platforms, developed by Asahi Glass Corporation, as well as model polymer based on industrially available materials, have been employed in this study. Polymer structures have been analyzed using solution NMR, FTIR, Raman spectroscopy, TOF-SIMS, nanoindentation, outgassing, contact angle, ellipsometry, refractometry, n and k measurements. Transparency and durability of polymer membranes under 157 nm irradiation were established using an F2 157 nm laser as a source of irradiation, and an environmentally controlled chamber. As the result of this study, photodegradation mechanism for some of the tested polymers was tentatively suggested as cleavage of carbonyl, CO, and/or CFO bonds. Additionally, the following general conclusions have been made: environmental moisture, gas environment, and polymer/adhesive solvents affect structure and durability of the exposed polymers; "skin" surface layer can be formed on the surface of the irradiated polymer; polymer membranes are thinning under 157 nm irradiation; polar groups are formed on the irradiated surface. Effects of gas environment, exposure conditions, technology of the sample preparation on the photodegradation mechanism and kinetics were studied. Possible photodegradation pathways have been derived and assessed. Dependence of polymer durability and transparency on such structural features as number of carbon atoms within the ring, oxygen content, type and number

  19. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks

    NASA Astrophysics Data System (ADS)

    Koizumi, Yuki; Shida, Naoki; Ohira, Masato; Nishiyama, Hiroki; Tomita, Ikuyoshi; Inagi, Shinsuke

    2016-01-01

    Conducting polymers can be easily obtained by electrochemical oxidation of aromatic monomers on an electrode surface as a film state. To prepare conducting polymer fibres by electropolymerization, templates such as porous membranes are necessary in the conventional methods. Here we report the electropolymerization of 3,4-ethylenedioxythiophene and its derivatives by alternating current (AC)-bipolar electrolysis. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives were found to propagate as a fibre form from the ends of Au wires used as bipolar electrodes (BPEs) parallel to an external electric field, without the use of templates. The effects of applied frequency and of the solvent on the morphology, growth rate and degree of branching of these PEDOT fibres were investigated. In addition, a chain-growth model for the formation of conductive material networks was also demonstrated.

  20. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks

    PubMed Central

    Koizumi, Yuki; Shida, Naoki; Ohira, Masato; Nishiyama, Hiroki; Tomita, Ikuyoshi; Inagi, Shinsuke

    2016-01-01

    Conducting polymers can be easily obtained by electrochemical oxidation of aromatic monomers on an electrode surface as a film state. To prepare conducting polymer fibres by electropolymerization, templates such as porous membranes are necessary in the conventional methods. Here we report the electropolymerization of 3,4-ethylenedioxythiophene and its derivatives by alternating current (AC)-bipolar electrolysis. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives were found to propagate as a fibre form from the ends of Au wires used as bipolar electrodes (BPEs) parallel to an external electric field, without the use of templates. The effects of applied frequency and of the solvent on the morphology, growth rate and degree of branching of these PEDOT fibres were investigated. In addition, a chain-growth model for the formation of conductive material networks was also demonstrated. PMID:26804140

  1. Robust Polymer Composite Membranes for Hydrogen Separation

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose primary goal is to achieve a major improvement in the combined economics and performance of polymenzimidazole-based (PBI) membrane technology in the application of hydrogen separation from a syngas stream.

  2. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    NASA Astrophysics Data System (ADS)

    Paxton, Walter F.; Bouxsein, Nathan F.; Henderson, Ian M.; Gomez, Andrew; Bachand, George D.

    2015-06-01

    We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on

  3. Towards the construction of synthetic protocells: Engineering responsive polymer membranes

    NASA Astrophysics Data System (ADS)

    Kamat, Neha Prashant

    Polymersomes are vesicles formed through self-assembly of diblock copolymers that display the lamellar structure of cellular membranes. The work described in this thesis has been driven by the long-range goal of creating a polymersome protocell; a polymer vesicle, that carries out some life activities, such as signaling, communication, sensation or growth. We developed three different areas important for cellular mimicry, and used the concept of inter-particle communication as a model behavior to guide the design parameters of our system. These parameters include designing responsive membranes, controlling membrane architecture and composition, and controlling vesicle spatial position. First, we created responsive polymer membranes that use an optical illumination to trigger and report membrane response. Confocal microscopy and micropipette aspiration were used to show that polymer membranes that contained a porphyrin-based chromophore could be induced to deform and rupture in response to light when a luminal solute, dextran, was encapsulated. This response could be tuned by changing the molecular weight of dextran and the membrane polymer. We then showed how supermolecular porphyrin-based fluorophores can be used as sensors for membrane stress. We showed that changes in porphyrin emission report changes in membrane tension by using fluorimetry, a multispectral camera and aspiration techniques to characterize changes in the optical emission of these near infrared (NIR) emissive probes embedded within the hydrophobic core of the polymersome membrane. Next, we constructed polymersomes with increased control over the membrane diameter, membrane composition, and luminal encapsulates using microfluidics. Using micropipette aspiration, we verified the unilamellarity of fluid membranes consisting of PEO30-b-PBD46 diblock copolymers. In addition, we used micropipette aspiration to both track and verify solvent removal from double emulsion-templated polymersomes. Finally

  4. Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Echeverri, Mauricio; Kyu, Thein

    2014-03-01

    With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.

  5. Biomimetic oral mucin from polymer micelle networks

    NASA Astrophysics Data System (ADS)

    Authimoolam, Sundar Prasanth

    -functional implant coats. KEYWORDS: Biomimic, Bioapplication, Drug delivery, Filomicelle, Mucin, Polymer networks.

  6. Polymers application in proton exchange membranes for fuel cells (PEMFCs)

    NASA Astrophysics Data System (ADS)

    Walkowiak-Kulikowska, Justyna; Wolska, Joanna; Koroniak, Henryk

    2017-07-01

    This review presents the most important research on alternative polymer membranes with ionic groups attached, provides examples of materials with a well-defined chemical structure that are described in the literature. Furthermore, it elaborates on the synthetic methods used for preparing PEMs, the current status of fuel cell technology and its application. It also briefly discusses the development of the PEMFC market.

  7. Mechanisms of gas permeation through polymer membranes

    SciTech Connect

    Stern, S.A.

    1992-01-01

    Progress is reported in two areas: (1) Concentration-temperature superposition principle (CTSP). CTSP is a theoretical model for describing the gas solubility in glassy polymers swollen by the penetrant gas. It has been extended to describe the dependence of gas diffusivity and permeability on penetrant pressure. Further extension to diffusion of gas mixtures is being studied. (2)Solubility of gases in poly(alkyl methacrylates). Solubility of methane in poly(ethyl methacrylate) and poly(n-butyl methacrylate) was measured; the Langmuir capacity constant was found to not reflect a lower excess free volume; an equation is given for relating the constant to the glass transition temperature. Solubility of ethane in the latter polymer is affected by plasticization.

  8. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    SciTech Connect

    Kusumastuti, Ella Siniwi, Widasari Trisna Mahatmanti, F. Widhi; Jumaeri; Atmaja, Lukman; Widiastuti, Nurul

    2016-04-19

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

  9. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Kusumastuti, Ella; Siniwi, Widasari Trisna; Mahatmanti, F. Widhi; Jumaeri, Atmaja, Lukman; Widiastuti, Nurul

    2016-04-01

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10-7 cm2/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm-3. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm--1.

  10. Fundamental and Applied Studies of Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Imbrogno, Joseph

    Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells. We have developed a novel synthesis method in order to increase the breadth of our high throughput screening library. This library was generated using maleimide chemistry to react a common methacrylate linker with a variety of different functions groups (R groups) in order to form new monomers that were grafted from the surface of PES ultrafiltration membranes. From this work, we discovered that the chirality of a membrane can affect performance when separating chiral feed streams. This effect was observed when filtering bovine serum albumin (BSA) and ovalbumin in a high salt phosphate buffered saline (PBS, 150 mM salt). The Phe grafted membranes showed a large difference in performance when filtering BSA with selectivity of 1.13 and 1.00 for (S) and (R) Phe, respectively. However, when filtering ovalbumin, the (S) and (R) modified surfaces showed selectivity of 2.06 and 2.31, respectively. The higher selectivity enantiomer switched for the two different proteins. Permeability when filtering BSA was 3.06 LMH kPa-1 and 4.31 LMH kPa -1 for (S)- and (R)- Phe, respectively, and 2.65 LMH kPa -1 and 2.10 LMH kPa-1 when filtering ovalbumin for (S)- and (R)- Phe, respectively. Additionally, these effects were no longer present when using a low salt phosphate buffer (PB, 10 mM salt). Since, to our knowledge, membrane chirality is not considered in current industrial systems, this discovery could have a large impact on the pharmaceutical and biotechnology industries. We

  11. Trifluorostyrene containing compounds, and their use in polymer electrolyte membranes

    SciTech Connect

    Choudhury, Biswajit; Roelofs, Mark Gerrit; Yang,; Zhen-Yu,

    2009-07-21

    A fluorinated ion exchange polymer is prepared by grafting a monomer onto a base polymer, wherein the grafting monomer is selected from the group consisting of structure 1a, 1b and mixture thereof; ##STR00001## wherein Y is selected from the group consisting of --R.sub.FSO.sub.2F, --R.sub.FSO.sub.3M, --R.sub.SO.sub.2NH.sub.2 and --R.sub.FSO.sub.2N(M)SO.sub.2R.sup.2.sub.F, where in M is hydrogen, an alkali cation or ammonium; and R.sub.F and R.sup.2.sub.F are perfluorinated or partially fluorinated, and may optionally include ether oxygens; and n is between 1 and 2 for 1a, or n is between 1 and 3 for 1b. These ion exchange polymers are useful is preparing catalyst coated membranes and membrane electrode assemblies for fuel cells.

  12. Multichannel taste sensors with lipid, lipid like polymer membranes

    NASA Astrophysics Data System (ADS)

    Szpakowska, M.; Szwacki, J.; Marjańska, E.

    2008-08-01

    The elaboration of a sensitive taste sensor for discrimination of different soft drinks is very important in food industry. The short review of taste sensors described in the literature is presented. Two types of potentiometric taste sensors, one with lipophilic compound-polymer membranes (ISE) and the other with lipid polymer membrane and a conducting polymer film (All solid state electrode, ASSE) were tested in appropriate taste solutions. Five channel ISE sensor was examined in acid, sour and sweet solutions. This sensor was sensitive to bitter and sour substances and not too sensitive to sucrose concentration. It was successfully used for discrimination of different kind of soft drinks. Four channel ASSE sensor was examined in sour solutions. It was found that stability and sensitivity of ASSE are lower than ISE. Therefore, it seems that the previous one cannot be applied in taste sensor.

  13. Polymer single crystal membrane from liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Li, Christopher; Soft Matter Research Group-Drexel University Team

    2013-03-01

    Vesicles, mimicking the structure of cell membrane at the molecular scale, are small membrane-enclosed sacks that can store or transport substances. The weak mechanical properties and the nature of environment-sensitivity of the current available vesicles: liposomes, polymersomes, colloidsomes limit their applications as an excellent candidate for targeting delivery of drugs/genes in biomedical engineering and treatment. Recently, we developed an emulsion-based method to grow curved polymer single crystals. Varying the polymer concentration and/or the emulsification conditions (such as surfactant concentration, water-oil volume ratio), curved crystals with different sizes and different openness could be obtained. This growing process was attributed to polymer crystal growth along the liquid/liquid interface. In addition, the liquid/liquid interfacial crystal growth is promising for synthesis of enclosed hollow sphere.

  14. Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations.

    PubMed

    Wang, Hai-Juan; Zhou, Wen-Hui; Yin, Xiao-Fei; Zhuang, Zhi-Xia; Yang, Huang-Hao; Wang, Xiao-Ru

    2006-12-20

    In this report, we describe the synthesis of a molecularly imprinted polymer (MIP) nanotube membrane, using a porous anodic alumina oxide (AAO) membrane by surface-initiated atom transfer radical polymerization (ATRP). The use of a MIP nanotube membrane in chemical separations gives the advantage of high affinity and selectivity. Furthermore, because the molecular imprinting technique can be applied to different kinds of target molecules, ranging from small organic molecules to peptides and proteins, such MIP nanotube membranes will considerably broaden the application of nanotube membranes in chemical separations and sensors. This report also shows that the ATRP route is an efficient procedure for the preparation of molecularly imprinted polymers. Furthermore, the ATRP route works well in its formation of MIP nanotubes within a porous AAO membrane. The controllable nature of ATRP allows the growth of a MIP nanotube with uniform pores and adjustable thickness. Thus, using the same route, it is possible to tailor the synthesis of MIP nanotube membranes with either thicker MIP nanotubes for capacity improvement or thinner nanotubes for efficiency improvement.

  15. Composite materials for polymer electrolyte membrane microbial fuel cells.

    PubMed

    Antolini, Ermete

    2015-07-15

    Recently, the feasibility of using composite metal-carbon, metal-polymer, polymer-carbon, polymer-polymer and carbon-carbon materials in microbial fuel cells (MFCs) has been investigated. These materials have been tested as MFC anode catalyst (microorganism) supports, cathode catalysts and membranes. These hybrid materials, possessing the properties of each component, or even with a synergistic effect, would present improved characteristics with respect to the bare components. In this paper we present an overview of the use of these composite materials in microbial fuel cells. The characteristics of the composite materials as well as their effect on MFC performance were compared with those of the individual component and/or the conventionally used materials.

  16. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  17. Development of polymer-membrane based electrodes for suramin.

    PubMed

    Yu, Andrew; Shepherd, Brandon; Wagner, Meghan; Clapper, Jamie; Esson, Joan M

    2011-02-07

    The development of a polymer membrane-based electrode to measure the anionic drug suramin in buffered saline and biological samples is described. A large non-equilibrium, steady state EMF response is observed toward suramin, and judicious choice of the polymer membrane components allows for adjustment of the dynamic range of the electrode. The optimized membrane for use in the toxic suramin range consists of 25 wt% tridodecylmethyl ammonium chloride, 55 wt% bis-2-ethylhexyl sebacate, and 20 wt% Pellethane. Although this electrode can be used to directly quantify suramin in human plasma, determination of suramin that is not affected by the background concentration of small anions is best achieved by simple potentiometric titrations with polycationic protamine monitored with a protamine-sensitive electrode.

  18. Application of polymer membrane technology in coal combustion processes

    SciTech Connect

    Kaldis, S.P.; Skodras, G.; Grammelis, P.; Sakellaropoulos, G.P.

    2007-03-15

    The energy efficiency and the environmental consequences of typical coal upgrading processes, such as combustion, depend to a large extent on the degree of gas separation, recovery, and recycle. Among the available methods used in chemical industry for a variety of gas separation tasks, the technology of polymer membranes offers several advantages such as low size, simplicity of operation and maintenance, compatibility, and use with a diversity of fuel sources. To examine the impact of membrane separation on coal upgrading processes, the Aspen Plus simulation software was used, in combination with developed membrane mathematical models. Energy analysis in coal combustion processes, where the main scope is CO{sub 2} removal, showed that very promising results can be attained. It is estimated that 95% of the emitted CO{sub 2} can be captured with a moderately low energy penalty (10%). This penalty can be further decreased if higher selectivity and/or permeability polymers can be developed.

  19. Phase transitions of a polymer threading a membrane coupled to coil-globule transitions

    NASA Astrophysics Data System (ADS)

    Matsuyama, Akihiko

    2004-07-01

    We theoretically study phase transitions of a polymer threading through a pore imbedded in a membrane. We focus on the coupling between a partition of the polymer segments through the membrane and a coil-globule transition of the single polymer chain. Based on the Flory model for collapse transitions of a polymer chain, we calculate the fraction of polymer segments and the expansion factor of a polymer coil on each side of the membrane. We predict a first-order phase transition of a polymer threading a membrane; polymer segments in one side are discontinuously translocated into the other side, depending on solvent conditions and molecular weight of the polymer. We also discuss the equilibrium conformation of the polymer chain on each side of the membrane.

  20. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    NASA Astrophysics Data System (ADS)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  1. Conjugated polymer networks: Synthesis and properties

    NASA Astrophysics Data System (ADS)

    Kokil, Akshay

    The experimental research program that forms the basis of this thesis has been directed towards the design, synthesis, processing and physical characterization of well-defined conjugated polymer networks. It attempts to provide answers to the questions how such materials can be synthesized and processed and how the introduction of cross-links can be exploited for the creation of polymeric materials with optimized optic and electronic characteristics. Interestingly, this family of materials has received little attention in the past, at least as far as systematic studies of well-defined systems are concerned. This situation may be a direct consequence of the challenge to introduce conjugated cross-links into conjugated polymers and retain adequate processibility. We have shown that organometallic polymer networks based on linear conjugated polymers are readily accessible through ligand-exchange reactions. This approach was exemplified by exploiting the ethynyl moieties comprised in poly( p-phenylene ethynylene) (PPE) derivatives as ligand sites, which allow for complexation with selected metals and cross-linking via the resulting PPE-Metal complexes. Focusing on the dinuclear complex [Pt-(mu-Cl)Cl-PPE] 2 and PPE-Pt0 as crosslinks, we have conducted an in-depth investigation on how the nature of the metal cross-links influences the materials characteristics, in particular the charge transport properties. We first investigated the charge carrier mobility of poly[2,5-dioctyloxy-1,4-diethynyl-phenylene- alt-2,5-bis(2'-ethylhexyloxy)-1,4-phenylene] (EHO-OPPE), as a classic representative of poly(p-phenylene ethynylene) (PPE) derivatives, which represent an important class of conjugated polymers. In what appears to be the first study ever conducted on the mobility of any PPE, we found that EHO-OPPE displays ambipolar charge transport characteristics with very high electron (1.9·10-3 cm2V-1 s-1) and hole (1.6·10-3 cm 2V-1s-1) mobilities. Most importantly, the introduction

  2. Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation.

    PubMed

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; Xing, Kunyue; Voylov, Dmitry N; Cheng, Shiwang; Yin, Panchao; Kisliuk, Alexander; Mahurin, Shannon M; Sokolov, Alexei P; Saito, Tomonori

    2017-08-09

    Polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethane-rich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-link density of U-PDMS-NWs is tailored by varying the molecular weight (Mn) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young's modulus (1.3-122.2 MPa), ultimate tensile strength (1.1-14.3 MPa), and toughness (0.7-24.9 MJ/m(3)). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[PCO2/PN2] ≈ 41 and α[PCO2/PCH4] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymer-membrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.

  3. Entanglement effects in model polymer networks

    NASA Astrophysics Data System (ADS)

    Everaers, R.; Kremer, K.

    The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic

  4. Interfacial Effects in Polymer Membranes for Clean Energy

    NASA Astrophysics Data System (ADS)

    Soles, Christopher

    2013-03-01

    Polymeric membranes are critical components in several emerging clean energy technologies. Examples include proton exchange membranes for hydrogen fuel cells, anion exchange membranes for alkaline fuel cells, flow batteries, and even block copolymer membranes for solid electrolytes/separators in lithium ion and other battery technologies. In all of these examples the function of the membrane is to physically separate two reactive electrodes or reactants, but allow the transport or exchange of specific ions through the membrane between the active electrodes. The flow of the charged ionic species between the electrodes can be used to balance the flow of electrons through an external electrical circuit that connects the electrodes, thereby storing or delivering charge electrochemically. In this presentation I will review the use of polymeric membranes in electrochemical energy storage technologies and discuss the critical issues related to the membranes that hinder these technologies. In particular I will also focus on the role the polymer membrane interface on device performance. At some point the polymer membrane must be interfaced with an active electrode or catalyst and the nature of this interface can significantly impact performance. Simulations of device performance based on bulk membrane transport properties often fail to predict the actual performance and empirical interfacial impedance terms usually added to capture the device performance. In this presentation I will explore the origins of this interfacial impedance in the different types of fuel cell membranes (proton and alkaline) by creating model thin film membranes where all of the membrane can be considered interfacial. We then use these thin films as a surrogate for the interfacial regions of a bulk membrane and then quantify the structure, dynamics, and transport properties of water and ions in the confined interfacial films. Using neutron reflectivity, grazing incidence X-ray diffraction, and

  5. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Guerrero Moreno, Nayibe; Gervasio, Dominic; Godínez García, Andrés; Pérez Robles, Juan Francisco

    2015-12-01

    Polymer membranes are prepared as a composite of polybenzimidazole and non-functionalized multiwall carbon nanotubes (PBI-CNT) and polybenzimidazole (PBI) only. Each is doped with H3PO4 (PA) and used as a proton exchange membrane (PEM) as the electrolyte in a fuel cell. The proton conductivities at 180 °C for the doped PBI membrane (PBIPA) and the doped PBI-CNT membrane (PBICNTPA) are 6.3 × 10-2 and 7.4 × 10-2 Scm-1 respectively. A single fuel cell having these membranes as electrolyte has a Pt catalyzed hydrogen gas fed anode and a similar oxygen cathode without humidification of feed gases; the cell with the PBICNTPA membrane has higher open circuit voltage (0.96 V) than that with a PBIPA membrane (0.8 V) at 180 °C. The mechanical stability of the membrane improves with CNTs addition. The tensile strength of the composite PBI-CNT membrane with 1 wt.% CNTs loading is 32% higher and the Young's Modulus is 147% higher than the values for a membrane of PBI alone. The improvement in conductivity and mechanical properties in the composite membrane due to the CNT addition indicates that a PBI-CNT membrane is a good alternative as a membrane electrolyte in a PEMFC.

  6. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    SciTech Connect

    Pintauro, Peter

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  7. Polymer electrolyte membrane based on 2-acrylamido-2-methyl propanesulfonic acid fabricated by embedded polymerization

    NASA Astrophysics Data System (ADS)

    Pei, Haiqin; Hong, Liang; Lee, Jim Yang

    Methanol crossover through the Nafion membrane is a perennial problem in the operation of direct methanol fuel cells (DMFCs) and therefore justifies the search for a Nafion substitute. This study reports a new methanol-blocking polymer matrix which consists of a methanol barrier phase and an embedded proton source. A three-component polymer blend (TCPB) of poly(4-vinylphenol-co-methyl methacrylate), poly(butyl methacrylate) (PBMA), and Paraloid ® B-82 acrylic copolymer resins is used as a methanol barrier. In order to implant a proton source in the membrane as homogeneously as possible, the hydrophilic monomers, 2-acrylamido-2-methyl propanesulfonic acid (AMPS), 2-hydroxyethyl methacrylate (HEMA) and a cross-linking agent (poly(ethylene glycol) dimethylacrylate) (PEGDMA) are polymerized after they have been embedded in the TCPB matrix. The embedded polymerization has resulted in an asymmetric membrane structure, in which the hydrophilic network is sandwiched by two outer layers of predominantly hydrophobic TCPB. Measurements are made of properties of the AMPS-containing membranes that are important to fuel cell applications such as water uptake, ion-exchange capacity, proton conductivity, methanol permeability and tensile strength. The highest proton conductivity of the AMPS-containing membrane is about 0.030 S cm -1 at 70 °C. The low methanol permeability (10 -8 to 10 -7 cm 2 s -1) of the AMPS-containing membranes is their primary advantage for DMFC applications.

  8. Water and polymer dynamics in highly crosslinked polyamide membranes

    NASA Astrophysics Data System (ADS)

    Frieberg, Bradley; Chan, Edwin; Tyagi, Madhu; Stafford, Christopher; Soles, Christopher

    Highly crosslinked polyamides for reverse osmosis are the state-of-the-art active material in membranes for desalination. The thin film composite membrane structure that is used commercially has been empirically designed to selectively allow the passage of water molecules and minimize the passage of solutes such as salt. However, due to the large roughness and variability of the polyamide layer, there is a limited understanding of the structure-property relationship for these materials as well as the transport mechanism. To better understand the water transport mechanism we measure the water and polymer dynamics of polyamide membranes using quasi-elastic neutron scattering (QENS). By hydrating the membrane with deuterated water, we are able to isolate the dynamics of the hydrogenated membrane on the pico- and nanosecond time scales. By subsequently hydrating the membranes with hydrogenated water, the QENS measurements on the same times scales reveal information about both the translational and rotational dynamics of water confined within the polyamide membrane. Further understanding of the water diffusion mechanism will establish design rules in which the performance of future membrane materials can be improved.

  9. Performance of a high temperature polymer electrolyte membrane water electrolyser

    NASA Astrophysics Data System (ADS)

    Xu, Wu; Scott, Keith; Basu, Suddhasatwa

    A high temperature polymer electrolyte membrane water electrolyser (PEMWE) was investigated at temperatures between 80 and 130 °C and pressures between 0.5 and 4 bar. Nanometer size Ru 0.7Ir 0.3O 2 and Pt/C were employed as anode and cathode catalysts respectively. The catalyst coated on membrane (CCM) method was used to fabricate the membrane electrode assemblies. The membrane, oxygen evolution catalysts and MEAs were characterized with SEM, XRD and TEM. The influence of high temperature and pressure was investigated using in situ electrochemical measurements. Increasing temperature and pressure produced higher current densities for oxygen evolution, and smaller terminal voltages. The high temperature PEMWE achieved a voltage of 1.51 V at a current density of 1 A cm -2, at 130 °C and 4 bar pressure.

  10. Pyro-electrification of polymer membranes for cell patterning

    NASA Astrophysics Data System (ADS)

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P.

    2016-05-01

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it's possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  11. Pyro-electrification of polymer membranes for cell patterning

    SciTech Connect

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P.

    2016-05-18

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it’s possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  12. Highly conductive polymer electrolyte membranes modified with polyethylene glycol-bis-carbamate

    NASA Astrophysics Data System (ADS)

    Fu, Guopeng; Dempsey, Janel; Kyu, Thein

    By virtue of its non-flammability and chemical stability, polyethylene glycol (PEG) networks have shown potential application in all solid-state polymer electrolyte membranes (PEM). However, room temperature ionic conductivity of these PEG based PEMs is inherently low. Plasticization of these PEMs is needed to improve the ionic conductivity. It was demonstrated by this group that small-molecule plasticizers such as succinonitrile, ethylene carbonate, or urea-carbamate can boost ionic conductivity of solid-state polymer electrolyte membranes. Polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction of polyethylene glycol diamine and ethylene carbonate. The PEGBC modified PEM has shown higher ionic conductivity relative to the unmodified PEM. Moreover, PEGBC modified PEM has a better thermal stability relative to ethylene carbonate based liquid electrolyte with enhanced ionic conductivity. Supported by NSF-DMR 1161070, 1502543 and REU 1359321.

  13. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  14. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun

    2015-10-01

    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  15. The Effect of Nano-Morphology Modification Using an Amphiphilic Polymer on the Proton Conductivity of Composite Membrane for a Polymer Membrane-Based Fuel Cell.

    PubMed

    Roh, Sung-Hee; Rho, Seon-Gyun; Kim, Sang-Chai; Kim, Ju-Young; Jung, Ho-Young

    2016-02-01

    The effect of morphology modification using an amphiphilic polymer on the proton conductivity of composite membrane for a polymer membrane-based fuel cell was investigated. The proton conductivity of each composite membrane was analyzed by the electrochemical impedance spectroscopy (EIS). The morphological change was confirmed by scanning electron microscope (SEM). In the composite membrane, the proton conductive component was sulfonated poly(ether ether ketone) (sPEEK), while the nonconductive component was poly(vinylidenedifluoride) and the amphiphilic polymer as a compatibilizer was urethane acrylate non-ionomer (UAN). UAN as a compatibilizer improved the interfacial stability between sPEEK and PVdF polymers, even though two polymers were apparently immiscible. The homogeneous distribution of sPEEK and PVdF domains in the composite membrane was obtained with the introduction of UAN due to the amphiphilicity. Therefore, it was found that the proton conductivity of the composite membrane increased with the incorporation of UAN as a compatibilizer.

  16. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    NASA Astrophysics Data System (ADS)

    Ramaseshan, Ramakrishnan; Sundarrajan, Subramanian; Liu, Yingjun; Barhate, R. S.; Lala, Neeta L.; Ramakrishna, S.

    2006-06-01

    A catalyst for the detoxification of nerve agents is synthesized from β-cyclodextrin (β-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with β-CD, IBA, a blend of β-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane.

  17. Water-stable crosslinked sulfonated polyimide-silica nanocomposite containing interpenetrating polymer network

    NASA Astrophysics Data System (ADS)

    Lee, Chang Hyun; Hwang, Shin Young; Sohn, Joon Yong; Park, Ho Bum; Kim, Ju Young; Lee, Young Moo

    Sulfonated polyimide (SPI) interpenetrating polymer network (IPN) (IXSPI)-silica (SiO 2) nanocomposite membranes were fabricated as proton conducting solid electrolytes for fuel cells. Urethane acrylate non-ionomers (UANs) were used as dispersants to homogeneously distribute nanosized SiO 2 and, simultaneously, as crosslinkers to induce IPN structure formation. IXSPI-SiO 2 nanocomposite membranes showed high proton conductivity and hydrolytic stability, and low methanol permeability as compared with those of pristine SPI. Interestingly, the casting solvent for membrane fabrication influenced membrane performances, especially proton conductivity. In particular, dimethyl sulfoxide exhibited a strong interaction with sulfonic acid groups in the polymer matrix, which hindered them from spontaneously releasing protons and reduced the proton conductivity and electrochemical performances of the resulting membranes. Crosslinkers with long polyethylene oxide chains also contributed to improved proton conductivity and increased single cell performances.

  18. Polymer nanosieve membranes for CO2-capture applications

    NASA Astrophysics Data System (ADS)

    Du, Naiying; Park, Ho Bum; Robertson, Gilles P.; Dal-Cin, Mauro M.; Visser, Tymen; Scoles, Ludmila; Guiver, Michael D.

    2011-05-01

    Microporous organic polymers (MOPs) are of potential significance for gas storage, gas separation and low-dielectric applications. Among many approaches for obtaining such materials, solution-processable MOPs derived from rigid and contorted macromolecular structures are promising because of their excellent mass transport and mass exchange capability. Here we show a class of amorphous MOP, prepared by [2+3] cycloaddition modification of a polymer containing an aromatic nitrile group with an azide compound, showing super-permeable characteristics and outstanding CO2 separation performance, even under polymer plasticization conditions such as CO2/light gas mixtures. This unprecedented result arises from the introduction of tetrazole groups into highly microporous polymeric frameworks, leading to more favourable CO2 sorption with superior affinity in gas mixtures, and selective CO2 transport by presorbed CO2 molecules that limit access by other light gas molecules. This strategy provides a direction in the design of MOP membrane materials for economic CO2 capture processes.

  19. Ionic site imaging in polymer membranes for water filtration applications

    NASA Astrophysics Data System (ADS)

    Rothe, Deborah Ruth

    The morphologies of ionic domains within poly(styrene-co-acrylic acid) (SAA) copolymers and sulfonated biphenyl sulfone (BPS) copolymers neutralized with Cu(II) were investigated using scanning transmission electron microscopy (STEM) and X-ray scattering. The ionic domain size for the SAA copolymers was independent of acid content while the BPS copolymers revealed an increase in ionic aggregate diameter with increasing sulfonate content. STEM imaging revealed large ionic groups in the higher sulfonate-containing polymer. It was the higher sulfonate material which had high water flux but poorer salt rejection properties. Additional analysis of the BPS copolymers with differential scanning calorimetry (DSC) did not show a detectable glass transition temperature (Tg), suggesting a distribution of ionic interactions which tethered polymer chains, restricting their mobility and governed thermal behavior. These results suggest the heterogeneous distribution of large ionic domains within the BPS polymer that may facilitate salt transport through the membrane via overlapping ion rich regions.

  20. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  1. Gradiently crosslinked polymer electrolyte membranes in fuel cells

    NASA Astrophysics Data System (ADS)

    An, De; Wu, Bin; Zhang, Genlei; Zhang, Wen; Wang, Yuxin

    2016-01-01

    Polymer electrolyte membranes in fuel cells should be high in both ionic conductivity and mechanical strength. However, the two are often exclusive to each other. To solve this conundrum, a novel strategy is proposed in this paper, with extensively researched sulfonated poly (ether ether ketone) (SPEEK) membrane as a paradigm. A SPEEK membrane of high sulfonation degree is simply post-treated with NaBH4 and H2SO4 solution at ambient temperature for a certain time to afford the membrane with a gradient crosslinking structure. Measurements via 1H NMR, ATR-FTIR and SEM-EDS are conducted to verify such structural changes. The gradient crosslinks make practically no damage to proton conductance, but effectively restrain the membrane from over swelling and greatly enhance its tensile strength. A H2-O2 fuel cell with the gradiently crosslinked SPEEK membrane shows a maximal power density of 533 mW cm-2 at 80 °C, whereas the fuel cell with the pristine SPEEK membrane cannot be operated beyond 30 °C.

  2. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    PubMed

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA).

  3. Polymer hydrogel nanoparticles and their networks

    NASA Astrophysics Data System (ADS)

    Lu, Xihua

    The thermally responsive hydroxypropyl cellulose (HPC) hydrogel nanoparticles have been synthesized and characterized. The HPC particles were obtained by chemically crosslinking collapsed HPC polymer chains in water-surfactant (dodecyltrimethylammonium bromide) dispersion above the lower critical solution temperature (LCST) of the HPC. The size distributions of the nanoparticles, measured by dynamic light scattering, have been correlated with synthesis conditions including surfactant concentration, polymer concentration, and reaction temperature. The swelling and phase transition properties of the resultant HPC nanoparticles have been analyzed using both static and dynamic light scattering techniques. By first making gel nanoparticles and then covalently bonding them together, we have engineered a new class of gels with two levels of structural hierarchy: the primary network is crosslinked polymer chains in each individual particle, while the secondary network is a system of crosslinked nanoparticles. The covalent bonding contributes to the structural stability of the nanostructured gels, while self-assembly provides them with crystal structures that diffract light, resulting in colors. By using N-isopropylacrylamide copolymer hydrogel nanoparticles, we have synthesized nanoparticle networks that display a striking iridescence like precious opal but are soft and flexible like gelatin. This is in contrast to previous colored hydrogels, which were created either by adding dyes or fluorescent, or by organic solvent or by embedding a colloidal crystal array of polymer solid spheres. Creating such periodic 3D structures in materials allows us to obtain useful functionality not only from the constituent building blocks but also from the long-range ordering that characterizes these structures. Hydroxypropyl cellulose (HPC) and poly (acrylic acid) (PAA) complexes were studied using turbidity measurement and laser light scattering. The phase transition temperature of the

  4. Mechanisms of gas permeation through polymer membranes. Summary technical report, September 1989--August 1991

    SciTech Connect

    Stern, S.A.

    1991-12-31

    The objective of the present study is to investigate the mechanisms of gas transport in and through polymer membranes and the dependence of these mechanisms on pressure and temperature. This information is required for the development of new, energy-efficient membrane processes for the separation of industrial gas mixtures. Such processes are based on the selective permeation of the components of gas mixtures through nonporous polymer membranes. Recent work has been focused on the permeation of gases through membranes made from glassy polymers, i.e., at temperatures below the glass transition of the polymers (Tg). Glassy polymers are very useful membrane materials for gas separations because of their high selectivity toward different gases. Gases permeate through nonporous polymer membranes by a ``solution-diffusion`` process. Consequently, in order to understand the characteristics of this process it is necessary to investigate also the mechanisms of gas solution and diffusion in glassy polymers. 23 refs., 10 figs., 4 tabs.

  5. Protamine-sensitive polymer membrane electrode: characterization and bioanalytical applications.

    PubMed

    Yun, J H; Meyerhoff, M E; Yang, V C

    1995-01-01

    A polymeric membrane electrode that exhibits significant and analytically useful potentiometric response to submicromolar levels of the heparin antagonist, protamine, is reported. The sensor is prepared by incorporating a lipophilic cation exchanger, potassium tetrakis(4-chlorophenyl)borate (KTpClPB) (at 1 wt%), within a specially formulated polymer membrane composed of 33 wt% 2-nitrophenyl octyl ether (2-NPOE), and 66 wt% poly(vinyl chloride) (PVC). When the polymer film is mounted in an appropriate electrode body, the resulting membrane electrode responds reproducibly to protamine via a nonequilibrium quasi-steady-state change in the phase boundary potential at the membrane/sample interface. Such response can be used to directly monitor, via classical potentiometric titrations, the binding between protamine and a variety of native (porcine and beef) as well as low-molecular-weight heparins. Scatchard analysis of the EMF titration data provides binding constants and stoichiometries for protamine-heparin interactions. The electrode can be further used to follow the enzymatic digestion of protamine by trypsin. In the presence of a given level of protamine, initial rates of potential decrease (-dE/dt) are shown to be linearly related to trypsin activity in solution over the range of 0-130 units/ml. The speed and simplicity of the protamine sensor make it an attractive alternative to classical methods for studying the interaction of protamine with other biologically important macromolecules as well as the proteolytic activity and reaction kinetics of trypsin.

