Sample records for polymer side chains

  1. Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.

    PubMed

    Cui, Chaohua; Wong, Wai-Yeung

    2016-02-01

    Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tuning the thermal conductivity of solar cell polymers through side chain engineering.

    PubMed

    Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei

    2014-05-07

    Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

  3. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Asymmetric Alkyl Side-Chain Engineering of Naphthalene Diimide-Based n-Type Polymers for Efficient All-Polymer Solar Cells.

    PubMed

    Jia, Tao; Li, Zhenye; Ying, Lei; Jia, Jianchao; Fan, Baobing; Zhong, Wenkai; Pan, Feilong; He, Penghui; Chen, Junwu; Huang, Fei; Cao, Yong

    2018-02-13

    The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains.

    PubMed

    Li, Cheng; Yu, Changshi; Lai, Wenbin; Liang, Shijie; Jiang, Xudong; Feng, Guitao; Zhang, Jianqi; Xu, Yunhua; Li, Weiwei

    2017-11-24

    Two conjugated polymers based on diketopyrrolopyrrole (DPP) in the main chain with different content of perylene bisimide (PBI) side chains are developed. The influence of PBI side chain on the photovoltaic performance of these DPP-based conjugated polymers is systematically investigated. This study suggests that the PBI side chains can not only alter the absorption spectrum and energy level but also enhance the crystallinity of conjugated polymers. As a result, such polymers can act as electron donor, electron acceptor, and single-component active layer in organic solar cells. These findings provide a new guideline for the future molecular design of multifunctional conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out?

    PubMed

    Kanimozhi, Catherine; Yaacobi-Gross, Nir; Burnett, Edmund K; Briseno, Alejandro L; Anthopoulos, Thomas D; Salzner, Ulrike; Patil, Satish

    2014-08-28

    The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential "edge-on" packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V(-1) s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast, moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional electron mobility is at least partially a result of the strong intramolecular conjugation of the donor and acceptor as evidenced by the unusually wide conduction band of the polymer.

  7. Liquid crystal polymers: evidence of hairpin defects in nematic main chains, comparison with side chain polymers

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Brûlet, A.; Keller, P.; Cotton, J. P.

    1996-09-01

    This article describes the conformation of two species of liquid crystalline polymers as revealed by small angle neutron scattering. The results obtained with side chain polymers are recalled. The procedure used to analyze the scattering data of main chains in the nematic phase is reported in this paper. It permits a demonstration of the existence of hairpins. Comparison of both polymer species shows that in the isotropic phase, the two polymers adopt a random coil conformation. In the nematic phase, the conformations are very different; the side chains behave as a melt of penetrable random coils whereas the main chains behave as a nematic phase of non penetrable cylinders.

  8. Synthesis, surface characterization, and biointeraction studies of low-surface energy side-chain polyetherurethanes

    NASA Astrophysics Data System (ADS)

    Porter, Stephen Christopher

    1999-10-01

    New segmented polyetherurethanes (PEUs) with low surface energy hydrocarbon and fluorocarbon side-chains attached to the polymer hard segments were synthesized. The surface chemistry of solvent cast polymer films was studied using X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and dynamic contact angle (DCA) measurements. Increases in the overall density and length of the alkyl side-chains within the PEUs resulted in greater side-chain concentrations at the polymer surface. PEUs bearing long alkyl (> C10 ) and perfluorocarbon side-chains were found to posses surfaces with highly enriched side-chain concentrations relative to the bulk polymer. In PEUs with significant side-chain surface enrichment, the relatively polar hard segment blocks were shown to reside in high concentrations just below the side-chain enriched surface layer. Furthermore, DCA measurements demonstrated that the surface of the alkyl side-chain PEUs did not undergo significant rearrangement when placed into an aqueous environment, whereas the surface of a hard segment model polymer bearing C18 sidechains (PEU-C18-HS) did. Hydrogen bonding within the PEUs was examined using FTIR and was shown to be disrupted by the addition of side-chains; an effect dependent on the density but not on the length of the side-chains. Heteropolymer blends comprised of mixtures of high side-chain density and side-chain free PEUs were compared with homopolymers having the same overall side-chain concentration as the blends. Significantly more surface enrichment of side-chains was found in the heteropolymer blends whereas hydrogen bonding nearly the same as in the homopolymers. Adsorption of native and delipidized human serum albumin (HSA) from pure solution and blood plasma; the elutabilty of adsorbed HSA; and static platelet adhesion to plasma preadsorbed surfaces, were all examined on alkyl side-chain PEUs. Several polymers with high C18 side-chain densities displayed increased affinity for albumin, and reduced elutability. Among these, PEU-C18-HS demonstrated a significant reduction in platelet adhesion at low plasma pre-adsorption concentrations. However, competitive binary adsorption of fibrinogen in the presence of HSA demonstrated lower relative albumin affinity for PEU-C18-HS than other PEUs. The observed effects are thought to be mainly a result of increased surface hydrophobicity of the alkyl-side chain modified PEU, and not high specificity albumin binding.

  9. Modification of Side Chains of Conjugated Molecules and Polymers for Charge Mobility Enhancement and Sensing Functionality.

    PubMed

    Liu, Zitong; Zhang, Guanxin; Zhang, Deqing

    2018-06-19

    Organic semiconductors have received increasing attentions in recent years because of their promising applications in various optoelectronic devices. The key performance metric for organic semiconductors is charge carrier mobility, which is governed by the electronic structures of conjugated backbones and intermolecular/interchain π-π interactions and packing in both microscopic and macroscopic levels. For this reason, more efforts have been paid to the design and synthesis of conjugated frameworks for organic semiconductors with high charge mobilities. However, recent studies manifest that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular/interchain packing order and boost charge mobilities. In this Account, we discuss our research results in context of modification of side chains in organic semiconductors for charge mobility enhancement. These include the following: (i) The lengths of alkyl chains in sulfur-rich thiepin-fused heteroacences can dramatically influence the intermolecular arrangements and orbital overlaps, ushering in different hole mobilities. Inversely, the lamellar stacking modes of alkyl chains in naphthalene diimide (NDI) derivatives with tetrathiafulvalene (TTF) units are affected by the structures of conjugated cores. (ii) The steric hindrances owing to the bulky branching chains can be weakened by partial replacement of the branching alkyl chains with linear ones for diketopyrrolopyrrole (DPP)-based D (donor)-A (acceptor) conjugated polymers. Such modification of side chains makes the polymer backbones more planar and thus interchain packing order and charge mobilities are improved. The incorporation of hydrophilic tri(ethylene glycol) (TEG) chains into the polymers also leads to improved interchain packing order. In particular, the polymer in which TEG side chains are distributed uniformly exhibits relatively high charge mobility without thermal annealing. (iii) The incorporation of urea groups in the side chains induces the polymer chains to pack more orderly and form large domains because of the additional H-bonding among urea groups. Accordingly, thin film mobilities of the conjugated D-A polymers with side chains entailing urea groups are largely boosted in comparison with those of polymers of the same backbones with either branching alkyl chains or branching/linear alkyl chains. (iv) The torsions of branching alkyl chains in conjugated D-A polymers can be inhibited to some extent upon incorporation of tiny amount of NMe 4 I in the thin film. As a result, the polymer thin films with NMe 4 I exhibit improved crystallinity, and charge mobilities can be boosted by more than 20 times. (v) Side chains with functional groups in the conjugated polymers can endow the thin film field-effect transistors (FETs) with sensing functionality. FETs with the conjugated polymer with -COOH groups in the side chains show sensitive, selective, and fast responses toward ammonia and amines, while FETs with the ultrathin films of the polymer containing tetra(ethylene glycol) (TEEG) in the side chains can sense alcohol vapors (in particular ethanol vapor) sensitively and selectively with fast response.

  10. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  11. Bis(thienothiophenyl) diketopyrrolopyrrole-based conjugated polymers with various branched alkyl side chains and their applications in thin-film transistors and polymer solar cells.

    PubMed

    Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon

    2015-02-11

    New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.

  12. Synthesis of diketopyrrolopyrrole-based polymers with polydimethylsiloxane side chains and their application in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ohnishi, Inori; Hashimoto, Kazuhito; Tajima, Keisuke

    2018-03-01

    Linear polydimethylsiloxane (PDMS) was investigated as a solubilizing group for π-conjugated polymers with the aim of combining high solubility in organic solvents with the molecular packing in solid films that is advantageous for charge transport. Diketopyrrolopyrrole-based copolymers with different contents and substitution patterns of the PDMS side chains were synthesized and evaluated for application in organic field-effect transistors. The PDMS side chains greatly increased the solubility of the polymers and led to shorter d-spacings of the π-stacking in the thin films compared with polymers containing conventional branched alkyl side chains.

  13. Side-Chain Effects on the Thermoelectric Properties of Fluorene-Based Copolymers.

    PubMed

    Liang, Ansheng; Zhou, Xiaoyan; Zhou, Wenqiao; Wan, Tao; Wang, Luhai; Pan, Chengjun; Wang, Lei

    2017-09-01

    Three conjugated polymers with alkyl chains of different lengths are designed and synthesized, and their structure-property relationship as organic thermoelectric materials is systematically elucidated. All three polymers show similar photophysical properties, thermal properties, and mechanical properties; however, their thermoelectric performance is influenced by the length of their side chains. The length of the alkyl chain significantly influences the electrical conductivity of the conjugated polymers, and polymers with a short alkyl chain exhibit better conductivity than those with a long alkyl chain. The length of the alkyl chain has little effect on the Seebeck coefficient. Only a slight increase in the Seebeck coefficient is observed with the increasing length of the alkyl chain. The purpose of this study is to provide comprehensive insight into fine-tuning the thermoelectric properties of conjugated polymers as a function of side-chain engineering, thereby providing a novel perspective into the design of high-performance thermoelectric conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. From Comb-like Polymers to Bottle-Brushes

    NASA Astrophysics Data System (ADS)

    Liang, Heyi; Cao, Zhen; Dobrynin, Andrey; Sheiko, Sergei

    We use a combination of the coarse-grained molecular dynamics simulations and scaling analysis to study conformations of bottle-brushes and comb-like polymers in a melt. Our analysis show that bottle-brushes and comb-like polymers can be in four different conformation regimes depending on the number of monomers between grafted side chains and side chain degree of polymerization. In loosely-grafted comb regime (LC) the degree of polymerization between side chains is longer than side chain degree of polymerization, such that the side chains belonging to the same macromolecule do not overlap. Crossover to a new densely-grafted comb regime (DC) takes place when side chains begin to overlap reducing interpenetration of side chains belonging to different macromolecules. In these two regimes both side-chains and backbone behave as unperturbed linear chains with the effective Kuhn length of the backbone being close to that of linear chain. Further decrease spacer degree of polymerization results in crossover to loosely-grafted bottle-brush regime (LB). In this regime, the bottle-brush backbone is stretched while the side-chains still maintain ideal chain conformation. Finally, for even shorter spacer between grafted side chains, which corresponds to densely-grafted bottle-brush regime (DB), the backbone adopts a fully extended chain conformation, and side-chains begin to stretch to maintain a constant monomer density. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.

  15. Side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmeier, M.; Rappich, J.; Nickel, N. H.

    The influence of ether groups in the side chain of spin coated regioregular polythiophene derivatives on the polymer layer formation and the hybrid solar cell properties was investigated using electrical, optical, and X-ray diffraction experiments. The polymer layers are of high crystallinity but the polymer with 3 ether groups in the side chain (P3TOT) did not show any vibrational fine structure in the UV-Vis spectrum. The presence of ether groups in the side chains leads to better adhesion resulting in thinner and more homogeneous polymer layers. This, in turn, enhances the electronic properties of the planar c-Si/poly-thiophene hybrid solar cell.more » We find that the power conversion efficiency increases with the number of ether groups in the side chains, and a maximum power conversion efficiency of η = 9.6% is achieved even in simple planar structures.« less

  16. Scale-Dependent Stiffness and Internal Tension of a Model Brush Polymer

    NASA Astrophysics Data System (ADS)

    Berezney, John P.; Marciel, Amanda B.; Schroeder, Charles M.; Saleh, Omar A.

    2017-09-01

    Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of model brush polymers to quantify this effect. We find that stiffening is only significant on long length scales, with the main chain retaining flexibility on short scales. From the elasticity data, we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is consistent with the predictions of blob-based scaling theories.

  17. Liquid Crystalline Polymers Containing Heterocycloalkane Mesogens. 1. Side-Chain Liquid Crystalline Polymethacrylates and Polycrylates Containing 2,5-Disubstituted-1,3-Dioxane Mesogens.

    DTIC Science & Technology

    1986-10-01

    Report No. 2 Liquid Crystalline Polymers Containing Heterocycloalkane Mesogeus 1. Side-Chain Liquid Crystalline Polymethacrylates and . Polyacrylates...8217. " "-"-"-" " "" ’CS" i Liquid Crystalline Polymers Containing Heterocycloalkane Mesogens 1. Side-Chain Liquid Crystalline Polymethacrylates and Polyacrylates...University Cleveland, OH 44106 ABSTRACT Polymethacrylates and polyacrylates containing 2-(p-hydroxyphenyl)-5-(p-meth- oxyphenyl)-1,3-dioxane as a

  18. Langmuir-Blodgett Films of Aromatic Schiff’s Bases Functionalized in the Side Chains of Polymethacrylate

    DTIC Science & Technology

    1991-05-03

    Report No. 21 - Latigmuir-Blodgett Films of Aromatic Schiffs Bases , K Fuctionalized in the Side Chains of Polymethacrylate by T. Takahashi, P. Miller...aromatic Schiff’s bases functionalized in the side chains of Polymethacrylate T. Takahashi**, P. Miller*, Y. M. Chen*, L. Samuelson***, D. Galotti, B...has been investigated for polymers in which nonlinear optical (NLO) moieties are attachcd i, the side chain of polymethacrylate (PMA) backbone. Polymer

  19. Polymer in a pore: Effect of confinement on the free energy barrier

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Kumar, Sanjay

    2018-06-01

    We investigate the transfer of a polymer chain from cis- side to trans- side through two types of pores: cone-shaped channel and flat-channel. Using the exact enumeration technique, we obtain the free energy landscapes of a polymer chain for such systems. We have also calculated the free-energy barrier of a polymer chain attached to the edge of the pore. The model system allows us to calculate the force required to pull polymer from the pore and stall-force to confine polymer within the pore.

  20. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities. PMID:18341334

  1. Fine-tuning blend morphology via alkylthio side chain engineering towards high performance non-fullerene polymer solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ling; Feng, Liuliu; Yuan, Jun; Peng, Hongjian; Zou, Yingping; Li, Yongfang

    2018-03-01

    Two medium bandgap polymers (ffQx-TS1, ffQx-TS2) were designed and synthesized to investigate the influence of different alkylthio side chain on the morphology and photovoltaic performance of non-fullerene polymer solar cells (PSCs). Both polymers exhibit similar molecular weights and comparable the highest occupied molecular orbital (HOMO) energy level. However, the polymer with straight alkylthio chain delivers a root-mean-square (RMS) of 0.86 nm, which is slightly lower than that with branched chain (1.40 nm). The lower RMS benefits the ohmic contact between the active lay and interface layer, thus enhanced short circuit current (Jsc) (from 13.54 mA cm-1 to 15.25 mA cm-1) could be obtained. Due to the enhancement of Jsc, better power conversion efficiency (PCE) of 7.69% for ffQx-TS2 could be realized. These results indicated that alkylthio side chain engineering is a promising method to improve photovoltaic performance.

  2. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David

    Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less

  3. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.

    PubMed

    Giovannitti, Alexander; Maria, Iuliana P; Hanifi, David; Donahue, Mary J; Bryant, Daniel; Barth, Katrina J; Makdah, Beatrice E; Savva, Achilleas; Moia, Davide; Zetek, Matyáš; Barnes, Piers R F; Reid, Obadiah G; Inal, Sahika; Rumbles, Garry; Malliaras, George G; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain

    2018-05-08

    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

  4. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    DOE PAGES

    Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; ...

    2018-04-24

    Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less

  5. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorenbos, G., E-mail: dorenbos@ny.thn.ne.jp

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead,more » respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ∼0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.« less

  6. From Semi- to Full-Two-Dimensional Conjugated Side-Chain Design: A Way toward Comprehensive Solar Energy Absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Pengjie; Wang, Huan; Qu, Shiwei

    Two polymers with fully two-dimensional (2D) conjugated side chains, 2D-PTB-Th and 2D-PTB-TTh, were synthesized and characterized through simultaneously integrating the 2D-TT and the 2D-BDT monomers onto the polymer backbone. Resulting from the synergistic effect from the conjugated side chains on both monomers, the two polymers showed remarkably efficient absorption of the sunlight and improved pi-pi intermolecular interactions for efficient charge carrier transport. The optimized bulk heterojunction device based on 2D-PTB-Th and PC71BM shows a higher PCE of 9.13% compared to PTB7-Th with a PCE of 8.26%, which corresponds to an approximately 10% improvement in solar energy conversion. The fully 2D-conjugatedmore » side-chain concept reported here developed a new molecular design strategy for polymer materials with enhanced sunlight absorption and efficient solar energy conversion.« less

  7. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers

    NASA Astrophysics Data System (ADS)

    Gallani, J. L.; Hilliou, L.; Martinoty, P.; Keller, P.

    1994-03-01

    We show that, contrary to what is commonly believed, the isotropic phase of side-chain liquid-crystal polymers has viscoelastic properties which are totally different from those of ordinary flexible melt polymers. The results can be explained by the existence of a transient network created by the dynamic association of mesogenic groups belonging to different chains. The extremely high sensitivity of the compound to the state of the surfaces with which it is in contact offers us an unexpected method of studying surface states.

  8. Side Chain Degradable Cationic-Amphiphilic Polymers with Tunable Hydrophobicity Show in Vivo Activity.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Hoque, Jiaul; Konai, Mohini M; Krishnamoorthy, Paramanandham; Shome, Bibek R; Haldar, Jayanta

    2016-09-12

    Cationic-amphiphilic antibacterial polymers with optimal amphiphilicity generally target the bacterial membranes instead of mammalian membranes. To date, this balance has been achieved by varying the cationic charge or side chain hydrophobicity in a variety of cationic-amphiphilic polymers. Optimal hydrophobicity of cationic-amphiphilic polymers has been considered as the governing factor for potent antibacterial activity yet minimal mammalian cell toxicity. However, the concomitant role of hydrogen bonding and hydrophobicity with constant cationic charge in the interactions of antibacterial polymers with bacterial membranes is not understood. Also, degradable polymers that result in nontoxic degradation byproducts offer promise as safe antibacterial agents. Here we show that amide- and ester (degradable)-bearing cationic-amphiphilic polymers with tunable side chain hydrophobicity can modulate antibacterial activity and cytotoxicity. Our results suggest that an amide polymer can be a potent antibacterial agent with lower hydrophobicity whereas the corresponding ester polymer needs a relatively higher hydrophobicity to be as effective as its amide counterpart. Our studies reveal that at higher hydrophobicities both amide and ester polymers have similar profiles of membrane-active antibacterial activity and mammalian cell toxicity. On the contrary, at lower hydrophobicities, amide and ester polymers are less cytotoxic, but the former have potent antibacterial and membrane activity compared to the latter. Incorporation of amide and ester moieties made these polymers side chain degradable, with amide polymers being more stable than the ester polymers. Further, the polymers are less toxic, and their degradation byproducts are nontoxic to mice. More importantly, the optimized amide polymer reduces the bacterial burden of burn wound infections in mice models. Our design introduces a new strategy of interplay between the hydrophobic and hydrogen bonding interactions keeping constant cationic charge density for developing potent membrane-active antibacterial polymers with minimal toxicity to mammalian cells.

  9. Phase separation of comb polymer nanocomposite melts.

    PubMed

    Xu, Qinzhi; Feng, Yancong; Chen, Lan

    2016-02-07

    In this work, the spinodal phase demixing of branched comb polymer nanocomposite (PNC) melts is systematically investigated using the polymer reference interaction site model (PRISM) theory. To verify the reliability of the present method in characterizing the phase behavior of comb PNCs, the intermolecular correlation functions of the system for nonzero particle volume fractions are compared with our molecular dynamics simulation data. After verifying the model and discussing the structure of the comb PNCs in the dilute nanoparticle limit, the interference among the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions between the comb polymer and nanoparticles in spinodal demixing curves is analyzed and discussed in detail. The results predict two kinds of distinct phase separation behaviors. One is called classic fluid phase boundary, which is mediated by the entropic depletion attraction and contact aggregation of nanoparticles at relatively low nanoparticle-monomer attraction strength. The second demixing transition occurs at relatively high attraction strength and involves the formation of an equilibrium physical network phase with local bridging of nanoparticles. The phase boundaries are found to be sensitive to the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions. As the side chain length is fixed, the side chain number has a large effect on the phase behavior of comb PNCs; with increasing side chain number, the miscibility window first widens and then shrinks. When the side chain number is lower than a threshold value, the phase boundaries undergo a process from enlarging the miscibility window to narrowing as side chain length increases. Once the side chain number overtakes this threshold value, the phase boundary shifts towards less miscibility. With increasing nanoparticle-monomer size ratio, a crossover of particle size occurs, above which the phase separation is consistent with that of chain PNCs. The miscibility window for this condition gradually narrows while the other parameters of the PNCs system are held constant. These results indicate that the present PRISM theory can give molecular-level details of the underlying mechanisms of the comb PNCs. It is hoped that the results can be used to provide useful guidance for the future design control of novel, thermodynamically stable comb PNCs.

  10. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur–fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and themore » flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.« less

  11. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE PAGES

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    2016-02-10

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  12. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  14. Influence of the side chain and substrate on polythiophene thin film surface, bulk, and buried interfacial structures.

    PubMed

    Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan

    2016-08-10

    The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting thin film surface, buried interfacial, and bulk structures is a first crucial step in understanding the structure-function relationship of such films in order to optimize device performance. An in-depth understanding on how the side-chain influences the interfacial and surface polymer orientation will guide the future molecular structure design of organic semiconductors.

  15. Dynamics of Polarons in Organic Conjugated Polymers with Side Radicals.

    PubMed

    Liu, J J; Wei, Z J; Zhang, Y L; Meng, Y; Di, B

    2017-03-16

    Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons propagating along a polymer chain, as a function of the distance between side radicals and the magnitude of the transfer integrals between the main chain and the side radicals. We first discuss the average velocities of electron and hole polarons as a function of the distance between side radicals. It is found that the average velocities of the electron polarons remain almost unchanged, while the average velocities of hole polarons decrease significantly when the radical distance is comparable to the polaron width. Second, we have found that the average velocities of electron polarons decrease with increasing transfer integral, but the average velocities of hole polarons increase. These results may provide a theoretical basis for understanding carriers transport properties in polymers chain with side radicals.

  16. Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo,J.; Resnick, P.; Efimenko, K.

