Sample records for polymer reinforced crc

  1. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  2. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  3. Process for preparing polymer reinforced silica aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Capadona, Lynn A. (Inventor)

    2011-01-01

    Process for preparing polymer-reinforced silica aerogels which comprises a one-pot reaction of at least one alkoxy silane in the presence of effective amounts of a polymer precursor to obtain a silica reaction product, the reaction product is gelled and subsequently subjected to conditions that promotes polymerization of the precursor and then supercritically dried to obtain the polymer-reinforced monolithic silica aerogels.

  4. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    NASA Astrophysics Data System (ADS)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  5. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-03-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  6. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  7. Retrofit of existing reinforced concrete bridges with fiber reinforced polymer composites

    DOT National Transportation Integrated Search

    2001-12-01

    A two-part research was focused on examining various issues related to the use of fiber reinforced polymer (FRP) composites for strengthening of existing reinforced concrete bridges. A summary of each phase is presented separately.

  8. Bamboo reinforced polymer composite - A comprehensive review

    NASA Astrophysics Data System (ADS)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  9. Glass fiber reinforced polymer bars as top mat reinforcement for bridge decks.

    DOT National Transportation Integrated Search

    2002-01-01

    The objectives of this research were to characterize the material and bond properties of three commercially available GFRP (glass fiber reinforced polymer) reinforcing bars, and evaluate the effects of the material properties and the current ACI desi...

  10. Technology and Development of Self-Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  11. Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge Beams

    DOT National Transportation Integrated Search

    2018-01-01

    Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural ...

  12. Quantitative radiographic analysis of fiber reinforced polymer composites.

    PubMed

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  13. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    DOT National Transportation Integrated Search

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  14. Self-healing in single and multiple fiber(s) reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Woldesenbet, E.

    2010-06-01

    You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  15. CNF Re-Inforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Lake, Max L.; Tibbetts, Gary G.; Glasgow, D. Gerald

    2004-09-01

    In properties of physical size, performance improvement, and production cost, carbon nanofiber (CNF) lies in a spectrum of materials bounded by carbon black, fullerenes, and single wall to multi-wall carbon nanotubes on one end and continuous carbon fiber on the other. Results show promise for use of CNF for modified electrical conductivity of polymer composites. Current compounding efforts focus on techniques for nanofiber dispersion designed to retain nanofiber length, including de-bulking methods and low shear melt processing. Heat treatment of CNF as a postproduction process has also been evaluated for its influence on electrical properties of CNF-reinforced polymer composites.

  16. Performance of a bridge deck with glass fiber reinforced polymer bars as the top mat of reinforcement.

    DOT National Transportation Integrated Search

    2005-01-01

    The purpose of this research was to investigate the performance of glass fiber reinforced polymer (GFRP) bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advan...

  17. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites

    DOE PAGES

    Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; ...

    2016-05-20

    The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, T g, has been extensively researched. However, not much is known about the origin of this effect below T g. In this paper, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below T g. We ascribe this phenomenon tomore » a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above T g.« less

  18. Electron beam surface modifications in reinforcing and recycling of polymers

    NASA Astrophysics Data System (ADS)

    Czvikovszky, T.; Hargitai, H.

    1997-08-01

    Thermoplastic polymers can be fiber-reinforced in the recycling step through a reactive modification of the interface between the polymer matrix and fiber. Recollected automobile bumpers made of polypropylene copolymers have been reinforced during the reprocessing with eight different types of high-strength fibers, with waste cord-yarns of the tire industry. A thin layer reactive interface of acrylic oligomers has been applied and activated through low energy (175 keV) electron beam (EB). The upcycling (upgrading recycling) resulted in a series of extrudable and injection-mouldable, fiber-reinforced thermoplastic of enhanced bending strength, increased modulus of elasticity and acceptable impact strength. EB treatment has been compared with conventional methods.

  19. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2012-08-03

    is unlimited. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites The views, opinions...12211 Research Triangle Park, NC 27709-2211 ballistics, composites, Kevlar , material models, microstructural defects REPORT DOCUMENTATION PAGE 11... Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites Report Title Fiber-reinforced polymer matrix composite materials display quite complex deformation

  20. A review on the cords & plies reinforcement of elastomeric polymer matrix

    NASA Astrophysics Data System (ADS)

    Mahmood, S. S.; Husin, H.; Mat-Shayuti, M. S.; Hassan, Z.

    2016-06-01

    Steel, polyester, nylon and rayon are the main materials of cords & plies that have been reinforced in the natural rubber to produce quality tyres but there is few research reported on cord and plies reinforcement in silicone rubber. Taking the innovation of tyres as inspiration, this review's first objective is to compile the comprehensive studies about the cords & plies reinforcement in elastomeric polymer matrix. The second objective is to gather information about silicone rubber that has a high potential as a matrix phase for cords and plies reinforcement. All the tests and findings are gathered and compiled in sections namely processing preparation, curing, physical and mechanical properties, and adhesion between cords-polymer.

  1. Fiber reinforced polymer bridge decks : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  2. Glass Fiber Reinforced Polymer Dowel Bar Evaluation

    DOT National Transportation Integrated Search

    2012-09-01

    Glass Fiber Reinforced Polymer (GFRP) dowel bars were installed on one new construction project and two dowel bar : retrofit projects to evaluate the performance of this type of dowel bar in comparison to steel dowel bars installed on the same : cont...

  3. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    DOT National Transportation Integrated Search

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  4. Basalt fiber reinforced polymer composites: Processing and properties

    NASA Astrophysics Data System (ADS)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  5. Sensored fiber reinforced polymer grate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Michael P.; Mack, Thomas Kimball

    Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based onmore » a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.« less

  6. Understanding the interfacial chain dynamics of fiber-reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Carrillo, Jan-Michael; Naskar, Amit; Sumpter, Bobby

    The polymer-fiber interface plays a major role in determining the structural and dynamical properties of fiber reinforced composite materials. We utilized LAMMPS MD package to understand the interfacial properties at the nanoscale. Coarse-grained flexible polymer chains are introduced to compare the various structures and dynamics of the polymer chains. Our preliminary simulation study shows that the rigidity of the polymer chain affects the interfacial morphology and dynamics of the chain on a flat surface. In this work, we identified the `immobile inter-phase' morphology and relate it to rheological properties. We calculated the viscoelastic properties, e.g., shear modulus and storage modulus, which are compared with experiments. MD simulations are used to show the variation of viscoelastic properties with polymer volume fraction. The nanoscale segmental and chain relaxation are calculated from the MD simulations and compared to the experimental data. These observations will be able to identify the fundamental physics behind the effect of the polymer-fiber interactions and orientation of the fiber to the overall rheological properties of the fiber reinforced polymer matrix. Funding for the project was provided by ORNLs Laboratory Directed Research and Development (LDRD) program.

  7. Fullerene reinforced ionic polymer transducer

    NASA Astrophysics Data System (ADS)

    Jung, J. H.; Cheng, T. H.; Oh, I. K.

    2009-07-01

    Novel fullerene reinforced nano-composite transducers based on nafion were developed inorder to improve the ionic polymer metal composite transducer. The fullerene reinforced nano-composite membranes were fabricated by recasting method with 0.1 and 0.5 weight percentage of a Fullerenes. Stress-Strain tests showed tremendous increase in stiffness and modulus of the nano-composite membranes even at these minute concentrations of Fullerenes. Ionic exchange capacity analysis and proton conductivity test were performed to calculate the electrical property of the composite films. Water uptake was measured to understand the liquid adsorbing characteristics of the membranes. Also, tip displacement of the nano-composite membrane transducer was investigated under AC excitations with various magnitudes and frequencies. Furthermore, the generated energy was measured from external sinusoidal physical input vibration with several displacements and frequencies by using a mechanical shaker. As a result, the fullerene reinforced nanocomposite membrane based on nafion shows higher stiffness and Young's modulus than that of pure nafion membrane. Also, the nano-composite membrane had better water uptake and proton conductivity than the pure membrane. Fullerene reinforced nano-composite membrane transducer actuates to a much larger deformations than pure nafion membrane transducer. The developed membrane transducer dissipates more energy from the physical input vibration than that of unfilled(or virgin) Nafion membrane transducer.

  8. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.

  9. An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Ratna, Sanatan; Misra, Sheelam

    2018-05-01

    Fibre-reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fibre which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibres such as glass, carbon etc., have been used in fibre reinforced plastics. Although glass and other synthetic fibre-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of horse hair, an animal fibre abundantly available in India. Animal fibres are not only strong and lightweight but also relatively very cheaper than mineral fibre. The present work describes the development and characterization of a new set of animal fiber based polymer composites consisting of horse hair as reinforcement and epoxy resin. The newly developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fibre length on mechanical behavior of these epoxy based polymer composites. Composite made form horse hair can be used as a potential reinforcing material for many structural and non-structural applications. This work can be further extended to study other aspects of such composites like effect of fiber content, loading pattern, fibre treatment on mechanical behavior of horse hair based polymer horse hair.

  10. Proof testing a bridge deck design with glass fiber reinforced polymer bars as top mat of reinforcement.

    DOT National Transportation Integrated Search

    2003-01-01

    The primary objective of this project was to test a full-scale prototype of a bridge deck design containing glass fiber reinforced polymer (GFRP) bars as the top mat of reinforcement. The test deck mimics the design of the deck of one span of the new...

  11. Collaboration of polymer composite reinforcement and cement concrete

    NASA Astrophysics Data System (ADS)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  12. Time-Dependent Behavior of Reinforced Polymer Concrete Columns under Eccentric Axial Loading

    PubMed Central

    Berardi, Valentino Paolo; Mancusi, Geminiano

    2012-01-01

    Polymer concretes (PCs) represent a promising alternative to traditional cementitious materials in the field of new construction. In fact, PCs exhibit high compressive strength and ultimate compressive strain values, as well as good chemical resistance. Within the context of these benefits, this paper presents a study on the time-dependent behavior of polymer concrete columns reinforced with different bar types using a mechanical model recently developed by the authors. Balanced internal reinforcements are considered (i.e., two bars at both the top and bottom of the cross-section). The investigation highlights relevant stress and strain variations over time and, consequently, the emergence of a significant decrease in concrete’s stiffness and strength over time. Therefore, the results indicate that deferred effects due to viscous flow may significantly affect the reliability of reinforced polymer concrete elements over time.

  13. Environmental durability of reinforced concrete deck girders strengthened for shear with surface-bonded carbon fiber-reinforced polymer : final report.

    DOT National Transportation Integrated Search

    2009-05-01

    This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort ...

  14. Environmental durability of reinforced concrete deck girders strengthened for shear with surface bonded carbon fiber-reinforced polymer : final report.

    DOT National Transportation Integrated Search

    2009-05-01

    This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced : concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effor...

  15. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  16. Prediction of Elastic Constants of the Fuzzy Fibre Reinforced Polymer Using Computational Micromechanics

    NASA Astrophysics Data System (ADS)

    Pawlik, Marzena; Lu, Yiling

    2018-05-01

    Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.

  17. Additive manufacturing of short and mixed fibre-reinforced polymer

    DOEpatents

    Lewicki, James; Duoss, Eric B.; Rodriguez, Jennifer Nicole; Worsley, Marcus A.; King, Michael J.

    2018-01-09

    Additive manufacturing of a fiber-reinforced polymer (FRP) product using an additive manufacturing print head; a reservoir in the additive manufacturing print head; short carbon fibers in the reservoir, wherein the short carbon fibers are randomly aligned in the reservoir; an acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin in the reservoir, wherein the short carbon fibers are dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; a tapered nozzle in the additive manufacturing print head operatively connected to the reservoir, the tapered nozzle produces an extruded material that forms the fiber-reinforced polymer product; baffles in the tapered nozzle that receive the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; and a system for driving the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin from the reservoir through the tapered nozzle wherein the randomly aligned short carbon fibers in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin are aligned by the baffles and wherein the extruded material has the short carbon fibers aligned in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin that forms the fiber-reinforced polymer product.

  18. Self Healing Fibre-reinforced Polymer Composites: an Overview

    NASA Astrophysics Data System (ADS)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  19. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.

  20. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  1. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2004-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  2. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2001-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  3. Fabrication of nanofibers reinforced polymer microstructures using femtosecond laser material processing

    NASA Astrophysics Data System (ADS)

    Alubaidy, Mohammed-Amin

    A new method has been introduced for the formation of microfeatures made of nanofibers reinforced polymer, using femtosecond laser material processing. The Femtosecond laser is used for the generation of three-dimensional interweaved nanofibers and the construction of microfeatures, like microchannels and voxels, through multi photon polymerization of nanofiber dispersed polymer resin. A new phenomenon of multiphoton polymerization induced by dual wavelength irradiation was reported for the first time. A significant improvement in the spatial resolution, compared to the two photon absorption (2PA) and the three photon absorption (3PA) processes has been achieved. Conductive polymer microstructures and magnetic polymer microstructures have been fabricated through this method. The mechanical properties of nanofiber reinforced polymer microstructures has been investigated by means of nanoindentation and the volume fraction of the generated nanofibers in the nanocomposite was calculated by using nanoindentation analysis. The results showed significant improvement in strength of the material. The electrical conductivity of the two photon polymerization (TPP) generated microfeatures was measured by a two-probe system at room temperature and the conductivity-temperature relationship was measured at a certain temperature range. The results suggest that the conductive polymer microstructure is reproducible and has a consistent conductivity-temperature relation. The magnetic strength has been characterized using Guassmeter. To demonstrate the potential application of the new fabrication method, a novel class of DNA-functionalized three-dimensional (3D), stand-free, and nanostructured electrodes were fabricated. The developed nanofibrous DNA biosensor has been characterized by cyclic voltammetry with the use of ferrocyanide as an electrochemical redox indicator. Results showed that the probe--target recognition has been improved. This research demonstrated that femtosecond

  4. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    NASA Astrophysics Data System (ADS)

    Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.

    2013-06-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  5. Development and performance evaluation of fiber reinforced polymer bridge.

    DOT National Transportation Integrated Search

    2014-03-01

    Fiber reinforced polymers (FRP) have become more popular construction materials in the last decade due to the reduction of : material costs. The installation and performance evaluation of the first FRP-wrapped balsa wood bridge in Louisiana is descri...

  6. Moment redistribution in continuous reinforced concrete beams strengthened with carbon-fiber-reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Aiello, M. A.; Valente, L.; Rizzo, A.

    2007-09-01

    The results of tests on continuous steel-fiber-reinforced concrete (RC) beams, with and without an external strengthening, are presented. The internal flexural steel reinforcement was designed so that to allow steel yielding before the collapse of the beams. To prevent the shear failure, steel stirrups were used. The tests also included two nonstrengthened control beams; the other specimens were strengthened with different configurations of externally bonded carbon-fiber-reinforced polymer (CFRP) laminates. In order to prevent the premature failure from delamination of the CFRP strengthening, a wrapping was also applied. The experimental results obtained show that it is possible to achieve a sufficient degree of moment redistribution if the strengthening configuration is chosen properly, confirming the results provided by two simple numerical models.

  7. Fiberglass reinforced polymer composite bridge deck construction in Illinois

    DOT National Transportation Integrated Search

    2002-09-01

    An experiment was conducted using a fiber reinforced polymer composite material for the bridge deck of a low volume bridge. The test location was on South Fayette Street over the Town Brook in Jacksonville, Illinois. This project included removal of ...

  8. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression.

    PubMed

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2012-01-01

    The Crc protein is a translational repressor that recognizes a specific target at some mRNAs, controlling catabolite repression and co-ordinating carbon metabolism in pseudomonads. In Pseudomonas aeruginosa, the levels of free Crc protein are controlled by CrcZ, a sRNA that sequesters Crc, acting as an antagonist. We show that, in Pseudomonas putida, the levels of free Crc are controlled by CrcZ and by a novel 368 nt sRNA named CrcY. CrcZ and CrcY, which contain six potential targets for Crc, were able to bind Crc specifically in vitro. The levels of CrcZ and CrcY were low under conditions generating a strong catabolite repression, and increased strongly when catabolite repression was absent. Deletion of either crcZ or crcY had no effect on catabolite repression, but the simultaneous absence of both sRNAs led to constitutive catabolite repression that compromised growth on some carbon sources. Overproduction of CrcZ or CrcY significantly reduced repression. We propose that CrcZ and CrcY act in concert, sequestering and modulating the levels of free Crc according to metabolic conditions. The CbrA/CbrB two-component system activated crcZ transcription, but had little effect on crcY. CrcY was detected in P. putida, Pseudomonas fluorescens and Pseudomonas syringae, but not in P. aeruginosa. © 2011 Blackwell Publishing Ltd.

  9. Flexural properties of denture base polymers reinforced with a glass cloth-urethane polymer composite.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2004-10-01

    A newly designed light-cured reinforcement made from urethanemethacrylate oligomer and woven glass cloth has orthotropic anisotropy. This is produced for incorporation into the outermost position under the greatest tension in denture base resins. In this study, the flexural properties of self-, heat-, and light-curing reinforced resins were determined. The silanized glass cloth was soaked in urethanemethacrylate oligomer containing camphorquinone and 2-(dimethylamino)ethylmethacrylate. It was sandwiched between two pieces of polyethylene film and pressed to form a reinforcement sheet 0.3 mm in thickness, which was light-cured and prepared using four different surface conditions: with or without the polyethylene film and with or without a bonding agent. The reinforcement sheet was fixed in a fluorocarbon resin mold 3 mm in thickness, which was filled with self-, heat-, or light-curing resin and cured. The cured laminated plate was cut for flexural testing (40 x 7 x 3 mm3). A three-point flexural test was carried out at a crosshead speed of 2 mm/min and a span length of 30 mm. In this study, the glass fiber content was measured at percentages by weight because it was not possible to determine accurately the volume of the various polymers. The baseline flexural strengths of the self-, heat-, and light-curing resins were 76.2, 68.6, and 55.6 MPa, respectively, and these values were increased to 271.7, 216.4, and 266.5 MPa by the reinforcement sheet. The baseline flexural moduli of self-, heat-, and light-curing resins were 2.0, 2.4, and 2.1 GPa, respectively. These values were increased to 7.2, 5.1, and 6.6 GPa by the reinforcement sheet. SEM photographs revealed good impregnation of the glass fiber within the polymer matrix. The differences in the flexural strengths and flexural moduli of the control and reinforced specimens were significant (p < 0.01).

  10. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    PubMed

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10 -4 , and 19.3% to 77.7% at 0.1 mm, P < 10 -8 . Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  11. Low-Cost Nanocellulose-Reinforced High-Temperature Polymer Composites for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Tekinalp, Halil L.; Love, Lonnie J.

    2016-07-13

    ORNL worked with American Process Inc. to demonstrate the potential use of bio-based BioPlus ® lignin-coated cellulose nanofibrils (L-CNF) as a reinforcing agent in the development of polymer feedstock suitable for additive manufacturing. L-CNF-reinforced polylactic acid (PLA) testing coupons were prepared and up to 69% increase in tensile strength and 133% increase in elastic modulus were demonstrated.

  12. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  13. Reinforcement of bacterial cellulose aerogels with biocompatible polymers

    PubMed Central

    Pircher, N.; Veigel, S.; Aigner, N.; Nedelec, J.M.; Rosenau, T.; Liebner, F.

    2014-01-01

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77 K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. PMID:25037381

  14. Modified glass fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Cao, Yumei

    A high ratio of strength to density and relatively low-cost are some of the significant features of glass fibre reinforced polymer composites (GFRPCs) that made them one of the most rapidly developed materials in recent years. They are widely used as the material of construction in the areas of aerospace, marine and everyday life, such as airplane, helicopter, boat, canoe, fishing rod, racket, etc. Traditionally, researchers tried to raise the mechanical properties and keep a high strength/weight ratio using all or some of the following methods: increasing the volume fraction of the fibre; using different polymeric matrix material; or changing the curing conditions. In recent years, some new techniques and processing methods were developed to further improve the mechanical properties of glass fibre (GF) reinforced polymer composite. For example, by modifying the surface condition of the GF, both the interface strength between the GF and the polymer matrix and the shear strength of the final composite can be significantly increased. Also, by prestressing the fibre during the curing process of the composite, the tensile, flexural and the impact properties of the composite can be greatly improved. In this research project, a new method of preparing GFRPCs, which combined several traditional and modern techniques together, was developed. This new method includes modification of the surface of the GF with silica particles, application of different levels of prestressing on the GF during the curing process, and the change of the fibre volume fraction and curing conditions in different sets of experiments. The results of the new processing were tested by the three-point bend test, the short beam shear test and the impact test to determine the new set of properties so formed in the composite material. Scanning electronic microscopy (SEM) was used to study the fracture surface of the new materials after the mechanical tests were performed. By taking advantages of the

  15. Highly accelerated lifetime for externally applied bond critical fiber-reinforced polymer (FRP) infrastructure materials.

    DOT National Transportation Integrated Search

    2014-03-01

    This report describes a research project to investigate accelerated aging protocols for fiber-reinforced : polymer (FRP) reinforcement of concrete. This research was conducted in three stages. In the first : stage, various spectroscopic techniques we...

  16. Fracture behavior of glass fiber reinforced polymer composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avci, A.; Arikan, H.; Akdemir, A

    2004-03-01

    Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such asmore » initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.« less

  17. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10−4, and 19.3% to 77.7% at 0.1 mm, P < 10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential. PMID:25553057

  18. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida.

    PubMed

    La Rosa, Ruggero; Nogales, Juan; Rojo, Fernando

    2015-09-01

    In metabolically versatile bacteria, carbon catabolite repression (CCR) facilitates the preferential assimilation of the most efficient carbon sources, improving growth rates and fitness. In Pseudomonas putida, the Crc and Hfq proteins and the CrcZ and CrcY small RNAs, which are believed to antagonize Crc/Hfq, are key players in CCR. Unlike that seen in other bacterial species, succinate and glucose elicit weak CCR in this bacterium. In the present work, metabolic, transcriptomic and constraint-based metabolic flux analyses were combined to clarify whether P. putida prefers succinate or glucose, and to identify the role of the Crc protein in the metabolism of these compounds. When provided simultaneously, succinate was consumed faster than glucose, although both compounds were metabolized. CrcZ and CrcY levels were lower when both substrates were present than when only one was provided, suggesting a role for Crc in coordinating metabolism of these compounds. Flux distribution analysis suggested that, when both substrates are present, Crc works to organize a metabolism in which carbon compounds flow in opposite directions: from glucose to pyruvate, and from succinate to pyruvate. Thus, our results support that Crc not only favours the assimilation of preferred compounds, but balances carbon fluxes, optimizing metabolism and growth. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Reinforcement of bacterial cellulose aerogels with biocompatible polymers.

    PubMed

    Pircher, N; Veigel, S; Aigner, N; Nedelec, J M; Rosenau, T; Liebner, F

    2014-10-13

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  1. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  2. Attitudes towards colorectal cancer (CRC) and CRC screening tests among elderly Malay patients.

    PubMed

    Al-Naggar, Redhwan A; Al-Kubaisy, Waqar; Yap, Bee W; Bobryshev, Yuri V; Osman, Muhamed T

    2015-01-01

    Colorectal cancer (CRC) is the third most common malignancy in Malaysia, where data are limited regarding knowledge and barriers in regard to CRC and screening tests. The aim of the study was to assess these parameters among Malaysians. The questionnaires were distributed in the Umra Private Hospital in Selangor. The questionnaire had four parts and covered social-demographic questions, respondent knowledge about CRC and colorectal tests, attitude towards CRC and respondentaction regarding CRC. More than half of Malay participants (total n=187) were female (57.2%) and 36.9% of them were working as professionals. The majority of the participants (93.6%) never had a CRC screening test. The study found that only 10.2% of the study participants did not consider that their chances of getting CRC were high. A high percentage of the participants (43.3%) believed that they would have good chance of survival if the cancer would be found early. About one third of the respondents did not want to do screening because of fear of cancer, and concerns of embarrassment during the procedure adversely affected attitude to CRC screening as well. Age, gender, income, family history of CRC, vegetable intake and physical activity were found to be significant determinants of knowledge on CRC. The major barriers identified towards CRC screening identified in our study were fear of pain and embarrassment. The findings have implications for understanding of similarities and differences in attitude to CRC amongst elderly patients in other cultural/ geographic regions.

  3. Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression.

    PubMed

    Fonseca, Pilar; Moreno, Renata; Rojo, Fernando

    2013-01-01

    The Crc protein of Pseudomonas inhibits the expression of genes involved in the transport and assimilation of a number of non-preferred carbon sources when preferred substrates are available, thus coordinating carbon metabolism. Crc acts by binding to target mRNAs, inhibiting their translation. In Pseudomonas putida, the amount of free Crc available is controlled by two sRNAs, CrcY and CrcZ, which bind to and sequester Crc. The levels of these sRNAs vary according to metabolic conditions. Pseudomonas putida grows optimally at 30°C, but can also thrive at 10°C. The present work shows that when cells grow exponentially at 10°C, the repressive effect of Crc on many genes is significantly reduced compared with that seen at 30°C. Total Crc levels were similar at both temperatures, but those of CrcZ and CrcY were significantly higher at 10°C. Therefore, Crc-mediated repression may, at least in part, be reduced at 10°C because the fraction of Crc protein sequestered by CrcZ and CrcY is larger, reducing the amount of free Crc available to bind its targets. This may help P. putida to face cold stress. The results reported might help understanding the behaviour of this bacterium in bioremediation or rhizoremediation strategies at low temperatures. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Environmental Degradation of Fiber-Reinforced Polymer Fasteners in Wood

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer

    2013-01-01

    This paper examines the durability of fiber-reinforced polymer (FRP) nails in treated wood. The FRP nails were exposed to four conditions: (1) accelerated weathering, consisting of exposure to ultraviolet light and condensation; (2) 100% relative humidity (RH); (3) being driven into untreated wood and exposed to 100% RH; and (4) being driven into wood treated with...

  5. Comparative Analysis of the Reinforcement of Polymers with 2D-Nanofillers: Organoclay and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Kozlov, G. V.; Kuvshinova, S. A.; Dolbin, I. V.; Koifman, O. I.

    2018-03-01

    Using the percolation reinforcement model, it has been shown that the main factor governing the degree of reinforcement of polymer/2D-nanofiller composites is the ability of a nanofiller to generate interfacial regions. This parameter is interrelated with two fundamental structural characteristics of a nanocomposite, i.e., the fractal dimension of its structure and the content of polymer matrix/nanofiller interfacial surfaces. The negative effect of high nanofiller anisotropy on the elasticity modulus of a nanocomposite is demonstrated.

  6. Use of fiber reinforced polymer composite cable for post-tensioning application.

    DOT National Transportation Integrated Search

    2015-08-01

    The primary objective of this research project was to assess the feasibility of the use of innovative carbon fiber reinforced : polymer (CFRP) tendons and to develop guidelines for CFRP in post-tensioned bridge applications, including segmental : bri...

  7. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  8. Development of ductile hybrid fiber reinforced polymer (D-H-FRP) reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Somboonsong, Win

    The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration in transportation structures and port facilities. Currently, the Federal Highway Administration (FHWA) spends annually $31 billion for maintaining and repairing highways and highway bridges. The study reported herein represents the work done in developing a new type of reinforcement called Ductile Hybrid Fiber Reinforced Polymer or D-H-FRP using non-corrosive fiber materials. Unlike the previous FRP reinforcements that fail in a brittle manner, the D-H-FRP bars exhibit the stress-strain curves that are suitable for concrete reinforcement. The D-H-FRP stress-strain curves are linearly elastic with a definite yield point followed by plastic deformation and strain hardening resembling that of mild steel. In addition, the D-H-FRP reinforcement has integrated ribs required for concrete bond. The desirable mechanical properties of D-H-FRP reinforcement are obtained from the integrated design based on the material hybrid and geometric hybrid concepts. Using these concepts, the properties can be tailored to meet the specific design requirements. An analytical model was developed to predict the D-H-FRP stress-strain curves with different combination of fiber materials and geometric configuration. This model was used to optimize the design of D-H-FRP bars. An in-line braiding-pultrusion manufacturing process was developed at Drexel University to produce high quality D-H-FRP reinforcement in diameters that can be used in concrete structures. A series of experiments were carried out to test D-H-FRP reinforcement as well as their individual components in monotonic and cyclic tensile tests. Using the results from the tensile tests and fracture analysis, the stress-strain behavior of the D-H-FRP reinforcement was fully characterized and explained. Two series of concrete beams reinforced with D-H-FRP bars were studied. The D-H-FRP beam test results were then compared with companion

  9. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    DOT National Transportation Integrated Search

    2014-05-01

    Although still in their infancy, fiber-reinforced polymer (FRP) bridges have shown great promise in eliminating corrosion : concerns and meeting (or exceeding) FHWAs goal of 100-year life spans for bridges. While FRP bridges are cost-effective in ...

  10. Monitoring long-term in-situs behavior of installed fiber reinforced polymer.

    DOT National Transportation Integrated Search

    2009-06-01

    The objective of this report is to provide information on state of the art in structural health : monitoring (SHM) and its application to bridges. The most recent trends in SHM with regard to : fiber reinforced polymer (FRP) composites are discussed....

  11. The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells.

    PubMed

    Fan, F; Bellister, S; Lu, J; Ye, X; Boulbes, D R; Tozzi, F; Sceusi, E; Kopetz, S; Tian, F; Xia, L; Zhou, Y; Bhattacharya, R; Ellis, L M

    2015-02-03

    Isolation of colorectal cancer (CRC) cell populations enriched for cancer stem cells (CSCs) may facilitate target identification. There is no consensus regarding the best methods for isolating CRC stem cells (CRC-SCs). We determined the suitability of various cellular models and various stem cell markers for the isolation of CRC-SCs. Established human CRC cell lines, established CRC cell lines passaged through mice, patient-derived xenograft (PDX)-derived cells, early passage/newly established cell lines, and cells directly from clinical specimens were studied. Cells were FAC-sorted for the CRC-SC markers CD44, CD133, and aldehyde dehydrogenase (ALDH). Sphere formation and in vivo tumorigenicity studies were used to validate CRC-SC enrichment. None of the markers studied in established cell lines, grown either in vitro or in vivo, consistently enriched for CRC-SCs. In the three other cellular models, CD44 and CD133 did not reliably enrich for stemness. In contrast, freshly isolated PDX-derived cells or early passage/newly established CRC cell lines with high ALDH activity formed spheres in vitro and enhanced tumorigenicity in vivo, whereas cells with low ALDH activity did not. PDX-derived cells, early passages/newly established CRC cell lines and cells from clinical specimen with high ALDH activity can be used to identify CRC-SC-enriched populations. Established CRC cell lines should not be used to isolate CSCs.

  12. Hygrothermal effects on durability and moisture kinetics of fiber-reinforced polymer composites.

    DOT National Transportation Integrated Search

    2006-06-01

    Fiber-Reinforced Polymer (FRP) composites offer many advantages over conventional materials for : applications in the marine and civil infrastructure areas. Their increasing widespread use emphasizes the : need to predict their performance over long ...

  13. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendra Bordia

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-firedmore » environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  14. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Shishevan, Farzin Azimpour; Akbulut, Hamid; Mohtadi-Bonab, M. A.

    2017-06-01

    In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

  15. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    USDA-ARS?s Scientific Manuscript database

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  16. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    NASA Astrophysics Data System (ADS)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  17. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  18. Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.

    1995-12-31

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphologymore » and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.« less

  19. Biological and physicochemical properties of carbon-graphite fibre-reinforced polymers intended for implant suprastructures.

    PubMed

    Segerström, Susanna; Sandborgh-Englund, Gunilla; Ruyter, Eystein I

    2011-06-01

    The aim of this study was to determine water sorption, water solubility, dimensional change caused by water storage, residual monomers, and possible cytotoxic effects of heat-polymerized carbon-graphite fibre-reinforced composites with different fibre loadings based on methyl methacrylate/poly(methyl methacrylate) (MMA/PMMA) and the copolymer poly (vinyl chloride-co-vinyl acetate). Two different resin systems were used. Resin A contained ethylene glycol dimethacrylate (EGDMA) and 1,4-butanediol dimethacrylate (1,4-BDMA); the cross-linker in Resin B was diethylene glycol dimethacrylate (DEGDMA). The resin mixtures were reinforced with 24, 36 and 47 wt% surface-treated carbon-graphite fibres. In addition, polymer B was reinforced with 58 wt% fibres. Water sorption was equal to or below 3.34±1.18 wt%, except for the 58 wt% fibre loading of polymer B (5.27±1.22 wt%). Water solubility was below 0.36±0.015 wt%, except for polymer B with 47 and 58 wt% fibres. For all composites, the volumetric increase was below 0.01±0.005 vol%. Residual MMA monomer was equal to or below 0.68±0.05 wt% for the fibre composites. The filter diffusion test and the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay demonstrated no cytotoxicity for the carbon-graphite fibre-reinforced composites, and residual cross-linking agents and vinyl chloride were not detectable by high-performance liquid chromatography (HPLC) analysis. © 2011 Eur J Oral Sci.

  20. Microstructural characterization of PAN based carbon fiber reinforced nylon 6 polymer composites

    NASA Astrophysics Data System (ADS)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2018-04-01

    Microstructural characterization of nylon 6/polyacrolonitrile based carbon fibers (PAN-CFs) of 10 to 40 wt% has been performed by positron lifetime technique (PLT). The positron lifetime parameters viz., o-Ps lifetime (τ3), o-Ps intensity (I3) and fractional free volume (Fv) of nylon 6/PAN-CF composites are correlated with the mechanical properties viz., Tensile strength and Young's modulus. The Fv show negative deviation with the reinforcement of 10 to 40 wt% of PAN-CF from the linear additivity relation. The negative deviation in nylon 6/PAN-CF composite suggests the induced molecular packing due to the chemical interaction between the polymeric chains of nylon 6 and PAN-CF. This is evident from Fourier Transform Infrared Spectrometry (FTIR) studies. The FTIR results suggests that observed negative deviation in PALS results of nylon 6/PAN-CF reinforced polymer composites is due to the induced chemical interaction at N-H-O sites. The improved tensile strength (TS) and Young's modulus (YM) in nylon 6/PAN-CF reinforced polymer composites is due to AS4C (surface treated and epoxy coated) PAN-CF has shown highest adhesion level due to better stress transfer between nylon 6 and PAN-CF.

  1. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    NASA Astrophysics Data System (ADS)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  2. Advanced Single-Polymer Nanofiber-Reinforced Composite - Towards Next Generation Ultralight Superstrong/Tough Structural Material

    DTIC Science & Technology

    2015-04-29

    AFRL-OSR-VA-TR-2015-0144 ADVANCED SINGLE-POLYMER NANOFIBER-REINFORCED COMPOSITE YURIS DZENIS UNIVERSITY OF NEBRSKA Final Report 04/29/2015... COMPOSITE - TOWARDS NEXT GENERATION ULTRALIGHT SUPERSTRONG/TOUGH STRUCTURAL MATERIAL 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-11-1-0204 5c. PROGRAM...characterize their mechanical behavior and properties; and (3) fabricate and characterize polyimide nanofiber-reinforced composites . Continuous

  3. Microtensile Test of AN Ordered-Reinforced Electrophoretic Polymer Matrix Composite Fabricated by Surface Micromachining

    NASA Astrophysics Data System (ADS)

    Yang, Zhuoqing; Wang, Hong; Zhang, Zhenjie; Ding, Guifu; Zhao, Xiaolin

    A novel ordered-reinforced microscale polymer matrix composite based on electrophoresis and surface micromachining technologies has been proposed in the present work. The braid angle, volume content and width of the reinforcement in the composite has been designed and simulated by ANSYS finite element software. Based on the simulation and optimization, the Ni fibers reinforced polymer matrix composite sample (3 mm length × 0.6 mm width × 0.04 mm thickness) was successfully fabricated utilizing the surface micromachining process. The fabricated samples were characterized by microtensile test on the dynamic mechanical analysis (DMA) equipment. It is indicated that the tested tensile strength and Young's modulus are 285 MPa and 6.8 GPa, respectively. In addition, the fracture section of the composite sample has been observed by scanning electron microscope (SEM) and the corresponding fracture process was also explained and analyzed in detail. The new presented composite is promising for hot embossing mold in microfluidic chip and several transducers used in accurately controlled biomedical systems.

  4. The development of crashworthy rails for fiber reinforced polymer honeycomb bridge deck system.

    DOT National Transportation Integrated Search

    2015-07-01

    Fiber reinforced polymer (FRP) honeycomb panels offer an efficient and rapid replacement to : concrete decks. The system consists of FRP honeycomb sandwich panels with adequate guardrails. Although : FRP bridge deck panels have already been designed ...

  5. In situ reinforced polymers using low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems

  6. Investigation of rectangular concrete columns reinforced or prestressed with fiber reinforced polymer (FRP) bars or tendons

    NASA Astrophysics Data System (ADS)

    Choo, Ching Chiaw

    Fiber reinforced polymer (FRP) composites have been increasingly used in concrete construction. This research focused on the behavior of concrete columns reinforced with FRP bars, or prestressed with FRP tendons. The methodology was based the ultimate strength approach where stress and strain compatibility conditions and material constitutive laws were applied. Axial strength-moment (P-M) interaction relations of reinforced or prestressed concrete columns with FRP, a linearly-elastic material, were examined. The analytical results identified the possibility of premature compression and/or brittle-tension failure occurring in FRP reinforced and prestressed concrete columns where sudden and explosive type failures were expected. These failures were related to the rupture of FRP rebars or tendons in compression and/or in tension prior to concrete reaching its ultimate strain and strength. The study also concluded that brittle-tension failure was more likely to occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel. In addition, the failures were more prevalent when long term effects such as creep and shrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure, concrete columns reinforced with FRP, in some instances, gained significant moment resistance. As expected the strength interaction of slender steel or FRP reinforced concrete columns were dependent more on column length rather than material differences between steel and FRP. Current ACI minimum reinforcement ratio for steel (rhomin) reinforced concrete columns may not be adequate for use in FRP reinforced concrete columns. Design aids were developed in this study to determine the minimum reinforcement ratio (rhof,min) required for rectangular reinforced concrete columns by averting brittle-tension failure to a failure controlled by concrete crushing which in nature was a less catastrophic and more gradual type failure. The proposed method using rhof

  7. Performance of continuously reinforced concrete pavements volume 5 : maintenance and repair of CRC pavements.

    DOT National Transportation Integrated Search

    1998-10-01

    This report is one of a series of reports prepared as part of a recent study sponsored by the Federal Highway Administration (FHWA) aimed at updating the state-of-the-art of the design, construction, maintenance, and rehabiilitation of CRC pavements....

  8. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  9. Repair of impact damaged utility poles with fiber reinforced polymers (FRP), phase II.

    DOT National Transportation Integrated Search

    2015-06-01

    Vehicle collisions with steel or aluminum utility poles are common occurrences that yield substantial but often repairable : damage. This project investigates the use of a fiber-reinforced polymer (FRP) composite system for in situ repair that : mini...

  10. Effect of Crc and Hfq proteins on the transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA

    PubMed Central

    Hernández-Arranz, Sofía; Sánchez-Hevia, Dione; Rojo, Fernando; Moreno, Renata

    2016-01-01

    In Pseudomonas putida, the Hfq and Crc proteins regulate the expression of many genes in response to nutritional and environmental cues, by binding to mRNAs that bear specific target motifs and inhibiting their translation. The effect of these two proteins is antagonized by the CrcZ and CrcY small RNAs (sRNAs), the levels of which vary greatly according to growth conditions. The crcZ and crcY genes are transcribed from promoters PcrcZ and PcrcY, respectively, a process that relies on the CbrB transcriptional activator and the RpoN σ factor. Here we show that crcZ can also be transcribed from the promoter of the immediate upstream gene, cbrB, a weak constitutive promoter. The cbrB-crcZ transcript was processed to render a sRNA very similar in size to the CrcZ produced from promoter PcrcZ. The processed sRNA, termed CrcZ*, was able to antagonize Hfq/Crc because, when provided in trans, it relieved the deregulated Hfq/Crc-dependent hyperrepressing phenotype of a ΔcrcZΔcrcY strain. CrcZ* may help in attaining basal levels of CrcZ/CrcZ* that are sufficient to protect the cell from an excessive Hfq/Crc-dependent repression. Since a functional sRNA can be produced from PcrcZ, an inducible strong promoter, or by cleavage of the cbrB-crcZ mRNA, crcZ can be considered a 3′-untranslated region of the cbrB-crcZ mRNA. In the absence of Hfq, the processed form of CrcZ was not observed. In addition, we show that Crc and Hfq increase CrcZ stability, which supports the idea that these proteins can form a complex with CrcZ and protect it from degradation by RNases. PMID:27777366

  11. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  12. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    DOT National Transportation Integrated Search

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  13. Processing of continuous fiber reinforced ceramic composites for ultra high temperature applications using organosilicon polymer precursors

    NASA Astrophysics Data System (ADS)

    Nicholas, James Robert

    The current work is on the development of continuous fiber reinforced ceramic materials (CFCCs) for use in ultra high temperature applications. These applications subject materials to extremely high temperatures(> 2000°C). Monolithic ceramics are currently being used for these applications, but the tendency to fail catastrophically has driven the need for the next generation of material. Reinforcing with continuous fibers significantly improves the toughness of the monolithic materials; however, this is a manufacturing challenge. The development of commercial, low-viscosity preceramic polymers provides new opportunities to fabricate CFCCs. Preceramic polymers behave as polymers at low temperatures and are transformed into ceramics upon heating to high temperatures. The polymer precursors enable the adaptation of well-established polymer processing techniques to produce high quality materials at relatively low cost. In the present work, SMP-10 from Starfire Systems, and PURS from KiON Corp. were used to manufacture ZrB2-SiC/SiC CFCCs using low cost vacuum bagging process in conjunction with the polymer infiltration and pyrolysis process. The microstructure was investigated using scanning electron microscopy and it was determined that the initial greenbody cure produced porosity of both closed and open pores. The open pores were found to be more successfully re-infiltrated using neat resin compared to slurry reinfiltrate; however, the closed pores were found to be impenetrable during subsequent reinfiltrations. The mechanical performance of the manufactured samples was evaluated using flexure tests and found the fiber reinforcement prevented catastrophic failure behavior by increasing fracture toughness. Wedge sample were fabricated and evaluated to demonstrate the ability to produce CFCC of complex geometry.

  14. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  15. Effect of Crc and Hfq proteins on the transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA.