  6. A peristaltic micropump using traveling waves on a polymer membrane

    NASA Astrophysics Data System (ADS)

    Nakahara, K.; Yamamoto, M.; Okayama, Y.; Yoshimura, K.; Fukagata, K.; Miki, N.

    2013-08-01

    We demonstrate a peristaltic micropump that utilizes traveling waves on polymer membranes to transport liquids. This micropump requires no valves and, more importantly, the traveling waves can be generated by a single actuator. These features enable the design of simple, compact devices. This micropump has a hydraulic displacement amplification mechanism (HDAM) that encapsulates an incompressible fluid with flexible polymer membranes made of polydimethyl siloxane. A microchannel is attached to the top side of the HDAM. We used a cantilever-type piezoelectric actuator to oscillate the flexible membrane at the bottom of the HDAM, while the top-side membrane drives the liquid in the channel. This format enables rectangular parallelepiped micropumps as compact as 36 mm long, 10 mm wide and several millimeters high, depending on the channel height. Experiments using the fabricated micropumps equipped with microchannels of various heights revealed that the flow rate was dependent on the ratio of the amplitude of the traveling waves to the height of the fluidic channel. The manufactured micropump could successfully generate a maximum flow rate of 1.5 ml min-1 at 180 mW.

  7. Fouling of microfiltration membranes by organic polymer coagulants and flocculants: controlling factors and mechanisms.

    PubMed

    Wang, Sen; Liu, Charles; Li, Qilin

    2011-01-01

    Organic polymers are commonly used as coagulants or flocculants in pretreatment for microfiltration (MF). These high molecular weight compounds are potential membrane foulants when carried over to the MF filters. This study examined fouling of three MF membranes of different materials by three commonly used water treatment polymers: poly(diallyldimethylammonium) chloride (pDADMAC), polyacrylamide (PAM), and poly(acrylic acid-co-acrylamide (PACA) with a wide range of molecular weights. The effects of polymer molecular characteristics, membrane surface properties, solution condition and polymer concentration on membrane fouling were investigated. Results showed severe fouling of microfiltration membranes at very low polymer concentrations, suggesting that residual polymers carried over from the coagulation/flocculation basin can contribute significantly to membrane fouling. The interactions between polymers and membranes depended strongly on the molecular size and charge of the polymer. High molecular weight, positively charged polymers caused the greatest fouling. Blockage of membrane pore openings was identified as the main fouling mechanism with no detectable internal fouling in spite of the small molecular size of the polymers relative to the membrane pore size. Solution conditions (e.g., pH and calcium concentration) that led to larger polymer molecular or aggregate sizes resulted in greater fouling.

  8. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    DOE PAGES

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; ...

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks).more » The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.« less

  9. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    SciTech Connect

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; Henderson, Ian M.; Bouxsein, Nathan F.

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.

  10. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    PubMed Central

    Andersson, Jakob; Köper, Ingo

    2016-01-01

    Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties. PMID:27249006

  11. Transferable coarse-grained model for perfluorosulfonic acid polymer membranes

    NASA Astrophysics Data System (ADS)

    Kuo, An-Tsung; Okazaki, Susumu; Shinoda, Wataru

    2017-09-01

    Perfluorosulfonic acid (PFSA) polymer membranes are widely used as proton exchange membranes. Because the structure of the aqueous domain within the PFSA membrane is expected to directly influence proton conductance, many coarse-grained (CG) simulation studies have been performed to investigate the membrane morphology; these studies mostly used phenomenological models, such as dissipative particle dynamics. However, a chemically accurate CG model is required to investigate the morphology in realistic membranes and to provide a concrete molecular design. Here, we attempt to construct a predictive CG model for the structure and morphology of PFSA membranes that is compatible with the Sinoda-DeVane-Klein (SDK) CG water model [Shinoda et al., Mol. Simul. 33, 27 (2007)]. First, we extended the parameter set for the SDK CG force field to examine a hydrated PFSA membrane based on thermodynamic and structural data from experiments and all-atom (AA) molecular dynamics (MD) simulations. However, a noticeable degradation of the morphology motivated us to improve the structural properties by using the iterative Boltzmann inversion (IBI) approach. Thus, we explored a possible combination of the SDK and IBI approaches to describe the nonbonded interaction. The hybrid SDK/IBI model improved the structural issues of SDK, showing a better agreement with AA-MD in the radial distribution functions. The hybrid SDK/IBI model was determined to reasonably reproduce both the thermodynamic and structural properties of the PFSA membrane for all examined water contents. In addition, the model demonstrated good transferability and has considerable potential for application to realistic long-chained PFSA membranes.

  12. Transferable coarse-grained model for perfluorosulfonic acid polymer membranes.

    PubMed

    Kuo, An-Tsung; Okazaki, Susumu; Shinoda, Wataru

    2017-09-07

    Perfluorosulfonic acid (PFSA) polymer membranes are widely used as proton exchange membranes. Because the structure of the aqueous domain within the PFSA membrane is expected to directly influence proton conductance, many coarse-grained (CG) simulation studies have been performed to investigate the membrane morphology; these studies mostly used phenomenological models, such as dissipative particle dynamics. However, a chemically accurate CG model is required to investigate the morphology in realistic membranes and to provide a concrete molecular design. Here, we attempt to construct a predictive CG model for the structure and morphology of PFSA membranes that is compatible with the Sinoda-DeVane-Klein (SDK) CG water model [Shinoda et al., Mol. Simul. 33, 27 (2007)]. First, we extended the parameter set for the SDK CG force field to examine a hydrated PFSA membrane based on thermodynamic and structural data from experiments and all-atom (AA) molecular dynamics (MD) simulations. However, a noticeable degradation of the morphology motivated us to improve the structural properties by using the iterative Boltzmann inversion (IBI) approach. Thus, we explored a possible combination of the SDK and IBI approaches to describe the nonbonded interaction. The hybrid SDK/IBI model improved the structural issues of SDK, showing a better agreement with AA-MD in the radial distribution functions. The hybrid SDK/IBI model was determined to reasonably reproduce both the thermodynamic and structural properties of the PFSA membrane for all examined water contents. In addition, the model demonstrated good transferability and has considerable potential for application to realistic long-chained PFSA membranes.

  13. Conductivity and Stability of Photopolymerized Polymer Electrolyte Network

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; He, Ruixuan; Chen, Yu-Ming; Mao, Jialin; Zhu, Yu; Kyu'S Group, , Dr.; Zhu'S Group Collaboration, , Dr.

    2014-03-01

    A melt-processing window has been identified within the wide isotropic region of the phase diagram of ternary blends consisting of poly (ethylene glycol diacrylate) (PEGDA), tetraethylene glycol dimethyl ether (TEGDME) and lithium bis(trifluoromethane) sulfonamide (LiTFSI). Upon UV-crosslinking of PEGDA in the isotropic window, the polymer electrolyte membrane (PEM) network thus formed is completely transparent and remains in the single phase without undergoing polymerization-induced phase separation or polymerization-induced crystallization. These PEM networks are solid albeit flexible and light-weight with safety and space saving attributes. The ionic conductivity as determined by AC impedance spectroscopy exhibited very high room-temperature ionic conductivity on the order of ~10-3 S/cm in several compositions, viz., 10/45/45, 20/40/40 and 30/35/35 PEGDA/TEGDME/LiTFSI networks. Cyclic voltammetry measurement of these solid-state PEM networks revealed excellent electrochemical stability against lithium reference electrode. The above study has been extended to the anode (graphite) and cathode (LiFePO4) half-cell configurations with lithium as counter electrode. Charge/discharge cycling behavior of these half cells will be discussed. Supported by NSF-DMR 1161070 and University of Akron.

  14. Molecular modeling of amorphous, non-woven polymer networks.

    PubMed

    Krausse, Constantin A; Milek, Theodor; Zahn, Dirk

    2015-10-01

    We outline a simple and efficient approach to generating molecular models of amorphous polymer networks. Similar to established techniques of preparing woven polymer networks from quenching high-temperature molecular simulation runs, we use a molecular dynamics simulations of a generic melt as starting points. This generic melt is however only used to describe parts of the polymers, namely the cross-linker units which positions are adopted from particle positions of the quenched melt. Specific degrees of network connectivity are tuned by geometric criteria for linker-linker connections and by suitable multi-body interaction potentials applied to the generic melt simulations. Using this technique we demonstrate adjusting fourfold linker coordination in amorphous polymer networks comprising 10-20% under-coordinated linkers. Graphical Abstract Molecular modeling of amorphous, non-woven polymer networks.

  15. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  16. Covalently crosslinked diels-alder polymer networks.

    SciTech Connect

    Bowman, Christopher; Adzima, Brian J.; Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  17. Developments of Novel Polymer Electrolyte Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Irita, Tomomi; Kondo, Masahiro; Aoyama, Hirokazu; Russell, Thomas

    2006-03-01

    Perfluorinated polymer electrolyte membranes (PEM), such as Nafion, are considered to be the most promising candidate for the development of the next generation fuel cell technology. The key technological challenges facing PEMs are their performance, durability and cost. In this research, the polymer electrolyte emulsions (PEE) were obtained by a simple hydrolysis reaction of the precursor polymer emulsion. PEMs are obtained by solvent casting the PEE. The PEE obtained here has a very low viscosity even at high solution concentrations. Using high concentration emulsions greatly reduces the amount of the waste, which makes this technology superior to the conventional ones. Casting conditions were optimized to enhance the mechanical properties, e.g. the tensile strength and viscoelastic properties, of the membrane. The PEMs obtained possessed better ionic conductivity than Nafion while their mechanical properties are comparable. Finally, the cost evaluation for this process was conducted and it was shown that the contribution to the cost reduction becomes bigger. (This research was sponsored by New Energy and Industrial Technology Development Organization, Japan)

  18. Relaxation dynamics of a multihierarchical polymer network

    NASA Astrophysics Data System (ADS)

    Jurjiu, Aurel; Biter, Teodor Lucian; Turcu, Flaviu

    2017-01-01

    In this work, we study the relaxation dynamics of a multihierarchical polymer network built by replicating the Vicsek fractal in dendrimer shape. The relaxation dynamics is investigated in the framework of the generalized Gaussian structure model by employing both Rouse and Zimm approaches. In the Rouse-type approach, we show the iterative procedure whereby the whole eigenvalue spectrum of the connectivity matrix of the multihierarchical structure can be obtained. Remarkably, the general picture that emerges from both approaches, even though we have a mixed growth algorithm, is that the obtained multihierarchical structure preserves the individual relaxation behaviors of its components. The theoretical findings with respect to the splitting of the intermediate domain of the relaxation quantities are well supported by experimental results.

  19. Mesoscopic Simulations of Crosslinked Polymer Networks

    NASA Astrophysics Data System (ADS)

    Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.

    2016-08-01

    A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.

  20. Interpenetrating polymer networks from acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.

    1989-01-01

    As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.

  1. Interpenetrating polymer networks from acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.

    1989-01-01

    As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.

  2. Microfabrication of a Polymer Based Bi-Conductive Membrane for a Polymer Electrolyte Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Hamel, S.; Tsukamoto, T.; Tanaka, S.; Fréchette, L. G.

    2013-12-01

    This paper reports a novel fabrication process of a high active area ratio bi-conductive membrane for PEMFCs. The fabricated device is a 50μm thick flexible polyimide based membrane that integrates for the first time lateral electrical conductive layers on both sides with a through ionic conductive path. With the use of thermo-conductive rubber as a bonding agent allowing a quick-flip process, five configurations of double-sided multilayer metal sputtering on polyimide were tested. An approach for filling through pores in the membrane with the ionic conductor (Nafion) with a temporary reservoir was also developed. The development of these new processes allowed to fabricate a membrane with 50μm wide holes filled with ionic conductor with double-sided electrical conductive layers.

  3. New molecularly-imprinted polymer for carnitine and its application as ionophore in potentiometric selective membranes.

    PubMed

    Moret, Joséphine; Moreira, Felismina T C; Almeida, Sofia A A; Sales, M Goreti F

    2014-10-01

    Carnitine (CRT) is a biological metabolite found in urine that contributes in assessingseveral disease conditions, including cancer. Novel quick screening procedures for CRT are therefore fundamental. This work proposes a novel potentiometric device where molecularly imprinted polymers (MIPs) were used as ionophores. The host-tailored sites were imprinted on a polymeric network assembled by radical polymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM). Non-imprinted polymers (NIPs) were produced as control by removing the template from the reaction media. The selective membrane was prepared by dispersing MIP or NIP particles in plasticizer and poly(vinyl chloride), PVC, and casting this mixture over a solid contact support made of graphite. The composition of the selective membrane was investigated with regard to kind/amount of sensory material (MIP or NIP), and the need for a lipophilic additive. Overall, MIP sensors with additive exhibited the best performance, with near-Nernstian response down to ~1×10(-4)mol L(-1), at pH5, and a detection limit of ~8×10(-5)mol L(-1). Suitable selectivity was found for all membranes, assessed by the matched potential method against some of the most common species in urine (urea, sodium, creatinine, sulfate, fructose and hemoglobin). CRT selective membranes including MIP materials were applied successfully to the potentiometric determination of CRT in urine samples.

  4. Linked in: immunologic membrane nanotube networks.

    PubMed

    Zaccard, C R; Rinaldo, C R; Mailliard, R B

    2016-07-01

    Membrane nanotubes, also termed tunneling nanotubes, are F-actin-based structures that can form direct cytoplasmic connections and support rapid communication between distant cells. These nanoscale conduits have been observed in diverse cell types, including immune, neuronal, stromal, cancer, and stem cells. Until recently, little was known about the mechanisms involved in membrane nanotube development in myeloid origin APCs or how membrane nanotube networks support their ability to bridge innate and adaptive immunity. New research has provided insight into the modes of induction and regulation of the immune process of "reticulation" or the development of multicellular membrane nanotube networks in dendritic cells. Preprogramming by acute type 1 inflammatory mediators at their immature stage licenses mature type 1-polarized dendritic cells to reticulate upon subsequent interaction with CD40 ligand-expressing CD4(+) Th cells. Dendritic cell reticulation can support direct antigen transfer for amplification of specific T cell responses and can be positively or negatively regulated by signals from distinct Th cell subsets. Membrane nanotubes not only enhance the ability of immature dendritic cells to sense pathogens and rapidly mobilize nearby antigen-presenting cells in the peripheral tissues but also likely support communication of pathogen-related information from mature migratory dendritic cells to resident dendritic cells in lymph nodes. Therefore, the reticulation process facilitates a coordinated multicellular response for the efficient initiation of cell-mediated adaptive immune responses. Herein, we discuss studies focused on the molecular mechanisms of membrane nanotube formation, structure, and function in the context of immunity and how pathogens, such as HIV-1, may use dendritic cell reticulation to circumvent host defenses. © Society for Leukocyte Biology.

  5. Wavelength selective polymer network formation of end-functional star polymers.

    PubMed

    Kaupp, Michael; Hiltebrandt, Kai; Trouillet, Vanessa; Mueller, Patrick; Quick, Alexander S; Wegener, Martin; Barner-Kowollik, Christopher

    2016-01-31

    A wavelength selective technique for light-induced network formation based on two photo-active moieties, namely ortho-methylbenzaldehyde and tetrazole is introduced. The network forming species are photo-reactive star polymers generated via reversible activation fragmentation chain transfer (RAFT) polymerization, allowing the network to be based on almost any vinylic monomer. Direct laser writing (DLW) allows to form any complex three-dimensional structure based on the photo-reactive star polymers.

  6. Free-standing membrane polymer laser on the end of an optical fiber

    SciTech Connect

    Zhai, Tianrui E-mail: zhangxinping@bjut.edu.cn; Li, Songtao; Hu, Yujie; Wang, Yimeng; Wang, Li; Zhang, Xinping E-mail: zhangxinping@bjut.edu.cn; Chen, Li

    2016-01-25

    One- and two-dimensional distributed feedback cavities were constructed on free-standing polymer membranes using spin-coating and lift-off techniques. Low threshold lasing was generated through feedback amplification when the 290-nm membrane device was optically pumped, which was attributed to the strong confinement mechanism provided by the active waveguide layer without a substrate. The free-standing membrane polymer laser is flexible and can be transplanted. Single- and dual-wavelength fiber lasers were achieved by directly attaching the membrane polymer laser on the optical fiber end face. This technique provides potential to fabricate polymer lasers on surfaces with arbitrary shapes.

  7. Study of transport through an electro responsive polymer membrane

    NASA Astrophysics Data System (ADS)

    Das, D.; Datta, A.; Contractor, A. Q.

    2015-02-01

    Conducting polymers have been used widely for development of several electronic, sensing devices because of its electro active nature. In the present work porous polycarbonate (PC) support was coated with a thin gold layer. An electrochemically synthesized polyaniline (PANI) film was deposited on gold coated PC and characterisation was done by field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). For measuring the concentration of potassium ion (K+) inductively coupled plasma atomic emission spectrometry (ICP-AES) was used. Potassium ion transport across PANI membrane at various potential showed the gradual opening of the coiled PANI. In this work an effort has been given to picture the situation in the membrane electrolyte junction on application of potential.

  8. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes

    NASA Astrophysics Data System (ADS)

    Song, Qilei; Cao, Shuai; Pritchard, Robyn H.; Ghalei, Behnam; Al-Muhtaseb, Shaheen A.; Terentjev, Eugene M.; Cheetham, Anthony K.; Sivaniah, Easan

    2014-09-01

    Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distributions of microporosity. PIMs contain interconnected regions of micropores with high gas permeability but with a level of heterogeneity that compromises their molecular selectivity. Here we report controllable thermal oxidative crosslinking of PIMs by heat treatment in the presence of trace amounts of oxygen. The resulting covalently crosslinked networks are thermally and chemically stable, mechanically flexible and have remarkable selectivity at permeability that is three orders of magnitude higher than commercial polymeric membranes. This study demonstrates that controlled thermochemical reactions can delicately tune the topological structure of channels and pores within microporous polymers and their molecular sieving properties.

  9. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes.

    PubMed

    Song, Qilei; Cao, Shuai; Pritchard, Robyn H; Ghalei, Behnam; Al-Muhtaseb, Shaheen A; Terentjev, Eugene M; Cheetham, Anthony K; Sivaniah, Easan

    2014-09-04

    Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distributions of microporosity. PIMs contain interconnected regions of micropores with high gas permeability but with a level of heterogeneity that compromises their molecular selectivity. Here we report controllable thermal oxidative crosslinking of PIMs by heat treatment in the presence of trace amounts of oxygen. The resulting covalently crosslinked networks are thermally and chemically stable, mechanically flexible and have remarkable selectivity at permeability that is three orders of magnitude higher than commercial polymeric membranes. This study demonstrates that controlled thermochemical reactions can delicately tune the topological structure of channels and pores within microporous polymers and their molecular sieving properties.

  10. Nanoparticle effect on polymer chain dynamics and entanglement network

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kroger, Martin

    We investigated structure and dynamics of polymer nanocomposites through molecular modeling, by considering different molecular weights of polymers chains, and volume fractions of fillers. The dynamics of unentangled chains can be separated into two phases, a bulk polymer phase and a confined polymer phase between fillers. The dynamics of a confined polymer is slower than that of a bulk polymer, while still exhibiting high mobility. The amount of the bulk polymer phase is found to exponentially decay with increasing volume fraction of fillers. When highly entangled polymer chains are confined between fillers, their conformation and entanglement network are dramatically changed, in district with their unentangled counterparts. The entangled polymer chains are found to be significantly disentangled and flattened during increment of the volume fractions of spherical nonattractive fillers. A critical volume fraction is found to control the crossover from polymer chain entanglements to `nanoparticle entanglements', below which the polymer chain relaxation accelerates upon filling. These results provide a microscopic understanding of the dynamics of entangled polymer chains inside their composites, and offer an explanation for the unusual rheological properties of polymer composites. Supported by Department of Mechanical Engineering, University of Connecticut.

  11. Phase stability of weakly crosslinked interpenerating polymer networks

    NASA Technical Reports Server (NTRS)

    Binder, K.; Frisch, H. L.

    1984-01-01

    A phenomenological theory is formulated for chemically quenched binary interpenetrating polymer networks (IPNs), considering both simultaneously crosslinked networks and sequentially crosslinked networks, as well as pseudointerpenetrating networks (where only one component is crosslinked and the other is a linear polymer). The construction of free energy functionals for homogeneous weakly crosslinked IPNs and pseudo-IPNs and their spinodal curves and critical points of unmixing is described. These free energy functionals are augmented with gradient energy terms in order to consider effects due to spatially varying small inhomogeneities in the network chain concentration. The dynamic response and the initial spinodal decomposition of IPNs are discussed.

  12. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  13. High-Force Dielectric Electroactive Polymer (DEAP) membrane actuator

    NASA Astrophysics Data System (ADS)

    Hau, Steffen; York, Alexander; Seelecke, Stefan

    2016-04-01

    Energy efficiency, lightweight and scalability are key features for actuators in applications such as valves, pumps or any portable system. Dielectric electroactive Polymer (DEAP) technology is able to fulfill these requirements1 better than commonly used technology e.g. solenoids, but has limitations concerning force and stroke. However, the circular DEAP membrane actuator shows a potential increase in stroke in the mm range, when combined with an appropriate biasing mechanism2. Although, thus far, their force range is limited to the single-digit Newton range, or less3,4. This work describes how this force limit of DEAP membrane actuators can be pushed to the high double-digit Newton range and beyond. The concept for such an actuator consists of a stack of double-layered DEAPs membrane actuator combined with a biasing mechanism. These two components are combined in a novel way, which allows a compact design by integrating the biasing mechanism into the DEAP membrane actuator stack. Subsequently, the single components are manufactured, tested, and their force-displacement characteristic is documented. Utilizing this data allows assembling them into actuator systems for different applications. Two different actuators are assembled and tested (dimensions: 85x85x30mm3 (LxWxH)). The first one is able to lift 7.5kg. The second one can generate a force of 66N while acting against a spring load.

  14. Polymer translocation through nano-pores in vibrating thin membranes

    NASA Astrophysics Data System (ADS)

    Menais, Timothée; Mossa, Stefano; Buhot, Arnaud

    2016-12-01

    Polymer translocation is a promising strategy for the next-generation DNA sequencing technologies. The use of biological and synthetic nano-pores, however, still suffers from serious drawbacks. In particular, the width of the membrane layer can accommodate several bases at the same time, making difficult accurate sequencing applications. More recently, the use of graphene membranes has paved the way to new sequencing capabilities, with the possibility to measure transverse currents, among other advances. The reduced thickness of these new membranes poses new questions on the effect of deformability and vibrations of the membrane on the translocation process, two features which are not taken into account in the well established theoretical frameworks. Here, we make a first step forward in this direction. We report numerical simulation work on a model system simple enough to allow gathering significant insight on the effect of these features on the average translocation time, with appropriate statistical significance. We have found that the interplay between thermal fluctuations and the deformability properties of the nano-pore play a crucial role in determining the process. We conclude by discussing new directions for further work.

  15. Polymer translocation through nano-pores in vibrating thin membranes

    PubMed Central

    Menais, Timothée; Mossa, Stefano; Buhot, Arnaud

    2016-01-01

    Polymer translocation is a promising strategy for the next-generation DNA sequencing technologies. The use of biological and synthetic nano-pores, however, still suffers from serious drawbacks. In particular, the width of the membrane layer can accommodate several bases at the same time, making difficult accurate sequencing applications. More recently, the use of graphene membranes has paved the way to new sequencing capabilities, with the possibility to measure transverse currents, among other advances. The reduced thickness of these new membranes poses new questions on the effect of deformability and vibrations of the membrane on the translocation process, two features which are not taken into account in the well established theoretical frameworks. Here, we make a first step forward in this direction. We report numerical simulation work on a model system simple enough to allow gathering significant insight on the effect of these features on the average translocation time, with appropriate statistical significance. We have found that the interplay between thermal fluctuations and the deformability properties of the nano-pore play a crucial role in determining the process. We conclude by discussing new directions for further work. PMID:27934936

  16. Poly(vinyl alcohol)/poly(vinyl chloride) composite polymer membranes for secondary zinc electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Yang, Jen Ming; Wu, Cheng-Yeou

    A microporous composite polymer membrane composed of poly(vinyl alcohol) (PVA) and poly(vinyl chloride) (PVC), was prepared by a solution casting method and a partial dissolution process. The characteristic properties of microporous PVA/PVC composite polymer membranes containing 2.5-10 wt.% PVC polymers as fillers were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), capillary flow porometry (CFP), micro-Raman spectroscopy, dynamic mechanical analyzer (DMA) and the AC impedance method. The electrochemical properties of a secondary Zn electrode with the PVA/PVC composite polymer membrane were studied using the galvanostatic charge/discharge method. The PVA/PVC composite polymer membrane showed good thermal, mechanical and electrochemical properties. As a result, the PVA/PVC composite polymer membrane appears to be a good candidate for use on the secondary Zn electrodes.

  17. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  18. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was

  19. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    SciTech Connect

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  20. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  1. Self-assembled polymer nanocomposites and their networks

    NASA Astrophysics Data System (ADS)

    Patil, Nitin Vikas

    This dissertation describes new routes to synthesize polymer nanocomposite networks via self-assembly. Polymerizable structure directing agents (referred to as surfmers) obtained by end-group functionalization preserves the structure-directing capabilities of the surfactant for templating ordered mesoporous silica particle growth, while simultaneously generating a reactive matrix for polymer network formation through reactive end groups in the presence of intimately mixed mesoporous silicates. A combination of small angle X-ray scattering, surface area, and microscopy experiments on mesoporous silica indicated the structure directing capabilities of surfmers. Free-radical polymerization of the surfmer leads to novel crosslinked nanocomposites networks. Multiple experiments, including gel permeation chromatography, swelling, and solid state NMR experiments on polymer nanocomposites gave evidence of the polymerization of surfmer leading to formation of crosslink networks. Polymer nanocomposites with varied silica content were prepared. Effects of silica content on polymer nanocomposites were studied on rheometer. Results obtained from rheological experiments indicate that the storage (G') and loss modulus (G") increases with increase in the content of mesoporous silica. In this way, the nanocomposites networks obtained via self-assembly shows independent behavior with respect to frequency in rheological experiments. Additionally, this self-assembled route was extended to synthesize biodegradable and biocompatible polymer nanocomposites networks. The nanocomposite networks obtained with 15% of silica content showed the increase in storage modulus by two orders of magnitude in rheological experiments.

  2. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability.

    PubMed

    Shin, Dong Won; Guiver, Michael D; Lee, Young Moo

    2017-03-03

    A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.

  3. Polysiloxane Based Interpenetrating Polymer Networks: synthesis and Properties

    NASA Astrophysics Data System (ADS)

    Fichet, Odile; Vidal, Frédéric; Darras, Vincent; Boileau, Sylvie; Teyssié, Dominique

    This article summarizes a large amount of work carried out in our laboratory on polysiloxane based Interpenetrating Polymer Networks (IPNs). First, a polydimethylsiloxane (PDMS) network has been combined with a cellulose acetate butyrate (CAB) network in order to improve its mechanical properties. Second, a PDMS network was combined with a fluorinated polymer network. Thanks to a perfect control of the respective rates of formation of each network it has been possible to avoid polymer phase separation during the IPN synthesis. Physico-chemical analyses of these materials led to classify them as "true" IPNs according to Sperling's definition. In addition, synergy of the mechanical properties, on the one hand, and of the surface properties, on the other hand, was displayed.

  4. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    DOEpatents

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  5. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    PubMed Central

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  6. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates

    NASA Astrophysics Data System (ADS)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M.; Zhu, Xiang; Dai, Sheng

    2014-04-01

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energyand environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to ‘classical’ methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  7. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    PubMed

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  8. Conductivity in zeolite-polymer composite membranes for PEMFCs

    NASA Astrophysics Data System (ADS)

    Sancho, T.; Soler, J.; Pina, M. P.

    Structured materials, such as zeolites can be candidates to be used as electrolytes in proton exchange membrane fuel cells (PEMFC) to substitute polymeric membranes, taking advantage of their higher chemical and thermal stability and their specific adsorption properties. The possibility to work at temperatures of nearly 150 °C would make easy the selection of the fuel, decreasing the influence of CO in the catalyst poisoning, and it would also improve the kinetics of the electrochemical reactions involved. In this work, four zeolites and related materials have been studied: mordenite, NaA zeolite, umbite and ETS-10. In special, the influence of relative humidity and temperature have been carefully explored. A conductivity cell was designed and built to measure in cross direction, by using the electrochemical impedance spectroscopy. The experimental system was validated using Nafion ® as a reference material by comparing the results with bibliography data. Samples were prepared by pressing the zeolite powders, with size of 1 μm on average, using polymer PVDF (10 wt.%) as a binder. The results here obtained, in spite of not reaching the absolute values of the Nafion ® ones, show a lower effect of the dehydration phenomenon on the conduction performance in the temperature range studied (from room temperature to 150 °C). This increase of the operation temperature range would give important advantages to the PEMFC. ETS-10 sample shows the best behaviour with respect to conductivity exhibiting an activation energy value comparable with reported for Nafion ® membrane.

  9. Porous networks derived from synthetic polymer-clay complexes

    SciTech Connect

    Carrado, K.A.; Thiyagarajan, P.; Elder, D.L.

    1995-05-12

    Synthetic hectorites were hydrothermally crystallized with direct incorporation of a cationic polymer poly(dimethyl diallyl ammonium chloride) (PDDA), and two neutral cellulosic polymers hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose (HEC). Synthetic PDDA-hectorite displays the lowest d-spacing at 15.8 {Angstrom} along with less polymer incorporation (7.8 wt % organic) than the neutral polymers (18--22 wt % organic). Thermal analysis and small angle neutron scattering were used to further examine the polymer-clay systems. Clay platelets of the largest size and best stacking order occur when cationic PDDA polymer is used. PDDA also enhances these properties over the crystallites prepared for a control mineral, where no polymer is used. HEC acts to aggregate the silica, leaving less to react to form clay. The clay platelets which result from HEC are small, not stacked to a large degree, and oriented randomly. Neutral HPMC acts more like cationic PDDA in that larger clay platelets are allowed to form. The extended microstructure of the clay network remains undisturbed after polymer is removed by calcination. When no polymer is used, the synthetic hectorite has a N{sub 2} BET surface area of 200 M{sup 2}/gm, even after calcination. This increases by 20--50% for the synthetic polymer-hectorites after the polymer is removed by calcination.

  10. Phase diagram of hopping conduction mechanisms in polymer nanofiber network

    SciTech Connect

    Li, Jeng-Ting; Lu, Yu-Cheng; Jiang, Shiau-Bin; Zhong, Yuan-Liang; Yeh, Jui-Ming

    2015-12-07

    Network formation by nanofiber crosslinking is usually in polymer materials as application in organic semiconductor devices. Electron hopping transport mechanisms depend on polymer morphology in network. Conducting polymers morphology in a random network structure is modeled by a quasi-one-dimensional system coupled of chains or fibers. We observe the varying hopping conduction mechanisms in the polyaniline nanofibers of the random network structure. The average diameter d of the nanofibers is varied from approximately 10 to 100 nm. The different dominant hopping mechanisms including Efros-Shklovskii variable-range hopping (VRH), Mott VRH, and nearest-neighbor hopping are dependent on temperature range and d in crossover changes. The result of this study is first presented in a phase diagram of hopping conduction mechanisms based on the theories of the random network model. The hopping conduction mechanism is unlike in normal semiconductor materials.

  11. Polymer-Fullerene Network Formation via Light-Induced Crosslinking.

    PubMed

    Sugawara, Yuuki; Hiltebrandt, Kai; Blasco, Eva; Barner-Kowollik, Christopher

    2016-09-01

    A facile and efficient methodology for the formation of polymer-fullerene networks via a light-induced reaction is reported. The photochemical crosslinking is based on a nitrile imine-mediated tetrazole-ene cycloaddition reaction, which proceeds catalyst-free under UV-light irradiation (λmax = 320 nm) at ambient temperature. A tetrazole-functionalized polymer (Mn = 6500 g mol(-1) , Ð = 1.3) and fullerene C60 are employed for the formation of the hybrid networks. The tetrazole-functionalized polymer as well as the fullerene-containing networks are carefully characterized by NMR spectrometry, size exclusion chromatography, infrared spectroscopy, and elemental analysis. Furthermore, thermal analysis of the fullerene networks and their precursors is carried out. The current contribution thus induces an efficient platform technology for fullerene-based network formation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Durability aspects of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sethuraman, Vijay Anand

    In order for the successful adoption of proton exchange membrane (PEM) fuel cell technology, it is imperative that durability is understood, quantified and improved. A number of mechanisms are known to contribute to PEMFC membrane electrode assembly (MEA) performance degradation. In this dissertation, we show, via experiments, some of the various processes that degrade the proton exchange membrane in a PEM fuel cell; and catalyst poisoning due to hydrogen sulfide (H2S) and siloxane. The effect of humidity on the chemical stability of two types of membranes, [i.e., perfluorosulfonic acid type (PFSA, NafionRTM 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the MEAs to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of NafionRTM membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed NafionRTM 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, membrane degradation was more pronounced at lower humidities and (ii) at a given relative humidity operation, increasing the cell temperature accelerated membrane degradation. Mechanical stability of these two types of membranes was also studied using relative humidity (RH) cycling. Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell were estimated by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in HClO4. The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. H 2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water

  13. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492

  14. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  15. Membrane transport of hydrocortisone acetate from supersaturated solutions; the role of polymers.

    PubMed

    Raghavan, S L; Kiepfer, B; Davis, A F; Kazarian, S G; Hadgraft, J

    2001-06-19

    Permeation of hydrocortisone acetate (HA) from supersaturated solutions was studied across a model silicone membrane. Supersaturated solutions were prepared using the cosolvent technique with propylene glycol and water (or aqueous polymer solutions) as the cosolvents. In the absence of the polymer, the flux of HA was similar at all degrees of saturation and was not significantly different from the value obtained for a saturated solution. Flux enhancement, as a result of supersaturation, was observed with all the polymers. The flux increased with increasing polymer concentration, reached a maximum and decreased at higher polymer percentages. The amount of polymer required for maximum enhancement differed for each polymer. The decrease of flux at high polymer concentrations is attributed to changes in microviscosity and a marginal increase in solubility. The infrared spectroscopic and differential scanning calorimetry data suggest that HA-polymer interactions occurred through hydrogen bonding thus explaining the proposed mechanism of the anti-nucleant properties of the polymers.

  16. Simulation of nanostructured electrodes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Rao, Sanjeev M.; Xing, Yangchuan

    Aligned carbon nanotubes (CNTs) with Pt uniformly deposited on them are being considered in fabricating the catalyst layer of polymer electrolyte membrane (PEM) fuel cell electrodes. When coated with a proton conducting polymer (e.g., Nafion) on the Pt/CNTs, each Pt/CNT acts as a nanoelectrode and a collection of such nanoelectrodes constitutes the proposed nanostructured electrodes. Computer modeling was performed for the cathode side, in which both multicomponent and Knudsen diffusion were taken into account. The effect of the nanoelectrode lengths was also studied with catalyst layer thicknesses of 2, 4, 6, and 10 μm. It was observed that shorter lengths produce better electrode performance due to lower diffusion barriers and better catalyst utilization. The effect of spacing between the nanoelectrodes was studied. Simulation results showed the need to have sufficiently large gas pores, i.e., large spacing, for good oxygen transport. However, this is at the cost of obtaining large electrode currents due to reduction of the number of nanoelectrodes per unit geometrical area of the nanostructured electrode. An optimization of the nanostructured electrodes was obtained when the spacing was at about 400 nm that produced the best limiting current density.