    2008-01-01

    The degradation of stain-resistant coating materials leads to the release of biopersistent perfluorooctanoic acid (PFOA) to the environment. In order to find the environmentally friendly substitutes, we have designed and synthesized a series of nonbiopersistant fluorinated polymers containing perfluorobutyl groups in the side chains. The surface properties of the new coating materials were characterized by static and dynamic contact angle measurements. The new coating materials demonstrate promising hydrophobic and oleophobic properties with low surfaces tensions. The wetting properties and surface structure of the polymers were tuned by varying the 'spacer' structures between the polymer backbones and the perfluorinated groups ofmore » the side chains. The relationship between orientations of the fluorinated side chains and performances of polymer surfaces were further investigated by near-edge X-ray fine absorption structure (NEXAFS) experiments and differential scanning calorimetry (DSC).« less

  17. Linear rheology and structure of molecular bottlebrushes with short side chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Brant, Patrick; Crowther, Donna J.

    We investigate the microstructure and linear viscoelasticity of model molecular bottlebrushes (BBs) using rheological and small-angle X-ray and neutron scattering measurements. Our polymers have short atactic polypropylene (aPP) side chains of molecular weight ranging from 119 g/mol to 259 g/mol and narrow molecular weight distribution (M{sub w}/M{sub n} 1.02–1.05). The side chain molecular weights are a small fraction of the entanglement molecular weight of the corresponding linear polymer (M{sub e,aPP}= 7.05 kg/mol), and as such, they are unentangled. The morphology of the aPP BBs is characterized as semiflexible thick chains with small side chain interdigitation. Their dynamic master curves, obtained by time-temperature superposition,more » reveal two sequential relaxation processes corresponding to the segmental relaxation and the relaxation of the BB backbone. Due to the short length of the side chains, their fast relaxation could not be distinguished from the glassy relaxation. The fractional free volume is an increasing function of the side chain length (N{sub SC}). Therefore, the glassy behavior of these polymers as well as their molecular friction and dynamic properties are influenced by their N{sub SC} values. The apparent flow activation energies are a decreasing function of N{sub SC}, and their values explain the differences in zero-shear viscosity measured at different temperatures.« less

  18. An easy and effective method to modulate molecular energy level of the polymer based on benzodithiophene for the application in polymer solar cells.

    PubMed

    Zhang, Maojie; Guo, Xia; Ma, Wei; Zhang, Shaoqing; Huo, Lijun; Ade, Harald; Hou, Jianhui

    2014-04-02

    Attaching meta-alkoxy-phenyl groups as conjugated side chains is an easy and effective way to modulate the molecular energy level of D-A polymer for photovoltaic application, and the polymer solar cells based on the polymer consisting meta-alkoxy-phenyl groups as conjugated side chain, PBT-OP, shows an enhanced open circuit voltage and thus higher efficiency of 7.50%, under the illumination of AM 1.5G, 100 mW/cm(2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    PubMed

    Toshchevikov, V; Saphiannikova, M; Heinrich, G

    2009-04-16

    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  20. Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.

    PubMed

    Ghosh, Bappa; Chaudhury, Srabanti

    2018-01-11

    We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.

  1. Side-chain Liquid Crystal Polymers (SCLCP): Methods and Materials. An Overview

    PubMed Central

    Ganicz, Tomasz; Stańczyk, Włodzimierz

    2009-01-01

    This review focuses on recent developments in the chemistry of side chain liquid crystal polymers. It concentrates on current trends in synthetic methods and novel, well defined structures, supramolecular arrangements, properties, and applications. The review covers literature published in this century, apart from some areas, such as dendritic and elastomeric systems, which have been recently reviewed.

  2. Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, NW; Leng, YJ; Hickner, MA

    2013-07-10

    To produce an anion-conductive and durable polymer electrolyte for alkaline fuel cell applications, a series of quaternized poly(2,6-dimethyl phenylene oxide)s containing long alkyl side chains pendant to the nitrogen-centered cation were synthesized using a Menshutkin reaction to form comb-shaped structures. The pendant alkyl chains were responsible for the development of highly conductive ionic domains, as confirmed by small-angle X-ray scattering (SAXS). The comb-shaped polymers having one alkyl side chain showed higher hydroxide conductivities than those with benzyltrimethyl ammonium moieties or structures with more than one alkyl side chain per cationic site. The highest conductivity was observed for comb-shaped polymers withmore » benzyldimethylhexadecyl ammonium cations. The chemical stabilities of the comb-shaped membranes were evaluated under severe, accelerated-aging conditions, and degradation was observed by measuring IEC and ion conductivity changes during aging. The comb-shaped membranes retained their high ion conductivity in 1 M NaOH at 80 degrees C for 2000 h. These cationic polymers were employed as ionomers in catalyst layers for alkaline fuel cells. The results indicated that the C-16 alkyl side chain ionomer had a slightly better initial performance, despite its low IEC value, but very poor durability in the fuel cell. In contrast, 90% of the initial performance was retained for the alkaline fuel cell with electrodes containing the C-6 side chain after 60 h of fuel cell operation.« less

  3. Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains.

    PubMed

    Schmatz, Brian; Yuan, Zhibo; Lang, Augustus W; Hernandez, Jeff L; Reichmanis, Elsa; Reynolds, John R

    2017-09-27

    The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer's side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics.

  4. Tension amplification in tethered layers of bottle-brush polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuty, Gary M.; Tsige, Mesfin; Grest, Gary S.

    2016-02-26

    In this paper, molecular dynamics simulations of a coarse-grained bead–spring model have been used to study the effects of molecular crowding on the accumulation of tension in the backbone of bottle-brush polymers tethered to a flat substrate. The number of bottle-brushes per unit surface area, Σ, as well as the lengths of the bottle-brush backbones N bb (50 ≤ N bb ≤ 200) and side chains N sc (50 ≤ N sc ≤ 200) were varied to determine how the dimensions and degree of crowding of bottle-brushes give rise to bond tension amplification along the backbone, especially near the substrate.more » From these simulations, we have identified three separate regimes of tension. For low Σ, the tension is due solely to intramolecular interactions and is dominated by the side chain repulsion that governs the lateral brush dimensions. With increasing Σ, the interactions between bottle-brush polymers induce compression of the side chains, transmitting increasing tension to the backbone. For large Σ, intermolecular side chain repulsion increases, forcing side chain extension and reorientation in the direction normal to the surface and transmitting considerable tension to the backbone.« less

  5. Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo-alt-Bithiophene Based Polymer Thin Films.

    PubMed

    Xue, Guobiao; Zhao, Xikang; Qu, Ge; Xu, Tianbai; Gumyusenge, Aristide; Zhang, Zhuorui; Zhao, Yan; Diao, Ying; Li, Hanying; Mei, Jianguo

    2017-08-02

    The selection of side chains is important in design of conjugated polymers. It not only affects their intrinsic physical properties, but also has an impact on thin film morphologies. Recent reports suggested that a face-on/edge-on bimodal orientation observed in polymer thin films may be responsible for a three-dimensional (3D) charge transport and leads to dramatically improved mobility in donor-acceptor based conjugated polymers. To achieve a bimodal orientation in thin films has been seldom explored from the aspect of molecular design. Here, we demonstrate a design strategy involving the use of asymmetric side chains that enables an isoindigo-based polymer to adopt a distinct bimodal orientation, confirmed by the grazing incidence X-ray diffraction. As a result, the polymer presents an average high mobility of 3.8 ± 0.7 cm 2 V -1 s -1 with a maximum value of 5.1 cm 2 V -1 s -1 , in comparison with 0.47 and 0.51 cm 2 V -1 s -1 obtained from the two reference polymers. This study exemplifies a new strategy to develop the next generation polymers through understanding the property-structure relationship.

  6. Precise Side-Chain Engineering of Thienylenevinylene-Benzotriazole-Based Conjugated Polymers with Coplanar Backbone for Organic Field Effect Transistors and CMOS-like Inverters.

    PubMed

    Lee, Min-Hye; Kim, Juhwan; Kang, Minji; Kim, Jihong; Kang, Boseok; Hwang, Hansu; Cho, Kilwon; Kim, Dong-Yu

    2017-01-25

    Two donor-acceptor (D-A) alternating conjugated polymers based on thienylenevinylene-benzotriazole (TV-BTz), PTV6B with a linear side chain and PTVEhB with a branched side chain, were synthesized and characterized for organic field effect transistors (OFETs) and complementary metal-oxide-semiconductor (CMOS)-like inverters. According to density functional theory (DFT), polymers based on TV-BTz exhibit a coplanar and rigid structure with no significant twists, which could cause to an increase in charge-carrier mobility in OFETs. Alternating alkyl side chains of the polymers impacted neither the band gap nor the energy level. However, it significantly affected the morphology and crystallinity when the polymer films were thermally annealed. To investigate the effect of thermal annealing on the morphology and crystallinity, we characterized the polymer films using atomic force microscopy (AFM) and 2D-grazing incidence X-ray diffraction (2D-GIWAXD). Fibrillary morphologies with larger domains and increased crystallinity were observed in the polymer films after thermal annealing. These polymers exhibited improved charge-carrier mobilities in annealed films at 200 °C and demonstrated optimal OFET device performance with p-type transport characteristics with charge-carrier mobilities of 1.51 cm 2 /(V s) (PTV6B) and 2.58 cm 2 /(V s) (PTVEhB). Furthermore, CMOS-like inorganic (ZnO)-organic (PTVEhB) hybrid bilayer inverter showed that the inverting voltage (V inv ) was positioned near the ideal switching point at half (1/2) of supplied voltage (V DD ) due to fairly balanced p- and n-channels.

  7. ONR Far East Scientific Information Bulletin

    DTIC Science & Technology

    1990-09-01

    In bone, grafting onto a polymer chain, inter- continuous processes, such as reactive extru- chain reactions, formation of interpenetrat- sion and...reaction kinetics, rheology, and side- and end-chain grafting , homopolymer transport phenomena occurring during REX. chain coupling, polymer...the Grafting reactions yield block or graft coupling species becomes a part of the chain, copolymers. Polyethylene, polypropylene, or by

  8. Assessing the influence of side-chain and main-chain aromatic benzyltrimethyl ammonium on anion exchange membranes.

    PubMed

    Li, Xiuhua; Nie, Guanghui; Tao, Jinxiong; Wu, Wenjun; Wang, Liuchan; Liao, Shijun

    2014-05-28

    3,3'-Di(4″-methyl-phenyl)-4,4'-difluorodiphenyl sulfone (DMPDFPS), a new monomer with two pendent benzyl groups, was easily prepared by Suzuki coupling reaction in high yield. A series of side-chain type ionomers (PAES-Qs) containing pendant side-chain benzyltrimethylammonium groups, which linked to the backbone by alkaline resisting conjugated C-C bonds, were synthesized via polycondensation, bromination, followed by quaternization and alkalization. To assess the influence of side-chain and main-chain aromatic benzyltrimethylammonium on anion exchange membranes (AEMs), the main-chain type ionomers (MPAES-Qs) with the same backbone were synthesized following the similar procedure. GPC and (1)H NMR results indicate that the bromination shows no reaction selectivity of polymer configurations and ionizations of the side-chain type polymers display higher conversions than that of the main-chain type ones do. These two kinds of AEMs were evaluated in terms of ion exchange capacity (IEC), water uptake, swelling ratio, λ, volumetric ion exchange capacity (IECVwet), hydroxide conductivity, mechanical and thermal properties, and chemical stability, respectively. The side-chain type structure endows AEMs with lower water uptake, swelling ratio and λ, higher IECVwet, much higher hydroxide conductivity, more robust dimensional stability, mechanical and thermal properties, and higher stability in hot alkaline solution. The side-chain type cationic groups containing molecular configurations have the distinction of being practical AEMs and membrane electrode assemblies of AEMFCs.

  9. Diketopyrrolopyrrole-Based Conjugated Polymer Entailing Triethylene Glycols as Side Chains with High Thin-Film Charge Mobility without Post-Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Si-Fen; Liu, Zi-Tong; Cai, Zheng-Xu

    Side chain engineering of conjugated donor-acceptor polymers is a new way to manipulate their optoelectronic properties. Two new diketopyrrolopyrrole (DPP)-terthiophene-based conjugated polymers PDPP3T-1 and PDPP3T-2, with both hydrophilic triethylene glycol (TEG) and hydrophobic alkyl chains, are reported. It is demonstrated that the incorporation of TEG chains has a significant effect on the interchain packing and thin-film morphology with noticeable effect on charge transport. Polymer chains of PDPP3T-1 in which TEG chains are uniformly distributed can self-assemble spontaneously into a more ordered thin film. As a result, the thin film of PDPP3T-1 exhibits high saturated hole mobility up to 2.6 cm(2)more » V-1 s(-1) without any post-treatment. This is superior to those of PDPP3T with just alkyl chains and PDPP3T-2. Moreover, the respective field effect transistors made of PDPP3T-1 can be utilized for sensing ethanol vapor with high sensitivity (down to 100 ppb) and good selectivity.« less

  10. Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains

    PubMed Central

    2017-01-01

    The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer’s side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics. PMID:28979937

  11. Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for High-Efficiency Polymer Solar Cells.

    PubMed

    Xue, Lingwei; Yang, Yankang; Xu, Jianqiu; Zhang, Chunfeng; Bin, Haijun; Zhang, Zhi-Guo; Qiu, Beibei; Li, Xiaojun; Sun, Chenkai; Gao, Liang; Yao, Jia; Chen, Xiaofeng; Yang, Yunxu; Xiao, Min; Li, Yongfang

    2017-10-01

    Suppression of carrier recombination is critically important in realizing high-efficiency polymer solar cells. Herein, it is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination. A new medium bandgap 2D-conjugated D-A copolymer J91 is designed and synthesized with bi(alkyl-difluorothienyl)-benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit, for taking the advantages of the synergistic fluorination on the backbone and thiophene side chain. J91 demonstrates enhanced absorption, low-lying highest occupied molecular orbital energy level, and higher hole mobility, in comparison with its control polymer J52 without fluorination on the thiophene side chains. The transient absorption spectra indicate that J91 can suppress the triplet formation in its blend film with n-type organic semiconductor acceptor m-ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(3-hexylphenyl)-dithieno[2,3-d:2,3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene). With these favorable properties, a higher power conversion efficiency of 11.63% with high V OC of 0.984 V and high J SC of 18.03 mA cm -2 is obtained for the polymer solar cells based on J91/m-ITIC with thermal annealing. The improved photovoltaic performance by thermal annealing is explained from the morphology change upon thermal annealing as revealed by photoinduced force microscopy. The results indicate that side chain engineering can provide a new solution to suppress carrier recombination toward high efficiency, thus deserves further attention. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo- alt -Bithiophene Based Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Guobiao; Zhao, Xikang; Qu, Ge

    The selection of side chains is important in design of conjugated polymers. It not only affects their intrinsic physical properties, but also has an impact on thin film morphologies. Recent reports suggested that a face-on/edge-on bimodal orientation observed in polymer thin films may be responsible for a three-dimensional (3D) charge transport and leads to dramatically improved mobility in donor–acceptor based conjugated polymers. To achieve a bimodal orientation in thin films has been seldom explored from the aspect of molecular design. Here, we demonstrate a design strategy involving the use of asymmetric side chains that enables an isoindigo-based polymer to adoptmore » a distinct bimodal orientation, confirmed by the grazing incidence X-ray diffraction. As a result, the polymer presents an average high mobility of 3.8 ± 0.7 cm2 V–1 s–1 with a maximum value of 5.1 cm2 V–1 s–1, in comparison with 0.47 and 0.51 cm2 V–1 s–1 obtained from the two reference polymers. This study exemplifies a new strategy to develop the next generation polymers through understanding the property-structure relationship.« less

  13. Smectic order and backbone anisotropy of a side-chain liquid crystalline polymer by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.

    1991-07-01

    We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.

  14. What the ultimate polymeric electro-optic materials will be: guest-host, crosslinked, or side-chain?

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Zhang, Hua; Oh, Min-Cheol; Dalton, Larry R.; Steier, William H.

    2003-07-01

    Material processing and device fabrication of many different electro-optic (EO) polymers developed at USC are reviewed. Detailed discussion is given to guest-host CLD/APCs, crosslinking perfluorocyclobutane (PFCB) polymer CX1, and thermally stable side-chain polymers CX2 and CX3. Excellent EO performance (1.4V at 1.31 μm, 2.1 V at 1.55 μm) was achieved in CLD/APC Mach-Zehnder modulators (2-cm, push-pull). CLD/APCs also possess low optical losses (1.2 dB/cm in slab waveguides and in thick core channel waveguides). However, the guest-host materials only have limited thermal stability (110-132 °C in short term, <60 °C in long term) and require special techniques in device fabrication. The crosslinking polymer CX1 was able to provide long-term stability at 85 oC when fully cured. It also has a low optical loss (comparable to CLD/APCs) before curing and decent EO coefficient when poled at 180 °C. However, after the films were poled at the crosslinking temperatures (200 °C or above), the transmissions of the waveguides and EO activity became very poor due to poling-induced chromophore degradation. By judicial molecular design of both chromophore and monomer structures to suppress thermal motion of polymer segments, we were able to realize the same or even better thermal stability in side-chain polymers CX2 and CX3. Since no curing is needed, devices can be poled at their optimal poling temperatures, and all good properties can be obtained simultaneously. Despite the excellent solubility in chlorinated solvents, these side-chain polymers are resistant to some other organic solvents or solutions such as acetone, photoresist and various UV-curable liquids.

  15. Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating

    NASA Astrophysics Data System (ADS)

    Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.

    2017-12-01

    Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.

  16. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    PubMed

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  17. Copolymer Synthesis and Characterization by Post-Polymerization Modification

    NASA Astrophysics Data System (ADS)

    Galvin, Casey James

    This PhD thesis examines the physical behavior of surface-grafted polymer assemblies (SGPAs) derived from post-polymerization modification (PPM) reactions in aqueous and vapor enriched environments, and offers an alternative method of creating SGPAs using a PPM approach. SGPAs comprise typically polymer chains grafted covalently to solid substrates. These assemblies show promise in a number of applications and technologies due to the stability imparted by the covalent graft and ability to modify interfacial properties and stability. SGPAs also offer a set of rich physics to explore in fundamental investigations as a result of confining macromolecules to a solid substrate. PPM reactions (also called polymer analogous reactions) apply small molecule organic chemistry reactions to the repeat units of polymer chains in order to generate new chemistries. By applying a PPM strategy to SGPAs, a wide variety of functional groups can be introduced into a small number of well-studied and well-behaved model polymer systems. This approach offers the advantage of holding constant other properties of the SGPA (e.g., molecular weight, MW, and grafting density, sigma) to isolate the effect of chemistry on physical behavior. Using a combination of PPM and fabrication methods that facilitate the formation of SPGAs with position-dependent gradual variation of sigma on flat impenetrable substrate, the influence of polymer chemistry and sigma is examined on the stability of weak polyelectrolyte brushes in aqueous environments at different pH levels. Degrafting of polymer chains in SGPAs exhibits a complex dependence on side chain chemistry, sigma, pH and the charge fraction (alpha) within the brush. Results of these experiments support a proposed mechanism of degrafting, wherein extension of the grafted chains away from the substrate generates tension along the polymer backbone, which activates the grafting chemistry for hydrolysis. The implications of these findings are important in developing technologies that use SGPAs in aqueous environments, and point to a need for potential alternative grafting chemistries. The behavior of SGPAs in vapor environments remains an underexplored phenomenon. By changing systematically the chemistry of SGPAs derived from a parent sample, the influence of side chain functional groups on the swelling of weak and strong polyelectrolyte brushes in the presence of water, methanol and ethanol vapors is explored. The extent of swelling and solvent uptake depends strongly on the chemistry in the polymer side chain and of the solvent. Despite bearing a permanent electrostatic charge in the side chain, the strong polyelectrolyte brushes exhibit no behavior typical of polyelectrolytes in water due to no dissociation of the counterion. Of particular interest is the behavior in humid environments of an SGPA bearing a zwitterionic group in its side chain, which results in exposure of electrostatic charges without counterions. Using substrates bearing the aforementioned sigma gradient of polymeric grafts, evidence of inter- and intramolecular complex formation is presented. Finally, a method of developing SGPAs by polymerizing bulk polymer chains through surface-grafted monomers (SGMs) is described. The SGMs are incorporated onto a solid substrate using the same PPM reaction employed in the degrafting and vapor swelling experiments, highlighting the versatility of PPM. The thickness of these SGPAs is correlated to the bulk polymer chains MW, suggesting this technique can be used in existing industrial bulk polymerization processes.

  18. Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells.

    PubMed

    Zhang, Cai'e; Feng, Shiyu; Liu, Yahui; Hou, Ran; Zhang, Zhe; Xu, Xinjun; Wu, Youzhi; Bo, Zhishan

    2017-10-04

    Three indacenodithieno[3,2-b]thiophene (IT) cored small molecular acceptors (ITIC-SC6, ITIC-SC8, and ITIC-SC2C6) were synthesized, and the influence of side chains on their performances in solar cells was systematically probed. Our investigations have demonstrated the variation of side chains greatly affects the charge dissociation, charge mobility, and morphology of the donor:acceptor blend films. ITIC-SC2C6 with four branched side chains showed improved solubility, which can ensure the polymer donor to form favorable fibrous nanostructure during the drying of the blend film. Consequently, devices based on PBDB-ST:ITIC-SC2C6 demonstrated higher charge mobility, more effective exciton dissociation, and the optimal power conversion efficiency up to 9.16% with an FF of 0.63, a J sc of 15.81 mA cm -2 , and a V oc of 0.92 V. These results reveal that the side chain engineering is a valid way of tuning the morphology of blend films and further improving PCE in polymer solar cells.

  19. Structural Ordering of Semiconducting Polymers and Small-Molecules for Organic Electronics

    NASA Astrophysics Data System (ADS)

    O'Hara, Kathryn Allison

    Semiconducting polymers and small-molecules can be readily incorporated into electronic devices such as organic photovoltaics (OPVs), thermoelectrics (OTEs), organic light emitting diodes (OLEDs), and organic thin film transistors (OTFTs). Organic materials offer the advantage of being processable from solution to form flexible and lightweight thin films. The molecular design, processing, and resulting thin film morphology of semiconducting polymers drastically affect the optical and electronic properties. Charge transport within films of semiconducting polymers relies on the nanoscale organization to ensure electronic coupling through overlap of molecular orbitals and to provide continuous transport pathways. While the angstrom-scale packing details can be studied using X-ray scattering methods, an understanding of the mesoscale, or the length scale over which smaller ordered regions connect, is much harder to achieve. Grain boundaries play an important role in semiconducting polymer thin films where the average grain size is much smaller than the total distance which charges must traverse in order to reach the electrodes in a device. The majority of semiconducting polymers adopt a lamellar packing structure in which the conjugated backbones align in parallel pi-stacks separated by the alkyl side-chains. Only two directions of transport are possible--along the conjugated backbone and in the pi-stacking direction. Currently, the discussion of transport between crystallites is centered around the idea of tie-chains, or "bridging" polymer chains connecting two ordered regions. However, as molecular structures become increasingly complex with the development of new donor-acceptor copolymers, additional forms of connectivity between ordered domains should be considered. High resolution transmission electron microscopy (HRTEM) is a powerful tool for directly imaging the crystalline grain boundaries in polymer and small-molecule thin films. Recently, structures comparable to quadrites were discovered in the semiconducting polymer, PSBTBT, where the angle of chain overlap could be predicted by the geometry of the backbone and alkyl side-chains. Such structures are hypothesized to improve the electronic connectivity and enable 3D transport. Now, it has been determined that another semiconducting polymer, PBDTTPD, forms cross-chain structures in thin films. PBDTTPD is a low band-gap donor-acceptor copolymer used in high efficiency OPVs. The effect of the alkyl side-chains on intercrystallite order is determined by examining three different derivatives of the PBDTTPD polymer with HRTEM. Additionally, the expansion and contraction of films during thermal annealing and slow cooling is monitored through in-situ grazing incidence wide-angle X-ray scattering (GIWAXS) measurements. Results show that minor variations in side-chain structure drive both crystallite orientation and the formation of crossed structures. Overall, these studies suggest design principles to continue to advance the field of organic electronics.