    PubMed

    Hernández-Arranz, Sofía; Sánchez-Hevia, Dione; Rojo, Fernando; Moreno, Renata

    2016-12-01

    In Pseudomonas putida, the Hfq and Crc proteins regulate the expression of many genes in response to nutritional and environmental cues, by binding to mRNAs that bear specific target motifs and inhibiting their translation. The effect of these two proteins is antagonized by the CrcZ and CrcY small RNAs (sRNAs), the levels of which vary greatly according to growth conditions. The crcZ and crcY genes are transcribed from promoters PcrcZ and PcrcY, respectively, a process that relies on the CbrB transcriptional activator and the RpoN σ factor. Here we show that crcZ can also be transcribed from the promoter of the immediate upstream gene, cbrB, a weak constitutive promoter. The cbrB-crcZ transcript was processed to render a sRNA very similar in size to the CrcZ produced from promoter PcrcZ The processed sRNA, termed CrcZ*, was able to antagonize Hfq/Crc because, when provided in trans, it relieved the deregulated Hfq/Crc-dependent hyperrepressing phenotype of a ΔcrcZΔcrcY strain. CrcZ* may help in attaining basal levels of CrcZ/CrcZ* that are sufficient to protect the cell from an excessive Hfq/Crc-dependent repression. Since a functional sRNA can be produced from PcrcZ, an inducible strong promoter, or by cleavage of the cbrB-crcZ mRNA, crcZ can be considered a 3'-untranslated region of the cbrB-crcZ mRNA. In the absence of Hfq, the processed form of CrcZ was not observed. In addition, we show that Crc and Hfq increase CrcZ stability, which supports the idea that these proteins can form a complex with CrcZ and protect it from degradation by RNases. © 2016 Hernández-Arranz et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Mechanical and physical properties of carbon-graphite fiber-reinforced polymers intended for implant suprastructures.

    PubMed

    Segerström, Susanna; Ruyter, I Eystein

    2007-09-01

    Mechanical properties and quality of fiber/matrix adhesion of poly(methyl methacrylate) (PMMA)-based materials, reinforced with carbon-graphite (CG) fibers that are able to remain in a plastic state until polymerization, were examined. Tubes of cleaned braided CG fibers were treated with a sizing resin. Two resin mixtures, resin A and resin B, stable in the fluid state and containing different cross-linking agents, were reinforced with CG fiber loadings of 24, 36, and 47 wt% (20, 29, and 38 vol.%). In addition, resin B was reinforced with 58 wt% (47 vol.%). After heat-polymerization, flexural strength and modulus were evaluated, both dry and after water storage. Coefficient of thermal expansion, longitudinally and in the transverse direction of the specimens, was determined. Adhesion between fibers and matrix was evaluated with scanning electron microscopy (SEM). Flexural properties and linear coefficient of thermal expansion were similar for both fiber composites. With increased fiber loading, flexural properties increased. For 47 wt% fibers in polymer A the flexural strength was 547.7 (28.12) MPa and for polymer B 563.3 (89.24) MPa when water saturated. Linear coefficient of thermal expansion was for 47 wt% CG fiber-reinforced polymers; -2.5 x 10(-6) degrees C-1 longitudinally and 62.4 x 10(-6) degrees C-1 in the transverse direction of the specimens. SEM revealed good adhesion between fibers and matrix. More porosity was observed with fiber loading of 58 wt%. The fiber treatment and the developed resin matrices resulted in good adhesion between CG fibers and matrix. The properties observed indicate a potential for implant-retained prostheses.

  17. On Healable Polymers and Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in

  18. The development of crashworthy rails for fiber reinforced polymer honeycomb bridge deck system : [summary].

    DOT National Transportation Integrated Search

    2015-07-01

    Fiber reinforced polymer (FRP) honeycomb panels offer an efficient and rapid : replacement to concrete decks. The system consists of FRP honeycomb sandwich panels : with adequate guardrails. Although FRP bridge deck panels have already been designed ...

  19. Guidelines for using fiber-reinforced polymer composite materials to extend bridge life : research spotlight.

    DOT National Transportation Integrated Search

    2014-09-01

    With a high strength-to-weight ratio, fiber-reinforced polymer : (FRP) composite fabrics have become a promising technology for : strengthening concrete bridge elements that are starting to deteriorate. : To take full advantage of the benefits of the...

  20. Development of advanced grid stiffened (AGS) fiber reinforced polymer (FRP) tube-encased concrete columns.

    DOT National Transportation Integrated Search

    2013-03-01

    In this project, a new type of confining device, a latticework of interlacing fiber reinforced polymer (FRP) ribs that are jacketed by a FRP skin, is proposed, manufactured, tested, and modeled to encase concrete cylinders. This systematic study incl...

  1. CrcZ and CrcX regulate carbon utilization in Pseudomonas syringae pathovar tomato strain DC3000

    USDA-ARS?s Scientific Manuscript database

    Small non-coding RNAs (ncRNAs) are important components of many regulatory pathways in bacteria and play key roles in regulating factors important for virulence. Carbon catabolite repression control is modulated by small RNAs (crcZ or crcZ and crcY) in Pseudomonas aeruginosa and Pseudomonas putida. ...

  2. Evaluation of RC Bridge Piers Retrofitted using Fiber-Reinforced Polymer (FRP)

    NASA Astrophysics Data System (ADS)

    Shayanfar, M. A.; Zarrabian, M. S.

    2008-07-01

    For many long years, steel reinforcements have been considered as the only tool for concrete confinements and studied widely, but nowadays application of Fiber Reinforced Polymer (FRP) as an effective alternative is well appreciated. Many bridges have been constructed in the past that are necessary to be retrofitted for resisting against the earthquake motions. The objective of this research is evaluation of nonlinear behavior of RC bridge piers. Eight RC bridge piers have been modeled by ABAQUS software under micromechanical model for homogeneous anisotropic fibers. Also the Bilinear Confinement Model by Nonlinear Transition Zone of Mirmiran has been considered. Then types and angles of fibers and their effects on the final responses were evaluated [1]. Finally, effects of retrofitting are evaluated and some suggestions presented.

  3. Capabilities of diagonally-cracked girders repaired with CFRP.

    DOT National Transportation Integrated Search

    2006-06-01

    The technique of using carbon fiber reinforced polymer (CFRP) for strengthening conventionally reinforced concrete : (CRC) girders in flexure is well understood, but strengthening girders for shear is a newer application and less data are available. ...

  4. Highly accelerated lifetime for externally applied bond critical fiber-reinforced polymer (FRP) infrastructure materials : [summary].

    DOT National Transportation Integrated Search

    2014-03-01

    The Florida Department of Transportation (FDOT) uses fiber-reinforced polymer (FRP) composites to repair bridges and strengthen bridge decks. Proven mechanical characteristics make FRP composites cost-effective in extending the life span of bridges o...

  5. Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles

    DTIC Science & Technology

    2010-02-01

    deteriorated – Rebar corrosion – Spalling concrete Repair Options • Patching • Polymeric composite wraps • Pre-fabricated composite shell with CP Objective... Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles David Bailey, Richard...Command DoD Corrosion Problem • Piers and wharves – Critical facilities – $14.5M maintenance costs – Reinforced concrete piles • Aged and

  6. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material.

    PubMed

    Zhu, Ji-Hua; Zhu, Miaochang; Han, Ningxu; Liu, Wei; Xing, Feng

    2014-07-24

    An investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  7. Assessment of Jordanian Patient's Colorectal Cancer Awareness and Preferences towards CRC Screening: Are Jordanians Ready to Embrace CRC Screening?

    PubMed

    Omran, Suha; Barakat, Husam; Muliira, Joshua Kanaabi; Bashaireh, Ibrahim; Batiha, Abdul-Moni'm

    2015-01-01

    Colorectal cancer (CRC is increasingly becoming a major cause of cancer morbidity and mortality in Jordan. However the population's level of awareness about CRC, CRC screening test preferences and willingness to embrace screening are not known. The aim of this study was to assess the level of CRC awareness and screening preferences among Jordanian patients. A survey assessing the CRC knowledge levels was distributed among patients attending outpatient gastroenterology clinics in public hospitals throughout Jordan. A total of 800 surveys were distributed and of these 713 (89.1%) were returned. Only 22% of the participants correctly judged CRC among the choices provided as the commonest cause of cancer related deaths. The majority of participants (68.3%) underestimated their risk for CRC. Only 26.8% correctly judged their life time risk while 5% overestimated their risk. Two thirds of participants (66%) were willing to pay 500 Jordanian Dinars (equivalent to 706 US$) in order to get a prompt colonoscopy if recommended by their physician, while 25.5% reported that they would rather wait for 6 months in order to get a free colonoscopy. Although the participants tended to underestimate their risk for CRC, they were mostly aware of CRC as a major cause of mortality and were willing to embrace the concept of CRC screening and bear the related financial costs. These findings about CRC awareness and propensity for screening provide a good foundation as the Jordanian health system moves forward with initiatives to promote CRC screening and prevention.

  8. Deformation and flexural properties of denture base polymer reinforced with glass fiber sheet.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2005-09-01

    The purpose of this study was to investigate the deformation and flexural properties of acrylic and urethane polymers reinforced with glass fiber sheet. Four types of specimen--self-curing resin plate (R), light-curing oligomer plate containing a reinforcement (GO), and self-curing resin plate containing a reinforcement on one (GR) or both (GRG) sides--were prepared with three thicknesses: 1.5, 2.4, and 3.0 mm. Gaps between polymerized test specimen and a standard metal plate were measured at the corner (C), middle of the long sides (LS), and middle of the short sides (SS). The gaps for R were 0-2.0 microm. GO and GR markedly deformed at Points C, LS, and SS, and the degree of deformation increased as GO became thinner. Flexural strength was significantly increased by the reinforcement (p < 0.05). The flexural moduli of 3.0-mm thick R, GO, and GR were significantly smaller than that of 1.5-mm thick specimens.

  9. Evaluation of post-fire strength of concrete flexural members reinforced with glass fiber reinforced polymer (GFRP) bars

    NASA Astrophysics Data System (ADS)

    Ellis, Devon S.

    Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when

  10. Rapid replacement of Tangier Island bridges including lightweight and durable fiber-reinforced polymer deck systems.

    DOT National Transportation Integrated Search

    2009-01-01

    Fiber-reinforced polymer (FRP) composite cellular deck systems were used as new bridge decks on two replacement bridges on Tangier Island, Virginia. The most important characteristics of this application were reduced self-weight and increased durabil...

  11. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  12. The Impact of Colorectal Cancer (CRC) in Mississippi, and the need for Mississippi to Eliminate its CRC Burden.

    PubMed

    Duhé, Roy J

    2016-03-01

    Colorectal cancer (CRC), while highly preventable and highly treatable, is a major public health problem in Mississippi. This article reviews solutions to this problem, beginning with the relationship between modifiable behavioral risk factors and CRC incidence. It then describes the impact of CRC screening on national downward trends in CRC incidence and mortality and summarizes recent data on the burden of CRC in Mississippi. While other states have created Comprehensive Colorectal Cancer Control Programs in an organized effort to manage this public health problem, Mississippi has not. Responding to Mississippi's situation, the 70x2020 Colorectal Cancer Screening Initiative arose as an unconventional approach to increase CRC screening rates throughout the state. This article concludes by considering the current limits of CRC treatment success and proposes that improved clinical outcomes should result from research to translate recently-identified colorectal cancer subtype information into novel clinical paradigms for the treatment of early-stage colorectal cancer.

  13. Tungsten Disulfide Nanotubes Reinforced Biodegradable Polymers for Bone Tissue Engineering

    PubMed Central

    Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F. Kurtis; Mikos, Antonios G.; Sitharaman, Balaji

    2013-01-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental groups. Single- and multi- walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus, and flexural yield strength) of WSNT reinforced PPF nanocomposites compared to the baseline control. In comparison to positive controls, at various concentrations, significant improvements in the mechanical properties of WSNT nanocomposites were also observed. In general, the inorganic nanotubes (WSNTs) showed a better (up to 127%) or equivalent mechanical reinforcement compared to carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron sized aggregates. The trend in the surface area of nanostructures obtained by BET surface area analysis was SWCNTs > MWCNTs > WSNTs. The BET surface area analysis, TEM analysis, and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), presence of functional groups (such as sulfide and oxysulfide), and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters affecting the mechanical

  14. Assessment of mechanically fastened fiber reinforced polymer (MF-FRP) strips for extending bridge service life.

    DOT National Transportation Integrated Search

    2015-03-01

    The enhancement of load rating concrete structures by the installation of Fiber reinforced : polymer strips (FRP) is becoming a preferred short-term action. The addition of supplemental : tensile capacity to concrete beams by applying high tensile st...

  15. Manufacturing Energy Intensity and Opportunity Analysis for Fiber-Reinforced Polymer Composites and Other Lightweight Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liddell, Heather; Brueske, Sabine; Carpenter, Alberta

    With their high strength-to-weight ratios, fiber-reinforced polymer (FRP) composites are important materials for lightweighting in structural applications; however, manufacturing challenges such as low process throughput and poor quality control can lead to high costs and variable performance, limiting their use in commercial applications. One of the most significant challenges for advanced composite materials is their high manufacturing energy intensity. This study explored the energy intensities of two lightweight FRP composite materials (glass- and carbon-fiber-reinforced polymers), with three lightweight metals (aluminum, magnesium, and titanium) and structural steel (as a reference material) included for comparison. Energy consumption for current typical and state-of-the-artmore » manufacturing processes were estimated for each material, deconstructing manufacturing process energy use by sub-process and manufacturing pathway in order to better understand the most energy intensive steps. Energy saving opportunities were identified and quantified for each production step based on a review of applied R&D technologies currently under development in order to estimate the practical minimum energy intensity. Results demonstrate that while carbon fiber reinforced polymer (CFRP) composites have the highest current manufacturing energy intensity of all materials considered, the large differences between current typical and state-of-the-art energy intensity levels (the 'current opportunity') and between state-of-the-art and practical minimum energy intensity levels (the 'R&D opportunity') suggest that large-scale energy savings are within reach.« less

  16. Evaluation of the in-service performance of the Tom's Creek Bridge fiber-reinforced polymer superstructure.

    DOT National Transportation Integrated Search

    2003-01-01

    The Tom's Creek Bridge is a small-scale demonstration project involving the use of fiber-reinforced polymer (FRP) composite girders as the main load carrying members. It is a simply supported, short-span bridge located along Tom's Creek Road in Black...

  17. Full Scale RC Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    NASA Astrophysics Data System (ADS)

    De Vita, Alessandro; Napoli, Annalisa; Realfonzo, Roberto

    2017-07-01

    This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy) in order to investigate the seismic performance of RC beam-column joints strengthened with Steel Reinforced Polymer (SRP) systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by Carbon Fiber Reinforced Polymer (CFRP) systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems), the performances and the failure modes experienced in the several cases studied are provided.

  18. Numerical Simulation of Thermal Performance of Glass-Fibre-Reinforced Polymer

    NASA Astrophysics Data System (ADS)

    Zhao, Yuchao; Jiang, Xu; Zhang, Qilin; Wang, Qi

    2017-10-01

    Glass-Fibre-Reinforced Polymer (GFRP), as a developing construction material, has a rapidly increasing application in civil engineering especially bridge engineering area these years, mainly used as decorating materials and reinforcing bars for now. Compared with traditional construction material, these kinds of composite material have obvious advantages such as high strength, low density, resistance to corrosion and ease of processing. There are different processing methods to form members, such as pultrusion and resin transfer moulding (RTM) methods, which process into desired shape directly through raw material; meanwhile, GFRP, as a polymer composite, possesses several particular physical and mechanical properties, and the thermal property is one of them. The matrix material, polymer, performs special after heated and endue these composite material a potential hot processing property, but also a poor fire resistance. This paper focuses on thermal performance of GFRP as panels and corresponding researches are conducted. First, dynamic thermomechanical analysis (DMA) experiment is conducted to obtain the glass transition temperature (Tg) of the object GFRP, and the curve of bending elastic modulus with temperature is calculated according to the experimental data. Then compute and estimate the values of other various thermal parameters through DMA experiment and other literatures, and conduct numerical simulation under two condition respectively: (1) the heat transfer process of GFRP panel in which the panel would be heated directly on the surface above Tg, and the hot processing under this temperature field; (2) physical and mechanical performance of GFRP panel under fire condition. Condition (1) is mainly used to guide the development of high temperature processing equipment, and condition (2) indicates that GFRP’s performance under fire is unsatisfactory, measures must be taken when being adopted. Since composite materials’ properties differ from each other

  19. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  20. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement

    NASA Astrophysics Data System (ADS)

    Fan, Jinchen; Shi, Zixing; Zhang, Lu; Wang, Jialiang; Yin, Jie

    2012-10-01

    Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ~84.5% and ~70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS.Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non

  1. A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus.

    PubMed

    Lin, Dingchang; Yuen, Pak Yan; Liu, Yayuan; Liu, Wei; Liu, Nian; Dauskardt, Reinhold H; Cui, Yi

    2018-06-25

    High-energy all-solid-state lithium (Li) batteries have great potential as next-generation energy-storage devices. Among all choices of electrolytes, polymer-based systems have attracted widespread attention due to their low density, low cost, and excellent processability. However, they are generally mechanically too weak to effectively suppress Li dendrites and have lower ionic conductivity for reasonable kinetics at ambient temperature. Herein, an ultrastrong reinforced composite polymer electrolyte (CPE) is successfully designed and fabricated by introducing a stiff mesoporous SiO 2 aerogel as the backbone for a polymer-based electrolyte. The interconnected SiO 2 aerogel not only performs as a strong backbone strengthening the whole composite, but also offers large and continuous surfaces for strong anion adsorption, which produces a highly conductive pathway across the composite. As a consequence, a high modulus of ≈0.43 GPa and high ionic conductivity of ≈0.6 mS cm -1 at 30 °C are simultaneously achieved. Furthermore, LiFePO 4 -Li full cells with good cyclability and rate capability at ambient temperature are obtained. Full cells with cathode capacity up to 2.1 mAh cm -2 are also demonstrated. The aerogel-reinforced CPE represents a new design principle for solid-state electrolytes and offers opportunities for future all-solid-state Li batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    NASA Technical Reports Server (NTRS)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  3. Development of advanced grid stiffened (AGS) fiber reinforced polymer (FRP) tube-encased concrete columns : [technical summary].

    DOT National Transportation Integrated Search

    2013-03-01

    In recent years, the use of fi ber reinforced polymer (FRP) tube-encased concrete columns for new construction and rebuilding : of engineering structures has increased. The purpose in FRP tube-encased concrete columns is to replace the steel rebar by...

  4. Genetic diagnosis of high-penetrance susceptibility for colorectal cancer (CRC) is achievable for a high proportion of familial CRC by exome sequencing.

    PubMed

    Chubb, Daniel; Broderick, Peter; Frampton, Matthew; Kinnersley, Ben; Sherborne, Amy; Penegar, Steven; Lloyd, Amy; Ma, Yussanne P; Dobbins, Sara E; Houlston, Richard S

    2015-02-10

    Knowledge of the contribution of high-penetrance susceptibility to familial colorectal cancer (CRC) is relevant to the counseling, treatment, and surveillance of CRC patients and families. To quantify the impact of germline mutation to familial CRC, we sequenced the mismatch repair genes (MMR) APC, MUTYH, and SMAD4/BMPR1A in 626 early-onset familial CRC cases ascertained through a population-based United Kingdom national registry. In addition, we evaluated the contribution of mutations in the exonuclease domain (exodom) of POLE and POLD1 genes that have recently been reported to confer CRC risk. Overall mutations (pathogenic, likely pathogenic) in MMR genes make the highest contribution to familial CRC (10.9%). Mutations in the other established CRC genes account for 3.3% of cases. POLE/POLD1 exodom mutations were identified in three patients with family histories consistent with dominant transmission of CRC. Collectively, mutations in the known genes account for 14.2% of familial CRC (89 of 626 cases; 95% CI = 11.5, 17.2). A genetic diagnosis is feasible in a high proportion of familial CRC. Mainstreaming such analysis in clinical practice should enable the medical management of patients and their families to be optimized. Findings suggest CRC screening of POLE and POLD1 mutation carriers should be comparable to that afforded to those at risk of HNPCC. Although the risk of CRC associated with unexplained familial CRC is in general moderate, in some families the risk is substantive and likely to be the consequence of unidentified genes, as exemplified by POLE and POLD1. Our findings have utility in the design of genetic analyses to identify such novel CRC risk genes. © 2015 by American Society of Clinical Oncology.

  5. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  6. Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.

    2005-06-01

    The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.

  7. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  8. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.

  9. Upregulated STAT3 and RhoA signaling in colorectal cancer (CRC) regulate the invasion and migration of CRC cells.

    PubMed

    Zhang, G-Y; Yang, W-H; Chen, Z

    2016-05-01

    We aimed to reveal the expression and activation of signal transducers and activators of transcription 3 (STAT3) and RhoA/Rho-associated coiled-coil forming kinase 1 (ROCK1) signaling in CRC tissues, and to investigate the regulatory role of STAT3 and RhoA signaling in the invasion and migration of colorectal cancer cells. We examined the expression of STAT3, RhoA and ROCK1 in CRC tissues with real-time PCR and Western blotting methods. And then we examined the interaction between STAT3 and RhoA/ROCK1 signaling in CRC HT-29 cells with gain-of-function and loss-of-function strategies. In addition, we determined the regulation by STAT3 and RhoA/ROCK1 on the invasion and migration of CRC HT-29 cells. Our study demonstrated a significant upregulation of RhoA and ROCK1 expression and STAT3-Y705 phosphorylation in 32 CRC specimens, compared to the 17 normal CRC tissues. Further study demonstrated there was a coordination between STAT3 and RhoA/Rock signaling in the HT-29 cells. Moreover, STAT3 knockdown or RhoA knockdown significantly repressed the migration and invasion in HT-29 cells and vice versa. STAT3 and RhoA signaling regulate the invasion and migration of CRC cells, implying the orchestrated and oncogenic roles of STAT3 and RhoA/ROCK1 signaling in CRC.

  10. Durability of carbon fiber reinforced shape memory polymer composites in space

    NASA Astrophysics Data System (ADS)

    Jang, Joon Hyeok; Hong, Seok Bin; Ahn, Yong San; Kim, Jin-Gyun; Nam, Yong-Youn; Lee, Geun Ho; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Recently, shape memory polymer composites (SMPCs) have been considered for space structure instead of shape memory alloys due to their deformability, lightweight and large recovery ratio, requiring characterization of their mechanical properties against harsh space environment and further prediction of the durability of SMPCs in space. As such, the durability of carbon fiber reinforced shape memory polymer composites (CF-SMPCs) was investigated using accelerated testing method based on short-term testing of CF-SMPCs in harsh condition. CF-SMPCs were prepared using woven carbon fabrics and a thermoset SMP via vacuum assisted resin transfer molding process. Bending tests with constant strain rate of CF-SMPCs were conducted using universal tensile machine (UTM) and Storage modulus test were conducted using dynamic mechanical thermal analysis (DMTA). Using the results, a master curve based on time-temperature superposition principle was then constructed, through which the mechanical properties of CF-SMPCs at harsh temperature were predicted. CF-SMPCs would be exposed to simulated space environments under ultra-violet radiations at various temperatures. The mechanical properties including flexural and tensile strength and shape memory properties of SMPCs would be measured using UTM before and after such exposures for comparison. Finally, the durability of SMPCs in space would be assessed by developing a degradation model of SMPC.

  11. Effect of fiber reinforcements on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  12. A testing platform for durability studies of polymers and fiber-reinforced polymer composites under concurrent hygrothermo-mechanical stimuli.

    PubMed

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-12-11

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus.

  13. A Testing Platform for Durability Studies of Polymers and Fiber-reinforced Polymer Composites under Concurrent Hygrothermo-mechanical Stimuli

    PubMed Central

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-01-01

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus. PMID:25548950

  14. Experimental data on the properties of natural fiber particle reinforced polymer composite material.

    PubMed

    Chandramohan, D; Presin Kumar, A John

    2017-08-01

    This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  15. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    NASA Astrophysics Data System (ADS)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  16. Value engineering and cost effectiveness of various fiber reinforced polymer (FRP) repair systems : final report, June 2007.

    DOT National Transportation Integrated Search

    2007-06-01

    This report is an extension to the final report for NCDOT project 2004-15 Value Engineering and Cost-Effectiveness of : Various Fiber Reinforced Polymers (FRP) Repair Systems, submitted in June 2005. In that report, seventeen 30-ft long : prest...

  17. Grout compactness monitoring of concrete-filled fiber-reinforced polymer tube using electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing

    2018-05-01

    The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.

  18. Fiber reinforced polymer (FRP) composite piles used on pier rehabilitation, Little Diamond Island, Casco Bay, Portland, Maine.

    DOT National Transportation Integrated Search

    2012-10-01

    Fiber reinforced polymer (FRP) composite piles were used on a pier rehabilitation project at : Little Diamond Island in Casco Bay near Portland Maine. The project was the replacement : of an aging wooden pier at the ferry berthing terminal. The FRP p...

  19. Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rorrer, Nicholas A.; Vardon, Derek R.; Dorgan, John R.

    Nearly all polymer resins used to manufacture critically important fiber reinforced polymer (FRP) composites are petroleum sourced. In particular, unsaturated polyesters (UPEs) are widely used as matrix materials and are often based on maleic anhydride, a four-carbon, unsaturated diacid. Typically, maleic anhydride is added as a reactant in a conventional step-growth polymerization to incorporate unsaturation throughout the backbone of the UPE, which is then dissolved in a reactive diluent (styrene is widely used) infused into a fiber mat and cross-linked. Despite widespread historical use, styrene has come under scrutiny due to environmental and health concerns; in addition, many conceivable UPEsmore » are not soluble in styrene. In this study, we demonstrate that renewably-sourced monomers offer the ability to overcome these issues and improve overall composite performance. The properties of poly(butylene succinate)-based UPEs incorporating maleic anhydride are used as a baseline for comparison against UPEs derived from fumaric acid, cis, cis-muconate, and trans, trans-muconate, all of which can be obtained biologically. The resulting biobased UPEs are combined with styrene, methacrylic acid, or a mixture of methacrylic acid and cinnaminic acid, infused into woven fiberglass and cross-linked with the addition of a free-radical initiator and heat. This process produces a series of partially or fully bio-derived composites. Overall, the muconate-containing UPE systems exhibit a more favorable property suite than the maleic anhydride and fumaric acid counterparts. In all cases at the same olefinic monomer loading, the trans, trans-muconate polymers exhibit the highest shear modulus, storage modulus, and glass transition temperature indicating stronger and more thermally resistant materials. They also exhibit the lowest loss modulus indicating a greater adhesion to the glass fibers. The use of a mixture of methacrylic and cinnaminic acid as the reactive diluent

  20. Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites

    DOE PAGES

    Rorrer, Nicholas A.; Vardon, Derek R.; Dorgan, John R.; ...

    2017-03-14

    Nearly all polymer resins used to manufacture critically important fiber reinforced polymer (FRP) composites are petroleum sourced. In particular, unsaturated polyesters (UPEs) are widely used as matrix materials and are often based on maleic anhydride, a four-carbon, unsaturated diacid. Typically, maleic anhydride is added as a reactant in a conventional step-growth polymerization to incorporate unsaturation throughout the backbone of the UPE, which is then dissolved in a reactive diluent (styrene is widely used) infused into a fiber mat and cross-linked. Despite widespread historical use, styrene has come under scrutiny due to environmental and health concerns; in addition, many conceivable UPEsmore » are not soluble in styrene. In this study, we demonstrate that renewably-sourced monomers offer the ability to overcome these issues and improve overall composite performance. The properties of poly(butylene succinate)-based UPEs incorporating maleic anhydride are used as a baseline for comparison against UPEs derived from fumaric acid, cis, cis-muconate, and trans, trans-muconate, all of which can be obtained biologically. The resulting biobased UPEs are combined with styrene, methacrylic acid, or a mixture of methacrylic acid and cinnaminic acid, infused into woven fiberglass and cross-linked with the addition of a free-radical initiator and heat. This process produces a series of partially or fully bio-derived composites. Overall, the muconate-containing UPE systems exhibit a more favorable property suite than the maleic anhydride and fumaric acid counterparts. In all cases at the same olefinic monomer loading, the trans, trans-muconate polymers exhibit the highest shear modulus, storage modulus, and glass transition temperature indicating stronger and more thermally resistant materials. They also exhibit the lowest loss modulus indicating a greater adhesion to the glass fibers. The use of a mixture of methacrylic and cinnaminic acid as the reactive diluent

  1. Characterization and properties of acetylated nanocrystalline cellulose (aNC) reinforced polylactic acid (PLA) polymer

    NASA Astrophysics Data System (ADS)

    Kasa, Siti Norbaya; Omar, Mohd Firdaus; Ismail, Ismarul Nizam

    2017-12-01

    Nanocrystalline cellulose (NCC) was synthesized from banana stem through strong acid hydrolysis with measured length of approximately 287.0 ± 56.4 nm and diameter of 26.6 ± 4.8 nm. Modification of NCC was carried by acetylation reaction in order to increase the compatibility during reinforcement with polylactic acid (PLA) polymer. The reinforcing effect towards morphology, crystallinity, mechanical and thermal properties of bio-nanocomposites was investigated. Scanning Electron Microscope (SEM) micrograph reveals the uniform dispersion achieved at 1 %, 3 % and 5% aNC loading while agglomeration was found at 7 % aNC loading. Disappearance of crystallinity peak at 2θ = 22.7⁰ for low aNC loading during elemental analysis using X-Ray Diffraction (XRD) indicates the proper dispersion of aNC in PLA polymer. From the tensile test, 1 % aNC loading gives the highest mechanical properties of bio-nanocomposite film with 82.71 %, 118.7 % and 24.18 % increment in tensile strength, tensile modulus and elongation at break. However, 7 % aNC loading gives the highest increment in TGA of aNC-PLA nanocomposites which is from 310 °C to 320 °C.

  2. Corrosion of steel members strengthenened with carbon fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Bumadian, Ibrahim

    Due to many years of service at several cases of exposure at various environments there are many of steel bridges which are in need of rehabilitation. The infrastructure needs upgrading, repair or maintenance, and also strengthening, but by using an alternative as retrofits methods. The alternative retrofit method, which used fiber reinforced polymer (FRP) composite materials which their strength materials comes largely from the fiber such as carbon, glass, and aramid fiber. Of the most important materials used in the rehabilitation of infrastructure is a composite material newly developed in bonded externally carbon fiber and polymer (CFRP) sheets, which has achieved remarkable success in the rehabilitation and upgrading of structural members. This technique has many disadvantages one of them is galvanic corrosion. This study presents the effect of galvanic corrosion on the interfacial strength between carbon fiber reinforced polymer (CFRP) sheets and a steel substrate. A total of 35 double-lap joint specimens and 19 beams specimens are prepared and exposed to an aggressive service environment in conjunction with an electrical potential method accelerating corrosion damage. Six test categories are planned at a typical exposure interval of 12 hours, including five specimens per category for double-lap joint specimens. And six test categories are planned at a typical exposure interval of 12 hours, including three specimens per category for Beam section specimens. In addition one beam section specimen is control. The degree of corrosion is measured. Fourier transform infrared (FTIR) reflectance spectroscopy has been used to monitor and confirm the proposed corrosion mechanisms on the surface of CFRP. In this study we are using FTIR-spectroscopic measurement systems in the mid infrared (MIR) wavelength region (4000 - 400) cm-1 to monitor characteristic spectral features. Upon completion of corrosion processes, all specimens are monotonically loaded until failure

  3. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile.

    PubMed

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity.

  4. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  5. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  6. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement.

    PubMed

    Fan, Jinchen; Shi, Zixing; Zhang, Lu; Wang, Jialiang; Yin, Jie

    2012-11-21

    Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ∼84.5% and ∼70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS.

  7. Nondestructive testing of externally reinforced structures for seismic retrofitting using flax fiber reinforced polymer (FFRP) composites

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, C.; Sfarra, S.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    Natural fibers constitute an interesting alternative to synthetic fibers, e.g. glass and carbon, for the production of composites due to their environmental and economic advantages. The strength of natural fiber composites is on average lower compared to their synthetic counterparts. Nevertheless, natural fibers such as flax, among other bast fibers (jute, kenaf, ramie and hemp), are serious candidates for seismic retrofitting applications given that their mechanical properties are more suitable for dynamic loads. Strengthening of structures is performed by impregnating flax fiber reinforced polymers (FFRP) fabrics with epoxy resin and applying them to the component of interest, increasing in this way the load and deformation capacities of the building, while preserving its stiffness and dynamic properties. The reinforced areas are however prompt to debonding if the fabrics are not mounted properly. Nondestructive testing is therefore required to verify that the fabric is uniformly installed and that there are no air gaps or foreign materials that could instigate debonding. In this work, the use of active infrared thermography was investigated for the assessment of (1) a laboratory specimen reinforced with FFRP and containing several artificial defects; and (2) an actual FFRP retrofitted masonry wall in the Faculty of Engineering of the University of L'Aquila (Italy) that was seriously affected by the 2009 earthquake. Thermographic data was processed by advanced signal processing techniques, and post-processed by computing the watershed lines to locate suspected areas. Results coming from the academic specimen were compared to digital speckle photography and holographic interferometry images.

  8. Strength analysis and design of adhesive joints between circular elements made of metal and reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Pelekh, B. L.; Marchuk, M. V.; Kogut, I. S.

    1992-06-01

    The stress-strain state of an adhesive joint between cylindrical components made of a metal (steel) and a cross-reinforced filament-wound composite (glass/polymer or basalt/polymer) was investigated under static axial loading using newly proposed experimental techniques and a refined mathematical model. Analytical expressions are obtained for contact stresses in the adhesive joint. The maximum permissible load and the ultimate shear strength of the joint are determined. The experimental results are found to be in satisfactory agreement with model predictions.

  9. Durability Studies on Confined Concrete using Fiber Reinforced Polymer

    NASA Astrophysics Data System (ADS)

    Ponmalar, V.; Gettu, R.

    2014-06-01

    In this study, 24 concrete cylinders with a notch at the centre were prepared. Among them six cylinders were wrapped using single and double layers of fiber reinforced polymer; six cylinders were coated with epoxy resin; the remaining cylinders were used as a control. The cylinders were exposed to wet and dry cycling and acid (3 % H2SO4) solution for the period of 120 days. Two different concrete strengths M30 and M50 were considered for the study. It is found that the strength, ductility and failure mode of wrapped cylinders depend on number of layers and the nature of exposure conditions. It was noticed that the damage due to wet and dry cycling and acid attack was severe in control specimen than the epoxy coated and wrapped cylinders.

  10. Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes

    NASA Astrophysics Data System (ADS)

    Wu, Chen-Wu; Wu, Xian-Qian; Huang, Chen-Guang

    2015-10-01

    Laser ablation mechanism of Carbon Fiber Reinforced Polymer (CFRP) composite is of critical meaning for the laser machining process. The ablation behaviors are investigated on the CFRP laminates subject to continuous wave, long duration pulsed wave and short duration pulsed wave lasers. Distinctive ablation phenomena have been observed and the effects of laser operation modes are discussed. The typical temperature patterns resulted from laser irradiation are computed by finite element analysis and thereby the different ablation mechanisms are interpreted.

  11. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure

    NASA Astrophysics Data System (ADS)

    Saxena, Prateek; Schinzel, Marie; Andrich, Manuela; Modler, Niels

    2016-09-01

    Carbon fibre reinforced polymer composites are extensively used in industrial applications. They are light in weight and have excellent load bearing properties. To understand this material's behaviour when carrying loads at high pressure, a tensile-friction test device was developed that can apply a contact surface pressure between composite and counterpart of 50-300 MPa. A tribological investigation of carbon fibre reinforced epoxy composites was carried out, in which the influence of the surface morphology was investigated by using grinding and sandblasting techniques. The friction coefficient of the polymer composite was measured at 100 MPa surface pressure against uncoated and Diamond-Like Carbon coated stainless steel counterparts.

  12. More comprehensive discussion of CRC screening associated with higher screening.

    PubMed

    Mosen, David M; Feldstein, Adrianne C; Perrin, Nancy A; Rosales, A Gabriella; Smith, David H; Liles, Elizabeth G; Schneider, Jennifer L; Meyers, Ronald E; Elston-Lafata, Jennifer

    2013-04-01

    Examine association of comprehensiveness of colorectal cancer (CRC) screening discussion by primary care physicians (PCPs) with completion of CRC screening. Observational study in Kaiser Permanente Northwest, a group-model health maintenance organization. A total of 883 participants overdue for CRC screening received an automated telephone call (ATC) between April and June 2009 encouraging CRC screening. Between January and March 2010, participants completed a survey on PCPs' discussion of CRC screening and patient beliefs regarding screening. receipt of CRC screening (assessed by electronic medical record [EMR], 9 months after ATC). Primary independent variable: comprehensiveness of CRC screening discussion by PCPs (7-item scale). Secondary independent variables: perceived benefits of screening (4-item scale assessing respondents' agreement with benefits of timely screening) and primary care utilization (EMR; 9 months after ATC). The independent association of variables with CRC screening was assessed with logistic regression. Average scores for comprehensiveness of CRC discussion and perceived benefits were 0.4 (range 0-1) and 4.0 (range 1-5), respectively. A total of 28.2% (n = 249) completed screening, 84% of whom had survey assessments after their screening date. Of screeners, 95.2% completed the fecal immunochemical test. More comprehensive discussion of CRC screening was associated with increased screening (odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.03-2.21). Higher perceived benefits (OR = 1.46, 95% CI = 1.13-1.90) and 1 or more PCP visits (OR = 5.82, 95% CI = 3.87-8.74) were also associated with increased screening. More comprehensive discussion of CRC screening was independently associated with increased CRC screening. Primary care utilization was even more strongly associated with CRC screening, irrespective of discussion of CRC screening.

  13. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile

    PubMed Central

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity. PMID:26485431

  14. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative study on Their Microstructures and Effects as Polymer Reinforcing Agents

    Treesearch

    Xuezhu Xu; Fei Liu; Long Jiang; J.Y. Zhu; Darrin Haagenson; Dennis P. Wiesenborn

    2013-01-01

    Both cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are nanoscale cellulose fibers that have shown reinforcing effects in polymer nanocomposites. CNCs and CNFs are different in shape, size and composition. This study systematically compared their morphologies, crystalline structure, dispersion properties in polyethylene oxide (PEO) matrix, interactions...

  15. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    NASA Astrophysics Data System (ADS)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  16. Development and evaluation of an adhesively bonded panel-to-panel joint for a fiber-reinforced polymer bridge deck system.

    DOT National Transportation Integrated Search

    2007-01-01

    A fiber-reinforced polymer (FRP) composite cellular deck system was used to rehabilitate a historical cast iron thru-truss structure (Hawthorne Street Bridge in Covington, Virginia). The most important characteristic of this application is reduction ...

  17. Development of PLA hybrid yarns for biobased self-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Köhler, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight materials are a necessity in various industries. Lightweight design is in the key interest of the mobility sector, e.g. the automotive and aerospace industry. This trend applies also for the consumer industries, e.g. sporting goods. In addition, the worldwide demand for replacing fossil-based materials has led to a significant growth of bioplastics. Due to their low mechanical performance and durability, their use is still limited. Therefore, it is necessary to develop biobased, sustainable polymeric materials with high stiffness, high impact and high durability without impairing recyclability at a similar price level of non-biobased solutions. Biobased self-reinforced polymer composites offer these unique properties.

  18. Polymer Composite Wrapping and Cathodic Protection System for Reinforced Concrete Piles in Marine Applications

    DTIC Science & Technology

    2013-06-01

    vicinity of new patches. Fiber -reinforced polymer (FRP) composite wrapping systems have been evolving over the last 20 years and are now a viable...material is a woven glass fiber pre-impregnated with moisture-activated resins that cure underwater after being put in place. Figure 4. ICPW...wrap system The FRP composite wrap material that was selected is Aqua Wrap Type G- 05, a woven glass fiber pre-impregnated with moisture-activated

  19. The life times of polymer composites in construction

    NASA Astrophysics Data System (ADS)

    Meier, Urs

    2016-05-01

    This paper discusses examples that prove the long-term reliability of Fiber Reinforced Polymers (FRP) under extreme loading conditions and outdoor weathering. Results of polymer/steel-composite anchorage systems, Glass Fiber Reinforced Polymer (GFRP) plates and shells, GFRP box girders, Carbon Fiber Reinforced Polymer (CFRP) post-tensioning tendons and CFRP stays are going to be presented.

  20. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete

    PubMed Central

    Pour, Sadaf Moallemi; Alam, M. Shahria; Milani, Abbas S.

    2016-01-01

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models. PMID:28773859

  1. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    PubMed

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  2. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection

    PubMed Central

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-01-01

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering. PMID:27999245

  3. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.

    PubMed

    Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S

    2016-08-30

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.

  4. Novel hybrid columns made of ultra-high performance concrete and fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zohrevand, Pedram

    The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column

  5. Analysis of acoustic emission cumulative signal strength of steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP)

    NASA Astrophysics Data System (ADS)

    Abdul Hakeem, Z.; Noorsuhada, M. N.; Azmi, I.; Noor Syafeekha, M. S.; Soffian Noor, M. S.

    2017-12-01

    In this study, steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP) were investigated using acoustic emission (AE) technique. Three beams with dimension of 150 mm width, 200 mm depth and 1500 mm length were fabricated. The results generated from AE parameters were analysed as well as signal strength and cumulative signal strength. Three relationships were produced namely load versus deflection, signal strength versus time and cumulative signal strength with respect to time. Each relationship indicates significant physical behaviour as the crack propagated in the beams. It is found that an addition of steel fibre in the concrete mix and strengthening of CFRP increase the ultimate load of the beam and the activity of signal strength. Moreover, the highest signal strength generated can be identified. From the study, the occurrence of crack in the beam can be predicted using AE signal strength.

  6. Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Possible implications for CRC screening and surveillance.