  17. A combined network model for membrane fouling.

    PubMed

    Griffiths, I M; Kumar, A; Stewart, P S

    2014-10-15

    Membrane fouling during particle filtration occurs through a variety of mechanisms, including internal pore clogging by contaminants, coverage of pore entrances, and deposition on the membrane surface. Each of these fouling mechanisms results in a decline in the observed flow rate over time, and the decrease in filtration efficiency can be characterized by a unique signature formed by plotting the volumetric flux, Q^, as a function of the total volume of fluid processed, V^. When membrane fouling takes place via any one of these mechanisms independently the Q^V^ signature is always convex downwards for filtration under a constant transmembrane pressure. However, in many such filtration scenarios, the fouling mechanisms are inherently coupled and the resulting signature is more difficult to interpret. For instance, blocking of a pore entrance will be exacerbated by the internal clogging of a pore, while the deposition of a layer of contaminants is more likely once the pores have been covered by particulates. As a result, the experimentally observed Q^V^ signature can vary dramatically from the canonical convex-downwards graph, revealing features that are not captured by existing continuum models. In a range of industrially relevant cases we observe a concave-downwardsQ^V^ signature, indicative of a fouling rate that becomes more severe with time. We derive a network model for membrane fouling that accounts for the inter-relation between fouling mechanisms and demonstrate the impact on the Q^V^ signature. Our formulation recovers the behaviour of existing models when the mechanisms are treated independently, but also elucidates the concave-downward Q^V^ signature for multiple interactive fouling mechanisms. The resulting model enables post-experiment analysis to identify the dominant fouling modality at each stage, and is able to provide insight into selecting appropriate operating regimes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Eigentime identities for random walks on a family of treelike networks and polymer networks

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; Wang, Xiaoqian; Sun, Yanqiu; Sun, Yu; Su, Weiyi

    2017-10-01

    In this paper, we investigate the eigentime identities quantifying as the sum of reciprocals of all nonzero normalized Laplacian eigenvalues on a family of treelike networks and the polymer networks. Firstly, for a family of treelike networks, it is shown that all their eigenvalues can be obtained by computing the roots of several small-degree polynomials defined recursively. We obtain the scalings of the eigentime identity on a family of treelike with network size Nn is Nn lnNn. Then, for the polymer networks, we apply the spectral decimation approach to determine analytically all the eigenvalues and their corresponding multiplicities. Using the relationship between the generation and the next generation of eigenvalues we obtain the scalings of the eigentime identity on the polymer networks with network size Nn is Nn lnNn. By comparing the eigentime identities on these two kinds of networks, their scalings with network size Nn are all Nn lnNn.

  19. Performance of cell-penetrating peptide-linked polymers physically mixed with poorly membrane-permeable molecules on cell membranes.

    PubMed

    Sakuma, Shinji; Suita, Masaya; Yamamoto, Takafumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Nakajima, Noriko; Shinkai, Norihiro; Yamauchi, Hitoshi; Hiwatari, Ken-Ichiro; Hashizume, Akio; Tachikawa, Hiroyuki; Kimura, Ryoji; Ishimaru, Yuki; Kasai, Atsushi; Maeda, Sadaaki

    2012-05-01

    We are investigating a new class of penetration enhancers that enable poorly membrane-permeable molecules physically mixed with them to effectively penetrate cell membranes without their concomitant cellular uptake. Since we previously revealed that poly(N-vinylacetamide-co-acrylic acid) modified with d-octaarginine, which is a typical cell-penetrating peptide, significantly enhanced the nasal absorption of insulin, we examined the performance of the polymers on cell membranes. When Caco-2 cells were incubated with 5(6)-carboxyfluorescein (CF) for 30 min, approximately 0.1% of applied CF was internalized into the cells. This poor membrane permeability was dramatically enhanced by d-octaarginine-linked polymers; a 25-fold increase in the cellular uptake of CF was observed when the polymer concentration was adjusted to 0.2mg/mL. None of the individual components, for example, d-octaarginine, had any influence on CF uptake, demonstrating that only d-octaarginine anchored chemically to the polymeric platform enhanced the membrane permeation of CF. The polymer-induced CF uptake was consistently high even when the incubation time was extended to 120 min. Confocal laser scanning microphotographs of cells incubated with d-octaarginine-linked polymers bearing rhodamine red demonstrated that the cell outline was stained with red fluorescence. The polymer-induced CF uptake was significantly suppressed by 5-(N-ethyl-N-isopropyl)amiloride, which is an inhibitor of macropinocytosis. Results indicated that d-octaarginine-linked polymers remained on the cell membrane and poorly membrane-permeable CF was continuously internalized into cells mainly via macropinocytosis repeated for the individual peptidyl branches in the polymer backbone.

  20. Structure/property relationships in polymer membranes for water purification and energy applications

    NASA Astrophysics Data System (ADS)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  1. Polymer Electrolyte Membrane (PEM) Fuel Cells Modeling and Optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuqian; Wang, Xia; Shi, Zhongying; Zhang, Xinxin; Yu, Fan

    2006-11-01

    Performance of polymer electrolyte membrane (PEM) fuel cells is dependent on operating parameters and designing parameters. Operating parameters mainly include temperature, pressure, humidity and the flow rate of the inlet reactants. Designing parameters include reactants distributor patterns and dimensions, electrodes dimensions, and electrodes properties such as porosity, permeability and so on. This work aims to investigate the effects of various designing parameters on the performance of PEM fuel cells, and the optimum values will be determined under a given operating condition.A three-dimensional steady-state electrochemical mathematical model was established where the mass, fluid and thermal transport processes are considered as well as the electrochemical reaction. A Powell multivariable optimization algorithm will be applied to investigate the optimum values of designing parameters. The objective function is defined as the maximum potential of the electrolyte fluid phase at the membrane/cathode interface at a typical value of the cell voltage. The robustness of the optimum design of the fuel cell under different cell potentials will be investigated using a statistical sensitivity analysis. By comparing with the reference case, the results obtained here provide useful tools for a better design of fuel cells.

  2. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    PubMed Central

    Kreuzer, Martin; Trapp, Marcus; Dahint, Reiner; Steitz, Roland

    2015-01-01

    In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride) (PAH) in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions. PMID:26703746

  3. Water purification by reverse osmosis using heterocyclic polymer membranes

    NASA Technical Reports Server (NTRS)

    Scott, H.

    1972-01-01

    Pyrrone (polyimidazopyrrolone) polymers are a new class of thermally stable, radiation and chemical resistant aromatic-heterocyclic polymers featuring a greater chemical and mechanical durability than cellulose acetate.

  4. Synthesis and characterization of polymer electrolyte membranes with controlled ion transport properties

    NASA Astrophysics Data System (ADS)

    Xu, Kui

    2011-12-01

    Ion-containing block copolymers hold promise as next-generation polymer electrolyte membrane (PEM) materials due to their capability to self-assemble into ordered nanostructures facilitating proton transport over a wide range of conditions. Ion-containing block copolymers, sulfonated poly(styrene- b-vinylidene fluoride-b-styrene), with varied degrees of sulfonation were synthesized. The synthetic strategy involved a new approach to chain-end functionalized poly(vinylidene fluoride) as a macro-initiator followed by atom transfer polymerization of styrene and sulfonation. Characterization of the polymers were extensively carried out by 1H and 19F nuclear magnetic resonance and Fouriertransform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry analysis. Tapping mode atomic force microscopy and transmission electron microscopy were applied to study the phase separation and self-assembled morphology. Strong dependence of ion exchange capacity, water absorption, morphology and proton conductivity on the degree of sulfonation has been found. It has been observed that the conductivities of the block copolymers are considerably higher than the random copolymers of polystyrene and sulfonated polystyrene possessing similar ion exchange capacities. Copolymers of vinylidene fluoride and perfluoro(4-methyl-3,6-dioxane-7-ene) sulfonyl fluoride containing amino end-groups were synthesized for the first time. The prepared aminoterminated polymers underwent cross-linking reactions with 1,3,5-benzene triisocyanate to form proton conductive networks. The chain-end crosslinked fluoropolymer membranes exhibited excellent thermal, hydrolytic and oxidative stabilities. The ion exchange capacity, water uptake, the state of absorbed water, and transport properties of the membranes were found to be highly dependent upon the chemical composition of the copolymers. The cross-linked membranes showed extremely low methanol permeability, while maintaining high proton

  5. Computational modeling study on polymer electrolyte membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Choe, Yoong-Kee; Tsuchida, Eiji

    2016-12-01

    Properties of polymer electrolyte membranes (PEMs) for use in polymer electrolyte membrane fuel cells (PEFCs) were investigated using the first-principles molecular dynamics simulations. One important issue in PEMs is how to improve the proton conductivity of PEMs under low hydration conditions. Results of the simulation show that perfluorinated type membranes such as Nafion exhibit excellent hydrophilic/hydrophobic phase separation while a hydrocarbon membrane has a relatively poor phase separation property. We found that such a poor phase separation behavior of a hydrocarbon membrane arise from hydrophilic functional groups attached to the PEMs.

  6. Graft polymerization and plasma treatment of polymer membranes for fouling reduction: a review.

    PubMed

    Kochkodan, Victor M; Sharma, Virender K

    2012-01-01

    This article presents a review of recent developments in surface modification of polymer membranes via graft polymerization and plasma treatment for reduction of fouling with organic compounds and microorganisms in pressure driven membrane processes. The factors affecting membrane fouling, such as membrane hydrophilicity, charge and surface roughness are discussed. The recent studies in which the reduction of organic fouling and biofouling by the modification of the membrane surface via ultraviolet/redox initiated surface grafting of hydrophilic polymers and low temperature plasma treatment are reviewed.

  7. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces

    PubMed Central

    Iwasaki, Yasuhiko; Ishihara, Kazuhiko

    2012-01-01

    This review article describes fundamental aspects of cell membrane-inspired phospholipid polymers and their usefulness in the development of medical devices. Since the early 1990s, polymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) units have been considered in the preparation of biomaterials. MPC polymers can provide an artificial cell membrane structure at the surface and serve as excellent biointerfaces between artificial and biological systems. They have also been applied in the surface modification of some medical devices including long-term implantable artificial organs. An MPC polymer biointerface can suppress unfavorable biological reactions such as protein adsorption and cell adhesion – in other words, specific biomolecules immobilized on an MPC polymer surface retain their original functions. MPC polymers are also being increasingly used for creating biointerfaces with artificial cell membrane structures. PMID:27877525

  8. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  9. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  10. Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.

    PubMed

    Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo

    2011-07-01

    The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).

  11. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    SciTech Connect

    Dorenbos, G.

    2015-06-14

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead, respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ∼0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.

  12. Interaction of anionic phenylene ethynylene polymers with lipids: from membrane embedding to liposome fusion.

    PubMed

    Karam, Pierre; Hariri, Amani A; Calver, Christina F; Zhao, Xiaoyong; Schanze, Kirk S; Cosa, Gonzalo

    2014-09-09

    Here we report spectroscopic studies on the interaction of negatively charged, amphiphilic polyphenylene ethynylene (PPE) polymers with liposomes prepared either from negative, positive or zwitterionic lipids. Emission spectra of PPEs of 7 and 49 average repeat units bearing carboxylate terminated side chains showed that the polymer embeds within positively charged lipids where it exists as free chains. No interaction was observed between PPEs and negatively charged lipids. Here the polymer remained aggregated giving rise to broad emission spectra characteristic of the aggregate species. In zwitterionic lipids, we observed that the majority of the polymer remained aggregated yet a small fraction readily embedded within the membrane. Titration experiments revealed that saturation of zwitterionic lipids with polymer typically occurred at a polymer repeat unit to lipid mole ratio close to 0.05. No further membrane embedding was observed above that point. For liposomes prepared from positively charged lipids, saturation was observed at a PPE repeat unit to lipid mole ratio of ∼0.1 and liposome precipitation was observed above this point. FRET studies showed that precipitation was preceded by lipid mixing and liposome fusion induced by the PPEs. This behavior was prominent for the longer polymer and negligible for the shorter polymer at a repeat unit to lipid mole ratio of 0.05. We postulate that fusion is the consequence of membrane destabilization whereby the longer polymer gives rise to more extensive membrane deformation than the shorter polymer.

  13. High-Performance Polymers for Membrane CO2 /N2 Separation.

    PubMed

    Liu, Junyi; Hou, Xianda; Park, Ho Bum; Lin, Haiqing

    2016-11-02

    This Concept examines strategies to design advanced polymers with high CO2 permeability and high CO2 /N2 selectivity, which are the key to the success of membrane technology for CO2 capture from fossil fuel-fired power plants. Specifically, polymers with enhanced CO2 solubility and thus CO2 /N2 selectivity are designed by incorporating CO2 -philic groups in polymers such as poly(ethylene oxide)-containing polymers and poly(ionic liquids); polymers with enhanced CO2 diffusivity and thus CO2 permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO2 /N2 separation properties for CO2 capture from flue gas are highlighted. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    SciTech Connect

    Gervasio, Dominic Francis

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  15. High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports.

    PubMed

    Ge, Qinqin; Wang, Zhengbao; Yan, Yushan

    2009-12-02

    We report a new strategy: use of polymer-zeolite composite hollow fibers as supports. Zeolite membranes with high performance (flux = 8.0-9.0 kg m(-2) h(-1), alpha >10 000) can be synthesized directly on polymer-zeolite composite hollow fiber supports by a single in situ hydrothermal crystallization. The zeolite crystals imbedded in the polymer hollow fiber serve as seeds for the zeolite membrane growth, and they also "anchor" the zeolite membrane to the support to increase the adhesion of the zeolite membrane. Therefore, a separate and often complex seeding process can be omitted. A very uniform crystal distribution can be obtained easily, so continuous zeolite membranes can be prepared with high reproducibility. These composite hollow fibers can be produced simply by blending zeolite crystals into the polymer feed before the hollow fiber extrusion and thus are expected to be inexpensive.

  16. Study on effect of poly (ethylene oxide) addition and in-situ porosity generation on poly (vinylidene fluoride)-glass ceramic composite membranes for lithium polymer batteries

    NASA Astrophysics Data System (ADS)

    Shubha, Nageswaran; Prasanth, Raghavan; Hng, Huey Hoon; Srinivasan, Madhavi

    2014-12-01

    The effect of blending polyethylene oxide with poly (vinylidene fluoride)-lithium aluminum germanium phosphate (LAGP) composite and in-situ porosity generation on the electrochemical performance of polymer electrolytes based on non-woven fibrous mats is studied. Electrospinning process parameters are controlled to get a fibrous membrane consisting of bead-free, multilayered, three dimensional network structure of ultrafine fibers. The electrospun membranes are subjected to a preferential polymer dissolution process to prepare a highly porous structure. The membranes show high surface roughness with uniformly sized and distributed pores on the fibers. The membranes with good mechanical strength, thermal stability and high porosity exhibit high swelling when activated with liquid electrolyte. The prepared composite polymer electrolytes show high ionic conductivity. The addition of the glass ceramic improves the mechanical and thermal stability, while blending and in-situ porosity generation improves the ionic conductivity, charge-discharge performance, cycling stability, interface properties and compatibility with lithium electrode.

  17. Synthetic Oral Mucin Mimic from Polymer Micelle Networks

    PubMed Central

    2015-01-01

    Mucin networks are formed in the oral cavity by complexation of glycoproteins with other salivary proteins, yielding a hydrated lubricating barrier. The function of these networks is linked to their structural, chemical, and mechanical properties. Yet, as these properties are interdependent, it is difficult to tease out their relative importance. Here, we demonstrate the ability to recreate the fibrous like network through a series of complementary rinses of polymeric worm-like micelles, resulting in a 3-dimensional (3D) porous network that can be deposited layer-by-layer onto any surface. In this work, stability, structure, and microbial capture capabilities were evaluated as a function of network properties. It was found that network structure alone was sufficient for bacterial capture, even with networks composed of the adhesion-resistant polymer, poly(ethylene glycol). The synthetic networks provide an excellent, yet simple, means of independently characterizing mucin network properties (e.g., surface chemistry, stiffness, and pore size). PMID:24992241

  18. Discriminating lysosomal membrane protein types using dynamic neural network.

    PubMed

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  19. Structure of hydrated Na-Nafion polymer membranes.

    PubMed

    Blake, Nick P; Petersen, Matt K; Voth, Gregory A; Metiu, Horia

    2005-12-29

    We use molecular dynamics simulations to investigate the structure of the hydrated Na-Nafion membranes. The membrane is "prepared" by starting with the Nafion chains placed on a cylinder having the water inside it. Minimizing the energy of the system leads to a filamentary hydrophilic domain whose structure depends on the degree of hydration. At 5 wt % water the system does not have enough water molecules to solvate all the ions that could be formed by the dissociation of the -SO3Na groups. As a result, the -SO3Na groups aggregate with the water to form very small droplets that do not join into a continuous phase. The size of the droplets is between 5 and 8 A. As the amount of water present in the membrane is increased, the membrane swells, and SO3Na has an increasing tendency to dissociate into ions. Furthermore, a transition to a percolating hydrophilic network is observed. In the percolating structure, the water forms irregular curvilinear channels branching in all directions. The typical dimension of the cross section of these channels is about 10-20 A. Calculated neutron scattering from the simulated system is in qualitative agreement with experiment. In all simulations, the pendant sulfonated perfluorovinyl side chains of the Nafion hug the walls of the hydrophilic channel, while the sulfonate groups point toward the center of the hydrophilic phase. The expulsion of the side chains from the hydrophilic domain is favored because it allows better interaction between the water molecules. We have also examined the probability of finding water molecules around the Na+ and the -SO3(-) ions as well as the probability of finding other water molecules next to a given water molecule. These probabilities are much broader than those found in bulk water or for one ion in bulk water (calculated with the potentials used in the present simulation). This is due to the highly inhomogeneous nature of the material contained in the small hydrophilic pores.

  20. Creep-induced anisotropy in covalent adaptable network polymers.

    PubMed

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-08-29

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  1. Viscoelastic Properties of Polymer Networks: A Study Using Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Valentine, Megan T.; Dewalt, Luke E.; Ou-Yang, H. Daniel

    1996-03-01

    We report a study of the viscoelastic response of a gel-network of polystyrene latex spheres embedded in telechelic poly(ethylene oxide). We measure, using a position sensitive detector, the in-phase and out-of-phase responses of one sphere relative to the harmonic displacement of the optical tweezers. With this set-up we can study the viscoelastic responses over a broad range of frequencies and shear rates. We will be reporting the dynamics of polymer-polymer and particle-polymer interactions from the viscoelastic data.

  2. Swelling-induced surface instabilities in growing poroelastic polymer networks

    NASA Astrophysics Data System (ADS)

    Hennessy, Matthew G.; Vitale, Alessandra; Cabral, Joao T.; Matar, Omar K.

    2016-11-01

    The swelling that occurs when a deformable polymer network absorbs solvent can generate large compressive stresses which, in turn, can lead to a rich variety of surface instabilities. In this talk, we will discuss recent experiments by our group which suggest that the growth of a polymer network by photopolymerisation and the onset of swelling-induced surface instabilities can simultaneously occur and drive the self-assembly of complex three-dimensional structures. In addition, we will present a theoretical model of photopolymersation that captures the growth, swelling, and mechanical response of the polymer network. The model is based on an Eulerian formulation of nonlinear poroelasticity. The transport of monomer is described by a generalisation of Darcy's law that accounts for flow due to gradients in the pressure and composition. A combination of asymptotic analysis and finite-element simulations is used to explore the coupling between growth and instability as well as the resulting surface morphologies.

  3. Fluorinated Azobenzenes for Shape-Persistent Liquid Crystal Polymer Networks.

    PubMed

    Iamsaard, Supitchaya; Anger, Emmanuel; Aßhoff, Sarah Jane; Depauw, Alexis; Fletcher, Stephen P; Katsonis, Nathalie

    2016-08-16

    Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the activated shape is required to have thermal stability have been precluded. Previous attempts to incorporate molecular switches into thermally stable photoisomers were unsuccessful at photogenerating macroscopic shapes that are retained over time. Herein, we show that to preserve photoactivated molecular deformation on the macroscopic scale, it is important not only to engineer the thermal stability of the photoswitch but also to adjust the cross-linking density in the polymer network and to optimize the molecular orientations in the material. Our strategy resulted in materials containing fluorinated azobenzenes that retain their photochemical shape for more than eight days, which constitutes the first demonstration of long-lived photomechanical deformation in liquid-crystal polymer networks.

  4. Nonlinear dynamics and thermodynamics of azobenzene polymer networks

    NASA Astrophysics Data System (ADS)

    Oates, William S.; Bin, Jonghoon

    2013-04-01

    The nonlinear photomechanics and thermodynamics of azobenzene liquid crystal polymer networks is studied to quantify interactions between wavelength dependent molecular conformation changes that occur within a polymer network. The transfer of energy from light to liquid crystals to a polymer network strongly depends on the wavelength and polarization of light where trans or rod shaped azobenzene chromophores convert to a cis or kinked conformation and simultaneously may relax back to the trans state but in a different orientation. This behavior requires an understanding of the dynamic interactions between light and azobenzene molecules and thermodynamics of light-matter interactions. We investigate this behavior by quantifying transmission and absorption of electro-magnetic energy with stored energy within the solid material. This is conducted by introducing a set of optical order parameters coupled to photochemistry that evolve as a function of electro-magnetic radiation.

  5. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals

    NASA Astrophysics Data System (ADS)

    Bachman, Jonathan E.; Smith, Zachary P.; Li, Tao; Xu, Ting; Long, Jeffrey R.

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  6. Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes

    DOEpatents

    Mittelsteadt, Cortney; Argun, Avni; Laicer, Castro; Willey, Jason

    2017-08-08

    In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methods using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.

  7. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals.

    PubMed

    Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  8. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-08-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm-1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.

  9. From Semi-Flexible Polymers to Membranes: Anomalous Diffusion and Reptation

    NASA Astrophysics Data System (ADS)

    Granek, R.

    1997-12-01

    The dynamics of semi-flexible polymers and membranes is discussed. The effect of thermal undulations on both the transversal and longitudinal Mean Square Displacement (MSD) of a tagged “monomer” is studied in free polymers and membranes. The two MSDs are found to be proportional to one another, and behave as sim t^{3/4} for polymers and sim t^{2/3} for membranes on the short time scale. The longitudinal motion is shown to be linked to the dynamics of fluctuations of the projected length (area) of the polymer (membrane). We demonstrate how, at long times, these fluctuations lead to reptation motion of the polymer (membrane) in the longitudinal direction. We generalize this approach to investigate the motion of a membrane between two plates and a polymer in a tube. The latter problem is used as a model for polymer motion in semi-dilute solutions in which the persistence length is longer than the entanglement length. Such systems are not suitable for the classical reptation model of de-Gennes and of Doi and Edwards, which was designed for chains that are flexible on the entanglement distance. The reptation diffusion coefficient and relaxation times that we obtain have the same scaling with chain length L as in the classical reptation model, but differ greatly in factors that are dependent on the ratio of persistence length to entanglement length. We also discuss the diffusion of a tagged “monomer” under imposed tension and liquid crystalline order.

  10. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    PubMed Central

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm−1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance. PMID:25168687

  11. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety.

    PubMed

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-08-29

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm(-1) at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350 °C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.

  12. Poly(Capro-Lactone) Networks as Actively Moving Polymers

    NASA Astrophysics Data System (ADS)

    Meng, Yuan

    Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double

  13. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    NASA Astrophysics Data System (ADS)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  14. Novel Ceramic-Polymer Composite Membranes for the Separation of Liquid Waste

    SciTech Connect

    Cohen, Yoram

    2000-06-01

    There is a growing need in the areas of hazardous waste treatment, remediation and pollution prevention for new processes capable of selectively separating and removing target organic species from aqueous steams. Membrane separation processes are especially suited for solute removal from dilute solutions. They have the additional advantage of requiring less energy relative to conventional separation technologies (e.g., distillation, extraction and even adsorption processes). The major difficulty with current membranes is the poor longevity of polymeric membranes under harsh conditions (high temperature, harsh solvents and pH conditions) and the lack of selectivity of ceramic membranes. In our previous work (1996 EMSP project), a first generation of novel polymer-ceramic (PolyCer) composite membranes were developed with the goal of overcoming the above difficulties. The proposed PolyCer membranes are fabricated by a surface-graft polymerization process resulting in a molecular layer of polymer chains which are terminally and covalently anchored to the porous membrane support. The polymer imparts the desired membrane selectivity while the ceramic support provides structural integrity. The PolyCer membrane retain its structural integrity and performance even when the polymer phase is exposed to harsh solvent conditions since the polymer chains are covalently bonded to the ceramic support surface. To date, prototype PolyCer membranes were developed for two different membrane separation processes: (a) pervaporation removal of organics from aqueous systems; and (b) ultrafiltration of oil-in-water emulsions. Pervaporation PolyCer membranes were demonstrated for removal of selected organics (TCE, chloroform and MTBE) from water with permeate enrichment factors as high as 300. While the above results have been extremely encouraging, higher enrichment factors (>1000) should be sought for field applications. The above improvement is feasible by increasing the length and

  15. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and

  16. Characterization of flooding and two-phase flow in polymer electrolyte membrane fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Karimi, G.; Jafarpour, F.; Li, X.

    A partially flooded gas diffusion layer (GDL) model is proposed and solved simultaneously with a stack flow network model to estimate the operating conditions under which water flooding could be initiated in a polymer electrolyte membrane (PEM) fuel cell stack. The models were applied to the cathode side of a stack, which is more sensitive to the inception of GDL flooding and/or flow channel two-phase flow. The model can predict the stack performance in terms of pressure, species concentrations, GDL flooding and quality distributions in the flow fields as well as the geometrical specifications of the PEM fuel cell stack. The simulation results have revealed that under certain operating conditions, the GDL is fully flooded and the quality is lower than one for parts of the stack flow fields. Effects of current density, operating pressure, and level of inlet humidity on flooding are investigated.

  17. Quantitative Measurement of Cationic Polymer Vector and Polymer/pDNA Polyplex Intercalation into the Cell Plasma Membrane

    PubMed Central

    Vaidyanathan, Sriram; Anderson, Kevin B.; Merzel, Rachel L.; Jacobovitz, Binyamin; Kaushik, Milan P.; Kelly, Christina N.; van Dongen, Mallory A.; Dougherty, Casey A.; Orr, Bradford G.; Holl, Mark M. Banaszak

    2016-01-01

    Cationic gene delivery agents (vectors) are important for delivering nucleotides, but are also responsible for cytotoxicity. Cationic polymers (L-PEI, jetPEI, and G5 PAMAM) at 1x to 100x the concentrations required for translational activity (protein expression) induced the same increase in plasma membrane current of HEK 293A cells (30-50 nA) as measured by whole cell patch-clamp. This indicates saturation of the cell membrane by the cationic polymers. The increased currents induced by the polymers are not reversible for over 15 minutes. Irreversibility on this time scale is consistent with a polymer-supported pore or carpet model and indicates that the cell is unable to clear the polymer from the membrane. For polyplexes, although the charge concentration was the same (at N: P ration of 10:1), G5 PAMAM and jetPEI polyplexes induced a much larger current increase (40- 50 nA) than L-PEI polyplexes (< 20 nA). Both free cationic lipid and lipid polyplexes induced a lower increase in current than cationic polymers (< 20 nA). To quantify the membrane bound material, partition constants were measured for both free vectors and polyplexes into the HEK 293A cell membrane using a dye influx assay. The partition constants of free vectors increased with charge density of the vectors. Polyplex partition constants did not show such a trend. The long lasting cell plasma permeability induced by exposure to the polymer vectors or the polyplexes provides a plausible mechanism for the toxicity and inflammatory response induced by exposure to these materials. PMID:25952271

  18. Quantitative Measurement of Cationic Polymer Vector and Polymer-pDNA Polyplex Intercalation into the Cell Plasma Membrane.

    PubMed

    Vaidyanathan, Sriram; Anderson, Kevin B; Merzel, Rachel L; Jacobovitz, Binyamin; Kaushik, Milan P; Kelly, Christina N; van Dongen, Mallory A; Dougherty, Casey A; Orr, Bradford G; Banaszak Holl, Mark M

    2015-06-23

    Cationic gene delivery agents (vectors) are important for delivering nucleotides, but are also responsible for cytotoxicity. Cationic polymers (L-PEI, jetPEI, and G5 PAMAM) at 1× to 100× the concentrations required for translational activity (protein expression) induced the same increase in plasma membrane current of HEK 293A cells (30-50 nA) as measured by whole cell patch-clamp. This indicates saturation of the cell membrane by the cationic polymers. The increased currents induced by the polymers are not reversible for over 15 min. Irreversibility on this time scale is consistent with a polymer-supported pore or carpet model and indicates that the cell is unable to clear the polymer from the membrane. For polyplexes, although the charge concentration was the same (at N/P ratio of 10:1), G5 PAMAM and jetPEI polyplexes induced a much larger current increase (40-50 nA) than L-PEI polyplexes (<20 nA). Both free cationic lipid and lipid polyplexes induced a lower increase in current than cationic polymers (<20 nA). To quantify the membrane bound material, partition constants were measured for both free vectors and polyplexes into the HEK 293A cell membrane using a dye influx assay. The partition constants of free vectors increased with charge density of the vectors. Polyplex partition constants did not show such a trend. The long lasting cell plasma permeability induced by exposure to the polymer vectors or the polyplexes provides a plausible mechanism for the toxicity and inflammatory response induced by exposure to these materials.

  19. Characterization of sulfonated poly(ether ether ketone)/silane nanocomposite membrane for high temperature polymer electrolyte membrane fuel cells.

    PubMed

    Ghil, Lee-Jin; Kim, Chang-Kyeom; Park, Na-Ri; Rhee, Hee-Woo

    2011-01-01

    The perfluorosulfonic acid polymer membrane is most widely used in PEMFCs. However, its some major drawbacks like high cost and performance limitation at high temperature are obstacles of its commercialization. The goal of this study was to develop low cost membranes which have good conductivity in the range of PEMFCs operating temperature. We fabricated new sPEEK/3-APTES nanocomposite membrane where inorganic particles were chemically bonded to sulfuric acid group of sPEEK. PEEK is a thermally stable, mechanically tough and very cheap polymer. And the addition of 3-APTES and phosphorous acid increased the proton conductivity of composite membranes at high temperatures. This nanocomposite membranes maintained good conductivity at 110 degrees C.

  20. Polymer Membranes with Vertically Oriented Pores Constructed by 2D Freezing at Ambient Temperature.

    PubMed

    Liang, Hong-Qing; Ji, Ke-Jia; Zha, Li-Yun; Hu, Wen-Bing; Ou, Yang; Xu, Zhi-Kang

    2016-06-08

    Polymer membranes with well-controlled and vertically oriented pores are of great importance in the applications for water treatment and tissue engineering. On the basis of two-dimensional solvent freezing, we report environmentally friendly facile fabrication of such membranes from a broad spectrum of polymer resources including poly(vinylidene fluoride), poly(l-lactic acid), polyacrylonitrile, polystyrene, polysulfone and polypropylene. Dimethyl sulfone, diphenyl sulfone, and arachidic acid are selected as green solvents crystallized in the polymer matrices under two-dimensional temperature gradients induced by water at ambient temperature. Parallel Monte Carlo simulations of the lattice polymers demonstrate that the directional process is feasible for each polymer holding suitable interaction with a corresponding solvent. As a typical example of this approach, poly(vinylidene fluoride) membranes exhibit excellent tensile strength, high optical transparence, and outstanding separation performance for the mixtures of yeasts and lactobacilli.

  1. The use of conducting polymers in membrane-based separations: a review and recent developments.

    PubMed

    Pellegrino, John

    2003-03-01

    As a material family, pi-conjugated polymers (also known as intrinsically conductive polymers) elicit the possibility of both exploiting the chemical and physical attributes of the polymer for membrane-based separations and incorporating its electronic and electrochemical properties to enhance the separation figures-of-merit. This review article, although by no means comprehensive, provides a current snapshot of the investigations from many research laboratories in the use of conducting polymers for membrane-based separations. The review focuses primarily on polyaniline, polypyrrole, and substituted-polythiophene and includes applications in gas separations, liquid (and/or vapor) separations, and ion separations. Additionally, we discuss the broad challenges and accomplishments in membrane formation from conducting polymers.

  2. Network formation and gelation in telechelic star polymers.

    PubMed

    Wadgaonkar, Indrajit; Chatterji, Apratim

    2017-02-28

    We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.

  3. Network formation and gelation in telechelic star polymers

    NASA Astrophysics Data System (ADS)

    Wadgaonkar, Indrajit; Chatterji, Apratim

    2017-02-01

    We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.

  4. Externally cooled high temperature polymer electrolyte membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Scholta, J.; Messerschmidt, M.; Jörissen, L.; Hartnig, Ch.

    One key issue in high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stack development is heat removal at the operating temperature of 140-180 °C. Conventionally, this process is done using coolants such as thermooil, steam or pressurized water. In this contribution, external liquid cooling designs are described, which are avoiding two constraints. First, in the cell active area, no liquid coolant is present avoiding any sealing problems with respect to the electrode. Secondly, the external positioning allows high temperature gradients between the heat removal zone and the active area resulting in a good adjustability of appropriate reformate conversion temperatures (e.g. 160 °C) and a more compact cell design. Different design concepts were investigated using modeling techniques and a selection of them has also been investigated experimentally. The experiments proved the feasibility of the external cooling design and showed that the temperature gradients within the active area are below 15 K under typical operating conditions.

  5. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    SciTech Connect

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  6. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    PubMed

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  7. A review of polymer electrolyte membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Neburchilov, Vladimir; Martin, Jonathan; Wang, Haijiang; Zhang, Jiujun

    This review describes the polymer electrolyte membranes (PEM) that are both under development and commercialized for direct methanol fuel cells (DMFC). Unlike the membranes for hydrogen fuelled PEM fuel cells, among which perfluorosulfonic acid based membranes show complete domination, the membranes for DMFC have numerous variations, each has its advantages and disadvantages. No single membrane is emerging as absolutely superior to others. This review outlines the prospects of the currently known membranes for DMFC. The membranes are evaluated according to various properties, including: methanol crossover, proton conductivity, durability, thermal stability and maximum power density. Hydrocarbon and composite fluorinated membranes currently show the most potential for low cost membranes with low methanol permeability and high durability. Some of these membranes are already beginning to impact the portable fuel cell market.

  8. Advancing reversible shape memory by tuning the polymer network architecture

    DOE PAGES

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K–1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less

  9. Advancing reversible shape memory by tuning the polymer network architecture

    SciTech Connect

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; Nykypanchuk, Dmytro; Gang, Oleg; Sheiko, Sergei S.

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loose network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K–1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.

  10. Controlled architecture for improved macromolecular memory within polymer networks.

    PubMed

    DiPasquale, Stephen A; Byrne, Mark E

    2016-08-01

    This brief review analyzes recent developments in the field of living/controlled polymerization and the potential of this technique for creating imprinted polymers with highly structured architecture with macromolecular memory. As a result, it is possible to engineer polymers at the molecular level with increased homogeneity relating to enhanced template binding and transport. Only recently has living/controlled polymerization been exploited to decrease heterogeneity and substantially improve the efficiency of the imprinting process for both highly and weakly crosslinked imprinted polymers. Living polymerization can be utilized to create imprinted networks that are vastly more efficient than similar polymers produced using conventional free radical polymerization, and these improvements increase the role that macromolecular memory can play in the design and engineering of new drug delivery and sensing platforms.

  11. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  12. Study of interactions between polymer nanoparticles and cell membranes at atomistic levels.

    PubMed

    Yong, Chin W

    2015-02-05

    Knowledge of how the structure of nanoparticles and the interactions with biological cell membranes is important not only for understanding nanotoxicological effects on human, animal health and the environment, but also for better understanding of nanoparticle fabrication for biomedical applications. In this work, we use molecular modelling techniques, namely molecular dynamics (MD) simulations, to explore how polymer nanoparticles interact with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid cell membranes. Two different polymers have been considered: 100 monomer units of polyethylene (approx. 2.83 kDa) and polystyrene (approx. 10.4 kDa), both of which have wide industrial applications. We found that, despite the polar lipid head groups acting as an effective barrier to prevent the nanoparticles from interacting with the membrane surface, irreversible adhesion can be initiated by insertion of dangling chain ends from the polymer into the hydrophobic interior of the membrane. In addition, alignment of chain segments from the polymers with that of hydrocarbon chains in the interior of the membrane facilitates the complete immersion of the nanoparticles into the cell membrane. These findings highlight the importance of the surface and the topological structures of the polymer particles that dictate the absorption behaviour into the membrane and, subsequently, induce the possible translocation into the cell. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Study of interactions between polymer nanoparticles and cell membranes at atomistic levels

    PubMed Central

    Yong, Chin W.