  20. Modular in situ-Functionalization Strategy: Multicomponent Polymerization via Palladium/Norbornene Cooperative Catalysis.

    PubMed

    Yoon, Ki-Young; Dong, Guangbin

    2018-05-23

    Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sustainable thermoplastic elastomers derived from cellulose, fatty acid and furfural via ATRP and click chemistry.

    PubMed

    Yu, Juan; Lu, Chuanwei; Wang, Chunpeng; Wang, Jifu; Fan, Yimin; Chu, Fuxiang

    2017-11-15

    Cellulose-based thermoplastic elastomers (TPEs) have attracted considerable attention because of their rigid backbone, good mechanical properties, renewable nature and abundance. In the present study, sustainable TPEs based on ethyl cellulose (EC), fatty acid and furfural were generated by the combination of ATRP and "click chemistry". To fabricate sustainable TPEs with higher toughness, a range of polymers, including mono random-copolymer poly(tetrahydrofurfuryl methacrylate-co-lauryl methacrylate) (P(THFMA-co-LMA), dual polymer side chains PTHFMA and PLMA, and mono-block copolymer PTHFMA-b-PLMA, were designed as side chains to fabricate EC brush copolymers with random, dual or block side chain architectures using the "grafting from" and "grafting onto" methods. The multi-armed structures, chemical compositions and phase separation of these EC brush copolymers were confirmed by FT-IR, 1 H NMR, GPC, DSC, TEM and SEM. Overall, three types of EC brush copolymers all exhibited the desired mechanical properties of TPEs. In addition, the EC brush copolymers with dual/block side chain architectures showed higher tensile strength than that of the random polymers with similar compositions. Copyright © 2017. Published by Elsevier Ltd.

  2. Improving proton conduction pathways in di- and triblock copolymer membranes: Branched versus linear side chains

    NASA Astrophysics Data System (ADS)

    Dorenbos, G.

    2017-06-01

    Phase separation within a series of polymer membranes in the presence of water is studied by dissipative particle dynamics. Each polymer contains hydrophobic A beads and hydrophilic C beads. Three parent architectures are constructed from a backbone composed of connected hydrophobic A beads to which short ([C]), long ([A3C]), or symmetrically branched A5[AC][AC] side chains spring off. Three di-block copolymer derivatives are constructed by covalently bonding an A30 block to each parent architecture. Also three tri-blocks with A15 blocks attached to both ends of each parent architecture are modeled. Monte Carlo tracer diffusion calculations through the water containing pores for 1226 morphologies reveal that water diffusion for parent architectures is slowest and diffusion through the di-blocks is fastest. Furthermore, diffusion increases with side chain length and is highest for branched side chains. This is explained by the increase of water pore size with , which is the average number of bonds that A beads are separated from a nearest C bead. Optimization of within the amphiphilic parent architecture is expected to be essential in improving proton conduction in polymer electrolyte membranes.

  3. Deuteration as a Means to Tune Crystallinity of Conducting Polymers

    DOE PAGES

    Jakowski, Jacek; Huang, Jingsong; Garashchuk, Sophya; ...

    2017-08-25

    The effects of deuterium isotope substitution on conjugated polymer chain stacking of poly(3-hexylthiophene) is studied in this paper experimentally by X-ray diffraction (XRD) in combination with gel permeation chromatography and theoretically using density functional theory and quantum molecular dynamics. For four P3HT materials with different levels of deuteration (pristine, main-chain deuterated, side-chain deuterated, and fully deuterated), the XRD measurements show that main-chain thiophene deuteration significantly reduces crystallinity, regardless of the side-chain deuteration. The reduction of crystallinity due to the main-chain deuteration is a quantum nuclear effect resulting from a static zero-point vibrational energy combined with a dynamic correlation of themore » dipole fluctuations. The quantum molecular dynamics simulations confirm the interchain correlation of the proton–proton and deuteron–deuteron motions but not of the proton–deuteron motion. Thus and finally, isotopic purity is an important factor affecting stability and properties of conjugated polymer crystals, which should be considered in the design of electronic and spintronic devices.« less

  4. Deuteration as a Means to Tune Crystallinity of Conducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakowski, Jacek; Huang, Jingsong; Garashchuk, Sophya

    The effects of deuterium isotope substitution on conjugated polymer chain stacking of poly(3-hexylthiophene) is studied in this paper experimentally by X-ray diffraction (XRD) in combination with gel permeation chromatography and theoretically using density functional theory and quantum molecular dynamics. For four P3HT materials with different levels of deuteration (pristine, main-chain deuterated, side-chain deuterated, and fully deuterated), the XRD measurements show that main-chain thiophene deuteration significantly reduces crystallinity, regardless of the side-chain deuteration. The reduction of crystallinity due to the main-chain deuteration is a quantum nuclear effect resulting from a static zero-point vibrational energy combined with a dynamic correlation of themore » dipole fluctuations. The quantum molecular dynamics simulations confirm the interchain correlation of the proton–proton and deuteron–deuteron motions but not of the proton–deuteron motion. Thus and finally, isotopic purity is an important factor affecting stability and properties of conjugated polymer crystals, which should be considered in the design of electronic and spintronic devices.« less

  5. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 1, Side-chain 13C-enriched DHP ([alpha], [beta], and [gamma]-13C)

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing has been studied using side-chain ([alpha], [beta], and [gamma]) 13C-enriched DHP (dehydrogenation polymer) and quantitative solution state 13C NMR spectroscopy. The DHP was formed from 13C-enriched coniferin using an enzymatic system consisting of [beta]-glucosidase, glucose oxidase, and peroxidase in a pH 6 buffer solution. The DHP was applied...

  6. Biopolymers Containing Unnatural Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less

  7. Biopolymers Containing Unnatural Building Blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter G.

    2013-06-30

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less

  8. Molecular Design for Preparation of Hexagonal-Ordered Porous Films Based on Side-chain Type Liquid-Crystalline Star Polymer.

    PubMed

    Naka, Yumiko; Takayama, Hiromu; Koyama, Teruhisa; Le, Khoa V; Sasaki, Takeo

    2018-05-02

    Fabrication of regularly porous films by the breath-figure method has attracted much attention. The simple, low-cost technique uses the condensation of water droplets to produce these structures, but the phenomenon itself is complex, requiring control over many interacting parameters that change throughout the process. Developing a unified understanding for the molecular design of polymers to prepare ordered porous films is challenging, but required for further advancements. In this article, the effects of the chemical structure of polymers in the breath-figure technique were systematically explored using side-chain type liquid-crystalline (LC) star polymers. The formation of porous films was affected by the structure of the polymers. Although the entire film surface of poly(11-[4-(4-cyanobiphenyl)oxy]undecyl methacrylate) (P11CB) had a hexagonal ordered porous structure over a certain Mn value, regularly arranged holes did not easily form in poly(methyl methacrylate) (PMMA), even though the main chain of PMMA is similar to that of P11CB. Comparing P11CB and poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11B) (P11CB without cyano groups) showed that the local polar groups in hydrophobic polymers promoted the formation of ordered porous films. No holes formed in poly(4-cyanobiphenyl methacrylate) (P0CB) (P11CB without alkyl spacers) films due to its hydrophilicity. The introduction of alkyl chains in P0CB allowed the preparation of honeycomb-structured films by increasing the internal tension. However, alkyl chains in the side chain alone did not result in a porous structure, as in the case of poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11). Aromatic rings are also required to increase the Tg and improve film formability. In the present study, suitable molecular designs of polymers were found, specifically hydrophobic polymers with local polar groups, to form a regularly porous structure. Development of clear guidelines for the molecular design of polymers is the subject of our current research, which will enable the fabrication of porous films using various functional polymers.

  9. The effect of side-chain substitution and hot processing on diketopyrrolopyrrole-based polymers for organic solar cells.

    PubMed

    Heintges, Gaël H L; Leenaers, Pieter J; Janssen, René A J

    2017-07-14

    The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of alternating DPP and oligothiophene units, are substituted with linear and second position branched alkyl side chains. For the polymer-fullerene blends that can be processed at room temperature, hot processing does not enhance the power conversion efficiencies compared to cold processing because the increased solubility at elevated temperatures results in the formation of wider polymer fibres that reduce charge generation. Instead, hot processing seems to be advantageous when cold processing is not possible due to a limited solubility at room temperature. The resulting morphologies are consistent with a nucleation-growth mechanism for polymer fibres during drying of the films.

  10. Evidence for a jacketed nematic polymer

    NASA Astrophysics Data System (ADS)

    Hardouin, F.; Mery, S.; Achard, M. F.; Noirez, L.; Keller, P.

    1991-05-01

    The evidence for a “jacketed” structure at the scale of the chain dimensions in the nematic phase of a “side-on fixed” liquid crystal polysiloxane is reported by using small angle neutron scattering. We relate this anisotropy of chain conformation to the first measurements of the rotational viscosity coefficient in this new type of liquid crystal side-chain polymer. Par des mesures de diffusion des neutrons aux petits angles nous montrons l'existence, pour un polysiloxane “ en haltère ”, d'une structure “ chemisée ” à l'échelle de l'organisation global d'une chaîne en phase nématique. On constate que cette anisotropie de forme du polymère a des conséquences sur l'évolution du coefficient de viscosité de torsion mesuré pour la première fois dans ce nouveau type de polymère à chaînes latérales.

  11. Conductive polymer-based material

    DOEpatents

    McDonald, William F [Utica, OH; Koren, Amy B [Lansing, MI; Dourado, Sunil K [Ann Arbor, MI; Dulebohn, Joel I [Lansing, MI; Hanchar, Robert J [Charlotte, MI

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  12. Designing interchain and intrachain properties of conjugated polymers for latent optical information encoding

    DOE PAGES

    Chung, Kyeongwoon; McAllister, Andrew; Bilby, David; ...

    2015-09-03

    Building molecular-design insights for controlling both the intrachain and the interchain properties of conjugated polymers (CPs) is essential to determine their characteristics and to optimize their performance in applications. However, most CP designs have focused on the conjugated main chain to control the intrachain properties, while the design of side chains is usually used to render CPs soluble, even though the side chains critically affect the interchain packing. Here, we present a straightforward and effective design strategy for modifying the optical and electrochemical properties of diketopyrrolopyrrole-based CPs by controlling both the intrachain and interchain properties in a single system. Themore » synthesized polymers, P1, P2 and P3, show almost identical optical absorption spectra in solution, manifesting essentially the same intrachain properties of the three CPs having restricted effective conjugation along the main chain. However, the absorption spectra of CP films are gradually tuned by controlling the interchain packing through the side-chain design. Here, based on the tailored optical properties, we demonstrate the encoding of latent optical information utilizing the CPs as security inks on a silica substrate, which reveals and conceals hidden information upon the reversible aggregation/deaggregation of CPs.« less

  13. Designing interchain and intrachain properties of conjugated polymers for latent optical information encoding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Kyeongwoon; McAllister, Andrew; Bilby, David

    Building molecular-design insights for controlling both the intrachain and the interchain properties of conjugated polymers (CPs) is essential to determine their characteristics and to optimize their performance in applications. However, most CP designs have focused on the conjugated main chain to control the intrachain properties, while the design of side chains is usually used to render CPs soluble, even though the side chains critically affect the interchain packing. Here, we present a straightforward and effective design strategy for modifying the optical and electrochemical properties of diketopyrrolopyrrole-based CPs by controlling both the intrachain and interchain properties in a single system. Themore » synthesized polymers, P1, P2 and P3, show almost identical optical absorption spectra in solution, manifesting essentially the same intrachain properties of the three CPs having restricted effective conjugation along the main chain. However, the absorption spectra of CP films are gradually tuned by controlling the interchain packing through the side-chain design. Here, based on the tailored optical properties, we demonstrate the encoding of latent optical information utilizing the CPs as security inks on a silica substrate, which reveals and conceals hidden information upon the reversible aggregation/deaggregation of CPs.« less

  14. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  15. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE PAGES

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...

    2017-02-24

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  16. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing.

    PubMed

    Holmquist, H; Schellenberger, S; van der Veen, I; Peters, G M; Leonards, P E G; Cousins, I T

    2016-05-01

    Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent substitution with alternatives has resulted in a market where both fluorinated and non-fluorinated DWRs are available. These DWR alternatives can be divided into four broad groups that reflect their basic chemistry: side-chain fluorinated polymers, silicones, hydrocarbons and other chemistries (includes dendrimer and inorganic nanoparticle chemistries). In this critical review, the alternative DWRs are assessed with regards to their structural properties and connected performance, loss and degradation processes resulting in diffuse environmental emissions, and hazard profiles for selected emitted substances. Our review shows that there are large differences in performance between the alternative DWRs, most importantly the lack of oil repellence of non-fluorinated alternatives. It also shows that for all alternatives, impurities and/or degradation products of the DWR chemistries are diffusively emitted to the environment. Our hazard ranking suggests that hydrocarbon based DWR is the most environmentally benign, followed by silicone and side-chain fluorinated polymer-based DWR chemistries. Industrial commitments to reduce the levels of impurities in silicone based and side-chain fluorinated polymer based DWR formulations will lower the actual risks. There is a lack of information on the hazards associated with DWRs, in particular for the dendrimer and inorganic nanoparticle chemistries, and these data gaps must be filled. Until environmentally safe alternatives, which provide the required performance, are available our recommendation is to choose DWR chemistry on a case-by-case basis, always weighing the benefits connected to increased performance against the risks to the environment and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Softening of the stiffness of bottle-brush polymers by mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolisetty, S.; Airaud, C.; Rosenfeldt, S.

    2007-04-15

    We study bottle-brush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side chains with approximately 60 monomer units. The SLS and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a wormlike chain with a contour length of 380 nm and a persistence length of 17.5 nm.more » An analysis of the DLS data confirms these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottle-brush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration (40.59 g/l) under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.« less

  18. Decoupling of ion conductivity from segmental dynamics in oligomeric ethylene oxide functionalized oxanorbornene dicarboximide homopolymers

    DOE PAGES

    Adams, Marisa; Richmond, Victoria; Smith, Douglas; ...

    2017-03-24

    Here, in order to design more effective solid polymer electrolytes, it is important to decouple ion conductivityfrom polymer segmental motion. To that end, novel polymers based on oxanorbornene dicarboximidemonomers with varying lengths of oligomeric ethylene oxide side chains have been synthesized usingring opening metathesis polymerization. These unique polymers have a fairly rigid and bulky backboneand were used to investigate the decoupling of ion motion from polymer segmental dynamics. Ionconductivity was measured using broadband dielectric spectroscopy for varying levels of added lithiumsalt. The conductivity data demonstrate six to seven orders of separation in timescale of ion conductivityfrom polymer segmental motion formore » polymers with shorter ethylene oxide side chains. However,commensurate changes in the glass transition temperatures T g reduce the effect of decoupling in ionconductivity and lead to lower conductivity at ambient conditions. These results suggest that both anincrease in decoupling and a reduction in T g might be required to develop solid polymer electrolytes withhigh ion conductivity at room temperature.« less

  19. Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes.

    PubMed

    Von Bargen, Christopher D; MacDermaid, Christopher M; Lee, One-Sun; Deria, Pravas; Therien, Michael J; Saven, Jeffery G

    2013-10-24

    The highly charged, conjugated polymer poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) has been shown to wrap single-wall carbon nanotubes (SWNTs), adopting a robust helical superstructure. Surprisingly, PPES adopts a helical rather than a linear conformation when adhered to SWNTs. The complexes formed by PPES and related polymers upon helical wrapping of a SWNT are investigated using atomistic molecular dynamics (MD) simulations in the presence and absence of aqueous solvent. In simulations of the PPES/SWNT system in an aqueous environment, PPES spontaneously takes on a helical conformation. A potential of mean force, ΔA(ξ), is calculated as a function of ξ, the component of the end-to-end vector of the polymer chain projected on the SWNT axis; ξ is a monotonic function of the polymer's helical pitch. ΔA(ξ) provides a means to quantify the relative free energies of helical conformations of the polymer when wrapped about the SWNT. The aqueous system possesses a global minimum in ΔA(ξ) at the experimentally observed value of the helical pitch. The presence of this minimum is associated with preferred side chain conformations, where the side chains adopt conformations that provide van der Waals contact between the tubes and the aliphatic components of the side chains, while exposing the anionic sulfonates for aqueous solvation. The simulations provide a free energy estimate of a 0.2 kcal/mol/monomer preference for the helical over the linear conformation of the PPES/SWNT system in an aqueous environment.

  20. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    double networks in a single step was identified from coarse-grained molecular dynamics simulations of polymer solvents bearing rigid side chains dissolved...in a polymer network. Coarse-grained molecular dynamics simulations also explored the mechanical behavior of traditional double networks and...DRI), polymer networks, polymer gels, molecular dynamics simulations , double networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  1. Effect of cationic side-chains on intracellular delivery and cytotoxicity of pH sensitive polymer-doxorubicin nanocarriers.

    PubMed

    Fang, Chen; Kievit, Forrest M; Cho, Yong-Chan; Mok, Hyejung; Press, Oliver W; Zhang, Miqin

    2012-11-21

    Fine-tuning the design of polymer-doxorubicin conjugates permits optimization of an efficient nanocarrier to greatly increase intracellular uptake and cytotoxicity. Here, we report synthesis of a family of self-assembled polymer-doxorubicin nanoparticles and an evaluation of the effects of various types of side-chains on intracellular uptake and cytotoxicity of the nanocarriers for lymphoma cells. Monomers with three different cationic side-chains (CA) and pK(a)'s, i.e., a guanidinium group (Ag), an imidazole group (Im), and a tertiary amine group (Dm), were comparatively investigated. The cationic monomer, poly(ethylene glycol) (PEG), and doxorubicin (Dox) were reacted with 1,4-(butanediol) diacrylate (BUDA) to prepare a poly(β-amino ester) (PBAE) polymer via Michael addition. All three polymer-Dox conjugates spontaneously formed nanoparticles (NP) through hydrophobic interactions between doxorubicin in aqueous solution, resulting in NP-Im/Dox, NP-Ag/Dox, and NP-Dm/Dox, with hydrodynamic sizes below 80 nm. Doxorubicin was linked to all 3 types of NPs with a hydrazone bond to assure selective release of doxorubicin only at acidic pH, as it occurs in the tumor microenvironment. Both NP-Im/Dox and NP-Ag/Dox exhibited much higher intracellular uptake by Ramos cells (Burkitt's lymphoma) than NP-Dm/Dox, suggesting that the type of side chain in the NPs determines the extent of intracellular uptake. As a result, NP-Im/Dox and NP-Ag/Dox showed cytotoxicity that was comparable to free Dox in vitro. Our findings suggest that the nature of surface cationic group on nanocarriers may profoundly influence their intracellular trafficking and resulting therapeutic efficacy. Thus, it is a crucial factor to be considered in the design of novel carriers for intracellular drug delivery.

  2. Effect of cationic side-chains on intracellular delivery and cytotoxicity of pH sensitive polymer-doxorubicin nanocarriers

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Kievit, Forrest M.; Cho, Yong-Chan; Mok, Hyejung; Press, Oliver W.; Zhang, Miqin

    2012-10-01

    Fine-tuning the design of polymer-doxorubicin conjugates permits optimization of an efficient nanocarrier to greatly increase intracellular uptake and cytotoxicity. Here, we report synthesis of a family of self-assembled polymer-doxorubicin nanoparticles and an evaluation of the effects of various types of side-chains on intracellular uptake and cytotoxicity of the nanocarriers for lymphoma cells. Monomers with three different cationic side-chains (CA) and pKa's, i.e., a guanidinium group (Ag), an imidazole group (Im), and a tertiary amine group (Dm), were comparatively investigated. The cationic monomer, poly(ethylene glycol) (PEG), and doxorubicin (Dox) were reacted with 1,4-(butanediol) diacrylate (BUDA) to prepare a poly(β-amino ester) (PBAE) polymer via Michael addition. All three polymer-Dox conjugates spontaneously formed nanoparticles (NP) through hydrophobic interactions between doxorubicin in aqueous solution, resulting in NP-Im/Dox, NP-Ag/Dox, and NP-Dm/Dox, with hydrodynamic sizes below 80 nm. Doxorubicin was linked to all 3 types of NPs with a hydrazone bond to assure selective release of doxorubicin only at acidic pH, as it occurs in the tumor microenvironment. Both NP-Im/Dox and NP-Ag/Dox exhibited much higher intracellular uptake by Ramos cells (Burkitt's lymphoma) than NP-Dm/Dox, suggesting that the type of side chain in the NPs determines the extent of intracellular uptake. As a result, NP-Im/Dox and NP-Ag/Dox showed cytotoxicity that was comparable to free Dox in vitro. Our findings suggest that the nature of surface cationic group on nanocarriers may profoundly influence their intracellular trafficking and resulting therapeutic efficacy. Thus, it is a crucial factor to be considered in the design of novel carriers for intracellular drug delivery.

  3. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  4. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency.

    PubMed

    Bin, Haijun; Zhang, Zhi-Guo; Gao, Liang; Chen, Shanshan; Zhong, Lian; Xue, Lingwei; Yang, Changduk; Li, Yongfang

    2016-04-06

    Non-fullerene polymer solar cells (PSCs) with solution-processable n-type organic semiconductor (n-OS) as acceptor have seen rapid progress recently owing to the synthesis of new low bandgap n-OS, such as ITIC. To further increase power conversion efficiency (PCE) of the devices, it is of a great challenge to develop suitable polymer donor material that matches well with the low bandgap n-OS acceptors thus providing complementary absorption and nanoscaled blend morphology, as well as suppressed recombination and minimized energy loss. To address this challenge, we synthesized three medium bandgap 2D-conjugated bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymers J52, J60, and J61 for the application as donor in the PSCs with low bandgap n-OS ITIC as acceptor. The three polymers were designed with branched alkyl (J52), branched alkylthio (J60), and linear alkylthio (J61) substituent on the thiophene conjugated side chain of the benzodithiophene (BDT) units for studying effect of the substituents on the photovoltaic performance of the polymers. The alkylthio side chain, red-shifted absorption down-shifted the highest occupied molecular orbital (HOMO) level and improved crystallinity of the 2D conjugated polymers. With linear alkylthio side chain, the tailored polymer J61 exhibits an enhanced JSC of 17.43 mA/cm(2), a high VOC of 0.89 V, and a PCE of 9.53% in the best non-fullerene PSCs with the polymer as donor and ITIC as acceptor. To the best of our knowledge, the PCE of 9.53% is one of the highest values reported in literature to date for the non-fullerene PSCs. The results indicate that J61 is a promising medium bandgap polymer donor in non-fullerene PSCs.

  5. Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities.