    PubMed

    Krzystek-Korpacka, Malgorzata; Diakowska, Dorota; Kapturkiewicz, Bartosz; Bębenek, Marek; Gamian, Andrzej

    2013-08-28

    Alternate colorectal cancer (CRC) screening and surveillance strategies are needed to pre-select candidates for invasive methods. We compared systemic inflammatory profiles in CRC (n=99), health (n=98), high CRC-risk conditions (n=48) and overt inflammation (n=69) by multiplexed analysis of IL-1β, IL-6, IL-8, FGF-2, G-CSF, GM-CSF, MCP-1, MIP-1α, TNF-α, VEGF-A, and PDGF-B and CEA. Cytokines corresponded with CRC advancement. FGF2, GM-CSF, IL-1β, IL-6, MIP-1α, PDGF-BB, TNF-α, and VEGF-A were higher than in controls already in stage I CRC with FGF2, IL1-β, and MIP-1α higher than in high CRC-risk individuals as well. Cytokine panels devised to differentiate early CRC from controls, adenomas, or inflammatory bowel disease patients (IBD) had good accuracy but only IBD panel had promising specificity at 95% sensitivity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  8. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  9. Cyclic behavior, development, and characteristics of a ductile hybrid fiber-reinforced polymer (DHFRP) for reinforced concrete members

    NASA Astrophysics Data System (ADS)

    Hampton, Francis Patrick

    Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3

  10. Fault isolation through no-overhead link level CRC

    DOEpatents

    Chen, Dong; Coteus, Paul W.; Gara, Alan G.

    2007-04-24

    A fault isolation technique for checking the accuracy of data packets transmitted between nodes of a parallel processor. An independent crc is kept of all data sent from one processor to another, and received from one processor to another. At the end of each checkpoint, the crcs are compared. If they do not match, there was an error. The crcs may be cleared and restarted at each checkpoint. In the preferred embodiment, the basic functionality is to calculate a CRC of all packet data that has been successfully transmitted across a given link. This CRC is done on both ends of the link, thereby allowing an independent check on all data believed to have been correctly transmitted. Preferably, all links have this CRC coverage, and the CRC used in this link level check is different from that used in the packet transfer protocol. This independent check, if successfully passed, virtually eliminates the possibility that any data errors were missed during the previous transfer period.

  11. Advances in CRC Prevention: Screening and Surveillance.

    PubMed

    Dekker, Evelien; Rex, Douglas K

    2018-05-01

    Colorectal cancer (CRC) is among the most commonly diagnosed cancers and causes of death from cancer across the world. CRC can, however, be detected in asymptomatic patients at a curable stage, and several studies have shown lower mortality among patients who undergo screening compared with those who do not. Using colonoscopy in CRC screening also results in the detection of precancerous polyps that can be directly removed during the procedure, thereby reducing the incidence of cancer. In the past decade, convincing evidence has appeared that the effectiveness of colonoscopy as CRC prevention tool is associated with the quality of the procedure. This review aims to provide an up-to-date overview of recent efforts to improve colonoscopy effectiveness by enhancing detection and improving the completeness and safety of resection of colorectal lesions. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Eric Robert

    The included methodology, calculations, and drawings support design of Carbon Fiber Reinforced Polymer (CFRP) spike anchors for securing U-wrap CFRP onto reinforced concrete Tbeams. This content pertains to an installation in one of Los Alamos National Laboratory’s facilities. The anchors are part of a seismic rehabilitation to the subject facility. The information contained here is for information purposes only. The reader is encouraged to verify all equations, details, and methodology prior to usage in future projects. However, development of the content contained here complied with Los Alamos National Laboratory’s NQA-1 quality assurance program for nuclear structures. Furthermore, the formulations andmore » details came from the referenced published literature. This literature represents the current state of the art for FRP anchor design. Construction personnel tested the subject anchor design to the required demand level demonstrated in the calculation. The testing demonstrated the ability of the anchors noted to carry loads in excess of 15 kips in direct tension. The anchors were not tested to failure in part because of the hazards associated with testing large-capacity tensile systems to failure. The calculation, methodology, and drawing originator was Eric MacFarlane of Los Alamos National Laboratory’s (LANL) Office of Seismic Hazards and Risk Mitigation (OSHRM). The checker for all components was Mike Salmon of the LANL OSHRM. The independent reviewers of all components were Insung Kim and Loring Wyllie of Degenkolb Engineers. Note that Insung Kim contributed to the initial formulations in the calculations that pertained directly to his Doctoral research.« less

  13. High Rab27A expression indicates favorable prognosis in CRC.

    PubMed

    Shi, Chuanbing; Yang, Xiaojun; Ni, Yijiang; Hou, Ning; Xu, Li; Zhan, Feng; Zhu, Huijun; Xiong, Lin; Chen, Pingsheng

    2015-06-13

    Rab27A is a peculiar member in Rab family and has been suggested to play essential roles in the development of human cancers. However, the association between Rab27A expression and clinicopathological characteristics of colorectal cancer (CRC) has not been elucidated yet. One-step quantitative real-time polymerase chain reaction (qPCR) test with 18 fresh-frozen CRC samples and immunohistochemistry (IHC) analysis in 112 CRC cases were executed to evaluate the relationship between Rab27A expression and the clinicopathological features of CRC. Cox regression and Kaplan-Meier survival analyses were performed to identify the prognostic factors for 112 CRC patients. The results specified that the expression levels of Rab27A mRNA and protein were significantly higher in CRC tissues than that in matched non-cancerous tissues, in both qPCR test (p = 0.029) and IHC analysis (p = 0.020). The IHC data indicated that the Rab27A protein expression in CRC was statistically correlated with lymph node metastasis (p = 0.022) and TNM stage (p = 0.026). Cox multi-factor analysis and Kaplan-Meier method suggested Rab27A protein expression (p = 0.012) and tumor differentiation (p = 0.004) were significantly associated with the overall survival of CRC patients. The data indicated the differentiate expression of Rab27A in CRC tissues and matched non-cancerous tissues. Rab27A may be used as a valuable prognostic biomarker for CRC patients.

  14. Effect of thermal cycling on flexural properties of carbon-graphite fiber-reinforced polymers.

    PubMed

    Segerström, Susanna; Ruyter, I Eystein

    2009-07-01

    To determine flexural strength and modulus after water storage and thermal cycling of carbon-graphite fiber-reinforced (CGFR) polymers based on poly(methyl methacrylate) and a copolymer matrix, and to examine adhesion between fiber and matrix by scanning electron microscopy (SEM). Solvent cleaned carbon-graphite (CG) braided tubes of fibers were treated with a sizing resin. The resin mixture of the matrix was reinforced with 24, 36, 47 and 58wt% (20, 29, 38 and 47vol.%) CG-fibers. After heat polymerization the specimens were kept for 90 days in water and thereafter hydrothermally cycled (12,000 cycles, 5/55 degrees C). Mechanical properties were evaluated by three-point bend testing. After thermal cycling, the adhesion between fibers and matrix was evaluated by SEM. Hydrothermal cycling did not decrease flexural strength of the CGFR polymers with 24 and 36wt% fiber loadings; flexural strength values after thermocycling were 244.8 (+/-32.33)MPa for 24wt% and 441.3 (+/-68.96)MPa for 36wt%. Flexural strength values after thermal cycling were not further increased after increasing the fiber load to 47 (459.2 (+/-45.32)MPa) and 58wt% (310.4 (+/-52.79)MPa). SEM revealed good adhesion between fibers and matrix for all fiber loadings examined. The combination of the fiber treatment and resin matrix described resulted in good adhesion between CG-fibers and matrix. The flexural values for fiber loadings up to 36wt% appear promising for prosthodontic applications such as implant-retained prostheses.

  15. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    PubMed Central

    Le, Minh-Tai; Huang, Shyh-Chour

    2015-01-01

    In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521

  16. Nondestructive evaluation of defects in carbon fiber reinforced polymer (CFRP) composites

    NASA Astrophysics Data System (ADS)

    Ngo, Andrew C. Y.; Goh, Henry K. H.; Lin, Karen K.; Liew, W. H.

    2017-04-01

    Carbon fiber reinforced polymer (CFRP) composites are increasingly used in aerospace applications due to its superior mechanical properties and reduced weight. Adhesive bonding is commonly used to join the composite parts since it is capable of joining incompatible or dissimilar components. However, insufficient adhesive or contamination in the adhesive bonds might occur and pose as threats to the integrity of the plane during service. It is thus important to look for suitable nondestructive testing (NDT) techniques to detect and characterize the sub-surface defects within the CFRP composites. Some of the common NDT techniques include ultrasonic techniques and thermography. In this work, we report the use of the abovementioned techniques for improved interpretation of the results.

  17. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  18. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution.

    PubMed

    Zhu, Ji-Hua; Guo, Guanping; Wei, Liangliang; Zhu, Miaochang; Chen, Xianchuan

    2016-02-06

    The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP) were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP) system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.

  19. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution

    PubMed Central

    Zhu, Ji-Hua; Guo, Guanping; Wei, Liangliang; Zhu, Miaochang; Chen, Xianchuan

    2016-01-01

    The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP) were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP) system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities. PMID:28787900

  20. On Complexities of Impact Simulation of Fiber Reinforced Polymer Composites: A Simplified Modeling Framework

    PubMed Central

    Alemi-Ardakani, M.; Milani, A. S.; Yannacopoulos, S.

    2014-01-01

    Impact modeling of fiber reinforced polymer composites is a complex and challenging task, in particular for practitioners with less experience in advanced coding and user-defined subroutines. Different numerical algorithms have been developed over the past decades for impact modeling of composites, yet a considerable gap often exists between predicted and experimental observations. In this paper, after a review of reported sources of complexities in impact modeling of fiber reinforced polymer composites, two simplified approaches are presented for fast simulation of out-of-plane impact response of these materials considering four main effects: (a) strain rate dependency of the mechanical properties, (b) difference between tensile and flexural bending responses, (c) delamination, and (d) the geometry of fixture (clamping conditions). In the first approach, it is shown that by applying correction factors to the quasistatic material properties, which are often readily available from material datasheets, the role of these four sources in modeling impact response of a given composite may be accounted for. As a result a rough estimation of the dynamic force response of the composite can be attained. To show the application of the approach, a twill woven polypropylene/glass reinforced thermoplastic composite laminate has been tested under 200 J impact energy and was modeled in Abaqus/Explicit via the built-in Hashin damage criteria. X-ray microtomography was used to investigate the presence of delamination inside the impacted sample. Finally, as a second and much simpler modeling approach it is shown that applying only a single correction factor over all material properties at once can still yield a reasonable prediction. Both advantages and limitations of the simplified modeling framework are addressed in the performed case study. PMID:25431787

  1. Characterization and modeling of viscoelastic behavior of carbon nanotube reinforced polymers: The influence of interphase and nanotube morphology

    NASA Astrophysics Data System (ADS)

    Liu, Hua

    The addition of nanoparticles into polymer materials has been observed to dramatically change the mechanical, thermal, electrical, and diffusion properties of the host polymers, promising a novel class of polymer matrix composite materials with superior properties and added functionalities that are ideal candidates in many applications, including aerospace, automobile, medical devices, and sporting goods. Understanding the behavior and underlying mechanisms of these polymer nanocomposites is critical. The research work presented in this dissertation represents one of the initial efforts in the long journey pursuing the ultimate understanding of nanoparticle reinforced polymer systems. Particular focal points are experimental evaluation and the development of appropriate modeling methods to capture the influence of the interphase on the overall viscoelastic behavior of carbon nanotube reinforced polymer nanocomposites. The first portion of this dissertation study investigates the viscoelastic behavior of MWCNT based PMMA nanocomposites, which complements our previous study of SWCNT/PMMA systems to confirm functionalization of nanotubes as an effective way to manipulate the interaction between nanotube and polymers and control the properties of the interphase region forming around the nanotubes and consequently change the overall performance of nanotube based polymer nanocomposites. In the second portion of this dissertation, we present a novel hybrid numerical-analytical modeling method that is capable of predicting viscoelastic behavior of multiphase polymer nanocomposites, in which the nanoscopic fillers can assume complex configurations. By combining the finite element technique and a micromechanical approach (particularly, the Mori-Tanaka method) with local phase properties, this method operates at low computational cost and effectively accounts for the influence of the interphase as well as in situ nanoparticle morphology. This modeling method is implemented

  2. Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure.

    PubMed

    Li, Guanghui; Zhao, Jun; Wang, Zike

    2018-06-16

    Fiber-reinforced polymer (FRP) bars have been widely applied in civil engineering. This paper presents the results of an experimental study to investigate the tensile fatigue mechanical properties of glass fiber-reinforced polymer (GFRP) bars after elevated temperatures exposure. For this purpose, a total of 105 GFRP bars were conducted for testing. The specimens were exposed to heating regimes of 100, 150, 200, 250, 300 and 350 °C for a period of 0, 1 or 2 h. The GFRP bars were tested with different times of cyclic load after elevated temperatures exposure. The results show that the tensile strength and elastic modulus of GFRP bars decrease with the increase of elevated temperature and holding time, and the tensile strength of GFRP bars decreases obviously by 19.5% when the temperature reaches 250 °C. Within the test temperature range, the tensile strength of GFRP bars decreases at most by 28.0%. The cyclic load accelerates the degradation of GFRP bars after elevated temperature exposure. The coupling of elevated temperature and holding time enhance the degradation effect of cyclic load on GFRP bars. The tensile strength of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 50.5% compared with that at room temperature and by 36.3% compared with that after exposing at 350 °C without cyclic load. In addition, the elastic modulus of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 17.6% compared with that at room temperature and by 6.0% compared with that after exposing at 350 °C without cyclic load.

  3. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.

    PubMed

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-10-10

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites' quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films' electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  4. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza

    2017-01-01

    The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

  5. Optimization of microwire/glass-fibre reinforced polymer composites for wind turbine application

    NASA Astrophysics Data System (ADS)

    Qin, F. X.; Peng, H. X.; Chen, Z.; Wang, H.; Zhang, J. W.; Hilton, G.

    2013-11-01

    We here report a comprehensive study of glass-fibre reinforced polymers (GFRP) incorporating ferromagnetic microwires for microwave absorption applications. With wire addition, a remarkable dependence of microwave absorption performance appears on the local properties of wires such as wire geometry and the mesostructure such as inter-wire spacing, as well as the embedded depth of the wires layer. The impact testing further demonstrates that the metallic microwires can to some extent improve the impact performance. Based on both the absorption and impact behavior, we propose an optimized design of the microwire/GFRP composites to achieve simultaneous best possible absorption and impact performance for multifunctional applications in aeronautical structures and wind turbines.

  6. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    PubMed Central

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  7. Effects of vacancy defects on the interfacial shear strength of carbon nanotube reinforced polymer composite.

    PubMed

    Chowdhury, Sanjib Chandra; Okabe, Tomonaga; Nishikawa, Masaaki

    2010-02-01

    We investigate the effects of the vacancy defects (i.e., missing atoms) in carbon nanotubes (CNTs) on the interfacial shear strength (ISS) of the CNT-polyethylene composite with the molecular dynamics simulation. In the simulation, the crystalline polyethylene matrix is set up in a hexagonal array with the polymer chains parallel to the CNT axis. Vacancy defects in the CNT are introduced by removing the corresponding atoms from the pristine CNT (i.e., CNT without any defect). Three patterns of vacancy defects with three different sizes are considered. Two types of interfaces, with and without cross-links between the CNT and the matrix are also considered here. Polyethylene chains are used as cross-links between the CNT and the matrix. The Brenner potential is used for the carbon-carbon interaction in the CNT, while the polymer is modeled by a united-atom potential. The nonbonded van der Waals interaction between the CNT and the polymer matrix and within the polymer matrix itself is modeled with the Lennard-Jones potential. To determine the ISS, we conduct the CNT pull-out from the polymer matrix and the ISS has been estimated with the change of total potential energy of the CNT-polymer system. The simulation results reveal that the vacancy defects significantly influence the ISS. Moreover, the simulation clarifies that CNT breakage occurs during the pull-out process for large size vacancy defect which ultimately reduces the reinforcement.

  8. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  9. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  10. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar (registered trademark)-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2013-03-01

    of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber

  11. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    PubMed

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  12. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    NASA Astrophysics Data System (ADS)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  13. Polar Coding with CRC-Aided List Decoding

    DTIC Science & Technology

    2015-08-01

    TECHNICAL REPORT 2087 August 2015 Polar Coding with CRC-Aided List Decoding David Wasserman Approved...list decoding . RESULTS Our simulation results show that polar coding can produce results very similar to the FEC used in the Digital Video...standard. RECOMMENDATIONS In any application for which the DVB-S2 FEC is considered, polar coding with CRC-aided list decod - ing with N = 65536

  14. Deletions at SLC18A1 increased the risk of CRC and lower SLC18A1 expression associated with poor CRC outcome.

    PubMed

    Zhang, Dandan; Li, Zhenli; Xu, Xiaohong; Zhou, Dan; Tang, Shunli; Yin, Xiaoyang; Xu, Fangying; Li, Hui; Zhou, Yuan; Zhu, Tao; Deng, Hong; Zhang, Shuai; Huang, Qiong; Wang, Jing; Yin, Wei; Zhu, Yimin; Lai, Maode

    2017-10-26

    Copy number variations (CNVs) contribute to the development of colorectal cancer (CRC). We conducted a two-stage association study to identify CNV risk loci for CRC. We performed a gene-based rare CNV study on 694 sporadic CRC and 1641 controls using Illumina Human-OmniExpress-12v1.0 BeadChips, and further replicated in 934 CRC cases and 2680 controls for risk CNVs by using TaqMan Copy Number Assay. Tumor buddings, cancer cells in the center of primary tumor and normal intestinal epithelial cells were captured using laser capture microdissection (LCM) and were assayed using AffymetrixGeneChip® Human Genome U133 Plus 2.0 Array. In addition, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus data were assessed for the effects of risk CNVs. We found that germline deletions affecting the last six exons of SLC18A1 significantly associated with CRC with a combined P value of 6.4 × 10-5 by a two-stage analysis. Both in TCGA CRC RNA seq dataset and GDS4382, SLC18A1 was significantly down regulated in CRC tissues than in paired normal tissues (N = 32 and 17 pairs, P = 0.004 and 0.009, respectively). In LCM samples, similar observations were obtained that the expression levels of SLC18A1 in the tumor buddings, cancer cells in the center of primary tumor, and stroma of both tumor budding and cancer cells were lower than normal intestinal epithelial and stromal cells (fold change = 0.17-0.62, 0.12-0.57 and 0.37-0.68, respectively). In summary, the germline deletions at SLC18A1 contributed to the development of CRC. The role of SLC18A1 required further exploration. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex

    PubMed Central

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-01-01

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time. PMID:28994733

  16. Mining, Validation, and Clinical Significance of Colorectal Cancer (CRC)-Associated lncRNAs.

    PubMed

    Sun, Xiangwei; Hu, Yingying; Zhang, Liang; Hu, Changyuan; Guo, Gangqiang; Mao, Chenchen; Xu, Jianfeng; Ye, Sisi; Huang, Guanli; Xue, Xiangyang; Guo, Aizhen; Shen, Xian

    2016-01-01

    Colorectal cancer (CRC) is one of the deadliest tumours, but its pathogenesis remains unclear. The involvement of differentially expressed long non-coding RNAs (lncRNAs) in CRC tumorigenesis makes them suitable tumour biomarkers. Here, we screened 150 cases of CRC and 85 cases of paracancerous tissues in the GEO database for differentially expressed lncRNAs. The levels of lncRNA candidates in 84 CRC and paracancerous tissue samples were validated by qRT-PCR and their clinical significance was analyzed. We identified 15 lncRNAs with differential expression in CRC tumours; among them, AK098081 was significantly up-regulated, whereas AK025209, BC040303, BC037331, AK026659, and CR749831 were down-regulated in CRC. In a receiver operating characteristic curve analysis, the area under the curve for the six lncRNAs was 0.914. High expression of AK098081 and low expression of BC040303, CR749831, and BC037331 indicated poor CRC differentiation. CRC patients with lymph node metastasis had lower expression of BC037331. In addition, the group with high AK098081 expression presented significantly lower overall survival and disease-free survival rates than the low-expression group, confirming AK098081 as an independent risk factor for CRC patients. In conclusion, we have identified multiple CRC-associated lncRNAs from microarray expression profiles that can serve as novel biomarkers for the diagnosis and prognosis of CRC.

  17. Long-term performance of GFRP reinforcement : technical report.

    DOT National Transportation Integrated Search

    2009-12-01

    Significant research has been performed on glass fiber-reinforced polymer (GFRP) concrete reinforcement. : This research has shown that GFRP reinforcement exhibits high strengths, is lightweight, can decrease time of : construction, and is corrosion ...

  18. Cytotoxicity of silica-glass fiber reinforced composites.

    PubMed

    Meriç, Gökçe; Dahl, Jon E; Ruyter, I Eystein

    2008-09-01

    Silica-glass fiber reinforced polymers can be used for many kinds of dental applications. The fiber reinforcement enhances the mechanical properties of the polymers, and they have good esthetic attributes. There is good initial bonding of glass fibers to polymers via an interface made from silane coupling agents. The aim of this in vitro study was to determine the cytotoxicity of two polymers reinforced with two differently sized silica-glass fibers before and after thermal cycling. Cytotoxicity of the polymers without fibers was also evaluated. Two different resin mixtures (A and B) were prepared from poly(vinyl chloridecovinylacetate) powder and poly(methyl methacrylate) (PMMA) dissolved in methyl methacrylate and mixed with different cross-linking agents. The resin A contained the cross-linking agents ethylene glycol dimethacrylate and 1,4-butanediol dimethacrylate, and for resin B diethylene glycol dimethacrylate was used. Woven silica-glass fibers were used for reinforcement. The fibers were sized with either linear poly(butyl methacrylate)-sizing or cross-linking PMMA-sizing. Cytotoxicity was evaluated by filter diffusion test (ISO 7405:1997) of newly made and thermocycled test specimens. Extracts were prepared according to ISO 10993-12 from newly made and from thermocycled specimens and tested by the MTT assay. The results from the experiments were statistically analyzed by one-way ANOVA and Tukey's test (rho<0.05). The filter diffusion test disclosed no change in staining intensity at the cell-test sample contact area indicating non-cytotoxicity in all experimental groups. Cell viability assessed by MTT assay was more than 90% in all experimental groups. All are non-cytotoxic. It can be concluded that correctly processed heat polymerized silica-glass fiber reinforced polymers induced no cytotoxicity and that thermocycling did not alter this property.

  19. Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response.

    PubMed

    Brauer, Delia S; Rüssel, Christian; Vogt, Sebastian; Weisser, Jürgen; Schnabelrauch, Matthias

    2008-01-01

    The development of biodegradable materials for internal fracture fixation is of great interest, as they would both eliminate the problem of stress shielding and obviate the need for a second operation to remove fixation devices. Preliminary investigations for the production of degradable fiber reinforced polymer composite materials are detailed. Composites were produced of phosphate invert glass fibers of the glass system P(2)O(5)-CaO-MgO-Na(2)O-TiO(2), which showed a low solubility in previous work. The fibers were embedded into a matrix of a degradable organic polymer network based on methacrylate-modified oligolactide. Fracture behavior, bending strength and elastic modulus were evaluated during 3-point bending tests and the fracture surface of the composites was investigated using a scanning electron microscope. Short-term biocompatibility was tested in an FDA/EtBr viability assay using MC3T3-E1 murine pre-osteoblast cells and showed a good cell compatibility of the composite materials. Results suggested that these composite materials are biocompatible and show mechanical properties which are of interest for the production of degradable bone fixation devices.

  20. CRC-113 gene expression signature for predicting prognosis in patients with colorectal cancer

    PubMed Central

    Nguyen, Dinh Truong; Kim, Jin-Hwan; Jo, Yong Hwa; Shahid, Muhammad; Akter, Salima; Aryal, Saurav Nath; Yoo, Ji Youn; Ahn, Yong-Joo; Cho, Kyoung Min; Lee, Ju-Seog; Choe, Wonchae; Kang, Insug; Ha, Joohun; Kim, Sung Soo

    2015-01-01

    Colorectal cancer (CRC) is the third leading cause of global cancer mortality. Recent studies have proposed several gene signatures to predict CRC prognosis, but none of those have proven reliable for predicting prognosis in clinical practice yet due to poor reproducibility and molecular heterogeneity. Here, we have established a prognostic signature of 113 probe sets (CRC-113) that include potential biomarkers and reflect the biological and clinical characteristics. Robustness and accuracy were significantly validated in external data sets from 19 centers in five countries. In multivariate analysis, CRC-113 gene signature showed a stronger prognostic value for survival and disease recurrence in CRC patients than current clinicopathological risk factors and molecular alterations. We also demonstrated that the CRC-113 gene signature reflected both genetic and epigenetic molecular heterogeneity in CRC patients. Furthermore, incorporation of the CRC-113 gene signature into a clinical context and molecular markers further refined the selection of the CRC patients who might benefit from postoperative chemotherapy. Conclusively, CRC-113 gene signature provides new possibilities for improving prognostic models and personalized therapeutic strategies. PMID:26397224

  1. CRC-113 gene expression signature for predicting prognosis in patients with colorectal cancer.

    PubMed

    Nguyen, Minh Nam; Choi, Tae Gyu; Nguyen, Dinh Truong; Kim, Jin-Hwan; Jo, Yong Hwa; Shahid, Muhammad; Akter, Salima; Aryal, Saurav Nath; Yoo, Ji Youn; Ahn, Yong-Joo; Cho, Kyoung Min; Lee, Ju-Seog; Choe, Wonchae; Kang, Insug; Ha, Joohun; Kim, Sung Soo

    2015-10-13

    Colorectal cancer (CRC) is the third leading cause of global cancer mortality. Recent studies have proposed several gene signatures to predict CRC prognosis, but none of those have proven reliable for predicting prognosis in clinical practice yet due to poor reproducibility and molecular heterogeneity. Here, we have established a prognostic signature of 113 probe sets (CRC-113) that include potential biomarkers and reflect the biological and clinical characteristics. Robustness and accuracy were significantly validated in external data sets from 19 centers in five countries. In multivariate analysis, CRC-113 gene signature showed a stronger prognostic value for survival and disease recurrence in CRC patients than current clinicopathological risk factors and molecular alterations. We also demonstrated that the CRC-113 gene signature reflected both genetic and epigenetic molecular heterogeneity in CRC patients. Furthermore, incorporation of the CRC-113 gene signature into a clinical context and molecular markers further refined the selection of the CRC patients who might benefit from postoperative chemotherapy. Conclusively, CRC-113 gene signature provides new possibilities for improving prognostic models and personalized therapeutic strategies.

  2. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  3. GFRP reinforced lightweight precast bridge deck.

    DOT National Transportation Integrated Search

    2011-03-01

    The present research project investigates lightweight and normal weight concrete precast panels for highway : bridge decks. The deck panels are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the : lack of research on lightweight c...

  4. Polymer matrix of fiber-reinforced composites: Changes in the semi-interpenetrating polymer network during the shelf life.

    PubMed

    Khan, Aftab A; Al-Kheraif, Abdulaziz A; Al-Shehri, Abdullah M; Säilynoja, Eija; Vallittu, Pekka K

    2018-02-01

    This laboratory study was aimed to characterize semi-interpenetrating polymer network (semi-IPN) of fiber-reinforced composite (FRC) prepregs that had been stored for up to two years before curing. Resin impregnated prepregs of everStick C&B (StickTech-GC, Turku, Finland) glass FRC were stored at 4°C for various lengths of time, i.e., two-weeks, 6-months and 2-years. Five samples from each time group were prepared with a light initiated free radical polymerization method, which were embedded to its long axis in self-curing acrylic. The nanoindentation readings on the top surface toward the core of the sample were made for five test groups, which were named as "stage 1-5". To evaluate the nanohardness and modulus of elasticity of the polymer matrix, a total of 4 slices (100µm each) were cut from stage 1 to stage 5. Differences in nanohardness values were evaluated with analysis of variance (ANOVA), and regression model was used to develop contributing effect of the material's different stages to the total variability in the nanomechanical properties. Additional chemical and thermal characterization of the polymer matrix structure of FRC was carried out. It was hypothesized that time of storage may have an influence on the semi-IPN polymer structure of the cured FRC. The two-way ANOVA test revealed that the storage time had no significant effect on the nanohardness of FRC (p = 0.374). However, a highly significant difference in nanohardness values was observed between the different stages of FRC (P<0.001). The regression coefficient suggests nanohardness increased on average by 0.039GPa for every storage group. The increased nanohardness values in the core region of 6-months and 2-years stored prepregs might be due to phase-segregation of components of semi-IPN structure of FRC prepregs before their use. This may have an influence to the surface bonding properties of the cured FRC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  6. Mechanical analysis of carbon fiber reinforced shape memory polymer composite for self-deployable structure in space environment

    NASA Astrophysics Data System (ADS)

    Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.

  7. Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    He, Liping; Lu, Gang; Chen, Dachuan; Li, Wenjun; Lu, Chunsheng

    2017-07-01

    This paper investigates the three-dimensional (3D) injection molding flow of short fiber-reinforced polymer composites using a smoothed particle hydrodynamics (SPH) simulation method. The polymer melt was modeled as a power law fluid and the fibers were considered as rigid cylindrical bodies. The filling details and fiber orientation in the injection-molding process were studied. The results indicated that the SPH method could effectively predict the order of filling, fiber accumulation, and heterogeneous distribution of fibers. The SPH simulation also showed that fibers were mainly aligned to the flow direction in the skin layer and inclined to the flow direction in the core layer. Additionally, the fiber-orientation state in the simulation was quantitatively analyzed and found to be consistent with the results calculated by conventional tensor methods.

  8. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    PubMed

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  9. Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures

    NASA Astrophysics Data System (ADS)

    Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.

    2012-04-01

    Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both

  10. Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borah, Subasit; Bhattacharyya, Nidhi S.

    2008-04-24

    Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magneticmore » losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.« less

  11. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  12. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  13. A Smart Eddy Current Sensor Dedicated to the Nondestructive Evaluation of Carbon Fibers Reinforced Polymers.

    PubMed

    Naidjate, Mohammed; Helifa, Bachir; Feliachi, Mouloud; Lefkaier, Iben-Khaldoun; Heuer, Henning; Schulze, Martin

    2017-08-31

    This paper propose a new concept of an eddy current (EC) multi-element sensor for the characterization of carbon fiber-reinforced polymers (CFRP) to evaluate the orientations of plies in CFRP and the order of their stacking. The main advantage of the new sensors is the flexible parametrization by electronical switching that reduces the effort for mechanical manipulation. The sensor response was calculated and proved by 3D finite element (FE) modeling. This sensor is dedicated to nondestructive testing (NDT) and can be an alternative for conventional mechanical rotating and rectangular sensors.

  14. Solid-Lubricant, Polymer - Polymeric and Functionalized Fiber- and Powder Reinforced Composites of Ultra-High Molecular Weight Polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Alexenko, V. O.; Buslovich, D. G.; Anh, Nguyen Duc; Qitao, Huang

    2018-01-01

    Mechanical and tribotechnical characteristics of solid-lubricant and polymer-polymeric composites of UHMWPE were studied for the sake of design extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). Tribotechnical properties of UHMWPE blends with the optimized content of solid lubricant fillers (polytetrafluoroethylene, calcium stearate, molybdenum disulphide, colloidal graphite, boron nitride) were studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). Also, in order to increase strength and wear-resistance of UHMWPE composites they were reinforced with wollastonite microfibers and aluminum metahydroxide AlO (OH) microparticles preliminary treated (functionalized) in polyorganosiloxane. The comparison on measured mechanical and tribotechnical properties are given with interpretation of the mechanisms of observed phenomenon.

  15. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-11-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.

  16. 29 CFR 37.88 - Who may contact CRC about a complaint?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Who may contact CRC about a complaint? 37.88 Section 37.88... PROVISIONS OF THE WORKFORCE INVESTMENT ACT OF 1998 (WIA) Compliance Procedures § 37.88 Who may contact CRC... contact CRC for information about the complaint. The Director will determine what information, if any...

  17. KRAS polymorphisms are associated with survival of CRC in Chinese population.

    PubMed

    Dai, Qiong; Wei, Hui Lian; Huang, Juan; Zhou, Tie Jun; Chai, Li; Yang, Zhi-Hui

    2016-04-01

    rs12245, rs12587, rs9266, rs1137282, rs61764370, and rs712 of KRAS oncogene are characterized in the 3'UTR. The study highlights the important role of these polymorphisms playing in the susceptibility, oxaliplatin-based chemotherapy sensitivity, progression, and prognosis of CRC. Improved multiplex ligation detection reaction (iMLDR) technique is used for genotyping. An unconditional logistic regression model was used to estimate the association of certain polymorphism and CRC risk. The Kaplan-Meier method, log-rank test, and Cox regression model were used to evaluate the effects of polymorphisms on survival analysis. Results demonstrated that TT genotype and T allele of rs712 were associated with the increased risk of CRC; the patients with GG genotype and G allele of rs61764370 had a shorter survival and a higher risk of relapse or metastasis of CRC. Our studies supported the conclusions that rs61764370 and rs712 polymorphisms of the KRAS are functional and it may play an important role in the development of CRC and oxaliplatin-based chemotherapy efficiency and prognosis of CRC.

  18. Effect of fiber reinforcement on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1992-01-01

    A number of studies have investigated the thermooxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. The polyimide PMR-15 was the matrix material used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-4OR graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  19. Detection of colorectal cancer (CRC) by urinary volatile organic compound analysis.

    PubMed

    Arasaradnam, Ramesh P; McFarlane, Michael J; Ryan-Fisher, Courtenay; Westenbrink, Erik; Hodges, Phoebe; Hodges, Paula; Thomas, Matthew G; Chambers, Samantha; O'Connell, Nicola; Bailey, Catherine; Harmston, Christopher; Nwokolo, Chuka U; Bardhan, Karna D; Covington, James A

    2014-01-01

    Colorectal cancer (CRC) is a leading cause of cancer related death in Europe and the USA. There is no universally accepted effective non-invasive screening test for CRC. Guaiac based faecal occult blood (gFOB) testing has largely been superseded by Faecal Immunochemical testing (FIT), but sensitivity still remains poor. The uptake of population based FOBt testing in the UK is also low at around 50%. The detection of volatile organic compounds (VOCs) signature(s) for many cancer subtypes is receiving increasing interest using a variety of gas phase analytical instruments. One such example is FAIMS (Field Asymmetric Ion Mobility Spectrometer). FAIMS is able to identify Inflammatory Bowel disease (IBD) patients by analysing shifts in VOCs patterns in both urine and faeces. This study extends this concept to determine whether CRC patients can be identified through non-invasive analysis of urine, using FAIMS. 133 patients were recruited; 83 CRC patients and 50 healthy controls. Urine was collected at the time of CRC diagnosis and headspace analysis undertaken using a FAIMS instrument (Owlstone, Lonestar, UK). Data was processed using Fisher Discriminant Analysis (FDA) after feature extraction from the raw data. FAIMS analyses demonstrated that the VOC profiles of CRC patients were tightly clustered and could be distinguished from healthy controls. Sensitivity and specificity for CRC detection with FAIMS were 88% and 60% respectively. This study suggests that VOC signatures emanating from urine can be detected in patients with CRC using ion mobility spectroscopy technology (FAIMS) with potential as a novel screening tool.

  20. Experimental Research Into the Effect Of External Actions and Polluting Environments on the Serviceablity of Fiber-Reinforced Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    Lobanov, D. S.; Vildeman, V. E.; Babin, A. D.; Grinev, M. A.

    2015-03-01

    The results of mechanical tests of fiberglass and CFRP specimens in transverse bending and interlaminar shear (the short-beam method) and of sandwich panels in tension and compression are presented. The effect of external polluting environments on the mechanical properties of fiber-reinforced polymer composite materials and structures is estimated. Stress-strain diagrams are constructed.

  1. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  2. Effects of Fiber Reinforcement on Clay Aerogel Composites

    PubMed Central

    Finlay, Katherine A.; Gawryla, Matthew D.; Schiraldi, David A.

    2015-01-01

    Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol) matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression. PMID:28793515

  3. Do recent epidemiologic observations impact who and how we should screen for CRC?

    PubMed

    Bortniker, Ethan; Anderson, Joseph C

    2015-03-01

    Colorectal cancer (CRC) screening is recommended to begin at age 50 for those patients with no significant family history of CRC. However, even within this group of average-risk patients, there is data to suggest that there may be variation in CRC risk. These observations suggest that perhaps CRC screening should be tailored to target those patients at higher risk for earlier or more invasive screening as compared to those individuals at lower risk. The strategy of how to identify those higher-risk patients may not be straightforward. One method might be to use single risk factors such as smoking or elevated BMI as has been suggested in the recent American College of Gastroenterology CRC screening guidelines. Another paradigm involves the use of models which incorporate several risk factors to stratify patients by risk. This article will highlight recent large studies that examine recognized CRC risk factors as well as review recently developed CRC risk models. There will also be a discussion of the application of these factors and models in an effort to make CRC screening more efficient.

  4. Flash Thermography to Evaluate Porosity in Carbon Fiber Reinforced Polymer (CFRPs)

    PubMed Central

    Meola, Carosena; Toscano, Cinzia

    2014-01-01

    It is a fact that the presence of porosity in composites has detrimental effects on their mechanical properties. Then, due to the high probability of void formation during manufacturing processes, it is necessary to have the availability of non-destructive evaluation techniques, which may be able to discover the presence and the distribution of porosity in the final parts. In recent years, flash thermography has emerged as the most valuable method, but it is still not adequately enclosed in the industrial enterprise. The main reason of this is the lack of sufficient quantitative data for a full validation of such a technique. The intention of the present work is to supply an overview on the current state-of-the-art regarding the use of flash thermography to evaluate the porosity percentage in fiber reinforced composite materials and to present the latest results, which are gathered by the authors, on porous carbon fiber reinforced polymer laminates. To this end, several coupons of two different stacking sequences and including a different amount of porosity are fabricated and inspected with both non-destructive and destructive testing techniques. Data coming from non-destructive testing with either flash thermography or ultrasonics are plotted against the porosity percentage, which was previously estimated with the volumetric method. The new obtained results are a witness to the efficacy of flash thermography. Some key points that need further consideration are also highlighted. PMID:28788527

  5. Mechanical reinforcement and segmental dynamics of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Gong, Shushan

    The addition of nanofiller into a polymer matrix will dramatically change the physical properties of polymer. The introduction of nanofiller makes the polymer more applicable in many industries, such as automobile tires, coatings, semiconductors, and packaging. The altered properties are not the simple combination of the characters from the two components. The interactions in polymer nanocomposites play an important role in determining the physical properties. This dissertation focuses on the mechanical properties of polymer nanocomposites (silica/poly-2-vinylpyridine) above their glass transition temperature Tg, as a model for automobile tires, which utilize small silica particles in crosslinked rubber far above Tg. We also investigate the impacts of the interaction between particle filler and polymer matrix on the altered mechanical properties. Dielectric relaxation spectroscopy (DRS) is used to study the glassy bound polymer layers formed around the particles. The results show evidence of the existence of immobilized polymer layers at the surface of each nanoparticle. At the same time, the thickness of the immobilized polymer layers is quantified and formed to be around 2 nm. Then we consider particles with glassy bound polymer layers are bridged together (either rubbery bridge or glassy bridge) by polymer chains and form small clusters. Clusters finally percolate to form a particle-polymer network as loading fraction increases. Rheology is used to study the network formation, and to predict the boundary of rubbery bridge and glassy bridge regimes. The distance between particles determines the type of polymer bridging. The particle spacing larger than Kuhn length makes flexible (rubbery) bridge with rheology described by a flexible Rouse model for percolation. When the spacing is shorter than the Kuhn length (~ 1nm), stiffer bridge forms instead, which is called glassy bridge. The mechanical differences between rubbery bridge and glassy bridge, and the effect of

  6. Inspection and evaluation of a bridge deck reinforced with carbon fiber reinforced polymer (CFRP) bars.

    DOT National Transportation Integrated Search

    2006-03-01

    Cracking in reinforced concrete decks is inevitable. It leads to the corrosion and eventual deterioration of the deck system. The use of non-corrosive reinforcement is one alternative to steel in reinforced concrete construction. : This report deals ...

  7. Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.

    2001-01-01

    The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures.

  8. Geometrical Effect on Thermal Conductivity of Unidirectional Fiber-Reinforced Polymer Composite along Different In-plane Orientations

    NASA Astrophysics Data System (ADS)

    Fang, Zenong; Li, Min; Wang, Shaokai; Li, Yanxia; Wang, Xiaolei; Gu, Yizhuo; Liu, Qianli; Tian, Jie; Zhang, Zuoguang

    2017-11-01

    This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.

  9. Fundamental Studies of Low Velocity Impact Resistance of Graphite Fiber Reinforced Polymer Matrix Composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.

  10. A state of the art review on reinforced concrete beams with openings retrofitted with FRP

    NASA Astrophysics Data System (ADS)

    Osman, Bashir H.; Wu, Erjun; Ji, Bohai; S Abdelgader, Abdeldime M.

    2016-09-01

    The use of externally bonded fiber reinforced polymer (FRP) sheets, strips or steel plates is a modern and convenient way for strengthening of reinforced concrete (RC) beams. Several researches have been carried out on reinforced concrete beams with web openings that strengthened using fiber reinforced polymer composite. Majority of researches focused on shear strengthening compared with flexural strengthening, while others studied the effect of openings on shear and flexural separately with various loading. This paper investigates the impact of more than sixty articles on opening reinforced concrete beams with and without strengthening by fiber reinforcement polymers FRP. Moreover, important practical issues, which are contributed in shear strengthening of beams with different strengthening techniques, such as steel plate and FRP laminate, and detailed with various design approaches are discussed. Furthermore, a simple technique of applying fiber reinforced polymer contributed with steel plate for strengthening the RC beams with openings under different load application is concluded. Directions for future research based on the existing gaps of the present works are presented.

  11. The grindability of glass fibre reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Chockalingam, P.

    The use of glass fibre-reinforced polymer (GFRP) composite materials is extensive due to their favourable mechanical properties and near net shape production. However, almost all composite structures require post-processing operations such as grinding to meet surface finish requirements during assembly. Unlike that of conventional metal, grinding of GFRP composite needs special tools and parameters due to the abrasive nature of fibres and the delamination of the workpiece. Therefore, proper selection of the tools and parameters is important. This research aims to investigate the effects of wheel speed, feed, depth of cut, grinding wheel and coolant on the grindability of chopped strand mat (CSM) GFRP. Grinding was carried out in a precision CNC (Master-10HVA) high-speed machining centre under three conditions, namely dry, and wet conditions with synthetic coolant and emulsion coolant, using alumina wheel (OA46QV) and CBN wheel (B46QV). The grinding experiments were conducted per the central composite design of design of experiments. The grindability aspects investigated were surface area roughness (Sa) and cutting force ratio (µ). The responses were analyzed by developing fuzzy logic models. The surface area roughness and cutting force ratio values predicted by the fuzzy logic models are mostly in good agreement with experimental data, and hence conclusion was made that these models were reliable.