    2015-01-01

    Knowledge of how the structure of nanoparticles and the interactions with biological cell membranes is important not only for understanding nanotoxicological effects on human, animal health and the environment, but also for better understanding of nanoparticle fabrication for biomedical applications. In this work, we use molecular modelling techniques, namely molecular dynamics (MD) simulations, to explore how polymer nanoparticles interact with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid cell membranes. Two different polymers have been considered: 100 monomer units of polyethylene (approx. 2.83 kDa) and polystyrene (approx. 10.4 kDa), both of which have wide industrial applications. We found that, despite the polar lipid head groups acting as an effective barrier to prevent the nanoparticles from interacting with the membrane surface, irreversible adhesion can be initiated by insertion of dangling chain ends from the polymer into the hydrophobic interior of the membrane. In addition, alignment of chain segments from the polymers with that of hydrocarbon chains in the interior of the membrane facilitates the complete immersion of the nanoparticles into the cell membrane. These findings highlight the importance of the surface and the topological structures of the polymer particles that dictate the absorption behaviour into the membrane and, subsequently, induce the possible translocation into the cell. PMID:25533094

  14. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    NASA Astrophysics Data System (ADS)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  15. Experimental studies of siloxane polymers and their elastomeric networks

    SciTech Connect

    Kuo, Chung Mien

    1992-12-31

    Siloxane polymers have been investigated systematically for the purpose of a greater understanding of the structure-property relationships in terms of their synthesis, polymer blends and rubber elasticity of their crosslinked networks. This study includes a variety of topological structures: linear, cyclic and crosslinked networks of poly(dimethylsiloxane) (PDMS) and poly(dimethylco-methylphenylsiloxane) copolymers. Siloxane polymers with a narrow molecular weight distribution were prepared by a series of well-characterized organometallic polymerizations. The reaction conditions and mechanisms for preparing polyorganosiloxane chains and networks using organotin catalyst and promoters were discussed. Experimental evidence shows that formamide was one of the best additives to improve the reactivity of the tin dicarboxylate catalyst, which seems to suggest that the nucleophilic function of the additive was on the Sn atom. Since the PDMS and PMPS are immiscible under most conditions, the miscibility and phase behavior of siloxane blends were studied by a static light scattering t technique. THe influence of molar mass, the topological effect of cyclic and linear structures, the end-group effect, and the configurational isomerism effect on miscibility were examined. Silicon networks of PDMS, PMPS and their copolymers were prepared at room temperature using the crosslinked siloxane homopolymer and copolymer networks at equilibrium swelling in organic solvents and in liquid siloxane oligomers were investigated as function of crosslinking density and composition variation. The resulting interaction parameters for PDMS and PMPS from the swollen siloxane networks in siloxane oligomers individually were compared with those from measurements of the corresponding blend systems. Moreover, the stress-strain behavior of the siloxane polymer networks undergoing uniaxial deformation were evaluated by a stress-strain experiment.

  16. The role of polymer membrane formation in sustained release drug delivery systems.

    PubMed

    McHugh, A J

    2005-12-05

    A discussion of the role of polymer membrane-based drug delivery systems is presented. This is followed with a review of recent studies in our laboratories of the membrane formation and drug delivery characteristics of injectable polymer solution platforms. Attention is focused on the role of depot formulation in terms of solvent quality and water miscibility and polymer type (amorphous versus crystallizable), as well as the effects of bath-side additives on the in vitro release behavior. A quantitative model describing the protein release dynamics in fast phase inverting systems (FPI) is also discussed.

  17. Materials issues in polymer electrolyte membrane fuel cells.

    SciTech Connect

    Garland, N. L.; Benjamin, T. G.; Kopasz, J. P.; Chemical Sciences and Engineering Division; DOE

    2008-11-01

    Fuel cells have the potential to reduce the nation's energy use through increased energy conversion efficiency and dependence on imported petroleum by the use of hydrogen from renewable resources. The US DOE Fuel Cell subprogram emphasizes polymer electrolyte membrane (PEM) fuel cells as replacements for internal combustion engines in light-duty vehicles to support the goal of reducing oil use in the transportation sector. PEM fuel cells are the focus for light-duty vehicles because they are capable of rapid start-up, demonstrate high operating efficiency, and can operate at low temperatures. The program also supports fuel cells for stationary power, portable power, and auxiliary power applications where earlier market entry would assist in the development of a fuel cell manufacturing and supplier base. The technical focus is on developing materials and components that enable fuel cells to achieve the fuel cell subprogram objectives, primarily related to system cost and durability. For transportation applications, the performance and cost of a fuel cell vehicle must be comparable or superior to today's gasoline vehicles to achieve widespread penetration into the market and achieve the desired reduction in petroleum consumption. By translating vehicle performance requirements into fuel cell system needs, DOE has defined technical targets for 2010 and 2015. These targets are based on competitiveness with current internal combustion engine vehicles in terms of vehicle performance and cost, while providing improvements in efficiency of a factor of 2.5 to 3. The overall system targets are: a 60% peak-efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW by 2010 and $30/kW by 2015. DOE's approach to achieving these technical and cost targets is to improve existing materials and to identify and qualify new materials.

  18. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization.

    PubMed

    Gao, Yangyang; Wu, Youping; Liu, Jun; Zhang, Liqun

    2016-12-06

    By adopting coarse-grained molecular dynamics simulations, the effect of polymer functionalization on the relationship between the microstructure and the electric percolation probability of nanorod filled polymer nanocomposites has been investigated. At a low chain functionalization degree, the nanorods in the polymer matrix form isolated aggregates with a local order structure. At a moderate chain functionalization degree, the local order structure of the nanorod aggregate is gradually broken up. Meanwhile, excessive functionalization chain beads can connect the isolated aggregates together, which leads to the maximum size of nanorod aggregation. At a high chain functionalization degree, it forms a single nanorod structure in the matrix. As a result, the highest percolation probability of the materials appears at the moderate chain functionalization degree, which is attributed to the formation of the tightly connected nanorod network by analyzing the main cluster. In addition, this optimum chain functionalization degree exists at two chain functionalization modes (random and diblock). Lastly, under the tensile field, even though the contact distance between nanorods nearly remains unchanged, the topological structure of the percolation network is broken down. While under the shear field, the contact distance between nanorods increases and the topological structure of the percolation network is broken down, which leads to a decrease in the percolation probability. In total, the topological structure of the percolation network dominates the percolation probability, which is not a necessary connection with the contact distance between nanorods. In summary, this work presents further understanding of the electric conductive properties of nanorod-filled nanocomposites with functionalized polymers.

  19. Polymer Solar Cells: Solubility Controls Fiber Network Formation.

    PubMed

    van Franeker, Jacobus J; Heintges, Gaël H L; Schaefer, Charley; Portale, Giuseppe; Li, Weiwei; Wienk, Martijn M; van der Schoot, Paul; Janssen, René A J

    2015-09-16

    The photoactive layer of polymer solar cells is commonly processed from a four-component solution, containing a semiconducting polymer and a fullerene derivative dissolved in a solvent-cosolvent mixture. The nanoscale dimensions of the polymer-fullerene morphology that is formed upon drying determines the solar cell performance, but the fundamental processes that govern the size of the phase-separated polymer and fullerene domains are poorly understood. Here, we investigate morphology formation of an alternating copolymer of diketopyrrolopyrrole and a thiophene-phenyl-thiophene oligomer (PDPPTPT) with relatively long 2-decyltetradecyl (DT) side chains blended with [6,6]-phenyl-C71-butyric acid methyl ester. During solvent evaporation the polymer crystallizes into a fibrous network. The typical width of these fibers is analyzed by quantification of transmission electron microscopic images, and is mainly determined by the solubility of the polymer in the cosolvent and the molecular weight of the polymer. A higher molecular weight corresponds to a lower solubility and film processing results in a smaller fiber width. Surprisingly, the fiber width is not related to the drying rate or the amount of cosolvent. We have made solar cells with fiber widths ranging from 28 to 68 nm and found an inverse relation between fiber width and photocurrent. Finally, by mixing two cosolvents, we develop a ternary solvent system to tune the fiber width. We propose a model based on nucleation-and-growth which can explain these measurements. Our results show that the width of the semicrystalline polymer fibers is not the result of a frozen dynamical state, but determined by the nucleation induced by the polymer solubility.

  20. Proton conducting, high modulus polymer electrolyte membranes by polymerization-induced microphase separation

    NASA Astrophysics Data System (ADS)

    Chopade, Sujay; Hillmyer, Marc; Lodge, Timothy

    Robust solid-state polymer electrolyte membranes (PEMs) are vital for designing next-generation lithium-ion batteries and high-temperature fuel cells. However, the performance of diblock polymer electrolytes is generally limited by poor mechanical stability and network defects in the conducting pathways. We present the in-situ preparation of robust cross-linked PEMs via polymerization-induced microphase separation, and incorporation of protic ionic liquid (IL) into one of the microphase separated domains. The facile design strategy involves a delicate balance between the controlled growth of polystyrene from a poly(ethylene oxide) macro-chain transfer agent (PEO-CTA) and simultaneous chemical cross-linking by divinylbenzene in the presence of IL. Small angle X-ray scattering and transmission electron microscopy confirmed the formation of a disordered structure with bicontinuous morphology and a characteristic domain size of order 20 nm. The long-range continuity of the PEO/protic IL conducting nanochannels and cross-linked polystyrene domains imparts high thermal and mechanical stability to the PEMs, with elastic modulus approaching 10 MPa and a high ionic conductivity of 15 mS/cm at 180 °C.

  1. Application of bias voltage to tune the resonant frequency of membrane-based electroactive polymer energy harvesters

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Grissom, Michael; Fisher, Frank T.

    2016-05-01

    Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, for optimal performance it is necessary to ensure that resonant frequencies of the device match the ambient vibration frequencies for maximum energy harvested. Here a novel resonant frequency tuning approach is proposed by applying a bias voltage to a pre-stretched electroactive polymer (EAP) membrane, such that the resulting changes in membrane tension can tune the device to match the environmental vibration source. First, a material model which accounts for the change in properties due to the pre-stretch of a VHB 4910 EAP membrane is presented. The effect of the bias voltage on the EAP membrane, which induces an electrostatic pressure and corresponding reduction in membrane thickness, are then determined. The FEM results from ANSYS agree well with an analytical hyperelastic model of the activation response of the EAP membrane. Lastly, through a mass-loaded circular membrane vibration model, the effective resonant frequency of the energy harvester can be determined as a function of changes in membrane tension due to the applied bias voltage. In the case of an EAP membrane, pre-stretch contributes to the pre-stretch stiffness of the system while the applied bias voltage contributes to a change in bias voltage stiffness of the membrane. Preliminary experiments verified the resonant frequencies corresponding to the bias voltages predicted from the appropriate models. The proposed bias voltage tuning approach for the EAP membrane may provide a novel tuning strategy to enable energy harvesting from various ambient vibration sources in various application environments.

  2. On the Reverse Asymmetric Gas Transport Effect in the Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Kurchatov, I. M.; Laguntsov, N. I.; Skuridin, I. E.

    In this paper, change of gas permeability value, depending on orientation of polymer gas membrane, in a wide pressure range was investigated. Consistent patterns of asymmetric gas transfer through the PVTMS-membrane were established experimentally. Reverse asymmetric transport effect was observed, wherein the permeability from the direction of porous support prevails at the permeability from the direction of selective non-porous layer.

  3. Morphology and Proton Transport in Sulfonated Block Copolymer and Mesoporous Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    Chen, Chelsea; Wong, David; Beers, Keith; Balsara, Nitash

    2013-03-01

    In an effort to understand the fundamentals of proton transport in polymer electrolyte membranes (PEMs), we have developed a series of poly(styrene-b-ethylene-b-styrene) (SES) membranes. The SES membranes were subsequently sulfonated to yield proton conducting S-SES membranes. We examine the effects of sulfonation level, temperature and thermal history on the morphology of S-SES membranes in both dry and hydrated states. The effects of these parameters on water uptake and proton transport characteristics of the membranes are also examined. Furthermore, building upon the strategy we deployed in sulfonating the SES membranes, we fabricated mesoporous S-SES membranes, with pores lined up with the proton conducting channels. These membranes have three distinct phases: structural block, proton-conducting block, and void. We examine the effects of pore size, domain structure and sulfonation level on water uptake and proton conductivity of the mesoporous PEMs at different temperatures. This work is funded by Department of Energy.

  4. Soft nanoparticles: nano ionic networks of associated ionic polymers

    DOE PAGES

    Aryal, Dipak; Grest, Gary S.; Perahia, Dvora

    2017-01-01

    Directing the formation of nanostructures that serve as building blocks of membranes presents an immense step towards engineering controlled polymeric ion transport systems. Here, using the exquisite atomic detail captured by molecular dynamics simulations, we follow the assembly of a co-polymer that consists of polystyrene sulfonate tethered symmetrically to hydrophobic blocks, realizing a new type of long lived solvent-responsive soft nanoparticle.

  5. Soft nanoparticles: Nano ionic networks of associated ionic polymers

    SciTech Connect

    Aryal, Dipak; Grest, Gary S.; Perahia, Dvora

    2016-12-09

    Directing the formation of nanostructures that serve as building blocks of membranes presents an immense step towards engineering controlled polymeric ion transport systems. Here, using the exquisite atomic detail captured by molecular dynamics simulations, we follow the assembly of a co-polymer that consists of polystyrene sulfonate tethered symmetrically to hydrophobic blocks, realizing a new type of long lived solvent-responsive soft nanoparticle.

  6. Green polymer chemistry: Synthesis of poly(disulfide) polymers and networks

    NASA Astrophysics Data System (ADS)

    Rosenthal-Kim, Emily Quinn

    The disulfide group is unique in that it presents a covalent bond that is easily formed and cleaved under certain biological conditions. While the ease of disulfide bond cleavage is often harnessed as a method of biodegradation, the ease of disulfide bond formation as a synthetic strategy is often overlooked. The objective this research was to synthesize poly(disulfide) polymers and disulfide crosslinked networks from a green chemistry approach. The intent of the green chemistry approach was to take advantage of the mild conditions applicable to disulfide bond synthesis from thiols. With anticipated use as biomaterials, it was also desired that the polymer materials could be degraded under biological conditions. Here, a new method of poly(disulfide) polymer synthesis is introduced which was inspired by the reaction conditions and reagents found in Nature. Ambient temperatures and aqueous mixtures were used in the new method. Hydrogen peroxide, one of the Nature's most powerful oxidizing species was used as the oxidant in the new polymerization reaction. The dithiol monomer, 3,6-dioxa-1,8-octanedithiol was first solubilized in triethylamine, which activated the thiol groups and made the monomer water soluble. At room temperature, the organic dithiol/amine solution was then mixed with dilute aqueous hydrogen peroxide (3% by weight) to make the poly(disulfide) polymers. The presence of a two phase system (organic and aqueous phases) was critical to the polymerization reaction. As the reaction progresses, a third, polymer phase appeared. At ambient temperatures and above, this phase separated from the reaction mixture and the polymer product was easily removed from the reaction solution. These polymers reach Mn > 250,000 g/mol in under two hours. Molecular weight distributions were between 1.5 and 2.0. Reactions performed in an ice bath which remain below room temperature contain high molecular weight polymers with Mn ≈ 120,000 g/mol and have a molecular weight

  7. Morphological analysis of Polyethersulfone/polyvinyl Acetate blend membrane synthesized at various polymer concentrations

    NASA Astrophysics Data System (ADS)

    Hadi, S. H. A. A.; Mannan, H. A.; Mukhtar, H.; Shaharun, M. S.; Murugesan, T.

    2016-06-01

    This paper reports the effect of varying polymer concentration i.e. solvent/polymer ratio on the morphology and gas transport behaviour of polyethersulfone/polyvinyl acetate blend membrane. The solvent used was dimethylformamide, while the manipulated variable was polymer concentration. The concentrations were varied from 75-90 weight % solvent. A homogeneous surface with dense cross-section structure membranes were successfully developed as deduced from FESEM images. The permeability of CO2 and CH4 gases increased with increasing polymer concentration and an improved CO2/CH4 selectivity was observed. These observation made from the characterization justified the applicability of the blend to be synthesized as membrane for gas separation.

  8. Thermoelectric behavior of segregated-network polymer nanocomposites.

    PubMed

    Yu, Choongho; Kim, Yeon Seek; Kim, Dasaroyong; Grunlan, Jaime C

    2008-12-01

    Segregated-network carbon nanotube (CNT)-polymer composites were prepared, and their thermoelectric properties were measured as a function of CNT concentration at room temperature. This study shows that electrical conductivity can be dramatically increased by creating a network of CNTs in the composite, while the thermal conductivity and thermopower remain relatively insensitive to the filler concentration. This behavior results from thermally disconnected, but electrically connected, junctions in the nanotube network, which makes it feasible to tune the properties in favor of a higher thermoelectric figure of merit. With a CNT concentration of 20 wt %, these composites exhibit an electrical conductivity of 4800 S/m, thermal conductivity of 0.34 W/m x K and a thermoelectric figure of merit (ZT) greater than 0.006 at room temperature. This study suggests that polymeric thermoelectrics are possible and provides the basis for further development of lightweight, low-cost, and nontoxic polymer composites for thermoelectric applications in the future.

  9. Hydrophilic polymer coated microporous membranes capable of use as a battery separator

    SciTech Connect

    Taskier, H.T.

    1984-03-20

    The present invention is directed to microporous membranes having a surfactant impregnated therein which is coated on at least one surface thereof with a polymer coating, such as cellulose acetate. The polymer coating possesses functional groups in the presence of an aqueous alkaline environment which permits it to undergo hydrogen bonding with water and to transport battery electrolyte through the coating by diffusion. The presence of the coating on the normally hydrophobic substrate membrane, when used in conjunction with a suitable surfactant, increases the wettability of the substrate membrane and thereby lowers its electrical resistance. The coating also serves to immobilize various soluble electrode derived ions at the coating-electrolyte interface thereby hindering their penetration into the pores of the substrate microporous membrane. Consequently, the plugging of the pores of the substrate membrane by these ions is substantially reduced thereby increasing the life of a battery in which said coated membranes are used as battery separators.

  10. Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells.

    PubMed

    Hou, Hongying; Di Vona, Maria Luisa; Knauth, Philippe

    2011-11-18

    As a key component of proton-exchange-membrane fuel cells (PEMFCs), proton-exchange membranes (PEMs) must continuously withstand very harsh environments during long-term fuel cell operations. With the coming commercialization of PEMFCs, investigations into the durability and degradation of PEMs are becoming more and more urgent and interesting. Herein, various recent attempts and achievements to improve the durability of sulfonated aromatic polymers (SAPs) are reviewed and some further developments are predicted. Extensive investigations into inexpensive SAPs as alternative electrolyte membranes include modification of available polymer materials; design, synthesis, and optimization of new macromolecules; durability testing; and exploring the degradation mechanisms.

  11. Computer-Aided Design of Photocured Polymer Networks

    NASA Astrophysics Data System (ADS)

    Sarkar, Swarnavo; Lin-Gibson, Sheng; Chiang, Martin

    Light-initiated free radical polymerization is widely used for manufacturing biomaterials, scaffolds for micomolding, and is being developed as a method for fast 3D fabrication. This process has a large set of control parameters in the composition of the photocurable matrix and the photocuring conditions. But a quantitative map between the choice of parameters and the properties of the resultant polymer is currently unavailable. We present a computational approach to simulate the growth of a polymer network using the stochastic differential equations of reactions and diffusion for a photocuring system. This method allows us to sample trajectories of a growing polymer network in silico. Thus, we provide a computational alternative to synthesize and probe a polymer network for properties like the degree of conversion, structure factor, density of states, and viscosity. We present simulation results that agree with the universal features observed in photopolymerization. Our proposed method enables a thorough and systematic search over the entire parameter space to discover interesting combinations for synthesis.

  12. Investigation of polymer membranes modified by fullerenol for dehydration of organic mixtures

    NASA Astrophysics Data System (ADS)

    Dmitrenko, Mariia E.; Penkova, Anastasia V.; Kuzminova, Anna I.; Ermakov, Sergey S.; Roizard, Denis

    2017-07-01

    This study focuses on the development of novel dense and supported mixed-matrix membranes based on chitosan and poly(2,6-dimethyl-1,4-phenylenoxide) (PPO) with low-hydroxylated fullerenol C60(OH)12. These novel membranes containing nano-carbon particles were prepared to reach high membrane performances for further integration in a dehydration process like distillation coupled with pervaporation. SEM microscopy was used to visualize the internal morphology of the membrane. It was found that all membranes were well stable and highly water-selective in spite of the different nature of polymers.

  13. Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Manabu; Takeda, Yasushi; Wakiya, Takeru; Wakamoto, Yuta; Harigaya, Kaori; Ito, Tatsunori; Tarao, Takashi; Kawakami, Hiroyoshi

    2017-02-01

    High-performance polymer electrolyte membranes (PEMs) with excellent proton conductivity, gas barrier property, and membrane stability are desired for future fuel cells. Here we report the development of PEMs based on our proposed new concept ;Nanofiber Framework (NfF).; The NfF composite membranes composed of phytic acid-doped polybenzimidazole nanofibers (PBINf) and Nafion matrix show higher proton conductivity than the recast-Nafion membrane without nanofibers. A series of analyses reveal the formation of three-dimensional network nanostructures to conduct protons and water effectively through acid-condensed layers at the interface of PBINf and Nafion matrix. In addition, the NfF composite membrane achieves high gas barrier property and distinguished membrane stability. The fuel cell performance by the NfF composite membrane, which enables ultra-thin membranes with their thickness less than 5 μm, is superior to that by the recast-Nafion membrane, especially at low relative humidity. Such NfF-based high-performance PEM will be accomplished not only by the Nafion matrix used in this study but also by other polymer electrolyte matrices for future PEFCs.

  14. High-Performance, Semi-Interpenetrating Polymer Network

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Lowther, Sharon E.; Smith, Janice Y.; Cannon, Michelle S.; Whitehead, Fred M.; Ely, Robert M.

    1992-01-01

    High-performance polymer made by new synthesis in which one or more easy-to-process, but brittle, thermosetting polyimides combined with one or more tough, but difficult-to-process, linear thermoplastics to yield semi-interpenetrating polymer network (semi-IPN) having combination of easy processability and high tolerance to damage. Two commercially available resins combined to form tough, semi-IPN called "LaRC-RP49." Displays improvements in toughness and resistance to microcracking. LaRC-RP49 has potential as high-temperature matrix resin, adhesive, and molding resin. Useful in aerospace, automotive, and electronic industries.

  15. Supramolecular Polymer Network-Mediated Self-Assembly of Semicrystalline Polymers with Excellent Crystalline Performance.

    PubMed

    Cheng, Chih-Chia; Chuang, Wei-Tsung; Lee, Duu-Jong; Xin, Zhong; Chiu, Chih-Wei

    2017-03-01

    A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization.

  16. Scaling Laws in Supramolecular Polymer Networks

    PubMed Central

    Xu, Donghua; Craig, Stephen L.

    2011-01-01

    The linear rheological properties of networks formed by adding bis-Pd(II) cross-linkers to poly(4-vinylpyridine) (PVP) solution are examined, and the scaling law relationships between the zero shear viscosity (η0) of the networks versus the concentration of PVP solution (CPVP), the concentration of cross-linkers (CX), and the number density of elastically active chains (vphantom) are experimentally determined. The scaling law relationships are compared to the theoretical expectations of the Sticky Rouse and Sticky Reptation models (Macromolecules 2001, 34, 1058-1068), and both qualitative and quantitative differences are observed. PMID:21765553

  17. Design and Application of Nanogel-Based Polymer Networks

    NASA Astrophysics Data System (ADS)

    Dailing, Eric Alan

    Crosslinked polymer networks have wide application in biomaterials, from soft hydrogel scaffolds for cell culture and tissue engineering to glassy, high modulus dental restoratives. Composite materials formed with nanogels as a means for tuning network structure on the nanoscale have been reported, but no investigation into nanogels as the primary network component has been explored to this point. This thesis was dedicated to studying network formation from the direct polymerization of nanogels and investigating applications for these unique materials. Covalently crosslinked polymer networks were synthesized from polymerizable nanogels without the use of reactive small monomers or oligomers. Network properties were controlled by the chemical and physical properties of the nanogel, allowing for materials to be designed from nanostructured macromolecular precursors. Nanogels were synthesized from a thermally initiated solution free radical polymerization of a monomethacrylate, a dimethacrylate, and a thiol-based chain transfer agent. Monomers with a range of hydrophilic and hydrophobic character were copolymerized, and polymerizable groups were introduced through an alcohol-isocyanate click reaction. Nanogels were dispersible in water up to 75 wt%, including nanogels that contained a relatively high fraction of a conventionally water-insoluble component. Nanogels with molecular weights that ranged from 10's to 100's of kDa and hydrodynamic radii between 4 and 10 nm were obtained. Macroscopic crosslinked polymer networks were synthesized from the photopolymerization of methacrylate-functionalized nanogels in inert solvent, which was typically water. The nanogel composition and internal branching density affected both covalent and non-covalent interparticle interactions, which dictated the final mechanical properties of the networks. Nanogels with progressively disparate hydrophilic and hydrophobic character were synthesized to explore the potential for creating

  18. Antifouling Thin-Film Composite Membranes by Controlled Architecture of Zwitterionic Polymer Brush Layer.

    PubMed

    Liu, Caihong; Lee, Jongho; Ma, Jun; Elimelech, Menachem

    2017-02-21

    In this study, we demonstrate a highly antifouling thin-film composite (TFC) membrane by grafting a zwitterionic polymer brush via atom-transfer radical-polymerization (ATRP), a controlled, environmentally benign chemical process. Initiator molecules for polymerization were immobilized on the membrane surface by bioinspired catechol chemistry, leading to the grafting of a dense zwitterionic polymer brush layer. Surface characterization revealed that the modified membrane exhibits reduced surface roughness, enhanced hydrophilicity, and lower surface charge. Chemical force microscopy demonstrated that the modified membrane displayed foulant-membrane interaction forces that were 1 order of magnitude smaller than those of the pristine TFC membrane. The excellent fouling resistance imparted by the zwitterionic brush layer was further demonstrated by significantly reduced adsorption of proteins and bacteria. In addition, forward osmosis fouling experiments with a feed solution containing a mixture of organic foulants (bovine-serum albumin, alginate, and natural organic matter) indicated that the modified membrane exhibited significantly lower water flux decline compared to the pristine TFC membrane. The controlled architecture of the zwitterionic polymer brush via ATRP has the potential for a facile antifouling modification of a wide range of water treatment membranes without compromising intrinsic transport properties.

  19. A novel organic/inorganic polymer membrane based on poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid/3-glycidyloxypropyl trimethoxysilane polymer electrolyte membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lue, Shingjiang Jessie; Shih, Jeng-Ywan

    2011-05-01

    Poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS)/3-glycidyloxypropyl)trimethoxysilane (PVA/PAMPS/GPTMS) organic/inorganic proton-conducting polymer membranes are prepared by a solution casting method. PAMPS is a polymeric acid commonly used as a primary proton donor, while 3-(glycidyloxypropyl)trimethoxysilane (GPTMS) is an inorganic precursor forming a semi-interpenetrating network (SIPN). Varying amounts of sulfosuccinic acid (SSA) are used as the cross-linker and secondary proton source. The characteristic properties of PVA/PAMPS/GPTMS composite membranes are investigated by thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), micro-Raman spectroscopy and the AC impedance method. Direct methanol fuel cells (DMFCs) made of PVA/PAMPS/GPTMS composite membranes are assembled and examined. Experimental results indicate that DMFCs employing an inexpensive, non-perfluorinated, organic/inorganic SIPN membrane achieve good electrochemical performance. The highest peak power density of a DMFC using PVA/PAMPS/GPTMS composite membrane with 2 M CH3OH solution fuel at ambient temperature is 23.63 mW cm-2. The proposed organic/inorganic proton-conducting membrane based on PVA/PAMPS/GPTMS appears to be a viable candidate for future DMFC applications.

  20. Fracture energy of polymer gels with controlled network structures

    NASA Astrophysics Data System (ADS)

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-01

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  1. Fracture energy of polymer gels with controlled network structures.

    PubMed

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-14

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  2. Design and development of new polymer membranes for water filtration applications

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Evan S.

    The overall objective of this thesis research is to design and develop new polymer membranes that overcome several limitations that exist in conventional water filtration membranes. Two separate research thrusts were explored. In the first study, new polymer coatings for water ultrafiltration (UF) membranes were developed to reduce protein adsorption and fouling. Fifteen different functional monomers were synthesized, coated, and polymerized onto UF supports. Their resistance to protein adsorption and membrane protein fouling were then examined. For the first time, certain simple quaternary phosphonium- and ammonium-based polymer coatings were shown to be effective at resisting protein adsorption and membrane fouling. The second research objective is to design and develop new nanoporous polymer membranes with uniform, sub-1-nanometer pores for water purification via a size-exclusion mechanism. Cross-linkable lyotropic liquid crystals (LLCs) were examined due to their ability to self-organize into regular, porous nanostructures when mixed with water. Photo-radical cross-linking of these LLC assemblies resulted in robust polymer membranes with uniform nanopores. A 1st-generation LLC membrane containing a type I bicontinuous cubic (QI) phase structure and 3D-interconnected nanopores was made using a gemini phosphonium monomer. Comprehensive water filtration experiments and the use of a modified Donnan-steric pore model (DSPM) showed that this membrane has an effective pore diameter of 0.90 nm with a monodisperse pore size. It can remove small organic and inorganic solutes better than a nanofiltration (NF) membrane and almost as well as a reverse osmosis (RO) membrane. It also resisted chlorine degradation and protein adsorption. However, this monomer is difficult and expensive to synthesis and process. A 2 nd-generation QI-phase gemini ammonium-based monomer was developed to overcome these issues. Two homologues were found to form Q I-phase. Water transport studies

  3. Novel polybenzimidazole derivatives for high temperature polymer electrolyte membrane fuel cell applications

    NASA Astrophysics Data System (ADS)

    Xiao, Lixiang

    Recent advances have made polymer electrolyte membrane fuel cells (PEMFCs) a leading alternative to internal combustion engines for both stationary and transportation applications. In particular, high temperature polymer electrolyte membranes operational above 120°C without humidification offer many advantages including fast electrode kinetics, high tolerance to fuel impurities and simple thermal and water management systems. A series of polybenzimidazole (PBI) derivatives including pyridine-based PBI (PPBI) and sulfonated PBI (SPBI) homopolymers and copolymers have been synthesized using polyphosphoric acid (PPA) as both solvent and polycondensation agent. High molecular weight PBI derivative polymers were obtained with well controlled backbone structures in terms of pyridine ring content, polymer backbone rigidity and degree of sulfonation. A novel process, termed the PPA process, has been developed to prepare phosphoric acid (PA) doped PBI membranes by direct-casting of the PPA polymerization solution without isolation or re-dissolution of the polymers. The subsequent hydrolysis of PPA to PA by moisture absorbed from the atmosphere usually induced a transition from the solution-like state to a gel-like state and produced PA doped PBI membranes with a desirable suite of physiochemical properties characterized by the PA doping levels, mechanical properties and proton conductivities. The effects of the polymer backbone structure on the polymer characteristics and membrane properties, i.e., the structure-property relationships of the PBI derivative polymers have been studied. The incorporation of additional basic nitrogen containing pyridine rings and sulfonic acid groups enhanced the polymer solubility in acid and dipolar solvents while retaining the inherently high thermal stability of the PBI heteroaromatic backbone. In particular, the degradation of the SPBI polymers with reasonable high molecular weights commenced above 450°C, notably higher than other

  4. Plasma membrane regulates Ras signaling networks

    PubMed Central

    Chavan, Tanmay Sanjeev; Muratcioglu, Serena; Marszalek, Richard; Jang, Hyunbum; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms. PMID:27054048

  5. Plasma membrane regulates Ras signaling networks.

    PubMed

    Chavan, Tanmay Sanjeev; Muratcioglu, Serena; Marszalek, Richard; Jang, Hyunbum; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.

  6. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    PubMed

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  7. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells

    PubMed Central

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-01-01

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258

  8. Multiphase transport in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  9. Characterization of electroelastomers based on interpenetrating polymer networks

    NASA Astrophysics Data System (ADS)

    Ha, Soon Mok; Wissler, Michael; Pelrine, Ron; Stanford, Scott; Kovacs, Gabor; Pei, Qibing

    2007-04-01

    Interpenetrating polymer networks (IPN) in which one elastomer network is under high tension balanced by compression of the second network have been shown to exhibit electrically-induced strain up to 300% and promise a number of polymer actuators with substantially enhanced performance and stability. This paper describes the mechanical and thermal properties of the IPN electroelastomer films. The quasi-linear viscoelastic model and Yeoh strain energy potential are used to characterize the viscoelastic response and stress-strain behavior of the IPN films in comparison with 3M VHB films, primary component network in the IPN films. Material parameters were determined from uniaxial stress relaxation experiments. An analysis of the results confirms that the IPN composites have reduced viscoelasticity and fast stress-strain response due to preserved prestrain. Differential scanning calorimetry showed two glass transition temperatures that are slightly shifted from the two component networks, respectively. The two networks in the IPN are considered to be independent of each other. The thermal property is also studied with termogravimetric analysis (TG).

  10. Dirac Cones in two-dimensional conjugated polymer networks

    NASA Astrophysics Data System (ADS)

    Adjizian, Jean-Joseph; Briddon, Patrick; Humbert, Bernard; Duvail, Jean-Luc; Wagner, Philipp; Adda, Coline; Ewels, Christopher

    2014-12-01

    Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties. We demonstrate their stability on substrates and possibilities for doping and Dirac cone distortion. Notably, the cones can be maintained in 3D-layered crystals. Resembling covalent organic frameworks, these materials represent a potentially exciting new field combining the unique Dirac physics of graphene with the structural flexibility and design opportunities of organic-conjugated polymer chemistry.

  11. Constitutive equation for polymer networks with phonon fluctuations.

    PubMed

    Hansen, Rasmus; Skov, Anne Ladegaard; Hassager, Ole

    2008-01-01

    Recent research by Xing [Phys. Rev. Lett. 98, 075502 (2007)] has provided an expression for the Helmholtz free energy related to phonon fluctuations in polymer networks. We extend this result by constructing the corresponding nonlinear constitutive equation, usable for entirely general, volume conserving deformation fields. Constitutive equations for the sliplink model and the tube model are derived and the three models are examined by comparison with each other and with data from Xu and Mark [Rubber Chem. Technol. 63, 276 (1990)] and Wang and Mark [J. Polym. Sci., Part B: Polym. Phys. 30, 801 (1992)]. Elastic moduli are derived for the three models and compared with the moduli determined from the chemical stoichiometry. We conclude that the sliplink model and the phonon fluctuation model are relatively consistent with each other and with the data. The tube model seems consistent neither with the other models nor with the data.

  12. Shape memory polymer network with thermally distinct elasticity and plasticity

    PubMed Central

    Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao

    2016-01-01

    Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices. PMID:26824077

  13. An easily fabricated high performance ionic polymer based sensor network

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Wang, Yanjie; Hu, Xiaopin; Sun, Xiaofei; Chang, Longfei; Lu, Pin

    2016-08-01

    Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

  14. Fouling-tolerant nanofibrous polymer membranes for water treatment.

    PubMed

    Lee, Jang-Woo; Jung, Jiyoung; Cho, Young Hoon; Yadav, Santosh Kumar; Baek, Kyung Youl; Park, Ho Bum; Hong, Soon Man; Koo, Chong Min

    2014-08-27

    Nafion/polyvinylidene fluoride (PVDF) nanofibrous membranes with electrostatically negative charges on the fiber surface were fabricated via electrospinning with superior water permeability and antifouling behaviors in comparison with the conventional microfiltration membranes. The fiber diameter and the resultant pore size in the nanofibrous membranes were easily controlled through tailoring the properties of the electrospinning solutions. The electrospun Nafion/PVDF nanofibrous membranes revealed high porosities (>80%) and high densities of sulfonate groups on the membrane surface, leading to praiseworthy water permeability. Unexpectedly, the water permeability was observed as proportional to the fiber diameter and pore size in the membrane. The presence of sulfonate groups on the membrane improved the antifouling performance against negatively charged oily foulants.