    PubMed

    Lee, Junghoon; Han, A-Reum; Kim, Jonggi; Kim, Yiho; Oh, Joon Hak; Yang, Changduk

    2012-12-26

    There is a fast-growing demand for polymer-based ambipolar thin-film transistors (TFTs), in which both n-type and p-type transistor operations are realized in a single layer, while maintaining simplicity in processing. Research progress toward this end is essentially fueled by molecular engineering of the conjugated backbones of the polymers and the development of process architectures for device fabrication, which has recently led to hole and electron mobilities of more than 1.0 cm(2) V(-1) s(-1). However, ambipolar polymers with even higher performance are still required. By taking into account both the conjugated backbone and side chains of the polymer component, we have developed a dithienyl-diketopyrrolopyrrole (TDPP) and selenophene containing polymer with hybrid siloxane-solubilizing groups (PTDPPSe-Si). A synergistic combination of rational polymer backbone design, side-chain dynamics, and solution processing affords an enormous boost in ambipolar TFT performance, resulting in unprecedentedly high hole and electron mobilities of 3.97 and 2.20 cm(2) V(-1) s(-1), respectively.

  6. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.

    PubMed

    Lei, Ting; Wang, Jie-Yu; Pei, Jian

    2014-04-15

    Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.

  7. Evolution of sequence-defined highly functionalized nucleic acid polymers

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.

    2018-03-01

    The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.

  8. Release of DNA from polyelectrolyte multilayers fabricated using 'charge-shifting' cationic polymers: tunable temporal control and sequential, multi-agent release.

    PubMed

    Sun, Bin; Lynn, David M

    2010-11-20

    We report an approach to the design of multilayered polyelectrolyte thin films (or 'polyelectrolyte multilayers', PEMs) that can be used to provide tunable control over the release of plasmid DNA (or multiple different DNA constructs) from film-coated surfaces. Our approach is based upon methods for the layer-by-layer assembly of DNA-containing thin films, and exploits the properties of a new class of cationic 'charge-shifting' polymers (amine functionalized polymers that undergo gradual changes in net charge upon side chain ester hydrolysis) to provide control over the rates at which these films erode and release DNA. We synthesized two 'charge-shifting' polymers (polymers 1 and 2) containing different side chain structures by ring-opening reactions of poly(2-alkenyl azlactone)s with two different tertiary amine functionalized alcohols (3-dimethylamino-1-propanol and 2-dimethylaminoethanol, respectively). Subsequent characterization revealed large changes in the rates of side chain ester hydrolysis for these two polymers; whereas the half-life for the hydrolysis of the esters in polymer 1 was ~200 days, the half-life for polymer 2 was ~6 days. We demonstrate that these large differences in side chain hydrolysis make possible the design of PEMs that erode and promote the surface-mediated release of DNA either rapidly (e.g., over ~3 days for films fabricated using polymer 2) or slowly (e.g., over ~1 month for films fabricated using polymer 1). We demonstrate further that it is possible to design films with release profiles that are intermediate to these two extremes by fabricating films using solutions containing different mixtures of these two polymers. This approach can thus expand the usefulness of these two polymers and achieve a broader range of DNA release profiles without the need to synthesize polymers with new structures or properties. Finally, we demonstrate that polymers 1 and 2 can be used to fabricate multilayered films with hierarchical structures that promote the sequential release of two different DNA constructs with separate and distinct release profiles (e.g., the release of a first construct over a period of ~3 days, followed by the sustained release of a second for a period of ~70 days). With further development, this approach could contribute to the design of functional thin films and surface coatings that provide sophisticated control over the timing and the order of the release of two or more DNA constructs (or other agents) of interest in a range of biomedical contexts. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Exploring Alkyl Chains in Benzobisthiazole-Naphthobisthiadiazole Polymers: Impact on Solar-Cell Performance, Crystalline Structures, and Optoelectronics.

    PubMed

    Al-Naamani, Eman; Gopal, Anesh; Ide, Marina; Osaka, Itaru; Saeki, Akinori

    2017-11-01

    The shapes and lengths of the alkyl chains of conjugated polymers greatly affect the efficiencies of organic photovoltaic devices. This often results in a trade-off between solubility and self-organizing behavior; however, each material has specific optimal chains. Here we report on the effect of alkyl side chains on the film morphologies, crystallinities, and optoelectronic properties of new benzobisthiazole-naphthobisthiadiazole (PBBT-NTz) polymers. The power conversion efficiencies (PCEs) of linear-branched and all-branched polymers range from 2.5% to 6.6%; the variations in these PCEs are investigated by atomic force microscopy, two-dimensional X-ray diffraction (2D-GIXRD), and transient photoconductivity techniques. The best-performing linear-branched polymer, bearing dodecyl and decyltetradecyl chains (C12-DT), exhibits nanometer-scale fibers along with the highest crystallinity, comprising predominant edge-on and partial face-on orientations. This morphology leads to the highest photoconductivity and the longest carrier lifetime. These results highlight the importance of long alkyl chains for inducing intermolecular stacking, which is in contrast to observations made for analogous previously reported polymers.

  10. Conformational analysis investigation into the influence of nano-porosity of ultra-permeable ultra-selective polyimides on its diffusivity as potential membranes for use in the "green" separation of natural gases

    NASA Astrophysics Data System (ADS)

    Madkour, Tarek M.

    2013-08-01

    Nano-porous polymers of intrinsic microporosity, PIM, have exhibited excellent permeability and selectivity characteristics that could be utilized in an environmentally friendly gas separation process. A full understanding of the mechanism through which these membranes effectively and selectively allow for the permeation of specific gases will lead to further development of these membranes. Three factors obviously influenced the conformational behavior of these polymers, which are the presence of electronegative atoms, the presence of non-linearity in the polymeric backbones (backbone kinks) and the presence of bulky side groups on the polymeric chains. The dipole moment increased sharply with the presence of backbone kinks more than any other factor. Replacing the fluorine atoms with bulky alkyl groups didn't influence the dipole moment greatly indicating that the size of the side chains had much less dramatic influence on the dipole moment than having a bent backbone. Similarly, the presence of the backbone kinks in the polymeric chains influenced the polymeric chains to assume less extended configuration causing the torsional angles around the interconnecting bonds unable to cross the high potential energy barriers. The presence of the bulky side groups also caused the energy barriers of the cis-configurations to increase dramatically, which prevented the polymeric segments from experiencing full rotation about the connecting bonds. For these polymers, it was clear that the fully extended configurations are the preferred configurations in the absence of strong electronegative atoms, backbones kinks or bulky side groups. The addition of any of these factors to the polymeric structures resulted in the polymeric chains being forced to assume less extended configurations. Rather interestingly, the length or bulkiness of the side groups didn't affect the end-to-end distance distribution to a great deal since the presence of quite large bulky side chain such as the pentyl group has caused the polymeric chains to revert back to the fully extended configurations possibly due to the quite high potential energy barriers that the chains have to cross to reach the less extended configurational states.

  11. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Ghosh, Chandradhish; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2016-01-01

    Bacterial biofilms represent the root-cause of chronic or persistent infections in humans. Gram-negative bacterial infections due to nosocomial and opportunistic pathogens such as Acinetobacter baumannii are more difficult to treat because of their inherent and rapidly acquiring resistance to antibiotics. Due to biofilm formation, A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. Here we report, maleic anhydride based novel cationic polymers appended with amide side chains that disrupt surface established multi-drug resistant A. baumannii biofilms. More importantly, these polymers significantly (p < 0.0001) decrease the bacterial burden in mice with chronic A. baumannii burn wound infection. The polymers also show potent antibacterial efficacy against methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococci (VRE) and multi-drug resistant clinical isolates of A. baumannii with minimal toxicity to mammalian cells. We observe that optimal hydrophobicity dependent on the side chain chemical structure of these polymers dictate the selective toxicity to bacteria. Polymers interact with the bacterial cell membranes by causing membrane depolarization, permeabilization and energy depletion. Bacteria develop rapid resistance to erythromycin and colistin whereas no detectable development of resistance occurs against these polymers even after several passages. These results suggest the potential use of these polymeric biomaterials in disinfecting biomedical device surfaces after the infection has become established and also for the topical treatment of chronic bacterial infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Molecular engineering of side-chain liquid crystalline polymers by living cationic polymerization using Webster`s initiating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percec, V.

    1993-12-31

    Webster`s cationic initiating system (HO{sub 3}SCF{sub 3}/SMe{sub 2}) (Macromolecules, 23, 1918 (1990)) was shown by us (for a review see Adv. Mater., 4, 548 (1992)) to polymerize, via a living mechanism, mesogenic vinyl ethers which contain a large variety of functional groups. This is mostly because SMe{sub 2} is a softer nucleophile than any of the functional groups available in these monomers. The molecular engineering of side-chain liquid crystalline polymers with conventional and complex architectures via this polymerization technique will be discussed.

  13. Relaxation spectra and dipolar correlations for flexible polymers with bulky side groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz-Calleja, R.; Riande, E.; Roman, J.S.

    1992-08-06

    This paper discusses how relaxation spectra and dipolar correlations for flexible polymers with bulky side groups (PBPA chains) suggest that intermolecular correlations are not very important in this polymer and that {alpha}, {beta}, and {gamma} absorptions exist. TSDC techniques reveal that the {gamma} peak has a smaller activation energy than the {beta}, and the coupling scheme is used to interpret the complex dielectric and mechanical {alpha} relaxations. The anomalous temperature dependence of the glass-rubber relaxation is discussed in terms of the bulkiness of the side group. 23 refs., 8 figs., 3 tabs.

  14. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry.

    PubMed

    Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A

    2017-07-19

    Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.

  15. Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering-A comparison with traditional techniques.

    PubMed

    Wagner, Michael; Pietsch, Christian; Tauhardt, Lutz; Schallon, Anja; Schubert, Ulrich S

    2014-01-17

    In the field of nanomedicine, cationic polymers are the subject of intensive research and represent promising carriers for genetic material. The detailed characterization of these carriers is essential since the efficiency of gene delivery strongly depends on the properties of the used polymer. Common characterization methods such as size exclusion chromatography (SEC) or mass spectrometry (MS) suffer from problems, e.g. missing standards, or even failed for cationic polymers. As an alternative, asymmetrical flow field-flow fractionation (AF4) was investigated. Additionally, analytical ultracentrifugation (AUC) and (1)H NMR spectroscopy, as well-established techniques, were applied to evaluate the results obtained by AF4. In this study, different polymers of molar masses between 10 and 120kgmol(-1) with varying amine functionalities in the side chain or in the polymer backbone were investigated. To this end, some of the most successful gene delivery agents, namely linear poly(ethylene imine) (LPEI) (only secondary amines in the backbone), branched poly(ethylene imine) (B-PEI) (secondary and tertiary amino groups in the backbone, primary amine end groups), and poly(l-lysine) (amide backbone and primary amine side chains), were characterized. Moreover, poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), poly(2-(amino)ethyl methacrylate) (PAEMA), and poly(2-(tert-butylamino)ethyl methacrylate) (PtBAEMA) as polymers with primary, secondary, and tertiary amines in the side chain, have been investigated. Reliable results were obtained for all investigated polymers by AF4. In addition, important factors for all methods were evaluated, e.g. the influence of different elution buffers and AF4 membranes. Besides this, the correct determination of the partial specific volume and the suppression of the polyelectrolyte effect are the most critical issues for AUC investigations. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Novel Semiconducting Polymers for Highly Efficient Solar Energy Harvesting

    DTIC Science & Technology

    2014-03-11

    pyrrole -4,6-dione, a well known electron-deficient monomer, to obtain the new copolymer PTTATPD-1 for comparison in physical properties. The number...bulk side chain showed a PCE about 0.6%; PTTATT-4 with 2- ethyldedocyl side chain showed a PCE about 3.0% and the copolymer with thieno[3,4-c] pyrrol

  17. Polymer non-fullerene solar cells of vastly different efficiencies for minor side-chain modification: impact of charge transfer, carrier lifetime, morphology and mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awartani, Omar M.; Gautam, Bhoj; Zhao, Wenchao

    The performance of the 11.25% efficient PBDB-T : ITIC system degraded to 4.35% after a minor side-chain modification in PBDB-O : ITIC. In this study, the underlying reasons behind this vast difference in efficiencies are investigated.

  18. Polymer non-fullerene solar cells of vastly different efficiencies for minor side-chain modification: impact of charge transfer, carrier lifetime, morphology and mobility

    DOE PAGES

    Awartani, Omar M.; Gautam, Bhoj; Zhao, Wenchao; ...

    2018-01-01

    The performance of the 11.25% efficient PBDB-T : ITIC system degraded to 4.35% after a minor side-chain modification in PBDB-O : ITIC. In this study, the underlying reasons behind this vast difference in efficiencies are investigated.

  19. Molecular Strategies for Morphology Control in Semiconducting Polymers for Optoelectronics.

    PubMed

    Rahmanudin, Aiman; Sivula, Kevin

    2017-06-28

    Solution-processable semiconducting polymers have been explored over the last decades for their potential applications in inexpensively fabricated transistors, diodes and photovoltaic cells. However, a remaining challenge in the field is to control the solid-state self-assembly of polymer chains in thin films devices, as the aspects of (semi)crystallinity, grain boundaries, and chain entanglement can drastically affect intra-and inter-molecular charge transport/transfer and thus device performance. In this short review we examine how the aspects of molecular weight and chain rigidity affect solid-state self-assembly and highlight molecular engineering strategies to tune thin film morphology. Side chain engineering, flexibly linking conjugation segments, and block co-polymer strategies are specifically discussed with respect to their effect on field effect charge carrier mobility in transistors and power conversion efficiency in solar cells. Example systems are taken from recent literature including work from our laboratories to illustrate the potential of molecular engineering semiconducting polymers.

  20. Simulation study of the initial crystallization processes of poly(3-hexylthiophene) in solution: ordering dynamics of main chains and side chains.

    PubMed

    Takizawa, Yuumi; Shimomura, Takeshi; Miura, Toshiaki

    2013-05-23

    We study the initial nucleation dynamics of poly(3-hexylthiophene) (P3HT) in solution, focusing on the relationship between the ordering process of main chains and that of side chains. We carried out Langevin dynamics simulation and found that the initial nucleation processes consist of three steps: the ordering of ring orientation, the ordering of main-chain vectors, and the ordering of side chains. At the start, the normal vectors of thiophene rings aligned in a very short time, followed by alignment of main-chain end-to-end vectors. The flexible side-chain ordering took almost 5 times longer than the rigid-main-chain ordering. The simulation results indicated that the ordering of side chains was induced after the formation of the regular stack structure of main chains. This slow ordering dynamics of flexible side chains is one of the factors that cause anisotropic nuclei growth, which would be closely related to the formation of nanofiber structures without external flow field. Our simulation results revealed how the combined structure of the planar and rigid-main-chain backbones and the sparse flexible side chains lead to specific ordering behaviors that are not observed in ordinary linear polymer crystallization processes.

  1. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  2. Antithrombogenic Polymer Coating.

    DOEpatents

    Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2003-01-21

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  3. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  4. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  5. Approaching Intra- and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals.

    PubMed

    Yao, Yifan; Dong, Huanli; Liu, Feng; Russell, Thomas P; Hu, Wenping

    2017-08-01

    Charge transport of small molecules is measured well with scanning tunneling microscopy, conducting atomic force microscopy, break junction, nanopore, and covalently bridging gaps. However, the manipulation and measurement of polymer chains remain a long-standing fundamental issue in conjugated polymers and full of challenge since conjugated polymers are naturally disordered materials. Here, a fundamental breakthrough in generating high-quality conjugated-polymer nanocrystals with extended conjugation and exceptionally high degrees of order using a surface-supported topochemical polymerization method is demonstrated. In the crystal the conjugated-polymer chains are extended along the long axis of the crystal with the side chains perpendicular to the long axis. Devices with conducting channels along the polymer chains show efficient charge transport, nearly two orders of magnitude greater than the interchain charge transport along the π-π stacking direction. This is the first example to clarify intra- and interchain charge transport based on an individual single crystal of conjugated polymers, and demonstrate the importance of intrachain charge transport in plastic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Surface Enhanced Raman Scattering Monitoring of Chain Alignment in Freely Suspended Nanomembranes

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoyang; Lio, Wilber Y.; Tsukruk, Vladimir V.

    2005-09-01

    The molecular chain reorganization in freely standing membranes with encapsulated gold nanoparticles was studied with surface enhanced Raman scattering (SERS) in the course of their elastic deformations. The efficient SERS was enabled by optimizing the design of gold nanoparticle forming chainlike aggregates, thus creating an exceptional ability to conduct in situ monitoring. Small deformations resulted in the radial orientation of side phenyl rings of polymer backbones while larger deflections led to the polymer chains bridging adjacent nanoparticles within one-dimensional aggregates.

  7. Biotin-Functionalized Semiconducting Polymer in an Organic Field Effect Transistor and Application as a Biosensor

    PubMed Central

    Kim, Zin-Sig; Lim, Sang Chul; Kim, Seong Hyun; Yang, Yong Suk; Hwang, Do-Hoon

    2012-01-01

    This report presents biotin-functionalized semiconducting polymers that are based on fluorene and bithiophene co-polymers (F8T2). Also presented is the application of these polymers to an organic thin film transistor used as a biosensor. The side chains of fluorene were partially biotinylated after the esterification of the biotin with corresponding alcohol-groups at the side chain in F8T2. Their properties as an organic semiconductor were tested using an organic thin film transistor (OTFT) and were found to show typical p-type semiconductor curves. The functionality of this biosensor in the sensing of biologically active molecules such as avidin in comparison with bovine serum albumin (BSA) was established through a selective decrease in the conductivity of the transistor, as measured with a device that was developed by the authors. Changes to the optical properties of this polymer were also measured through the change in the color of the UV-fluorescence before and after a reaction with avidin or BSA. PMID:23112654

  8. Direct Nanoscale Characterization of Submolecular Mobility in Complex Organic Non-linear Optical Systems

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel; Gray, Tomoko; Kim, Tae-Dong; Luo, Jingdong; Jen, Alex; Overney, Rene

    2008-03-01

    For organic non-linear optical (NLO) materials composed of intricate molecular building blocks, the challenge is to deduce meaningful molecular scale mobility information to understand complex relaxation and phase behavior. This is crucial, as the process of achieving a robust acentric alignment strongly depends on the availability of inter- and intra-molecular mobilities outside the temperature range of the device operation window. Here, we introduce a nanoscale methodology based on scanning probe microscopy that provides direct insight into structural relaxations and shows great potential to direct material design of sophisticated macromolecules. It also offers a means by which mesoscale dynamics and cooperativity involved in relaxation processes can be quantified in terms of dynamic entropy and enthalpy. This study demonstrates this methodology to describe the mesocale dynamics of two systems (1) organic networking dendronized NLO molecular glasses that self-assemble into physically linked polymers due to quadrupolar phenyl-perfluorophenyl interactions and (2) dendronized side-chain electro-optic (EO) polymers. For the self assembling glasses, the degree of intermolecular cooperativity can be deduced using this methodology, while for the dendronized side-chain polymers, specific side chain mobilities are exploited to improve EO properties.

  9. Synthesis and redox activity of "clicked" triazolylbiferrocenyl polymers, network encapsulation of gold and silver nanoparticles and anion sensing.

    PubMed

    Rapakousiou, Amalia; Deraedt, Christophe; Irigoyen, Joseba; Wang, Yanlan; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Moya, Sergio; Astruc, Didier

    2015-03-02

    The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer. Oxidation of these polymers with Au(III) or Ag(I) gives nanosnake-shaped networks (observed by transmission electron microscopy and atomic force microscopy) of this mixed-valent Fe(II)Fe(III) polymer with encapsulated metal nanoparticles (NPs) when the organoiron group is located on the side chain. The factors that are suggested to be synergistically responsible for the NP stabilization and network formation are the polymer bulk, the trz coordination, the nearby cationic charge of trzBiFc, and the inter-BiFc distance. For instance, reduction of such an oxidized trzBiFc-AuNP polymer to the neutral trzBiFc-AuNP polymer with NaBH4 destroys the network, and the product flocculates. The polymers easily provide modified electrodes that sense, via the oxidized Fe(II)Fe(III) and Fe(III)Fe(III) polymer states, respectively, ATP(2-) via the outer ferrocenyl units of the polymer and Pd(II) via the inner Fc units; this recognition works well in dichloromethane, but also to a lesser extent in water with NaCl as the electrolyte.

  10. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour.

    PubMed

    Unger, Florian; Wittmar, Matthias; Morell, Frank; Kissel, Thomas

    2008-05-01

    Branched polyesters of the general structure poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide) have shown potential for nano- and micro-scale drug delivery systems. Here the in vitro degradation behaviour with a special emphasis on elucidating structure-property relationships is reported. Effects of type and degree of amine substitution as well as PLGA side chain length were considered. In a first set of experiment, the weight loss of solvent cast films of defined size from 19 polymers was measured as a function of incubation in phosphate buffer (pH 7.4) at 37 degrees C over a time of 21 days. A second study was initiated focusing on three selected polymers in a similar set up, but with additional observation of pH influences (pH 2 and pH 9) and determination of water uptake (swelling) and molecular weights during degradation. Scanning electron micrographs have been recorded at selected time points to characterize film specimens morphologically after degradation. Our investigations revealed the potential to influence the degradation of this polymer class by the degree of amine substitution, higher degrees leading to faster erosion. The erosion rate could further be influenced by the type of amine functionality, DEAPA-modified polyesters degrading as fast as or slightly faster than DMAPA-modified polyesters and these degrading faster than DEAEA-PVA-g-PLGA. As a third option the degradation rate could be modified by the PLGA side chain length, shorter side chains leading to faster erosion. As compared to linear PLGA, remarkably shorter degradation times could be achieved by grafting short PLGA side chains onto amine-modified PVA backbones. Erosion times from less than 5 days to more than 4 weeks could be realized by selecting the type of amine functionality, the degree of amine substitution and the PLGA side chain length at the time of synthesis. In addition, the pathway of hydrolytic degradation can be tuned to be either mainly bulk or surface erosion.

  11. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  12. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  13. Simultaneous covalent and noncovalent hybrid polymerizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Tantakitti, F.; Yu, T.

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher averagemore » molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.« less

  14. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    DOE PAGES

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.; ...

    2017-11-30

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less

  15. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less

  16. Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoacene-diketopyrrolopyrrole) Polymers

    DOE PAGES

    Lu, Chien; Lee, Wen-Ya; Gu, Xiaodan; ...