  12. Finite element analysis of drilling in carbon fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Phadnis, V. A.; Roy, A.; Silberschmidt, V. V.

    2012-08-01

    Carbon fiber reinforced polymer composite (CFRP) laminates are attractive for many applications in the aerospace industry especially as aircraft structural components due to their superior properties. Usually drilling is an important final machining process for components made of composite laminates. In drilling of CFRP, it is an imperative task to determine the maximum critical thrust forces that trigger inter-laminar and intra-laminar damage modes owing to highly anisotropic fibrous media; and negotiate integrity of composite structures. In this paper, a 3D finite element (FE) model of drilling in CFRP composite laminate is developed, which accurately takes into account the dynamic characteristics involved in the process along with the accurate geometrical considerations. A user defined material model is developed to account for accurate though thickness response of composite laminates. The average critical thrust forces and torques obtained using FE analysis, for a set of machining parameters are found to be in good agreement with the experimental results from literature.

  13. Mechanical properties of carbon fibre-reinforced polymer/magnesium alloy hybrid laminates

    NASA Astrophysics Data System (ADS)

    Zhou, Pengpeng; Wu, Xuan; Pan, Yingcai; Tao, Ye; Wu, Guoqing; Huang, Zheng

    2018-04-01

    In this study, we prepared fibre metal laminates (FMLs) consisting of high-modulus carbon fibre-reinforced polymer (CFRP) prepregs and thin AZ31 alloy sheets by using hot-pressing technology. Tensile and low-velocity impact tests were performed to evaluate the mechanical properties and fracture behaviour of the magnesium alloy-based FMLs (Mg-FMLs) and to investigate the differences in the fracture behaviour between the Mg-FMLs and traditional Mg-FMLs. Results show that the Mg-FMLs exhibit higher specific tensile strength and specific tensile modulus than traditional Mg-FMLs and that the tensile behaviour of the Mg-FMLs is mainly governed by the CFRP because of the combination of high interlaminar shear properties and thin magnesium alloy layers. The Mg-FMLs exhibit excellent bending stiffness. Hence, no significant difference between the residual displacement d r and indentation depth d i , and the permanent deformation is mainly limited to a small zone surrounding the impact location after the impact tests.

  14. Investigation of dielectric properties of polymer composites reinforced with carbon nanotubes in the frequency band of 0.01 Hz - 10 MHz

    NASA Astrophysics Data System (ADS)

    Goshev, A. A.; Eseev, M. K.; Kapustin, S. N.; Vinnik, L. N.; Volkov, A. S.

    2016-08-01

    The goal of this work is experimental study of dielectric properties of polymer nanocomposites reinforced with multiwalled carbon nanotubes (MWCNTs) in alternating electric field in low frequency band of 0.01 Hz - 10 MHz. We investigated the influence, functionalization degree, aspect ratio, concentration of carbon nanotubes (CNTs) on dielectric properties of polymer sample. We also studied the dependence of dielectric properties on the polymerization temperature. The dependence of CNTs agglomeration on sample polymerization temperature and temperature's influence on conductivity has been shown. We conducted model calculation of percolation threshold and figured out its dependence on CNTs aspect ratio.

  15. 12 CFR 617.7310 - What is the review process of the CRC?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false What is the review process of the CRC? 617.7310... on Applications; Review of Credit Decisions § 617.7310 What is the review process of the CRC? (a) How will an applicant or borrower know when the CRC will consider the review request? The qualified lender...

  16. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft

  17. The Pseudomonas aeruginosa Catabolite Repression Control Protein Crc Is Devoid of RNA Binding Activity

    PubMed Central

    Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa. PMID:23717639

  18. The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity.

    PubMed

    Milojevic, Tetyana; Grishkovskaya, Irina; Sonnleitner, Elisabeth; Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa.

  19. Steel-free hybrid reinforcement system for concrete bridge decks, phase 1

    DOT National Transportation Integrated Search

    2006-05-01

    Use of nonferrous fiber-reinforced polymer (FRP) reinforcement bars (rebars) offers one promising alternative to mitigating the corrosion problem in steel reinforced concrete bridge decks. Resistance to chloride ion driven corrosion, high tensile str...

  20. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites

    PubMed Central

    Kim, Jun Young

    2009-01-01

    This paper focuses on the fabrication via simple melt blending of thermotropic liquid crystal polyester (TLCP) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) and the unique effects of the modified CNT on the physical properties of the nanocomposites. The thermal, mechanical, and rheological properties of modified CNT-reinforced TLCP nanocomposites are highly dependent on the uniform dispersion of CNT and the interactions between the CNT and TLCP, which can be enhanced by chemical modification of the CNT, providing a design guide of CNT-reinforced TLCP nanocomposites with great potential for industrial uses.

  1. Structure analysis of the global metabolic regulator Crc from Pseudomonas aeruginosa.

    PubMed

    Wei, Yong; Zhang, Heng; Gao, Zeng-Qiang; Xu, Jian-Hua; Liu, Quan-Sheng; Dong, Yu-Hui

    2013-01-01

    The global metabolic regulator catabolite repression control (Crc) has recently been found to modulate the susceptibility to antibiotics and virulence in the opportunistic pathogen Pseudomonas aeruginosa and been suggested as a nonlethal target for novel antimicrobials. In P. aeruginosa, Crc couples with the CA motifs from the small RNA CrcZ to form a post-transcriptional regulator system and is removed from the 5'-end of the target mRNAs. In this study, we first reported the crystal structure of Crc from P. aeruginosa refined to 2.20 Å. The structure showed that it consists of two halves with similar overall topology and there are 11 β strands surrounded by 13 helices, forming a four-layered α/β-sandwich. The circular dichroism spectroscopy revealed that it is thermostable in solution and shares similar characteristics to that in crystal. Comprehensive structural analysis and comparison with the homologies of Crc showed high similarity with several known nucleases and consequently may be classified into a member exodeoxyribonuclease III. However, it shows distinct substrate specificity (RNA as the preferred substrate) compared to these DNA endonucleases. Structural comparisons also revealed potential RNA recognition and binding region mainly consisting of five flexible loops. Our structure study provided the basis for the future application of Crc as a target to develop new antibiotics. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  2. Effect of monomer composition of polymer matrix on flexural properties of glass fibre-reinforced orthodontic archwire.

    PubMed

    Ohtonen, J; Vallittu, P K; Lassila, L V J

    2013-02-01

    To compare force levels obtained from glass fibre-reinforced composite (FRC) archwires. Specifically, FRC wires were compared with polymer matrices having different dimethacrylate monomer compositions. FRC material (E-glass provided by Stick Tech Ltd, Turku, Finland) with continuous unidirectional glass fibres and four different types of dimethacrylate monomer compositions for the resin matrix were tested. Cross-sectionally round FRC archwires fitting into the 0.3 mm slot of a bracket were divided into 16 groups with six specimens in each group. Glass fibres were impregnated by the manufacturer, and they were initially light-cured by hand light-curing unit or additionally post-cured in light-curing oven. The FRC archwire specimens were tested at 37°C according to a three-point bending test in dry and wet conditions using a span length of 10 mm and a crosshead speed of 1.0 mm/minute. The wires were loaded until final failure. The data were statistically analysed using analysis of variance (ANOVA). The dry FRC archwire specimens revealed higher load values than water stored ones, regardless of the polymer matrix. A majority of the FRC archwires showed higher load values after being post-cured. ANOVA revealed that the polymer matrix, curing method, and water storage had a significant effect (P < 0.05) on the flexural behaviour of the FRC archwire. Polymer matrix composition, curing method, and water storage affected the flexural properties and thus, force level and working range which could be obtained from the FRC archwire.

  3. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    NASA Astrophysics Data System (ADS)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  4. Time-frequency analysis of acoustic emission signals generated by the Glass Fibre Reinforced Polymer Composites during the tensile test

    NASA Astrophysics Data System (ADS)

    Świt, G.; Adamczak, A.; Krampikowska, A.

    2017-10-01

    Fibre reinforced polymer composites are currently dominating in the composite materials market. The lack of detailed knowledge about their properties and behaviour in various conditions of exposure under load significantly limits the broad possibilities of application of these materials. Occurring and accumulation of defects in material during the exploitation of the construction lead to the changes of its technical condition. The necessity to control the condition of the composite is therefore justified. For this purpose, non-destructive method of acoustic emission can be applied. This article presents an example of application of acoustic emission method based on time analysis and time-frequency analysis for the evaluation of the progress of the destructive processes and the level of degradation of glass fibre reinforced composite tapes that were subject to tensile testing.

  5. 12 CFR 617.7305 - What is a CRC and who are the members?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... decisions made by a qualified lender. The CRC may only review adverse credit decisions at the request of the applicant or borrower. The CRC has the ultimate decision-making authority on the loan or application under... on Applications; Review of Credit Decisions § 617.7305 What is a CRC and who are the members? The...

  6. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T.; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-12-01

    Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.

  7. A carbon fiber reinforced polymer cage for vertebral body replacement: technical note.

    PubMed

    Ciappetta, P; Boriani, S; Fava, G P

    1997-11-01

    We analyzed the surgical technique used for the replacement of damaged vertebral bodies of the thoracolumbar spine and the carbon fiber reinforced polymer (CFRP) cages that are used to replace the pathological vertebral bodies. We also evaluated the biomechanical properties of carbon composite materials used in spinal surgery. The surgical technique of CFRP implants may be divided into two distinct steps, i.e., assembling the components that will replace the pathological vertebral bodies and connecting the cage to an osteosynthetic system to immobilize the cage. The CFRP cages, made of Ultrapek polymer and AS-4 pyrolytic carbon fiber (AcroMed, Rotterdam, The Netherlands), are of different sizes and may be placed one on top of the other and fixed together with a titanium rod. These components are hollow to allow fragments of bone to be pressed manually into them and present threaded holes at 15, 30, and 90 degrees on the external surface, permitting the insertion of screws to connect the cage to an anterior or posterior osteosynthetic system. To date, we have used CFRP cages in 13 patients undergoing corporectomies and 10 patients undergoing spondylectomies. None of our patients have reported complications. CFRP implants offer several advantages compared with titanium or surgical grade stainless steel implants, demonstrating high versatility and outstanding biological and mechanical properties. Furthermore, CFRP implants are radiolucent and do not hinder radiographic evaluation of bone fusion, allowing for better follow-up studies.

  8. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development.

    PubMed

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-11-01

    CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far generally accepted. © The Author 2014. Published by

  9. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development

    PubMed Central

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-01-01

    Background and Aims CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. Methods CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. Key Results CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. Conclusions The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far

  10. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  11. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    PubMed Central

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-01-01

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components. PMID:28773704

  12. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.

    PubMed

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-07-16

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  13. Recycling of woven carbon-fibre-reinforced polymer composites using supercritical water.

    PubMed

    Knight, Chase C; Zeng, Changchun; Zhang, Chuck; Wang, Ben

    2012-01-01

    Over the past few years, there has been great deal of interest in recycling carbon-fibre-reinforced polymer composites. One method that has shown promising results involves the use of supercritical fluids to achieve separation between matrix and fibres by effectively degrading the resin into lower molecular weight compounds. In addition, the solvents used are environmentally benign and can also be recovered and reused. In this study, supercritical water with 0.05 M KOH as the catalyst was used for the recycling of an aerospace-grade high-performance epoxy carbon fibre composite (Hexcel 8552/IM7). The morphology of the reclaimed fibres was observed by scanning electron microscopy, and the tensile properties of the fibres were measured by single filament testing. The effects of processing time on the resin elimination efficiency and fibre property retention were investigated. With the process developed in this research, as much as 99.2 wt% resin elimination was achieved, resulting in the recovery of clean, undamaged fibres. The reclaimed fibres retained the original tensile strength. The feasibility of recycling multiple layer composites was also explored.

  14. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  15. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    NASA Astrophysics Data System (ADS)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  16. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  17. How does the serrated polyp pathway alter CRC screening and surveillance?

    PubMed

    Kahi, Charles J

    2015-03-01

    Screening and surveillance for colorectal cancer (CRC) reduces mortality through the detection of early-stage adenocarcinoma, and more importantly the detection and removal of premalignant polyps. While adenomas have historically been considered the most common and screening-relevant precursor lesions, there is accumulating evidence showing that the serrated pathway is an important contributor to CRC, and a disproportionate contributor to interval or postcolonoscopy CRC, particularly in the proximal colon. The serrated pathway is characterized by mutations in the BRAF gene, high levels of methylation of promoter CpG islands (CIMP-high), and the sessile serrated adenoma/polyp (SSA/P) is the most important precursor lesion. The study of serrated polyps has been complicated by evolving nomenclature, substantial variation among pathologists in the identification of SSA/Ps, high variability in endoscopic detection rates, and uncertainty regarding the relation to synchronous and metachronous colonic neoplasia. This paper presents an overview of the serrated polyp pathway and discusses its clinical implications including its impact on CRC screening.

  18. Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites.

    PubMed

    Tatsumi, Mio; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2012-05-14

    An attempt was made to synthesize novel composites comprising poly(2-hydroxyethyl methacrylate) (PHEMA) and cellulose nanocrystallites (CNC) (acid-treated cotton microfibrils) from suspensions of CNC in an aqueous 2-hydroxyethyl methacrylate (HEMA) monomer solution. The starting suspensions (∼5 wt % CNC) separated into an isotropic upper phase and an anisotropic bottom one in the course of quiescent standing. By way of polymerization of HEMA in different phase situations of the suspensions, we obtained films of three polymer composites, PHEMA-CNC(iso), PHEMA-CNC(aniso), and PHEMA-CNC(mix), coming from the isotropic phase, anisotropic phase, and embryonic nonseparating mixture, respectively. All the composites were transparent and, more or less, birefringent under a polarized optical microscope. A fingerprint texture typical of cholesteric liquid crystals of longer pitch spread widely in PHEMA-CNC(aniso) but rather locally appeared in PHEMA-CNC(iso). Any of the CNC incorporations into the PHEMA matrix improved the original thermal and mechanical properties of this amorphous polymer material. In dynamic mechanical measurements, the locking-in of the respective CNC assemblies gave rise to an increase in the glass-state modulus E' of PHEMA as well as a marked suppression of the E'-falling at temperatures higher than T(g) (≈ 110 °C) of the vinyl polymer. It was also observed for the composites that their modulus E' rerose in a range of about 150-190 °C, which was attributable to a secondary cross-linking formation between PHEMA chains mediated by the acidic CNC filler. The mechanical reinforcement effect of the CNC dispersions was ensured in a tensile test, whereby PHEMA-CNC(aniso) was found to surpass the other two composites in stiffness and strength.

  19. GFRP reinforced concrete bridge decks

    DOT National Transportation Integrated Search

    2000-07-01

    This report investigates the application of glass fiber reinforced polymer (GFRP) rebars in concrete bridge decks as a potential replacement or supplement to conventional steel rebars. Tests were conducted to determine the material properties of the ...

  20. GFRP reinforced concrete bridge decks.

    DOT National Transportation Integrated Search

    2000-07-01

    This report investigates the application of glass fiber reinforced polymer (GFRP) rebars in concrete bridge decks as a potential replacement or supplement to conventional steel rebars. Tests were conducted to determine the material properties of the ...

  1. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    NASA Astrophysics Data System (ADS)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  2. Research notes : non-destructive evaluation of FRP-strengthened reinforced concrete.

    DOT National Transportation Integrated Search

    2005-04-01

    Many reinforced concrete structures across the country are being strengthened with fiber reinforced polymer (FRP) composites to increase the load capacity. In many cases, composites provide the most cost effective strengthening option, and they do no...

  3. 29 CFR 37.38 - What information must grant applicants and recipients provide to CRC?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provide to CRC? 37.38 Section 37.38 Labor Office of the Secretary of Labor IMPLEMENTATION OF THE... information must grant applicants and recipients provide to CRC? In addition to the information which must be collected, maintained, and, upon request, submitted to CRC under § 37.37: (a) Each grant applicant and...

  4. Behaviour of axially and eccentrically loaded short columns reinforced with GFRP bars

    NASA Astrophysics Data System (ADS)

    Sreenath, S.; Balaji, S.; Saravana Raja Mohan, K.

    2017-07-01

    The corrosion of steel reinforcing bars is a predominant factor in limiting the life expectancy of Reinforced Cement Concrete (RCC) structures. Corrosion resistant Fibre Reinforced Polymer (FRP) bars can be an effective alternative to steel bars in this context. Recent investigations reported the flexural behaviour of RCC beams reinforced with Glass Fibre Reinforced Polymer (GFRP) bars. This study is meant to investigate the suitability of Sand Coated GFRP reinforcement bars in short square columns which when loaded axially and loaded with a minimum eccentricity. Standard tests to assess mechanical properties of GFRP bars and pullout test to quantify the bond strength between the bars and concrete were conducted. GFRP reinforced column specimens with a cross-sectional dimension of 100mm X 100mm and of length 1000mm were cast and tested under axial and eccentric loading. The assessed load carrying capacity was compared with that of conventional steel reinforced columns of the same size. The yield load and ultimate load at failure withstood by the steel reinforced columns were considerably more than that of GFRP reinforced columns. The energy absorption capacity of GFRP reinforced columns was also poor compared to steel reinforced columns. Both the columns exhibited nearly the same ductile behaviour. Hence GFRP reinforcements are not recommendable for compression members.

  5. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook.

    PubMed

    Pimenta, Soraia; Pinho, Silvestre T

    2011-02-01

    Both environmental and economic factors have driven the development of recycling routes for the increasing amount of carbon fibre reinforced polymer (CFRP) waste generated. This paper presents a review of the current status and outlook of CFRP recycling operations, focusing on state-of-the-art fibre reclamation and re-manufacturing processes, and on the commercialisation and potential applications of recycled products. It is shown that several recycling and re-manufacturing processes are reaching a mature stage, with implementations at commercial scales in operation, production of recycled CFRPs having competitive structural performances, and demonstrator components having been manufactured. The major challenges for the sound establishment of a CFRP recycling industry and the development of markets for the recyclates are summarised; the potential for introducing recycled CFRPs in structural components is discussed, and likely promising applications are investigated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Genetic variants in IL-6/JAK/STAT3 pathway and the risk of CRC.

    PubMed

    Wang, Shuwei; Zhang, Weidong

    2016-05-01

    Interleukin (IL)-6 and the downstream Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway have previously been reported to be important in the development of colorectal cancer (CRC), and several studies have shown the relationship between the polymorphisms of related genes in this pathway with the risk of CRC. However, the findings of these related studies are inconsistent. Moreover, there has no systematic review and meta-analysis to evaluate the relationship between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility. Hence, we conducted a meta-analysis to explore the relationship between polymorphisms in IL-6/JAK/STAT3 pathway genes and CRC risk. Eighteen eligible studies with a total of 13,795 CRC cases and 18,043 controls were identified by searching PubMed, Web of Science, Embase, and the Cochrane Library databases for the period up to September 15, 2015. Odds ratios (ORs) and their 95 % confidence intervals (CIs) were used to calculate the strength of the association. Our results indicated that IL-6 genetic variants in allele additive model (OR = 1.05, 95 % CI = 1.00, 1.09) and JAK2 genetic variants (OR = 1.40, 95 % CI = 1.15, 1.65) in genotype recessive model were significantly associated with CRC risk. Moreover, the pooled data revealed that IL-6 rs1800795 polymorphism significantly increased the risk of CRC in allele additive model in Europe (OR = 1.07, 95 % CI = 1.01, 1.14). In conclusion, the present findings indicate that IL-6 and JAK2 genetic variants are associated with the increased risk of CRC while STAT3 genetic variants not. We need more well-designed clinical studies covering more countries and population to definitively establish the association between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility.

  7. Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development.

    PubMed

    Piao, Mei-Yu; Cao, Hai-Long; He, Na-Na; Xu, Meng-Que; Dong, Wen-Xiao; Wang, Wei-Qiang; Wang, Bang-Mao; Zhou, Bing

    2016-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the United States. Recent cancer genome-sequencing efforts and complementary functional studies have led to the identification of a collection of candidate 'driver' genes involved in CRC tumorigenesis. Tripartite motif (TRIM3) is recently identified as a tumour suppressor in glioblastoma but this tumour-suppressive function has not been investigated in CRC. In this study, we investigated the potential role of TRIM3 as a tumour suppressor in CRC development by manipulating the expression of TRIM3 in two authentic CRC cell lines, HCT116 and DLD1, followed by various functional assays, including cell proliferation, colony formation, scratch wound healing, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumour-suppressive properties of TRIM3. Small-interfering RNA (siRNA) mediated knockdown of TRIM3 conferred growth advantage in CRC cells. In contrast, overexpression of TRIM3 affected cell survival, cell migration, anchorage independent growth and invasive potential in CRC cells. In addition, TRIM3 was found to be down-regulated in human colon cancer tissues compared with matched normal colon tissues. Overexpression of TRIM3 significantly inhibited tumour growth in vivo using xenograft mouse models. Mechanistic investigation revealed that TRIM3 can regulate p53 protein level through its stabilisation. TRIM3 functions as a tumour suppressor in CRC progression. This tumour-suppressive function is exerted partially through regulation of p53 protein. Therefore, this protein may represent a novel therapeutic target for prevention or intervention of CRC.

  8. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  9. Intra-Laminar Fracture Toughness of Glass Fiber Reinforced Polymer By Using Theory, Experimentation and FEA

    NASA Astrophysics Data System (ADS)

    Firojkhan, Pathan; Tanpure, Kshitijit; Dawale, Ajinkya; Patil, Shital

    2018-04-01

    Fiber reinforced polymer (FRP) composites are widely use in aerospace, marine, auto-mobile and civil engineering applications because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and potentially high durability. The purpose of this research is to experimentally investigate the mechanical and fracture properties of glass-fiber reinforced polyester composite material, 450 g/m 2 randomly distributed glass-fiber mat also known as woven strand mat with polyester resin as a matrix. The samples have been produced by the conventional hand layup process and the specimens were prepared as per the ASTM standards. The tensile test was performed on the composite specimens using Universal testing machine (UTM) which are used for the finite element simulation of composite Layered fracture model. The mechanical properties were evaluated from the stress vs. strain curve obtained from the test result. Later, fracture tests were performed on the CT specimen. In case of CT specimen the load vs. Displacement plot obtained from the experimental results was used to determine the fracture properties of the composite. The failure load of CT specimen using FEA is simulated which gives the Stress intensity factor by using FEA. Good agreement between the FEA and experimental results was observed.

  10. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives.

    PubMed

    Kahouli, Imen; Tomaro-Duchesneau, Catherine; Prakash, Satya

    2013-08-01

    Colorectal cancer (CRC) is the third most common form of cancer. Diverse therapies such as chemotherapy, immunotherapy and radiation have shown beneficial effects, but are limited because of their safety and toxicity. Probiotic formulations have shown great promise in CRC as preventive and early stage therapeutics. This review highlights the importance of a balanced intestinal microbiota and summarizes the recent developments in probiotics for treating CRC. Specifically, this report describes evidence of the role of probiotics in modulating the microbiota, in improving the physico-chemical conditions of the gut and in reducing oxidative stress. It also discusses the mechanisms of probiotics in inhibiting tumour progression, in producing anticancer compounds and in modulating the host immune response. Even though some of these effects were observed in several clinical trials, when probiotic formulations were used as a supplement to CRC therapies, the application of probiotics as biotherapeutics against CRC still needs further investigation.

  11. An improved method for testing tension properties of fiber-reinforced polymer rebar

    NASA Astrophysics Data System (ADS)

    Yuan, Guoqing; Ma, Jian; Dong, Guohua

    2010-03-01

    We have conducted a series of tests to measure tensile strength and modulus of elasticity of fiber reinforced polymer (FRP) rebar. In these tests, the ends of each rebar specimen were embedded in steel tube filled with expansive cement, and the rebar was loaded by gripping the tubes with the conventional fixture during the tensile tests. However, most of specimens were failed at the ends where the section changed abruptly. Numerical simulations of the stress field at bar ends in such tests by ANSYS revealed that such unexpected failure modes were caused by the test setup. The changing abruptly of the section induced stress concentration. So the test results would be regarded as invalid. An improved testing method is developed in this paper to avoid this issue. A transition part was added between the free segment of the rebar and the tube, which could eliminate the stress concentration effectively and thus yield more accurate values for the properties of FRP rebar. The validity of the proposed method was demonstrated by both experimental tests and numerical analysis.

  12. An improved method for testing tension properties of fiber-reinforced polymer rebar

    NASA Astrophysics Data System (ADS)

    Yuan, Guoqing; Ma, Jian; Dong, Guohua

    2009-12-01

    We have conducted a series of tests to measure tensile strength and modulus of elasticity of fiber reinforced polymer (FRP) rebar. In these tests, the ends of each rebar specimen were embedded in steel tube filled with expansive cement, and the rebar was loaded by gripping the tubes with the conventional fixture during the tensile tests. However, most of specimens were failed at the ends where the section changed abruptly. Numerical simulations of the stress field at bar ends in such tests by ANSYS revealed that such unexpected failure modes were caused by the test setup. The changing abruptly of the section induced stress concentration. So the test results would be regarded as invalid. An improved testing method is developed in this paper to avoid this issue. A transition part was added between the free segment of the rebar and the tube, which could eliminate the stress concentration effectively and thus yield more accurate values for the properties of FRP rebar. The validity of the proposed method was demonstrated by both experimental tests and numerical analysis.

  13. Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands

    NASA Astrophysics Data System (ADS)

    Daghash, Sherif M.; Ozbulut, Osman E.

    2018-06-01

    This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.

  14. Energy harvesting from coupled bending-twisting oscillations in carbon-fibre reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Xie, Mengying; Zhang, Yan; Kraśny, Marcin J.; Rhead, Andrew; Bowen, Chris; Arafa, Mustafa

    2018-07-01

    The energy harvesting capability of resonant harvesting structures, such as piezoelectric cantilever beams, can be improved by utilizing coupled oscillations that generate favourable strain mode distributions. In this work, we present the first demonstration of the use of a laminated carbon fibre reinforced polymer to create cantilever beams that undergo coupled bending-twisting oscillations for energy harvesting applications. Piezoelectric layers that operate in bending and shear mode are attached to the bend-twist coupled beam surface at locations of maximum bending and torsional strains in the first mode of vibration to fully exploit the strain distribution along the beam. Modelling of this new bend-twist harvesting system is presented, which compares favourably with experimental results. It is demonstrated that the variety of bend and torsional modes of the harvesters can be utilized to create a harvester that operates over a wider range of frequencies and such multi-modal device architectures provides a unique approach to tune the frequency response of resonant harvesting systems.

  15. ZEB1 Mediates Drug Resistance and EMT in p300-Deficient CRC.

    PubMed

    Lazarova, Darina; Bordonaro, Michael

    2017-01-01

    We discuss the hypothesis that ZEB1-Wnt-p300 signaling integrates epithelial to mesenchymal transition (EMT) and resistance to histone deacetylase inhibitors (HDACis) in colorectal cancer (CRC) cells. The HDACi butyrate, derived from dietary fiber, has been linked to CRC prevention, and other HDACis have been proposed as therapeutic agents against CRC. We have previously discussed that resistance to butyrate likely contributes to colonic carcinogenesis, and we have demonstrated that butyrate resistance leads to cross-resistance to cancer therapeutic HDACis. Deregulated Wnt signaling is the major initiating event in most CRC cases. One mechanism whereby butyrate and other HDACis exert their anti-CRC effects is via Wnt signaling hyperactivation, which promotes CRC cell apoptosis. The histone acetylases (HATs) CBP and p300 are mediators of Wnt transcriptional activity, and play divergent roles in the downstream consequences of Wnt signaling. CBP-mediated Wnt signaling is associated with cell proliferation and stem cell maintenance; whereas, p300-mediated Wnt activity is associated with differentiation. We have found that CBP and p300 differentially affect the ability of butyrate to influence Wnt signaling, apoptosis, and proliferation. ZEB 1 is a Wnt signaling-targeted gene, whose product is a transcription factor expressed at the invasive front of carcinomas where it promotes malignant progression and EMT. ZEB1 is typically a transcriptional repressor; however, when associated with p300, ZEB1 enhances transcription. These changes in ZEB1 activity likely affect the cancer cell phenotype. ZEB1 has been shown to promote resistance to chemotherapeutic agents, and expression of ZEB1 is upregulated in butyrate-resistant CRC cells that lack p300 expression. Since the expression of ZEB1 correlates with poor outcomes in cancer, ZEB represents a relevant therapeutic target. Here we propose that targeting the signaling network established by ZEB1, Wnt signaling, and p300

  16. A Risk Prediction Model for Sporadic CRC Based on Routine Lab Results.

    PubMed

    Boursi, Ben; Mamtani, Ronac; Hwang, Wei-Ting; Haynes, Kevin; Yang, Yu-Xiao

    2016-07-01

    Current risk scores for colorectal cancer (CRC) are based on demographic and behavioral factors and have limited predictive values. To develop a novel risk prediction model for sporadic CRC using clinical and laboratory data in electronic medical records. We conducted a nested case-control study in a UK primary care database. Cases included those with a diagnostic code of CRC, aged 50-85. Each case was matched with four controls using incidence density sampling. CRC predictors were examined using univariate conditional logistic regression. Variables with p value <0.25 in the univariate analysis were further evaluated in multivariate models using backward elimination. Discrimination was assessed using receiver operating curve. Calibration was evaluated using the McFadden's R2. Net reclassification index (NRI) associated with incorporation of laboratory results was calculated. Results were internally validated. A model similar to existing CRC prediction models which included age, sex, height, obesity, ever smoking, alcohol dependence, and previous screening colonoscopy had an AUC of 0.58 (0.57-0.59) with poor goodness of fit. A laboratory-based model including hematocrit, MCV, lymphocytes, and neutrophil-lymphocyte ratio (NLR) had an AUC of 0.76 (0.76-0.77) and a McFadden's R2 of 0.21 with a NRI of 47.6 %. A combined model including sex, hemoglobin, MCV, white blood cells, platelets, NLR, and oral hypoglycemic use had an AUC of 0.80 (0.79-0.81) with a McFadden's R2 of 0.27 and a NRI of 60.7 %. Similar results were shown in an internal validation set. A laboratory-based risk model had good predictive power for sporadic CRC risk.

  17. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    NASA Astrophysics Data System (ADS)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  18. Long noncoding RNA lnc-sox5 modulates CRC tumorigenesis by unbalancing tumor microenvironment.

    PubMed

    Wu, Kaiming; Zhao, Zhenxian; Liu, Kuanzhi; Zhang, Jian; Li, Guanghua; Wang, Liang

    2017-07-03

    Long non-coding RNAs (LncRNAs) have been recently regarded as systemic regulators in multiple biologic processes including tumorigenesis. In this study, we observed the expression of lncRNA lnc-sox5 was significantly increased in colorectal cancer (CRC). Despite the CRC cell growth, cell cycle and cell apoptosis was not affected by lnc-sox5 knock-down, lnc-sox5 knock-down suppressed CRC cell migration and invasion. In addition, xenograft animal model suggested that lnc-sox5 knock-down significantly suppressed the CRC tumorigenesis. Our results also showed that the expression of indoleamine 2,3-dioxygenase 1 (IDO1) was significantly reduced by lnc-sox5 knock-down and therefore modulated the infiltration and cytotoxicity of CD3 + CD8 + T cells. Taken together, these results suggested that lnc-sox5 unbalances tumor microenvironment to regulate colorectal cancer progression.

  19. 29 CFR 37.84 - What happens if CRC does not have jurisdiction over a complaint?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true What happens if CRC does not have jurisdiction over a complaint? 37.84 Section 37.84 Labor Office of the Secretary of Labor IMPLEMENTATION OF THE... Procedures § 37.84 What happens if CRC does not have jurisdiction over a complaint? If CRC does not have...

  20. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Ramesh, M.; Gopinath, A.

    2017-05-01

    Drilling of composite materials is difficult when compared to the conventional materials because of its in-homogeneous nature. The force developed during drilling play a major role in the surface quality of the hole and minimizing the damages around the surface. This paper focuses the effect of drilling parameters on thrust force in drilling of sisal-glass fiber reinforced polymer composite laminates. The quadratic response models are developed by using response surface methodology (RSM) to predict the influence of cutting parameters on thrust force. The adequacy of the models is checked by using the analysis of variance (ANOVA). A scanning electron microscope (SEM) analysis is carried out to analyze the quality of the drilled surface. From the results, it is found that, the feed rate is the most influencing parameter followed by spindle speed and the drill diameter is the least influencing parameter on the thrust force.

  1. An experimental study of non-destructive testing on glass fibre reinforced polymer composites after high velocity impact event

    NASA Astrophysics Data System (ADS)

    Razali, N.; Sultan, M. T. H.; Cardona, F.

    2016-10-01

    A non-destructive testing method on Glass Fibre Reinforced Polymer (GFRP) after high velocity impact event using single stage gas gun (SSGG) is presented. Specimens of C- type and E-type fibreglass reinforcement, which were fabricated with 6mm, 8mm, 10mm and 12mm thicknesses and size 100 mm x 100 mm, were subjected to a high velocity impact with three types of bullets: conical, hemispherical and blunt at various gas gun pressure levels from 6 bar to 60 bar. Visual observation techniques using a lab microscope were used to determine the infringed damage by looking at the crack zone. Dye penetrants were used to inspect the area of damage, and to evaluate internal and external damages on the specimens after impact. The results from visual analysis of the impacted test laminates were discussed and presented. It was found that the impact damage started with induced delamination, fibre cracking and then failure, simultaneously with matrix cracking and breakage, and finally followed by the fibres pulled out. C-type experienced more damaged areas compared to E-type of GFRP.

  2. Association between hMLH1 hypermethylation and JC virus (JCV) infection in human colorectal cancer (CRC).

    PubMed

    Vilkin, Alex; Niv, Yaron

    2011-04-01

    Incorporation of viral DNA may interfere with the normal sequence of human DNA bases on the genetic level or cause secondary epigenetic changes such as gene promoter methylation or histone acetylation. Colorectal cancer (CRC) is the second leading cause of cancer mortality in the USA. Chromosomal instability (CIN) was established as the key mechanism in cancer development. Later, it was found that CRC results not only from the progressive accumulation of genetic alterations but also from epigenetic changes. JC virus (JCV) is a candidate etiologic factor in sporadic CRC. It may act by stabilizing β-catenin, facilitating its entrance to the cell nucleus, initialing proliferation and cancer development. Diploid CRC cell lines transfected with JCV-containing plasmids developed CIN. This result provides direct experimental evidence for the ability of JCV T-Ag to induce CIN in the genome of colonic epithelial cells. The association of CRC hMLH1 methylation and tumor positivity for JCV was recently documented. JC virus T-Ag DNA sequences were found in 77% of CRCs and are associated with promoter methylation of multiple genes. hMLH1 was methylated in 25 out of 80 CRC patients positive for T-Ag (31%) in comparison with only one out of 11 T-Ag negative cases (9%). Thus, JCV can mediate both CIN and aberrant methylation in CRC. Like other viruses, chronic infection with JCV may induce CRC by different mechanisms which should be further investigated. Thus, gene promoter methylation induced by JCV may be an important process in CRC and the polyp-carcinoma sequence.

  3. Ballistic Performance of Alimina/S-2 Glass-Reinforced Polymer-Matrix Composite Hybrid Lightweight Armor Against Armor Piercing (AP) and Non-AP Projectiles

    DTIC Science & Technology

    2007-01-01

    and a phenolic -resin based polymeric matrix. Such armor panels offer superior protection against fragmented ballistic threats when compared to...database does not contain a material model for the HJ1 composite but provides a model for a Kevlar Fiber Reinforced Polymer (KFRP) containing 53 vol... phenolic resin and epoxy yield stresses and then with a ratio of the S-2 glass and aramid fibers volume fractions. To test the validity of the

  4. Mucin Expression in Colorectal Cancer (CRC): Systematic Review and Meta-Analysis.

    PubMed

    Niv, Yaron; Rokkas, Theodore

    2018-05-18

    A body of evidence has suggested that mucins play an important role in adhesion, invasion, and cancer metastasis. However, this evidence is scarce and sometimes confusing. We performed a systematic review and meta-analysis of available studies to better define the role of mucins in the behavior of colorectal cancer (CRC). Medical literature was searched through November 30, 2017, using suitable keywords. Pooled estimates, that is, odd ratios (ORs), were obtained using fixed or random-effects models, as appropriate. Heterogeneity between studies was evaluated with the Cochran Q test and I values, whereas the likelihood of publication bias was assessed by constructing funnel plots. Their symmetry was estimated by the Begg and Mazumdar adjusted rank correlation test and by the Egger regression test. A total of 2234 CRC patients were included in 12 studies, eligible for meta-analysis. There was a significant difference concerning total mucin expression between CRC patients and controls [pooled ORs (95% confidence interval)=8.156 (2.624-25.354), test for overall effect Z=3.627, P<0.0001]. There was no significant publication bias. This significant difference was constricting to MUC1. In addition, there was a significance concerning MUC1 overexpression according to the stage of CRC, that is advanced stage versus localized disease [ORs (95% confidence interval)=2.724 (1.211-6.127), Z= 2.423, P=0.015], as opposed to MUC2 and MUC4. MUC1 is overexpressed in CRC tissue comparing with healthy mucosa, and may have a role in the neoplastic transformation and metastatic process. MUC2 has probably no role in carcinogenesis.

  5. RGC32 induces epithelial-mesenchymal transition by activating the Smad/Sip1 signaling pathway in CRC.

    PubMed

    Wang, Xiao-Yan; Li, Sheng-Nan; Zhu, Hui-Fang; Hu, Zhi-Yan; Zhong, Yan; Gu, Chuan-Sha; Chen, Shi-You; Liu, Teng-Fei; Li, Zu-Guo

    2017-05-04

    Response gene to complement 32 (RGC32) is a transcription factor that regulates the expression of multiple genes involved in cell growth, viability and tissue-specific differentiation. However, the role of RGC32 in tumorigenesis and tumor progression in colorectal cancer (CRC) has not been fully elucidated. Here, we showed that the expression of RGC32 was significantly up-regulated in human CRC tissues versus adjacent normal tissues. RGC32 expression was significantly correlated with invasive and aggressive characteristics of tumor cells, as well as poor survival of CRC patients. We also demonstrated that RGC32 overexpression promoted proliferation, migration and tumorigenic growth of human CRC cells in vitro and in vivo. Functionally, RGC32 facilitated epithelial-mesenchymal transition (EMT) in CRC via the Smad/Sip1 signaling pathway, as shown by decreasing E-cadherin expression and increasing vimentin expression. In conclusion, our findings suggested that overexpression of RGC32 facilitates EMT of CRC cells by activating Smad/Sip1 signaling.

  6. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  7. 12 CFR 617.7315 - What records must the qualified lender maintain on behalf of the CRC?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... on behalf of the CRC? 617.7315 Section 617.7315 Banks and Banking FARM CREDIT ADMINISTRATION FARM... must the qualified lender maintain on behalf of the CRC? A qualified lender must maintain a complete file of all requests for CRC reviews, including participation in state mediation programs, the minutes...

  8. Influence of fibre and filler reinforcement of plastic brackets: an in vitro study.

    PubMed

    Faltermeier, Andreas; Rosentritt, Martin; Faltermeier, Rupert; Müssig, Dieter

    2007-06-01

    In spite of their popularity in fulfilling aesthetic requirements, plastic brackets still present some disadvantages because of their low elastic modulus, decreased fracture toughness, and reduced wear resistance. Fibre-reinforced composites are well established in dentistry and consist of a polymer matrix in which reinforcing fibres are embedded. Stress is transferred from the polymer matrix to the fibres which present a high tensile strength. Hence, the mechanical properties of polymers could be improved. The purpose of this study was to compare fracture strength, fracture toughness and flexural strength of an experimental fibre-reinforced bracket material, an SiO(2) filler-reinforced bracket and an unfilled plastic bracket material (control group). Experimental brackets and specialized bars were manufactured. Tests were performed after thermal cycling (5 degrees C/55 degrees C) the samples in an artificial oral environment of a device to simulate mastication. Statistical evaluation was undertaken. The median, 25th and 75th percentiles were calculated and a Mann-Whitney U-test was performed. In this study two findings were obvious. (1) Filler reinforcement of plastic brackets improved fracture strength and fracture toughness in comparison with the unfilled bracket material. (2) Glass fibre reinforcement of orthodontic bracket materials resulted in the greatest enhancement of the mechanical properties in comparison with the other test groups. Therefore, the application of glass fibres in plastic brackets is a successful method to enhance fracture strength.

  9. Joint Strength Control at the Fiber/Matrix Interface during the Production of Polymer Composite Materials Reinforced with High Performance Fibers

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2010-06-01

    The paper presents the results obtained in the study of the joint strength between polymer matrix and high performance polyethylene fiber. The fiber/matrix joints simulate the unit cell of the fiber-reinforced composite materials. Effect of heat treatment on the composite properties at the interface was estimated by a multifilament wet-pull-out method. It was found that the joint strength may be increased with the help of extra heart treatment. Both the energy to peak load and the energy to failure for CM joints at various stages of loading were determined.

  10. Effect of surface preparation on the failure load of a highly filled composite bonded to the polymer-monomer matrix of a fiber-reinforced composite.