  15. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Ji, Jing; Li, Kang

    2016-09-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.

  16. Continuous production of polymer nanoparticles using a membrane-based flow cell.

    PubMed

    Yang, Zhengnan; Foster, Dona; Dhinojwala, Ali

    2017-09-01

    We demonstrate the surfactant-free production of polymer nanoparticles using a continuous membrane-based tangential flow cell. Co-current streams of water and polymethylmethacrylate (PMMA)/acetone/water solution were separated by a porous regenerated cellulose (RC) membrane. The water concentration in the PMMA solution was adjusted so that as additional water diffused through the RC membrane, the PMMA solution composition crossed the two phase boundary to precipitate PMMA nanoparticles. The size of these nanoparticles varied with the concentration of the PMMA feed and the amount of water diffusing across the membrane. The size distribution of PMMA particles produced in a continuous flow membrane cell was much narrower than those produced by drop-wise water addition or batch dialysis precipitation of PMMA particles. A continuous production of polymer nanoparticles of high purity and narrow polydispersity are important requirements for biomedical applications such as delivering therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    PubMed Central

    Wang, Bo; Ji, Jing; Li, Kang

    2016-01-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances. PMID:27640994

  18. Electrochemical characterization of electrospun nanocomposite polymer blend electrolyte fibrous membrane for lithium battery.

    PubMed

    Padmaraj, O; Rao, B Nageswara; Venkateswarlu, M; Satyanarayana, N

    2015-04-23

    Novel hybrid (organic/inorganic) electrospun nanocomposite polymer blend electrolyte fibrous membranes with the composition poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-co-HFP)]/poly(methyl methacrylate) [P(MMA)]/magnesium aluminate (MgAl2O4)/LiPF6 were prepared by the electrospinning technique. All of the prepared electrospun P(VdF-co-HFP), PMMA blend [90% P(VdF-co-HFP)/10% PMMA], and nanocomposite polymer blend [90% P(VdF-co-HFP)/10% PMMA/x wt % MgAl2O4 (x = 2, 4, 6, and 8)] fibrous membranes were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The fibrous nanocomposite separator-cum-polymer blend electrolyte membranes were obtained by soaking the nanocomposite polymer blend membranes in an electrolyte solution containing 1 M LiPF6 in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). The newly developed fibrous nanocomposite polymer blend electrolyte [90% P(VdF-co-HFP)/10% PMMA/6 wt % MgAl2O4/LiPF6] membrane showed a low crystallinity, low average fiber diameter, high thermal stability, high electrolyte uptake, high conductivity (2.60 × 10(-3) S cm(-1)) at room temperature, and good potential stability above 4.5 V. The best properties of the fibrous nanocomposite polymer blend electrolyte (NCPBE) membrane with a 6 wt % MgAl2O4 filler content was used for the fabrication of a Li/NCPBE/LiCoO2 CR 2032 coin cell. The electrochemical performance of the fabricated CR 2032 cell was evaluated at a current density of 0.1 C-rate. The fabricated CR 2032 cell lithium battery using the newly developed NCPBE membrane delivered an initial discharge capacity of 166 mAh g(-1) and a stable cycle performance.

  19. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  20. Flash freezing route to mesoporous polymer nanofibre networks

    PubMed Central

    Samitsu, Sadaki; Zhang, Rui; Peng, Xinsheng; Krishnan, Mohan Raj; Fujii, Yoshihisa; Ichinose, Izumi

    2013-01-01

    There are increasing requirements worldwide for advanced separation materials with applications in environmental protection processes. Various mesoporous polymeric materials have been developed and they are considered as potential candidates. It is still challenging, however, to develop economically viable and durable separation materials from low-cost, mass-produced materials. Here we report the fabrication of a nanofibrous network structure from common polymers, based on a microphase separation technique from frozen polymer solutions. The resulting polymer nanofibre networks exhibit large free surface areas, exceeding 300 m2 g−1, as well as small pore radii as low as 1.9 nm. These mesoporous polymer materials are able to rapidly adsorb and desorb a large amount of carbon dioxide and are also capable of condensing organic vapours. Furthermore, the nanofibres made of engineering plastics with high glass transition temperatures over 200 °C exhibit surprisingly high, temperature-dependent adsorption of organic solvents from aqueous solution. PMID:24145702

  1. Reconfigurable Polymer Networks for Improved Treatment of Intracranial Aneurysms

    NASA Astrophysics Data System (ADS)

    Ninh, Chi Suze Q.

    Endovascular embolization of intracranial aneurysms is a minimally invasive treatment in which an implanted material forms a clot to isolate the weakened vessel. Current strategy suffers from long-term potential failure modes. These potential failure modes include (1) enzymatic degradation of the fibrin clot that leads to compaction of the embolic agent, (2) incomplete filling of the aneurysm sac by embolic agent, and (3) challenging geometry of wide neck aneurysms. In the case of wide neck aneurysms, usually an assisting metal stent is used to help open the artery. However, metal stents with much higher modulus in comparison to the soft blood vessel can cause biocompatibilities issues in the long term such as infection and scarring. Motivated to solve these challenges associated with endovascular embolization, strategies to synthesize and engineer reconfigurable and biodegradable polymers as alternative therapies are evaluated in this thesis. (1) Reconfiguration of fibrin gel's modulus was achieved through crosslinking with genipin released from a biodegradable polymer matrix. (2) Reconfigurability can also be achieved by transforming triblock co-polymer hydrogel into photoresponsive material through incorporation of melanin nanoparticles as efficient photosensitizers. (3) Finally, reconfigurability can be conferred on biodegradable polyester networks via Diels-Alder coupling of furan pendant groups and dimaleimide crosslinking agent. Taken all together, this thesis describes strategies to transform a broad class of polymer networks into reconfigurable materials for improved treatment of intracranial aneurysms as well as for other biomedical applications.

  2. Multiple relaxation modes in associative polymer networks with varying connectivity

    NASA Astrophysics Data System (ADS)

    Bohdan, M.; Sprakel, J.; van der Gucht, J.

    2016-09-01

    The dynamics and mechanics of networks depend sensitively on their spatial connectivity. To explore the effect of connectivity on local network dynamics, we prepare transient polymer networks in which we systematically cut connecting bonds. We do this by creating networks formed from hydrophobically modified difunctionalized polyethylene glycol chains. These form physical gels, consisting of flowerlike micelles that are transiently cross-linked by connecting bridges. By introducing monofunctionalized chains, we can systematically reduce the number of bonds between micelles and thus lower the network connectivity, which strongly reduces the network elasticity and relaxation time. Dynamic light scattering reveals a complex relaxation dynamics that are not apparent in bulk rheology. We observe three distinct relaxation modes. First we find a fast diffusive mode that does not depend on the number of bridges and is attributed to the diffusion of micelles within a cage formed by neighboring micelles. A second, intermediate mode depends strongly on network connectivity but surprisingly is independent of the scattering vector q . We attribute this viscoelastic mode to fluctuations in local connectivity of the network. The third, slowest mode is also diffusive and is attributed to the diffusion of micelle clusters through the viscoelastic matrix. These results shed light on the microscopic dynamics in weakly interconnected transient networks.

  3. Charge Transport in Reactive Mesogens and Liquid Crystal Polymer Networks

    NASA Astrophysics Data System (ADS)

    Kreouzis, T.; Whitehead, K. S.

    Understanding the mechanisms of charge transport in organic semiconductor electronic devices is paramount to optimising performance. This chapter aims to provide an insight into methods of measuring and analysing charge transport with specific focus on cross-linkable systems, i.e., reactive mesogens (RMs) and liquid crystalline (LC) polymer networks. When cross-linked in a mesophase, RMs form solid layers which preserve the mesophase charge transport properties over extended temperature ranges. In contrast, liquid crystalline polymer networks form solid layers but continue to undergo thermotropic transitions as in the original system and carrier mobilities can be enhanced compared to the liquid crystal. Here we examine how the versatility of these compounds brings about such complex behaviour. We see that chemical factors such as reactive end groups and method of cross-linking affect the hole and electron transport characteristics separately and that physical changes in morphology and phase also significantly change the charge transport properties.

  4. Novel Elastomeric Membranes Developed for Polymer Electrolytes in Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Maryann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    Lithium-based polymer batteries for aerospace applications need to be highly conductive from -70 to 70 C. State-of-the-art polymer electrolytes are based on polyethylene oxide (PEO) because of the ability of its ether linkages to solvate lithium ions. Unfortunately, PEO has a tendency to form crystalline regions below 60 C, dramatically lowering conductivity below this temperature. PEO has acceptable ionic conductivities (10(exp -4) to 10(exp -3) S/cm) above 60 C, but it is not mechanically strong. The room-temperature conductivity of PEO can be increased by adding solvent or plasticizers, but this comes at the expense of thermal and mechanical stability. One of NASA Glenn Research Center s objectives in the Polymer Rechargeable System program (PERS) is to develop novel polymer electrolytes that are highly conductive at and below room temperature without added solvents or plasticizers.

  5. A computational molecular design framework for crosslinked polymer networks

    PubMed Central

    Eslick, J.C.; Ye, Q.; Park, J.; Topp, E.M.; Spencer, P.; Camarda, K.V.

    2013-01-01

    Crosslinked polymers are important in a very wide range of applications including dental restorative materials. However, currently used polymeric materials experience limited durability in the clinical oral environment. Researchers in the dental polymer field have generally used a time-consuming experimental trial-and-error approach to the design of new materials. The application of computational molecular design (CMD) to crosslinked polymer networks has the potential to facilitate development of improved polymethacrylate dental materials. CMD uses quantitative structure property relations (QSPRs) and optimization techniques to design molecules possessing desired properties. This paper describes a mathematical framework which provides tools necessary for the application of CMD to crosslinked polymer systems. The novel parts of the system include the data structures used, which allow for simple calculation of structural descriptors, and the formulation of the optimization problem. A heuristic optimization method, Tabu Search, is used to determine candidate monomers. Use of a heuristic optimization algorithm makes the system more independent of the types of QSPRs used, and more efficient when applied to combinatorial problems. A software package has been created which provides polymer researchers access to the design framework. A complete example of the methodology is provided for polymethacrylate dental materials. PMID:23904665

  6. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    PubMed Central

    Lohani, Alka; Singh, Garima; Bhattacharya, Shiv Sankar; Verma, Anurag

    2014-01-01

    Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs. PMID:24949205

  7. Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting.

    PubMed

    D'Souza, Sonia; Murata, Hironobu; Jose, Moncy V; Askarova, Sholpan; Yantsen, Yuliya; Andersen, Jill D; Edington, Collin D J; Clafshenkel, William P; Koepsel, Richard R; Russell, Alan J

    2014-11-01

    The field of polymer-based membrane engineering has expanded since we first demonstrated the reaction of N-hydroxysuccinimide ester-terminated polymers with cells and tissues almost two decades ago. One remaining obstacle, especially for conjugation of polymers to cells, has been that exquisite control over polymer structure and functionality has not been used to influence the behavior of cells. Herein, we describe a multifunctional atom transfer radical polymerization initiator and its use to synthesize water-soluble polymers that are modified with bisphosphonate side chains and then covalently bound to the surface of live cells. The polymers contained between 1.7 and 3.1 bisphosphonates per chain and were shown to bind to hydroxyapatite crystals with kinetics similar to free bisphosphonate binding. We engineered the membranes of both HL-60 cells and mesenchymal stem cells in order to impart polymer-guided bone adhesion properties on the cells. Covalent coupling of the polymer to the non-adherent HL-60 cell line or mesenchymal stem cells was non-toxic by proliferation assays and enhanced the binding of these cells to bone.

  8. Hybrid polymer-lipid films as platforms for directed membrane protein insertion.

    PubMed

    Kowal, Justyna; Wu, Dalin; Mikhalevich, Viktoria; Palivan, Cornelia G; Meier, Wolfgang

    2015-05-05

    Hybrids composed of amphiphilic block copolymers and lipids constitute a new generation of biological membrane-inspired materials. Hybrid membranes resulting from self-assembly of lipids and polymers represent adjustable models for interactions between artificial and natural membranes, which are of key importance, e.g., when developing systems for drug delivery. By combining poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) amphiphilic copolymers (PDMS-b-PMOXA) with various phospholipids, we obtained hybrid films with modulated properties and topology, based on phase separation, and the formation of distinct domains. By understanding the factors driving the phase separation in these hybrid lipid-polymer films, we were able to use them as platforms for directed insertion of membrane proteins. Tuning the composition of the polymer-lipids mixtures favored successful insertion of membrane proteins with desired topological distributions (in polymer or/and lipid regions). Controlled insertion and location of membrane proteins in hybrid films make these hybrids ideal candidates for numerous applications where specific spatial functionality is required.

  9. Liquid Crystalline Polymers and Networks -- orientation, molecular shape change, mechanics

    NASA Astrophysics Data System (ADS)

    Warner, Mark

    2008-03-01

    In a prescient paper of 1969, Pierre-Gilles de Gennes envisaged both liquid crystal polymers and elastomers. 10 years later, these systems were realised. After 25 years, monodomain elastomers were prepared and displayed phenomena he had predicted: rods incorporated into polymers induce liquid crystallinity in polymer melts and elastomers; orientational order causes shape changes in the back bones of such polymers; mechanical ramifications follow in networks, e.g. spontaneous elongations and contractions on changing order. The latter are proposed as the basis of micro-actuation and artificial muscles, both heat and light-driven. In 1969, de Gennes already described ideal networks heated through the nematic-isotropic transition losing all their order by mechanical relaxation. It is not obvious, but is true in theory and largely in experiment, even in highly non-ideal networks. He also envisaged that a cholesteric network, where there is a topological memory of chirality imprinted by crosslinking chains in a twisted state. Chirality cannot relax away on entering the isotropic phase, even in systems without molecular chirality (for instance those crosslinked in the presence of chiral solvent that is subsequently exchanged away). His chiral elastomers have found application as mechanically-tuneable, rubber lasers. De Gennes also constructed the first continuum elastic theories of nematic elastomers (1982), though distortions are generally very large. His elasticity has informed non-linear elasticity that works even at large amplitudes. I shall describe de Gennes' many contributions, and the current state of a field that has since yielded still more remarkable phenomena.

  10. Microstructure and rheology of microfibril-polymer networks.

    PubMed

    Veen, Sandra J; Versluis, Peter; Kuijk, Anke; Velikov, Krassimir P

    2015-12-14

    By using an adsorbing polymer in combination with mechanical de-agglomeration, the microstructure and rheological properties of networks of microfibrils could be controlled. By the addition of sodium carboxymethyl cellulose during de-agglomeration of networks of bacterial cellulose, the microstructure could be changed from an inhomogeneous network with bundles of microfibrils and voids to a more homogeneous spread and alignment of the particles. As a result the macroscopic rheological properties were altered. Although still elastic and gel-like in nature, the elasticity and viscous behavior of the network as a function of microfibril concentration is altered. The microstructure is thus changed by changing the surface properties of the building blocks leading to a direct influence on the materials macroscopic behavior.

  11. Millimeter thick ionic polymer membrane-based IPMCs with bimetallic Pd-Pt electrodes

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Kim, Sung Jun; Kim, Kwang

    2011-04-01

    Ionic polymer metal composites (IPMC) are a low-voltage driven Electroactive Polymers (EAP) that can be used as actuators or sensors. This paper presents a comparative study of millimeter thick ionic polymer membrane-based IPMCs with high-performance Pd-Pt electrodes and conventional Pt electrodes. IPMCs assembled with different electrodes are characterized in terms of electromechanical, -chemical and mechanolelectrical properties. The SEM and energy dispersive X-ray (EDS) analysis are used to investigate the distribution of deposited electrode metals in the cross-section of Pd-Pt IPMCs. The study shows that IPMCs assembled with millimeter thick ionic polymer membranes and bimetallic Pd-Pt electrodes are superior in mechanoelectrical sensing and, also, show considerably higher blocking forces compared to the conventional type of IPMCs. Blocking forces more than 30 grams are measured under 4V DC. However, the actuation response is slower than conventional IPMCs having approximately 0.2-0.3 mm thickness.

  12. Study of sweet taste evaluation using taste sensor with lipid/polymer membranes.

    PubMed

    Habara, Masaaki; Ikezaki, Hidekazu; Toko, Kiyoshi

    2004-07-15

    The higher sensitivity for sweeteners can be achieved by newly developed lipid/polymer membranes. The membrane is composed of lipids such as phosphoric acid di-n-hexadecyl ester and tetradodecylammoniumbromid, and a plasticizer, dioctyl phenylphosphonate. As a result of changing electric charge of the membrane surface, the newly developed membrane shows 5-10 times higher sensitivity for sucrose than the conventional ones. We also applied the sensor to other sugars such as sugar alcohol which is used as alternative sweetness or food additives. The experimental results of other sweeteners relatively correspond to human sensory evaluation, though the sensitivity for some sugars need to be improved.

  13. Transition from ballistic to electrodiffusive transport in free-standing nanometer-sized polymer membranes.

    PubMed

    Schulze, Susanne; Weitzel, Karl-Michael

    2015-11-01

    The transition from ballistic to electrodiffusive transport of ions through thin polymer membranes has been investigated by recording single transport events via time-correlated single-particle detection. At the highest kinetic energies investigated, ballistic transport of potassium ions is observed with no discernible energy loss to the membrane. At the lowest kinetic energies investigated (several 100 eV) ions are demonstrated to lose the entire kinetic energy to the membrane. Transport there occurs by electrodiffusion. A transition regime is observed. The transition energy is shown to depend on the thickness of the membrane.

  14. Transition from ballistic to electrodiffusive transport in free-standing nanometer-sized polymer membranes

    NASA Astrophysics Data System (ADS)

    Schulze, Susanne; Weitzel, Karl-Michael

    2015-11-01

    The transition from ballistic to electrodiffusive transport of ions through thin polymer membranes has been investigated by recording single transport events via time-correlated single-particle detection. At the highest kinetic energies investigated, ballistic transport of potassium ions is observed with no discernible energy loss to the membrane. At the lowest kinetic energies investigated (several 100 eV) ions are demonstrated to lose the entire kinetic energy to the membrane. Transport there occurs by electrodiffusion. A transition regime is observed. The transition energy is shown to depend on the thickness of the membrane.

  15. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review

    PubMed Central

    Quartarone, Eliana; Angioni, Simone; Mustarelli, Piercarlo

    2017-01-01

    Polymer fuel cells operating above 100 °C (High Temperature Polymer Electrolyte Membrane Fuel Cells, HT-PEMFCs) have gained large interest for their application to automobiles. The HT-PEMFC devices are typically made of membranes with poly(benzimidazoles), although other polymers, such as sulphonated poly(ether ether ketones) and pyridine-based materials have been reported. In this critical review, we address the state-of-the-art of membrane fabrication and their properties. A large number of papers of uneven quality has appeared in the literature during the last few years, so this review is limited to works that are judged as significant. Emphasis is put on proton transport and the physico-chemical mechanisms of proton conductivity. PMID:28773045

  16. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review.

    PubMed

    Quartarone, Eliana; Angioni, Simone; Mustarelli, Piercarlo

    2017-06-22

    Polymer fuel cells operating above 100 °C (High Temperature Polymer Electrolyte Membrane Fuel Cells, HT-PEMFCs) have gained large interest for their application to automobiles. The HT-PEMFC devices are typically made of membranes with poly(benzimidazoles), although other polymers, such as sulphonated poly(ether ether ketones) and pyridine-based materials have been reported. In this critical review, we address the state-of-the-art of membrane fabrication and their properties. A large number of papers of uneven quality has appeared in the literature during the last few years, so this review is limited to works that are judged as significant. Emphasis is put on proton transport and the physico-chemical mechanisms of proton conductivity.

  17. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes

    NASA Astrophysics Data System (ADS)

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-01

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  18. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes

    PubMed Central

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-01-01

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas. PMID:27498607

  19. Interactive Thermal Effects on Metal-Organic Framework Polymer Composite Membranes.

    PubMed

    Cacho-Bailo, Fernando; Téllez, Carlos; Coronas, Joaquín

    2016-07-04

    Polymeric membranes are important tools for intensifying separation processes in chemical industries, concerning strategic tasks such as CO2 sequestration, H2 production, and water supply and disposal. Mixed-matrix and supported membranes have been widely developed; recently many of them have been based on metal-organic frameworks (MOFs). However, most of the impacts MOFs have within the polymer matrix have yet to be determined. The effects related to thermal behavior arising from the combination of MOF ZIF-8 and polysulfone have now been quantified. The catalyzed oxidation of the polymer is strongly affected by the MOF crystal size and distribution inside the membrane. A 16 wt % 140 nm-sized ZIF-8 loading causes a 40 % decrease in the observed activation energy of the polysulfone oxidation that takes place at a temperature (545 °C) 80 °C lower than in the raw polymer (625 °C).

  20. Measurement of water content in polymer electrolyte membranes using high resolution neutron imaging

    SciTech Connect

    Spernjak, Dusan; Mukundan, Rangachary; Borup, Rodney L; Davey, John; Mukherjee, Partha P; Hussey, Daniel S; Jacobson, David

    2010-01-01

    Sufficient water content within a polymer electrolyte membrane (PEM) is necessary for adequate ionic conductivity. Membrane hydration is therefore a fundamental requirement for fuel cell operation. The hydration state of the membrane affects the water transport within, as both the diffusion coefficient and electro-osmotic drag depend on the water content. Membrane's water uptake is conventionally measured ex situ by weighing free-swelling samples equilibrated at controlled water activity. In the present study, water profiles in Nafion{reg_sign} membranes were measured using the high-resolution neutron imaging. The state-of-the-art, 10 {micro}m resolution neutron detector is capable of resolving water distributions across N1120, N1110 and N117 membranes. It provides a means to measure the water uptake and transport properties of fuel cell membranes in situ.

  1. Semi-interpenetrating polymer network for tougher and more microcracking resistant high temperature polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing at 316 C in air for several hundreds of hours. This resin has significantly improved toughness and microcracking resistance, excellent processability and mechanical performance, and cost effectiveness.

  2. Synthesis and Characterization of Composite Membranes made of Graphene and Polymers of Intrinsic Microporosity

    DTIC Science & Technology

    2016-02-16

    whole rigid chain structure [23]. However, this simulation was done for the polymer packed in a membrane, while in solution there could be more adhesive...group of polymers with molecular sieve behaviour due to their rigid , contorted macromolecular backbones. They show great potential in organophilic...12]. These are obtained by forming a backbone that has no freedom to change conformation, yet is sufficiently contorted to prevent dense packing

  3. Nanoporous thin-film membranes from block-polymers : using self-consistent field theory calculations to guide polymer synthesis.

    SciTech Connect

    Cordaro, Joseph Gabriel

    2010-12-01

    The controlled self-assembly of polymer thin-films into ordered domains has attracted significant academic and industrial interest. Most work has focused on controlling domain size and morphology through modification of the polymer block-lengths, n, and the Flory-Huggins interaction parameter, {chi}. Models, such as Self-Consistent Field Theory (SCFT), have been successful in describing the experimentally observed morphology of phase-separated polymers. We have developed a computational method which uses SCFT calculations as a predictive tool in order to guide our polymer synthesis. Armed with this capability, we have the ability to select {chi} and then search for an ideal value of n such that a desired morphology is the most thermodynamically favorable. This approach enables us to synthesize new block-polymers with the exactly segment lengths that will undergo self-assembly to the desired morphology. As proof-of-principle we have used our model to predict the gyroidal domain for various block lengths using a fixed {chi} value. To validate our computational model, we have synthesized a series of block-copolymers in which only the total molecular length changes. All of these materials have a predicted thermodynamically favorable gyroidal morphology based on the results of our SCFT calculations. Thin-films of these polymers are cast and annealed in order to equilibrate the structure. Final characterization of the polymer thin-film morphology has been performed. The accuracy of our calculations compared to experimental results is discussed. Extension of this predictive ability to tri-block polymer systems and the implications to making functionalizable nanoporous membranes will be discussed.

  4. TEST AND EVALUATION OF A POLYMER MEMBRANE PRECONCENTRATOR

    EPA Science Inventory

    The report gives results of an evaluation of the applicability of membrane systems as a preconcentrator and defines operating parameters of a membrane system. Advantages of such a system is a potential reduction in cost for subsequent control systems. The evaluation is part of a ...

  5. TEST AND EVALUATION OF A POLYMER MEMBRANE PRECONCENTRATOR

    EPA Science Inventory

    The report gives results of an evaluation of the applicability of membrane systems as a preconcentrator and defines operating parameters of a membrane system. Advantages of such a system is a potential reduction in cost for subsequent control systems. The evaluation is part of a ...

  6. Modeling the effect of nano-sized polymer particles on the properties of lipid membranes

    NASA Astrophysics Data System (ADS)

    Rossi, Giulia; Monticelli, Luca

    2014-12-01

    The interaction between polymers and biological membranes has recently gained significant interest in several research areas. On the biomedical side, dendrimers, linear polyelectrolytes, and neutral copolymers find application as drug and gene delivery agents, as biocidal agents, and as platforms for biological sensors. On the environmental side, plastic debris is often disposed of in the oceans and gets degraded into small particles; therefore concern is raising about the interaction of small plastic particles with living organisms. From both perspectives, it is crucial to understand the processes driving the interaction between polymers and cell membranes. In recent times progress in computer technology and simulation methods has allowed computational predictions on the molecular mechanism of interaction between polymeric materials and lipid membranes. Here we review the computational studies on the interaction between lipid membranes and different classes of polymers: dendrimers, linear charged polymers, polyethylene glycol (PEG) and its derivatives, polystyrene, and some generic models of polymer chains. We conclude by discussing some of the technical challenges in this area and future developments.

  7. High performance radiation-grafted membranes and electrodes for polymer electrolyte fuel cells

    SciTech Connect

    Nezu, Shinji; Seko, Hideo; Gondo, Masaki; Ito, Naoki

    1996-12-31

    Polymer electrolyte fuel cells (PEFC) have attracted much attention for stationary and electric vehicle applications. Much progress has been made to improve their performance recently. However there are still several problems to overcome for commercialization. Among them, the cost of polymer electrolyte membranes seems to be rather critical, because a cost estimate of a practical fuel cell stack shows that the membrane cost must be reduced at least by two orders of magnitude based on current perfluorosulfonic acid membranes eg. Nafion{reg_sign}. Thus the development of new membrane materials is strongly desired. Styrene grafted tetrafluoroethylene-hexafluoropropylene copolymer (FEP) membranes have been studied for a fuel cell application by G. Scherer et al. These authors showed that membranes obtained by radiation grafting served as an alternative membrane for fuel cells although there were several problems to overcome in the future. These problems include shorter life time which was concluded to result from the decomposition of grafted polystyrene side chains. We report here the performance of our fuel cells which were fabricated from our radiation grafted membranes (IMRA MEMBRANE) and gas diffusion electrodes.

  8. Producing monodisperse drug-loaded polymer microspheres via cross-flow membrane emulsification: the effects of polymers and surfactants.

    PubMed

    Meyer, Robert F; Rogers, W Benjamin; McClendon, Mark T; Crocker, John C

    2010-09-21

    Cross-flow membrane emulsification (XME) is a method for producing highly uniform droplets by forcing a fluid through a small orifice into a transverse flow of a second, immiscible fluid. We investigate the feasibility of using XME to produce monodisperse solid microspheres made of a hydrolyzable polymer and a hydrophobic drug, a model system for depot drug delivery applications. This entails the emulsification of a drug and polymer-loaded volatile solvent into water followed by evaporation of the solvent. We use a unique side-view visualization technique to observe the details of emulsion droplet production, providing direct information regarding droplet size, dripping frequency, wetting of the membrane surface by the two phases, neck thinning during droplet break off, and droplet deformation before and after break off. To probe the effects that dissolved polymers, surfactants, and dynamic interfacial tension may have on droplet production, we compare our results to a polymer and surfactant-free fluid system with closely matched physical properties. Comparing the two systems, we find little difference in the variation of particle size as a function of continuous phase flow rate. In contrast, at low dripping frequencies, dynamic interfacial tension causes the particle size to vary significantly with drip frequency, which is not seen in simple fluids. No effects due to shear thinning or fluid elasticity are detected. Overall, we find no significant impediments to the application of XME to forming highly uniform drug-loaded microspheres.

  9. Control of Chemical, Thermal, and Gas Transport Properties in Dense Phosphazene Polymer Membranes.

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart; Mark L. Stone; Mason K. Harrup; Thomas A. Luther; Eric S. Peterson

    2005-10-01

    Polyphosphazenes are hybrid polymers having organic pendant groups attached to an inorganic backbone. Phosphazene polymers can be tailored to specific applications through the attachment of a variety of different pendant groups to the phosphazene backbone. Applications for which these polymers have proven useful include solid polymer electrolytes for batteries and fuel cells, as well as, membranes for gas and liquid separations. In past work, phosphazene polymers have been synthesized using mixtures of pendant groups with differing chemical affinities. Specific ratios of hydrophobic and hydrophilic pendant groups were placed on the phosphazene backbone with a goal of demonstrating control of solubility, and therefore chemical selectivity. In this work, a series of phosphazene homo-polymers were synthesized having varying amounts of hydrophobic and hydrophilic character on each individual pendant group. Polymers were synthesized having a hydrophilic portion next to the polymer backbone and the hydrophobic portion on the terminal end of the pendant group. The effects of these combined hydrophobic/hydrophilic pendant groups on polymer morphology and gas transport properties are presented. The following data will be addressed: thermal characterization, pure gas permeability on seven gases (Ar, H2, O2, N2, CO2, and CH4 ), and ideal selectivity for the gas pairs: O2/N2, H2/CO2, CO2/H2, CO2/CH4 and CO2/N2.

  10. Primitive chain network simulations for asymmetric star polymers

    NASA Astrophysics Data System (ADS)

    Masubuchi, Yuichi; Yaoita, Takatoshi; Matsumiya, Yumi; Watanabe, Hiroshi

    2011-05-01

    For branched polymers, the curvilinear motion of the branch point along the backbone is a significant relaxation source but details of this motion have not been well understood. This study conducts multi-chain sliplink simulations to examine effects of the spatial fluctuation and curvilinear hopping of the branch point on the viscoelastic relaxation. The simulation is based on the primitive chain network model that allows the spatial fluctuations of sliplink and branch point and the chain sliding along the backbone according to the subchain tension, chemical potential gradients, drag force against medium, and random force. The sliplinks are created and/or disrupted through the motion of chain ends. The curvilinear hopping of the branch point along the backbone is allowed to occur when all sliplinks on a branched arm are lost. The simulations considering the fluctuation and the hopping of the branch point described well the viscoelastic data for symmetric and asymmetric star polymers with a parameter set common to the linear polymer. On the other hand, the simulations without the branch point motion predicted unreasonably slow relaxation for asymmetric star polymers. For asymmetric star polymers, further tests with and without the branch point hopping revealed that the hopping is much less important compared to the branch point fluctuation when the lengths of the short and long backbone arms are not very different and the waiting time for the branch point hopping (time for removal of all sliplinks on the short arm) is larger than the backbone relaxation time. Although this waiting time changes with the hopping condition, the above results suggest a significance of the branch point fluctuation in the actual relaxation of branch polymers.

  11. Membranes based on polymer miscibility for selective transport and separation of metallic ions.

    PubMed

    Zioui, Djamila; Arous, Omar; Mameri, Nabil; Kerdjoudj, Hacène; Sebastian, M San; Vilas, J L; Nunes-Pereira, J; Lanceros-Méndez, Senentxu

    2017-08-15

    Polymer inclusion membranes (PIM) used for selective transport and separation of metallic ions have emerged in recent times. Their expansion depends on the method of preparation and their suitable structure and physico-chemical characteristics. In this paper, a novel category of membranes for ions separation is reported. The membranes were synthesized by thermally induced phase separation using a mixture of polyvinylidene fluoride (PVDF) and cellulose triacetate (CTA) plasticized by tris(2-ethylhexyl) phosphate (TEHP) and with di-(2-ethylhexyl) phosphoric acid (D2EHPA) incorporated into the polymer as carrier to increase specific interactions between polymers. PIM membrane exhibited a hydrophobic (∼100°) and thermally stable up to ∼200°C porous homogenous structure. The transport of Ni(II), Zn(II) and Pb(II) from aqueous solutions was studied by competitive transport across polymer inclusion membranes (PIM). Competitive transport of ions in solution across PIM provide the selectivity order: Ni(2+) (45%)>Pb(2+) (35%)>Zn(2+) (5%). A long-term transport experiment was carried out to study the durability of the system. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nanostructural surface engineering of grafted polymers on inorganic oxide substrates for membrane separations

    NASA Astrophysics Data System (ADS)

    Yoshida, Wayne Hiroshi

    Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of

  13. Ankyrin protein networks in membrane formation and stabilization

    PubMed Central

    Cunha, Shane R; Mohler, Peter J

    2009-01-01

    In eukaryotic cells, ankyrins serve as adaptor proteins that link membrane proteins to the underlying cytoskeleton. These adaptor proteins form protein complexes consisting of integral membrane proteins, signalling molecules and cytoskeletal components. With their modular architecture and ability to interact with many proteins, ankyrins organize and stabilize these protein networks, thereby establishing the infrastructure of membrane domains with specialized functions. To this end, ankyrin collaborates with a number of proteins including cytoskeletal proteins, cell adhesion molecules and large structural proteins. This review addresses the targeting and stabilization of protein networks related to ankyrin interactions with the cytoskeletal protein β-spectrin, L1-cell adhesion molecules and the large myofibrillar protein obscurin. The significance of these interactions for differential targeting of cardiac proteins and neuronal membrane formation is also presented. Finally, this review concludes with a discussion about ankyrin dysfunction in human diseases such as haemolytic anaemia, cardiac arrhythmia and neurological disorders. PMID:19840192

  14. Active Curved Polymers Form Vortex Patterns on Membranes

    NASA Astrophysics Data System (ADS)

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-01

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

  15. Progress in the development of interpenetrating polymer network hydrogels.

    PubMed

    Myung, David; Waters, Dale; Wiseman, Meredith; Duhamel, Pierre-Emile; Noolandi, Jaan; Ta, Christopher N; Frank, Curtis W

    2008-04-28

    Interpenetrating polymer networks (IPNs) have been the subject of extensive study since their advent in the 1960s. Hydrogel IPN systems have garnered significant attention in the last two decades due to their usefulness in biomedical applications. Of particular interest are the mechanical enhancements observed in "double network" IPN systems which exhibit nonlinear increases in fracture properties despite being composed of otherwise weak polymers. We have built upon pioneering work in this field as well as in responsive IPN systems to develop an IPN system based on end-linked poly-(ethylene glycol) (PEG) and loosely crosslinked poly(acrylic acid) (PAA) with hydrogen bond-reinforced strain-hardening behavior in water and high initial Young's moduli under physiologic buffer conditions through osmotically induced pre-stress. Uniaxial tensile tests and equilibrium swelling measurements were used to study PEG/PAA IPN hydrogels having second networks prepared with varying crosslinking and photoinitiator content, pH, solids content, and comonomers. Studies involving the addition of non-ionic comonomers and neutralization of the second network showed that template polymerization appears to be important in the formation of mechanically enhanced IPNs.