    2016-12-23

    The design of polymer semiconductors possessing high charge transport performance, coupled with good ductility, remains a challenge. Understanding the distribution and behavior of both crystalline domains and amorphous regions in conjugated polymer films, upon an applied stress, shall provide general guiding principles to design stretchable organic semiconductors. Structure–property relationships (especially in both side chain and backbone engineering) are investigated for a series of poly(tetrathienoacene-diketopyrrolopyrrole) polymers. It is observed that the fused thiophene diketopyrrolopyrrole-based polymer, when incorporated with branched side chains and an additional thiophene spacer in the backbone, exhibits improved mechanical endurance and, in addition, does not show crack propagationmore » until 40% strain. Furthermore, this polymer exhibits a hole mobility of 0.1 cm2 V -1 s -1 even at 100% strain or after recovered from strain, which reveals prominent continuity and viscoelasticity of the polymer thin film. In conclusion, it is also observed that the molecular packing orientations (either edge-on or face-on) significantly affect the mechanical compliance of the polymer films. The improved stretchability of the polymers is attributed to both the presence of soft amorphous regions and the intrinsic packing arrangement of its crystalline domains.« less

  17. Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoacene-diketopyrrolopyrrole) Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chien; Lee, Wen-Ya; Gu, Xiaodan

    The design of polymer semiconductors possessing high charge transport performance, coupled with good ductility, remains a challenge. Understanding the distribution and behavior of both crystalline domains and amorphous regions in conjugated polymer films, upon an applied stress, shall provide general guiding principles to design stretchable organic semiconductors. Structure–property relationships (especially in both side chain and backbone engineering) are investigated for a series of poly(tetrathienoacene-diketopyrrolopyrrole) polymers. It is observed that the fused thiophene diketopyrrolopyrrole-based polymer, when incorporated with branched side chains and an additional thiophene spacer in the backbone, exhibits improved mechanical endurance and, in addition, does not show crack propagationmore » until 40% strain. Furthermore, this polymer exhibits a hole mobility of 0.1 cm2 V -1 s -1 even at 100% strain or after recovered from strain, which reveals prominent continuity and viscoelasticity of the polymer thin film. In conclusion, it is also observed that the molecular packing orientations (either edge-on or face-on) significantly affect the mechanical compliance of the polymer films. The improved stretchability of the polymers is attributed to both the presence of soft amorphous regions and the intrinsic packing arrangement of its crystalline domains.« less

  18. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between polystyrene and short-chain polyacrylates (n ≤ 10). To our knowledge, this is the first study to explore the thermodynamic interactions between polystyrene and long-chain poly(n-alkyl acrylates) with n > 10. This work lays the groundwork for the development of multicomponent structured systems (i.e., blends and copolymers) in this class of sustainable materials.

  19. The Viscoelastic Properties of Nematic Monodomains Containing Liquid Crystal Polymers.

    NASA Astrophysics Data System (ADS)

    Gu, Dongfeng

    The work presented here investigates the viscoelastic properties of nematic materials containing liquid crystal polymers (LCP). We focus on how the elastic constants and the viscosity coefficients of the mixture systems are influenced by polymer architectures. In dynamic light scattering studies of the relaxation of the director orientation fluctuations for the splay, twist, and bend deformation modes, decrease of the relaxation rates was observed when LCPs were dissolved into low molar mass nematics (LMMN). For the side-chain LCPs, the slowing down in the bend mode is comparable to or larger than those of the splay and twist modes. For main-chain LCPs, the relative changes in the relaxation rates for the twist and splay modes are about one order of magnitude larger than that for the bend mode. The results of light scattering under an electric field show that the decrease in the twist relaxation rate is due to a large increase in the twist viscosity and a minor decrease in the twist elastic constant. These changes were found to increase with decrease of the spacer length, with increase of molecular weight, and with decrease of the backbone flexibility. In Freedericksz transition measurements, the splay and bend elastic constants and the dielectric anisotropies of the nematic mixtures were determined and the values are 5~15% lower than those of the pure solvent. From the analysis of the results of Freedericksz transition and light scattering experiments, a complete set of the elastic constants and viscosity coefficients corresponding to the three director deformation modes were obtained for the LCP mixtures. The changes in the viscosity coefficients due to addition of LCPs were analysed to estimate the anisotropic shapes of the polymer backbone via a hydrodynamic model. The results suggest that an oblate backbone configuration is maintained by the side-chain LCPs and a prolate chain configuration appears for the main-chain LCPs. The rheological behavior of a side-chain and a main-chain LCP nematic solutions were investigated. The addition of the side-chain LCP into a flow-aligning LMMN (5CB) induces director tumbling in the mixture, and, the dissolution of the main-chain LCP into a director tumbling LMMN (8CB) makes the solution become a flow-aligning nematic. Based on the hydrodynamic theory, these observations are further confirmation of the chain anisotropies of the LCPs investigated. Ericksen's transversely isotropic fluid model was used to extract the various viscosity coefficients with good accuracy. In addition, we believe that this is the first time the bulk rheological consequences of director tumbling in LMMNs has been observed.

  20. Nanostructure Control of Biologically Inspired Polymers

    NASA Astrophysics Data System (ADS)

    Rosales, Adrianne Marie

    Biological polymers, such as polypeptides, are responsible for many of life's most sophisticated functions due to precisely evolved hierarchical structures. These protein structures are the result of monodisperse sequences of amino acids that fold into well-defined chain shapes and tertiary structures. Recently, there has been much interest in the design of such sequence-specific polymers for materials applications in fields ranging from biotechnology to separations membranes. Non-natural polymers offer the stability and robustness necessary for materials applications; however, our ability to control monomer sequence in non-natural polymers has traditionally operated on a much simpler level. In addition, the relationship between monomer sequence and self-assembly is not well understood for biological molecules, much less synthetic polymers. Thus, there is a need to explore self-assembly phase space with sequence using a model system. Polypeptoids are non-natural, sequence-specific polymers that offer the opportunity to probe the effect of sequence on self-assembly. A variety of monomer interactions have an impact on polymer properties, such as chirality, hydrophobicity, and electrostatic interactions. Thus, a necessary starting point for this project was to investigate monomer sequence effects on the bulk properties of polypeptoid homopolymers. It was found that several polypeptoids have experimentally accessible melting transitions that are dependent on the choice of side chains, and it was shown that this transition is tuned by the incorporation of "defects" or a comonomer. The polypeptoid chain shape is also controlled with the choice of monomer and monomer sequence. By using at least 50% monomers with bulky, chiral side chains, the polypeptoid backbone is sterically twisted into a helix, and as found for the first time in this work, the persistence length is increased. However, this persistence length, which is a measure of the stiffness of the polymer, is small compared to other folded helices, indicating the conformational flexibility of polypeptoid chains. With a firmer understanding of how monomer sequence and composition influence polypeptoid bulk properties, we designed block copolymer systems for self-assembly. Because the governing parameters of block copolymer self-assembly are well understood, this architecture provides a convenient starting point for probing the effect of changing polymer sequence. We found that polystyrene-polypeptoid block copolymers readily self-assemble into hexagonally-packed and lamellar morphologies with long range order, and furthermore, sequence control of the polypeptoid block enables us to tune the strength of segregation (and therefore the order-disorder transition) of the block copolymer. Polypeptoid chain shape also affects self-assembly. In classical synthetic block copolymers, it has typically been difficult to change chain shape without also changing polymer chemistry and therefore other factors affecting self-assembly. The advantage of the polypeptoid system is that it is modular, as the side chain chemistry (and therefore polymer properties) can easily be changed without changing the backbone chemistry. Thus, we have decoupled conformational effects from chemical composition by comparing the self-assembly of block copolymers containing either a helical peptoid block or its racemic, non-helical analog. The increase in the persistence length of the peptoid block due to helicity translates to an increase in the morphological domain spacing. In this work, we further the understanding of the effect of monomer sequence on bulk polypeptoid properties and self-assembly. Our findings pave the way for the rational design of structured synthetic polymers with tunable, sequence-specific properties.

  1. Water-Soluble Polyphosphazenes and Their Hydrogels

    DTIC Science & Technology

    1994-05-18

    side groups, such as -OH, -COONa, -NH2, -NHCH3, -SO3", or -C=O, or amphiphilic units such as -OCH2CH20-, etc. High concentrations of hydrophilic side...soluble polymers since it allows a high degree of utilization of molecular design and either extensive or subtle structural manipulation. The third...advantages for development as water-soluble polymers or hydrogels. The backbone is hydrophilic, the chain structure has a high 3 degree of flexibility, and

  2. The influence of the side-chain sequence on the structure-activity correlations of immunomodulatory branched polypeptides. Synthesis and conformational analysis of new model polypeptides.

    PubMed

    Mezö, G; Hudecz, F; Kajtár, J; Szókán, G; Szekerke, M

    1989-10-01

    New branched polypeptides were synthesized for a detailed study of the influence of the side-chain structure on the conformation and biological properties. The first subset of polypeptides were prepared by coupling of tetrapeptides to poly[L-Lys]. These polymers contain either DL-Ala3-X [poly[Lys-(X-DL-Ala3)n

  3. Evaluation of polymer based third order nonlinear integrated optics devices

    NASA Astrophysics Data System (ADS)

    Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.

    1998-01-01

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.

  4. Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications.

    PubMed

    Yoon, Jungju; Kwag, Jungheon; Shin, Tae Joo; Park, Joonhyuck; Lee, Yong Man; Lee, Yebin; Park, Jonghyup; Heo, Jung; Joo, Chulmin; Park, Tae Jung; Yoo, Pil J; Kim, Sungjee; Park, Juhyun

    2014-07-09

    Phase separation in films of phospholipids and conjugated polymers results in nanoassemblies because of a difference in the physicochemical properties between the hydrophobic polymers and the polar lipid heads, together with the comparable polymer side-chain lengths to lipid tail lengths, thus producing nanoparticles of conjugated polymers upon disassembly in aqueous media by the penetration of water into polar regions of the lipid heads. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Highly crystalline films of PCPDTBT with branched side chains by solvent vapor crystallization: influence on opto-electronic properties.

    PubMed

    Fischer, Florian S U; Trefz, Daniel; Back, Justus; Kayunkid, Navaphun; Tornow, Benjamin; Albrecht, Steve; Yager, Kevin G; Singh, Gurpreet; Karim, Alamgir; Neher, Dieter; Brinkmann, Martin; Ludwigs, Sabine

    2015-02-18

    PCPDTBT, a marginally crystallizable polymer, is crystallized into a new crystal structure using solvent-vapor annealing. Highly ordered areas with three different polymer-chain orientations are identified using TEM/ED, GIWAXS, and polarized Raman spectroscopy. The optical and structural properties differ significantly from films prepared by standard device preparation protocols. Bilayer solar cells, however, show similar performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Poly-dimethylsiloxane derivates side chains effect on syntan functionalized Polyamide fabric

    NASA Astrophysics Data System (ADS)

    Migani, V.; Weiss, H.; Massafra, M. R.; Merlo, A.; Colleoni, C.; Rosace, G.

    2011-02-01

    Poly-dimethylsiloxane (PDMS) polymers finishing of Polyamide-6,6 (PA66) fabrics involves ionic interactions between reactive groups on the PDMS polymers and the ones of the textile fabric. Such interactions could be strengthened by a pretreatment with a fixing agent to promote either ion-ion and H-bonding and ion-dipole forces. These forces could contribute towards the building of substantial PDMS-PA66 systems and the achieving of better adhesion properties to fabrics. Four different silicone polymers based on PDMS were applied on a synthetic tanning agent (syntan) finished Polyamide-6,6 fabric under acid conditions. Soxhlet extraction method and ATR FT-IR technique were used to investigate the application conditions. The finishing parameters such as pH and temperature together with fastness, mechanical and performance properties of the treated samples were studied and related to PDMS side chains effect on syntan functionalized Polyamide fabric.

  7. Phase Transition in Biopolymer Hydrogels Based on Glycine (g), Valine (v), Proline (p), and Isoleucine (i)

    NASA Astrophysics Data System (ADS)

    Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.

    2000-03-01

    Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.

  8. Correlation between polymer architecture, mesoscale structure and photovoltaic performance in side-chain-modified PAE-PAV:fullerene bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Rathgeber, S.; Kuehnlenz, F.; Hoppe, H.; Egbe, D. A. M.; Tuerk, S.; Perlich, J.; Gehrke, R.

    2012-02-01

    A poly(arylene-ethynylene)-alt-poly(arylene-vinylene) statistical copolymer carrying linear and branched alkoxy side chains along the conjugated backbone in a random manner, yields, compared to its regular substituted counterparts, an improved performance in polymer:fullerene bulk-heterojunction solar cells. Results obtained from GiWAXS experiments show that the improved performance of the statistical copolymer may be attributed to the following structural characteristics: 1) Well, ordered stacked domains that promote backbone planarization and thus improve the ππ-overlap. 2) Partly face-on alignment of domains relative to the electrodes for an improved active layer electrode charge transfer. Branched side chains seem to promote face-on domain orientation. Most likely they can minimize their unfavorable contact with the interface by just bringing the CH3 groups of the branches into direct contact with the surface so that favorable phenylene-substrate interaction can promote face-on orientation. 3) A more isotropic domain orientation throughout the active layer to ensure that the backbone alignment direction has components perpendicular and parallel to the electrodes in order to compromise between light absorption and efficient intra-chain charge transport.

  9. Polythiophene Derivative with a Side Chain Chromophore as Photovoltaic and Photorefractive Materials

    DTIC Science & Technology

    1993-11-17

    the desired bulk property in the polymer such as water solubility,1 8 optical activity,19 ionic conductivity 20 or liquid crystalline properties. 2 1...photoexcitation, which is similar to photoinduced polarization observed in the Langmuir - Blodgett (L-B) films of donor-acceptor molecules. 23 But due to...Maximum 200 Words) A new, solution processable, thiophene copolymer with a side chain nonlinear optical (NLO) chromophore namely Poly (3-octylthiophene

  10. Influence of the nematic order on the rheology and conformation of stretched comb-like liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Fourmaux-Demange, V.; Brûlet, A.; Boué, F.; Davidson, P.; Keller, P.; Cotton, J. P.

    2000-04-01

    We have studied the rheology and the conformation of stretched comb-like liquid-crystalline polymers. Both the influence of the comb-like structure and the specific effect of the nematic interaction on the dynamics are investigated. For this purpose, two isomers of a comb-like polymetacrylate polymer, of well-defined molecular weights, were synthesized: one displays a nematic phase over a wide range of temperature, the other one has only an isotropic phase. Even with high degrees of polymerization N, between 40 and 1000, the polymer chains studied were not entangled. The stress-strain curves during the stretching and relaxation processes show differences between the isotropic and nematic comb-like polymers. They suggest that, in the nematic phase, the chain dynamics is more cooperative than for a usual linear polymer. Small-angle neutron scattering has been used in order to determine the evolution of the chain conformation after stretching, as a function of the duration of relaxation t_r. The conformation can be described with two parameters only: λ_p, the global deformation of the polymer chain, and p, the number of statistical units of locally relaxed sub-chains. For the comb-like polymer, the chain deformation is pseudo-affine: λ_p is always smaller than λ (the deformation ratio of the whole sample). In the isotropic phase, λ_p has a constant value, while p increases as t_r. This latter behavior is not that expected for non-entangled chains, in which p varies as {t_r}^{1/2} (Rouse model). In the nematic phase, λ_p decreases as a stretched exponential function of t_r, while p remains constant. The dynamics of the comb-like polymers is discussed in terms of living clusters from which junctions are produced by interactions between side chains. The nematic interaction increases the lifetime of these junctions and, strikingly, the relaxation is the same at all scales of the whole polymer chain.

  11. Chlorination of Side Chains: A Strategy for Achieving a High Open Circuit Voltage Over 1.0 V in Benzo[1,2-b:4,5-b']dithiophene-Based Non-Fullerene Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Pengjie; Mu, Zhao; Wang, Huan

    Here, a benzo[1,2-b:4,5-b']dithiophene-based donor material with chlorine atoms substituted on its side chains, named PBClT, was designed and developed for application in non-fullerene solar cells to enhance the open-circuit voltage ( V oc) without decreasing charge carrier transfer in the corresponding blend films. The results demonstrated that the chlorinated PBClT polymer was an efficient donor in non-fullerene polymer solar cells (PSCs) and exhibited a blue-shifted absorbance, resulting in more complementary light absorption with non-fullerene acceptors, such as ITIC. In addition, the chlorine substitution decreased the HOMO level of PBClT, and as a result, the V oc of the corresponding solarmore » cell increased dramatically to 1.01 V, which is much higher than that of the non-chlorine analog, PTB7-Th, with a V oc of approximately 0.82 V. The 2D-GIWAX results illustrated that the PBClT/ITIC blend film exhibited a “face-on” orientation, which suggested that the chlorine substituents on the side chains favored π-π stacking in the direction perpendicular to the electron flow in photovoltaic devices. Furthermore, the PBClT/ITIC blend film showed a π-π stacking distance of 3.85 Å, which was very close to that of its non-chlorine analog blend film with a distance of approximately 3.74 Å. Based on this result, the introduction of multiple chlorine atoms on the conjugated side chains not only adjusted the energy level of the low-band-gap polymer through the electron withdrawing ability of the chlorine atoms but also subtly avoided obvious morphological changes that could result from strong steric hindrance in the main chain of the polymers. The PBClT/ITIC-based PSCs exhibited a maximum PCE of 8.46% with a V oc of 1.01 V, which is an increase in the PCE of approximately 22% compared to the PTB7-Th-based device based on our parallel experiments.« less

  12. Chlorination of Side Chains: A Strategy for Achieving a High Open Circuit Voltage Over 1.0 V in Benzo[1,2-b:4,5-b']dithiophene-Based Non-Fullerene Solar Cells

    DOE PAGES

    Chao, Pengjie; Mu, Zhao; Wang, Huan; ...

    2018-04-23

    Here, a benzo[1,2-b:4,5-b']dithiophene-based donor material with chlorine atoms substituted on its side chains, named PBClT, was designed and developed for application in non-fullerene solar cells to enhance the open-circuit voltage ( V oc) without decreasing charge carrier transfer in the corresponding blend films. The results demonstrated that the chlorinated PBClT polymer was an efficient donor in non-fullerene polymer solar cells (PSCs) and exhibited a blue-shifted absorbance, resulting in more complementary light absorption with non-fullerene acceptors, such as ITIC. In addition, the chlorine substitution decreased the HOMO level of PBClT, and as a result, the V oc of the corresponding solarmore » cell increased dramatically to 1.01 V, which is much higher than that of the non-chlorine analog, PTB7-Th, with a V oc of approximately 0.82 V. The 2D-GIWAX results illustrated that the PBClT/ITIC blend film exhibited a “face-on” orientation, which suggested that the chlorine substituents on the side chains favored π-π stacking in the direction perpendicular to the electron flow in photovoltaic devices. Furthermore, the PBClT/ITIC blend film showed a π-π stacking distance of 3.85 Å, which was very close to that of its non-chlorine analog blend film with a distance of approximately 3.74 Å. Based on this result, the introduction of multiple chlorine atoms on the conjugated side chains not only adjusted the energy level of the low-band-gap polymer through the electron withdrawing ability of the chlorine atoms but also subtly avoided obvious morphological changes that could result from strong steric hindrance in the main chain of the polymers. The PBClT/ITIC-based PSCs exhibited a maximum PCE of 8.46% with a V oc of 1.01 V, which is an increase in the PCE of approximately 22% compared to the PTB7-Th-based device based on our parallel experiments.« less

  13. Decades-Scale Degradation of Commercial, Side-Chain, Fluorotelomer-Based Polymers in Soils and Water

    EPA Science Inventory

    Fluorotelomer-based polymers (FTPs) are a primary product of the jluorotelomer industry, yet the role of commercial FTPs in degrading to form perjluorocarboxylic acids (P FCAs), including perjluorooctanoic acid, and P FCA precursors, remains ill-defined. Here we report on a 376-d...

  14. Concepts for the material development of phosphorescent organic materials processable from solution and their application in OLEDs

    NASA Astrophysics Data System (ADS)

    Janietz, S.; Krueger, H.; Thesen, M.; Salert, B.; Wedel, A.

    2014-10-01

    One example of organic electronics is the application of polymer based light emitting devices (PLEDs). PLEDs are very attractive for large area and fine-pixel displays, lighting and signage. The polymers are more amenable to solution processing by printing techniques which are favourable for low cost production in large areas. With phosphorescent emitters like Ir-complexes higher quantum efficiencies were obtained than with fluorescent systems, especially if multilayer stack systems with separated charge transport and emitting layers were applied in the case of small molecules. Polymers exhibit the ability to integrate all the active components like the hole-, electron-transport and phosphorescent molecules in only one layer. Here, the active components of a phosphorescent system - triplet emitter, hole- and electron transport molecules - can be linked as a side group to a polystyrene main chain. By varying the molecular structures of the side groups as well as the composition of the side chains with respect to the triplet emitter, hole- and electron transport structure, and by blending with suitable glass-forming, so-called small molecules, brightness, efficiency and lifetime of the produced OLEDs can be optimized. By choosing the triplet emitter, such as iridium complexes, different emission colors can be specially set. Different substituted triazine molecules were introduced as side chain into a polystyrene backbone and applied as electron transport material in PLED blend systems. The influence of alkyl chain lengths of the performance will be discussed. For an optimized blend system with a green emitting phosphorescent Ir-complex efficiencies of 60 cd/A and an lifetime improvement of 66.000 h @ 1000 cd/m2 were achieved.

  15. Structures and properties of poly(3-alkylthiophene) thin-films fabricated though vapor-phase polymerization.

    PubMed

    Back, Ji-Woong; Song, Eun-Ah; Lee, Keum-Joo; Lee, Youn-Kyung; Hwang, Chae-Ryong; Jo, Sang-Hyun; Jung, Woo-Gwang; Kim, Jin-Yeol

    2012-02-01

    Organic semiconducting polymer thin-films of 3-hexylthiophene, 3-octylthiophene, 3-decylthiophene, containing highly oriented crystal were fabricated by gas-phase polymerization using the CVD technique. These poly(3-alkylthiophene) films had a crystallinity up to 80%, and possessed a Hall mobility up to 10 cm2/Vs. The degree of crystalinity and the mobility values increased as the alkyl chain length increased. The crystal structure of the polymers was composed of stacked layers constructed by a side-by-side arrangement of alkyl chains and in-plane pi-pi stacking. These thin films are capable of being applied to organic electronics as the active materials used in thin-film transistors and organic photovoltaic cells.

  16. Development of side-chain NLO polymer materials with high electro-optic activity and long-term stability

    NASA Astrophysics Data System (ADS)

    Huang, Diyun; Parker, Timothy; Guan, Hann Wen; Cong, Shuxin; Jin, Danliang; Dinu, Raluca; Chen, Baoquan; Tolstedt, Don; Wolf, Nick; Condon, Stephen

    2005-01-01

    The electro-optic coefficient and long-term dipole alignment stability are two major factors in the development of high performance NLO materials for the application of high-speed EO devices. We have developed a high performance non-linear organic chromophore and incorporated it into a crosslinkable side-chain polyimide system. The polymer was synthesized through stepwise grafting of the crosslinker followed by the chromophore onto the polyimide backbone via esterification. Different chromophore loading levels were achieved by adjusting the crosslinker/chromophore feeding ratio. The polyimides films were contact-poled with second-harmonic generation monitoring. A large EO coefficient value was obtained and good long-term thermal stability at 85°C was observed.

  17. Conjugated Polymers Atypically Prepared in Water

    PubMed Central

    Invernale, Michael A.; Pendergraph, Samuel A.; Yavuz, Mustafa S.; Ombaba, Matthew; Sotzing, Gregory A.