    PubMed

    Shimizu, Hiroshi; Tsue, Fumitake; Chen, Zhao-Xun; Takahashi, Yutaka

    2009-04-01

    The purpose of the present study was to evaluate the effect of surface preparation on the maximum fracture load value of a highly filled composite bonded to the polymer-monomer matrix of a fiber-reinforced composite. A polymer-monomer matrix was made by mixing urethane dimethacrylate and triethyleneglycol dimethacrylate at a ratio of 1:1 with camphorquinone and 2-dimethylaminoethyl methacrylate as a light initiator. The matrix was then polymerized in a disk-shaped silicone mold with a light-polymerizing unit. The flat surfaces of the polymer-monomer matrix disk were prepared in one of the following ways: (1) without preparation; (2) application of silane coupling agent; or (3) application of matrix liquid and prepolymerization. A highly filled composite material was applied and polymerized with a light-polymerizing unit. Additional test specimens made entirely of the polymer-monomer matrix were fabricated as references; the disk and cylinder were fabricated in one piece using a mold specially made for the present study (group 4). Half the specimens were thermocycled up to 10,000 times in water with a 1-minute dwell time at each temperature (5 degrees C and 55 degrees C). The maximum fracture load values were determined using a universal testing machine (n = 10). The maximum fracture loads for group 3 were significantly enhanced both before and after thermocycling, whereas the maximum fracture loads of group 2 were significantly enhanced before thermocycling (p < 0.05); however, the failure loads decreased for all groups after thermocycling (p < 0.05). All the specimens in groups 1 and 2 debonded during thermocycling. The failure load of group 3 was significantly lower than that of group 4 both before and after thermocycling (p < 0.05). Within the limitations of the current in vitro study, the application and prepolymerization of a mixed dimethacrylate resin liquid prior to the application of a highly filled composite was an effective surface preparation for the

  11. Influence of the Hfq and Crc global regulators on the control of iron homeostasis in Pseudomonas putida.

    PubMed

    Sánchez-Hevia, Dione L; Yuste, Luis; Moreno, Renata; Rojo, Fernando

    2018-04-30

    Metabolically versatile bacteria use catabolite repression control to select their preferred carbon sources, thus optimizing carbon metabolism. In pseudomonads, this occurs through the combined action of the proteins Hfq and Crc, which form stable tripartite complexes at target mRNAs, inhibiting their translation. The activity of Hfq/Crc is antagonised by small RNAs of the CrcZ family, the amounts of which vary according to carbon availability. The present work examines the role of Pseudomonas putida Hfq protein under conditions of low-level catabolite repression, in which Crc protein would have a minor role since it is sequestered by CrcZ/CrcY. The results suggest that, under these conditions, Hfq remains operative and plays an important role in iron homeostasis. In this scenario, Crc appears to participate indirectly by helping CrcZ/CrcY to control the amount of free Hfq in the cell. Iron homeostasis in pseudomonads relies on regulatory elements such as the Fur protein, the PrrF1-F2 sRNAs, and several extracytoplasmic sigma factors. Our results show that the absence of Hfq is paralleled by a reduction in PrrF1-F2 small RNAs. Hfq thus provides a regulatory link between iron and carbon metabolism, coordinating the iron supply to meet the needs of the enzymes operational under particular nutritional regimes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Virulence of Pseudomonas syringae pv. tomato DC3000 Is Influenced by the Catabolite Repression Control Protein Crc.

    PubMed

    Chakravarthy, Suma; Butcher, Bronwyn G; Liu, Yingyu; D'Amico, Katherine; Coster, Matthew; Filiatrault, Melanie J

    2017-04-01

    Pseudomonas syringae infects diverse plant species and is widely used as a model system in the study of effector function and the molecular basis of plant diseases. Although the relationship between bacterial metabolism, nutrient acquisition, and virulence has attracted increasing attention in bacterial pathology, it is largely unexplored in P. syringae. The Crc (catabolite repression control) protein is a putative RNA-binding protein that regulates carbon metabolism as well as a number of other factors in the pseudomonads. Here, we show that deletion of crc increased bacterial swarming motility and biofilm formation. The crc mutant showed reduced growth and symptoms in Arabidopsis and tomato when compared with the wild-type strain. We have evidence that the crc mutant shows delayed hypersensitive response (HR) when infiltrated into Nicotiana benthamiana and tobacco. Interestingly, the crc mutant was more susceptible to hydrogen peroxide, suggesting that, in planta, the mutant may be sensitive to reactive oxygen species generated during pathogen-associated molecular pattern-triggered immunity (PTI). Indeed, HR was further delayed when PTI-induced tissues were challenged with the crc mutant. The crc mutant did not elicit an altered PTI response in plants compared with the wild-type strain. We conclude that Crc plays an important role in growth and survival during infection.

  13. Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population.

    PubMed

    Sun, Rui; Liu, Jian-Ping; Gao, Chang; Xiong, Ying-Ying; Li, Min; Wang, Ya-Ping; Su, Yan-Wei; Lin, Mei; Jiang, An-Li; Xiong, Ling-Fan; Xie, Yan; Feng, Jue-Ping

    2016-05-17

    Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ2 test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation.

  14. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  15. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa.

    PubMed

    Sonnleitner, Elisabeth; Wulf, Alexander; Campagne, Sébastien; Pei, Xue-Yuan; Wolfinger, Michael T; Forlani, Giada; Prindl, Konstantin; Abdou, Laetitia; Resch, Armin; Allain, Frederic H-T; Luisi, Ben F; Urlaub, Henning; Bläsi, Udo

    2018-02-16

    In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.

  16. Bond Behavior of Historical Clay Bricks Strengthened with Steel Reinforced Polymers (SRP).

    PubMed

    Grande, Ernesto; Imbimbo, Maura; Sacco, Elio

    2011-03-21

    In the strengthening interventions of past and historical masonry constructions, the non-standardized manufacture processes, the ageing and the damage of masonry units, could significantly affect the properties of the surfaces where strengthening materials are applied. This aspect requires particular care in evaluating the performance of externally bonded strengthening layers, especially with reference to the detachment mechanism. The bond response of old masonries could be very different from that occurring in new masonry units which are the ones generally considered in most of the bond tests available in technical literature. The aim of the present paper is the study of the bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP) materials. In particular, the results of an experimental study concerning new manufactured clay bricks and old bricks extracted from different historical masonry buildings are presented. The obtained results, particularly in terms of bond resistance, detachment mechanism and strain distributions, are discussed for the purpose of analyzing the peculiarities of the historical bricks in comparison with new manufactured ones. Some considerations on the efficacy of the theoretical formulations of the recent Italian code are also carried out.

  17. Bond Behavior of Historical Clay Bricks Strengthened with Steel Reinforced Polymers (SRP)

    PubMed Central

    Grande, Ernesto; Imbimbo, Maura; Sacco, Elio

    2011-01-01

    In the strengthening interventions of past and historical masonry constructions, the non-standardized manufacture processes, the ageing and the damage of masonry units, could significantly affect the properties of the surfaces where strengthening materials are applied. This aspect requires particular care in evaluating the performance of externally bonded strengthening layers, especially with reference to the detachment mechanism. The bond response of old masonries could be very different from that occurring in new masonry units which are the ones generally considered in most of the bond tests available in technical literature. The aim of the present paper is the study of the bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP) materials. In particular, the results of an experimental study concerning new manufactured clay bricks and old bricks extracted from different historical masonry buildings are presented. The obtained results, particularly in terms of bond resistance, detachment mechanism and strain distributions, are discussed for the purpose of analyzing the peculiarities of the historical bricks in comparison with new manufactured ones. Some considerations on the efficacy of the theoretical formulations of the recent Italian code are also carried out. PMID:28880008

  18. Prediction of failure in notched carbon-fibre-reinforced-polymer laminates under multi-axial loading.

    PubMed

    Tan, J L Y; Deshpande, V S; Fleck, N A

    2016-07-13

    A damage-based finite-element model is used to predict the fracture behaviour of centre-notched quasi-isotropic carbon-fibre-reinforced-polymer laminates under multi-axial loading. Damage within each ply is associated with fibre tension, fibre compression, matrix tension and matrix compression. Inter-ply delamination is modelled by cohesive interfaces using a traction-separation law. Failure envelopes for a notch and a circular hole are predicted for in-plane multi-axial loading and are in good agreement with the observed failure envelopes from a parallel experimental study. The ply-by-ply (and inter-ply) damage evolution and the critical mechanisms of ultimate failure also agree with the observed damage evolution. It is demonstrated that accurate predictions of notched compressive strength are obtained upon employing the band broadening stress for microbuckling, highlighting the importance of this damage mode in compression. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  19. Research notes : modeling a composite reinforced bridge.

    DOT National Transportation Integrated Search

    2001-06-01

    In 1998, Oregon Department of Transportation (ODOT) used fiber reinforced polymer (FRP) composites to strengthen the historic Horsetail Falls Bridge. Because this was the first experience with FRP composites, research was conducted to verify that the...

  20. Tensile and compressive modulus of elasticity of pultruded fiber-reinforced polymer composite materials

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, S. H.; Park, J. K.; Choi, W. C.; Yoon, S. J.

    2018-06-01

    Many researches focused on the mechanical properties of steel and concrete have been carried out for applications in the construction industry. However, in order to clarify the mechanical properties of pultruded fiber-reinforced polymer (PFRP) structural members for construction, testing is needed. Deriving the mechanical properties of PFRP structural members through testing is difficult, however, because some members cannot be tested easily due to their cross-section dimensions. This paper reports a part of studies that attempt to present conservative results in the case of members that cannot be tested reasonably. The authors obtained and compared experimental and theoretical modulus of elasticity values. If the mechanical properties of PFRP members can be predicted using reasonable and conservative values, then the structure can be designed economically and safely even in the early design stages. To this end, this paper proposes a strain energy approach as a conservative and convenient way to predict the mechanical properties of PFRP structural members. The strain energy data obtained can be used to predict the mechanical properties of PFRP members in the construction field.

  1. Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete

    NASA Astrophysics Data System (ADS)

    Hazimmah, Dayang; Ayob, Afizah; Sie Yee, Lau; Chee Cung, Wong

    2018-03-01

    Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH)2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber -matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.

  2. Structural response of near surface mounted CFRP strengthened reinforced concrete bridge deck overhang.

    DOT National Transportation Integrated Search

    2008-11-01

    This report presents the results from an experimental investigation which explores the change in structural response due to the addition of near-surface-mounted (NSM) carbon fiber reinforced polymer (CFRP) reinforcement for increasing the capacity of...

  3. Precision Medicine for CRC Patients in the Veteran Population: State-of-the-Art, Challenges and Research Directions.

    PubMed

    Mohapatra, Shyam S; Batra, Surinder K; Bharadwaj, Srinivas; Bouvet, Michael; Cosman, Bard; Goel, Ajay; Jogunoori, Wilma; Kelley, Michael J; Mishra, Lopa; Mishra, Bibhuti; Mohapatra, Subhra; Patel, Bhaumik; Pisegna, Joseph R; Raufman, Jean-Pierre; Rao, Shuyun; Roy, Hemant; Scheuner, Maren; Singh, Satish; Vidyarthi, Gitanjali; White, Jon

    2018-05-01

    Colorectal cancer (CRC) accounts for ~9% of all cancers in the Veteran population, a fact which has focused a great deal of the attention of the VA's research and development efforts. A field-based meeting of CRC experts was convened to discuss both challenges and opportunities in precision medicine for CRC. This group, designated as the VA Colorectal Cancer Cell-genomics Consortium (VA4C), discussed advances in CRC biology, biomarkers, and imaging for early detection and prevention. There was also a discussion of precision treatment involving fluorescence-guided surgery, targeted chemotherapies and immunotherapies, and personalized cancer treatment approaches. The overarching goal was to identify modalities that might ultimately lead to personalized cancer diagnosis and treatment. This review summarizes the findings of this VA field-based meeting, in which much of the current knowledge on CRC prescreening and treatment was discussed. It was concluded that there is a need and an opportunity to identify new targets for both the prevention of CRC and the development of effective therapies for advanced disease. Also, developing methods integrating genomic testing with tumoroid-based clinical drug response might lead to more accurate diagnosis and prognostication and more effective personalized treatment of CRC.

  4. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa

    PubMed Central

    Wulf, Alexander; Campagne, Sébastien; Pei, Xue-Yuan; Forlani, Giada; Prindl, Konstantin; Abdou, Laetitia; Resch, Armin; Allain, Frederic H -T; Luisi, Ben F; Urlaub, Henning

    2018-01-01

    Abstract In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources. PMID:29244160

  5. Improving Fatigue Strength of polymer concrete using nanomaterials.

    DOT National Transportation Integrated Search

    2016-11-30

    Polymer concrete (PC) is that type of concrete where the cement binder is replaced with polymer. PC is often used to improve friction and protect structural substrates in reinforced concrete and orthotropic steel bridges. However, its low fatigue per...

  6. Finite element modeling of reinforced concrete structures strengthened with FRP laminates : final report.

    DOT National Transportation Integrated Search

    2001-05-01

    Linear and non-linear finite element method models were developed for a reinforced concrete bridge that had been strengthened with fiber reinforced polymer composites. ANSYS and SAP2000 modeling software were used; however, most of the development ef...

  7. Machining and characterization of self-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Deepa, A.; Padmanabhan, K.; Kuppan, P.

    2017-11-01

    This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.

  8. Structure and properties of polymer nanocomposite coatings applied by the HVOF process

    NASA Astrophysics Data System (ADS)

    Petrovicova, Elena

    1999-11-01

    A high velocity oxy-fuel (HVOF) combustion spray process was used to produce coatings from nylon 11 powders with average starting particle diameters of 30 and 60 gin. Silica and carbon black were used as nanosized reinforcements, and their nominal content was varied from 0 to 15 vol. %. Optimization of the HVOF processing parameters was based on an assessment of the degree of splatting of polymer particles, and was accomplished by varying the jet temperature (via the hydrogen/oxygen ratio). Gas mixtures with low hydrogen contents minimized polymer particle degradation. Analytical modeling of particle temperature profiles confirmed the effect of the gas velocity and temperature on the particle heating and resulting coating properties. The morphology of the polymer and the microstructure of the coatings depended on the reinforcement surface chemistry and the volume fraction of the reinforcement, as well as the initial nylon 11 particle size. Although all reinforced coatings had higher crystallinities than pure nylon 11 coatings, coatings produced from a smaller starting polymer particle size (30 mum) exhibited improved spatial distribution of the silica in the matrix and lower crystallinity. In addition, coatings produced from the smaller polymer particles had a higher density and lower porosity due to a higher degree of melting and splatting compared to coatings produced from larger particles (60 mum). Nanoreinforced coatings exhibited increased scratch and sliding wear resistance and improved mechanical and barrier properties. Improvements of up to 35% in scratch and 67% in wear resistance were obtained for coatings with nominal 15 vol. % contents of hydrophobic silica or carbon black, relative to nonreinforced coatings. Reinforcement of the polymer matrix resulted in increases of ca. 200% in the storage modulus both below and above the glass transition temperature. The increase in crystallinity seemed to further enhance the reinforcement provided by the

  9. Investigation of Mechanical Damping Characteristic in Short Fiberglass Reinforced Polycarbonate Composites

    NASA Astrophysics Data System (ADS)

    Cho, Myoung-Rae; Kim, Hyung-Ick; Jang, Jae-Soon; Suhr, Jonghwan; Prate, Devin R.; Chun, David

    2013-06-01

    The focus of this study is to experimentally investigate the effect of debonding stress, the interface between the fibers and the polymer matrix, on the damping properties of the short fiberglass reinforced polymer composites. In this study, short fiberglass reinforced polycarbonate composite materials were fabricated and characterized for their tensile properties by varying the fiberglass loading fraction. The debonding stress was evaluated by coupling the acoustic emission technique with the tensile testing. After the determination of the debonding stress was completed, dynamic cyclic testing was performed in order to investigate the effect of debonding on the damping properties of the polymer composites. It was experimentally observed in this study that the debonding can facilitate the stick-slip friction under cyclic loadings, which then gives rise to better damping performance in the fiberglass composites.

  10. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  11. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence.

    PubMed

    Troiani, Teresa; Napolitano, Stefania; Della Corte, Carminia Maria; Martini, Giulia; Martinelli, Erika; Morgillo, Floriana; Ciardiello, Fortunato

    2016-01-01

    Epidermal growth factor receptor (EGFR) plays a key role in tumour evolution, proliferation and immune evasion, and is one of the most important targets for biological therapy, especially for non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC). In the past 15 years, several EGFR antagonists have been approved for the treatment of NSCLC and metastatic CRC (mCRC). To optimise the use of anti-EGFR agents in clinical practice, various clinical and molecular biomarkers have been investigated, thus moving their indication from unselected to selected populations. Nowadays, anti-EGFR drugs represent a gold-standard therapy for metastatic NSCLC harbouring EGFR activating mutation and for RAS wild-type mCRC. Their clinical efficacy is limited by the presence of intrinsic resistance or the onset of acquired resistance. In this review, we provide an overview of the antitumour activity of EGFR inhibitors in NSCLC and CRC and of mechanisms of resistance, focusing on the development of a personalised approach through 15 years of preclinical and clinical research.

  12. Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.

    PubMed

    Her, Shiuh-Chuan; Lin, Kuan-Yu

    2017-06-16

    To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.

  13. MEG3 is a prognostic factor for CRC and promotes chemosensitivity by enhancing oxaliplatin-induced cell apoptosis.

    PubMed

    Li, Lixia; Shang, Jian; Zhang, Yupeng; Liu, Shi; Peng, Yanan; Zhou, Zhou; Pan, Huaqing; Wang, Xiaobing; Chen, Lipng; Zhao, Qiu

    2017-09-01

    A major reason for the failure of advanced colorectal cancer (CRC) treatment is the occurrence of chemoresistance to oxaliplatin-based chemotherapy. Recently, studies have shown that long non-coding RNAs (lncRNAs) play an important role in drug resistance. Using HiSeq sequencing methods, we identified that lncRNAs show differential expression levels in oxaliplatin-resistant (OxR) and non-resistant CRC patients. RT-qPCR was then performed in tissues and serum samples, and lncRNA MEG3 was verified to be downregulated in non-responding patients and to have considerable discriminating potential to identify responding patients from non-responding patients. Moreover, decreased serum MEG3 expression was associated with poor chemoresponse and low survival rate in CRC patients receiving oxaliplatin treatment. Subsequently, OxR cell lines were established, and MEG3 was significantly downregulated in HT29 OxR and SW480 OxR cells. In addition, overexpression of MEG3 with pMEG3 reversed oxaliplatin resistance in both CRC cell lines. Flow cytometric apoptosis analysis indicated that MEG3 promoted CRC cell apoptosis. More importantly, MEG3 enhanced oxaliplatin‑induced cell cytotoxicity in CRC. In conclusion, our integrated approach demonstrated that decreased expression of lncRNA MEG3 in CRC confers potent poor therapeutic efficacy, and that MEG3 promotes chemosensitivity by enhancing oxaliplatin-induced cell apoptosis. Thus, overexpression of MEG3 may be a future direction by which to develop a novel therapeutic strategy to overcome oxaliplatin resistance of CRC patients.

  14. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  15. Morphological, mechanical properties and biodegradability of biocomposite thermoplastic starch and polycaprolactone reinforced with sisal fibers

    USDA-ARS?s Scientific Manuscript database

    The incorporation of fibers as reinforcements in polymer composites has increased due to their renewability, low cost and biodegradability. In this study, sisal fibers were added to a polymer matrix of thermoplastic starch and polycaprolactone, both biodegradable polymers. Sisal fibers (5% and 10%) ...

  16. Novel targets of the CbrAB/Crc carbon catabolite control system revealed by transcript abundance in Pseudomonas aeruginosa.

    PubMed

    Sonnleitner, Elisabeth; Valentini, Martina; Wenner, Nicolas; Haichar, Feth el Zahar; Haas, Dieter; Lapouge, Karine

    2012-01-01

    The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.

  17. Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites

    PubMed Central

    2017-01-01

    Inspired by the ability of the sea cucumber to (reversibly) increase the stiffness of its dermis upon exposure to a stimulus, we herein report a stimuli-responsive nanocomposite that can reversibly increase its stiffness upon exposure to warm water. Nanocomposites composed of cellulose nanocrystals (CNCs) that are grafted with a lower critical solution temperature (LCST) polymer embedded within a poly(vinyl acetate) (PVAc) matrix show a dramatic increase in modulus, for example, from 1 to 350 MPa upon exposure to warm water, the hypothesis being that grafting the polymers from the CNCs disrupts the interactions between the nanofibers and minimizes the mechanical reinforcement of the film. However, exposure to water above the LCST leads to the collapse of the polymer chains and subsequent stiffening of the nanocomposite as a result of the enhanced CNC interactions. Backing up this hypothesis are energy conserving dissipative particle dynamics (EDPD) simulations which show that the attractive interactions between CNCs are switched on upon the temperature-induced collapse of the grafted polymer chains, resulting in the formation of a percolating reinforcing network. PMID:28852703

  18. DcR3 induces epithelial-mesenchymal transition through activation of the TGF-β3/SMAD signaling pathway in CRC.

    PubMed

    Liu, Yan-Ping; Zhu, Hui-Fang; Liu, Ding-Li; Hu, Zhi-Yan; Li, Sheng-Nan; Kan, He-Ping; Wang, Xiao-Yan; Li, Zu-Guo

    2016-11-22

    Decoy receptor 3 (DcR3), a novel member of the tumor necrosis factor receptor (TNFR) family, was recently reported to be associated with tumorigenesis and metastasis. However, the role of DcR3 in human colorectal cancer (CRC) has not been fully elucidated. In this study, we found that DcR3 expression was significantly higher in human colorectal cancer tissues than in paired normal tissues, and that DcR3 expression was strongly correlated with tumor invasion, lymph node metastases and poor prognoses. Moreover, DcR3 overexpression significantly enhanced CRC cell proliferation and migration in vitro and tumorigenesis in vivo. Conversely, DcR3 knockdown significantly repressed CRC cell proliferation and migration in vitro, and DcR3 deficiency also attenuated CRC tumorigenesis and metastasis in vivo. Functionally, DcR3 was essential for TGF-β3/SMAD-mediated epithelial-mesenchymal transition (EMT) of CRC cells. Importantly, cooperation between DcR3 and TGF-β3/SMAD-EMT signaling-related protein expression was correlated with survival and survival time in CRC patients. In conclusion, our results demonstrate that DcR3 may be a prognostic biomarker for CRC and that this receptor facilitates CRC development and metastasis by participating in TGF-β3/SMAD-mediated EMT of CRC cells.

  19. DcR3 induces epithelial-mesenchymal transition through activation of the TGF-β3/SMAD signaling pathway in CRC

    PubMed Central

    Hu, Zhi-Yan; Li, Sheng-Nan; Kan, He-Ping; Wang, Xiao-Yan; Li, Zu-Guo

    2016-01-01

    Decoy receptor 3 (DcR3), a novel member of the tumor necrosis factor receptor (TNFR) family, was recently reported to be associated with tumorigenesis and metastasis. However, the role of DcR3 in human colorectal cancer (CRC) has not been fully elucidated. In this study, we found that DcR3 expression was significantly higher in human colorectal cancer tissues than in paired normal tissues, and that DcR3 expression was strongly correlated with tumor invasion, lymph node metastases and poor prognoses. Moreover, DcR3 overexpression significantly enhanced CRC cell proliferation and migration in vitro and tumorigenesis in vivo. Conversely, DcR3 knockdown significantly repressed CRC cell proliferation and migration in vitro, and DcR3 deficiency also attenuated CRC tumorigenesis and metastasis in vivo. Functionally, DcR3 was essential for TGF-β3/SMAD-mediated epithelial-mesenchymal transition (EMT) of CRC cells. Importantly, cooperation between DcR3 and TGF-β3/SMAD-EMT signaling-related protein expression was correlated with survival and survival time in CRC patients. In conclusion, our results demonstrate that DcR3 may be a prognostic biomarker for CRC and that this receptor facilitates CRC development and metastasis by participating in TGF-β3/SMAD-mediated EMT of CRC cells. PMID:27764793

  20. Carbon Nanomaterials as Reinforcements for Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.

  1. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  2. DEAD-box helicase 27 promotes colorectal cancer growth and metastasis and predicts poor survival in CRC patients.

    PubMed

    Tang, Jieting; Chen, Huarong; Wong, Chi-Chun; Liu, Dabin; Li, Tong; Wang, Xiaohong; Ji, Jiafu; Sung, Joseph Jy; Fang, Jing-Yuan; Yu, Jun

    2018-03-14

    Copy number alterations (CNAs) are crucial for colorectal cancer (CRC) development. In this study, DEAD box polypeptide 27 (DDX27) was identified to be highly amplified in both TCGA CRC (474/615) and primary CRC (47/103), which was positively correlated with its mRNA overexpression. High DDX27 mRNA (N = 199) and protein expression (N = 260) predicted poor survival in CRC patients. Ectopic expression of DDX27 increased CRC cells proliferation, migration and invasion, but suppressed apoptosis. Conversely, silencing of DDX27 exerted opposite effects in vitro and significantly inhibited murine xenograft tumor growth and lung metastasis in vivo. Up-regulation of DDX27 enhanced and prolonged TNF-α-mediated NF-κB signaling. Nucleophosmin (NPM1) was identified as a binding partner of DDX27. DDX27 increased nuclear NPM1 and NF-κB-p65 interaction to enhance DNA binding activity of NF-κB. Silencing NPM1 abrogated DDX27-activating NF-κB signaling and its tumor-promoting function. Together, DDX27 is overexpressed and plays a pivotal oncogenic role in CRC.

  3. miR-133b down-regulates ABCC1 and enhances the sensitivity of CRC to anti-tumor drugs.

    PubMed

    Chen, Miao; Li, Daojiang; Gong, Ni; Wu, Hao; Su, Chen; Xie, Canbin; Xiang, Hong; Lin, Changwei; Li, Xiaorong

    2017-08-08

    Multidrug resistance (MDR) is the main cause of failed chemotherapy treatments. Therefore, preventing MDR is pivotal in treating colorectal cancer (CRC). In a previous study miR-133b was shown to be a tumor suppressor. Additionally, in CRC cells transfected with miR-133b, ATP-binding cassette (ABC) subfamily C member 1(ABCC1) was shown to be significantly down regulated. Whether miR-133b also enhances the chemosensitivity of drugs used to treat CRC by targeting ABCC1 is still unclear. Here, we utilized flow cytometry and high-performance liquid chromatography (HPLC) analysis to identify the ability of miR-133b to reserve MDR in CRC. We then used a dual-luciferase reporter assay to validate that miR-133b targets ABCC1. Further in vivo experiments were designed to validate the method in which miR-133b reversed MDR in CRC cells. The results demonstrated that the level of miR-133b was down-regulated and the expression of ABCC1 was up-regulated in drug-resistant CRC cells compared to non-drug-resistant CRC cells. The restoration of miR-133b expression in CRC drug-resistant cells in vitro resulted in reduced IC50s to chemotherapeutic drugs, significantly induced G1 accumulation, inhibited growth and promoted necrosis in combination with either 5-fluorouracil (5-FU) or vincristine (VCR), and decreased the expression of ABCC1. The dual-luciferase assay demonstrated that miR-133b directly targets ABCC1. The combination of agomiRNA-133b with chemotherapeutic drugs in vivo inhibited tumor growth induced by CRC drug-resistant cells. A xenograft from the in vivo model resulted in up-regulated levels of miR-133b and down-regulated levels of ABCC1. Therefore, miR-133b enhances the chemosensitivity of CRC cells to anti-tumor drugs by directly down-regulating ABCC1. This discovery provides a therapeutic strategy in which miR-133b is used as a potential sensitizer for drug-resistant CRC.

  4. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.

    PubMed

    Krüger, Reinhard; Seitz, Jan-Marten; Ewald, Andrea; Bach, Friedrich-Wilhelm; Groll, Jürgen

    2013-04-01

    Calcium phosphate cements are brittle biomaterials of low bending strength. One promising approach to improve their mechanical properties is reinforcement with fibers. State of the art degradable reinforced composites contain fibers made of polymers, resorbable glass or whiskers of calcium minerals. We introduce a new class of composite that is reinforced with degradable magnesium alloy wires. Bending strength and ductility of the composites increased with aspect ratio and volume content of the reinforcements up to a maximal bending strength of 139±41MPa. Hybrid reinforcement with metal and polymer fibers (PLA) further improved the qualitative fracture behavior and gave indication of enhanced strength and ductility. Immersion tests of composites in SBF for seven weeks showed high corrosion stability of ZEK100 wires and slow degradation of the magnesium calcium phosphate cement by struvite dissolution. Finally, in vitro tests with the osteoblast-like cell line MG63 demonstrate cytocompatibility of the composite materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Stiffness and strength of fiber reinforced polymer composite bridge deck systems

    NASA Astrophysics Data System (ADS)

    Zhou, Aixi

    This research investigates two principal characteristics that are of primary importance in Fiber Reinforced Polymer (FRP) bridge deck applications: STIFFNESS and STRENGTH. The research was undertaken by investigating the stiffness and strength characteristics of the multi-cellular FRP bridge deck systems consisting of pultruded FRP shapes. A systematic analysis procedure was developed for the stiffness analysis of multi-cellular FRP deck systems. This procedure uses the Method of Elastic Equivalence to model the cellular deck as an equivalent orthotropic plate. The procedure provides a practical method to predict the equivalent orthotropic plate properties of cellular FRP decks. Analytical solutions for the bending analysis of single span decks were developed using classical laminated plate theory. The analysis procedures can be extended to analyze continuous FRP decks. It can also be further developed using higher order plate theories. Several failure modes of the cellular FRP deck systems were recorded and analyzed through laboratory and field tests and Finite Element Analysis (FEA). Two schemes of loading patches were used in the laboratory test: a steel patch made according to the ASSHTO's bridge testing specifications; and a tire patch made from a real truck tire reinforced with silicon rubber. The tire patch was specially designed to simulate service loading conditions by modifying real contact loading from a tire. Our research shows that the effects of the stiffness and contact conditions of loading patches are significant in the stiffness and strength testing of FRP decks. Due to the localization of load, a simulated tire patch yields larger deflection than the steel patch under the same loading level. The tire patch produces significantly different failure compared to the steel patch: a local bending mode with less damage for the tire patch; and a local punching-shear mode for the steel patch. A deck failure function method is proposed for predicting the

  6. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Friedrich, Klaus; Almajid, Abdulhakim A.

    2013-04-01

    Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.

  7. Survivin -31 G/C polymorphism might contribute to colorectal cancer (CRC) risk: a meta-analysis.

    PubMed

    Yao, Linhua; Hu, Yi; Deng, Zhongmin; Li, Jingjing

    2015-01-01

    Published data has shown inconsistent findings about the association of survivin -31 G/C polymorphism with the risk of colorectal cancer (CRC). This meta-analysis quantitatively assesses the results from published studies to provide a more precise estimate of the association between survivin -31 G/C polymorphism as a possible predictor of the risk of CRC. We conducted a literature search in the PubMed, Web of Science, and Cochrane Library databases. Stata 12 software was used to calculate the pooled odds ratios (ORs) with 95% confidence intervals (CIs) based on the available data from each article. Six studies including 1840 cases with CRC and 1804 controls were included in this study. Survivin -31 G/C polymorphism was associated with a significantly increased risk of CRC (OR = 1.78; 95% CI, 1.53-2.07; I(2) = 0%). In the race subgroup analysis, both Asians (OR = 1.72; 95% CI, 1.44-2.05; I(2) = 0%) and Caucasians (OR = 1.93; 95% CI, 1.46-2.55; I(2) = 0%) with survivin -31 G/C polymorphism had increased CRC risk. In the subgroup analysis according to site of CRC, survivin -31 G/C polymorphism was not associated with colon cancer risk (OR = 2.02; 95% CI, 0.79-5.22; I(2) = 82%). However, this polymorphism was significantly associated with rectum cancer risk (OR = 1.98; 95% CI, 1.42-2.74; I(2) = 0%). In the subgroup analysis by clinical stage, both early stage (I+II) and advanced stage (III+IV) were associated with survivin -31 G/C polymorphism (OR = 1.61; 95% CI, 1.20-2.16; I(2) = 0% and OR = 2.30; 95% CI, 1.70-3.13; I(2) = 0%, respectively). In the subgroup analysis by smoke status, both smokers and non-smokers with survivin -31 G/C polymorphism showed increased CRC risk (OR = 1.47; 95% CI, 1.01-2.13; I(2) = 60% and OR = 1.71; 95% CI, 1.28-2.30; I(2) = 0%, respectively). In the subgroup analysis by drink status, both drinkers and non-drinkers with survivin -31 G/C polymorphism showed increased CRC risk (OR = 1.58; 95% CI, 1.06-2.37; I(2) = 8% and OR = 1.61; 95% CI, 1

  8. The CRC 20 years: An overview of some of the major achievements and remaining challenges.

    PubMed

    Doek, Jaap E

    2009-11-01

    On 20 November 1989, the General Assembly of the United Nations adopted the Convention on the Rights of the Child (CRC). It entered into force on 2 September 1990 and has by now been ratified by 193 States, making the most universally ratified human rights treaty. This overview will present and discuss the impact of this treaty both at the international and the national level, an overview which necessarily has to be limited to some of the developments as a result of the implementation of the CRC. The first part of this paper will be devoted to the impact the CRC had and still has on the setting and development of the international agenda for the promotion and protection of the rights and welfare of children. Special attention will given to developments, achievements, and remaining challenges at the international level with regard to protection of children in armed conflict; prevention and the protection of children from sexual exploitation; and from all forms of violence. This will include some information on the impact of these international developments and actions at the national level, for example, in the area of legislation. The second part will focus on the impact at the national level. Given the wide scope of the CRC this part will be limited to some of the General Measures of Implementation (law reform, national programmes, and independent monitoring) and the General Principles (non-discrimination, best interest, right to be heard) of the CRC. This will be based on reports of States on the implementation of the CRC submitted to the CRC Committee and the Concluding Observations of this Committee and on a number of studies. The conclusion will provide remarks on poverty as one of the major remaining challenges for the implementation of children's rights.

  9. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    NASA Astrophysics Data System (ADS)

    Zafar, Adeel; Andrawes, Bassem

    2012-02-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.

  10. Smart fiber-reinforced polymer anchorage system with optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Huang, Minghua; Zhou, Zhi; He, Jianping; Chen, Genda; Ou, Jinping

    2010-03-01

    Civil Engineers have used fiber reinforced polymer (FRP) with high axial strength as an effective and economical alternative to steel in harsh corrosion environments. However, the practical applications of FRP are limited by the tendency of FRP materials to fail suddenly under lateral pressure and surface injury. For example, shear stresses result from the bonding effect between the FRP material and the structure of the anchorage system due to the lower shear strength of FRP. This paper proposes a novel smart FRP anchorage system with embedded optical fiber Bragg grating (FBG) sensors to monitor the axial strain state and accordingly the interfacial shear stress, as well as the interfacial damage characteristics of FRP anchorage. One FBG sensor was embedded in an FRP rod outside the anchorage region to evaluate the properties of the material, and seven FBG sensors were distributed along the rod in the anchor to monitor the axial strain variations and study the interfacial mechanical behaviors of the smart FRP anchorage under a static pulling load. The experimental results agreed well with theoretical predictions. The smart FRP anchorage system with optical FBG sensors proves effective and practical for monitoring the long-term mechanical behavior of FRP anchorage systems.

  11. MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES

    NASA Technical Reports Server (NTRS)

    Seidel, G. D.; Lagoudas, D. C.; Frankland, S. J. V.; Gates, T. S.

    2006-01-01

    A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident.

  12. Protecting children from violence and maltreatment: a qualitative comparative analysis assessing the implementation of U.N. CRC Article 19.

    PubMed

    Svevo-Cianci, Kimberly A; Hart, Stuart N; Rubinson, Claude

    2010-01-01

    (1) To identify which United Nations Convention on the Rights of the Child (CRC) recommended child protection (CP) measures, such as policy, reporting systems, and services for child abuse and neglect (CAN) victims, individually or in combination, were most important in establishing a basic level of child protection in 42 countries; and (2) to assess whether these measures were necessary or sufficient to achieve basic child protection in developing and industrialized countries. Child protection and/or rights expert respondents from 42 countries completed a questionnaire on CRC Article 19 (CRC19) required CP measures implementation and rated their country's effectiveness in implementation, the current level of effectiveness of child protection, and the relevance of improvements in child protection since the CRC was adopted in 1989. Information from the Committee on the Rights of the Child Concluding Observations, as well as UNICEF and WHO indicators on child health and protection issues were used to check and supplement responses. Qualitative comparative analysis (QCA) was used to identify child protection measure implementation effectiveness. Results indicate that child protection judged as comparatively more successful among study countries is a result of having the following measures in place from two types of social programs: a CP infrastructure (legislation plus services) and at least one information-based intervention support program. Fourteen (33%) countries were determined to have established at least a basic CP system toward protection of children from violence and maltreatment. These countries reported having the three required elements described above. The study reinforces the need for governments to take a systems approach to child protection, including policy/legislation, information-based programs and social services, as well as professional training and public awareness raising. The top-ranked countries included: Australia, Bahrain, Belgium, Brazil

  13. Effects of machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.

    2017-10-01

    This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.

  14. A study on mechanical properties of PBT nano-composites reinforced with microwave functionalized MWCNTs

    NASA Astrophysics Data System (ADS)

    Deshpande, Revati; Naik, Garima; Chopra, Swamini; Deshmukh, Kavita A.; Deshmukh, Abhay D.; Peshwe, D. R.

    2018-04-01

    Polybutylene Terephthalate (PBT) is a synthetic thermoplastic polymer with fast crystallization rate; and is extensively used in many automobile applications where it is prone to continuous wear. Carbon Nanotubes (CNTs) as reinforcements are most ideal and promising reinforcement in enhancing mechanical properties of polymers. Owing to strong van der Waals’ interaction between the nanotubes; they tend to aggregate. To overcome this behavior, CNTs are generally functionalized in acid solutions to help stabilize the dispersion and allow interaction with polymer matrix. Thus, the present study focuses on the effect of reinforcing microwave-functionalized CNTs on the mechanical and tribological properties of PBT polymer matrix. The homogenous dispersion of CNTs in PBT matrix was successfully achieved by functionalizing the CNTs. DSC and XRD analysis confirms better crystallization and reduced crystallite size due to improved nucleation. Apart; an increase in the hardness and MFI value was also noted, which again hinted towards improved dispersion. However, the reduction in tensile strength and % elongation indicated embrittlement of the PBT matrix after addition of functionalized CNTs. Furthermore, the peeling and scuffing phenomenon observed for virgin PBT, during sliding wear, was suppressed after CNT addition.

  15. Argon-oxygen atmospheric pressure plasma treatment on carbon fiber reinforced polymer for improved bonding

    NASA Astrophysics Data System (ADS)

    Chartosias, Marios

    Acceptance of Carbon Fiber Reinforced Polymer (CFRP) structures requires a robust surface preparation method with improved process controls capable of ensuring high bond quality. Surface preparation in a production clean room environment prior to applying adhesive for bonding would minimize risk of contamination and reduce cost. Plasma treatment is a robust surface preparation process capable of being applied in a production clean room environment with process parameters that are easily controlled and documented. Repeatable and consistent processing is enabled through the development of a process parameter window utilizing techniques such as Design of Experiments (DOE) tailored to specific adhesive and substrate bonding applications. Insight from respective plasma treatment Original Equipment Manufacturers (OEMs) and screening tests determined critical process factors from non-factors and set the associated factor levels prior to execution of the DOE. Results from mode I Double Cantilever Beam (DCB) testing per ASTM D 5528 [1] standard and DOE statistical analysis software are used to produce a regression model and determine appropriate optimum settings for each factor.

  16. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature

    PubMed Central

    Huang, C.-Y.; Trask, R. S.; Bond, I. P.

    2010-01-01

    A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension. PMID:20150337

  17. Smart-aggregate-based damage detection of fiber-reinforced-polymer-strengthened columns under reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Howser, Rachel; Moslehy, Yashar; Gu, Haichang; Dhonde, Hemant; Mo, Y. L.; Ayoub, Ashraf; Song, Gangbing

    2011-07-01

    Structural health monitoring is an important aspect of the maintenance of large civil infrastructures, especially for bridge columns in areas of high seismic activity. In this project, recently developed innovative piezoceramic-based sensors were utilized to perform the health monitoring of a shear-critical reinforced concrete (RC) bridge column subjected to reversed cyclic loading. After the column failed, it was wrapped with fiber reinforced polymer (FRP) sheets, commonly used to retrofit seismically damaged structures. The FRP-strengthened column was retested under the same reversed cyclic loading pattern. Innovative piezoceramic-based sensors, called 'smart aggregates', were utilized as transducers for health monitoring purposes. On the basis of the smart aggregates developed, an active-sensing approach and an impact-hammer-based approach were used to evaluate the health status of the RC column during the loading procedure. Wave transmission energy is attenuated by the existence of cracks during the loading procedure, and this attenuation phenomenon alters the curve of the transfer function between the actuator and sensor. To detect the damage occurrence and evaluate the damage severity, transfer function curves were compared with those obtained during the period of healthy status. A transfer-function-based damage index matrix was developed to demonstrate the damage severity at different locations. Experimental results verified the effectiveness of the smart aggregates in health monitoring of the FRP-strengthened column as well as the unstrengthened column. The experimental results show that the proposed smart-aggregate-based approach can successfully detect damage occurrence and evaluate its severity.

  18. Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP

    NASA Astrophysics Data System (ADS)

    Arun, G. K.; Sreenivas, Nikhil; Brahma Reddy, Kesari; Sai Krishna Reddy, K.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres individually find a very wide field of applications because of their various mechanical and chemical properties. Recently graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. The primary interest of this venture is to investigate on Graphene reinforced polymer matrix nanocomposites and finding the mechanical properties. The composites were fabricated by Hand Lay Process and have been evaluated by the addition of Graphene with 1, 1.5, 2, 2.5 and 3 by weight% as reinforcement in composites. The theoretical and experimental results validate the increase in properties such as tensile strength, hardness and flexural strength with increase in weight proportions from 1% to 3% of graphene powder. It was observed that the composite material with 2.5% weight fraction of graphene yielded superior properties over other weight percentages. Graphene reinforced polymer matrix nanocomposites finds its major applications in the manufacture of aircraft bodies, ballistic missiles, sporting equipment, marine applications and extraterrestrial ventures.

  19. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    NASA Astrophysics Data System (ADS)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  20. Combination of preoperative NLR, PLR and CEA could increase the diagnostic efficacy for I-III stage CRC.