  16. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process

    PubMed Central

    Yatabe, Rui; Noda, Junpei; Tahara, Yusuke; Naito, Yoshinobu; Ikezaki, Hidekazu; Toko, Kiyoshi

    2015-01-01

    It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG), which is called “preconditioning”. However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photon spectroscopy (XPS) and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS). After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB), contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods. PMID:26404301

  17. A sensitive optode membrane for berberine using conjugated polymer as sensing material.

    PubMed

    Huang, Hong-Mei; Wang, Ke-Min; Yang, Rong-Hua; Yang, Xiao-Hai; Huang, Sha-Sheng; Xiao, Dan; Feng, Feng

    2002-10-01

    A new optode membrane for the sensitive determination of berberine based on fluorescence quenching of a conjugated polymer, poly(2,5-dimethoxy-phenyldiacetylene) (PDPA), is proposed. Incorporated in a membrane composed of plasticized poly(vinyl chloride) (PVC), the conjugated polymer exhibits better stability than those small sensing molecules regarding its excellent optical properties and lipophilic characteristics. Moreover, upon the introduction of a negatively charged lipophilic additive (tetraphenylborate salt) into a PVC membrane, the optode displayed enhanced sensitivity. In addition, satisfactory analytical sensing characteristics for determining beberine were obtained in terms of the selectivity, reversibility and reproducibility with a detecting range of between 7.5 x 10(-7) mol l(-1) and 7.5 x 10(-4) mol l(-1). The optode membrane has been applied to determine berberine in commercial tablets. The results showed a good agreement with those obtained by the pharmacopoeial method.

  18. Nanostructured Membranes from Triblock Polymer Precursors as High Capacity Copper Adsorbents.

    PubMed

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2015-10-13

    Membrane adsorbers are a proposed alternative to packed beds for chromatographic separations. To date, membrane adsorbers have suffered from low binding capacities and/or complex processing methodologies. In this work, a polyisoprene-b-polystyrene-b-poly(N,N-dimethylacrylamide) (PI-PS-PDMA) triblock polymer is cast into an asymmetric membrane that possesses a high density of nanopores (d ∼ 38 nm) at the upper surface of the membrane. Exposing the membrane to a 6 M aqueous hydrochloric acid solution converts the PDMA brushes that line the pore walls to poly(acrylic acid) (PAA) brushes, which are capable of binding metal ions (e.g., copper ions). Using mass transport tests and static binding experiments, the saturation capacity of the PI-PS-PAA membrane was determined to be 4.1 ± 0.3 mmol Cu(2+) g(-1). This experimental value is consistent with the theoretical binding capacity of the membranes, which is based on the initial PDMA content of the triblock polymer precursor and assumes a 1:1 stoichiometry for the binding interaction. The uniformly sized nanoscale pores provide a short diffusion length to the binding sites, resulting in a sharp breakthrough curve. Furthermore, the membrane is selective for copper ions over nickel ions, which permeate through the membrane over 10 times more rapidly than copper during the loading stage. This selectivity is present despite the fact that the sizes of these two ions are nearly identical and speaks to the chemical selectivity of the triblock polymer-based membrane. Furthermore, addition of a pH 1 solution releases the bound copper rapidly, allowing the membrane to be regenerated and reused with a negligible loss in binding capacity. Because of the high binding capacities, facile processing method implemented, and ability to tailor further the polymer brushes lining the pore walls using straightforward coupling reactions, these membrane adsorbers based on block polymer precursors have potential as a separation media that can

  19. Stabilized composite membranes and membrane electrode assemblies for high temperature/low relative humidity polymer electrolyte fuel cell operation

    NASA Astrophysics Data System (ADS)

    Ramani, Vijay Krishna

    Polymer electrolyte membrane fuel cells (PEMFCs) have a variety of applications in the stationary power, mobile power and automotive power sectors. Existing membrane technology presently permits fuel cell operation at temperatures less than 100°C under fully saturated conditions. However, several advantages such as easier heat rejection rates and improved impurities tolerance by the anode electrocatalyst result by operating a PEMFC at elevated temperatures (above 100°C) and lower relative humidities. In an attempt to extend the operating range of the polymer electrolyte membrane, perfluorosulfonic acid (NafionRTM) based organic/inorganic (heteropolyacid) composite membranes were investigated in terms of thermal and electrochemical stability, additive stability and conductivity. Tungsten based heteropolyacids (HPAs) were found to be electrochemically stable as opposed to molybdenum based additives. The stability of the inorganic heteropolyacid additive in aqueous environments was enhanced by ion exchanging the protons of the HPAs with larger counter ions. An additional stabilization technique developed involved improving the interaction of HPA with NafionRTM by linking the particles to the sulfonic acid clusters via a sol-gel induced metal oxide linkage. The proton conductivity of the composite membranes was found to depend on the particle size of the HPA additive. A two order of magnitude change in additive particle size was attained by modification of the membrane preparation technique. This modification resulted in a nearly 50% increase in conductivity. The membranes prepared were characterized by thermal analysis, spectroscopy and microscopy. A technique was developed to incorporate existing MEA preparation and HPA stabilization techniques to the composite membranes with small HPA particles. All MEAs prepared were evaluated at high temperatures (120°C) and low relative humidities (35%) in an operating fuel cell, with membrane resistance and hence conductivity

  20. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    SciTech Connect

    Mukherjee, Partha P; Makundan, Rangachary; Spendelow, Jacob S; Borup, Rodney L; Hussey, D S; Jacobson, D L; Arif, M

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  1. Amphipols: Polymers that keep membrane proteins soluble in aqueous solutions

    PubMed Central

    Tribet, Christophe; Audebert, Roland; Popot, Jean-Luc

    1996-01-01

    Amphipols are a new class of surfactants that make it possible to handle membrane proteins in detergent-free aqueous solution as though they were soluble proteins. The strongly hydrophilic backbone of these polymers is grafted with hydrophobic chains, making them amphiphilic. Amphipols are able to stabilize in aqueous solution under their native state four well-characterized integral membrane proteins: (i) bacteriorhodopsin, (ii) a bacterial photosynthetic reaction center, (iii) cytochrome b6f, and (iv) matrix porin. PMID:8986761

  2. Lowering the Healing Temperature of Photoswitchable Dynamic Covalent Polymer Networks.

    PubMed

    Fuhrmann, Anne; Broi, Kevin; Hecht, Stefan

    2017-08-10

    To reduce the environmental footprint of the modern society, it is desirable to elongate the lifetime of consumer products, for example by implementing healable coatings and protective layers. However, since most healing processes carried out by heat or light suffer from material degradation, improving the robustness and integrity of healable materials is of tremendous importance to prolong their lifetime. In recent work, a prototype is created of a dynamic covalent polymer network, whose thermal healing ability can be switched "on" and "off" by light to provide a means to locally control repair of a damaged coating. Based on the initial concept, herein a new set of difunctional crosslinkers and linear polymers of various compositions is presented to form dynamic covalent polymer networks, in which the barrier for the retro Diels-Alder decrosslinking reaction is decreased. The approach results in lower healing temperatures and thus a longer lifetime of the material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Directed deposition of inorganic oxide networks on patterned polymer templates

    NASA Astrophysics Data System (ADS)

    Ford, Thomas James Robert

    Inspired by nature, we have successfully directed the deposition of inorganic oxide materials on polymer templates via a combination of top-down and bottom-up fabrication methods. We have functionally mimicked the hierarchical silica exoskeletons of diatoms, where specialized proteins chaperone the condensation of silicic acid into nanoscale silica networks confined by microscopic vesicle walls. We replaced the proteins with functionally analogous polyamines and vesicles with lithographically defined polymer templates. We grafted the polyamines either to the surface or throughout the template by changing the template chemistry and altering our grafting strategy. Exposure to an inorganic oxide precursor solution led to electrostatic aggregation at the polyamine chains, catalyzing hydrolysis and condensation to form long-range inorganic oxide nanoparticle networks. Grafted to epoxy surfaces, swelling effects and the hyperbranched brush morphology lead to the formation of nanofruit features that generated thin, conformal inorganic coatings. When the polyamines were grafted throughout hydrogel templates, we obtained composite networks that yielded faithful inorganic replicas of the original patterns. By varying the polyamine chain length and combustion parameters, we controlled the nanoparticle size, morphology, and crystalline phase. The polyamine morphology affected the resulting inorganic network in both fabrication schemes and we could control the depostion over multiple length scales. Because our methods were compatible with a variety of lithographic methods, we were able to generate inorganic replicas of 1D, 2D, and 3D polymer structures. These may be used for a wide range of applications, including sensing, catalysis, photonic, phononic, photovoltaic, and others that require well-defined inorganic structures.

  4. The development of polymer membranes and modules for air separation

    NASA Astrophysics Data System (ADS)

    Vinogradov, N. E.; Kagramanov, G. G.

    2016-09-01

    Technology of hollow fiber membrane and modules for air separation was developed. Hollow fibers from the polyphenylene oxide (PPO) having a diameter of 500 μm were obtained. The permeability of the fibers by oxygen was up to 250 Ba, while the separation factor by O2/N2 was 4.3. The membrane module has been made by using these fibers and tested for permeability of individual gases.

  5. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell

    PubMed Central

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-01-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area. PMID:26412619

  6. Phase separation between phospholipids and grafted polymer chains onto a fluctuating membrane

    NASA Astrophysics Data System (ADS)

    Benhamou, M.; Joudar, I.; Kaidi, H.

    2007-12-01

    We re-examine here the theoretical study of the phase separation between phospholipids and grafted long polymer chains onto a fluid membrane. The polymer chains are assumed to be anchored to the membrane by one extremity (anchor). The anchors are big amphiphile lipid molecules. The anchors and phospholipids forming the bilayer phase separate under the variation of a suitable parameter (temperature, pressure, membrane environment, ...). To investigate the demixtion transition, we elaborate a new approach that takes into account the membrane undulations. We show that these undulations have the tendency to induce additional attractive forces between anchors, and consequently, the separation transition is accentuated and occurs at high temperature. Quantitatively, we show that the membrane undulations contribute with an extra positive segregation parameter χm > 0 , which scales as χm thicksim κ-2 , where κ is the bending rigidity constant. Therefore, the attraction phenomenon between species of the same kind is significant only for those membranes of small bending rigidity constant. Finally, the study is extended to the case where the lengths of the anchored polymer chains are randomly distributed. To achieve calculations, we choose a length distribution of fractal form. The essential conclusion is that the polydispersity increases the size of domains alternatively rich in phospholipids and anchors.

  7. Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems.

    PubMed

    Everberg, Henrik; Gustavasson, Niklas; Tjerned, Folke

    2008-01-01

    Methods that combine efficient solubilization with enrichment of proteins and intact protein complexes are of central interest in current membrane proteomics. We have developed methods based on nondenaturing detergent extraction of yeast mitochondrial membrane proteins followed by enrichment of hydrophobic proteins in aqueous two-phase system. Combining the zwitterionic detergent Zwittergent 3-10 and the nonionic detergent Triton X-114 results in a complementary solubilization of proteins, which is similar to that of the anionic detergent sodium dodecyl sulfate (SDS) but with the important advantage of being nondenaturing. Detergent/polymer two-phase system partitioning offers removal of soluble proteins that can be further improved by manipulation of the driving forces governing protein distribution between the phases. Integral and peripheral membrane protein subunits from intact membrane protein complexes partition to the detergent phase while soluble proteins are found in the polymer phase. An optimized solubilization protocol is presented in combination with detergent/polymer two-phase partitioning as a mild and efficient method for initial enrichment of membrane proteins and membrane protein complexes in proteomic studies.

  8. Synthesis and characterization of hybrid molecularly imprinted polymer (MIP) membranes for removal of methylene blue (MB).

    PubMed

    Asman, Saliza; Yusof, Nor Azah; Abdullah, Abdul Halim; Haron, Md Jelas

    2012-02-15

    This work reports the synthesis and characterization of a hybrid molecularly imprinted polymer (MIP) membrane for removal of methylene blue (MB) in an aqueous environment. MB-MIP powders were hybridized into a polymer membrane (cellulose acetate (CA) and polysulfone (PSf)) after it was ground and sieved (using 90 µm sieve). MB-MIP membranes were prepared using a phase inversion process. The MB-MIP membranes were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Parameters investigated for the removal of MB by using membrane MB-MIP include pH, effect of time, concentration of MB, and selectivity studies. Maximum sorption of MB by PSf-MB-MIP membranes and CA-MB-MIP membranes occurred at pH 10 and pH 12, respectively. The kinetic study showed that the sorption of MB by MB-MIP membranes (PSf-MB-MIP and CA-MB-MIP) followed a pseudo-second-order-model and the MB sorption isotherm can be described by a Freundlich isotherm model.

  9. Polymer Composites for High-Temperature Proton-Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Xiuling; Liu, Yuxiu; Zhu, Lei

    Recent advances in composite proton-exchange membranes for fuel cell applications at elevated temperature and low relative humidity are briefly reviewed in this chapter. Although a majority of research has focused on new sulfonated hydrocarbon and fluorocarbon polymers and their blends to directly enhance high temperature performance, we emphasize on polymer/inorganic composite membranes with the aim of improving the mechanical strength, thermal stability, and proton conductivity, which depend on water retention at elevated temperature and low relative humidity conditions. The polymer systems include perfluoronated polymers such as Nafion, sulfonated poly(arylene ether)s, polybenzimidazoles (PBI)s, and many others. The inorganic proton conductors are silica, heteropolyacids (HPA)s, layered zirconium phosphates, and liquid phosphoric acid. Direct use of sol-gel silica requires pressurization of fuel cells to maintain 100% relative humidity for high proton conductivity above 100°C. Direct incorporation of HPAs such as phosphotungstic acid (PTA) into polyelectrolyte membranes is capable of improving both proton conductivity and fuel cell performance above 100°C; however, they tend to leach out of the membrane whenever fuel cell flooding happens. To prevent HPA leaching, amine-functionalized mesoporous silica is used to immobilize PTA in Nafion membranes, whose proton conductivity and fuel cell performance are discussed. Compared with Nafion, sulfonated poly(arylene ether)s such as sulfonated poly(arylene ether sulfone)s are cost-effective materials with excellent thermal and electrochemical stability. Their composites with HPAs show increased proton conductivity at elevated temperatures when fully hydrated. Organic/inorganic hybrid membranes from acid-doped PBIs and other polymers are also discussed.

  10. Tough, processable semi-interpenetrating polymer networks from monomer reactants

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1994-01-01

    A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance, and mechanical performance, when compared to the commercial Thermid materials. This simultaneous semi-IPN was prepared by mixing the monomer precursors of Thermid AL-600 (a thermoset) and NR-150B2 (a thermoplastic) and allowing the monomers to react randomly upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene end-capped polyimides which were previously inherently brittle and difficult to process.

  11. Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Mack, Florian; Klages, Merle; Scholta, Joachim; Jörissen, Ludwig; Morawietz, Tobias; Hiesgen, Renate; Kramer, Dominik; Zeis, Roswitha

    2014-06-01

    The electrode morphology influences the properties and performance of polymer electrolyte membrane fuel cells (PEMFC). Here we report our studies of two different electrodes for high-temperature PEMFC prepared by spraying and coating and their impact on the fuel cell performance. Differences in 3D microstructure and adhesion between catalyst layer and gas diffusion layer (GDL) of the electrodes were studied with X-ray microtomography. Scanning electrode microscope investigations show hairline cracks between agglomerates on the surface of the sprayed electrode, whereas the coated electrode shows a network of shrinkage cracks in the catalyst layer. The distribution of the electrode binder polytetrafluoroethylene (PTFE) is related to the locally resolved conductivity, which was determined by scanning the electrode surfaces with a conductive atomic force microscopy (AFM) tip. The macrostructures of the sprayed and coated electrodes are different but contain similar pore structures. The coated electrode has a higher PTFE concentration on the top region, which tends to form a nonconductive and less wettable "skin" on the electrode surface and delays the start-up of the fuel cell. In contrast to low-temperature PEMFC, the electrode morphology has only a minor impact on the steady-state cell performance of high-temperature PEMFC.

  12. Effects of plasticization on ionic conductivity enhancement of crosslinked polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Kyu, Thein; Kyu's Team, Dr.

    Glass transition temperatures (Tg) of solid polymer electrolyte membranes (PEM), comprised of polyethylene glycol diacrylate (PEGDA) prepolymer, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, and succinonitrile (SCN) plasticizer, were systematically examined before and after crosslinking in the isotropic region guided by their ternary phase diagram. With increasing LiTFSI concentration, the Tg of uncured binary PEGDA/LiTFSI mixture increases drastically due to molecular complexation between lithium cation and ether oxygen, but ionic conductivity is very low (<10-6 S cm-1). Upon curing, this Tg increases and further reduces ionic conductivity. Upon adding SCN plasticizer, the Tg of PEM has significantly decreased to -60 oC and ionic conductivity also increased to the superionic conductor level of 10-3 S cm-1. The analysis of ionic conductivity vs. Tg behavior by Vogel-Tamman-Fulcher(VTF) equation revealed that this ionic conductivity enhancement is due to SCN plasticization resulting in lowering the network Tg as well as lowering the activation energy. Supported by NSF-DMR 1161070.

  13. Biomolecule-recognition gating membrane using biomolecular cross-linking and polymer phase transition.

    PubMed

    Kuroki, Hidenori; Ito, Taichi; Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-15

    We present for the first time a biomolecule-recognition gating system that responds to small signals of biomolecules by the cooperation of biorecognition cross-linking and polymer phase transition in nanosized pores. The biomolecule-recognition gating membrane immobilizes the stimuli-responsive polymer, including the biomolecule-recognition receptor, onto the pore surface of a porous membrane. The pore state (open/closed) of this gating membrane depends on the formation of specific biorecognition cross-linking in the pores: a specific biomolecule having multibinding sites can be recognized by several receptors and acts as the cross-linker of the grafted polymer, whereas a nonspecific molecule cannot. The pore state can be distinguished by a volume phase transition of the grafted polymer. In the present study, the principle of the proposed system is demonstrated using poly(N-isopropylacrylamide) as the stimuli-responsive polymer and avidin-biotin as a multibindable biomolecule-specific receptor. As a result of the selective response to the specific biomolecule, a clear permeability change of an order of magnitude was achieved. The principle is versatile and can be applied to many combinations of multibindable analyte-specific receptors, including antibody-antigen and lectin-sugar analogues. The new gating system can find wide application in the bioanalytical field and aid the design of novel biodevices.

  14. Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes.

    PubMed

    Wang, Dong; Xu, Weilin; Sun, Gang; Chiou, Bor-Sen

    2011-08-01

    Hydrophilic poly (vinyl alcohol-co-ethylene) (PVA-co-PE) copolymers with 27 mol %, 32 mol % and 44 mol % ethylene were functionalized by melt radical graft copolymerization with 2,4-diamino-6-diallylamino-1,3,5-triazine (NDAM) using reactive extrusion. This functionalization imparts antibacterial properties. The covalent attachments of the NDAM as side chains onto the PVA-co-PE polymer backbones were confirmed. The effects of initiator concentrations and ethylene contents in PVA-co-PE polymers on grafting of NDAM were studied. The chain scissions of PVA-co-PE polymers during reactive extrusion were investigated by monitoring changes in the melt torque and FTIR spectra. The NDAM grafted PVA-co-PE polymers were successfully fabricated into hydrophilic nanofibers and nanofibrous membranes with sufficient surface exposure of the grafted NDAM. The hydrophilicity of the PVA-co-PE polymers and the large specific surface area offered by the nanofiber membranes significantly facilitated the chlorine activation process, enhanced the active chlorine contents of the grafted PVA-co-PE nanofiber membranes, and therefore led to their superior antibacterial properties.

  15. Mechanical strength and ionic conductivity of polymer electrolyte membranes prepared from cellulose acetate-lithium perchlorate

    NASA Astrophysics Data System (ADS)

    Sudiarti, T.; Wahyuningrum, D.; Bundjali, B.; Made Arcana, I.

    2017-07-01

    The need for secondary batteries is increasing every year. The secondary battery using a liquid electrolyte has some weaknesses. A solid polymer electrolyte is the alternative electrolytes developed to replace the liquid electrolyte type. This study was conducted to determine the effect of lithium perchlorate content on the polymer electrolyte membranes of cellulose acetate-LiClO4. The cellulose acetate-LiClO4 membranes were prepared by mixing cellulose acetate and LiClO4 in various compositions using tetrahydrofurane (THF) as solvent. The effect of LiClO4 ratios on the polymer electrolyte membranes was studied by analysis of the functional groups using FTIR (Fourier Transform Infrared) spectroscopy measurement, the ionic conductivity by EIS (Electrochemical Impedance Spectroscopy) method, and mechanical properties by tensile tester measurements. The ionic conductivity of the membranes increased with the increasing in the ratios of lithium perchlorate content in the membranes and reached the optimum value at 1.79×10-4 S cm-1 corresponded to the cellulose acetate doped with 25% (w/w) LiClO4 membrane. The presence of 10% (w/w) LiClO4 content within cellulose acetate membranes can increase the mechanical properties of the membranes from 19.89 to 43.29 MPa for tensile strength, and from 2.55 to 4.53% for elongation at break. However, when the cellulose acetate membranes containing ratio of LiClO4 more than 10% (w/w), consequently the tensile strength tended to decrease and the elongation at break was increased.

  16. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    SciTech Connect

    Saefurohman, Asep Buchari, Noviandri, Indra; Syoni

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  17. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    NASA Astrophysics Data System (ADS)

    Saefurohman, Asep; Buchari, Noviandri, Indra; Syoni

    2014-03-01

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm-1, 1031 cm-1 and 794.7 cm-1 for P=O stretching and stretching POC from group -OP =O. The result showed shift wave number for P =O stretching of the cluster (-OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm-1 indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R3P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10-3 M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10-5 and 10-1 M.

  18. Novel polymer blends for the preparation of membranes for biohybrid liver systems.

    PubMed

    Kostadinova, Aneliya; Seifert, Barbara; Albrecht, Wolfgang; Malsch, Guenter; Groth, Thomas; Lendlein, Andreas; Altankov, George

    2009-01-01

    It was found previously that membranes based on co-polymers of acrylonitrile (AN) and 2-acrylamido-2-methyl-propansulfonic acid (AMPS) greatly stimulated the functionality and survival of primary hepatocytes. In those studies, however, the pure AN-AMPS co-polymer had poor membrane-forming properties, resulting in quite dense rubber-like membranes. Hence, membranes with required permeability and optimal biocompatibility were obtained by blending the AN-AMPS co-polymer with poly(acrylonitrile) homopolymer (PAN). The amount of PAN (P) and AN-AMPS (A) in the blend was varied from pure PAN (P/A-100/0) over P/A-75/25 and P/A-50/50 to pure AN-AMPS co-polymer (P/A-0/100). A gradual decrease of molecular cut-off of membranes with increase of AMPS concentration was found, which allows tailoring membrane permeability as necessary. C3A hepatoblastoma cells were applied as a widely accepted cellular model for assessment of hepatocyte behaviour by attachment, viability, growth and metabolic activity. It was found that the blend P/A-50/50, which possessed an optimal permeability for biohybrid liver systems, supported also the attachment, growth and function of C3A cells in terms of fibronectin synthesis and P-450 isoenzyme activity. Hence, blend membranes based on a one to one mixture of PAN and AN-AMPS combine sufficient permeability with the desired cellular compatibility for application in bioreactors for liver replacement.

  19. Photomechanically coupled viscoelasticity of azobenzene polyimide polymer networks

    NASA Astrophysics Data System (ADS)

    Roberts, Dennice; Worden, Matt; Chowdhury, Sadiyah; Oates, William S.

    2017-07-01

    Polyimide-based azobenzene polymer networks have demonstrated superior photomechanical performance over more conventional azobenzene-doped pendent and cross-linked polyacrylate networks. These materials exhibit larger yield stress and glass transition temperatures and thus provide robustness for active control of adaptive structures directly with polarized, visible light. Whereas photochemical reactions clearly lead to deformation, as indicated by a rotation of a linear polarized light source, temperature and viscoelasticity can also influence deformation and complicate interpretation of the photostrictive and shape memory constitutive behavior. To better understand this behavior we develop a rate-dependent constitutive model and experimentally quantify the material behavior in these materials. The rate dependent deformation induced in these materials is quantified experimentally through photomechanical stress measurements and infrared camera measurements. Bayesian uncertainty analysis is used to assess the role of internal polymer network evolution and azobenzene excitation on both thermomechanical and photomechanical deformation in the presence polarized light of different orientations. A modified Arrhenius relation is proposed and validated using Bayesian statistics which provide connections between free volume, shape memory, and polarized light.

  20. Progress in the development of interpenetrating polymer network hydrogels

    PubMed Central

    Myung, David; Waters, Dale; Wiseman, Meredith; Duhamel, Pierre-Emile; Noolandi, Jaan; Ta, Christopher N.; Frank, Curtis W.

    2009-01-01

    Interpenetrating polymer networks (IPNs) have been the subject of extensive study since their advent in the 1960s. Hydrogel IPN systems have garnered significant attention in the last two decades due to their usefulness in biomedical applications. Of particular interest are the mechanical enhancements observed in “double network” IPN systems which exhibit nonlinear increases in fracture properties despite being composed of otherwise weak polymers. We have built upon pioneering work in this field as well as in responsive IPN systems to develop an IPN system based on end-linked poly-(ethylene glycol) (PEG) and loosely crosslinked poly(acrylic acid) (PAA) with hydrogen bond-reinforced strain-hardening behavior in water and high initial Young’s moduli under physiologic buffer conditions through osmotically induced pre-stress. Uniaxial tensile tests and equilibrium swelling measurements were used to study PEG/PAA IPN hydrogels having second networks prepared with varying crosslinking and photoinitiator content, pH, solids content, and comonomers. Studies involving the addition of non-ionic comonomers and neutralization of the second network showed that template polymerization appears to be important in the formation of mechanically enhanced IPNs. PMID:19763189

  1. Surprising high hydrophobicity of polymer networks from hydrophilic components.

    PubMed

    Attanasio, Agnese; Bayer, Ilker S; Ruffilli, Roberta; Ayadi, Farouk; Athanassiou, Athanassia

    2013-06-26

    We report a simple and inexpensive method of fabricating highly hydrophobic novel materials based on interpenetrating networks of polyamide and poly(ethyl cyanoacrylate) hydrophilic components. The process is a single-step solution casting from a common solvent, formic acid, of polyamide and ethyl cyanoacrylate monomers. After casting and subsequent solvent evaporation, the in situ polymerization of ethyl cyanoacrylate monomer forms polyamide-poly(ethyl cyanoacrylate) interpenetrating network films. The interpenetrating networks demonstrate remarkable waterproof properties allowing wettability control by modulating the concentration of the components. In contrast, pure polyamide and poly(ethyl cyanoacrylate) films obtained from formic acid solutions are highly hygroscopic and hydrophilic, respectively. The polymerization of ethyl cyanoacrylate in the presence of polyamide promotes molecular interactions between the components, which reduce the available hydrophilic moieties and render the final material hydrophobic. The wettability, morphology, and thermo-physical properties of the polymeric coatings were characterized. The materials developed in this work take advantage of the properties of both polymers in a single blend and above all, due to their hydrophobic nature and minimal water uptake, can extend the application range of the individual polymers where water repellency is required.

  2. Fabrication of large-area polymer microfilter membranes and their application for particle and cell enrichment.

    PubMed

    Hernández-Castro, Javier Alejandro; Li, Kebin; Meunier, Anne; Juncker, David; Veres, Teodor

    2017-05-31

    A vacuum assisted UV micro-molding (VAUM) process is proposed for the fabrication of freestanding and defect-free polymer membranes based on a UV-curable methacrylate polymer (MD 700). VAUM is a highly flexible and powerful method for fabricating low cost, robust, large-area membranes over 9 × 9 cm(2) with pore sizes from 8 to 20 μm in diameter, 20 to 100 μm in thickness, high aspect ratio (the thickness of the polymer over the diameter of the hole is up to 15 : 1), high porosity, and a wide variety of geometrical characteristics. The fabricated freestanding membranes are flexible while mechanically robust enough for post manipulation and handling, which allows them to be cut and integrated as a plastic cartridge onto thermoplastic 3D microfluidic devices with single or double filtration stages. Very high particle capture efficiencies (≈98%) have been demonstrated in the microfluidic devices integrated with polymer membranes, even when the size of the beads is very close to the size of the pores of the microfilter. About 85% of the capture efficiency has been achieved in cancer cell trapping experiments, in which a breast cancer cell line (MDA-MB-231) spiked with phosphate-buffered saline buffer when the pore size of the filter is 8 μm and the device is operated at a flow rate of 0.1 mL min(-1).

  3. Aqueous Polymer Dispersion Coating Used for Osmotic Pump Tablets: Membrane Property Investigation and IVIVC Evaluation.

    PubMed

    Cheng, Lizhen; Gai, Xiumei; Wen, Haoyang; Liu, Dandan; Tang, Xin; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang

    2017-07-10

    The objective of this study was to investigate the fundamental properties of propranolol hydrochloride osmotic pump tablets coated by aqueous polymer dispersion, simultaneously exploring the in vitro and in vivo correlation of the tablet. The physicochemical properties and parameters of aqueous polymer dispersion membranes (SEM, water uptake, and water vapor transmission coefficient) were investigated. In addition, the release behavior and the in vitro release and in vivo absorption profiles of the tablets coated by aqueous polymer dispersion were investigated by comparing with propranolol hydrochloride osmotic pump tablets coated by an organic solvent. Results showed that the similarity factor (f 2) between cellulose acetate-coated tablet and Eudragit-coated tablet was 78.1, and f 2 between cellulose acetate-coated tablet and Kollicoat-coated tablet was 77.6. The linear IVIVC of Eudragit-coated and Kollicoat-coated osmotic pump tablets was determined, which confirmed excellent correlation between the absorption in vivo and the drug release in vitro. Consequently, the membrane coated by aqueous polymer dispersion or organic solvent has similar in vitro release rates of controlled release. Also, compared with organic solvent coating, aqueous polymer dispersion has numerous advantages, such as reduced toxicity and no environmental damage. Therefore, the aqueous polymer dispersion technology has enormous potential as a replacement of organic solvent coating.

  4. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    SciTech Connect

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  5. Binding of vinyl polymers to anionic model membranes.

    PubMed

    Torrens, F; Campos, A; Abad, C

    2003-09-01

    The association of poly2-vinylpyridine (P2VPy) and poly4-vinylpyridine (P4VPy) to dimyristoylphosphatidic acid (DMPA) small unilamellar vesicles (SUVs) was studied as a function of pH, ionic strength (I), polymer concentration and temperature using spectrofluorimetry. Poly(vinylpyridine) (PVPy) data were transformed into association isotherms and analyzed in terms of binding and partition models. In the case of polyions, the inclusion of the activity coefficient in both models was essential. Moreover, a relating equation was proposed to compare parameters based on both theoretical approaches. On the basis of the results obtained, a model was developed to analyze polymer adsorption at the surface level, in which the length of the hydrophobic chain and the position of the N atom in the pyridinium ring play an important role. Transition temperature (Tc) for DMPA (ca. 55 degrees C) is decreased between 15 degrees C-19 degrees C in the presence of PVPy. Van't Hoff isochore showed that the binding constant (KA) accounted for average PVPy-DMPA two-dimensional solid and liquid interactions. KA decreased with I in the presence of both polymers, but was more sensitive to I in the case of P2VPy. Likewise, the number of phospholipid heads (N) involved in the binding process decreased with I in the presence of PVPy. The influence of I was more significant on N than on KA.

  6. Polymer Dynamics Effects on Solute Transport in Hairy Nanoparticle Membranes

    NASA Astrophysics Data System (ADS)

    Buenning, Eileen; Bilchak, Connor; Durning, Christopher; Benicewicz, Brian; Sokolov, Alexei; Kumar, Sanat

    Molecular transport measurements in matrix-free grafted nanoparticle (MFGNP) films have shown remarkable enhancement of permeability and ideal selectivity of small condensable molecules and simple gases over the neat polymer melts and conventional, dispersed nanoparticle composites. Films comprised of covalently-attached poly(methyl acrylate) PMA chains to the surface of 14nm silica particles self-assemble into ordered arrays, and we postulate this structure plays an important role in regulating solute transport. This self-assembly creates interstitial spaces between the nanoparticle cores, which the polymer chains can only fill by stretching. Here we use small-angle neutron scattering (SANS), broadband dielectric spectroscopy (BDS), rheology and temperature-modulated differential scanning calorimetry (TMDSC) to probe polymer chain and segmental dynamics and investigate this hypothesis of chain stretching in MFGNP materials. We found that grafting slows both chain and segmental relaxation, and increases fragility, indicating that the chains are more ``frustrated'' in the grafted systems. We propose that the effects of the chain/surface interactions on chain dynamics leads to an increase in available free volume and thus enhances transport properties in MFGNP systems. Special thanks to the NSF GRFP and the DOE SCGSR programs.

  7. Self-Healing of Polymer Networks with Reversible Bonds

    NASA Astrophysics Data System (ADS)

    Rubinstein, Michael

    2015-03-01

    Self-healing polymeric materials are systems that after damage can revert to their original state with full or partial recovery of mechanical strength. Using scaling theory we study a simple model of autonomic self-healing of polymer networks. In this model one of the two end monomers of each polymer chain is fixed in space mimicking dangling chains attachment to a polymer network, while the sticky monomer at the other end of each chain can form pairwise reversible bond with the sticky end of another chain. We study the reaction kinetics of reversible bonds in this simple model and analyze the different stages in the self-repair process. The formation of bridges and the recovery of the material strength across the fractured interface during the healing period occur appreciably faster after shorter waiting time, during which the fractured surfaces are kept apart. We observe the slowest formation of bridges for self-adhesion after bringing into contact two bare surfaces with equilibrium (very low) density of open stickers in comparison with self-healing. The primary role of anomalous diffusion in material self-repair for short waiting times is established, while at long waiting times the recovery of bonds across fractured interface is due to hopping diffusion of stickers between different bonded partners. Acceleration in bridge formation for self-healing compared to self-adhesion is due to excess nonequilibrium concentration of open stickers. Full recovery of reversible bonds across fractured interface (formation of bridges) occurs after appreciably longer time than the equilibration time of the concentration of reversible bonds in the bulk. The model is extended to describe enhanced toughness of dual networks with both permanent and reversible cross-links. This work was done in collaboration with Drs. Ludwik Leibler, Li-Heng Cai, Evgeny B. Stukalin, N. Arun Kumar and supported by the National Science Foundation.

  8. Perturbations of cellular membranes with synthetic polymers and ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Kelly, Christopher Vaughn-Daigneau

    This dissertation examines the response of the plasma membrane to perturbations by synthetic nanoparticles and ultra-fast laser pulses. Both model membranes and living cells were examined in to characterize membrane disruption and the biological response to perturbation. These studies provide a deeper understanding of cell biology and guide the design of effective nanoparticle- or laser-based therapies, as well as warning about unintended exposure. In regards to membrane disruption by pulsed-laser irradiation, irradiation induced giant plasma membrane vesicles (GPMVs) on the surface of the living cell. This process involved the incorporation of material from the extracellular media into both the cytoplasm and the GPMV as the cell responded to the intense pressure and temperature gradients induced by irradiation and the subsequent cavitation. Further, the cell exposed phosphotidylserine to the exterior surface of the plasma membrane and GPMV and initiated caspase activity. Single particle tracking of 20 nm fluorescent beads within the GPMVs demonstrated a complex, gelatinous structure within the GPMV. In regards to nanoparticle-based perturbations, techniques such as isothermal titration calorimetry and molecular dynamics were used to investigate the relationship between nanoparticle properties and membrane disruption. Molecular dynamics simulations examined the binding of third-generation poly(amidoamine) dendrimers to phosphatidylcholine bilayers as a function on nanoparticle termination and membrane phase. A potential of mean force was calculated and demonstrated that the charged dendrimers bound to the zwitterionic phospholipids with approximately 50% more free energy release than uncharged dendrimers. Further, the difference in dendrimer binding to gel and fluid lipids was largely due to the hydrophobic interactions between the lipid tails and the non-polar dendrimer moieties. Isothermal titration calorimetry examined the heat release upon interaction between

  9. Strain Hardening in Polymer Glasses: Limitations of Network Models

    NASA Astrophysics Data System (ADS)

    Hoy, Robert S.; Robbins, Mark O.

    2007-09-01

    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While traditional entropic network models can be fit to the total stress, their underlying assumptions are inconsistent with simulation results. There is a substantial energetic contribution to the stress that rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic rearrangements. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain.