    2010-01-01

    Processability remains a fundamental issue for the implementation of conducting polymer technology. A simple synthetic route towards processable precursors to conducting polymers (main chain and side chain) was developed using commercially available materials. These soluble precursor systems were converted to conjugated polymers electrochemically in aqueous media, offering a cheaper and greener method of processing. Oxidative conversion in aqueous and organic media each produced equivalent electrochromics. The precursor method enhances the yield of the electrochromic polymer obtained over that of electrodeposition, and it relies on a less corruptible electrolyte bath. However, electrochemical conversion of the precursor polymers often relies on organic salts and solvents. The ability to achieve oxidative conversion in brine offers a less costly and a more environmentally friendly processing step. It is also beneficial for biological applications. The electrochromics obtained herein were evaluated for electronic, spectral, and morphological properties. PMID:20959869

  18. Side-chain amino-acid-based pH-responsive self-assembled block copolymers for drug delivery and gene transfer.

    PubMed

    Kumar, Sonu; Acharya, Rituparna; Chatterji, Urmi; De, Priyadarsi

    2013-12-10

    Developing safe and effective nanocarriers for multitype of delivery system is advantageous for several kinds of successful biomedicinal therapy with the same carrier. In the present study, we have designed amino acid biomolecules derived hybrid block copolymers which can act as a promising vehicle for both drug delivery and gene transfer. Two representative natural chiral amino acid-containing (l-phenylalanine and l-alanine) vinyl monomers were polymerized via reversible addition-fragmentation chain transfer (RAFT) process in the presence of monomethoxy poly(ethylene glycol) based macro-chain transfer agents (mPEGn-CTA) for the synthesis of well-defined side-chain amino-acid-based amphiphilic block copolymers, monomethoxy poly(ethylene glycol)-b-poly(Boc-amino acid methacryloyloxyethyl ester) (mPEGn-b-P(Boc-AA-EMA)). The self-assembled micellar aggregation of these amphiphilic block copolymers were studied by fluorescence spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Potential applications of these hybrid polymers as drug carrier have been demonstrated in vitro by encapsulation of nile red dye or doxorubicin drug into the core of the micellar nanoaggregates. Deprotection of side-chain Boc- groups in the amphiphilic block copolymers subsequently transformed them into double hydrophilic pH-responsive cationic block copolymers having primary amino groups in the side-chain terminal. The DNA binding ability of these cationic block copolymers were further investigated by using agarose gel retardation assay and AFM. The in vitro cytotoxicity assay demonstrated their biocompatible nature and these polymers can serve as "smart" materials for promising bioapplications.

  19. Poly[(arylene ethynylene)-alt-(arylene vinylene)]s Based on Anthanthrone and Its Derivatives: Synthesis and Photophysical, Electrochemical, Electroluminescent, and Photovoltaic Properties

    PubMed Central

    2017-01-01

    Anthanthrone and its derivatives are large polycyclic aromatic compounds (PACs) that pose a number of challenges for incorporation into the structure of soluble conjugated polymers. For the first time, this group of PACs was employed as the building blocks for the synthesis of copolymers (P1–P5) based on poly[(arylene ethynylene)-alt-(arylene vinylene)]s backbone (−Ph–C≡C–Anth–C≡C–Ph–CH=CH–Ph–CH=CH−)n. During the synthesis of P1–P5, different alkyloxy side chains were incorporated in order to tune the properties of the polymers. Of the copolymer series only P1 (containing anthanthrone and branched 2-ethylhexyloxy side chains on phenylenes), P2 and P3 (for which the anthanthrones containing carbonyl groups were converted to anthanthrene containing alkyloxy substituents) were soluble. The photophysical, electrochemical, electroluminescent and photovoltaic properties of P1–P3 are reported, compared and discussed with respect to the effects of side chains. PMID:29151617

  20. Role of Side-Chain Molecular Features in Tuning Lower Critical Solution Temperatures (LCSTs) of Oligoethylene Glycol Modified Polypeptides.

    PubMed

    Gharakhanian, Eric G; Deming, Timothy J

    2016-07-07

    A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties.

  1. Translocation of a Polymer Chain across a Nanopore: A Brownian Dynamics Simulation Study

    NASA Technical Reports Server (NTRS)

    Tian, Pu; Smith, Grant D.

    2003-01-01

    We carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient). The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient across the wall), we focused on the latter case in our studies. Calculation of radius of gyrations at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tubelike pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied, attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.

  2. Transiently thermoresponsive polymers and their applications in biomedicine.

    PubMed

    Vanparijs, Nane; Nuhn, Lutz; De Geest, Bruno G

    2017-02-20

    The focus of this review is on the class of transiently thermoresponsive polymers. These polymers are thermoresponsive, but gradually lose this property upon chemical transformation - often a hydrolysis reaction - in the polymer side chain or backbone. An overview of the different approaches used for the design of these polymers along with their physicochemical properties is given. Their amphiphilic properties and degradability into fully soluble compounds make this class of responsive polymers attractive for drug delivery and tissue engineering applications. Examples of these are also provided in this review.

  3. Biomimetic peptoid polymers

    DOEpatents

    Zuckermann, Ronald N.; Chu, Tammy K.; Nam, Ki Tae

    2015-07-07

    The present invention provides for novel peptoid oligomers that are capable of self-assembling into two-dimensional sheet structures. The peptoid oligomers can have alternately hydrophilic or polar side-chains and hydrophobic or apolar side-chains. The peptoid oligomers, and the two-dimensional sheet structures, can be applied to biological applications where the peptoid plays a role as a biological scaffold or building block. Also, the two-dimensional sheet structures of the present invention can be used as two-dimensional nanostructures in device applications.

  4. Computational Modeling of Hydroxypropyl-Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin Interactions: A Systematic Coarse-Graining Approach.

    PubMed

    Huang, Wenjun; Mandal, Taraknath; Larson, Ronald G

    2017-03-06

    We present coarse-grained (CG) force fields for hydroxypropyl-methylcellulose acetate succinate (HPMCAS) polymers and the drug molecule phenytoin using a bead/stiff spring model, with each bead representing a HPMCAS monomer or monomer side group (hydroxypropyl acetyl, acetyl, or succinyl) or a single phenytoin ring. We obtain the bonded and nonbonded interaction parameters in our CG model using the RDFs from atomistic simulations of short HPMCAS model oligomers (20-mer) and atomistic simulations of phenytoin molecules. The nonbonded interactions are modeled using a LJ 12-6 potential, with separate parameters for each monomer substitution type, which allows heterogeneous polymer chains to be modeled. The cross interaction terms between the polymer and phenytoin CG beads are obtained explicitly from atomistic level polymer-phenytoin simulations, rather than from mixing rules. We study the solvation behavior of 50-mer and 100-mer polymer chains and find chain-length-dependent aggregation. We also compare the phenytoin CG force field developed in this work with that in Mandal et al. (Soft Matter, 2016, 12, 8246-8255) and conclude both are suitable for studying the interaction between polymer and drug in solvated solid dispersion formulation, in the absence of drug crystallization. Finally, we present simulations of heterogeneous HPMCAS model polymer chains and phenytoin molecules. Polymer and drug form a complex in a short period of simulation time due to strong intermolecular interactions. Moreover, the protonated polymer chains are more effective than deprotonated ones in inhibiting the drug aggregation in the polymer-drug complex.

  5. Structure and effective interactions of comb polymer nanocomposite melts.

    PubMed

    Xu, Qinzhi; Xu, Mengjin; Feng, Yancong; Chen, Lan

    2014-11-28

    In this work, the structure and effective interactions of branched comb polymer nanocomposite (PNC) melts are investigated by using the polymer reference interaction site model (PRISM) integral equation theory. It is observed that the nanoparticle contact (bridging) aggregation is formed when the nanoparticle-monomer attraction strength is relatively weak (large) in comb PNCs. The organization states of aggregation for the moderate nanoparticle-monomer attraction strength can be well suppressed by the comb polymer architecture, while the bridging structure for relatively large attraction is obviously promoted. With the increase of the particle volume fraction, the organization states of bridging-type structure become stronger and tighter; however, this effect is weaker than that of the nanoparticle-monomer attraction strength. When the particle volume fraction and moderate nanoparticle-monomer attraction strength are fixed, the effects of degree of polymerization, side chain number, side chain length, and nanoparticle-monomer size ratio on the organization states of PNC melts are not prominent and the nanoparticles can well disperse in comb polymer. All the observations indicate that the present PRISM theory can give a detailed description of the comb PNC melts and assist in future design control of new nanomaterials.

  6. Investigation of structure-property relationships in systematic series of novel polymers

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.

    1976-01-01

    Solid state transitions in polymeric materials was associated with the onset of sub-molecular motions of the polymer chains. Although these were considered to be intramolecular in general, the local environment of the polymer molecule exerts a strong influence through, for example, the effects of crystallinity, polarity and diluents. The manner of specimen preparation and previous history also affect transitions. The transitions are considered to arise when sufficient free volume is available to permit the occurrence of these side chain and backbone reorientations. The glass transition is the principal transition of amorphous polymeric materials and is associated with the onset of long range segmental motion of the polymer backbone. The various types of shorter range motion occurring below the glass transition have been catalogued.

  7. Novel donor-acceptor polymer containing 4,7-bis(thiophen-2-yl)benzo[c][1,2,5]thiadiazole for polymer solar cells with power conversion efficiency of 6.21%.

    PubMed

    Han, Liangliang; Bao, Xichang; Hu, Tong; Du, Zhengkun; Chen, Weichao; Zhu, Dangqiang; Liu, Qian; Sun, Mingliang; Yang, Renqiang

    2014-06-01

    In order to improve the solution processability of 4,7-bis(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT)-based polymers, novel donor-acceptor polymer PTOBDTDTBT containing DTBT and benzo[1,2-b:4,5-b']dithiophene (BDT) with conjugated side chain is designed and synthesized with narrow band gap 1.67 eV and low lying HOMO energy level -5.4 eV. The blend film of PTOBDTDTBT and PC71 BM exhibits uniform and smooth film with root-mean-square (RMS) surface roughness 1.15 nm because of the excellent solubility of PTOBDTDTBT when six octyloxy side chains are introduced. The hole mobility of the blend film is measured to be 4.4 × 10(-5) cm(2) V(-1) s(-1) by the space-charge-limited current (SCLC) model. The optimized polymer solar cells (PSCs) based on PTOBDTDTBT/PC71 BM exhibits an improved PCE of 6.21% with Voc = 0.80 V, Jsc = 11.94 mA cm(-2) and FF = 65.10%, one of the highest PCE in DTBT containing polymers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder.

    PubMed

    van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.

  9. Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.

    PubMed

    Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2018-06-01

    This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.

  10. Structural symmetry breaking of silicon containing polymers and their relation with electrical conductivity and Raman active vibrations

    NASA Astrophysics Data System (ADS)

    Cabrera, Alejandro; González, Carmen; Tagle, Luis; Terraza, Claudio; Volkmann, Ulrich; Barriga, Andrés; Ramos, Esteban; Pavez, Maximiliano

    2011-03-01

    The incorporation of silicon into the polymeric main chain or side groups can provide an enhancement in chemical, physical and mechanical properties. We report an efficient method for the synthesis of polymers containing silicon in the main chain, from the polycondensation reactions of four optically active carboxylic diacid. The solubility of the polymers, the molecular weight, the glass transition and the thermal stability were studied by standard techniques. Raman spectroscopy was used to probe the conformation of stretching modes as function of the temperature. The conductivity measurements indicated that the alignment of the molecules is a crucial parameter for electrical performance. When the polymers were exposed to iodine, charge transfer increased their mobility and decreased their optical band gaps. These novel properties highlight the possibility to generate alternative active opto-electronics polymers.

  11. Effect of semiconductor polymer backbone structures and side-chain parameters on the facile separation of semiconducting single-walled carbon nanotubes from as-synthesized mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Dennis T.; Chung, Jong Won; Park, Geonhee; Kim, Yun-Tae; Lee, Chang Young; Cho, Yeonchoo; Yoo, Pil J.; Han, Jae-Hee; Shin, Hyeon-Jin; Kim, Woo-Jae

    2018-01-01

    Semiconducting single-walled carbon nanotubes (SWNTs) show promise as core materials for next-generation solar cells and nanoelectronic devices. However, most commercial SWNT production methods generate mixtures of metallic SWNTs (m-SWNTs) and semiconducting SWNT (sc-SWNTs). Therefore, sc-SWNTs must be separated from their original mixtures before use. In this study, we investigated a polymer-based, noncovalent sc-SWNT separation approach, which is simple to perform and does not disrupt the electrical properties of the SWNTs, thus improving the performance of the corresponding sc-SWNT-based applications. By systematically investigating the effect that different structural features of the semiconductor polymer have on the separation of sc-SWNTs, we discovered that the length and configuration of the alkyl side chains and the rigidity of the backbone structure exert significant effects on the efficiency of sc-SWNT separation. We also found that electron transfer between the semiconductor polymers and sc-SWNTs is strongly affected by their energy-level alignment, which can be tailored by controlling the donor-acceptor configuration in the polymer backbone structures. Among the polymers investigated, the highly planar P8T2Z-C12 semiconductor polymer showed the best sc-SWNT separation efficiency and unprecedentedly strong electronic interaction with the sc-SWNTs, which is important for improving their performance in applications.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.

    Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.

  13. Copolymers for Drag Reduction in Marie Propulsion: New Molecular Structures with Enhanced Effectiveness

    DTIC Science & Technology

    1991-05-31

    Soluble Polymers: Synthesis, Solution Properties, and Applications, ACS Symposium Series 467, Chapter 22, page 338 (1991). "Molecular- Weight -Distribution...Mississippi 39406-0076 at room temperature to remove low molecular weight polymers and excess KOH. The final products were obtained by freeze-drying...polyelectrolytes due to the presence of the were conducted on a Contraves LS 30 low shear rheometer at a shear long hydrophobic side chains in the polymer

  14. Secondary cell-wall assembly in flax phloem fibres: role of galactans.

    PubMed

    Gorshkova, Tatyana; Morvan, Claudine

    2006-01-01

    Non-lignified fibre cells (named gelatinous fibres) are present in tension wood and the stems of fibre crops (such as flax and hemp). These cells develop a very thick S2 layer within the secondary cell wall, which is characterised by (1) cellulose microfibrils largely parallel to the longitudinal axis of the cell, and (2) a high proportion of galactose-containing polymers among the non-cellulosic polysaccharides. In this review, we focus on the role of these polymers in the assembly of gelatinous fibres of flax. At the different stages of fibre development, we analyse in detail data based on sugar composition, linkages of pectic polymers, and immunolocalisation of the beta-(1-->4)-galactans. These data indicate that high molecular-mass gelatinous galactans accumulate in specialised Golgi-derived vesicles during fibre cell-wall thickening. They consist of RG-I-like polymers with side chains of beta-(1-->4)-linked galactose. Most of them are short, but there are also long chains containing up to 28 galactosyl residues. At fibre maturity, two types of cross-linked galactans are identified, a C-L structure that resembles the part of soluble galactan with long side chains and a C-S structure with short chains. Different possibilities for soluble galactan to give rise to C-L and C-S are analysed. In addition, we discuss the prospect for the soluble galactan in preventing the newly formed cellulose chains from completing immediate crystallisation. This leads to a hypothesis that firstly the secretion of soluble galactans plays a role in the axial orientation of cellulose microfibrils, and secondly the remodelling and cross-linking of pectic galactans are linked to the dehydration and the assembly of S2 layer.

  15. A molecular modeling approach to understand the structure and conformation relationship of (GlcpA)Xylan.

    PubMed

    Guo, Qingbin; Kang, Ji; Wu, Yan; Cui, Steve W; Hu, Xinzhong; Yada, Rickey Y

    2015-12-10

    The structure and conformation relationships of a heteropolysaccharide (GlcpA)Xylan in terms of various molecular weights, Xylp/GlcpA ratio and the distribution of GlcpA along xylan chain were investigated using computer modeling. The adiabatic contour maps of xylobiose, XylpXylp(GlcpA) and (GlcpA)XylpXylp(GlcpA) indicated that the insertion of the side group (GlcpA) influenced the accessible conformational space of xylobiose molecule. RIS-Metropolis Monte Carlo method indicated that insertion of GlcpA side chain induced a lowering effect of the calculated chain extension at low GlcpA:Xylp ratio (GlcpA:Xylp = 1:3). The chain, however, became extended when the ratio of GlcpA:Xylp above 2/3. It was also shown that the spatial extension of the polymer chains was dependent on the distribution of side chain: the random distribution demonstrated the most flexible structure compared to block and alternative distribution. The present studies provide a unique insight into the dependence of both side chain ratio and distribution on the stiffness and flexibility of various (GlcpA)Xylan molecules. Copyright © 2015. Published by Elsevier Ltd.

  16. Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2017-04-01

    We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.

  17. Self-interacting polymer chains terminally anchored to adsorbing surfaces of three-dimensional fractal lattices

    NASA Astrophysics Data System (ADS)

    Živić, I.; Elezović-Hadžić, S.; Milošević, S.

    2018-01-01

    We have studied the adsorption problem of self-attracting linear polymers, modeled by self-avoiding walks (SAWs), situated on three-dimensional fractal structures, exemplified by 3d Sierpinski gasket (SG) family of fractals as containers of a poor solvent. Members of SG family are enumerated by an integer b (b ≥ 2), and it is assumed that one side of each SG fractal is an impenetrable adsorbing surface. We calculate the critical exponents γ1 ,γ11, and γs, which are related to the numbers of all possible SAWs with one, both, and no ends anchored to the adsorbing boundary, respectively. By applying the exact renormalization group (RG) method (for the first three members of the SG fractal family, b = 2 , 3, and 4), we have obtained specific values of these exponents, for θ-chain and globular polymer phase. We discuss their mutual relations and relations with corresponding values pertinent to extended polymer chain phase.

  18. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential.

    PubMed

    Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.

  19. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential

    PubMed Central

    Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851

  20. Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials

    NASA Astrophysics Data System (ADS)

    Gray, Tomoko O.

    Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular glasses. The side-chain dendronized polymers are, due to the structural complexity, self-constrained systems. Our thermomechanical investigations identified that a local relaxation mode associated to the NLO side-chain is the critical design parameter in yielding high mobility to the active element. Relaxation processes of the self-assembling molecular glasses are discussed from a thermodynamic perspective involving both enthalpic and entropic contributions, considering the very special nature of interactions for the NLO molecular glasses, i.e., the formation and dissociation of phenyl/perfluorophenyl quadrupol pairs.

  1. Influence of the strength of the smectic order on the backbone anisotropy of side-chain liquid crystal polymers as revealed by SANS

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Keller, P.; Cotton, J. P.

    1992-06-01

    It is proposed that the strength of the smectic order determines the backbone anisotropy of side-chain liquid crystal polymers. Here this strength increases with the length of the alkyl terminal group of the mesogens. Two liquid crystal polymethacrylates differing only by the mesogenic tails —OCH3 and —OC4H9 are considered. The backbone anisotropy of these polymers is measured by small angle neutron scattering (SANS) whereas the smectic order is evaluated from the intensity of the 001 Bragg peak. Il est proposé que la qualité de l'ordre smectique détermine l'anisotropie du squelette de polymères mésomorphes en peigne confinés dans les lamelles. Ici l'ordre smectique est augmenté en allongeant le groupe alkyl terminal des mésogènes. Nous étudions deux polyméthacrylates cristal liquide qui ne différent que par leurs groupes terminaux : —OCH3 et —OC4H9. L'anisotropie du squellete est mesurée par diffusion de neutrons aux petits angles tandis que l'ordre smectique est évalué à l'aide de l'intensité du pic de Bragg 001.

  2. Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier.

    PubMed

    Mansfield, Edward D H; de la Rosa, Victor R; Kowalczyk, Radoslaw M; Grillo, Isabelle; Hoogenboom, Richard; Sillence, Katy; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-08-16

    Functionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering. Diffusion coefficients were determined in water and in a mucin dispersion (using Nanoparticle Tracking Analysis), and penetration through a mucosal barrier was assessed using an ex vivo fluorescence technique. The addition of a single methylene group in the side chain significantly altered the penetration and diffusion of the materials in both mucin dispersions and mucosal tissue. Nanoparticles functionalised with poly(2-methyl-2-oxazoline) were significantly more diffusive than particles with poly(2-ethyl-2-oxazoline) while particles with poly(2-n-propyl-2-oxazoline) showed no significant increase compared to the unfunctionalised particles. These data show that variations in the polymer structure can radically alter their diffusive properties with clear implications for the future design of mucus penetrating systems.

  3. Novel Side-Chain Liquid Cyrstalline Polymers

    DTIC Science & Technology

    1989-01-01

    Synthesis and Characterization of Liquid Crystalline Polyacrylates and Poly- methacrylates Containing Benzyl Ether and Diphenyl Ethane Based Mesogens J...Crystalline Polymethacrylates and Polyacrylates of trans 2-[4-(11- hydroxyundecanyloxy)-3,5-dimethylphenylI-4-(4-methoxyphenyl)-l,3-dioxane Makromol. Chem., 189...and Characterization of Liquid Crystalline Polyacrylates and Poly- met acrylates Containing Benzyl Ether and Diphenyl Ethane Based Mesogens J. Polym

  4. Simulation of size-exclusion chromatography distribution coefficients of comb-shaped molecules in spherical pores comparison of simulation and experiment.

    PubMed

    Radke, Wolfgang

    2004-03-05

    Simulations of the distribution coefficients of linear polymers and regular combs with various spacings between the arms have been performed. The distribution coefficients were plotted as a function of the number of segments in order to compare the size exclusion chromatography (SEC)-elution behavior of combs relative to linear molecules. By comparing the simulated SEC-calibration curves it is possible to predict the elution behavior of comb-shaped polymers relative to linear ones. In order to compare the results obtained by computer simulations with experimental data, a variety of comb-shaped polymers varying in side chain length, spacing between the side chains and molecular weights of the backbone were analyzed by SEC with light-scattering detection. It was found that the computer simulations could predict the molecular weights of linear molecules having the same retention volume with an accuracy of about 10%, i.e. the error in the molecular weight obtained by calculating the molecular weight of the comb-polymer based on a calibration curve constructed using linear standards and the results of the computer simulations are of the same magnitude as the experimental error of absolute molecular weight determination.

  5. Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics

    PubMed Central

    2018-01-01

    N-doping of conjugated polymers either requires a high dopant fraction or yields a low electrical conductivity because of their poor compatibility with molecular dopants. We explore n-doping of the polar naphthalenediimide–bithiophene copolymer p(gNDI-gT2) that carries oligoethylene glycol-based side chains and show that the polymer displays superior miscibility with the benzimidazole–dimethylbenzenamine-based n-dopant N-DMBI. The good compatibility of p(gNDI-gT2) and N-DMBI results in a relatively high doping efficiency of 13% for n-dopants, which leads to a high electrical conductivity of more than 10–1 S cm–1 for a dopant concentration of only 10 mol % when measured in an inert atmosphere. We find that the doped polymer is able to maintain its electrical conductivity for about 20 min when exposed to air and recovers rapidly when returned to a nitrogen atmosphere. Overall, solution coprocessing of p(gNDI-gT2) and N-DMBI results in a larger thermoelectric power factor of up to 0.4 μW K–2 m–1 compared to other NDI-based polymers. PMID:29457139

  6. Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics.