    PubMed

    Peng, Hong-Xin; Yang, Lin; He, Bang-Shun; Pan, Yu-Qin; Ying, Hou-Qun; Sun, Hui-Ling; Lin, Kang; Hu, Xiu-Xiu; Xu, Tao; Wang, Shu-Kui

    2017-09-01

    Inflammation plays an important role in the development and progression of CRC. The members of inflammatory biomarkers, preoperative NLR and PLR, have been proved by numerous studies to be promising prognostic biomarkers for CRC. However, the diagnostic value of the two biomarkers in CRC remains unknown, and no study reported the combined diagnostic efficacy of NLR, PLR and CEA. Five hundred and fifty-nine patients with I-III stage CRC undergoing surgical resection and 559 gender- and age-matched healthy controls were enrolled in this retrospective study. NLR and PLR were calculated from preoperative peripheral blood cell count detected using white blood cell five classification by Sysmex XT-1800i Automated Hematology System and serum CEA were measured by electrochemiluminescence by ELECSYS 2010. The diagnostic performance of NLR, PLR and CEA for CRC was evaluated by ROC curve. Levels of NLR and PLR in the cases were significantly higher than them in the healthy controls. ROC curves comparison analyses showed that the diagnostic efficacy of NLR (AUC=.755, 95%CI=.728-.780) alone for CRC was significantly higher than PLR (AUC=.723, 95%CI=.696-.749, P=.037) and CEA (AUC=.690, 95%CI=.662-.717, P=.002) alone. In addition, the diagnostic efficacy of the combination of NLR, PLR and CEA(AUC=.831, 95%CI=.807-.852)for CRC was not only significantly higher than NLR alone but also higher than any combinations of the two of these three biomarkers (P<.05). Moreover, the NLR and PLR in the patients with TNM stage I/II was higher than that in the healthy controls, and patients with stage III had a higher NLR and PLR than those with stage I/II, but no significant difference was observed. Our study indicated that preoperative NLR could be a CRC diagnostic biomarker, even for early stage CRC, and the combination of NLR, PLR and CEA could significantly improve the diagnostic efficacy. © 2016 Wiley Periodicals, Inc.

  1. Influence of the Crc regulator on the hierarchical use of carbon sources from a complete medium in Pseudomonas.

    PubMed

    La Rosa, Ruggero; Behrends, Volker; Williams, Huw D; Bundy, Jacob G; Rojo, Fernando

    2016-03-01

    The Crc protein, together with the Hfq protein, participates in catabolite repression in pseudomonads, helping to coordinate metabolism. Little is known about how Crc affects the hierarchy of metabolite assimilation from complex mixtures. Using proton Nuclear Magnetic Resonance (NMR) spectroscopy, we carried out comprehensive metabolite profiling of culture supernatants (metabolic footprinting) over the course of growth of both Pseudomonas putida and P. aeruginosa, and compared the wild-type strains with deletion mutants for crc. A complex metabolite consumption hierarchy was observed, which was broadly similar between the two species, although with some important differences, for example in sugar utilization. The order of metabolite utilization changed upon inactivation of the crc gene, but even in the Crc-null strains some compounds were completely consumed before late metabolites were taken up. This suggests the presence of additional regulatory elements that determine the time and order of consumption of compounds. Unexpectedly, the loss of Crc led both species to excrete acetate and pyruvate as a result of unbalanced growth during exponential phase, compounds that were later consumed in stationary phase. This loss of carbon during growth helps to explain the contribution of the Crc/Hfq regulatory system to evolutionary fitness of pseudomonads. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. NSC30049 inhibits Chk1 pathway in 5-FU-resistant CRC bulk and stem cell populations.

    PubMed

    Narayan, Satya; Jaiswal, Aruna S; Sharma, Ritika; Nawab, Akbar; Duckworth, Lizette Vila; Law, Brian K; Zajac-Kaye, Maria; George, Thomas J; Sharma, Jay; Sharma, Arun K; Hromas, Robert A

    2017-08-22

    The 5-fluorouracil (5-FU) treatment induces DNA damage and stalling of DNA replication forks. These stalled replication forks then collapse to form one sided double-strand breaks, leading to apoptosis. However, colorectal cancer (CRC) stem cells rapidly repair the stalled/collapsed replication forks and overcome treatment effects. Recent evidence suggests a critical role of checkpoint kinase 1 (Chk1) in preventing the replicative stress. Therefore, Chk1 kinase has been a target for developing mono or combination therapeutic agents. In the present study, we have identified a novel orphan molecule NSC30049 (NSC49L) that is effective alone, and in combination potentiates 5-FU-mediated growth inhibition of CRC heterogeneous bulk and FOLFOX-resistant cell lines in culture with minimal effect on normal colonic epithelial cells. It also inhibits the sphere forming activity of CRC stem cells, and decreases the expression levels of mRNAs of CRC stem cell marker genes. Results showed that NSC49L induces 5-FU-mediated S-phase cell cycle arrest due to increased load of DNA damage and increased γ-H2AX staining as a mechanism of cytotoxicity. The pharmacokinetic analysis showed a higher bioavailability of this compound, however, with a short plasma half-life. The drug is highly tolerated by animals with no pathological aberrations. Furthermore, NSC49L showed very potent activity in a HDTX model of CRC stem cell tumors either alone or in combination with 5-FU. Thus, NSC49L as a single agent or combined with 5-FU can be developed as a therapeutic agent by targeting the Chk1 pathway in 5-FU-resistant CRC heterogeneous bulk and CRC stem cell populations.

  3. CRC Credential Attainment by State Vocational Rehabilitation Counselors

    ERIC Educational Resources Information Center

    Harpster, Anna M.; Byers, Katherine L.; Harris, LaKeisha L.

    2011-01-01

    This study examines 137 state vocational rehabilitation (VR) counselors' perceptions of the value of having the Certified Rehabilitation Counselor (CRC) credential. While almost 53% of this sample included persons who were certified, the majority who were not indicated that the two major reasons for not currently having this designation were: (a)…

  4. Two-Dimensional Nanostructure- Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering

    PubMed Central

    Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Lin, Liangjun; Kasper, F. Kurtis; Qin, Yi-Xian; Mikos, Antonios G.; Sitharaman, Balaji

    2013-01-01

    This study investigates the efficacy of two dimensional (2D) carbon and inorganic nanostructures as reinforcing agents of crosslinked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multi-walled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum di-sulfite nanoplatelets (MSNPs) at 0.01–0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multi-walled carbon nanotubes (SWCNT, MWCNT) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35–108%, compressive yield strength = 26–93%, flexural modulus = 15–53%, and flexural yield strength = 101–262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNPs nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNPs showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2-D nanostructures (GONP, MSNP) are better reinforcing agents compared to 1-D nanostructures (e.g. SWCNTs). The results also indicate that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicates good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01–0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1–0.2 wt%). The analysis of surface area and aspect ratio of

  5. Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.

    PubMed

    Sun, Che-Nan; Zawodzinski, Thomas A; Tenhaeff, Wyatt E; Ren, Fei; Keum, Jong Kahk; Bi, Sheng; Li, Dawen; Ahn, Suk-Kyun; Hong, Kunlun; Rondinone, Adam J; Carrillo, Jan-Michael Y; Do, Changwoo; Sumpter, Bobby G; Chen, Jihua

    2015-03-28

    Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.

  6. Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun

    2010-01-01

    Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the

  7. Analysis and testing of a bridge deck reinforced with GFRP rebars : final report, April 3, 2007.

    DOT National Transportation Integrated Search

    2007-04-03

    The present project had two main objectives, to experimentally and analytically investigate a bridge deck reinforced with glass : fiber reinforced polymer rebars, and to perform durability tests on four rebar types. : An analytical investigation was ...

  8. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material.

    PubMed

    Dasan, Y K; Bhat, A H; Ahmad, Faiz

    2017-02-10

    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.

    2001-01-26

    Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow productionmore » rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.« less

  10. Hypervelocity Impact Studies of Carbon Nanotubes and Fiber-Reinforced Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Khatiwada, Suman

    This dissertation studies the hypervelocity impact characteristics of carbon nanotubes (CNTs), and investigates the use of CNTs as reinforcements in ultra-high molecular weight polyethylene (UHMWPE) fiber composites for hypervelocity impact shielding applications. The first part of this dissertation is aimed at developing an understanding of the hypervelocity impact response of CNTs--at the nanotube level. Impact experiments are designed with CNTs as projectiles to impact and crater aluminum plates. The results show that carbon nanotubes are resistant to the high-energy shock pressures and the ultra-high strain loading during hypervelocity impacts. Under our experimental conditions, single-walled carbon nanotubes survive impacts up to 4.07 km/s, but transform to graphitic ribbons and nanodiamonds at higher impact velocities. The nanodiamonds are metastable and transform to onion-like nanocarbon over time. Double-walled carbon nanotubes retain their form and structure even at impacts over 7 km/s. Higher hypervelocity impact resistance of DWCNTs could be attributed to the absorption of additional energy due to relative motion between the layers in the transverse direction of these coaxial nanotubes. The second part of this dissertation researches the effect of reinforcement of carbon nanotubes and their buckypapers on the hypervelocity impact shielding properties of UHMWPE-fiber composites arranged in a Whipple Shield configuration (a shield design used for the protection of the international space station from hypervelocity impacts by orbital debris). Composite laminates were prepared via compression molding and nanotube buckypapers via vacuum filtration. Dispersed nanotubes were introduced to the composite laminates via direct spraying onto the fabric prior to composite processing. The experimental results show that nanotubes dispersed in polymer matrix do not affect the hypervelocity impact resistance of the composite system. Nanotube buckypapers, however, improve

  11. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  12. Effects of High and Low Temperature on the Tensile Strength of Glass Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kumarasamy, S.; Shukur Zainol Abidin, M.; Abu Bakar, M. N.; Nazida, M. S.; Mustafa, Z.; Anjang, A.

    2018-05-01

    In this paper, the tensile performance of glass fiber reinforced polymer (GFRP) composites at high and low temperature was experimentally evaluated. GFRP laminates were manufactured using the wet hand lay-up assisted by vacuum bag, which has resulted in average fibre volume fraction of 0.45. Using simultaneous heating/cooling and loading, glass fiber epoxy and polyester laminates were evaluated for their mechanical performance in static tensile loading. In the elevated temperature environment test, the tension mechanical properties; stress and modulus were reduced with increasing temperature from 25°C to 80°C. Results of low temperature environment from room temperature to a minimum temperature of -20°C, indicated that there is no considerable effect on the tensile strength, however a slight decrease of tensile modulus were observed on the GFRP laminates. The results obtained from the research highlight the structural survivability on tensile properties at low and high temperature of the GFRP laminates.

  13. Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites

    PubMed Central

    Ayandele, Ebunoluwa; Sarkar, Biswajit; Alexandridis, Paschalis

    2012-01-01

    Hybrid materials with superior structural and functional properties can be obtained by incorporating nanofillers into polymer matrices. Polyhedral oligomeric silsesquioxane (POSS) nanoparticles have attracted much attention recently due to their nanometer size, the ease of which these particles can be incorporated into polymeric materials and the unique capability to reinforce polymers. We review here the state of POSS-containing polymer nanocomposites. We discuss the influence of the incorporation of POSS into polymer matrices via chemical cross-linking or physical blending on the structure of nanocomposites, as affected by surface functional groups, and the POSS concentration. PMID:28348318

  14. Increased risk for CRC in diabetic patients with the nonrisk allele of SNPs at 8q24.

    PubMed

    Ishimaru, Shinya; Mimori, Koshi; Yamamoto, Ken; Inoue, Hiroshi; Imoto, Seiya; Kawano, Shuichi; Yamaguchi, Rui; Sato, Tetsuya; Toh, Hiroyuki; Iinuma, Hisae; Maeda, Toyoki; Ishii, Hideshi; Suzuki, Sadao; Tokudome, Shinkan; Watanabe, Masahiko; Tanaka, Jun-ichi; Kudo, Shin-ei; Sugihara, Ken-ichi; Hase, Kazuo; Mochizuki, Hidetaka; Kusunoki, Masato; Yamada, Kazutaka; Shimada, Yasuhiro; Moriya, Yoshihiro; Barnard, Graham F; Miyano, Satoru; Mori, Masaki

    2012-09-01

    Colorectal cancer (CRC) oncogenesis was considered to be determined by interactions between genetic and environmental factors. Specific interacting factors that influence CRC morbidity have yet to be fully investigated. A multi-institutional collaborative study with 1511 CRC patients and 2098 control subjects was used to compare the odds ratios for the occurrence of polymorphisms at 11 known single nucleotide polymorphisms (SNPs). TaqMan PCR and questionnaires were used to evaluate the effects of environmental exposures. Variants of rs6983267 on 8q24 were the most significant markers of risk for CRC (odds ratio 1.16, 95% confidence interval 1.06-1.27, P = 0.0015). Non-insulin-dependent diabetes mellitus (DM), a higher body mass index at age 20, and meat consumption were environmental risk factors, whereas a tuna-rich diet and vitamin intake were protective factors. The cohort of rs6983267 SNP major (T) allele at 8q24 and DM had a 1.66-fold higher risk ratio than the cohort of major allele patients without DM. We confirmed that interactions between the genetic background and environmental factors are associated with increased risk for CRC. There is a robust risk of the minor G allele at the 8q24 rs6983267 SNP; however, a major T allele SNP could more clearly reveal a correlation with CRC specifically when DM is present.

  15. Disease severity does not affect the interval between IBD diagnosis and the development of CRC: results from two large, Dutch case series.

    PubMed

    Mooiweer, Erik; Baars, Judith E; Lutgens, Maurice W M D; Vleggaar, Frank; van Oijen, Martijn; Siersema, Peter D; Kuipers, Ernst J; van der Woude, C Janneke; Oldenburg, Bas

    2012-05-01

    The increased risk of colorectal cancer (CRC) in patients with inflammatory bowel disease (IBD) is well established. The incidence of IBD-related CRC however, differs markedly between cohorts from referral centers and population-based studies. In the present study we aimed to identify characteristics potentially explaining these differences in two cohorts of patients with IBD-related CRC. PALGA, a nationwide pathology network and registry in The Netherlands, was used to search for patients with IBD-associated CRC between 1990 and 2006. Patients from 7 referral hospitals and 78 general hospitals were included. Demographic and disease specific parameters were collected retrospectively using patient charts. A total of 281 patients with IBD-associated CRC were identified. Patients from referral hospitals had a lower median age at IBD diagnosis (26 years vs. 28 years (p=0.02)), while having more IBD-relapses before CRC diagnosis than patients from general hospitals (3.8 vs. 1.5 (p<0.01)). In patients from referral hospitals, CRC was diagnosed at a younger age (47 years vs. 51 years (p=0.01)). However, the median interval between IBD diagnosis and diagnosis of CRC was similar in both cohorts (19 years in referral hospitals vs. 17 years in general hospitals (p=0.13)). IBD patients diagnosed with CRC treated in referral hospitals in The Netherlands are younger at both the diagnosis of IBD and CRC than IBD patients with CRC treated in general hospitals. Although patients from referral centers appeared to have a more severe course of IBD, the interval between IBD and CRC diagnosis was similar. Copyright © 2011 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  16. Effect of Sodium bicarbonate on Fire behaviour of tilled E- Glass Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Girish, S.; Devendra, K.; Bharath, K. N.

    2016-09-01

    Composites such as fibre reinforced polymers give us the good mechanical properties, but their fire behaviour is not appreciable and needs to be improved. In this work, E- glass fiber is used as a reinforcement material and Epoxy resin is used as a matrix with particulate sodium bi-carbonate (NaHCO3) is used as additive. The hand lay-up technique is adopted for the development of composites by varying percentage of additive. All the tests were conducted according to ASTM standards to study the Fire behaviour of the developed composites. The different fire properties like Ignition time, mass loss rate and flame propagation rate of Fiber Reinforced Polymers (FRP) with NaHCO3 are compared with neat FRPs. It is found that the ignition time increases as the percentage of additive is increased.

  17. Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion

    PubMed Central

    O’Brien, Caitlin; McBride, Amanda; E. Zaghi, Arash; Burke, Kelly A.; Hill, Alex

    2017-01-01

    Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness < 100 μm (<0.00394 in.) that can be utilized in a steel fiber-reinforced polymer. However, stainless steel is known to be susceptible to pitting corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance. PMID:28773132

  18. Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with high-level microsatellite instability (MSI-H).

    PubMed

    Goldstein, J; Tran, B; Ensor, J; Gibbs, P; Wong, H L; Wong, S F; Vilar, E; Tie, J; Broaddus, R; Kopetz, S; Desai, J; Overman, M J

    2014-05-01

    The microsatellite instability-high (MSI-H) phenotype, present in 15% of early colorectal cancer (CRC), confers good prognosis. MSI-H metastatic CRC is rare and its impact on outcomes is unknown. We describe survival outcomes and the impact of chemotherapy, metastatectomy, and BRAF V600E mutation status in the largest reported cohort of MSI-H metastatic colorectal cancer (CRC). A retrospective review of 55 MSI-H metastatic CRC patients from two institutions, Royal Melbourne Hospital (Australia) and The University of Texas MD Anderson Cancer Center (United States), was conducted. Statistical analyses utilized Kaplan-Meier method, Log-rank test, and Cox proportional hazards models. Median age was 67 years (20-90), 58% had poor differentiation, and 45% had stage IV disease at presentation. Median overall survival (OS) from metastatic disease was 15.4 months. Thirteen patients underwent R0/R1 metastatectomies, with median OS from metastatectomy 33.8 months. Thirty-one patients received first-line systemic chemotherapy for metastatic disease with median OS from the start of chemotherapy 11.5 months. No statistically significant difference in progression-free survival or OS was seen between fluoropyrimidine, oxaliplatin, or irinotecan based chemotherapy. BRAF V600E mutation was present in 14 of 47 patients (30%). BRAF V600E patients demonstrated significantly worse median OS; 10.1 versus 17.3 months, P = 0.03. In multivariate analyses, BRAF V600E mutants had worse OS (HR 4.04; P = 0.005), while patients undergoing metastatectomy (HR 0.11; P = <0.001) and patients who initially presented as stage IV disease had improved OS (HR 0.27; P = 0.003). Patients with MSI-H metastatic CRC do not appear to have improved outcomes. BRAF V600E mutation is a poor prognostic factor in MSI-H metastatic CRC.

  19. Two-dimensional magnesium oxide nanosheets reinforced epoxy nanocomposites for enhanced fracture toughness

    NASA Astrophysics Data System (ADS)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Guruvishnu, T.; Aditya, D. B.; Mahadevan, S. M.; Thumu, Udayabhaskararao

    2018-01-01

    Metal oxide nanoparticles have been used as excellent reinforcements to enhance mechanical properties of polymers, natural composites, and ceramics. To date, a major portion of metal oxides used as nanofillers is three dimensional spherical nanoparticles. In the last decade, two-dimensional (2D) materials such as graphene have been widely investigated to improve the mechanical and electrical properties of polymer materials. In this paper, 2D Magnesium oxide (MgO) nanosheets reinforced epoxy composites (0.1, 0.2 and 0.4 wt%) are fabricated and studied for their ability to resist the propagation of preexisting flaw by conducting fracture toughness test for K IC, critical stress intensity factor. This property is an important mechanical property for designing applications in various engineering technologies. Our results show that the MgO with 0.2 wt% is the optimized level to improve the fracture toughness of the epoxy polymer by 47%.

  20. Uplift of symmetrical anchor plates by using grid-fixed reinforced reinforcement in cohesionless soil

    NASA Astrophysics Data System (ADS)

    Niroumand, Hamed; Kassim, Khairul Anuar

    2014-03-01

    Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were used to reinforce the sandy soil over symmetrical anchor plates. In the current research, different factors such as relative density of sand, embedment ratios, and various GFR parameters including size, number of layers, and the proximity of the layer to the symmetrical anchor plate were investigated in a scale model. The failure mechanism and the associated rupture surface were observed and evaluated. GFR, a tied up system made of fiber reinforcement polymer (FRP) strips and end balls, was connected to the geosynthetic material and anchored into the soil. Test results showed that using GFR reinforcement significantly improved the uplift capacity of anchor plates. It was found that the inclusion of one layer of GFR, which rested directly on the top of the anchor plate, was more effective in enhancing the anchor capacity itself than other methods. It was found that by including GFR the uplift response was improved by 29%. Multi layers of GFR proved more effective in enhancing the uplift capacity than a single GFR reinforcement. This is due to the additional anchorage provided by the GFR at each level of reinforcement. In general, the results show that the uplift capacity of symmetrical anchor plates in loose and dense sand can be significantly increased by the inclusion of GFR. It was also observed that the inclusion of GFR reduced the requirement for a large L/D ratio to achieve the required uplift capacity. The laboratory and numerical analysis results are found to be in agreement in terms of breakout factor and failure mechanism pattern.

  1. Laser-assisted nanoceramics reinforced polymer scaffolds for tissue engineering: additional heating and stem cells behavior

    NASA Astrophysics Data System (ADS)

    Shishkovsky, Igor; Scherbakov, Vladimir; Volchkov, Vladislav; Volova, Larisa

    2018-02-01

    The conditions of selective laser melting (SLM) of tissue engineering scaffolds affect cell response and must be engineered to support cell adhesion, proliferation, and differentiation. In the present study, the influence of additional heating during SLM process on stem cell viability near biopolymer matrix reinforced by nanoceramics additives was carried out. We used the biocompatible and bioresorbable polymers (polyetheretherketone /PEEK/ and polycaprolactone /PCL/) as a matrix and nano-oxide ceramics - TiO2, Al2O3, ZrO2, FexOy and/or hydroxyapatite as a basis of the additives. The rate of pure PEEK and PCL bio-resorption and in mixtures with nano oxides on the matrix was studied by the method of mass loss on bacteria of hydroxylase and enzyme complex. The stem cellular morphology, proliferative MMSC activity, and adhesion of the 2D and 3D nanocomposite matrices were the subjects of comparison. Medical potential of the SLS/M-fabricated nano-oxide ceramics after additional heating as the basis for tissue engineering scaffolds and cell targeting systems were discussed.

  2. Conditionally reprogrammed cells (CRC) methodology does not allow the in vitro expansion of patient-derived primary and metastatic lung cancer cells.

    PubMed

    Sette, Giovanni; Salvati, Valentina; Giordani, Ilenia; Pilozzi, Emanuela; Quacquarini, Denise; Duranti, Enrico; De Nicola, Francesca; Pallocca, Matteo; Fanciulli, Maurizio; Falchi, Mario; Pallini, Roberto; De Maria, Ruggero; Eramo, Adriana

    2018-07-01

    Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells. © 2018 UICC.

  3. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    NASA Astrophysics Data System (ADS)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2017-02-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  4. Computational analysis of particle reinforced viscoelastic polymer nanocomposites - statistical study of representative volume element

    NASA Astrophysics Data System (ADS)

    Hu, Anqi; Li, Xiaolin; Ajdari, Amin; Jiang, Bing; Burkhart, Craig; Chen, Wei; Brinson, L. Catherine

    2018-05-01

    The concept of representative volume element (RVE) is widely used to determine the effective material properties of random heterogeneous materials. In the present work, the RVE is investigated for the viscoelastic response of particle-reinforced polymer nanocomposites in the frequency domain. The smallest RVE size and the minimum number of realizations at a given volume size for both structural and mechanical properties are determined for a given precision using the concept of margin of error. It is concluded that using the mean of many realizations of a small RVE instead of a single large RVE can retain the desired precision of a result with much lower computational cost (up to three orders of magnitude reduced computation time) for the property of interest. Both the smallest RVE size and the minimum number of realizations for a microstructure with higher volume fraction (VF) are larger compared to those of one with lower VF at the same desired precision. Similarly, a clustered structure is shown to require a larger minimum RVE size as well as a larger number of realizations at a given volume size compared to the well-dispersed microstructures.

  5. The concept of sustainable prefab modular housing made of natural fiber reinforced polymer (NFRP)

    NASA Astrophysics Data System (ADS)

    Setyowati, E.; Pandelaki, E. E.

    2018-03-01

    This research aims to formulate the concept of public housing based on research results on natural fiber reinforced polymer (FRP) material which has been done in the road map of research. Research output is the public housing design and specifications of FRP made of water hyacinths and coconut fiber. Method used is descriptive review of the concept based on references and material test which consists of density, water absorption, modulus of rupture (MOR), tensile strength, absorption coefficient and Sound Transmission Loss (STL). The entire tests of material were carried out in the laboratory of materials and construction, while the acoustic tests carried out using the impedance tubes method. The test results concluded that the FRP material may have a density between 0.2481 – 0.2777 g/cm3, the absorption coefficient is average of 0.450 – 0.900, the Modulus of Elasticity is between 4061 – 15193 kg/cm2, while the average of sound transmission loss is 52 – 59 dB. Furthermore, that the concept of public housing must be able to be the embryo of the concept of environment-friendly and low emissions housing.

  6. Diagnostic value of fecal tumor M2-pyruvate kinase for CRC screening: a systematic review and meta-analysis.

    PubMed

    Li, Rui; Liu, Jianjun; Xue, Huiping; Huang, Gang

    2012-10-15

    The measurement of fecal tumor M2-pyruvate kinase (PKM2), overexpressed in tumor cells, has been proposed as a novel tool for detecting colorectal cancer (CRC). However, the sensitivity and specificity of this test varied among studies. The aim of this meta-analysis was to determine the diagnostic accuracy of fecal PKM2 for CRC and to evaluate its utility in the CRC screening. It was compared to guaiac fecal occult blood test (gFOBT) or immunological fecal occult blood test (iFOBT). Through comprehensive literature search, 10 studies met the inclusion criteria and were included. Summary estimates for sensitivity and specificity were calculated by using the bivariate random effect model. The hierarchical summary receiver operating characteristic curve was also undertaken. The overall sensitivity and specificity of fecal PKM2 for detecting CRC were 79% (95% CI = 75-83%) and 81% (95% CI = 73-87%), respectively. The summary positive predictive value and negative predictive value were 74% (95% CI = 56-87%) and 86% (95% CI = 79-91%), respectively. The pooled diagnostic odds ratio was 16 (95% CI = 10-26). In head-to-head comparison, the diagnostic odds ratio of PKM2 and gFOBT for CRC were 10.167 (95% CI = 5.992-17.250) and 6.557 (95% CI = 3.467-12.403), respectively. The diagnostic odds ratio of PKM2 and iFOBT for CRC were 9.542 (95% CI = 5.893-15.452) and 67.248 (95% CI = 16.194-279.26), respectively. The fecal PKM2 test was a diagnostic tool with moderate sensitivity and specificity for detecting CRC. Its diagnostic efficiency was similar to that of gFOBT. Because of its relatively low specificity and positive predict value, fecal PKM2 was not recommended used alone as a screening tool for CRC. Copyright © 2012 UICC.

  7. FRP reinforcement for concrete: performance assessment and new construction : volume I: Sierrita De La Cruz Creek bridge.

    DOT National Transportation Integrated Search

    2016-07-01

    Glass fiber reinforced polymer (GFRP) composites are emerging as a feasible economical solution to eliminate the : corrosion problem of steel reinforcements in the concrete industry. Confirmation of GFRP long-term durability is crucial : to extend it...

  8. Interfacial contributions in lignocellulosic firber-reinforced polyurethane composites

    Treesearch

    Timothy G. Rials; Michael P. Wolcott; John M. Nassar

    2001-01-01

    Whereas lignocellulosic fibers have received considerable attention as a reinforcing agent in thermoplastic composites, their applicability to reactive polymer systems remains of considerable interest. The hydroxyl-rich nature of natural lignocellulosic fibers suggests that they are particularly useful in thermsetting systems such as polyurethanes. To further this...

  9. Characterization nano crystalline cellulose from sugarcane baggase for reinforcement in polymer composites: Effect of formic acid concentrations

    NASA Astrophysics Data System (ADS)

    Aprilia, N. A. S.; Mulyati, S.; Alam, P. N.; Karmila; Ambarita, A. C.

    2018-04-01

    Nanocellulose from sugarcane bagasse for reinforcement in polymer composites has isolated from formic acid (FA) with different concentration. This research was conducted with three level concentration of FA ei. 15, 30 and 50%. The nanocellulose were successfully prepared with variations of total yields of 66.66, 67.33 and 69.33% respectively with increase of FA concentrations at 6 hours of hidrolysis time. The obtained nanocellulose were characterized by fourier transform infrared (FT-IR) spectroscopy confirmed the introduction of carboxyl goups on the surface of cellulose. The X-ray diffraction (XRD) spectra proved the existence of cellulose, with a highly crystalline of 62.466, 71.033, and 76.296% with increase of FA concentrations. The size of crystallinity of nanocellulose were decreased with increased of FA concentration. The result investigated that size of crystallinity of nano cellulose reduced from 4.37, 4.15 and 3.94 nm.

  10. The global regulator Crc plays a multifaceted role in modulation of type III secretion system in Pseudomonas aeruginosa

    PubMed Central

    Dong, Yi-Hu; Zhang, Xi-Fen; Zhang, Lian-Hui

    2013-01-01

    The opportunistic pathogen Pseudomonas aeruginosa utilizes type III secretion system (T3SS) to translocate effector proteins into eukaryotic host cells that subvert normal host cell functions to the benefit of the pathogen, and results in serious infections. T3SS in P. aeruginosa is controlled by a complex system of regulatory mechanisms and signaling pathways. In this study, we described that Crc, an RNA-binding protein, exerts a positive impact on T3SS in P. aeruginosa, as evidenced by promoter activity assays of several key T3SS genes, transcriptomics, RT-PCR, and immunoblotting in crc mutant. We further demonstrated that the regulatory function of Crc on the T3SS was mediated through the T3SS master regulator ExsA and linked to the Cbr/Crc signaling system. Expression profiling of the crc mutant revealed a downregulation of flagship T3SS genes as well as 16 other genes known to regulate T3SS gene expression in P. aeruginosa. On the basis of these data, we proposed that Crc may exert multifaceted control on the T3SS through various pathways, which may serve to fine-tune this virulence mechanism in response to environmental changes and nutrient sources. PMID:23292701

  11. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.

    PubMed

    Han, Xinxin; Yin, Linlin; Xue, Hongwei

    2012-07-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis. © 2012 Institute of Botany, Chinese Academy of Sciences.

  12. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection

    NASA Astrophysics Data System (ADS)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos

    2017-10-01

    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  13. The role of RCAS1 as a biomarker in diagnosing CRC and monitoring tumor recurrence and metastasis.

    PubMed

    Han, Su-xia; Wang, Jing; Wang, Li-juan; Jin, Gui-hua; Ying, Xia; He, Chen-chen; Guo, Xi-jing; Zhang, Jian-ying; Zhang, Ying; Zhu, Qing

    2014-06-01

    Receptor-binding cancer antigen expressed on SiSo cells (RCAS1) plays an important role in tumor progression by helping tumor cell to escape from host immunological surveillance or modifying the characteristics of connective tissue around. RCAS1 may appropriately reflect the development and prognosis of tumor. In the study, we sought to identify the clinical significance of RCAS1 in colorectal cancer (CRC) diagnosis and tumor recurrence monitoring. Immunohistochemistry (IHC) with tissue array slides was preformed to analyze RCAS1 protein expression in CRC, colorectal polyps, and normal colon tissues. RCAS1 levels in colorectal cancer were significantly higher than those in colorectal polyps and normal colon tissues (P<0.001). Silencing RCAS1 gene in human colonic adenocarcinoma cells decreased cell proliferation and enhanced apoptosis through the p53 signaling pathway. Further analysis by an enzyme-linked immunosorbent assay (ELISA) showed that serum RCAS1 levels in CRC are significantly higher than in healthy controls and polyps (P<0.05), in which the highest serum RCAS1 level is reported in the recurrence group. The serum RCAS1 levels have a significant correlation with clinical stage and pathologic grading. Furthermore, the positive rate of serum RCAS1 in CRC was 82.1 %, which was higher than carcinoembryonic antigen (CEA). Especially in CEA-negative cases, the sensitivity of RCAS1 was 88.2 %. Finally, CRC patients who were followed up showed a serum RCAS1 level which significantly decreased after surgery (P<0.001) and obviously increased in the recurrence group. Taken together, our data demonstrated that RCAS1 is not only a supplementary serological biomarker for CRC diagnosis but also useful for monitoring tumor recurrence. RCAS1 might be a supplementary serological marker for CRC.

  14. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  15. Testing of full-size reinforced concrete beams strengthened with FRP composites : experimental results and design methods verification

    DOT National Transportation Integrated Search

    2000-06-01

    In 1997, a load rating of an historic reinforced concrete bridge in Oregon, Horsetail Creek Bridge, indicated substandard shear and moment capacities of the beams. As a result, the Bridge was strengthened with fiber reinforced : polymer composites as...

  16. Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC.

    PubMed

    Scarpa, Marco; Scarpa, Melania; Castagliuolo, Ignazio; Erroi, Francesca; Kotsafti, Andromachi; Basato, Silvia; Brun, Paola; D'Incà, Renata; Rugge, Massimo; Angriman, Imerio; Castoro, Carlo

    2016-03-01

    BACKGROUND PROMOTER: hypermethylation plays a major role in cancer through transcriptional silencing of critical genes. The aim of our study is to evaluate the methylation status of these genes in the colonic mucosa without dysplasia or adenocarcinoma at the different steps of sporadic and UC-related carcinogenesis and to investigate the possible role of genomic methylation as a marker of CRC. The expression of Dnmts 1 and 3A was significantly increased in UC-related carcinogenesis compared to non inflammatory colorectal carcinogenesis. In non-neoplastic colonic mucosa, the number of methylated genes resulted significantly higher in patients with CRC and in those with UC-related CRC compared to the HC and UC patients and patients with dysplastic lesion of the colon. The number of methylated genes in non-neoplastic colonic mucosa predicted the presence of CRC with good accuracy either in non inflammatory and inflammatory related CRC. Colonic mucosal samples were collected from healthy subjects (HC) (n = 30) and from patients with ulcerative colitis (UC) (n = 29), UC and dysplasia (n = 14), UC and cancer (n = 10), dysplastic adenoma (n = 14), and colon adenocarcinoma (n = 10). DNA methyltransferases-1, -3a, -3b, mRNA expression were quantified by real time qRT-PCR. The methylation status of CDH13, APC, MLH1, MGMT1 and RUNX3 gene promoters was assessed by methylation-specific PCR. Methylation status of APC, CDH13, MGMT, MLH1 and RUNX3 in the non-neoplastic mucosa may be used as a marker of CRC: these preliminary results could allow for the adjustment of a patient's surveillance interval and to select UC patients who should undergo intensive surveillance.

  17. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    NASA Astrophysics Data System (ADS)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  18. Leaves Waste Composite with Glass Fiber Reinforcement

    NASA Astrophysics Data System (ADS)

    Khoiri, N.; Jannah, W. N.; Huda, C.; Maulana, RM; Marwoto, P.; Masturi

    2018-03-01

    A research has been made to fabricate leave waste composites and Polyvinyl Acetate (PvAc) polymers reinforced with glass fibers. The method used was a simple mixing of leaves powders, PvAc, and glass fibers varied from 0 g to 1 g. Mass of 16 g leaves powder and mass of PvAc 4 g. The mixing result is suppressed by 5 metric-tons for 15 minutes. The composite is dried at room temperature for 1 day then in the oven at 100°C for 1 hour. The compressive strength is measured bu a hydraulic press. The result show that the compressive strength increased to the highest point of 0.8 g and will decrease significantly when the addition of glass fiber mass of 1 g. The highest compressive strength reaches 52.6 MPa when the glass fiber mass is 0.8 g. The result of this research showed that leaves composites with Polyvinyl Acetate polymer reinforced with fiber glass can be used as alternative material of wood substitute.

  19. Development of a collapsible reinforced cylindrical space observation window

    NASA Technical Reports Server (NTRS)

    Khan, A. Q.

    1971-01-01

    Existing material technology was applied to the development of a collapsible transparent window suitable for manned spacecraft structures. The effort reported encompasses the evaluation of flame retardants intended for use in the window matrix polymer, evaluation of reinforcement angle which would allow for a twisting pantographing motion as the cylindrical window is mechanically collapsed upon itself, and evaluation of several reinforcement embedment methods. A fabrication technique was developed to produce a reinforced cylindrical space window of 45.7 cm diameter and 61.0 cm length. The basic technique involved the application of a clear film on a male-section mold; winding axial and girth reinforcements and vacuum casting the outer layer. The high-strength transparent window composite consisted of a polyether urethane matrix reinforced with an orthogonal pattern of black-coated carbon steel wire cable. A thin film of RTV silicone rubber was applied to both surfaces of the urethane. The flexibility, retraction system, and installation system are described.

  20. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria.

    PubMed

    Browne, Patrick; Barret, Matthieu; O'Gara, Fergal; Morrissey, John P

    2010-11-25

    Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation

  1. Expressions of IGF-1, ERK, GLUT4, IRS-1 in metabolic syndrome complicated with colorectal cancer and their associations with the clinical characteristics of CRC.

    PubMed

    Hu, Jianxia; Liu, Xiaoyi; Chi, Jingwei; Che, Kui; Feng, Yan; Zhao, Shihua; Wang, Zhongchao; Wang, Yangang

    2018-01-01

    Epidemiological data have revealed that colorectal cancer (CRC) risk is increased in patients with Metabolic syndrome. To explore the expressions of IGF-1, ERK, GLUT4, IRS-1 in MS patients with CRC and their associations with the clinical characteristics of CRC. We investigated the expressions of IGF-1, ERK, GLUT4 and IRS-1 in greater omental adipose tissues of 168 MS patients with/without CRC, 85 CRC patients without MS and 98 healthy controls by RT-PCR, and analyzed the relationships between their expressions and clinical characteristics of CRC. The expression levels of IGF-1 and ERK in MS patients with/without CRC were higher while the expression levels of GLUT4 were lower compared with CRC patients without MS and healthy controls (P< 0.01). The expression levels of IGF-1 and ERK in MS patients with CRC were higher while expression levels of GLUT4 were lower compared to MS patients without CRC (P< 0.01). Expression levels of ERK, IGF-1, GLUT4 were associated with clinical characteristics of CRC, including tumor size, distant metastasis and advanced stages (III/IV) (P< 0.05). Expressions of IGF-1, ERK and GLUT4 in greater omental adipose tissues might be useful biomarkers and predictive targets in the diagnosis of CRC.

  2. Aberrant methylation of GCNT2 is tightly related to lymph node metastasis of primary CRC.

    PubMed

    Nakamura, Kazunori; Yamashita, Keishi; Sawaki, Hiromichi; Waraya, Mina; Katoh, Hiroshi; Nakayama, Nobukazu; Kawamata, Hiroshi; Nishimiya, Hiroshi; Ema, Akira; Narimatsu, Hisashi; Watanabe, Masahiko

    2015-03-01

    Glycoprotein expression profile is dramatically altered in human cancers; however, specific glycogenes have not been fully identified. A comprehensive real-time polymerase chain reaction (PCR) system for glycogenes (CRPS-G) identified several outstanding glycogenes. GCNT2 was of particular interest after GCNT2 expression and epigenetics were rigorously investigated in primary colorectal cancer (CRC). The highlights of this work can be summarized as follows: (i) Expression of GCNT2 was remarkably suppressed. (ii) Silenced expression of GCNT2 was reactivated by combined demethylating agents. (iii) Promoter DNA methylation of GCNT2 was silenced in CRC cell lines and tissues. Hypomethylation of GCNT2 variant 2 is tightly associated with lymph node metastasis in primary CRC. (iv) GCNT2 methylation level in the normal tissues also showed a close association with that in the tumor tissues and reflected lymph node metastasis. We identified aberrant expression of GCNT2, which can be explained by promoter DNA hypermethylation. Hypomethylation of the GCNT2 variant 2 reflected lymph node metastasis of CRC in the tumor and normal tissues. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Behavior of concrete specimens reinforced with composite materials : laboratory study

    DOT National Transportation Integrated Search

    2000-02-01

    The main objective of this study was to investigate the interaction between FRP composite and concrete by addressing the most important : variables in terms of FRP (fiber reinforced polymer) properties. Type of fibers, thickness of the laminates, fib...

  4. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.

    PubMed

    Moreno, Renata; Hernández-Arranz, Sofía; La Rosa, Ruggero; Yuste, Luis; Madhushani, Anjana; Shingler, Victoria; Rojo, Fernando

    2015-01-01

    The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Peroxisome proliferator-activated receptor-γ (PPARγ) Pro12Ala polymorphism and colorectal cancer (CRC) risk.

    PubMed

    Wang, Wei; Shao, Yan; Tang, Shenhua; Cheng, Xianyong; Lian, Haifeng; Qin, Chengyong

    2015-01-01

    The association between the peroxisome proliferator-activated receptor-γ (PPARγ) Pro12Ala polymorphism and colorectal cancer (CRC) risk was inconclusive. We conducted a meta-analysis to evaluate the association between PPARγ Pro12Ala polymorphism and CRC risk. We searched Pubmed, EMBASE, and China National Knowledge Infrastructure databases. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. A total of 17 case-control studies with 12635 and 15803 controls were included in this meta-analysis. Overall, PPARγ Pro12Ala polymorphism was associated with CRC risk (OR = 0.84, 95% CI 0.75-0.94, P = 0.003, I(2) = 35%). In the subgroup analysis by ethnicity, a significant association was found among Caucasians (OR = 0.85, 95% CI 0.75-0.96, P = 0.007, I(2) = 38%) but not among Asians (OR = 0.76, 95% CI 0.51-1.12, P = 0.17, I(2) = 28%). In the subgroup analysis by CRC site, a significant association was found among colon cancer (OR = 0.81, 95% CI 0.66-0.98, P = 0.03, I(2) = 16%) but not among rectal cancer (OR = 0.83, 95% CI 0.57-1.21, P = 0.34, I(2) = 63%). The sensitivity analysis did not influence the result by omitting low-quality studies (OR = 0.76, 95% CI 0.63-0.93, P = 0.006, I(2) = 51%). In conclusion, this meta-analysis suggested that PPARγ Pro12Ala polymorphism was significant associated with CRC risk.

  6. Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients.

    PubMed

    Jansen, Anne M L; Geilenkirchen, Marije A; van Wezel, Tom; Jagmohan-Changur, Shantie C; Ruano, Dina; van der Klift, Heleen M; van den Akker, Brendy E W M; Laros, Jeroen F J; van Galen, Michiel; Wagner, Anja; Letteboer, Tom G W; Gómez-García, Encarna B; Tops, Carli M J; Vasen, Hans F; Devilee, Peter; Hes, Frederik J; Morreau, Hans; Wijnen, Juul T

    2016-01-01

    Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline variant can be identified, which leads to difficulties in clinical management. We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unrelated sLS patients and 11 patients with MLH1 hypermethylated tumors with a clear family history. Using targeted next-generation sequencing, we analyzed the entire non-repetitive genomic sequence, including intronic and regulatory sequences, of 15 CRC susceptibility genes. In addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants. Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was a pathogenic variant (MLH1 c.1667+1delG). Leukocyte DNA of 11 patients with MLH1 hypermethylated tumors was negative for pathogenic germline variants in the tested CRC susceptibility genes and for germline MLH1 hypermethylation. Somatic DNA analysis of 28 sLS tumors identified eight (29%) cases with two pathogenic somatic variants, one with a VUS predicted to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic variant (n = 8) or one VUS predicted to be pathogenic (n = 1). This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMRdeficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes.