  10. Strain hardening in polymer glasses: limitations of network models.

    PubMed

    Hoy, Robert S; Robbins, Mark O

    2007-09-14

    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While traditional entropic network models can be fit to the total stress, their underlying assumptions are inconsistent with simulation results. There is a substantial energetic contribution to the stress that rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic rearrangements. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain.

  11. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells.

    PubMed

    Zheng, Weiqing; Wang, Liang; Deng, Fei; Giles, Stephen A; Prasad, Ajay K; Advani, Suresh G; Yan, Yushan; Vlachos, Dionisios G

    2017-09-04

    Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• are significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.The proton conductivity of polymer electrolyte membranes in fuel cells dictates their performance, but requires sufficient water management. Here, the authors report a simple method to produce well-dispersed transition metal carbide nanoparticles as additives to enhance the performance of Nafion membranes in fuel cells.

  12. Enhanced durability of polymer electrolyte membrane fuel cells by functionalized 2D boron nitride nanoflakes.

    PubMed

    Oh, Keun-Hwan; Lee, Dongju; Choo, Min-Ju; Park, Kwang Hyun; Jeon, Seokwoo; Hong, Soon Hyung; Park, Jung-Ki; Choi, Jang Wook

    2014-05-28

    We report boron nitride nanoflakes (BNNFs), for the first time, as a nanofiller for polymer electrolyte membranes in fuel cells. Utilizing the intrinsic mechanical strength of two-dimensional (2D) BN, addition of BNNFs even at a marginal content (0.3 wt %) significantly improves mechanical stability of the most representative hydrocarbon-type (HC-type) polymer electrolyte membrane, namely sulfonated poly(ether ether ketone) (sPEEK), during substantial water uptake through repeated wet/dry cycles. For facile processing with BNNFs that frequently suffer from poor dispersion in most organic solvents, we non-covalently functionalized BNNFs with 1-pyrenesulfonic acid (PSA). Besides good dispersion, PSA supports efficient proton transport through its sulfonic functional groups. Compared to bare sPEEK, the composite membrane containing BNNF nanofiller exhibited far improved long-term durability originating from enhanced dimensional stability and diminished chronic edge failure. This study suggests that introduction of properly functionalized 2D BNNFs is an effective strategy in making various HC-type membranes sustainable without sacrificing their original adventurous properties in polymer electrolyte membrane fuel cells.

  13. Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules.

    PubMed

    Panapitiya, Nimanka P; Wijenayake, Sumudu N; Nguyen, Do D; Huang, Yu; Musselman, Inga H; Balkus, Kenneth J; Ferraris, John P

    2015-08-26

    An immiscible polymer blend comprised of high-performance copolyimide 6FDA-DAM:DABA(3:2) (6FDD) and polybenzimidazole (PBI) was compatibilized using 2-methylimidazole (2-MI), a commercially available small molecule. Membranes were fabricated from blends of 6FDD:PBI (50:50) with and without 2-MI for H2/CO2 separations. The membranes demonstrated a matrix-droplet type microstructure as evident with scanning electron microscopy (SEM) imaging where 6FDD is the dispersed phase and PBI is the continuous phase. In addition, membranes with 2-MI demonstrated a uniform microstructure as observed by smaller and more uniformly dispersed 6FDD domains in contrast to 6FDD:PBI (50:50) blend membranes without 2-MI. This compatibilization effect of 2-MI was attributed to interfacial localization of 2-MI that lowers the interfacial energy similar to a surfactant. Upon the incorporation of 2-MI, the H2/CO2 selectivity improved remarkably, compared to the pure blend, and surpassed the Robeson's upper bound. To our knowledge, this is the first report of the use of a small molecule to compatibilize a high-performance immiscible polymer blend. This approach could afford a novel class of membranes in which immiscible polymer blends can be compatibilized in an economical and convenient fashion.

  14. Shape Memory Polymer Self-Deploying Membrane Reflectors

    DTIC Science & Technology

    2007-01-30

    for interceptor missiles. In this approach, a mirror’s final figure and finish is achieved by thermoforming a thin layer of SMP at the surface of a...2007 thermoformed SMP layer replicates the mold’s figure and finish, rather than the casting approach in the current program for membrane mirrors. 6.8

  15. Preparation and electrochemical properties of composite polymer membranes

    NASA Astrophysics Data System (ADS)

    Kravets, Liubov I.; Gilman, Alla B.; Satulu, Veronica; Mitu, Bogdana; Dinescu, Gheorghe

    2013-12-01

    Structure and electrotransport properties of poly(ethylene terephthalate) track-etched membranes modified by plasma of organic compounds were studied. Physicochemical aspects of the conductivity asymmetry arising from the contact of two layers with functional groups differing in chemical constitution and properties are discussed.

  16. PAN hollow fiber membranes elicit functional hippocampal neuronal network.

    PubMed

    Morelli, Sabrina; Piscioneri, Antonella; Salerno, Simona; Tasselli, Franco; Di Vito, Anna; Giusi, Giuseppina; Canonaco, Marcello; Drioli, Enrico; De Bartolo, Loredana

    2012-01-01

    This study focuses on the development of an advanced in vitro biohybrid culture model system based on the use of hollow fibre membranes (HFMs) and hippocampal neurons in order to promote the formation of a high density neuronal network. Polyacrylonitrile (PAN) and modified polyetheretherketone (PEEK-WC) membranes were prepared in hollow fibre configuration. The morphological and metabolic behaviour of hippocampal neurons cultured on PAN HF membranes were compared with those cultured on PEEK-WC HF. The differences of cell behaviour between HFMs were evidenced by the morphometric analysis in terms of axon length and also by the investigation of metabolic activity in terms of neurotrophin secretion. These findings suggested that PAN HFMs induced the in vitro reconstruction of very highly functional and complex neuronal networks. Thus, these biomaterials could potentially be used for the in vitro realization of a functional hippocampal tissue analogue for the study of neurobiological functions and/or neurodegenerative diseases.

  17. Investigation of domain size in polymer membranes using double quantum filtered spin diffusion MAS NMR.

    SciTech Connect

    Fujimoto, Cy H.; Alam, Todd Michael; Cherry, Brian Ray; Cornelius, Christopher James

    2005-02-01

    Solid-state {sup 1}H magic angle spinning (MAS) NMR was used to investigate sulfonated Diels-Alder poly(phenlylene) polymer membranes. Under high spinning speed {sup 1}H MAS conditions, the proton environments of the sulfonic acid and phenylene polymer backbone are resolved. A double-quantum (DQ) filter using the rotor-synchronized back-to-back (BABA) NMR multiple-pulse sequence allowed the selective suppression of the sulfonic proton environment in the {sup 1}H MAS NMR spectra. This DQ filter in conjunction with a spin diffusion NMR experiment was then used to measure the domain size of the sulfonic acid component within the membrane. In addition, the temperature dependence of the sulfonic acid spin-spin relaxation time (T{sub 2}) was determined, providing an estimate of the activation energy for the proton dynamics of the dehydrated membrane.

  18. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  19. Multiscale Modeling of Polymer Membranes for Soldiers Protective Clothing

    DTIC Science & Technology

    2006-11-01

    of polymer multiscale simulations (Yip et al., 2005) (Fig. 1): (i) quantum mechanical solutions of Schrodinger equation providing electronic... equations : δρI /δt = M ∇ρI ∇µI + η where µI is the intrinsic chemical potential that is derived from the differentiation of the free energy with...using mesoscale results distance t i m e QM MD MESO MACRO Mathematical Homogenization Solution of an elliptic partial differential equations y D y D y

  20. Permeation of Mixed Penetrants through Glassy Polymer Membranes.

    DTIC Science & Technology

    1985-03-15

    infrared spectroscopy . Amide groups will become apparent as new car- bonvl peaks in the range 1630-1700 cm - 1, and nitrogen- hydrogen stretching will...H. B. Hopfenberg, J. Polvm. Sci. Phys. Ed., 17,.1767 (1979). 11. R. Zbinden, Infrared Spectroscopy of Polymers, Academic, New York, 1964. 12. G. J...hypothesis has been verified by infrared spectroscopy work which will also be described. l 0 I . I I l 10 r ? 0 - " .. CD . 10 30 50 70 b (+7-.) Figure 4

  1. Carbon dioxide separation with a two-dimensional polymer membrane.

    PubMed

    Schrier, Joshua

    2012-07-25

    Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. The CO2 permeance is 3 × 10(5) gas permeation units (GPU). The CO2/N2 selectivity is 60, and the CO2/CH4 selectivity exceeds 500. The combination of high CO2 permeance and selectivity surpasses all known materials, enabling low-cost postcombustion CO2 capture, utilization of landfill gas, and horticulture applications.

  2. An LCD for the multimedia network age: Polymer stabilized FLCD

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shunsuke; Furue, Hirokazu; Takahashi, Taiju

    1999-07-01

    Liquid crystal displays (LCDs) will be classified into miniature displays, reflective
    type, projection type, direct view type, and holography type. All of these LCDs will be widely utilized in the coming multimedia network era. Along with this trend, in the first part of this paper we will discuss the social background of this research. We will place an emphasis on a polymer stabilized (PS) FLCD that is featured by fast response speed (40 microseconds), high contrast (230 : 1) with grayscale, wide viewing angle, and high resolution (400 lp=mm). The PS-FLCD will be promising technology for displaying a moving video image in the multimedia network era.

  3. Time dependent mechanical modeling for polymers based on network theory

    SciTech Connect

    Billon, Noëlle

    2016-05-18

    Despite of a lot of attempts during recent years, complex mechanical behaviour of polymers remains incompletely modelled, making industrial design of structures under complex, cyclic and hard loadings not totally reliable. The non linear and dissipative viscoelastic, viscoplastic behaviour of those materials impose to take into account non linear and combined effects of mechanical and thermal phenomena. In this view, a visco-hyperelastic, viscoplastic model, based on network description of the material has recently been developed and designed in a complete thermodynamic frame in order to take into account those main thermo-mechanical couplings. Also, a way to account for coupled effects of strain-rate and temperature was suggested. First experimental validations conducted in the 1D limit on amorphous rubbery like PMMA in isothermal conditions led to pretty goods results. In this paper a more complete formalism is presented and validated in the case of a semi crystalline polymer, a PA66 and a PET (either amorphous or semi crystalline) are used. Protocol for identification of constitutive parameters is described. It is concluded that this new approach should be the route to accurately model thermo-mechanical behaviour of polymers using a reduced number of parameters of some physical meaning.

  4. Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents.

    PubMed

    Hovakeemian, Sara G; Liu, Runhui; Gellman, Samuel H; Heerklotz, Heiko

    2015-09-14

    Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane

  5. Electrophoretic concentration of DNA at nanoporous polymer membranes for separations and diagnostics.

    SciTech Connect

    Thaitrong, Numrin; Meagher, Robert J.; Singh, Anup K.

    2010-11-01

    We report on the use of thin ({approx}30 micron) photopatterned polymer membranes for on-line preconcentration of single- or double-stranded DNA samples prior to electrophoretic analysis. Shaped UV laser light is used to quickly ({approx}10 seconds) polymerize a highly crosslinked polyacrylamide plug. By applying an electric field across the membrane, DNA from a dilute sample can be concentrated into a narrow zone (<100 micron wide) at the outside edge of the membrane. The field at the membrane can then be reversed, allowing the narrow plug to be cleanly injected into a separation channel filled with a sieving polymer for analysis. Concentration factors >100 are possible, increasing the sensitivity of analysis for dilute samples. We have fabricated both neutral membranes (purely size-based exclusion) as well as anionic membranes (size and charge exclusion), and characterized the rate of preconcentration as well as the efficiency of injection from both types of membrane, for DNA, ranging from a 20 base ssDNA oligonucleotide to >14 kbp dsDNA. We have also investigated the effects of concentration polarization on device performance for the charged membrane. Advantages of the membrane preconcentration approach include the simplicity of device fabrication and operation, and the generic (non-sequence specific) nature of DNA capture, which is useful for complex or poorly characterized samples where a specific capture sequence is not present. The membrane preconcentration approach is well suited to simple single-level etch glass chips, with no need for patterned electrodes, integrated heaters, valves, or other elements requiring more complex chip fabrication. Additionally, the ability to concentrate multiple charged analytes into a narrow zone enables a variety of assay functionalities, including enzyme-based and hybridization-based analyses.

  6. The ER in 3D: a multifunctional dynamic membrane network.

    PubMed

    Friedman, Jonathan R; Voeltz, Gia K

    2011-12-01

    The endoplasmic reticulum (ER) is a large, singular, membrane-bound organelle that has an elaborate 3D structure with a diversity of structural domains. It contains regions that are flat and cisternal, ones that are highly curved and tubular, and others adapted to form contacts with nearly every other organelle and with the plasma membrane. The 3D structure of the ER is determined by both integral ER membrane proteins and by interactions with the cytoskeleton. In this review, we describe some of the factors that are known to regulate ER structure and discuss how this structural organization and the dynamic nature of the ER membrane network allow it to perform its many different functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Molecular interactions between proteins and synthetic membrane polymer films

    SciTech Connect

    Pincet, F.; Perez, E.; Belfort, G.

    1995-04-01

    To help understand the effects of protein adsorption on membrane filtration performance, we have measured the molecular interactions between cellulose acetate films and two proteins with different properties (ribonuclease A and human serum albumin) with a surface force apparatus. Comparison of forces between two protein layers with those between a protein layer and a cellulose acetate (CA) film shows that, at high pH, both proteins retained their native conformation on interacting with the CA film while at the isoelectric point (pI) or below the tertiary structure of proteins was disturbed. These measurements provide the first molecular evidence that disruption of protein tertiary structure could be responsible for the reduced permeation flows observed during membrane filtration of protein solutions and suggest that operating at high pH values away from the pI of proteins will reduce such fouling. 60 refs., 9 figs., 5 tabs.

  8. Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping.

    PubMed

    Naim, R; Ismail, A F

    2013-04-15

    A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Cascade synthesis of a gold nanoparticle–network polymer composite

    DOE PAGES

    Grubjesic, Simonida; Ringstrand, Bryan Scott; Jungjohann, Katherine L.; ...

    2015-11-02

    In this paper, the multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4]-. The reaction sequence begins with the auto-reduction of aqueous [AuCl4]- by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate endderivatized PEO117-PPO47-PEO117 to yield a network polymer. Optical spectroscopy and TEM monitored the reduction of [AuCl4]-, formation of large aggregated Au NPs andmore » oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multilamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Finally, optical spectroscopy shows a notable red shift (Δλ~ 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement.« less

  10. Modular and Orthogonal Synthesis of Hybrid Polymers and Networks

    PubMed Central

    Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao

    2015-01-01

    Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255

  11. Characterization of a polymer-infiltrated ceramic-network material

    PubMed Central

    Corazza, Pedro H.; Zhang, Yu

    2015-01-01

    Objectives To characterize the microstructure and determine some mechanical properties of a polymer-ingfiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD–CAM systems. Methods Specimens were fabricated to perform quantitative and qualitative analyses of the material’s microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson’s ratio (v) and Young’s modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and v and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Results Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc = 1.09 ± 0.05 MPa m1/2, ρ = 2.09 ± 0.01 g/cm3, v = 0.23 ± 0.002 and E = 37.95 ± 0.34 GPa. Significance The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. PMID:24656471

  12. Cascade synthesis of a gold nanoparticle-network polymer composite

    DOE PAGES

    Grubjesic, Simonida; Ringstrand, Bryan Scott; Jungjohann, Katherine L.; ...

    2015-11-02

    In this paper, the multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4]-. The reaction sequence begins with the auto-reduction of aqueous [AuCl4]- by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate endderivatized PEO117-PPO47-PEO117 to yield a network polymer. Optical spectroscopy and TEM monitored the reduction of [AuCl4]-, formation of large aggregated Au NPs andmore » oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multilamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Finally, optical spectroscopy shows a notable red shift (Δλ~ 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement.« less

  13. Characterization of a polymer-infiltrated ceramic-network material.

    PubMed

    Della Bona, Alvaro; Corazza, Pedro H; Zhang, Yu

    2014-05-01

    To characterize the microstructure and determine some mechanical properties of a polymer-infiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD-CAM systems. Specimens were fabricated to perform quantitative and qualitative analyses of the material's microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson's ratio (ν) and Young's modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and ν and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc=1.09±0.05MPam(1/2), ρ=2.09±0.01g/cm(3), ν=0.23±0.002 and E=37.95±0.34GPa. The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Modular and orthogonal synthesis of hybrid polymers and networks.

    PubMed

    Liu, Shuang; Dicker, Kevin T; Jia, Xinqiao

    2015-03-28

    Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions.

  15. Immobilization of imidazole moieties in polymer electrolyte composite membrane for elevated temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Bei; Ye, Gongbo; Pan, Mu; Zhang, Haining

    2015-12-01

    Development of membrane electrolyte with reasonable proton conductivity at elevated temperature without external humidification is essential for practical applications of elevated temperature proton exchange membrane fuel cells. Herein, a novel polymer electrolyte composite membrane using imidazole as anhydrous proton carriers for elevated temperature fuel cells is investigated. The imidazole moieties are immobilized inside the Nafion/poly(tetrafluoroethylene) (PTFE) composite membrane through in situ formation of imidazole functionalized silica nanoparticles in Nafion dispersion. The thus-formed membrane exhibits strong Coulombic interaction between negatively charged sulfonic acid groups of Nafion and protonated imidazole moieties, leading to an anhydrous proton conductivity of 0.018 S cm-1 at 180 °C. With the introduction of PTFE matrix, the mechanical strength of the membrane is greatly improved. The peak power density of a single cell assembled from the hybrid membrane is observed to be 130 mW cm-2 under 350 mA cm-2 at 110 °C without external humidification and it remains stable for 20 h continuous operation. The obtained results demonstrate that the developed composite membranes could be utilized as promising membrane electrolytes for elevated temperature fuel cells.

  16. Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch.

    PubMed

    Itel, Fabian; Najer, Adrian; Palivan, Cornelia G; Meier, Wolfgang

    2015-06-10

    The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.

  17. Self-Healing of Unentangled Polymer Networks with Reversible Bonds

    PubMed Central

    Stukalin, Evgeny B.; Cai, Li-Heng; Kumar, N. Arun; Leibler, Ludwik; Rubinstein, Michael

    2013-01-01

    Self-healing polymeric materials are systems that after damage can revert to their original state with full or partial recovery of mechanical strength. Using scaling theory we study a simple model of autonomic self-healing of unentangled polymer networks. In this model one of the two end monomers of each polymer chain is fixed in space mimicking dangling chains attachment to a polymer network, while the sticky monomer at the other end of each chain can form pairwise reversible bond with the sticky end of another chain. We study the reaction kinetics of reversible bonds in this simple model and analyze the different stages in the self-repair process. The formation of bridges and the recovery of the material strength across the fractured interface during the healing period occur appreciably faster after shorter waiting time, during which the fractured surfaces are kept apart. We observe the slowest formation of bridges for self-adhesion after bringing into contact two bare surfaces with equilibrium (very low) density of open stickers in comparison with self-healing. The primary role of anomalous diffusion in material self-repair for short waiting times is established, while at long waiting times the recovery of bonds across fractured interface is due to hopping diffusion of stickers between different bonded partners. Acceleration in bridge formation for self-healing compared to self-adhesion is due to excess non-equilibrium concentration of open stickers. Full recovery of reversible bonds across fractured interface (formation of bridges) occurs after appreciably longer time than the equilibration time of the concentration of reversible bonds in the bulk. PMID:24347684

  18. Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries.

    PubMed

    Li, Changyi; Ward, Ashleigh L; Doris, Sean E; Pascal, Tod A; Prendergast, David; Helms, Brett A

    2015-09-09

    Redox flow batteries (RFBs) present unique opportunities for multi-hour electrochemical energy storage (EES) at low cost. Too often, the barrier for implementing them in large-scale EES is the unfettered migration of redox active species across the membrane, which shortens battery life and reduces Coulombic efficiency. To advance RFBs for reliable EES, a new paradigm for controlling membrane transport selectivity is needed. We show here that size- and ion-selective transport can be achieved using membranes fabricated from polymers of intrinsic microporosity (PIMs). As a proof-of-concept demonstration, a first-generation PIM membrane dramatically reduced polysulfide crossover (and shuttling at the anode) in lithium-sulfur batteries, even when sulfur cathodes were prepared as flowable energy-dense fluids. The design of our membrane platform was informed by molecular dynamics simulations of the solvated structures of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) vs lithiated polysulfides (Li2Sx, where x = 8, 6, and 4) in glyme-based electrolytes of different oligomer length. These simulations suggested polymer films with pore dimensions less than 1.2-1.7 nm might incur the desired ion-selectivity. Indeed, the polysulfide blocking ability of the PIM-1 membrane (∼0.8 nm pores) was improved 500-fold over mesoporous Celgard separators (∼17 nm pores). As a result, significantly improved battery performance was demonstrated, even in the absence of LiNO3 anode-protecting additives.

  19. Application of TPX polymer membranes for the controlled release of triprolidine.

    PubMed

    Shin, Sang-Chul; Yoon, Mi-Kyoung

    2002-01-31

    Oral administration of triprolidine, antihistamines, may cause many adverse effects such as dry mouth, sedation, dizziness and transdermal drug delivery was considered. Poly(4-methyl-1-pentene) (TPX) membrane, which has good mechanical strength was fabricated by the casting method. TPX membranes was a little brittle and the plasticizers was added for preparing the membranes. The present study was carried out to evaluate the possibility of using the polymer TPX membrane as a controlling membrane and further develop a TPX matrix system for transdermal delivery of triprolidine. The effects of molecular weights of TPX, plasticizers, polyethylene glycol (PEG) 400, drug concentration, and temperature on drug release were studied. The solubility of triprolidine increased exponentially as the increased volume fraction of PEG 400 in saline, and the rate of permeation through TPX membrane was proportional to PEG 400 volume fraction. The release rate of drug from the TPX matrix increased with increased temperature and drug concentration. Among the plasticizers used such as alkyl citrates, phthalates and sebacate, tetra ethyl citrate (TEC) showed the best enhancing effects. Enhancement factor of TEC was 3.76 from TPX matrix at 37 degrees C. The transdermal controlled release of triprolidine system could be developed using the TPX polymer including the plasticizer.

  20. Amphipathic and membrane-destabilizing properties of the cationic acrylate polymer Eudragit E100.

    PubMed

    Alasino, Roxana V; Ausar, Salvador F; Bianco, Ismael D; Castagna, Leonardo F; Contigiani, Marta; Beltramo, Dante M

    2005-03-15

    The cationic acrylate polymer Eudragit E100 (E100) produces a biphasic effect on the stability of casein micelles disrupting their internal structure. These results suggested that this polymer could have some amphipathic character. Therefore, in this study the polymer was characterized with respect to its interaction with different amphipathic systems (bile-acid micelles, lipoproteins and liposomes), cell membranes (red blood cells) and virus membranes (Herpes simplex type 2 virus). As with caseins, a biphasic effect was observed with bile acids with a precipitation phase at low polymer/bile acid ratio and a solubilization phase when the polymer concentration was increased. Upon interaction with human plasma, an important reduction in cholesterol and triglycerides was observed upon remotion of E100 by a rise in pH to 8.5 and centrifugation. In agreement with this finding, an important reduction in plasma lipoproteins was observed upon its treatment with E100 and further remotion by pH rise and centrifugation. However, the amount of the major protein components of human plasma and the activity of several enzymes and antibodies were not affected by their treatment with E100. The membrane-destabilizing properties of E100 were confirmed by its lytic activity on liposomes and red blood cells and by an important antiviral effect of E100 on Herpes simplex virus type 2. Altogether, these results show that, despite its water solubility and cationic character, E100 displays a significative amphipathic and membrane-destabilizing character with potential biotechnological applications. [diagram in text].

  1. Network morphology of straight and polymer modified asphalt cements.

    PubMed

    Rozeveld, S J; Shin, E E; Bhurke, A; France, L; Drzal, L T

    1997-09-01

    Asphalt cements are often regarded as a colloidal system containing several hydrocarbon constituents: asphaltenes, resins, and oils. The high molecular weight asphaltene particles are considered to be covered in a sheath of resins and dispersed in the lower molecular weight oily medium [Whiteoak (1990) The Shell Bitumen Handbook (Shell Bitumen UK, Riversdell House, Surrey, UK)]. However, the exact arrangement of the asphaltene particles within the oily phase will vary depending on the relative amounts of resin, asphaltene, and oils. It is this arrangement and the degree of association between asphaltene particles that govern the rheological properties of the cement [Simpson et al. (1961) J. Chem. Eng. Data 6:426-429; Whiteoak (1990)]. Here we report for the first time the observation of a three-dimensional network of asphaltene strands within straight, polymer-modified, and aged asphalt cements. While the existence of a asphaltene/resin micelle network has been proposed in previous studies [Whiteoak (1990)], direct observation has not been reported. The network is expected to greatly influence the rheological properties of the asphalt binder and ultimately the properties of asphalt concretes. In situ fracture studies of asphalt cement/aggregate composites indicate a possible correlation between the network structure and adhesion between the cement binder and aggregate.

  2. Influence of lipid membranes rigidity on properties of supporting polymer

    SciTech Connect

    Majewski, Jaroslaw; Singh, Saurabh; Dubey, Manish

    2012-06-18

    The motivation of this study is: (1) Controllable release of cultured cell sheets - (a) NIPAAm is non-toxic and collapsed at physiological Temp, (b) good platform for cell adherence and growth, (c) below polymer transition temp, cultured sheets are released, (d) hydration of matrix possible cause of cell attachment/detachment, (e) need for understanding hydration of underlying support; (2) Matrix elasticity plays an important role in cell lineage specification - (a) matrices of known stiffness are utilized as supports to understand physical effect of in-vivo tissue microenvironment for therapeutic uses of stem cells, (b) it is believed that stem cells 'sense' the elasticity and transduce the information into morphological changes, (c) Imperative to consider the changes induced in matrix as a result of immobilized cells.

  3. Transdermal delivery of triprolidine using TPX polymer membrane.

    PubMed

    Shin, Sang-Chul; Kim, Jin; Yoon, Mi-Kyoung; Oh, In-Joon; Choi, Jun-Shik

    2002-03-20

    Triprolidine-containing matrix was fabricated with poly(4-methyl-1-pentene) (TPX) polymer to control the release of the drug. Effect of penetration enhancer and stripping of skin on the permeation of triprolidine through the excised mouse skin was studied. Penetrating enhancers showed the increased flux probably due to the enhancing effect on the skin barrier, the stratum corneum. Among enhancers used such as glycols, fatty acids and non-ionic surfactants, polyoxyethylene-2-oleyl ether showed the best enhancement. The permeability of triprolidine was markedly increased with stripping the mouse skin to remove the stratum corneum, which acts as a barrier of skin permeation. For the controlling delivery of triprolidine, the TPX matrix containing permeation enhancer could be developed.

  4. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations. PMID:26552839

  5. Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation

    NASA Astrophysics Data System (ADS)

    Stassi, A.; Gatto, I.; Passalacqua, E.; Antonucci, V.; Arico, A. S.; Merlo, L.; Oldani, C.; Pagano, E.

    A new Aquivion™ E79-03S short-side chain perfluorosulfonic membrane with a thickness of 30 μm (dry form) and an equivalent weight (EW) of 790 g/equiv recently developed by Solvay-Solexis for high-temperature operation was tested in a pressurised (3 bar abs.) polymer electrolyte membrane (PEM) single cell at a temperature of 130 °C. For comparison, a standard Nafion™ membrane (EW 1100 g/equiv) of similar thickness (50 μm) was investigated under similar operating conditions. Both membranes were tested for high temperature operation in conjunction with an in-house prepared carbon supported Pt electrocatalyst. The electrocatalyst consisted of nanosized Pt particles (particle size ∼2 nm) dispersed on a high surface area carbon black. The electrochemical tests showed better performance for the Aquivion™ membrane as compared to Nafion™ with promising properties for high temperature PEM fuel cell applications. Beside the higher open circuit voltage and lower ohmic constraints, a higher electrocatalytic activity was observed at high temperature for the electrocatalyst-Aquivion™ ionomer interface indicating a better catalyst utilization.

  6. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-11-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations.

  7. Degradation of polymer electrolyte membrane fuel cell by siloxane in biogas

    NASA Astrophysics Data System (ADS)

    Seo, Ji-Sung; Kim, Da-Yeong; Hwang, Sun-Mi; Seo, Min Ho; Seo, Dong-Jun; Yang, Seung Yong; Han, Chan Hui; Jung, Yong-Min; Guim, Hwanuk; Nahm, Kee Suk; Yoon, Young-Gi; Kim, Tae-Young

    2016-06-01

    We studied the degradation and durability of polymer electrolyte membrane fuel cell (PEMFC) at membrane-electrode-assembly (MEA) level by injection of octamethylcyclotetrasiloxane (D4) as a representative siloxane, which has been found in many industrial and personal products. Specifically, i) GC/MS analysis demonstrated that the ring-opening polymerization of D4 could result in the formation of various linear and cyclic siloxanes in both electrodes of MEA; ii) post-test analysis revealed that the transformed siloxanes were transported from the anode to the cathode via free-volumes in the polymer membrane; iii) RDE measurement and DFT calculation revealed that D4 was not directly responsible for the electrocatalytic activity of Pt; iv) electrochemical analysis demonstrated that the residual methyl groups of siloxane and various siloxanes did not hinder the proton transport in the polymer membrane; and v) siloxanes accumulated in the primary and secondary pores with the exception of an external surface of carbon, causing an increase in the oxygen reactant's resistance and resulting in a decrease of the cell performance. In addition, we confirmed that injection of D4 did not affect the carbon corrosion adversely because the siloxane had little influence on water sorption in the catalyst layer.

  8. Novel Zeolitic Imidazolate Framework/Polymer Membranes for Hydrogen Separations in Coal Processing

    SciTech Connect

    Musselman, Inga H.

    2013-01-31

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed-matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethylenediamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncrosslinked polymer.

  9. Mathematical and Computational Modeling of Polymer Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Ulusoy, Sehribani

    In this thesis a comprehensive review of fuel cell modeling has been given and based on the review, a general mathematical fuel cell model has been developed in order to understand the physical phenomena governing the fuel cell behavior and in order to contribute to the efforts investigating the optimum performance at different operating conditions as well as with different physical parameters. The steady state, isothermal model presented here accounts for the combined effects of mass and species transfer, momentum conservation, electrical current distribution through the gas channels, the electrodes and the membrane, and the electrochemical kinetics of the reactions in the anode and cathode catalyst layers. One of the important features of the model is that it proposes a simpler modified pseudo-homogeneous/agglomerate catalyst layer model which takes the advantage of the simplicity of pseudo-homogenous modeling while taking into account the effects of the agglomerates in the catalyst layer by using experimental geometric parameters published. The computation of the general mathematical model can be accomplished in 3D, 2D and 1D with the proper assumptions. Mainly, there are two computational domains considered in this thesis. The first modeling domain is a 2D Membrane Electrode Assembly (MEA) model including the modified agglomerate/pseudo-homogeneous catalyst layer modeling with consistent treatment of water transport in the MEA while the second domain presents a 3D model with different flow filed designs: straight, stepped and tapered. COMSOL Multiphysics along with Batteries and Fuel Cell Module have been used for 2D & 3D model computations while ANSYS FLUENT PEMFC Module has been used for only 3D two-phase computation. Both models have been validated with experimental data. With 2D MEA model, the effects of temperature and water content of the membrane as well as the equivalent weight of the membrane on the performance have been addressed. 3D COMSOL simulation

  10. In-Plane Correlations in a Polymer-Supported Lipid Membrane Measured by Off-Specular Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Jablin, Michael S.; Zhernenkov, Mikhail; Toperverg, Boris P.; Dubey, Manish; Smith, Hillary L.; Vidyasagar, Ajay; Toomey, Ryan; Hurd, Alan J.; Majewski, Jaroslaw

    2011-04-01

    Polymer-supported single lipid bilayers are models to study configurations of cell membranes. We used off-specular neutron scattering to quantify in-plane height-height correlations of interfacial fluctuations of such a lipid bilayer. As temperature decreased from 37°C to 25°C, the polymer swells and the polymer-supported lipid membrane deviates from its initially nearly planar structure. A correlation length characteristic of capillary waves changes from 30μm at 37°C to 11μm at 25°C, while the membrane bending rigidity remains roughly constant in this temperature range.

  11. Droplet formation and growth inside a polymer network: A molecular dynamics simulation study.

    PubMed

    Jung, Jiyun; Jang, Eunseon; Shoaib, Mahbubul Alam; Jo, Kyubong; Kim, Jun Soo

    2016-04-07

    We present a molecular dynamics simulation study that focuses on the formation and growth of nanoscale droplets inside polymer networks. Droplet formation and growth are investigated by the liquid-vapor phase separation of a dilute Lennard-Jones (LJ) fluid inside regularly crosslinked, polymer networks with varying mesh sizes. In a polymer network with small mesh sizes, droplet formation can be suppressed, the extent of which is dependent on the attraction strength between the LJ particles. When droplets form in a polymer network with intermediate mesh sizes, subsequent growth is significantly slower when compared with that in bulk without a polymer network. Interestingly, droplet growth beyond the initial nucleation stage occurs by different mechanisms depending on the mesh size: droplets grow mainly by diffusion and coalescence inside polymer networks with large mesh sizes (as observed in bulk), whereas Ostwald ripening becomes a more dominant mechanism for droplet growth for small mesh sizes. The analysis of droplet trajectories clearly reveals the obstruction effect of the polymer network on the movement of growing droplets, which leads to Ostwald ripening of droplets. This study suggests how polymer networks can be used to control the growth of nanoscale droplets.

  12. Droplet formation and growth inside a polymer network: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Jung, Jiyun; Jang, Eunseon; Shoaib, Mahbubul Alam; Jo, Kyubong; Kim, Jun Soo

    2016-04-01

    We present a molecular dynamics simulation study that focuses on the formation and growth of nanoscale droplets inside polymer networks. Droplet formation and growth are investigated by the liquid-vapor phase separation of a dilute Lennard-Jones (LJ) fluid inside regularly crosslinked, polymer networks with varying mesh sizes. In a polymer network with small mesh sizes, droplet formation can be suppressed, the extent of which is dependent on the attraction strength between the LJ particles. When droplets form in a polymer network with intermediate mesh sizes, subsequent growth is significantly slower when compared with that in bulk without a polymer network. Interestingly, droplet growth beyond the initial nucleation stage occurs by different mechanisms depending on the mesh size: droplets grow mainly by diffusion and coalescence inside polymer networks with large mesh sizes (as observed in bulk), whereas Ostwald ripening becomes a more dominant mechanism for droplet growth for small mesh sizes. The analysis of droplet trajectories clearly reveals the obstruction effect of the polymer network on the movement of growing droplets, which leads to Ostwald ripening of droplets. This study suggests how polymer networks can be used to control the growth of nanoscale droplets.

  13. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    DTIC Science & Technology

    2015-04-29

    2012, 219, 272- 279. [82] C. Chen, A. R. Hess , A. R. Jones, X. Liu, G. D. Barber, T. E. Mallouk, H. R. Allcock, Macromolecules 2012, 45, 1182-1189... Herman , J. R. Varcoe, Energy & Environmental Science 2012, 5, 8584-8597. [176] M. A. Hossain, Y. Lim, S. Lee, H. Jang, S. Choi, Y. Jeon, S. Lee, H. Ju, W...Catalysis a-Chemical 2007, 270, 123-126. [241] H. Herman , R. C. T. Slade, J. R. Varcoe, Journal of Membrane Science 2003, 218, 147-163. [242] G. G

  14. Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents

    PubMed Central

    Hovakeemian, Sara G.; Liu, Runhui; Gellman, Samuel H.; Heerklotz, Heiko

    2015-01-01

    Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity arises from permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer’s MIC, 3 μg/mL. At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, Poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of Poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, Poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane permeabilizing

  15. A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant D.C. electric current.

    PubMed

    Kaya, Ahmet; Onac, Canan; Alpoguz, H Korkmaz

    2016-11-05

    In this study, the use of polymer inclusion membrane under constant electric current for the removal of Cr(VI) from water has investigated for the first time. Transport of Cr(VI) is performed by an electric current from the donor phase to the acceptor phase with a constant electric current of 0.5A. The optimized membrane includes of 12.1% 2-nitrophenyl octyl ether (2-NPOE), 77.6% cellulose triacetate (CTA), 10.3% tricapryl-methylammonium chloride (Aliquat 336) as a carrier. We tested the applicability of the selected membrane for Cr(VI) removal in real environmental water samples and evaluated its reusability. Electro membrane experiments were carried out under various parameters, such as the effect of electro membrane voltage at constant DC electric current; electro membrane current at constant voltage, acceptor phase pH, and stable electro membrane; and a comparison of polymer inclusion membrane and electro membrane transport studies. The Cr(VI) transport was achieved 98.33% after 40min under optimized conditions. An alternative method has been employed that eliminates the changing of electrical current by the application of constant electric current for higher reproducibility of electro membrane extraction experiments by combining the excellent selective and long-term use features of polymer inclusion membrane.