    PubMed

    Kiefer, David; Giovannitti, Alexander; Sun, Hengda; Biskup, Till; Hofmann, Anna; Koopmans, Marten; Cendra, Camila; Weber, Stefan; Anton Koster, L Jan; Olsson, Eva; Rivnay, Jonathan; Fabiano, Simone; McCulloch, Iain; Müller, Christian

    2018-02-09

    N-doping of conjugated polymers either requires a high dopant fraction or yields a low electrical conductivity because of their poor compatibility with molecular dopants. We explore n-doping of the polar naphthalenediimide-bithiophene copolymer p(gNDI-gT2) that carries oligoethylene glycol-based side chains and show that the polymer displays superior miscibility with the benzimidazole-dimethylbenzenamine-based n-dopant N-DMBI. The good compatibility of p(gNDI-gT2) and N-DMBI results in a relatively high doping efficiency of 13% for n-dopants, which leads to a high electrical conductivity of more than 10 -1 S cm -1 for a dopant concentration of only 10 mol % when measured in an inert atmosphere. We find that the doped polymer is able to maintain its electrical conductivity for about 20 min when exposed to air and recovers rapidly when returned to a nitrogen atmosphere. Overall, solution coprocessing of p(gNDI-gT2) and N-DMBI results in a larger thermoelectric power factor of up to 0.4 μW K -2 m -1 compared to other NDI-based polymers.

  7. On the specificity of a bacteriophage-borne endoglycanase for the native capsular polysaccharide produced by Klebsiella pneumoniae SK1 and its derived polymers.

    PubMed

    Cescutti, P; Paoletti, S

    1994-02-15

    The specificity of the endoglycanase associated with the bacteriophage phi SK1 particles was tested on the native capsular polysaccharide produced by Klebsiella pneumoniae serotype SK1 and on three chemically modified polymers derived from it. The primary structure of the SK1 capsular polysaccharide is: [formula: see text] and the beta 1-3 linkage between the glucose and the galactose residues is the one cleaved by the phage enzyme. The enzyme activity was assayed on the deacetylated polysaccharide and on two derivatives obtained by removal of both the side-chain sugars and of only the alpha-D-galactosyl unit, respectively. The endoglycanase was more active on the deacetylated polysaccharide than on the native one, suggesting that the presence of the acetyl groups interferes with the enzyme-polysaccharide interaction. A possible role of the acetyl groups in the control of the polysaccharide chain length and hence on the rheological behaviour of the capsule cannot be ruled out, as already indicated for other bacterial polysaccharides. On the contrary, the removal of the side chains, either complete or selective, caused the modification of the recognition site in such a way that the enzymatic depolymerization no longer occurred. Therefore, it can be inferred that the phi SK1 endoglycanase requires the presence of both the side chain sugars to exhibit its cleaving activity, although this latter is in the main chain.

  8. [Using Molecular Simulations to Understand Complex Nanoscale Dynamic Phenomena in Polymer Solutions

    NASA Technical Reports Server (NTRS)

    Smith, Grant

    2004-01-01

    The first half of the project concentrated on molecular simulation studies of the translocation of model molecules for single-stranded DNA through a nanosized pore. This has resulted in the publication, Translocation of a polymer chain across a nanopore: A Brownian dynamics simulation study, by Pu Tian and Grant D. Smith, JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 21 1 DECEMBER 2003, which is attached to this report. In this work we carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient) designed to mimic an electrostatic field. The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient). We focused on the latter case in our studies. Calculation of radius of gyration of the translocating chain at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tube-like pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied. Attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.

  9. Molecular Approach to Conjugated Polymers with Biomimetic Properties.

    PubMed

    Baek, Paul; Voorhaar, Lenny; Barker, David; Travas-Sejdic, Jadranka

    2018-06-13

    The field of bioelectronics involves the fascinating interplay between biology and human-made electronics. Applications such as tissue engineering, biosensing, drug delivery, and wearable electronics require biomimetic materials that can translate the physiological and chemical processes of biological systems, such as organs, tissues. and cells, into electrical signals and vice versa. However, the difference in the physical nature of soft biological elements and rigid electronic materials calls for new conductive or electroactive materials with added biomimetic properties that can bridge the gap. Soft electronics that utilize organic materials, such as conjugated polymers, can bring many important features to bioelectronics. Among the many advantages of conjugated polymers, the ability to modulate the biocompatibility, solubility, functionality, and mechanical properties through side chain engineering can alleviate the issues of mechanical mismatch and provide better interface between the electronics and biological elements. Additionally, conjugated polymers, being both ionically and electrically conductive through reversible doping processes provide means for direct sensing and stimulation of biological processes in cells, tissues, and organs. In this Account, we focus on our recent progress in molecular engineering of conjugated polymers with tunable biomimetic properties, such as biocompatibility, responsiveness, stretchability, self-healing, and adhesion. Our approach is general and versatile, which is based on functionalization of conjugated polymers with long side chains, commonly polymeric or biomolecules. Applications for such materials are wide-ranging, where we have demonstrated conductive, stimuli-responsive antifouling, and cell adhesive biointerfaces that can respond to external stimuli such as temperature, salt concentration, and redox reactions, the processes that in turn modify and reversibly switch the surface properties. Furthermore, utilizing the advantageous chemical, physical, mechanical and functional properties of the grafts, we progressed into grafting of the long side chains onto conjugated polymers in solution, with the vision of synthesizing solution-processable conjugated graft copolymers with biomimetic functionalities. Examples of the developed materials to date include rubbery and adhesive photoluminescent plastics, biomolecule-functionalized electrospun biosensors, thermally and dually responsive photoluminescent conjugated polymers, and tunable self-healing, adhesive, and stretchable strain sensors, advanced functional biocidal polymers, and filtration membranes. As outlined in these examples, the applications of these biomimetic, conjugated polymers are still in the development stage toward truly printable, organic bioelectronic devices. However, in this Account, we advocate that molecular engineering of conjugated polymers is an attractive approach to a versatile class of organic electronics with both ionic and electrical conductivity as well as mechanical properties required for next-generation bioelectronics.

  10. Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

    DOE PAGES

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...

    2015-11-03

    The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less

  11. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics

    NASA Astrophysics Data System (ADS)

    Mansbach, Rachael A.; Ferguson, Andrew L.

    2015-03-01

    The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.

  12. Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora

    The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less

  13. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics.

    PubMed

    Mansbach, Rachael A; Ferguson, Andrew L

    2015-03-14

    The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.

  14. Functional Polymers and Sequential Copolymers by Phase Transfer Catalysis. Synthesis of Thermotropic Side-Chain Liquid Crystalline Polymers Containing a Poly(2,6-Dimethyl-1,4-Phenylene Oxide) Main Chain.

    DTIC Science & Technology

    1986-10-01

    bromovalerate (Aldrich, 99%), 5-bromovaleronitrile (Aldrich, 95%), and 11-bromoundecanoic acid (Aldrich, 99%) were used without further purification. 4...atic proton’s). 71 Cm, 4 aromatic X~tons). C. Synthesis of 4- 4-oxybipheny1 butyrnc acid , 4-(4-inethoxy 4’-oxy- I hen 1 butyrnc acid , 5-(4-oxybipheny1...valeric acid , 5-(4-inethoxy-4-oxy- bi heny1 valeric acid . 11- 4-ox bipheny1 undecanoic acid and 11- 4-inethox -4 -ox biphenylundecanoic acid . The

  15. Molecular self assembly of mixed comb-like dextran surfactant polymers for SPR virus detection.

    PubMed

    Mai-Ngam, Katanchalee; Kiatpathomchai, Wansika; Arunrut, Narong; Sansatsadeekul, Jitlada

    2014-11-04

    The synthesis of two comb-like dextran surfactant polymers, that are different in their dextran molecular weight (MW) distribution and the presence of carboxylic groups, and their characterization are reported. A bimodal carboxylic dextran surfactant polymer consists of poly(vinyl amine) (PVAm) backbone with carboxyl higher MW dextran, non-functionalized lower MW dextran and hydrophobic hexyl branches; while a monomodal dextran surfactant polymer is PVAm grafted with non-functionalized lower MW dextran and hexyl branches. Layer formation of non-covalently attached dextran chains with bimodal MW distributions on a surface plasmon resonance (SPR) chip was investigated from the perspective of mixed physisorption of the bimodal and monomodal surfactant polymers. Separation distances between the carboxylic longer dextran side chains within the bimodal surfactant polymer and between the whole bimodal surfactant molecules on the chip surface could be well-controlled. SPR analysis of shrimp yellow head virus using our mixed surfactant chips showed dependence on synergetic adjustment of these separation distances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    PubMed

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  17. Synthesis and studies of polypeptide materials: Enantioselective polymerization of gamma-benzyl glutamate-N-carboxyanhydride and synthesis of optically active poly(beta-peptides)

    NASA Astrophysics Data System (ADS)

    Cheng, Jianjun

    A class of zero-valent transition metal complexes have been developed by Deming et al for the controlled polymerization of alpha-aminoacid-N-carboxyanhydrides (alpha-NCAs). This discovery provided a superior starting point for the development of enantioselective polymerizations of racemic alpha-NCAs. Bidentate chiral ligands were synthesized and tested for their abilities to induce enantioselective polymerization of gamma-benzyl-glutamate NCA (Glu NCA) when they were coordinated to zero-valent nickel complexes. When optically active 2-pyridinyl oxazoline ligands were mixed with bis(1,5-cyclooctadiene)nickel in THF, chiral nickel complexes were formed that selectively polymerized one enantiomer of Glu NCA over the other. The highest selectivity was observed with the nickel complex of (S)-4-tert-butyl-2-pyridinyl oxazoline, which gave a ratio of enantiomeric polymerization rate constants (kD/kL) of 5.2. It was found that subtle modification of this ligand by incorporation of additional substituents had a substantial impact on initiator enantioselectivities. In separate efforts, methodology was developed for the general synthesis of optically active beta-aminoacid-N-carboxyanhydrides (beta-NCAs) via cyclization of Nbeta-Boc- or Nbeta-Cbz-beta-amino acids using phosphorus tribromide. The beta-NCA molecules could be polymerized in good yields using strong bases or transition metal complexes to give optically active poly(beta-peptides) bearing proteinogenic side chains. The resulting poly(beta-peptides), which have moderate molecular weights, adopt stable helical conformations in solution. Poly(beta-homoglutamate and poly(beta-homolysine), the side-chain deprotected polymers, were found to display pH dependent helix-coil conformation transitions in aqueous solution, similar to their alpha-analogs. A novel method for poly(beta-aspartate) synthesis was developed via the polymerization of L-aspartate alkyl ester beta lactams using metal-amido complexes. Poly(beta-aspartates) bearing short ethylene glycol side chains were obtained with controlled molecular weights and narrow molecular weight distributions when Sc(N(TMS)2)3 was used as initiator for the beta-lactam polymerizations. Polymer chain lengths could be controlled by both stoichiometry and monomer conversion, characteristic of a living polymerization system. Di- and tri-block copoly(beta-peptides) with desired chain lengths were also synthesized using this method. It was found that these techniques were generally applicable for the synthesis of poly(beta-peptides), bearing other proteinogetic side chains. Synthesis and studies of polypeptide materials were extended to unexplored areas by incorporation of both alpha- and beta-amino acid residues into single polymer chains. Two sequence specific polypeptides bearing alternating beta-alpha, or beta-alpha-alpha amino acid residues were synthesized. Both polymers were found to adopt unprecedented stable conformations in solution.

  18. Open cell fire-resistant foam

    NASA Technical Reports Server (NTRS)

    Thompson, J. E.; Wittman, J. W.; Reynard, K. A.

    1976-01-01

    Candidate polyphosphazene polymers were investigated to develop a fire-resistant, thermally stable and flexible open cell foam. The copolymers were prepared in several mole ratios of the substituent side chains and a (nominal) 40:60 derivative was selected for formulation studies. Synthesis of the polymers involved solution by polymerization of hexachlorophosphazene to soluble high molecular weight poly(dichlorophosphazene), followed by derivatization of the resultant polymer in a normal fashion to give polymers in high yield and high molecular weight. Small amounts of a cure site were incorporated into the polymer for vulcanization purposes. The poly(aryloxyphosphazenes) exhibited good thermal stability and the first polymer mentioned above exhibited the best thermal behavior of all the candidate polymers studied.

  19. Synthesis and characterisation of new types of side chain cholesteryl polymers.

    PubMed

    Wang, Bin; Du, Haiyan; Zhang, Junhua

    2011-01-01

    A series of cholesterol derivatives have been synthesised via the alkylation reaction of the 3-hydroxyl group with the aliphatic bromide compounds with different chain lengths, namely 3β-alkyloxy-cholesterol. The double bond between the C5 and C6 positions in these cholesterol derivatives was oxidised into epoxy, followed by an epoxy-ring-opening reaction with the treatment with acrylic acid, resulting in a series of 3β-alkyloxy-5α-hydroxy-6β-acryloyloxycholesterol, C(n)OCh (n=1, 2, 4, 6, 8, 10, 12), The acrylate group is connected to the C6 position, which is confirmed by the single crystal structure analysis. The corresponding polymers, PC(n)OCh, were prepared via free radical polymerisation. The structure of monomers and the resulting polymers were characterised with nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The thermal properties of PC(n)OCh were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). To determine the secondary structure of polymers, circular dichroism (CD) spectra were performed. It was found that not all monomers produce high-molecular-weight polymers because of steric hindrance. However, all polymers have a helical structure, which can be enhanced by increasing the alkoxy chain length. In addition, increasing the alkoxy chain length decreases the glass transition temperature and increases the decomposition temperature of the polymers. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive

    PubMed Central

    Luo, Hewei; Yu, Chenmin; Liu, Zitong; Zhang, Guanxin; Geng, Hua; Yi, Yuanping; Broch, Katharina; Hu, Yuanyuan; Sadhanala, Aditya; Jiang, Lang; Qi, Penglin; Cai, Zhengxu; Sirringhaus, Henning; Zhang, Deqing

    2016-01-01

    Organic semiconductors with high charge carrier mobilities are crucial for flexible electronic applications. Apart from designing new conjugated frameworks, different strategies have been explored to increase charge carrier mobilities. We report a new and simple approach to enhancing the charge carrier mobility of DPP-thieno[3,2-b]thiophene–conjugated polymer by incorporating an ionic additive, tetramethylammonium iodide, without extra treatments into the polymer. The resulting thin films exhibit a very high hole mobility, which is higher by a factor of 24 than that of thin films without the ionic additive under the same conditions. On the basis of spectroscopic grazing incidence wide-angle x-ray scattering and atomic force microscopy studies as well as theoretical calculations, the remarkable enhancement of charge mobility upon addition of tetramethylammonium iodide is attributed primarily to an inhibition of the torsion of the alkyl side chains by the presence of the ionic species, facilitating a more ordered lamellar packing of the alkyl side chains and interchain π-π interactions. PMID:27386541

  1. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.

    PubMed

    Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan

    2016-04-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. First report of a lyase for cepacian, the polysaccharide produced by Burkholderia cepacia complex bacteria.

    PubMed

    Cescutti, Paola; Scussolin, Silvia; Herasimenka, Yury; Impallomeni, Giuseppe; Bicego, Massimiliano; Rizzo, Roberto

    2006-01-20

    Bacteria belonging to the Burkholderia cepacia complex (Bcc) are interesting for their involvement in pulmonary infections in patients affected by cystic fibrosis (CF) or chronic granulomatous disease. Many Bcc strains isolated from CF patients produce high amounts of exopolysaccharides (EPS). Although different strains sometimes biosynthesise different EPS, the majority of Bcc bacteria produce only one type of polysaccharide, which is called cepacian. The polymer has a unique heptasaccharidic repeating unit, containing three side chains, and up to three O-acetyl substituents.. We here report for the first time the isolation and characterisation of a lyase active towards cepacian produced by a Bacillus sp., which was isolated in our laboratory. The enzyme molecular mass, evaluated by size-exclusion chromatography, is 32,700+/-1500Da. The enzyme catalyses a beta-elimination reaction of the disaccharide side chain beta-d-Galp-(1-->2)-alpha-d-Rhap-(1--> from the C-4 of the glucuronic acid residue present in the polymer backbone. Although active on both native and de-acetylated cepacian, the enzyme showed higher activity on the latter polymer.

  3. Effect of Chain Rigidity on the Decoupling of Ion Motion from Segmental Relaxation in Polymerized Ionic Liquids: Ambient and Elevated Pressure Studies

    DOE PAGES

    Wojnarowska, Zaneta; Feng, Hongbo; Fu, Yao; ...

    2017-08-21

    Conductivity in polymer electrolytes has been generally discussed with the assumption that the segmental motions control charge transport. However, much less attention has been paid to the mechanism of ion conductivity where the motions of ions are less dependent (decoupled) on segmental dynamics. We present that this phenomenon is observed in ionic materials as they approach their glass transition temperature and becomes essential for design and development of highly conducting solid polymer electrolytes. In this paper, we study the effect of chain rigidity on the decoupling of ion transport from segmental motion in three polymerized ionic liquids (polyILs) containing themore » same cation–anion pair but differing in flexibility of the polymer backbones and side groups. Analysis of dielectric and rheology data reveals that decoupling is strong in vinyl-based rigid polymers while almost negligible in novel siloxane-based flexible polyILs. To explain this behavior, we investigated ion and chain dynamics at ambient and elevated pressure. Our results suggest that decoupling has a direct relationship to the frustration in chain packing and free volume. Finally, these conclusions are also supported by coarse-grained molecular dynamics simulations.« less

  4. Effect of Chain Rigidity on the Decoupling of Ion Motion from Segmental Relaxation in Polymerized Ionic Liquids: Ambient and Elevated Pressure Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojnarowska, Zaneta; Feng, Hongbo; Fu, Yao

    Conductivity in polymer electrolytes has been generally discussed with the assumption that the segmental motions control charge transport. However, much less attention has been paid to the mechanism of ion conductivity where the motions of ions are less dependent (decoupled) on segmental dynamics. We present that this phenomenon is observed in ionic materials as they approach their glass transition temperature and becomes essential for design and development of highly conducting solid polymer electrolytes. In this paper, we study the effect of chain rigidity on the decoupling of ion transport from segmental motion in three polymerized ionic liquids (polyILs) containing themore » same cation–anion pair but differing in flexibility of the polymer backbones and side groups. Analysis of dielectric and rheology data reveals that decoupling is strong in vinyl-based rigid polymers while almost negligible in novel siloxane-based flexible polyILs. To explain this behavior, we investigated ion and chain dynamics at ambient and elevated pressure. Our results suggest that decoupling has a direct relationship to the frustration in chain packing and free volume. Finally, these conclusions are also supported by coarse-grained molecular dynamics simulations.« less

  5. Space Survivability of Main-Chain and Side-Chain POSS-Kapton Polyimides

    NASA Astrophysics Data System (ADS)

    Tomczak, Sandra J.; Wright, Michael E.; Guenthner, Andrew J.; Pettys, Brian J.; Brunsvold, Amy L.; Knight, Casey; Minton, Timothy K.; Vij, Vandana; McGrath, Laura M.; Mabry, Joseph M.

    2009-01-01

    Kapton® polyimde (PI) is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen (AO) in low Earth orbit (LEO), Kapton® is severely degraded. An effective approach to prevent this erosion is chemically bonding polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerization of POSS-diamine with the polyimide monomers. POSS is a silicon and oxygen cage-like structure surrounded by organic groups and can be polymerizable. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During POSS polyimide exposure to atomic oxygen, organic material is degraded and a silica passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Ground-based studies and MISSE-1 and MISSE-5 flight results have shown that POSS polyimides are resistant to atomic-oxygen attack in LEO. In fact, 3.5 wt% Si8O11 main-chain POSS polyimide eroded about 2 μm during the 3.9 year flight in LEO, whereas 32 μm of 0 wt% POSS polyimide would have eroded within 4 mos. The atomic-oxygen exposure of main-chain POSS polyimides and new side-chain POSS polyimides has shown that copolymerized POSS imparts similar AO resistance to polyimide materials regardless of POSS monomer structure.

  6. Sustainable Elastomers from Renewable Biomass.

    PubMed

    Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing

    2017-07-18

    Sustainable elastomers have undergone explosive growth in recent years, partly due to the resurgence of biobased materials prepared from renewable natural resources. However, mounting challenges still prevail: How can the chemical compositions and macromolecular architectures of sustainable polymers be controlled and broadened? How can their processability and recyclability be enabled? How can they compete with petroleum-based counterparts in both cost and performance? Molecular-biomass-derived polymers, such as polymyrcene, polymenthide, and poly(ε-decalactone), have been employed for constructing thermoplastic elastomers (TPEs). Plant oils are widely used for fabricating thermoset elastomers. We use abundant biomass, such as plant oils, cellulose, rosin acids, and lignin, to develop elastomers covering a wide range of structure-property relationships in the hope of delivering better performance. In this Account, recent progress in preparing monomers and TPEs from biomass is first reviewed. ABA triblock copolymer TPEs were obtained with a soft middle block containing a soybean-oil-based monomer and hard outer blocks containing styrene. In addition, a combination of biobased monomers from rosin acids and soybean oil was formulated to prepare triblock copolymer TPEs. Together with the above-mentioned approaches based on block copolymers, multigraft copolymers with a soft backbone and rigid side chains are recognized as the first-generation and second-generation TPEs, respectively. It has been recently demonstrated that multigraft copolymers with a rigid backbone and elastic side chains can also be used as a novel architecture of TPEs. Natural polymers, such as cellulose and lignin, are utilized as a stiff, macromolecular backbone. Cellulose/lignin graft copolymers with side chains containing a copolymer of methyl methacrylate and butyl acrylate exhibited excellent elastic properties. Cellulose graft copolymers with biomass-derived polymers as side chains were further explored to enhance the overall sustainability. Isoprene polymers were grafted from a cellulosic backbone to afford Cell-g-polyisoprene copolymers. Via cross-linking of these graft copolymers, human-skin-mimic elastomers and high resilient elastomers with a well-defined network structure were achieved. The mechanical properties of these resilient elastomers could be finely controlled by tuning the cellulose content. As isoprene can be produced by engineering of microorganisms, these elastomers could be a renewable alternative to petroleum products. In summary, triblock copolymer and graft copolymer TPEs with biomass components, skin-mimic elastomers, high resilient biobased elastomers, and engineering of macromolecular architectures for elastomers are discussed. These approaches and design provide us knowledge on the potential to make sustainable elastomers for various applications to compete with petroleum-based counterparts.

  7. The effect of the temperature on the bandgaps based on the chiral liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Shi, Shuhui; Wang, Bainian

    2015-10-01

    Chiral side-chain liquid crystal polymer is synthesized from polysiloxanes and liqud crystal monomer 4-(Undecenoic-1- yloxybenzoyloxy)-4'-benzonitrile and 6-[4-(4- Undecenoic -1-yloxybenzoyloxy)- hydroxyphenyl] cholesteryl hexanedioate. The optical and thermal property of the monomer and polymer are shown by POM and DSC. As the unique optical property of the polymer, the bandgaps are shifted for heating temperature. The reflection bandgaps is shifted from 546nm to 429nm with temperature increase. As a photonic material, the chiral polymer which sensitive responses under the outfield is widely studied for reflection display, smart switchable reflective windows and defect model CLC laser etc.

  8. Accomplishment of Multifunctional π-Conjugated Polymers by Regulating the Degree of Side-Chain Fluorination for Efficient Dopant-Free Ambient-Stable Perovskite Solar Cells and Organic Solar Cells.