  7. Quantitative proteomics unravels that the post-transcriptional regulator Crc modulates the generation of vesicles and secreted virulence determinants of Pseudomonas aeruginosa.

    PubMed

    Reales-Calderón, Jose Antonio; Corona, Fernando; Monteoliva, Lucía; Gil, Concha; Martínez, Jose Luis

    2015-09-08

    Recent research indicates that the post-transcriptional regulator Crc modulates susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Several P. aeruginosa virulence factors are secreted or engulfed in vesicles. To decipher the Crc modulation of P. aeruginosa virulence, we constructed a crc deficient mutant and measure the proteome associated extracellular vesicles and the vesicle-free secretome using iTRAQ. Fifty vesicle-associated proteins were more abundant and 14 less abundant in the crc-defective strain, whereas 37 were more abundant and 17 less abundant in the vesicle-free secretome. Among them, virulence determinants, such as ToxA, protease IV, azurin, chitin-binding protein, PlcB and Hcp1, were less abundant in the crc-defective mutant. Transcriptomic analysis revealed that some of the observed changes were post-transcriptional and, thus, could be attributed to a direct Crc regulatory role; whereas, for other differentially secreted proteins, the regulatory role was likely indirect. We also observed that the crc mutant presented an impaired vesicle-associated secretion of quorum sensing signal molecules and less cytotoxicity than its wild-type strain. Our results offer new insights into the mechanisms by which Crc regulates P. aeruginosa virulence, through the modulation of vesicle formation and secretion of both virulence determinants and quorum sensing signals. This article is part of a Special Issue entitled: HUPO 2014. Published by Elsevier B.V.

  8. Isolation of Aramid Nanofibers for High Strength and Toughness Polymer Nanocomposites.

    PubMed

    Lin, Jiajun; Bang, Sun Hwi; Malakooti, Mohammad H; Sodano, Henry A

    2017-03-29

    The development of nanoscale reinforcements that can be used to improve the mechanical properties of a polymer remains a challenge due to the long-standing difficulties with exfoliation and dispersion of existing materials. The dissimilar chemical nature of common nanofillers (e.g., carbon nanotubes, graphene) and polymeric matrix materials is the main reason for imperfect filler dispersion and, consequently, low mechanical performance of their composites relative to theoretical predictions. Here, aramid nanofibers that are intrinsically dispersible in many polymers are prepared from commercial aramid fibers (Kevlar) and isolated through a simple, scalable, and low-cost controlled dissolution method. Integration of the aramid nanofibers in an epoxy resin results in nanocomposites with simultaneously improved elastic modulus, strength, and fracture toughness. The improvement of these two mutually exclusive properties of nanocomposites is comparable to the enhancement of widely reported carbon nanotube reinforced nanocomposites but with a cost-effective and more feasible method to achieve uniform and stable dispersion. The results indicate the potential for aramid nanofibers as a new class of reinforcements for polymers.

  9. G9a stimulates CRC growth by inducing p53 Lys373 dimethylation-dependent activation of Plk1.

    PubMed

    Zhang, Jie; Wang, Yafang; Shen, Yanyan; He, Pengxing; Ding, Jian; Chen, Yi

    2018-01-01

    Rationale: G9a is genetically deregulated in various tumor types and is important for cell proliferation; however, the mechanism underlying G9a-induced carcinogenesis, especially in colorectal cancer (CRC), is unclear. Here, we investigated if G9a exerts oncogenic effects in CRC by increasing polo-like kinase 1 (Plk1) expression. Thus, we further characterized the detailed molecular mechanisms. Methods: The role of Plk1 in G9a aberrant CRC was determined by performing different in vitro and in vivo assays, including assessment of cell growth by performing cell viability assay and assessment of signaling transduction profiles by performing immunoblotting, in the cases of pharmacological inhibition or short RNA interference-mediated suppression of G9a. Detailed molecular mechanisms underlying the effect of G9a on Plk1 expression were determined by performing point mutation analysis, chromatin immunoprecipitation analysis, and luciferase reporter assay. Correlation between G9a and Plk1 expression was determined by analyzing clinical samples of patients with CRC by performing immunohistochemistry. Results: Our study is the first to report a significant positive correlation between G9a and Plk1 levels in 89 clinical samples of patients with CRC. Moreover, G9a depletion decreased Plk1 expression and suppressed CRC cell growth both in vitro and in vivo , thus confirming the significant correlation between G9a and Plk1 levels. Further, we observed that G9a-induced Plk1 regulation depended on p53 inhibition. G9a dimethylated p53 at lysine 373, which in turn increased Plk1 expression and promoted CRC cell growth. Conclusions: These results indicate that G9a-induced and p53-dependent epigenetic programing stimulates the growth of colon cancer, which also suggests that G9a inhibitors that restore p53 activity are promising therapeutic agents for treating colon cancer, especially for CRC expressing wild-type p53.

  10. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  11. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  12. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE PAGES

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; ...

    2017-11-17

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  13. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry.

    PubMed

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-07-21

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young's modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties.

  14. Studies on fabrication of glass fiber reinforced composites using polymer blends

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  15. Interphase and particle dispersion correlations in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan

    Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories

  16. Optimal Electrode Selection for Electrical Resistance Tomography in Carbon Fiber Reinforced Polymer Composites.

    PubMed

    Escalona Galvis, Luis Waldo; Diaz-Montiel, Paulina; Venkataraman, Satchi

    2017-02-04

    Electrical Resistance Tomography (ERT) offers a non-destructive evaluation (NDE) technique that takes advantage of the inherent electrical properties in carbon fiber reinforced polymer (CFRP) composites for internal damage characterization. This paper investigates a method of optimum selection of sensing configurations for delamination detection in thick cross-ply laminates using ERT. Reduction in the number of sensing locations and measurements is necessary to minimize hardware and computational effort. The present work explores the use of an effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations resulting from selecting sensing electrode pairs. Singular Value Decomposition (SVD) is applied to obtain a spectral representation of the resistance measurements in the laminate for subsequent EI based reduction to take place. The electrical potential field in a CFRP laminate is calculated using finite element analysis (FEA) applied on models for two different laminate layouts considering a set of specified delamination sizes and locations with two different sensing arrangements. The effectiveness of the EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of damage using the full set and the reduced set of resistance measurements. This investigation shows that the EI measure is effective for optimally selecting the electrode pairs needed for resistance measurements in ERT based damage detection.

  17. Molecular Dynamics Study on the Photothermal Actuation of a Glassy Photoresponsive Polymer Reinforced with Gold Nanoparticles with Size Effect.

    PubMed

    Choi, Joonmyung; Chung, Hayoung; Yun, Jung-Hoon; Cho, Maenghyo

    2016-09-14

    We investigated the optical and thermal actuation behavior of densely cross-linked photoresponsive polymer (PRP) and polymer nanocomposites containing gold nanoparticles (PRP/Au) using all-atom molecular dynamics (MD) simulations. The modeled molecular structures contain a large number of photoreactive mesogens with linear orientation. Flexible side chains are interconnected through covalent bonds under periodic boundary conditions. A switchable dihedral potential was applied on a diazene moiety to describe the photochemical trans-to-cis isomerization. To quantify the photoinduced molecular reorientation and its effect on the macroscopic actuation of the neat PRP and PRP/Au materials, we characterized the photostrain and other material properties including elastic stiffness and thermal stability according to the photoisomerization ratio of the reactive groups. We particularly examined the effect of nanoparticle size on the photothermal actuation by varying the diameter of the nanofiller (10-20 Å) under the same volume fraction of 1.62%. The results indicated that the insertion of the gold nanoparticles enlarges the photostrain of the material while enhancing its mechanical stiffness and thermal stability. When the diameter of the nanoparticle reaches a size similar to or smaller than the length of the mesogen, the interfacial energy between the nanofiller and the surrounding polymer matrix does not significantly affect the alignment of the mesogens, but rather the adsorption energy at the interface generates a stable interphase layer. Hence, these improvements were more effective as the size of the gold nanoparticle decreased. The present findings suggest a wider analysis of the nanofiller-reinforced PRP composites and could be a guide for the mechanical design of the PRP actuator system.

  18. Testing of full-size reinforced concrete beams strengthened with FRP composites : experimental results and design methods verification(appendices)

    DOT National Transportation Integrated Search

    2000-06-01

    In 1997, a load rating of an historic reinforced concrete bridge in Oregon, Horsetail Creek Bridge, indicated substandard shear and moment capacities of the beams. As a result, the Bridge was strengthened with fiber reinforced polymer composites as a...

  19. Three-Dimensional-Moldable Nanofiber-Reinforced Transparent Composites with a Hierarchically Self-Assembled "Reverse" Nacre-like Architecture.

    PubMed

    Biswas, Subir K; Sano, Hironari; Shams, Md Iftekhar; Yano, Hiroyuki

    2017-09-06

    Achieving a structural hierarchy and a uniform nanofiller dispersion simultaneously remains highly challenging for obtaining a robust polymer nanocomposite of immiscible components. In this study, a remarkably facile Pickering emulsification approach is developed to fabricate hierarchical composites of immiscible acrylic polymer and native cellulose nanofibers by taking advantage of the dual role of the nanofibers as both emulsion stabilizer and polymer reinforcement. The composites feature a unique "reverse" nacre-like microstructure reinforced with a well-dispersed two-tier hierarchical nanofiber network, leading to a synergistic high strength, modulus, and toughness (20, 50, and 53 times that of neat polymer, respectively), high optical transparency (89%), high flexibility, and a drastically low thermal expansion (13 ppm K -1 , 1/15th of the neat polymer). The nanocomposites have a three-dimensional-shape moldability, also their surface can be patterned with micro/nanoscale features with high fidelity by in situ compression molding, making them attractive as the substrate for flexible displays, smart contact lens devices, and photovoltaics. The Pickering emulsification approach should be broadly applicable for the fabrication of novel functional materials of various immiscible components.

  20. The global regulator Crc plays a multifaceted role in modulation of type III secretion system in Pseudomonas aeruginosa.

    PubMed

    Dong, Yi-Hu; Zhang, Xi-Fen; Zhang, Lian-Hui

    2013-02-01

    The opportunistic pathogen Pseudomonas aeruginosa utilizes type III secretion system (T3SS) to translocate effector proteins into eukaryotic host cells that subvert normal host cell functions to the benefit of the pathogen, and results in serious infections. T3SS in P. aeruginosa is controlled by a complex system of regulatory mechanisms and signaling pathways. In this study, we described that Crc, an RNA-binding protein, exerts a positive impact on T3SS in P. aeruginosa, as evidenced by promoter activity assays of several key T3SS genes, transcriptomics, RT-PCR, and immunoblotting in crc mutant. We further demonstrated that the regulatory function of Crc on the T3SS was mediated through the T3SS master regulator ExsA and linked to the Cbr/Crc signaling system. Expression profiling of the crc mutant revealed a downregulation of flagship T3SS genes as well as 16 other genes known to regulate T3SS gene expression in P. aeruginosa. On the basis of these data, we proposed that Crc may exert multifaceted control on the T3SS through various pathways, which may serve to fine-tune this virulence mechanism in response to environmental changes and nutrient sources. © 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  1. Damage-Tolerant Polymer Composite Systems

    NASA Astrophysics Data System (ADS)

    Reifsnider, Kenneth L.

    1988-11-01

    One of the reasons for the rapid growth in the application of polymer composites is the opportunity they provide for the design and construction of composite structures that are especially resistant to losses of strength or reduced life resulting from damage during service. The usefulness of such materials is enhanced by the variety of reinforcement schemes that can be chosen to reflect specific service conditions. Under cyclic loading and demanding mechanical situations (e.g., helicopter parts, vehicle springs and high-speed rotors), polymer composites are considerably superior to competing materials.

  2. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review).

    PubMed

    Nikolouzakis, Taxiarchis Konstantinos; Vassilopoulou, Loukia; Fragkiadaki, Persefoni; Mariolis Sapsakos, Theodoros; Papadakis, Georgios Z; Spandidos, Demetrios A; Tsatsakis, Aristides M; Tsiaoussis, John

    2018-06-01

    Colorectal cancer (CRC) is among the most common cancers. In fact, it is placed in the third place among the most diagnosed cancer in men, after lung and prostate cancer, and in the second one for the most diagnosed cancer in women, following breast cancer. Moreover, its high mortality rates classifies it among the leading causes of cancer‑related death worldwide. Thus, in order to help clinicians to optimize their practice, it is crucial to introduce more effective tools that will improve not only early diagnosis, but also prediction of the most likely progression of the disease and response to chemotherapy. In that way, they will be able to decrease both morbidity and mortality of their patients. In accordance with that, colon cancer research has described numerous biomarkers for diagnostic, prognostic and predictive purposes that either alone or as part of a panel would help improve patient's clinical management. This review aims to describe the most accepted biomarkers among those proposed for use in CRC divided based on the clinical specimen that is examined (tissue, faeces or blood) along with their restrictions. Lastly, new insight in CRC monitoring will be discussed presenting promising emerging biomarkers (telomerase activity, telomere length and micronuclei frequency).

  3. FRP reinforcement for concrete : performance assessment and new construction volume I : Sierrita De La Cruz Creek bridge : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    Glass fiber reinforced polymer (GFRP) composites are emerging as a feasible economical solution to eliminate the corrosion problem of steel reinforcements in the concrete industry. Confirmation of GFRP long-term durability is crucial to extend its ap...

  4. Dynamic properties of hydrogels and fiber-reinforced hydrogels.

    PubMed

    Martin, Nicholas; Youssef, George

    2018-06-07

    Hydrophilic polymers, or hydrogels, are used for a wide variety of biomedical applications, due to their inherent ability to withhold a high-water content. In recent years, a large effort has been focused on tailoring the mechanical properties of these hydrogels to become more appropriate materials for use as anatomical and physiological structural supports. A few of these such methods include using diverse types of polymers, both natural and synthetic, varying the type of molecular cross-linking, as well as combining these efforts to form interpenetrating polymer network hydrogels. While multiple research groups have characterized these various hydrogels under quasi-static conditions, their dynamic properties, representative of native physiological loading scenarios, have been scarcely reported. In this study, an E-glass fiber reinforced family of alginate/PAAm hydrogels cross-linked by both divalent and trivalent cations are fabricated and investigated. The effect of the reinforcement phase on the dynamic and hydration behaviors is then explicated. Additionally, a micromechanics framework for short cylindrical chopped fibers is utilized to discern the contribution of the matrix and fiber constituents on the hydrogel composite. The addition of E-glass fibers resulted in the storage modulus exhibiting a ~50%, 5%, and ~120%, increase with a mere addition of 2 wt% of the reinforcing fibers to Na-, Sr-, and Al-alginate/PAAm, respectively. In studying the cross-linking effect of various divalent (Ba, Ca, Sr) and trivalent (Al, Fe) cations, it was noteworthy that the hydrogels were found to be effective in dissipating energy while resisting mechanical deformation when they are cross-linked with higher molecular weight elements, regardless of valency. This report on the dynamic properties of these hydrogels will help to improve their optimization for future use in biomedical load-bearing applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation.

    PubMed

    Gröschl, Benedikt; Bettstetter, Marcus; Giedl, Christian; Woenckhaus, Matthias; Edmonston, Tina; Hofstädter, Ferdinand; Dietmaier, Wolfgang

    2013-04-01

    DUSP4 (MKP-2), a member of the mitogen-activated protein kinase phosphatase (MKP) family and potential tumor suppressor, negatively regulates the MAPKs (mitogen-activated protein kinases) ERK, p38 and JNK. MAPKs play a crucial role in cancer development and progression. Previously, using microarray analyses we found a conspicuously frequent overexpression of DUSP4 in colorectal cancer (CRC) with high frequent microsatellite instability (MSI-H) compared to microsatellite stable (MSS) CRC. Here we studied DUSP4 expression on mRNA level in 38 CRC (19 MSI-H and 19 MSS) compared to matched normal tissue as well as in CRC cell lines by RT-qPCR. DUSP4 was overexpressed in all 19 MSI-H tumors and in 14 MSS tumors. Median expression levels in MSI-H tumors were significantly higher than in MSS-tumors (p < 0.001). Consistently, MSI-H CRC cell lines showed 6.8-fold higher DUSP4 mRNA levels than MSS cell lines. DUSP4 expression was not regulated by promoter methylation since no methylation was found by quantitative methylation analysis of DUSP4 promoter in CRC cell lines neither in tumor samples. Furthermore, no DUSP4 mutation was found on genomic DNA level in four CRC cell lines. DUSP4 overexpression in CRC cell lines through DUSP4 transfection caused upregulated expression of MAPK targets CDC25A, CCND1, EGR1, FOS, MYC and CDKN1A in HCT116 as well as downregulation of mismatch repair gene MSH2 in SW480. Furthermore, DUSP4 overexpression led to increased proliferation in CRC cell lines. Our findings suggest that DUSP4 acts as an important regulator of cell growth within the MAPK pathway and causes enhanced cell growth in MSI-H CRC. Copyright © 2012 UICC.

  6. Quantitative proteomics unravels that the post-transcriptional regulator Crc modulates the generation of vesicles and secreted virulence determinants of Pseudomonas aeruginosa.

    PubMed

    Reales-Calderón, Jose Antonio; Corona, Fernando; Monteoliva, Lucía; Gil, Concha; Martínez, Jose Luis

    2015-09-01

    Crc is a post-transcriptional regulator in Pseudomonas aeruginosa that modulates its metabolism, but also its susceptibility to antibiotics and virulence. Most of P. aeruginosa virulence factors are secreted or engulfed in vesicles. A Crc deficient mutant was created and the extracellular vesicles associated exoproteome and the vesicle-free secretome was quantified using iTRAQ. Fifty vesicles-associated proteins were more abundant and 14 less abundant in the Crc-defective strain, whereas 37 were more abundant and 17 less abundant in the vesicle-free secretome. Different virulence determinants, such as ToxA, protease IV, azurin, chitin-binding protein, PlcB and Hcp1, were less abundant in the Crc-defective mutant. We also observed that the crc mutant presented an impaired vesicle-associated secretion of quorum sensing signal molecules and less cytotoxicity than its wild-type strain, in agreement with the low secretion of proteins related to virulence. Our results offer new insights into the mechanisms by which Crc regulates P. aeruginosa virulence, through the modulation of vesicle formation and secretion of both virulence determinants and quorum sensing signals.

  7. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  8. The Crc protein inhibits the production of polyhydroxyalkanoates in Pseudomonas putida under balanced carbon/nitrogen growth conditions.

    PubMed

    La Rosa, Ruggero; de la Peña, Fernando; Prieto, María Axiliadora; Rojo, Fernando

    2014-01-01

    Pseudomonas putida synthesizes polyhydroxyalkanoates (PHAs) as storage compounds. PHA synthesis is more active when the carbon source is in excess and the nitrogen source is limiting, but can also occur at a lower rate under balanced carbon/nitrogen ratios. This work shows that PHA synthesis is controlled by the Crc global regulator, a protein that optimizes carbon metabolism by inhibiting the expression of genes involved in the use of non-preferred carbon sources. Crc acts post-transcriptionally. The mRNAs of target genes contain characteristic catabolite activity (CA) motifs near the ribosome binding site. Sequences resembling CA motifs can be predicted for the phaC1 gene, which codes for a PHA polymerase, and for phaI and phaF, which encode proteins associated to PHA granules. Our results show that Crc inhibits the translation of phaC1 mRNA, but not that of phaI or phaF, reducing the amount of PHA accumulated in the cell. Crc inhibited PHA synthesis during exponential growth in media containing a balanced carbon/nitrogen ratio. No inhibition was seen when the carbon/nitrogen ratio was imbalanced. This extends the role of Crc beyond that of controlling the hierarchical utilization of carbon sources and provides a link between PHA synthesis and the global regulatory networks controlling carbon flow. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    PubMed

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures

    DTIC Science & Technology

    2010-01-01

    angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective

  11. The β-catenin E3 ubiquitin ligase SIAH-1 is regulated by CSN5/JAB1 in CRC cells.

    PubMed

    Jumpertz, Sandra; Hennes, Thomas; Asare, Yaw; Vervoorts, Jörg; Bernhagen, Jürgen; Schütz, Anke K

    2014-09-01

    COP9 signalosome subunit 5 (CSN5) plays a decisive role in cellular processes such as cell cycle regulation and apoptosis via promoting protein degradation, gene transcription, and nuclear export. CSN5 regulates cullin-RING-E3 ligase (CRL) activity through its deNEDDylase function. It is overexpressed in several tumor entities, but its role in colorectal cancer (CRC) is poorly understood. Wnt/β-catenin signaling is aberrant in most CRC cells, resulting in increased levels of oncogenic β-catenin and thus tumor progression. Under physiological conditions, β-catenin levels are tightly regulated by continuous proteasomal degradation. We recently showed that knockdown of CSN5 in model and CRC cells results in decreased (phospho)-β-catenin levels. Reduced β-catenin levels were associated with an attenuated proliferation rate of different CRC cell types after CSN5 knockdown. The canonical Wnt pathway involves degradation of β-catenin by a β-TrCP1-containing E3 ligase, but is mostly non-functional in CRC cells. We thus hypothesized that alternative β-catenin degradation mediated by SIAH-1 (seven in absentia homolog-1), is responsible for the effect of CSN5 on β-catenin signaling in CRC cells. We found that SIAH-1 plays an essential role in β-catenin degradation in HCT116 CRC cells and that CSN5 affects β-catenin target gene expression in these cells. Of note, CSN5 affected SIAH-1 mRNA and SIAH-1 protein levels. Moreover, β-catenin and SIAH-1 form protein complexes with CSN5 in HCT116 cells. Lastly, we demonstrate that CSN5 promotes SIAH-1 degradation in HCT116 and SW480 cells and that this is associated with its deNEDDylase activity. In conclusion, we have identified a CSN5/β-catenin/SIAH-1 interaction network that might control β-catenin degradation in CRC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Numerical Investigation of Delamination in Drilling of Carbon Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Tang, Wenliang; Chen, Yan; Yang, Haojun; Wang, Hua; Yao, Qiwei

    2018-03-01

    Drilling of carbon fiber reinforced polymer (CFRP) is a challenging task in modern manufacturing sector and machining induced delamination is one of the major problems affecting assembly precision. In this work, a new three-dimensional (3D) finite element model is developed to study the chip formation and entrance delamination in drilling of CFRP composites on the microscopic level. Fiber phase, matrix phase and equivalent homogeneous phase in the multi-phase model have different constitutive behaviors, respectively. A comparative drilling test, in which the cement carbide drill and unidirectional CFRP laminate are employed, is conducted to validate the proposedmodel in terms of the delamination and the similar changing trend is obtained. Microscopic mechanism of entrance delamination together with the chip formation process at four special fiber cutting angles (0°, 45°, 90° and 135°) is investigated. Moreover, the peeling force is also predicted. The results show that the delamination occurrence and the chip formation are both strongly dependent on the fiber cutting angle. The length of entrance delamination rises with increasing fiber cutting angles. Negligible delamination at 0° is attributed to the compression by the minor flank face. For 45° and 90°, the delamination resulted from the mode III fracture. At 135°, serious delamination which is driven by the mode I and III fractures is more inclined to occur and the peeling force reaches its maximum. Such numerical models can help understand the mechanism of hole entrance delamination further and provide guidance for the damage-free drilling of CFRP.

  13. Electrospun nanofibers of poly(vinyl alcohol)reinforced with cellulose nanofibrils

    USDA-ARS?s Scientific Manuscript database

    In this work, nanofibers of poly(vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on mor...

  14. An Assessment of Self-Healing Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.

    2012-01-01

    Several reviews and books have been written concerning self-healing polymers over the last few years. These have focused primarily on the types of self-healing materials being studied, with minor emphasis given to composite properties. The purpose of this review is to assess the self-healing ability of these materials when utilized in fiber reinforced composites

  15. Mineral-Ground Micro-Fibrillated Cellulose Reinforcement for Polymer Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Jon; Ireland, Sean; Skuse, David

    2017-01-01

    ORNL worked with Imerys to demonstrate reinforcement of additive manufacturing feedstock materials using mineral-ground microfibrillated cellulose (MFC). Properly prepared/dried mineral-ground cellulose microfibrils significantly improved mechanical properties of both ABS and PLA resins. While tensile strength increases up to ~40% were observed, elastic modulus of the both resins doubled with the addition of 30% MFC.

  16. Perioperative FOLFOX4 plus bevacizumab for initially unresectable advanced colorectal cancer (NAVIGATE-CRC-01).

    PubMed

    Suenaga, Mitsukuni; Fujimoto, Yoshiya; Matsusaka, Satoshi; Shinozaki, Eiji; Akiyoshi, Takashi; Nagayama, Satoshi; Fukunaga, Yosuke; Oya, Masatoshi; Ueno, Masashi; Mizunuma, Nobuyuki; Yamaguchi, Toshiharu

    2015-01-01

    Perioperative chemotherapy combined with surgery for liver metastases is considered an active strategy in metastatic colorectal cancer (CRC). However, its impact on initially unresectable, previously untreated advanced CRC, regardless of concurrent metastases, remains to be clarified. A Phase II study was conducted to evaluate the safety and efficacy of perioperative FOLFOX4 plus bevacizumab for initially unresectable advanced CRC. Patients with previously untreated advanced colon or rectal cancer initially diagnosed as unresectable advanced CRC (TNM stage IIIb, IIIc, or IV) but potentially resectable after neoadjuvant chemotherapy (NAC) were studied. Preoperatively, patients received six cycles of NAC (five cycles of neoadjuvant FOLFOX4 plus bevacizumab followed by one cycle of FOLFOX4 alone). The interval between the last dose of bevacizumab and surgery was at least 5 weeks. Six cycles of adjuvant FOLFOX4 plus bevacizumab were given after surgery. The completion rate of NAC and feasibility of curative surgery were the primary endpoints. An interim analysis was performed at the end of NAC in the 12th patient to assess the completion rate of NAC. The median follow-up time was 56 months. The characteristics of the patients were as follows: sex, eight males and four females; tumor location, sigmoid colon in three, ascending colon in one, and rectum (above the peritoneal reflection) in eight; stage, III in eight and IV in four (liver or lymph nodes). All patients completed six cycles of NAC. There were no treatment-related severe adverse events or deaths. An objective response to NAC was achieved in nine patients (75%), and no disease progression was observed. Eleven patients underwent curative tumor resection, including metastatic lesions. In December 2012, this Phase II study was terminated because of slow registration. Perioperative FOLFOX4 plus bevacizumab is well tolerated and has a promising response rate leading to curative surgery, which offers a survival

  17. Protein kinase C zeta suppresses low‐ or high‐grade colorectal cancer (CRC) phenotypes by interphase centrosome anchoring

    PubMed Central

    Deevi, Ravi Kiran; Javadi, Arman; McClements, Jane; Vohhodina, Jekaterina; Savage, Kienan; Loughrey, Maurice Bernard; Evergren, Emma

    2018-01-01

    Abstract Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi‐lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low‐grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high‐grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high‐grade morphology in formalin‐fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie

  18. Biological and nano-indentation properties of polybenzoxazine-based composites reinforced with zirconia particles as a novel biomaterial.

    PubMed

    Lotfi, L; Javadpour, J; Naimi-Jamal, M R

    2018-01-01

    The biological and mechanical properties of substances are relevant to their application as biomaterials and there are many efforts to enhance biocompatibility and mechanical properties of bio-medical materials. In this study, to achieve a low rate of shrinkage during polymerization, good mechanical properties, and excellent biocompatibility, benzoxazine based composites were synthesized. Benzoxazine monomer was synthesized using a solventless method. FTIR and DSC analysis were carried out to determine the appropriate polymerization temperature. The low viscosity of the benzoxazine monomer at 70°C attract us to use in situ polymerization after high speed ball milling of the benzoxazine and it mixture with different weight fractions of zirconia particles. Dispersion and adhesion between the ceramic and polymer components were evaluate by SEM. To evaluate the biological properties and toxicity of the polybenzoxazine-based composite samples reinforced with zirconia particles, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay was conducted. The micromechanical properties of each composite were evaluated by more than 20 nanoindentation tests and 3 nanoscratching tests. Surface topography of scratched regions was investigated using Atomic Force Microscopy. Shrinkage was simulated by Materials Studio software. SEM images showed good dispersion and adhesion between the ceramic and polymer components. Biocompatibility assay showed excellent in vitro biocompatibility. Nano-indentation force-displacement curves showed matrix, reinforcement and interphase regions in specimens and excellent homogeneity in mechanical properties. The nanoindentation results showed that the addition of zirconia particles to the polybenzoxazine matrix increased the modulus and hardness of the neat polybenzoxazine; however, by adding more than an optimum level of reinforcement particles, the mechanical properties decreased due to the agglomeration of reinforcement particles and

  19. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yuan; Tekinalp, Halil L; Peter, William H

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thusmore » been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.« less

  20. Flexure and impact properties of glass fiber reinforced nylon 6-polypropylene composites

    NASA Astrophysics Data System (ADS)

    Kusaseh, N. M.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Azhari, A.; Iqbal, A. K. M. A.

    2018-03-01

    In recent years, polymer composites are rapidly developing and replacing the metals or alloys in numerous engineering applications. These polymer composites are the topic of interests in industrial applications such as automotive and aerospace industries. In the present research study, glass fiber (GF) reinforced nylon 6 (PA6)-polypropylene (PP) composite specimens were prepared successfully using injection molding process. Test specimens of five different compositions such as, 70%PA6+30%PP, 65%PA6+30%PP+5%GF, 60%PA6+30%PP+10%GF, 55%PA6+30%PP+15%GF and 50%PA6+30%PP+20%GF were prepared. In the experiments, flexure and impact tests were carried out. The obtained results revealed that flexure and impact properties of the polymer composites were significantly influenced by the glass fiber content. Results showed that flexural strength is low for pure polymer blend and flexural strength of GF reinforced composite increases gradually with the increase in glass fiber content. Test results also revealed that the impact strength of 70%PA6+30%PP is the highest and 55%PA6+30%PP+15%GF composite shows moderate impact strength. On the other hand, 50%PA6+30%PP+20%GF composite shows low toughness or reduced impact strength.

  1. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  2. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete

    PubMed Central

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-01

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948

  3. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    PubMed

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  4. NR2F2 inhibits Smad7 expression and promotes TGF-β-dependent epithelial-mesenchymal transition of CRC via transactivation of miR-21.

    PubMed

    Wang, Hao; Nie, Lei; Wu, Lei; Liu, Qiufang; Guo, Xueyan

    2017-03-25

    Metastasis is one of the most decisive factors influencing CRC patient prognosis and current studies suggest that a molecular mechanism known as EMT broadly regulates cancer metastasis. NR2F2 is a key molecule in the development of CRC, but the roles and underlying mechanisms of NR2F2 in TGF-β induced EMT in CRC remain largely unknown. In the current study, we were interested to examine the role of NR2F2 in the TGF-β-induced EMT in CRC. Here, we found NR2F2 was upregulated in CRC cells and promotes TGF-β-induced EMT in CRC. Using comparative miRNA profiling TGF-β pre-treated CRC cells in which NR2F2 had been knocked down with that of control cells, we identified miR-21 as a commonly downregulated miRNA in HT29 cells treated with TGF-β and NR2F2 siRNA, and its downregulation inhibiting migration and invasion of CRC cells. Moreover, we found NR2F2 could transcriptional activated miR-21 expression by binding to miR-21 promoter in HT29 by ChIP and luciferase assay. In the last, our data demonstrated that Smad7 was the direct target of miR-21 in CRC cells. Thus, NR2F2 could promote TGF-β-induced EMT and inhibit Smad7 expression via transactivation of miR-21, and NR2F2 may be a new common therapeutic target for CRC. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Crc protein participates in down-regulation of the Lon gene to promote rhamnolipid production and rhl quorum sensing in Pseudomonas aeruginosa.

    PubMed

    Yang, Nana; Ding, Shuting; Chen, Feifei; Zhang, Xue; Xia, Yongjie; Di, Hongxia; Cao, Qiao; Deng, Xin; Wu, Min; Wong, Catherine C L; Tian, Xiao-Xu; Yang, Cai-Guang; Zhao, Jing; Lan, Lefu

    2015-05-01

    Rhamnolipid acts as a virulence factor during Pseudomonas aeruginosa infection. Here, we show that deletion of the catabolite repression control (crc) gene in P. aeruginosa leads to a rhamnolipid-negative phenotype. This effect is mediated by the down-regulation of rhl quorum sensing (QS). We discover that a disruption of the gene encoding the Lon protease entirely offsets the effect of crc deletion on the production of both rhamnolipid and rhl QS signal C4-HSL. Crc is unable to bind lon mRNA in vitro in the absence of the RNA chaperon Hfq, while Crc contributes to Hfq-mediated repression of the lon gene expression at a posttranscriptional level. Deletion of crc, which results in up-regulation of lon, significantly reduces the in vivo stability and abundance of the RhlI protein that synthesizes C4-HSL, causing the attenuation of rhl QS. Lon is also capable of degrading the RhlI protein in vitro. In addition, constitutive expression of rhlI suppresses the defects of the crc deletion mutant in rhamnolipid, C4-HSL and virulence on lettuce leaves. This study therefore uncovers a novel posttranscriptional regulatory cascade, Crc-Hfq/Lon/RhlI, for the regulation of rhamnolipid production and rhl QS in P. aeruginosa. © 2015 John Wiley & Sons Ltd.

  6. Optimal Electrode Selection for Electrical Resistance Tomography in Carbon Fiber Reinforced Polymer Composites

    PubMed Central

    Escalona Galvis, Luis Waldo; Diaz-Montiel, Paulina; Venkataraman, Satchi

    2017-01-01

    Electrical Resistance Tomography (ERT) offers a non-destructive evaluation (NDE) technique that takes advantage of the inherent electrical properties in carbon fiber reinforced polymer (CFRP) composites for internal damage characterization. This paper investigates a method of optimum selection of sensing configurations for delamination detection in thick cross-ply laminates using ERT. Reduction in the number of sensing locations and measurements is necessary to minimize hardware and computational effort. The present work explores the use of an effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations resulting from selecting sensing electrode pairs. Singular Value Decomposition (SVD) is applied to obtain a spectral representation of the resistance measurements in the laminate for subsequent EI based reduction to take place. The electrical potential field in a CFRP laminate is calculated using finite element analysis (FEA) applied on models for two different laminate layouts considering a set of specified delamination sizes and locations with two different sensing arrangements. The effectiveness of the EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of damage using the full set and the reduced set of resistance measurements. This investigation shows that the EI measure is effective for optimally selecting the electrode pairs needed for resistance measurements in ERT based damage detection. PMID:28772485

  7. Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Juarez, Peter; Leckey, Cara A. C.

    2018-04-01

    Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.

  8. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry

    PubMed Central

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-01-01

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young’s modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties. PMID:28773725

  9. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    NASA Astrophysics Data System (ADS)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  10. Reinforcement of Existing Cast-Iron Structural Elements by Means of Fiber Reinforced Composites / Wzmacnianie Istniejących, Żeliwnych Elementów Konstrukcyjnych za Pomocą Włóknokompozytów

    NASA Astrophysics Data System (ADS)

    Marcinowski, Jakub; Różycki, Zbigniew

    2016-03-01

    The paperdeals with tubular, cast-iron columns which should be reinforced due to the planned new structural function of these elements. According to the requirements of the monument conservator the general appearance of columns should not be altered significantly. Reinforcement with an external, thin coating (sleeve or jacket) made of composite (carbon fibre reinforced polymer - CFRP) was proposed. Details of the proposedtechniquewerepresented. The reinforcementeffect was verifiedin destructivetestsperformed on two columns without reinforcement and the two other columns reinforced with the chosentechnique. Due to the expected very high load capacity of the axially loaded column, the test rig was designed in such a manner that the force could be applied on big eccentricity. For this purpose a specialbase was prepared(comp. Fig. 1). Destructivetests have confirmed the high effectiveness of the adopted strengthening technique.

  11. Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis.

    PubMed

    Sethi, Manveen K; Thaysen-Andersen, Morten; Kim, Hoguen; Park, Cheol Keun; Baker, Mark S; Packer, Nicolle H; Paik, Young-Ki; Hancock, William S; Fanayan, Susan

    2015-08-03

    Modern proteomics has proven instrumental in our understanding of the molecular deregulations associated with the development and progression of cancer. Herein, we profile membrane-enriched proteome of tumor and adjacent normal tissues from eight CRC patients using label-free nanoLC-MS/MS-based quantitative proteomics and advanced pathway analysis. Of the 948 identified proteins, 184 proteins were differentially expressed (P<0.05, fold change>1.5) between the tumor and non-tumor tissue (69 up-regulated and 115 down-regulated in tumor tissues). The CRC tumor and non-tumor tissues clustered tightly in separate groups using hierarchical cluster analysis of the differentially expressed proteins, indicating a strong CRC-association of this proteome subset. Specifically, cancer associated proteins such as FN1, TNC, DEFA1, ITGB2, MLEC, CDH17, EZR and pathways including actin cytoskeleton and RhoGDI signaling were deregulated. Stage-specific proteome signatures were identified including up-regulated ribosomal proteins and down-regulated annexin proteins in early stage CRC. Finally, EGFR(+) CRC tissues showed an EGFR-dependent down-regulation of cell adhesion molecules, relative to EGFR(-) tissues. Taken together, this study provides a detailed map of the altered proteome and associated protein pathways in CRC, which enhances our mechanistic understanding of CRC biology and opens avenues for a knowledge-driven search for candidate CRC protein markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fracture detection in concrete by glass fiber cloth reinforced plastics

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi; Lee, Sung-Riong

    2006-04-01

    Two types of carbon (carbon fiber and carbon powder) and a glass cloth were used as conductive phases and a reinforcing fiber, respectively, in polymer rods. The carbon powder was used for fabricating electrically conductive carbon powder-glass fiber reinforced plastic (CP-GFRP) rods. The carbon fiber tows and the CP-GFRP rods were adhered to mortar specimens using epoxy resin and glass fiber cloth. On bending, the electrical resistance of the carbon fiber tow attached to the mortar specimen increased greatly after crack generation, and that of the CP-GFRP rod increased after the early stages of deflection in the mortar. Therefore, the CP-GFRP rod is superior to the carbon fiber tow in detecting fractures. Also, by reinforcing with a glass fiber cloth reinforced plastic, the strength of the mortar specimens became more than twice as strong as that of the unreinforced mortar.

  13. Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses

    NASA Astrophysics Data System (ADS)

    Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.

  14. Polymer/clay/wood nanocomposites: The effect of incorporation of nanoclay into the wood/polymer composites

    NASA Astrophysics Data System (ADS)

    Hetzer, Max E.

    Thermoplastic composites play an important role in our society. The uses of these composites range from cookware to components for the space shuttle. In recent years, researchers at Toyota developed numerous methods of preparation for composites made from olefins and inorganic fillers such as clay and calcium carbonate. Wood fibers have been used as reinforcing filler in polymer matrices for the past several decades. The advantages of using wood fibers as reinforcing fillers are: the low cost of the fibers (or flour), low density, and resistance to breakage. The disadvantage of using wood as a filler is the thermal instability of wood above 200 °C. The majority of thermoplastics exhibit melting points between 160 and 220 °C, which is in the range of thermal decomposition of wood. Nanoclay was first successfully used as a filler in polyolefin materials by the Toyota research team in early 90s. It was found that the addition of a small amount (< 5 wt.%) of nanoclay increased the mechanical properties of a Nylon-6 matrix dramatically. Since Nylon-6 is a hydrophilic material no compatibilizer was necessary to exfoliate the nanoclay. The use of compatibilizers such as maleic modified polyethylenes (MAPEs) is necessary upon addition of nanoclay to a hydrophobic polyolefin systems such polyethylene (PE) or polypropylene (PP). Few researchers have attempted to reinforce the polymer matrix via the use of the nanoclay for use as a matrix in wood/polymer composites. High molecular weight and low molecular weight MAPEs have been used to enhance the bonding between the nanoclay and the polymer matrix as well as between the wood flour and the polymer matrix. The effects of combinations of the high and low molecular weight MAPEs on the mechanical and thermal properties of polymer/clay nanocomposites (PCNs) and of wood/polymer/clay composites (WPCs) were investigated. The effects of adding nanoclay to wood/polymer systems on the mechanical and thermal properties of the

  15. Polymer matrix nanocomposites for automotive structural components

    DOE PAGES

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this paper, we critically evaluate the state of the art in the field andmore » propose a possible path that may help to overcome these barriers. Finally, only once we achieve a deeper understanding of the structure–properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.« less

  16. Polymer matrix nanocomposites for automotive structural components

    NASA Astrophysics Data System (ADS)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  17. Polymer matrix nanocomposites for automotive structural components.

    PubMed

    Naskar, Amit K; Keum, Jong K; Boeman, Raymond G

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  18. Mechanical properties of heterophase polymer blends of cryogenically fractured soy flour composite filler and poly(styrene-butadiene)

    USDA-ARS?s Scientific Manuscript database

    Reinforcement effect of cryogenically fractured soy Flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dis...

  19. FEM investigation of concrete silos damaged and reinforced externally with CFRP

    NASA Astrophysics Data System (ADS)

    Kermiche, Sihem; Boussaid, Ouzine; Redjel, Bachir; Amirat, Abdelaziz

    2018-03-01

    The present work investigates the reinforcement of concrete wheat-grain silos under initial damage. The reinforcement is achieved by mounting bands of carbon fiber reinforced polymer (CFRP) on the external walls of the silo. 4 modes of reinforcement are adapted according to the width of the band, the gap between two bands, the height of reinforcement and the number of layers achieved through banding. Analytical analyses were conducted using the Reimbert method and the Eurocode 1 Part 4 method, as well as numerically through the finite element software Abaqus. Results show that the normal pressure reaches a peak value when approaching the silo hopper. Initial damage in a concrete silo was first determined using a 3D geometrical model, while the damage analyses were conducted to optimize the CFRP reinforcement by mounting 2 CFRP bands close together above and below the cylinder-hopper joint. Increasing the number of banding layers could produce better performance as the damage was slightly decreased from 0.161 to 0.152 for 1 and 4 layers respectively.