  16. Optimizing Glassy Polymer Network Morphology for Nano-particle Dispersion, Stabilization and Performance

    DTIC Science & Technology

    2016-10-03

    Typically this method is associated with dispersing nanoparticles within high molecular weight linear thermoplastic polymers . In this process...AFRL-AFOSR-VA-TR-2016-0330 Optimizing Glassy Polymer Network Morphology for Nano-particle Dispersion, Stabilization Jeffrey Wiggins UNIVERSITY OF...TYPE Final Report 3. DATES COVERED (From - To) March 1, 2013 to February 28, 2016 4. TITLE AND SUBTITLE Optimizing Glassy Polymer Network Morphology

  17. Copper-catalyzed azide alkyne cycloaddition polymer networks

    NASA Astrophysics Data System (ADS)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  18. Development of a piezo-cantilever transducer and measuring method for evaluation of a temperature-sensitive polymer gel membrane

    NASA Astrophysics Data System (ADS)

    Li, Fenlan; Jiang, Zhongwei

    2007-06-01

    This paper is concerned with the development of a cantilever transducer patched with a piezoelectric element for evaluating the characteristics of a temperature-sensitive polymer gel membrane. The transducer consists of an aluminum cantilever beam patched with a piezoelectric ceramic and a probe coated by a polymer gel membrane. The probe can be easily attached to the cantilever transducer with double-sided sticky tape. The piezo-cantilever transducer is first simulated with the aid of a finite element method and the relation between the natural frequency change of the transducer and the absorbed mass on the polymer gel membrane is obtained theoretically. For measuring the temperature characteristics of the polymer gel membrane, the experiments are conducted in liquid and out of liquid. The temperature-sensitive poly(N-isopropylacrylamide) gel membrane hydrophilic-hydrophobic characteristics can be explained clearly by the results. Furthermore, two kinds of membrane coating method were proposed. The results indicate that the coating gel membrane has a better effect than the pasted gel membrane. The results also show that the piezo-cantilever transducer has a potential application for detecting polymer gel membrane characteristics conveniently and accurately.

  19. A flexible transcutaneous oxygen sensor using polymer membranes.

    PubMed

    Kudo, Hiroyuki; Iguchi, Shigehito; Yamada, Takua; Kawase, Tatsuya; Saito, Hirokazu; Otsuka, Kimio; Mitsubayashi, Kohji

    2007-02-01

    A wearable and flexible oxygen sensor for transcutaneous blood gas monitoring was fabricated and tested. The sensor has a laminar film-like structure, which was fabricated by pouching KCl electrolyte solution by both non-permeable (metal weldable) sheet and gas-permeable membrane with Pt- and Ag/AgCl-electrodes patterned using microfabrication process. The electrolyte solution was fixed only by heat-sealing the edges of the weldable membranes without any chemical adhesives. The wearable oxygen sensor (thickness: 84 mum) was applied to the electrochemical measurement with a constant potential of -600 mV vs. Ag/AgCl, thus obtaining the calibration range to dissolved oxygen (DO) from 0.0 to 7.0 mg/l with a correlation coefficient of 0.998 and the quick response time (53.4 s to 90% of a steady-state current), which operate similarly to a commercially available oxygen electrode. The sensor was also utilized to transcutaneous oxygen monitoring for healthy human subject. The sensing region of the wearable oxygen sensor was attached onto the forearm-skin surface of the subject inhaling various concentrations of oxygen. As a result of physiological application, the output current was varied from -6.2 microA to -7.8 microA within 2 min when the concentration of inhaling oxygen was changed from atmospheric air to 60% oxygen. Thus, the transcutaneous oxygen was successfully monitored without any inconveniences such as skin inflammation, etc.

  20. Carbonaceous nanowire supports for polymer electrolyte membrane fuel cells

    DOE PAGES

    Garzon, Fernando H.; Wilson, Mahlon S.; Banham, Dustin; ...

    2015-12-03

    Here, carbohydrate-dye combinations were used to form ionically-linked soft templates for the formation of polypyrrole nanowire networks. High yields of nanostructured products were obtained using small amounts of low-cost carbohydrate and dye template materials, the majority of which remained encapsulated within the nanowires. Varying the concentration and the two-part ratio of the templates influenced the length and diameter of the nanofiber segments within the nanowire network. Pyrolysis of the nanowires yielded carbonaceous fibers containing nitrogen heteroatoms, as well as convoluted graphitic domains, well suited for supporting Pt nanoparticles. The resulting high density of nucleation sites enabled the formation of wellmore » dispersed, smaller Pt particles compared to commercial catalysts, despite significantly higher support surface loadings.« less

  1. Carbonaceous nanowire supports for polymer electrolyte membrane fuel cells

    SciTech Connect

    Garzon, Fernando H.; Wilson, Mahlon S.; Banham, Dustin; Ye, Siyu; More, Karren Leslie

    2015-12-03

    Here, carbohydrate-dye combinations were used to form ionically-linked soft templates for the formation of polypyrrole nanowire networks. High yields of nanostructured products were obtained using small amounts of low-cost carbohydrate and dye template materials, the majority of which remained encapsulated within the nanowires. Varying the concentration and the two-part ratio of the templates influenced the length and diameter of the nanofiber segments within the nanowire network. Pyrolysis of the nanowires yielded carbonaceous fibers containing nitrogen heteroatoms, as well as convoluted graphitic domains, well suited for supporting Pt nanoparticles. The resulting high density of nucleation sites enabled the formation of well dispersed, smaller Pt particles compared to commercial catalysts, despite significantly higher support surface loadings.

  2. Selective removal of heavy metal ions by disulfide linked polymer networks.

    PubMed

    Ko, Dongah; Lee, Joo Sung; Patel, Hasmukh A; Jakobsen, Mogens H; Hwang, Yuhoon; Yavuz, Cafer T; Hansen, Hans Chr Bruun; Andersen, Henrik R

    2017-03-06

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions-copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  3. Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Tavassoli, Arash; Lim, Chan; Kolodziej, Joanna; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-08-01

    Aiming at durability issues of fuel cells, this research is dedicated to a novel experimental approach in the analysis of local membrane degradation phenomena in polymer electrolyte fuel cells, shedding light on the potential effects of manufacturing imperfections on this process. With a comprehensive review on historical failure analysis data from field operated fuel cells, local sources of iron oxide contaminants, catalyst layer cracks, and catalyst layer delamination are considered as potential candidates for initiating or accelerating the local membrane degradation phenomena. Customized membrane electrode assemblies with artificial defects are designed, fabricated, and subjected to membrane accelerated stress tests followed by extensive post-mortem analysis. The results reveal a significant accelerating effect of iron oxide contamination on the global chemical degradation of the membrane, but dismiss local traces of iron oxide as a potential stressor for local membrane degradation. Anode and cathode catalyst layer cracks are observed to have negligible impact on the membrane degradation phenomena. Notably however, distinct evidence is found that anode catalyst layer delamination can accelerate local membrane thinning, while cathode delamination has no apparent effect. Moreover, a substantial mitigating effect for platinum residuals on the site of delamination is observed.

  4. A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment

    PubMed Central

    Kim, Hee Joong; Kim, Dong-Gyun; Lee, Kyuchul; Baek, Youngbin; Yoo, Youngjae; Kim, Yong Seok; Kim, Byoung Gak; Lee, Jong-Chan

    2016-01-01

    As insufficient access to clean water is expected to become worse in the near future, water purification is becoming increasingly important. Membrane filtration is the most promising technologies to produce clean water from contaminated water. Although there have been many studies to prepare highly water-permeable carbon-based membranes by utilizing frictionless water flow inside the carbonaceous pores, the carbon-based membranes still suffer from several issues, such as high cost and complicated fabrication as well as relatively low salt rejection. Here, we report for the first time the use of microporous carbonaceous membranes via controlled carbonization of polymer membranes with uniform microporosity for high-flux nanofiltration. Further enhancement of membrane performance is observed by O2 plasma treatment. The optimized membrane exhibits high water flux (13.30 LMH Bar−1) and good MgSO4 rejection (77.38%) as well as antifouling properties. This study provides insight into the design of microporous carbonaceous membranes for water purification. PMID:27782212

  5. A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment.

    PubMed

    Kim, Hee Joong; Kim, Dong-Gyun; Lee, Kyuchul; Baek, Youngbin; Yoo, Youngjae; Kim, Yong Seok; Kim, Byoung Gak; Lee, Jong-Chan

    2016-10-26

    As insufficient access to clean water is expected to become worse in the near future, water purification is becoming increasingly important. Membrane filtration is the most promising technologies to produce clean water from contaminated water. Although there have been many studies to prepare highly water-permeable carbon-based membranes by utilizing frictionless water flow inside the carbonaceous pores, the carbon-based membranes still suffer from several issues, such as high cost and complicated fabrication as well as relatively low salt rejection. Here, we report for the first time the use of microporous carbonaceous membranes via controlled carbonization of polymer membranes with uniform microporosity for high-flux nanofiltration. Further enhancement of membrane performance is observed by O2 plasma treatment. The optimized membrane exhibits high water flux (13.30 LMH Bar(-1)) and good MgSO4 rejection (77.38%) as well as antifouling properties. This study provides insight into the design of microporous carbonaceous membranes for water purification.

  6. A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Hee Joong; Kim, Dong-Gyun; Lee, Kyuchul; Baek, Youngbin; Yoo, Youngjae; Kim, Yong Seok; Kim, Byoung Gak; Lee, Jong-Chan

    2016-10-01

    As insufficient access to clean water is expected to become worse in the near future, water purification is becoming increasingly important. Membrane filtration is the most promising technologies to produce clean water from contaminated water. Although there have been many studies to prepare highly water-permeable carbon-based membranes by utilizing frictionless water flow inside the carbonaceous pores, the carbon-based membranes still suffer from several issues, such as high cost and complicated fabrication as well as relatively low salt rejection. Here, we report for the first time the use of microporous carbonaceous membranes via controlled carbonization of polymer membranes with uniform microporosity for high-flux nanofiltration. Further enhancement of membrane performance is observed by O2 plasma treatment. The optimized membrane exhibits high water flux (13.30 LMH Bar‑1) and good MgSO4 rejection (77.38%) as well as antifouling properties. This study provides insight into the design of microporous carbonaceous membranes for water purification.

  7. Relative humidity control in polymer electrolyte membrane fuel cells without extra humidification

    NASA Astrophysics Data System (ADS)

    Riascos, Luis A. M.

    The performance of polymer electrolyte membrane fuel cells is highly influenced by the water content in the membrane. To prevent the membrane from drying, several researchers have proposed extra humidification on the input reactants. But in some applications, the extra size and weight of the humidifier should be avoided. In this research a control technique, which maintains the relative humidity on saturated conditions, is implemented by adjusting the air stoichiometry; the effects of drying of membrane and flooding of electrodes are considered, as well. For initial analysis, a mathematical model reveals the relationship among variables that can be difficult to monitor in a real machine. Also prediction can be tested optimizing time and resources. For instance, the effects of temperature and humidity can be analyzed separately. For experimental validation, tests in a fault tolerant fuel cell are conducted.

  8. A review of molecular-level mechanism of membrane degradation in the polymer electrolyte fuel cell.

    PubMed

    Ishimoto, Takayoshi; Koyama, Michihisa

    2012-07-10

    Chemical degradation of perfluorosulfonic acid (PFSA) membrane is one of the most serious problems for stable and long-term operations of the polymer electrolyte fuel cell (PEFC). The chemical degradation is caused by the chemical reaction between the PFSA membrane and chemical species such as free radicals. Although chemical degradation of the PFSA membrane has been studied by various experimental techniques, the mechanism of chemical degradation relies much on speculations from ex-situ observations. Recent activities applying theoretical methods such as density functional theory, in situ experimental observation, and mechanistic study by using simplified model compound systems have led to gradual clarification of the atomistic details of the chemical degradation mechanism. In this review paper, we summarize recent reports on the chemical degradation mechanism of the PFSA membrane from an atomistic point of view.

  9. A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell

    PubMed Central

    Ishimoto, Takayoshi; Koyama, Michihisa

    2012-01-01

    Chemical degradation of perfluorosulfonic acid (PFSA) membrane is one of the most serious problems for stable and long-term operations of the polymer electrolyte fuel cell (PEFC). The chemical degradation is caused by the chemical reaction between the PFSA membrane and chemical species such as free radicals. Although chemical degradation of the PFSA membrane has been studied by various experimental techniques, the mechanism of chemical degradation relies much on speculations from ex-situ observations. Recent activities applying theoretical methods such as density functional theory, in situ experimental observation, and mechanistic study by using simplified model compound systems have led to gradual clarification of the atomistic details of the chemical degradation mechanism. In this review paper, we summarize recent reports on the chemical degradation mechanism of the PFSA membrane from an atomistic point of view. PMID:24958288

  10. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.

    PubMed

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua

    2016-11-23

    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  11. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    PubMed

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  12. Fluorescence microscopic characterization of ionic polymer bead-supported phospholipid bilayer membrane systems.

    PubMed

    Haratake, Mamoru; Osei-Asante, Samuel; Fuchigami, Takeshi; Nakayama, Morio

    2012-12-01

    Supported phospholipid membrane structures on cationic organic polymer beads were prepared using mixtures of dioleoylphosphatidylserine (PS) and egg yolk phosphatidylcholine (PC). Confocal fluorescence microscopic observations using a fluorescent membrane probe (N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine) revealed that the phospholipid molecules in the PS/PC-bead complexes were along the outer surface of the beads, but not inside the beads. The anionic PS on the most outer surface of the PS/PC-bead complexes was responsible for the binding of a positively charged macromolecule, rhodamine isothiocyanate dextran (M(w) 70,000) by electrostatic attractive forces. The fluidity of the membranes in the PS/PC-bead complexes was investigated by the fluorescence recovery after a photobleaching technique. The lateral diffusion coefficients (D) for the PS/PC-bead complexes were one-half or less than that for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles without solid supporting materials. Such a constrain of the phospholipid bilayer membrane in the complexes appeared to be due to its immobilization on the cationic polymer bead by electrostatic attractive forces between the PS and ammonium group on the surface of the bead. The D values for the complexes were dependent on the phospholipid composition; the PS(25 mol%)/PC(75 mol%)-bead complex produced a more fluid membrane than the PS(50 mol%)/PC(50 mol%)-bead one. Thus, the fluidity of the phospholipid bilayer membranes formed on the cationic polymer beads was significantly affected by the anionic phospholipid fraction used for the preparation of the complexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Azobenzene Modified Polymer Electrolyte Membrane for Ion Gating

    NASA Astrophysics Data System (ADS)

    Piedrahita, Camilo; Mballa, Mireille; He, Ruixuan; Kyu, Thein

    By virtue of ion concentration gradient across cell membranes, neuron cells are highly polarized driving electrical potential difference (e.g., Gibbs law). To regulate and control ion movement, living cells have specific channels with gates that are permeable to cations, enabling or excluding them via charge polarity and size. This mechanism for generating and transmitting signals from one neuron to another controls body movement via brain function. By virtue of trans-cis isomerization, azobenzene derivative (AZO) has been heavily sought for ion-gating in biological cells as a means of signal generation and transmission through nervous systems. In this work, PEM consisted of PEGDA/SCN/LiTFSI was modified with AZO derivatives for gating of lithium ions. At low concentrations of azobenzene of 3 wt Supported by NSF-DMR 1502543.

  14. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.

    PubMed

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok

    2013-05-01

    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  15. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes

    PubMed Central

    Clafshenkel, William P.; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Russell, Alan J.

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system. PMID:27331401

  16. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    PubMed

    Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  17. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    DOE PAGES

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; ...

    2014-07-24

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMP compositemore » containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent Tg depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less

  18. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    SciTech Connect

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-07-24

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent Tg depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.

  19. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    PubMed

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments.

  20. Upgrading low-quality natural gas by means of highly performing polymer membranes

    SciTech Connect

    Stern, S.A.

    1995-04-01

    The objective of the present study is to assess the potential usefulness of membrane separation processes for removing acid gases (CO{sub 2} and H{sub 2}S) from low-quality natural gas. Nonporous {open_quotes}dense{close_quotes} (homogeneous) membranes made from new, highly gas-selective polymers are being evaluated for this purpose. The project comprises gas permeability and separation measurements with CH{sub 4}/CO{sub 2} and CH{sub 4}/CO{sub 2}/H{sub 2}S mixtures having compositions in ranges found in low-quality natural gas. Process design studies and economic evaluations are also being made to determine the cost of upgrading low-quality natural gas with the most promising membranes. Until recently, the membranes used in this study were made from new types of polyimides synthesized in our laboratory. The polyimide membranes were found to exhibit a very high CO{sub 2}/CH{sub 4} selectivity but a relatively low H{sub 2}S/CH{sub 4} selectivity. Therefore, different types of polymers that exhibit a high H{sub 2}S/CH{sub 4} selectivity are also being evaluated.

  1. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites

    PubMed Central

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-01-01

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C. PMID:25663711

  2. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites.

    PubMed

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A; Maitland, Duncan J

    2015-01-05

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg ) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C.

  3. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    PubMed

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible.

  4. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    SciTech Connect

    Putri, Zufira E-mail: arcana@chem.itb.ac.id; Arcana, I Made E-mail: arcana@chem.itb.ac.id

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  5. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Putri, Zufira; Arcana, I. Made

    2014-03-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).

  6. Development of Bitter Taste Sensor Using Ionic-Liquid/Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Akutagawa, Nobuyuki; Toida, Jinichi; Amano, Yoshihiko; Ikezaki, Hidekazu; Toko, Kiyoshi; Arikawa, Yukihiko

    A taste sensor is composed of several kinds of lipid/polymer membranes as transducers which convert taste information to electric signal. Thus, the role of membranes is very important to detect various taste components. In this paper, we developed novel membranes which specifically respond to quinine that is typical bitter substances. These membranes were composed of hydrophobic ionic liquid such as N, N, N-trimethyl-N-propylammonium bis(trifluoromethansulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butylpyridinium hexafluorophosphate, a plasticizer, 2-nitrophenyl octyl ether and a polymer, polyvinyl chloride. In addition to quinine, they also showed response to both several kinds of alkaloids such as caffeine and strychnine, and non-alkaloid such as phenylthiocarbamide. The order of these responses was equal to that of the tongue glossopharyngeal nerve of flog. Furthermore, there were the other alkaloids which response to these membranes. Especially in these alkaloids, they showed high response to denatonium benzoate and berberin chloride which have a strong bitter taste.

  7. Polymer translocation through an electrically tunable nanopore in a multilayered semiconductor membrane.

    PubMed

    Melnikov, Dmitriy V; Nikolaev, Alexey; Leburton, Jean-Pierre; Gracheva, Maria E

    2012-01-01

    We have developed a two-level computational model that enables us to calculate electrostatic fields created by a semiconductor membrane submerged in electrolytic solution and investigate the effects of these fields on the dynamics of a polymer translocating through a nanopore in the membrane. In order to calculate the electrostatic potentials and the ionic concentrations in a solid-state nanopore, we have self-consistently solved Poisson equation within the semiclassical approximation for charge carrier statistics in the membrane and electrolyte. The electrostatic potentials obtained from these simulations are then used in conjunction with Langevin (Brownian) dynamics to model polymer translocation through the nanopore. In this work, we consider single-stranded DNA (ssDNA) translocation through semiconductor membranes consisting of heavily doped p- and n-layers of silicon forming a pn-junction which is capable of creating strong electric fields. We show that the membrane electric field controls dynamics of a biomolecule inside the channel, to either momentarily trap it, slow it down, or allow it to translocate at will.

  8. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal.

    PubMed

    Gao, Jie; Sun, Shi-Peng; Zhu, Wen-Ping; Chung, Tai-Shung

    2014-10-15

    High performance nanofiltration (NF) membranes for heavy metal removal have been molecularly designed by adsorption of chelating polymers containing negatively charged functional groups such as poly (acrylic acid-co-maleic acid) (PAM), poly (acrylic acid) (PAA) and poly (dimethylamine-co-epichlorohydrin-co-ethylenediamine) (PDMED) on the positively charged polyethyleneimine (PEI) cross-linked P84 hollow fiber substrates. Not only do these chelating polymers change the membrane surface charge and pore size, but also provide an extra mean to remove heavy metal ions through adsorption in addition to traditional steric effect and Donnan exclusion. The adsorbed membranes have comparable water permeability and superior rejections to heavy metals, for instance, Pb(NO3)2, CuSO4, NiCl2, CdCl2, ZnCl2, Na2Cr2O7 and Na2HAsO4, with rejections higher than 98%. The membranes also display excellent rejections to mixed ions with rejections more than 99%. The newly developed membranes show reasonably stability during 60-h tests as well as multiple washes.

  9. Reliability computing of polymer-electrolyte-membrane fuel cell stacks through Petri nets

    NASA Astrophysics Data System (ADS)

    Wieland, C.; Schmid, O.; Meiler, M.; Wachtel, A.; Linsler, D.

    In this paper a model is introduced which computes reliability data of PEMFC (polymer-electrolyte-membrane fuel cell) stacks, especially the average lifetime of a single stack or the reliability of stacks of a whole fuel cell vehicle fleet within a given timing. The stack and its behaviour over time is modelled by a Petri net. The behaviour is divided into degradation, spontaneous and reversible events. Through the worsening over time the characteristics voltage, internal and external leakages, which are assigned to the components MEA (membrane electrolyte assembly) and BIP (bipolar plate), are changed. Thresholds for every characteristic monitor the operating ability of the whole stack.

  10. Quasi-in situ neutron tomography on polymer electrolyte membrane fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Manke, I.; Hartnig, Ch.; Grünerbel, M.; Kaczerowski, J.; Lehnert, W.; Kardjilov, N.; Hilger, A.; Banhart, J.; Treimer, W.; Strobl, M.

    2007-04-01

    Quasi-in situ neutron tomography is applied to polymer electrolyte membrane fuel cell stacks for a cell-by-cell detection of liquid water agglomerates. Water distributions in the corresponding anodic and cathodic flow fields are analyzed separately. The influence of the membrane thickness as well as effects of the electro-osmotic drag and of back-diffusion from the cathode to the anode on the water distribution are investigated. Furthermore, the well-known engineering problem of the anomalous behavior of the outermost cells in long multistacks is addressed. The suitability of neutron tomography to support the development of fuel cells is shown.

  11. Near-infrared imaging of water in a polymer electrolyte membrane during a fuel cell operation.

    PubMed

    Morita, Shigeaki; Jojima, Yuki; Miyata, Yasushi; Kitagawa, Kuniyuki

    2010-11-15

    A novel technique of spectroscopic imaging using a near-infrared (NIR) laser sheet beam was developed for visualization of liquid water in a proton-exchange membrane (PEM) sandwiched between two opaque electrodes set in a polymer electrolyte fuel cell (PEFC). In-plane two-dimensional distribution of water in the thin membrane was clearly visualized during the fuel cell operation. Under the condition of fuel feeding into the PEFC without humidification, water was generated by the fuel cell reaction in the whole electrode area. In contrast, under the condition of fuel feeding with humidification, the PEM got wet in the vicinity of a gas flow field locally.

  12. Nanostructured interfacial self-assembled peptide-polymer membranes for enhanced mineralization and cell adhesion.

    PubMed

    Ribeiro, Sofia; Radvar, Elham; Shi, Yejiao; Borges, João; Pirraco, Rogério P; Leonor, Isabel B; Mano, João F; Reis, Rui L; Mata, Álvaro; Azevedo, Helena S

    2017-09-21

    Soft interfacial materials, such as self-assembled polymer membranes, are gaining increasing interest as biomaterials since they can provide selective barriers and/or controlled affinity interactions important to regulate cellular processes. Herein, we report the design and fabrication of multiscale structured membranes integrating selective molecular functionalities for potential applications in bone regeneration. The membranes were obtained by interfacial self-assembly of miscible aqueous solutions of hyaluronan and multi-domain peptides (MDPs) incorporating distinct biochemical motifs, including mineralizing (EE), integrin-binding (RGDS) and osteogenic (YGFGG) peptide sequences. Circular dichroism and Fourier transform infrared spectroscopy analyses of the MDPs revealed a predominant β-sheet conformation, while transmission electron microscopy (TEM) showed the formation of fibre-like nanostructures with different lengths. Scanning electron microscopy (SEM) of the membranes showed an anisotropic structure and surfaces with different nanotopographies, reflecting the morphological differences observed under TEM. All the membranes were able to promote the deposition of a calcium-phosphate mineral on their surface when incubated in a mineralizing solution. The ability of the MDPs, coated on coverslips or presented within the membranes, to support cell adhesion was investigated using primary adult periosteum-derived cells (PDCs) under serum-free conditions. Cells on the membranes lacking RGDS remained round, while in the presence of RGDS they appear to be more elongated and anchored to the membrane. These observations were confirmed by SEM analysis that showed cells attached to the membrane and exhibiting an extended morphology with close interactions with the membrane surface. We anticipate that these molecularly designed interfacial membranes can both provide relevant biochemical signals and structural biomimetic components for stem cell growth and differentiation

  13. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport

    NASA Astrophysics Data System (ADS)

    Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S.

    2016-03-01

    Polymer electrolyte membrane electrolyzer (PEME) is a candidate for advanced engineering technology. There are many polymer electrolyte membrane fuel cell (PEMFC) models that have been reported, but none regarding PEME. This paper presents state of the art mass transport models applied to PEME, a detailed literature review of these models and associate methods have been conducted. PEME models are typically developed using analytical, semi empirical and mechanistic techniques that are based on their state and spatial dimensions. Methods for developing the PEME models are introduced and briefly explained. Furthermore the model cell voltage of PEME, which consists of Nernst voltage, ohmic over potential, activation over potential, and diffusion over potential is discussed with focus on mass transport modeling. This paper also presents current issues encountered with PEME model.

  14. Performance equations for a polymer electrolyte membrane fuel cell with unsaturated cathode feed

    NASA Astrophysics Data System (ADS)

    Hsuen, Hsiao-Kuo; Yin, Ken-Ming

    A mathematical formulation for the cathode of a membrane electrode assembly of a polymer electrolyte membrane fuel cell is proposed, in which the effect of unsaturated vapor feed in the cathode is considered. This mechanistic model formulates the water saturation front within the gas diffusion layer with an explicit analytical expression as a function of operating conditions. The multi-phase flows of gaseous species and liquid water are correlated with the established capillary pressure equilibrium in the medium. In addition, less than fully hydrated water contents in the polymer electrolyte and catalyst layers are considered, and are integrated with the relevant liquid and vapor transfers in the gas diffusion layer. The developed performance equations take into account the influences of all pertinent material properties on cell performance using first principles. The mathematical approach is logical and concise in terms of revealing the underlying physical significance in comparison with many other empirical data fitting models.

  15. Nitrogen plasma-implanted titanium as bipolar plates in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Kwok, Dixon T. K.; Liu, Dongan; Li, Zhuguo; Cai, Xun; Chu, Paul K.

    Nitrogen plasma immersion ion implantation (PIII), a non-line-of-sight surface treatment technique suitable for bipolar plates in polymer electrolyte membrane fuel cells, is conducted at low and high temperature to improve the corrosion resistance and conductivity of titanium sheets. X-ray photoelectron spectroscopy (XPS) shows that high-temperature (HT) nitrogen PIII produces a thick oxy-nitride layer on the titanium surface. This layer which provides good corrosion resistance and high electrical conductivity as verified by electrochemical tests, inductively coupled plasma optical emission spectroscopy, and interfacial contact resistance (ICR) measurements renders the materials suitable for polymer electrolyte membrane fuel cells. In comparison, the low-temperature (LT) PIII titanium sample exhibits poorer corrosion resistance and electrical conductivity than the untreated titanium control.

  16. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    PubMed Central

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm−2 has been achieved at 65°C, which increases by a factor of 1.7–3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC. PMID:22880160

  17. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts.

    PubMed

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO₃ and MnO₂, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm⁻² has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.

  18. Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks

    NASA Astrophysics Data System (ADS)

    Knowles, Kyler Reser

    Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to

  19. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  20. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    SciTech Connect

    Nurhadini, Arcana, I Made

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  1. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    NASA Astrophysics Data System (ADS)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  2. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer

    NASA Astrophysics Data System (ADS)

    Zhu, Bo; Luo, Shyh-Chyang; Zhao, Haichao; Lin, Hsing-An; Sekine, Jun; Nakao, Aiko; Chen, Chi; Yamashita, Yoshiro; Yu, Hsiao-Hua

    2014-07-01

    Although electrically stimulated neurite outgrowth on bioelectronic devices is a promising means of nerve regeneration, immunogenic scar formation can insulate electrodes from targeted cells and tissues, thereby reducing the lifetime of the device. Ideally, an electrode material capable of electrically interfacing with neurons selectively and efficiently would be integrated without being recognized by the immune system and minimize its response. Here we develop a cell membrane-mimicking conducting polymer possessing several attractive features. This polymer displays high resistance towards nonspecific enzyme/cell binding and recognizes targeted cells specifically to allow intimate electrical communication over long periods of time. Its low electrical impedance relays electrical signals efficiently. This material is capable to integrate biochemical and electrical stimulation to promote neural cellular behaviour. Neurite outgrowth is enhanced greatly on this new conducting polymer; in addition, electrically stimulated secretion of proteins from primary Schwann cells can also occur on it.

  3. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes

    NASA Astrophysics Data System (ADS)

    Gromova, Yulia A.; Orlova, Anna O.; Maslov, Vladimir G.; Fedorov, Anatoly V.; Baranov, Alexander V.

    2013-10-01

    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed.

  4. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes.

    PubMed

    Gromova, Yulia A; Orlova, Anna O; Maslov, Vladimir G; Fedorov, Anatoly V; Baranov, Alexander V

    2013-10-31

    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed.

  5. High-performance Polymer Membranes with Multi-functional Amphiphilic Micelles for CO2 Capture.

    PubMed

    Kim, Sang Jin; Jeon, Harim; Kim, Dong Jun; Kim, Jong Hak

    2015-11-09

    Invited for this month's cover is the group of Jong Hak Kim at Yonsei University in South Korea. The image shows how CO2 selectively permeates through the polymer membrane containing multi-functional amphiphilic poly(dimethylsiloxane)-g-poly(oxyethylene methacrylate) (PDMS-g-POEM) comb copolymer micelles. The microphase-separated structure consists of PDMS cores and CO2 -philic POEM corona. The Full Paper itself is available at 10.1002/cssc.201501063.

  6. DETERMINATION OF THE MASS TRANSFER CHARACTERIZATION OF A CERAMIC-POLYMER COMPOSITE MEMBRANE IN THE PERVAPORATION MODE

    EPA Science Inventory

    The effect of the coating layer thickness on VOC extraction performance of a ceramic polymer composite membrane has been investigated. It was found, under experimental condiitons representing typical field operation, the overall mass transfer rates of feed components were control...

  7. DETERMINATION OF THE MASS TRANSFER CHARACTERIZATION OF A CERAMIC-POLYMER COMPOSITE MEMBRANE IN THE PERVAPORATION MODE

    EPA Science Inventory

    The effect of the coating layer thickness on VOC extraction performance of a ceramic polymer composite membrane has been investigated. It was found, under experimental condiitons representing typical field operation, the overall mass transfer rates of feed components were control...

  8. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry.

    PubMed

    Xiang, Tao; Lu, Ting; Xie, Yi; Zhao, Wei-Feng; Sun, Shu-Dong; Zhao, Chang-Sheng

    2016-08-01

    The chemical compositions are very important for designing blood-contacting membranes with good antifouling property and blood compatibility. In this study, we propose a method combining ATRP and click chemistry to introduce zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA), negatively charged polymers of poly(sodium methacrylate) (PNaMAA) and/or poly(sodium p-styrene sulfonate) (PNaSS), to improve the antifouling property and blood compatibility of polysulfone (PSf) membranes. Attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy and water contact angle results confirmed the successful grafting of the functional polymers. The antifouling property and blood compatibility of the modified membranes were systematically investigated. The zwitterionic polymer (PSBMA) grafted membranes showed good resistance to protein adsorption and bacterial adhesion; the negatively charged polymer (PNaSS or PNaMAA) grafted membranes showed improved blood compatibility, especially the anticoagulant property. Moreover, the PSBMA/PNaMAA modified membrane showed both antifouling property and anticoagulant property, and exhibited a synergistic effect in inhibiting blood coagulation. The functionalization of membrane surfaces by a combination of ATRP and click chemistry is demonstrated as an effective route to improve the antifouling property and blood compatibility of membranes in blood-contact. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Simulation of Fracture Nucleation in Cross-Linked Polymer Networks

    NASA Astrophysics Data System (ADS)

    Moller, J. C.; Barr, S. A.; Schultz, E. J.; Breitzman, T. D.; Berry, R. J.

    2013-02-01

    A novel atomistic simulation method is developed whereby polymer systems can undergo strain-rate-controlled deformation while bond scission is enabled. The aim is to provide insight into the nanoscale origins of fracture. Various highly cross-linked epoxy systems including various resin chain lengths and levels of nonreactive dilution were examined. Consistent with the results of physical experiments, cured resin strength increased and ductility decreased with increasing cross-link density. An analysis of dihedral angle activity shows the locations in the molecular network that are most absorptive of mechanical energy. Bond scission occurred principally at cross-link sites as well as between phenyl rings in the bisphenol moiety. Scissions typically occurred well after yield and were accompanied by steady increases in void size and dihedral angle motion between bisphenol moieties and at cross-link sites. The methods developed here could be more broadly applied to explore and compare the atomistic nature of deformation for various polymers such that mechanical and fracture properties could be tuned in a rational way. This method and its results could become part of a solution system that spans multiple length and time scales and that could more completely represent such mechanical events as fracture.

  10. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    SciTech Connect

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.

  11. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE PAGES

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; ...

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for furthermore » development of this new class of solid electrolytes.« less

  12. Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks

    SciTech Connect

    Martin, RL; Shahrak, MN; Swisher, JA; Simon, CM; Sculley, JP; Zhou, HC; Smit, B; Haranczyk, M

    2013-10-03

    Porous polymer networks (PPNs) are a class of porous materials of particular interest in a variety of energy-related applications because of their stability, high surface areas, and gas uptake capacities. Computationally derived structures for five recently synthesized PPN frameworks, PPN-2, -3, -4, -5, and -6, were generated for various topologies, optimized using semiempirical electronic structure methods, and evaluated using classical grand canonical Monte Carlo simulations. We show that a key factor in modeling the methane uptake performance of these materials is whether, and how, these material frameworks interpenetrate and demonstrate a computational approach for predicting the presence, degree, and nature of interpenetration in PPNs that enables the reproduction of experimental adsorption data.

  13. Cascade synthesis of a gold nanoparticle-network polymer composite

    NASA Astrophysics Data System (ADS)

    Grubjesic, Simonida; Ringstrand, Bryan S.; Jungjohann, Katherine L.; Brombosz, Scott M.; Seifert, Sönke; Firestone, Millicent A.

    2016-01-01

    The multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4]-. The reaction sequence begins with the auto-reduction of aqueous [AuCl4]- by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate end-derivatized PEO117-PPO47-PEO117 to yield a network polymer. Optical spectroscopy and TEM monitored the reduction of [AuCl4]-, formation of large aggregated Au NPs and oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multi-lamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Optical spectroscopy shows a notable red shift (Δλ ~ 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement.The multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4]-. The reaction sequence begins with the auto-reduction of aqueous [AuCl4]- by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical

  14. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from si