  20. The "Interval Walking in Colorectal Cancer" (I-WALK-CRC) study: Design, methods and recruitment results of a randomized controlled feasibility trial.

    PubMed

    Banck-Petersen, Anna; Olsen, Cecilie K; Djurhuus, Sissal S; Herrstedt, Anita; Thorsen-Streit, Sarah; Ried-Larsen, Mathias; Østerlind, Kell; Osterkamp, Jens; Krarup, Peter-Martin; Vistisen, Kirsten; Mosgaard, Camilla S; Pedersen, Bente K; Højman, Pernille; Christensen, Jesper F

    2018-03-01

    Low physical activity level is associated with poor prognosis in patients with colorectal cancer (CRC). To increase physical activity, technology-based platforms are emerging and provide intriguing opportunities to prescribe and monitor active lifestyle interventions. The "Interval Walking in Colorectal Cancer"(I-WALK-CRC) study explores the feasibility and efficacy a home-based interval-walking intervention delivered by a smart-phone application in order to improve cardio-metabolic health profile among CRC survivors. The aim of the present report is to describe the design, methods and recruitment results of the I-WALK-CRC study.Methods/Results: The I-WALK-CRC study is a randomized controlled trial designed to evaluate the feasibility and efficacy of a home-based interval walking intervention compared to a waiting-list control group for physiological and patient-reported outcomes. Patients who had completed surgery for local stage disease and patients who had completed surgery and any adjuvant chemotherapy for locally advanced stage disease were eligible for inclusion. Between October 1st , 2015, and February 1st , 2017, 136 inquiries were recorded; 83 patients were eligible for enrollment, and 42 patients accepted participation. Age and employment status were associated with participation, as participants were significantly younger (60.5 vs 70.8 years, P < 0.001) and more likely to be working (OR 5.04; 95%CI 1.96-12.98, P < 0.001) than non-participants. In the present study, recruitment of CRC survivors was feasible but we aim to better the recruitment rate in future studies. Further, the study clearly favored younger participants. The I-WALK-CRC study will provide important information regarding feasibility and efficacy of a home-based walking exercise program in CRC survivors.

  1. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sa, Kadambinee; Mahakul, Prakash C.; Subramanyam, B. V. R. S.; Raiguru, Jagatpati; Das, Sonali; Alam, Injamul; Mahanandia, Pitamber

    2018-03-01

    Graphene and carbon nanotubes (CNTs) have tremendous interest as reinforcing fillers due to their excellent physical properties. However, their reinforcing effect in polymer matrix is limited due to agglomeration of graphene and CNTs within the polymer matrix. Mechanical properties by the admixture of reduced graphene oxide (rGO) and CNTs in Poly (methyl methacrylate) (PMMA) prepared by solution mixing method has been investigated. The prepared samples are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The hybrid composite shows improvement in the mechanical properties compared to rGO/PMMA and MWCNTs/PMMA composites due to better interaction between rGO-MWCNTs and polymer matrix.

  2. Research on the Mechanical Properties of a Glass Fiber Reinforced Polymer-Steel Combined Truss Structure

    PubMed Central

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  3. Modeling of Dynamic Behavior of Carbon Fiber-Reinforced Polymer (CFRP) Composite under X-ray Radiation.

    PubMed

    Zhang, Kun; Tang, Wenhui; Fu, Kunkun

    2018-01-16

    Carbon fiber-reinforced polymer (CFRP) composites have been increasingly used in spacecraft applications. Spacecraft may encounter highenergy-density X-ray radiation in outer space that can cause severe damage. To protect spacecraft from such unexpected damage, it is essential to predict the dynamic behavior of CFRP composites under X-ray radiation. In this study, we developed an in-house three-dimensional explicit finite element (FEM) code to investigate the dynamic responses of CFRP composite under X-ray radiation for the first time, by incorporating a modified PUFF equation-of-state. First, the blow-off impulse (BOI) momentum of an aluminum panel was predicted by our FEM code and compared with an existing radiation experiment. Then, the FEM code was utilized to determine the dynamic behavior of a CFRP composite under various radiation conditions. It was found that the numerical result was comparable with the experimental one. Furthermore, the CFRP composite was more effective than the aluminum panel in reducing radiation-induced pressure and BOI momentum. The numerical results also revealed that a 1 keV X-ray led to vaporization of surface materials and a high-magnitude compressive stress wave, whereas a low-magnitude stress wave was generated with no surface vaporization when a 3 keV X-ray was applied.

  4. Modeling of Dynamic Behavior of Carbon Fiber-Reinforced Polymer (CFRP) Composite under X-ray Radiation

    PubMed Central

    Zhang, Kun; Tang, Wenhui; Fu, Kunkun

    2018-01-01

    Carbon fiber-reinforced polymer (CFRP) composites have been increasingly used in spacecraft applications. Spacecraft may encounter highenergy-density X-ray radiation in outer space that can cause severe damage. To protect spacecraft from such unexpected damage, it is essential to predict the dynamic behavior of CFRP composites under X-ray radiation. In this study, we developed an in-house three-dimensional explicit finite element (FEM) code to investigate the dynamic responses of CFRP composite under X-ray radiation for the first time, by incorporating a modified PUFF equation-of-state. First, the blow-off impulse (BOI) momentum of an aluminum panel was predicted by our FEM code and compared with an existing radiation experiment. Then, the FEM code was utilized to determine the dynamic behavior of a CFRP composite under various radiation conditions. It was found that the numerical result was comparable with the experimental one. Furthermore, the CFRP composite was more effective than the aluminum panel in reducing radiation-induced pressure and BOI momentum. The numerical results also revealed that a 1 keV X-ray led to vaporization of surface materials and a high-magnitude compressive stress wave, whereas a low-magnitude stress wave was generated with no surface vaporization when a 3 keV X-ray was applied. PMID:29337891

  5. Research on the mechanical properties of a glass fiber reinforced polymer-steel combined truss structure.

    PubMed

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status.

  6. Hsa-miR-875-5p exerts tumor suppressor function through down-regulation of EGFR in colorectal carcinoma (CRC)

    PubMed Central

    Li, Qi; Xue, Peng; Chen, Zhixiao; Dong, Xiao; Xue, Ying

    2016-01-01

    Hsa-miRNA-875-5p (miR-875-5p) has recently been discovered to have anticancer efficacy in different organs. However, the role of miR-875-5p on colorectal carcinoma (CRC) is still ambiguous. In this study, we investigated the role of miR-875-5p on the development of CRC. The results indicated that miR-875-5p was significantly down-regulated in primary tumor tissues and very low levels were found in CRC cell lines. Ectopic expression of miR-875-5p in CRC cell lines significantly suppressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibition of cyclin D1, cyclin D2, CDK4 and up-regulation of p57(Kip2) and p21(Waf1/Cip1). In addition, miR-875-5p induced apoptosis, as indicated by concomitantly with up-regulation of key apoptosis protein cleaved caspase-3, and down-regulation of anti-apoptosis protein Bcl2. Moreover, miR-875-5p inhibited cellular migration and invasiveness through inhibition of matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene EGFR was revealed to be a putative target of miR-875-5p, which was inversely correlated with miR-875-5p expression in CRC. Taken together, our results demonstrated that miR-875-5p played a pivotal role on CRC through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic EGFR. PMID:27302926

  7. Hsa-miR-875-5p exerts tumor suppressor function through down-regulation of EGFR in colorectal carcinoma (CRC).

    PubMed

    Zhang, Tiening; Cai, Xun; Li, Qi; Xue, Peng; Chen, Zhixiao; Dong, Xiao; Xue, Ying

    2016-07-05

    Hsa-miRNA-875-5p (miR-875-5p) has recently been discovered to have anticancer efficacy in different organs. However, the role of miR-875-5p on colorectal carcinoma (CRC) is still ambiguous. In this study, we investigated the role of miR-875-5p on the development of CRC. The results indicated that miR-875-5p was significantly down-regulated in primary tumor tissues and very low levels were found in CRC cell lines. Ectopic expression of miR-875-5p in CRC cell lines significantly suppressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibition of cyclin D1, cyclin D2, CDK4 and up-regulation of p57(Kip2) and p21(Waf1/Cip1). In addition, miR-875-5p induced apoptosis, as indicated by concomitantly with up-regulation of key apoptosis protein cleaved caspase-3, and down-regulation of anti-apoptosis protein Bcl2. Moreover, miR-875-5p inhibited cellular migration and invasiveness through inhibition of matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene EGFR was revealed to be a putative target of miR-875-5p, which was inversely correlated with miR-875-5p expression in CRC. Taken together, our results demonstrated that miR-875-5p played a pivotal role on CRC through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic EGFR.

  8. Photo-Healable Metallosupramolecular Polymers

    DTIC Science & Technology

    2014-01-09

    doi: 10.1038/nmat2891 Mark Burnworth, Liming Tang , Justin R. Kumpfer, Andrew J. Duncan, Frederick L. Beyer, Gina L. Fiore, Stuart J. Rowan...Mark Burnworth, Liming Tang , Stuart J. Rowan, Christoph Weder. Reinforcement of Self- Healing Polymer Films with Cellulose Nanowhiskers, ACS PMSE...Macromolecules (08 2011) Mark Burnworth, Liming Tang , Justin R. Kumpfer, Andrew J. Duncan, Frederick L. Beyer, Stuart J. Rowan, Christoph Weder

  9. Network dynamics in nanofilled polymers

    NASA Astrophysics Data System (ADS)

    Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.

    2016-04-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ~31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which `tie' NPs together into a network.

  10. Randomized controlled dissemination study of community-to-clinic navigation to promote CRC screening: Study design and implications.

    PubMed

    Larkey, Linda; Szalacha, Laura; Herman, Patricia; Gonzalez, Julie; Menon, Usha

    2017-02-01

    Regular screening facilitates early diagnosis of colorectal cancer (CRC) and reduction of CRC morbidity and mortality. Screening rates for minorities and low-income populations remain suboptimal. Provider referral for CRC screening is one of the strongest predictors of adherence, but referrals are unlikely among those who have no clinic home (common among poor and minority populations). This group randomized controlled study will test the effectiveness of an evidence based tailored messaging intervention in a community-to-clinic navigation context compared to no navigation. Multicultural, underinsured individuals from community sites will be randomized (by site) to receive CRC screening education only, or education plus navigation. In Phase I, those randomized to education plus navigation will be guided to make a clinic appointment to receive a provider referral for CRC screening. Patients attending clinic appointments will continue to receive navigation until screened (Phase II) regardless of initial arm assignment. We hypothesize that those receiving education plus navigation will be more likely to attend clinic appointments (H1) and show higher rates of screening (H2) compared to those receiving education only. Phase I group assignment will be used as a control variable in analysis of screening follow-through in Phase II. Costs per screening achieved will be evaluated for each condition and the RE-AIM framework will be used to examine dissemination results. The novelty of our study design is the translational dissemination model that will allow us to assess the real-world application of an efficacious intervention previously tested in a randomized controlled trial. Copyright © 2016. Published by Elsevier Inc.

  11. Further weight reduction of applications in long glass reinforced polymers

    NASA Astrophysics Data System (ADS)

    Yanev, A.; Schijve, W.; Martin, C.; Brands, D.

    2014-05-01

    Long glass reinforced materials are broadly used in the automotive industry due to their good mechanical performance, competitive price and options for functional integration in order to reduce weight. With rapidly changing environmental requirements, a demand for further weight reduction is growing constantly. Designs in LGF-PP can bring light weight solutions in combination with system cost improvement. There are quite some possibilities for applying weight reduction technologies nowadays. These technologies have to be evaluated based on weight reduction potential, but also on mechanical performance of the end application, where the latter is often the key to success. Different weight reduction technologies are applied to SABIC®STAMAX{trade mark, serif} material, a long glass fiber reinforced polypropylene (LGF-PP), in order to investigate and define best application performance. These techniques include: chemical foaming, physical foaming and thin wall applications. Results from this research will be presented, giving a guideline for your development.

  12. MicroRNA-466 (miR-466) functions as a tumor suppressor and prognostic factor in colorectal cancer (CRC).

    PubMed

    Tong, Feng; Ying, Youhua; Pan, Haihua; Zhao, Wei; Li, Hongchen; Zhan, Xiaoli

    2018-01-17

    MicroRNAs (miRNAs) have an important role in the regulation of tumor development and metastasis. In this study, we investigated the clinical and prognostic value as well as biological function of miR-466 in colorectal cancer (CRC). Tumor and adjacent healthy tissues were obtained from 100 patients diagnosed with CRC. miR-466 expression was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). mRNA and protein levels of cyclin D1, apoptosis regulator BAX (BAX), and matrix metalloproteinase-2 (MMP-2) were analyzed by qRT-PCR and Western blot, respectively, in SW-620 CRC cells transfected with miR-466 mimics or negative control miRNA. Effects of miR-466 on SW-620 cell proliferation, cell cycle and apoptosis, and invasion were investigated using CCK-8 assay, flow cytometry and Transwell assay, respectively. miR-466 expression was significantly downregulated in tumor tissues compared to matched adjacent non-tumor tissues. Low expression of miR-466 was significantly correlated with the tumor size, Tumor Node Metastasis stage, lymph node metastasis, and distant metastasis. The overall survival of CRC patients with low miR-466 expression was significantly shorter compared to high-miR-466 expression group (log-rank test: p = 0.0103). Multivariate analysis revealed that low miR-466 expression was associated with poor prognosis in CRC patients. The ectopic expression of miR-466 suppressed cell proliferation and migration/invasion, as well as induced G0/G1 arrest and apoptosis in SW-620 cells. Moreover, the ectopic expression of miR-466 decreased the expression of cyclin D1 and MMP-2, but increased BAX expression in SW-620 cells. In conclusion, our findings demonstrated that miR-466 functions as a suppressor miRNA in CRC and may be used as a prognostic factor in these patients.

  13. Polarization Induced Deterioration of Reinforced Concrete with CFRP Anode.

    PubMed

    Zhu, Ji-Hua; Wei, Liangliang; Zhu, Miaochang; Sun, Hongfang; Tang, Luping; Xing, Feng

    2015-07-15

    This paper investigates the deterioration of reinforced concrete with carbon fiber reinforced polymer (CFRP) anode after polarization. The steel in the concrete was first subjected to accelerated corrosion to various extents. Then, a polarization test was performed with the external attached CFRP as the anode and the steel reinforcement as the cathode. Carbon fiber reinforced mortar and conductive carbon paste as contact materials were used to adhere the CFRP anode to the concrete. Two current densities of 1244 and 2488 mA/m², corresponding to the steel reinforcements were applied for 25 days. Electrochemical parameters were monitored during the test period. The deterioration mechanism that occurred at the CFRP/contact material interface was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The increase of feeding voltage and the failure of bonding was observed during polarization process, which might have resulted from the deterioration of the interface between the contact material and CFRP. The formation and accumulation of NaCl crystals at the contact material/CFRP interface were inferred to be the main causes of the failure at the interface.

  14. Why Wait Until Our Community Gets Cancer?: Exploring CRC Screening Barriers and Facilitators in the Spanish-Speaking Community in North Carolina.

    PubMed

    Martens, Christa E; Crutchfield, Trisha M; Laping, Jane L; Perreras, Lexie; Reuland, Daniel S; Cubillos, Laura; Pignone, Michael P; Wheeler, Stephanie B

    2016-12-01

    Colorectal cancer (CRC) is a leading cause of death among Hispanics in the United States. Despite the benefits of CRC screening, many Hispanics are not being screened. Using a combined methodology of focus groups and discrete choice experiment (DCE) surveys, the objectives for this research were as follows: (1) to improve understanding of preferences regarding potential CRC screening program characteristics, and (2) to improve understanding of the barriers and facilitators around CRC screening with the Hispanic, immigrant community in North Carolina. Four gender-stratified focus groups were conducted and DCE surveys were administered to 38 Spanish-speaking individuals across four counties in North Carolina. In-depth content analysis was used to examine the focus group data; descriptive analyses and mean attribute importance scores for cost of screening and follow-up care, travel time, and test options were calculated from DCE data. Data analyses showed that this population has a strong interest in CRC screening but experience barriers such as lack of access to resources, cost uncertainty, and stigma. Some of these barriers are unique to their cultural experiences in the United States, such as an expressed lack of tailored CRC information. Based on the DCE, cost variables were more important than testing options or travel time. This study suggests that Hispanics may have a general awareness of and interest in CRC screening, but multiple barriers prevent them from getting screened. Special attention should be given to designing culturally and linguistically appropriate programs to improve access to healthcare resources, insurance, and associated costs among Hispanics.

  15. Family history assessment for colorectal cancer (CRC) risk analysis - comparison of diagram- and questionnaire-based web interfaces.

    PubMed

    Schultz, Michael; Seo, Steven Bohwan; Holt, Alec; Regenbrecht, Holger

    2015-11-18

    Colorectal cancer (CRC) has a high incidence, especially in New Zealand. The reasons for this are unknown. While most cancers develop sporadically, a positive family history, determined by the number and age at diagnosis of affected first and second degree relatives with CRC is one of the major factors, which may increase an individual's lifetime risk. Before a patient can be enrolled in a surveillance program a detailed assessment and documentation of the family history is important but time consuming and often inaccurate. The documentation is usually paper-based. Our aim was therefore to develop and validate the usability and efficacy of a web-based family history assessment tool for CRC suitable for the general population. The tool was also to calculate the risk and make a recommendation for surveillance. Two versions of an electronic assessment tool, diagram-based and questionnaire-based, were developed with the risk analysis and recommendations for surveillance based on the New Zealand Guidelines Group recommendations. Accuracy of our tool was tested prior to the study by comparing risk calculations based on family history by experienced gastroenterologists with the electronic assessment. The general public, visiting a local science fair were asked to use and comment on the usability of the two interfaces. Ninety people assessed and commented on the two interfaces. Both interfaces were effective in assessing the risk to develop CRC through their familial history for CRC. However, the questionnaire-based interface performed with significantly better satisfaction (p = 0.001) than the diagram-based interface. There was no difference in efficacy though. We conclude that a web-based questionnaire tool can assist in the accurate documentation and analysis of the family history relevant to determine the individual risk of CRC based on local guidelines. The calculator is now implemented and assessable through the web-page of a local charity for colorectal cancer

  16. Protein kinase C zeta suppresses low- or high-grade colorectal cancer (CRC) phenotypes by interphase centrosome anchoring.

    PubMed

    Deevi, Ravi Kiran; Javadi, Arman; McClements, Jane; Vohhodina, Jekaterina; Savage, Kienan; Loughrey, Maurice Bernard; Evergren, Emma; Campbell, Frederick Charles

    2018-04-01

    Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi-lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low-grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high-grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high-grade morphology in formalin-fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie distinct categories of

  17. Behavior of grafted polymers on nanofillers and their influence on polymer nanocomposite properties

    NASA Astrophysics Data System (ADS)

    Dukes, Douglas Michael

    Polymer nanocomposites continue to receive wide-spread acclaim for their potential to improve composite materials beyond conventional macroscale fillers. The improvement lies both in the altered properties of the particle itself and in the interaction region surrounding the filler. As the surface area of the filler increases, a greater volume fraction of this interphase region is present in the composite. However, simply minimizing the particle size to maximize surface area introduces additional problems; the larger specific surface area promotes aggregation to reduce the surface energy. Since the composite's properties are largely tied to the morphology, aggregation prevents control over the dispersion state of the filler, and thus the properties. Therefore, disaggregation and morphology control are vital to achieving designable nanocomposites. To accomplish both tasks, this thesis focuses on the behavior of grafted polymer coatings on nanoparticles and their in uence on the macroscopic properties. Grafted chains play an integral role in both morphology control and reinforcement. To investigate the behavior of polymer brushes on nanoparticles, polystyrene was grafted on 15 nm silica particles at varying graft densities and molecular weights. Dynamic light scattering studies in dilute solution were performed to obtain the brush height as a function of both graft density and molecular weight. Three distinct regimes of behavior exist, the "mushroom", the semi-dilute polymer brush (SDPB), and the concentrated polymer brush (CPB) regimes. In the CPB regime, which is an extraordinary configuration of highly-stretched chains on densely grafted surfaces, the brush height h was found to scale as h ∝ N4/5, where N is the degree of polymerization. This result is contrary to the observed scaling of the CPB in flat interface systems, where h ∝ N1. To explore the behavior of grafted chains in the melt, molecular dynamics simulations were performed on grafted nanoparticles

  18. Rigid spine reinforced polymer microelectrode array probe and method of fabrication

    DOEpatents

    Tabada, Phillipe; Pannu, Satinderpall S

    2014-05-27

    A rigid spine-reinforced microelectrode array probe and fabrication method. The probe includes a flexible elongated probe body with conductive lines enclosed within a polymeric material. The conductive lines connect microelectrodes found near an insertion end of the probe to respective leads at a connector end of the probe. The probe also includes a rigid spine, such as made from titanium, fixedly attached to the probe body to structurally reinforce the probe body and enable the typically flexible probe body to penetrate and be inserted into tissue, such as neural tissue. By attaching or otherwise fabricating the rigid spine to connect to only an insertion section of the probe body, an integrally connected cable section of the probe body may remain flexible.

  19. Supercritical carbon dioxide-processed resorbable polymer nanocomposites for bone graft substitute applications

    NASA Astrophysics Data System (ADS)

    Baker, Kevin C.

    Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the requisite porous morphology. As such, porous resorbable polymers are often reinforced with filler materials. In the presented work, we describe the use of supercritical carbon dioxide (scCO2) processing to create porous resorbable polymeric constructs reinforced by nanostructured, organically modified Montmorillonite clay (nanoclay). scCO2 processing simultaneously disperses the nanoclay throughout the polymeric matrix, while imparting a porous morphology to the construct conducive to facilitating cellular infiltration and neoangiogenesis, which are necessary components of bone growth. With the addition of as little as 2.5wt% of nanoclay, the compressive strength of the constructs nearly doubles putting them on par with human cortico-cancellous bone. Rheological measurements indicate that the dominant mode of reinforcement of the nanocomposite constructs is the restriction of polymer chain mobility. This restriction is a function of the positive interaction between polymer chains and the nanoclay. In vivo inflammation studies indicate biocompatibility of the constructs. Ectopic osteogenesis assays have determined that the scCO2-processed nanocomposites are capable of supporting growth-factor induced bone formation. scCO 2-processed resorbable

  20. A review on using crumb rubber in reinforcement of asphalt pavement.

    PubMed

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction.

  1. Cyanate Ester Resin Modified with Nano-particles for Inclusion in Continuous Fiber Reinforced Composites

    DTIC Science & Technology

    2011-02-25

    thermogravimetric analyzer (TGA) from TA Instruments upon heating at 20 oC/min under air purge. The structural features of the nanoparticles were...low viscosity bisphenol E cyanate ester resin (BECy) resin reinforced with macro scale carbon fibers and negative CTE nanoparticles . Polymer...developed to improve the compatibility of the ZrW2O8 nanoparticles with the polymer matrix. The hybrid composites were prepared with 30 wt

  2. Surface characterization of carbon fiber reinforced polymers by picosecond laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James

    2018-02-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.

  3. Energy-momentum conserving higher-order time integration of nonlinear dynamics of finite elastic fiber-reinforced continua

    NASA Astrophysics Data System (ADS)

    Erler, Norbert; Groß, Michael

    2015-05-01

    Since many years the relevance of fibre-reinforced polymers is steadily increasing in fields of engineering, especially in aircraft and automotive industry. Due to the high strength in fibre direction, but the possibility of lightweight construction, these composites replace more and more traditional materials as metals. Fibre-reinforced polymers are often manufactured from glass or carbon fibres as attachment parts or from steel or nylon cord as force transmission parts. Attachment parts are mostly subjected to small strains, but force transmission parts usually suffer large deformations in at least one direction. Here, a geometrically nonlinear formulation is necessary. Typical examples are helicopter rotor blades, where the fibres have the function to stabilize the structure in order to counteract large centrifugal forces. For long-run analyses of rotor blade deformations, we have to apply numerically stable time integrators for anisotropic materials. This paper presents higher-order accurate and numerically stable time stepping schemes for nonlinear elastic fibre-reinforced continua with anisotropic stress behaviour.

  4. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W. (Inventor); Gordon, Keith L. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor); Siochi, Emilie J. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  5. Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2017-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  6. Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.

    1994-01-01

    Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.

  7. Light weight polymer matrix composite material

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1991-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  8. Barriers to CRC Screening among Latino Adults in Pennsylvania: ACCN Results

    ERIC Educational Resources Information Center

    Garcia-Dominic, Oralia; Lengerich, Eugene J.; Wray, Linda A.; Parrott, Roxanne; Aumiller, Betsy; Kluhsman, Brenda; Renderos, Carlos; Dignan, Mark

    2012-01-01

    Objectives: To describe knowledge of and barriers to colorectal cancer (CRC) screening by sex and geography among Latino adults in Pennsylvania. Methods: Eighty-two Latinos greater than 50 years old engaged in one of 8 focus groups. Focus groups consisted of 4 components. Focus group data were audiotaped, transcribed, and grouped into thematic…

  9. Eco-Challenges of Bio-Based Polymer Composites

    PubMed Central

    Avella, Maurizio; Buzarovska, Aleksandra; Errico, Maria Emanuela; Gentile, Gennaro; Grozdanov, Anita

    2009-01-01

    In recent years bio-based polymer composites have been the subject of many scientific and research projects, as well as many commercial programs. Growing global environmental and social concern, the high rate of depletion of petroleum resources and new environmental regulations have forced the search for new composites and green materials, compatible with the environment. The aim of this article is to present a brief review of the most suitable and commonly used biodegradable polymer matrices and NF reinforcements in eco-composites and nanocomposites, with special focus on PLA based materials.

  10. Evaluating the impact of an educational intervention to increase CRC screening rates in the African American community: a preliminary study.

    PubMed

    Philip, Errol J; DuHamel, Katherine; Jandorf, Lina

    2010-10-01

    Despite the acknowledged importance of colorectal cancer (CRC) screening and its proven prognostic benefit, African American men and women simultaneously possess the highest rates of CRC-related incidence and mortality (Swan et al. in Cancer 97(6):1528-1540, 2003) and lowest screening rates in the United States (Polite et al. in Med Clin N Am 89(4):771-793, 2005). Effective, targeted interventions that promote CRC screening for this community are therefore critical. The current study evaluated the impact of a print-based educational intervention on screening behavior and associated patient-based factors, including cancer-related knowledge, fatalism, worry, and decisional balance (pros-cons). One hundred and eighteen individuals (mean age = 56.08, SD = 5.58) who had not undergone screening were recruited from two health clinics in New York City. Each participant received educational print materials regarding the need for screening, the process of undergoing screening, and the benefits of regular CRC screening. One in four individuals had undergone post-intervention screening at a three-month follow-up. Whereas all participants reported a decrease in cancer-related worry (p < .05), it was a decrease in fatalism (p < .05) and an increase in decisional balance (p < .05) that was associated with post-intervention screening behavior. These preliminary results suggest that fatalistic beliefs and an individual's assessment of the benefits and barriers of screening may be critical in the decision to undergo CRC screening. Future interventions to increase CRC-screening rates for this community may be improved by focusing on these patient-based factors.

  11. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    PubMed Central

    Etcheverry, Mariana; Barbosa, Silvia E.

    2012-01-01

    Glass fibers (GF) are the reinforcement agent most used in polypropylene (PP) based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers. PMID:28817025

  12. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    DOT National Transportation Integrated Search

    2014-05-01

    The objective of the proposed research is to develop, test, and evaluate fiber-reinforced, polyurethane foams to replace the costly : honeycomb construction currently used to manufacture FRP bridge deck panels. The effort will focus on developing an ...

  13. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis.

    PubMed

    Song, Lele; Jia, Jia; Peng, Xiumei; Xiao, Wenhua; Li, Yuemin

    2017-06-08

    The SEPT9 gene methylation assay is the first FDA-approved blood assay for colorectal cancer (CRC) screening. Fecal immunochemical test (FIT), FIT-DNA test and CEA assay are also in vitro diagnostic (IVD) tests used in CRC screening. This meta-analysis aims to review the SEPT9 assay performance and compare it with other IVD CRC screening tests. By searching the Ovid MEDLINE, EMBASE, CBMdisc and CJFD database, 25 out of 180 studies were identified to report the SEPT9 assay performance. 2613 CRC cases and 6030 controls were included, and sensitivity and specificity were used to evaluate its performance at various algorithms. 1/3 algorithm exhibited the best sensitivity while 2/3 and 1/1 algorithm exhibited the best balance between sensitivity and specificity. The performance of the blood SEPT9 assay is superior to that of the serum protein markers and the FIT test in symptomatic population, while appeared to be less potent than FIT and FIT-DNA tests in asymptomatic population. In conclusion, 1/3 algorithm is recommended for CRC screening, and 2/3 or 1/1 algorithms are suitable for early detection for diagnostic purpose. The SEPT9 assay exhibited better performance in symptomatic population than in asymptomatic population.

  14. 29 CFR 37.64 - What procedures must the Director follow when CRC has completed a post-approval compliance review?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true What procedures must the Director follow when CRC has completed a post-approval compliance review? 37.64 Section 37.64 Labor Office of the Secretary of Labor... (WIA) Compliance Procedures § 37.64 What procedures must the Director follow when CRC has completed a...

  15. Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney

    2015-03-01

    Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)

  16. Automated Dispersion and Orientation Analysis for Carbon Nanotube Reinforced Polymer Composites

    PubMed Central

    Gao, Yi; Li, Zhuo; Lin, Ziyin; Zhu, Liangjia; Tannenbaum, Allen; Bouix, Sylvain; Wong, C.P.

    2012-01-01

    The properties of carbon nanotube (CNT)/polymer composites are strongly dependent on the dispersion and orientation of CNTs in the host matrix. Quantification of the dispersion and orientation of CNTs by microstructure observation and image analysis has been demonstrated as a useful way to understand the structure-property relationship of CNT/polymer composites. However, due to the various morphologies and large amount of CNTs in one image, automatic and accurate identification of CNTs has become the bottleneck for dispersion/orientation analysis. To solve this problem, shape identification is performed for each pixel in the filler identification step, so that individual CNT can be exacted from images automatically. The improved filler identification enables more accurate analysis of CNT dispersion and orientation. The obtained dispersion index and orientation index of both synthetic and real images from model compounds correspond well with the observations. Moreover, these indices help to explain the electrical properties of CNT/Silicone composite, which is used as a model compound. This method can also be extended to other polymer composites with high aspect ratio fillers. PMID:23060008

  17. Development and performance evaluation of fiber reinforced polymer bridge : [technical summary].

    DOT National Transportation Integrated Search

    2014-03-01

    Conventionally, highway bridge decks in the US are predominantly made of steel-reinforced concrete. However, repair and : maintenance costs of these bridges incurred at the federal and state levels are overwhelming. As a result, for many years, there...

  18. Adhesion and Interphase Properties of Reinforced Polymeric Composites

    NASA Astrophysics Data System (ADS)

    Caldwell, Kyle Bernd

    Reinforced polymeric composites are an increasingly utilized material with a wide range of applications. Fiber reinforced polymeric composites, in particular, possess impressive mechanical properties at a fraction of the weight of many other building materials. There will always, however, be a demand for producing lighter, stiffer, and stronger materials. Understanding the mechanism of adhesion and ways to engineer the reinforcement-matrix interphase can lead to the development of new materials with improved mechanical properties, and even impart additional functionality such as electrical conductivity. The performance of reinforced polymeric composites is critically dependent upon the adhesion between the reinforcement and the surrounding polymer. The relative adhesion between a filler and a thermoplastic matrix can be predicted using calculable thermodynamic quantities such as the Gibbs free energy of mixing. A recent model, COSMO-SAC, is capable of predicting the adhesion between organo-silane treated glass surfaces and several thermoplastic materials. COSMO-SAC uses information based on the charge distribution of a molecule's surface to calculate many thermodynamic properties. Density functional theory calculations, which are relative inexpensive computations, generate the information necessary to perform the COSMO-SAC analysis and can be performed on any given molecule. The flexibility of the COSMO-SAC model is one of the main advantages it possesses over other methods for calculating thermodynamic quantities. In many cases the adhesion between a reinforcing fiber and the surrounding matrix may be improved by incorporating interphase modifiers in the vicinity of the fiber surface. The modifiers can improve the fracture toughness and modulus of the interphase, which may improve the stress transfer from the matrix to the fiber. In addition, the interphase modifiers may improve the mechanical interlock between the fiber surface and the bulk polymer, leading to

  19. Millimeter-wave spectroscopy of CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)): Examining the chromium-carbon bond.

    PubMed

    Min, J; Ziurys, L M

    2016-05-14

    Pure rotational spectroscopy of the CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective (3)Σ(-) and (6)Σ(+) ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr-C = 1.993 Å - significantly longer. This result suggests that a single Cr-C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited (1)Σ(+) state lying ∼16 900 cm(-1) higher in energy, and CrCCH has a (6)Π excited state with E ∼ 4800 cm(-1).

  20. Implementation of a finite element analysis procedure for structural analysis of shape memory behaviour of fibre reinforced shape memory polymer composites

    NASA Astrophysics Data System (ADS)

    Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong

    2017-12-01

    Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.

  1. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    PubMed

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W.

  2. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults.

    PubMed

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-11-27

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L'Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults.

  3. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults

    PubMed Central

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-01-01

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L’Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults. PMID:28793697

  4. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.

    PubMed

    Meriç, Gökçe; Ruyter, I Eystein

    2007-09-01

    To evaluate the effects of thermal cycling on the flexural properties of composites reinforced with two differently sized fibers. Acid-washed, woven, fused silica-glass fibers, were heat-treated at 500 degrees C, silanized and sized with one of two sizing resins (linear poly(butyl methacrylate)) (PBMA), cross-linked poly(methyl methacrylate) (PMMA). Subsequently the fibers were incorporated into a polymer matrix. Two test groups with fibers and one control group without fibers were prepared. The flexural properties of the composite reinforced with linear PBMA-sized fibers were evaluated by 3-point bend testing before thermal cycling. The specimens from all three groups were thermally cycled in water (12,000 cycles, 5/55 degrees C, dwell time 30 s), and afterwards tested by 3-point bending. SEM micrographs were taken of the fibers and of the fractured fiber reinforced composites (FRC). The reduction of ultimate flexural strength after thermal cycling was less than 20% of that prior to thermal cycling for composites reinforced with linear PBMA-sized silica-glass fibers. The flexural strength of the composite reinforced with cross-linked PMMA-sized fibers was reduced to less than half of the initial value. This study demonstrated that thermal cycling differently influences the flexural properties of composites reinforced with different sized silica-glass fibers. The interfacial linear PBMA-sizing polymer acts as a stress-bearing component for the high interfacial stresses during thermal cycling due to the flexible structure of the linear PBMA above Tg. The cross-linked PMMA-sizing, however, acts as a rigid component and therefore causes adhesive fracture between the fibers and matrix after the fatigue process of thermal cycling and flexural fracture.

  5. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  6. Assessment of historical masonry pillars reinforced by CFRP strips

    NASA Astrophysics Data System (ADS)

    Fedele, Roberto; Rosati, Giampaolo; Biolzi, Luigi; Cattaneo, Sara

    2014-10-01

    In this methodological study, the ultimate response of masonry pillars strengthened by externally bonded Carbon Fiber Reinforced Polymer (CFRP) was investigated. Historical bricks were derived from a XVII century rural building, whilst a high strength mortar was utilized for the joints. The conventional experimental information, concerning the overall reaction force and relative displacements provided by "point" sensors (LVDTs and clip gauge), were herein enriched with no-contact, full-field kinematic measurements provided by 2D Digital Image Correlation (2D DIC). Experimental information were critically compared with prediction provided by an advanced three-dimensional models, based on nonlinear finite elements under the simplifying assumption of perfect adhesion between the reinforcement and the support.

  7. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes.

    PubMed

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2010-08-06

    In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.

  8. Hierarchical analysis of the degradation of fibre-reinforced polymers under the presence of void imperfections

    PubMed Central

    2016-01-01

    The subject of this work is the investigation of the influence of voids on the mechanical properties of fibre-reinforced polymers (FRPs) under compression loading. To specify the damage accumulation of FRPs in the presence of voids, the complex three-dimensional structure of the composite including voids was analysed and a reduced mechanical model composite was derived. The hierarchical analysis of the model composite on a micro-scale level implies the description of the stress and strain behaviour of the matrix using the photoelasticity technique and digital image correlation technology. These studies are presented along with an analytical examination of the stability of a single fibre. As a result of the experimental and analytical studies, the stiffness of the matrix and fibre as well as their bonding, the initial fibre orientation and the fibre diameter have the highest impact on the failure initiation. All these facts lead to a premature fibre–matrix debonding with ongoing loss of stability of the fibre and followed by kink-band formation. Additional studies on the meso-scale of transparent glass FRPs including a unique void showed that the experiments carried out on the model composites could be transferred to real composites. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242296

  9. Measurements of Mode I Interlaminar Properties of Carbon Fiber Reinforced Polymers Using Digital Image Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzkirch, Matthias; Ahure Powell, Louise; Foecke, Tim

    Numerical models based on cohesive zones are usually used to model and simulate the mechanical behavior of laminated carbon fiber reinforced polymers (CFRP) in automotive and aerospace applications and require different interlaminar properties. This work focuses on determining the interlaminar fracture toughness (G IC) under Mode I loading of a double cantilever beam (DCB) specimen of unidirectional CFRP, serving as prototypical material. The novelty of this investigation is the improvement of the testing methodology by introducing digital image correlation (DIC) as an extensometer and this tool allows for crack growth measurement, phenomenological visualization and quantification of various material responses tomore » Mode I loading. Multiple methodologies from different international standards and other common techniques are compared for the determination of the evolution of G IC as crack resistance curves (R-curves). The primarily metrological sources of uncertainty, in contrast to material specific related uncertainties, are discussed through a simple sensitivity analysis. Additionally, the current work offers a detailed insight into the constraints and assumptions to allow exploration of different methods for the determination of material properties using the DIC measured data. The main aim is an improvement of the measurement technique and an increase in the reliability of measured data during static testing, in advance of future rate dependent testing for crashworthiness simulations.« less

  10. Measurements of Mode I Interlaminar Properties of Carbon Fiber Reinforced Polymers Using Digital Image Correlation

    DOE PAGES

    Merzkirch, Matthias; Ahure Powell, Louise; Foecke, Tim

    2017-07-01

    Numerical models based on cohesive zones are usually used to model and simulate the mechanical behavior of laminated carbon fiber reinforced polymers (CFRP) in automotive and aerospace applications and require different interlaminar properties. This work focuses on determining the interlaminar fracture toughness (G IC) under Mode I loading of a double cantilever beam (DCB) specimen of unidirectional CFRP, serving as prototypical material. The novelty of this investigation is the improvement of the testing methodology by introducing digital image correlation (DIC) as an extensometer and this tool allows for crack growth measurement, phenomenological visualization and quantification of various material responses tomore » Mode I loading. Multiple methodologies from different international standards and other common techniques are compared for the determination of the evolution of G IC as crack resistance curves (R-curves). The primarily metrological sources of uncertainty, in contrast to material specific related uncertainties, are discussed through a simple sensitivity analysis. Additionally, the current work offers a detailed insight into the constraints and assumptions to allow exploration of different methods for the determination of material properties using the DIC measured data. The main aim is an improvement of the measurement technique and an increase in the reliability of measured data during static testing, in advance of future rate dependent testing for crashworthiness simulations.« less

  11. Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy

    NASA Astrophysics Data System (ADS)

    Matveeva, Larisa; Belentsov, Yuri

    2017-10-01

    The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.

  12. A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement

    PubMed Central

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction. PMID:24688369

  13. Development of load and resistance factor design for FRP strengthening of reinforced concrete bridges.

    DOT National Transportation Integrated Search

    2006-05-01

    Externally bonded fiber reinforced polymer (FRP) composites are an increasingly adopted technology for the renewal of existing concrete structures. In order to encourage the further use of these materials, a design code is needed that considers the i...

  14. Reduction of polyatomic interferences in ICP-MS by collision/reaction cell (CRC-ICP-MS) techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiden, Greg C; Barinaga, Charles J; Koppenaal, David W

    2012-05-01

    Polyatomic and other spectral interferences in plasma source mass spectrometry (PSMS) can be dramatically reduced using collision and reaction cells (CRC). These devices have been used for decades in fundamental studies of ion-molecule chemistry, but have only recently been applied to PSMS. Benefits of this approach as applied in inductively coupled plasma MS (ICP-MS) include interference reduction, isobar separation, and thermalization/focusing of ions. Novel ion-molecule chemistry schemes are now routinely designed and empirically evaluated with relative ease. These “chemical resolution” techniques can avert interferences requiring mass spectral resolutions of >600,000 (m/m). Purely physical ion beam processes, including collisional dampening andmore » collisional dissociation, are also employed to provide improved sensitivity, resolution, and spectral simplicity. CRC techniques are now firmly entrenched in current-day ICP-MS technology, enabling unprecedented flexibility and freedom from many spectral interferences. A significant body of applications has now been reported in the literature. CRC techniques are found to be most useful for specialized or difficult analytical needs and situations, and are employed in both single- and multi-element determination modes.« less

  15. Interpenetrating polymer network approach to tougher and more microcracking resistant high temperature polymers. I - LaRC-RP40

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Morgan, Cassandra D.

    1988-01-01

    Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin.

  16. Interpenetrating polymer network approach to tougher and more microcracking resistant high temperature polymers. I. LaRC-RP40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pater, R.H.; Morgan, C.D.

    1988-10-01

    Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin. 16 references.

  17. A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers.

    DTIC Science & Technology

    1988-04-15

    physical properties of a polycarbosilane preceramic polymer as a function of temperature to derive synthesis methodology for SiC matrix composites , (2...investigate the role of interface modification in creating tough carbon fiber reinforced SiC matrix composites . RESEARCH PROGRESS Preceramic Polymer ...Classfication) A STUDY OF THE CRITICAL FACTORS CONTROLLING THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES FROM PRECERAMIC POLYMERS 12. PERSONAL AUTHOR(S

  18. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    PubMed Central

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  19. Reinforcement effect of soy protein/carbohydrate ratio in styrene-butadiene polymer

    USDA-ARS?s Scientific Manuscript database

    Soy protein and carbohydrate at different ratios were blended with latex to form composites. The variation of protein to carbohydrate ratio has a sifnificant effect on the composite properties and the results from dynamic mechanical method showed a substantial reinforcement effect. The composites ...

  20. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.