    PubMed

    Kranthiraja, Kakaraparthi; Park, Sang Ho; Kim, Hyunji; Gunasekar, Kumarasamy; Han, Gibok; Kim, Bumjoon J; Kim, Chang Su; Kim, Soohyun; Lee, Hyunjung; Nishikubo, Ryosuke; Saeki, Akinori; Jin, Sung-Ho; Song, Myungkwan

    2017-10-18

    We present an efficient approach to develop a series of multifunctional π-conjugated polymers (P1-P3) by controlling the degree of fluorination (0F, 2F, and 4F) on the side chain linked to the benzodithiophene unit of the π-conjugated polymer. The most promising changes were noticed in optical, electrochemical, and morphological properties upon varying the degree of fluorine atoms on the side chain. The properly aligned energy levels with respect to the perovskite and PCBM prompted us to use them in perovskite solar cells (PSCs) as hole-transporting materials (HTMs) and in bulk heterojunction organic solar cells (BHJ OSCs) as photoactive donors. Interestingly, P2 (2F) and P3 (4F) showed an enhanced power conversion efficiency (PCE) of 14.94%, 10.35% compared to P1 (0F) (9.80%) in dopant-free PSCs. Similarly, P2 (2F) and P3 (4F) also showed improved PCE of 7.93% and 7.43%, respectively, compared to P1 (0F) (PCE of 4.35%) in BHJ OSCs. The high photvoltaic performance of the P2 and P3 based photovotaic devices over P1 are well correlated with their energy level alignment, charge transporting, morphological and packing properties, and hole transfer yields. In addition, the P1-P3 based dopant-free PSCs and BHJ OSCs showed an excellent ambient stability up to 30 days without a significant drop in their initial performance.

  9. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.

    PubMed

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2017-10-18

    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  10. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles

    DOE PAGES

    Sun, Jing; Jiang, Xi; Lund, Reidar; ...

    2016-03-28

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less

  11. Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers

    PubMed Central

    Venkatesh, Mayandi; Barathi, Veluchamy Amutha; Goh, Eunice Tze Leng; Anggara, Raditya; Fazil, Mobashar Hussain Urf Turabe; Ng, Alice Jie Ying; Harini, Sriram; Aung, Thet Tun; Fox, Stephen John; Liu, Shouping; Barkham, Timothy Mark Sebastian; Loh, Xian Jun

    2017-01-01

    ABSTRACT The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 μg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections. PMID:28784676

  12. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jing; Jiang, Xi; Lund, Reidar

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less

  13. Interfacial Properties of Thin Films of Poly(vinyl ether)s with Architectural Design in Water

    NASA Astrophysics Data System (ADS)

    Oda, Yukari; Itagaki, Nozomi; Sugimoto, Sin; Kawaguchi, Daisuke; Matsuno, Hisao; Tanaka, Keiji

    Precise design of primary structure and architecture of polymers leads to the well-defined structure, unique physical properties, and excellent functions not only in the bulk but also at the interfaces. We here constructed functional polymer interfaces in water based on the architectural design of poly(vinyl ether)s with oxyethylene side-chains (POEVE). A branched polymer with POEVE parts was preferentially segregated at the air interface in the matrix of poly(methyl methacrylate). As an alternative way to prepare the POEVE surface, the cross-linked hydrogel thin films were prepared. The moduli of the hydrogel films near the water interfaces, which were examined by force-distance curve measurements using atomic force microscopy, were greatly sensitive to the cross-linking density of the polymers. Diffuse interfaces of POEVE chains at the water interface make it possible to prevent the platelet adhesion on the films.

  14. Preparation of pH-sensitive poly(glycidol) derivatives with varying hydrophobicities: their ability to sensitize stable liposomes to pH.

    PubMed

    Sakaguchi, Naoki; Kojima, Chie; Harada, Atsushi; Kono, Kenji

    2008-05-01

    We have previously shown that modification with succinylated poly(glycidol) (SucPG) provides stable egg yolk phosphatidylcholine (EYPC) liposomes with pH-sensitive fusogenic property. Toward production of efficient pH-sensitive liposomes, in this study, we newly prepared three carboxylated poly(glycidol) derivatives with varying hydrophobicities by reacting poly(glycidol) with glutaric anhydride, 3-methylglutaric anhydride, and 1,2-cyclohexanedicarboxylic anhydride, respectively, designated as GluPG, MGluPG, and CHexPG. Correlation between side-chain structures of these polymers and their respective abilities to sensitize stable liposomes to pH was investigated. These polymers are soluble in water at neutral pH but became water-insoluble in weakly acidic conditions. The pH at which the polymer precipitated was higher in the order SucPG < GluPG < MGluPG < CHexPG, which is consistent with the number of carbon atoms of these polymers' side chains. Although CHexPG destabilized EYPC liposomes even at neutral pH, attachment of other polymers provided pH-sensitive properties to the liposomes. The liposomes bearing polymers with higher hydrophobicity exhibited more intense responses, such as content release and membrane fusion, at mildly acidic pH and achieved more efficient cytoplasmic delivery of membrane-impermeable dye molecules. As a result, modification with appropriate hydrophobicity, MGluPG, produced highly potent pH-sensitive liposomes, which might be useful for efficient cytoplasmic delivery of bioactive molecules, such as proteins and genes.

  15. Sorting of Semiconducting Single-Walled Carbon Nanotubes in Polar Solvents with an Amphiphilic Conjugated Polymer Provides General Guidelines for Enrichment.

    PubMed

    Ouyang, Jianying; Ding, Jianfu; Lefebvre, Jacques; Li, Zhao; Guo, Chang; Kell, Arnold J; Malenfant, Patrick R L

    2018-02-27

    Conjugated polymer extraction (CPE) has been shown to be a highly effective method to isolate high-purity semiconducting single-walled carbon nanotubes (sc-SWCNTs). In both literature reports and industrial manufacturing, this method has enabled enrichment of sc-SWCNTs with high purity (≥99.9%). High selectivity is typically obtained in nonpolar aromatic solvents, yet polar solvents may provide process improvements in terms of yield, purity and efficiency. Using an amphiphilic fluorene-alt-pyridine conjugated copolymer with hydrophilic side chains, we have investigated the enrichment of sc-SWCNTs in polar solvents. Various conditions such as polymer/SWCNT ratio, solvent polarity, solvent dielectric constant as well as polymer solubility and SWCNT dispersibility were explored in order to optimize the purity and yield of the enriched product. Herein, we provide insights on CPE by demonstrating that a conjugated polymer having a hydrophobic backbone and hydrophilic oligo(ethylene oxide) side chains provides near full recovery (95%) of sc-SWCNTs using a multiextraction protocol. High purity is also obtained, and differences in chiral selectivity compared to analogous hydrophobic systems were confirmed by optical absorption and Raman spectroscopy as well as photoluminescence excitation mapping. Taking into consideration the solvent dielectric constant, polarity index as well as polymer solubility and SWCNT dispersibility provides a better understanding of structure-property effects on sc-SWCNT enrichment. The resulting hydrophilic SWCNT dispersions demonstrate long-term colloidal stability, making them suitable for ink formulation and high-performance thin-film transistors fabrication.

  16. Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Zhang; L Richter; D DeLongchamp

    We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm{sup 2} V{sup -1} s{sup -1}, with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packingmore » and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.« less

  17. Understanding ion association states and molecular dynamics using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Masser, Hanqing

    A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO microphase separates from the PEO-rich microphase, and ionic groups are preferentially solvated by PEO chains and reside in the PEO-rich microphase. As the ratio of PTMO increases, the fraction of aggregates increases, resulting in more highly coordinated aggregation states. Results on ion association states are in good agreement with previous results on ion conductivity, polymer dynamics and morphology. The effects of ion content, cation type and ionic side chain structure on ion association states are systemically studied in a series of ionomers with short ethylene oxide and ionic sulfonated styrene side chains, and then correlated to the ion and polymer dynamic characterization. It is found that ionomers with modest ion content, large cation and styrene ionic side chain have the most "free ions" and ion pairs, and highest ion conductivity. Ion conduction in ionomers is optimized by systematically changing their chemical structures. In addition to knowledge of ion association states, a IR band shape also contains information on molecular dynamics. In companion investigation, the vibrational relaxation and dynamic transitions of conformationally insensitive normal modes in two different polymer systems (atactic polystyrene and deuterated poly(methyl methacrylate)) are studied. The information on vibrational relaxations is resolved by conducting precisely controlled FTIR experiments, applying specialized curve resolving data analysis, and calculating time correlation functions through numerical Fourier transformation. The vibrational relaxations of these modes can be described by a two process model: a fast process on the time scale of 0.01 ps, which is inhomogeneously broadened by a slow process on the time scale of picoseconds.

  18. Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water

    NASA Astrophysics Data System (ADS)

    Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji

    2013-03-01

    New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.

  19. Naphtho[1,2-b:5,6-b']dithiophene-Based Conjugated Polymers for Fullerene-Free Inverted Polymer Solar Cells.

    PubMed

    Jiang, Zhaoyan; Li, Huan; Wang, Zhen; Zhang, Jianqi; Zhang, Yajie; Lu, Kun; Wei, Zhixiang

    2018-03-23

    Three novel copolymers based on zigzag naphthodithiophene (zNDT) with different aromatic rings as π bridges and different core side substitutions are designed and synthesized (PzNDT-T-1,3-bis(4-(2-ethylhexyl)-thiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']-dithiophene-4,8-dione (BDD), PzNDT-TT-BDD, and PzNDTP-T-BDD, respectively). The 2D conjugation structure and molecular planarity of the polymers can be effectively altered through the modification of conjugated side chains and π-bridges. These alterations contribute to the variation in energy levels, light absorption capacity, and morphology compatibility of the polymers. When blended with the nonfullerene acceptor (2,2'-[(4,4,9,9-tetrahexyl-4,9-dihydro-sindaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis[methylidyne(3-oxo-1H-indene-2,1(3H)-diylidene)

  20. Silica nanoparticles carrying boron-containing polymer brushes

    NASA Astrophysics Data System (ADS)

    Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya

    2014-05-01

    A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.

  1. Dynamic covalent polymers

    PubMed Central

    García, Fátima

    2016-01-01

    ABSTRACT This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3551–3577. PMID:27917019

  2. Long range self-assembly of polythiophene breath figures: Optical and morphological characterization

    DOE PAGES

    Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.; ...

    2015-09-01

    Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.

  3. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE PAGES

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia; ...

    2018-01-04

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

  4. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

  5. Three-Dimensional Polypeptide Architectures Through Tandem Catalysis and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Rhodes, Allison Jane

    Rapid renal clearance, liver accumulation, proteolytic degradation and non-specificity are challenges small molecule drugs, peptides, proteins and nucleic acid therapeutics encounter en route to their intended destination within the body. Nanocarriers (i.e. dendritric polymers, vesicles, and micelles) of approximately 100 nm in diameter, shuttle small molecule drugs to their desired location through passive (EPR effect) and active (ligand-mediated) targeting, maximizing therapeutic efficiency. Polypeptide-based polymers are water-soluble, biocompatible, non-toxic and are therefore excellent candidates for nanocarriers. Dendritic polymers, including dendrimers, cylindrical brushes, and star polymers, are the newest class of nanomedicine drug delivery vehicles. The synthesis and characterization of dendritic polymers is challenging, with tedious and costly procedures. Dendritic polymers possess peripheral pendent functional groups that can potentially be used in ligand-mediated drug delivery vehicles and bioimaging applications. More specifically, cylindrical brushes are dendritic polymers where a single linear polymer (primary chain) has polymer chains (secondary chains) grafted to it. Recently, research groups have shown that cylindrical brush polymers are capable of nanoparticle and supramolecular structure self-assembly. The facile preparation of high-density brush copolypeptides by the "grafting from" approach will be discussed. This approach utilizes a novel, tandem catalytic methodology where alloc-alpha-aminoamide groups are installed within the side-chains of the alpha-amino-N-carboxyanhydride (NCA) monomer serving as masked initiators. These groups are inert during cobalt initiated NCA polymerization, and give alloc-alpha-aminoamide substituted polypeptide main-chains. The alloc-alpha-aminoamide groups are activated in situ using nickel to generate initiators for growth of side-chain brush segments. This method proves to be efficient, yielding well-defined, high-density brushes for applications in drug delivery and imaging. Here, we also report a method for the synthesis of soluble, well-defined, azido functionalized polypeptides in a straightforward, 3-step synthesis. Homo and diblock azidopolypeptides were prepared with controlled segment lengths via living polymerization using Co(PMe3)4 initiator. Through copper azide alkyne click chemistry (CuAAC) in organic solvent, azidopolypeptides were regioselectively and quantitatively modified with carboxylic acid (pH-responsive), amino acid and sugar functional groups. Finally, the advances towards well-defined hyperbranched polypeptides through alpha-amino-acid-N-thiocarboxyanhydrides (NTAs) will be discussed. Within the past 10 years, controlled NCA (alpha-amino acid-N-carboxyanhydride) ring-opening polymerization (ROP) has emerged, expanding the application of copolypeptide polymers in various drug delivery and tissue engineering motifs. Modification of NCA monomers to the corresponding alpha-amino-acid-N-thiocarboxyanhydride (NTA) will diversify ROP reactions, leading to more complex polypeptides (such as hyperbranched polymers), in addition to the possibility of performing these polymerizations under ambient conditions, which would greatly expand their potential utility. The project focuses on the preparation of hyperbranched polypeptides with well-defined architectures and controlled branching density in a one-pot reaction. This will be accomplished by taking advantage of the different selectivities of Co(PMe3)4 and depeNi(COD) polymerization initiators, and by exploiting the reactivity difference between NCA and the more stable NTA monomers.

  6. Hydrophilic Conjugated Polymers with Large Bandgaps and Deep-Lying HOMO Levels as an Efficient Cathode Interlayer in Inverted Polymer Solar Cells.

    PubMed

    Kan, Yuanyuan; Zhu, Yongxiang; Liu, Zhulin; Zhang, Lianjie; Chen, Junwu; Cao, Yong

    2015-08-01

    Two hydrophilic conjugated polymers, PmP-NOH and PmP36F-NOH, with polar diethanol-amine on the side chains and main chain structures of poly(meta-phenylene) and poly(meta-phenylene-alt-3,6-fluorene), respectively, are successfully synthesized. The films of PmP-NOH and PmP36F-NOH show absorption edges at 340 and 343 nm, respectively. The calculated optical bandgaps of the two polymers are 3.65 and 3.62 eV, respectively, the largest ones so far reported for hydrophilic conjugated polymers. PmP-NOH and PmP36F-NOH also possess deep-lying highest occupied molecular orbital levels of -6.19 and -6.15 eV, respectively. Inserting PmP-NOH and PmP36F-NOH as a cathode interlayer in inverted polymer solar cells with a PTB7/PC71 BM blend as the active layer, high power conversion efficiencies of 8.58% and 8.33%, respectively, are achieved, demonstrating that the two hydrophilic polymers are excellent interlayers for efficient inverted polymer solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mechanistic Design of Chemically Diverse Polymers with Applications in Oral Drug Delivery.

    PubMed

    Mosquera-Giraldo, Laura I; Borca, Carlos H; Meng, Xiangtao; Edgar, Kevin J; Slipchenko, Lyudmila V; Taylor, Lynne S

    2016-11-14

    Polymers play a key role in stabilizing amorphous drug formulations, a recent strategy employed to improve solubility and bioavailability of drugs delivered orally. However, the molecular mechanism of stabilization is unclear, therefore, the rational design of new crystallization-inhibiting excipients remains a substantial challenge. This article presents a combined experimental and computational approach to elucidate the molecular features that improve the effectiveness of cellulose polymers as solution crystallization inhibitors, a crucial first step toward their rational design. Polymers with chemically diverse substituents including carboxylic acids, esters, ethers, alcohols, amides, amines, and sulfides were synthesized. Measurements of nucleation induction times of the model drug, telaprevir, show that the only effective polymers contained carboxylate groups in combination with an optimal hydrocarbon chain length. Computational results indicate that polymer conformation as well as solvation free energy are important determinants of effectiveness at inhibiting crystallization and show that simulations are a promising predictive tool in the screening of polymers. This study suggests that polymers need to have an adequate hydrophilicity to promote solvation in an aqueous environment, and sufficient hydrophobic regions to drive interactions with the drug. Particularly, the right balance between key substituent groups and lengths of hydrocarbon side chains is needed to create effective materials.

  8. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study.

    PubMed

    Congdon, Thomas; Notman, Rebecca; Gibson, Matthew I

    2013-05-13

    This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins. Here, controlled radical polymerization is used to synthesize well-defined PVA, which has enabled us to obtain the first quantitative structure-activity relationships, to probe the role of molecular weight and comonomers on IRI activity. Crucially, it was found that IRI activity is "switched on" when the polymer chain length increases from 10 and 20 repeat units. Substitution of the polymer side chains with hydrophilic or hydrophobic units was found to diminish activity. Hydrophobic modifications to the backbone were slightly more tolerated than side chain modifications, which implies an unbroken sequence of hydroxyl units is necessary for activity. These results highlight that, although hydrophobic domains are key components of IRI activity, the random inclusion of addition hydrophobic units does not guarantee an increase in activity and that the actual polymer conformation is important.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yong; Desseaux, Solenne; Aden, Bethany

    We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less

  10. Modeling the effect of nano-sized polymer particles on the properties of lipid membranes

    NASA Astrophysics Data System (ADS)

    Rossi, Giulia; Monticelli, Luca

    2014-12-01

    The interaction between polymers and biological membranes has recently gained significant interest in several research areas. On the biomedical side, dendrimers, linear polyelectrolytes, and neutral copolymers find application as drug and gene delivery agents, as biocidal agents, and as platforms for biological sensors. On the environmental side, plastic debris is often disposed of in the oceans and gets degraded into small particles; therefore concern is raising about the interaction of small plastic particles with living organisms. From both perspectives, it is crucial to understand the processes driving the interaction between polymers and cell membranes. In recent times progress in computer technology and simulation methods has allowed computational predictions on the molecular mechanism of interaction between polymeric materials and lipid membranes. Here we review the computational studies on the interaction between lipid membranes and different classes of polymers: dendrimers, linear charged polymers, polyethylene glycol (PEG) and its derivatives, polystyrene, and some generic models of polymer chains. We conclude by discussing some of the technical challenges in this area and future developments.

  11. Multicolor Luminescence from Conjugates of Genetically Encoded Elastin-like Polymers and Terpyridine-Lanthanides

    DOE PAGES

    Ghosh, Koushik; Balog, Eva Rose M.; Kahn, Jennifer L.; ...

    2015-08-20

    Functional hybrid materials with optically active metal-ligand moieties embedded within a polymer matrix have a great potential in (bio)materials science, including applications in light-emitting diode devices. Here, we report a simple strategy to incorporate terpyridine derivatives into the side chains of elastin-like polymers (ELPs). The further binding of trivalent lanthanide ions with the terpyridine ligands generated an array of photoluminescence ranging from the visible to the near-infrared regions. Lastly, as thin films, these ELP-based optical materials also exhibited distinct morphologies that depend upon the temperature of the aqueous solutions from which the hybrid polymers were spin coated or drop cast.

  12. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    PubMed

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Triphenylamine-Based Conjugated Polymer with Donor-π-Acceptor Architecture as Organic Sensitizer for Dye-Sensitized Solar Cells.

    PubMed

    Zhang, Wei; Fang, Zhen; Su, Mingjuan; Saeys, Mark; Liu, Bin

    2009-09-17

    A conjugated polymer containing an electron donating backbone (triphenylamine) and an electron accepting side chain (cyanoacetic acid) with conjugated thiophene units as the linkers has been synthesized. Dye-sensitized solar cells (DSSCs) are fabricated utilizing this material as the dye sensitizer, resulting a typical power conversion efficiency of 3.39% under AM 1.5 G illumination, which represents the highest efficiency for polymer dye-sensitized DSSCs reported so far. The results show the good promise of conjugated polymers as sensitizers for DSSC applications. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices

    NASA Astrophysics Data System (ADS)

    Oh, Hyukkeun

    Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid group and a poly(ether ether ketone) backbone showed the highest proton conductivity and proton diffusion coefficient among the three ionomers, demonstrating the effect of the perfluorinated side chains. The proton conductivity of the novel ionomer was comparable to that of Nafion over a wide humidity range and temperature. A lithium perfluorosulfonate ionomer based on aromatic poly(arylene ether)s with pendant lithium perfluoroethyl sulfonates was prepared by ion exchange of the perlfuorosulfonic acid ionomer, and subsequently incoroporated into a lithium-ion battery cell as a single-ion conducting electrolyte. The microporous polymer film saturated with organic carbonates exhibited a nearly unity Li + transfer number, high ionic conductivity (e.g. > 10-3 S m-1 at room temperature) over a wide range of temperatures, high electrochemical stability, and excellent mechanical properties. Excellent cyclability with almost identical charge and discharge capacities have been demonstrated at ambient temperature in the batteries assembled from the prepared single-ion conductors. The mechanical stability of the polymer film was attributed to the rigid polymer backbone which was largely unaffected by the presence of plasticizing organic solvents, while the porous channels with high concentration of the perfluorinated side chains resulted in high ionic conductivity. The expected high charge-rate performance was not achieved, however, due to the high interfacial impedance present between the polymer electrolyte and the electrodes. Several procedural modifications were employed in order to decrease the interfacial impedance of the battery cell. The poly(arylene ether) based ionomer was saturated with an ionic liquid mixture, in order to explore the possibility of its application as a safe, inflammable electrolyte. A low-viscosity ionic liquid with high ionic conductivity, 1-butyl-3-methylimidazolium thiocyanate which has never been successfully utilized as an electrolyte for lithium-ion batteries was incorporated into a battery cell as a solvent mixture with propylene carbonate and lithium bis(trifluoromethane)sulfonimide impregnated in a free-standing hybrid electrolyte film. Outstanding ionic conductivity was achieved and the lithium half cell comprising a LTO cathode and a lithium metal anode separated by the solid polymer electrolyte showed good cyclability at room temperature and even at 0°C. The presence of a sufficient amount of propylene carbonate, which resulted in flammability of the polymer electrolyte, was discovered to be critical in the electrochemical stability of the polymer electrolyte.

  15. Conformation-related exciton localization and charge-pair formation in polythiophenes: ensemble and single-molecule study.

    PubMed

    Sugimoto, Toshikazu; Habuchi, Satoshi; Ogino, Kenji; Vacha, Martin

    2009-09-10

    We study conformation-dependent photophysical properties of polythiophene (PT) by molecular dynamics simulations and by ensemble and single-molecule optical experiments. We use a graft copolymer consisting of a polythiophene backbone and long polystyrene branches and compare its properties with those obtained on the same polythiophene derivative without the side chains. Coarse-grain molecular dynamics simulations show that in a poor solvent, the PT without the side chains (PT-R) forms a globulelike conformation in which distances between any two conjugated segments on the chain are within the Forster radius for efficient energy transfer. In the PT with the polystyrene branches (PT-PS), the polymer main PT chain retains an extended coillike conformation, even in a poor solvent, and the calculated distances between conjugated segments favor energy transfer only between a few neighboring chromophores. The theoretical predictions are confirmed by measurements of fluorescence anisotropy and fluorescence blinking of the polymers' single chains. High anisotropy ratios and two-state blinking in PT-R are due to localization of the exciton on a single conjugated segment. These signatures of exciton localization are absent in single chains of PT-PS. Electric-field-induced quenching measured as a function of concentration of PT dispersed in an inert matrix showed that in well-isolated chains of PT-PS, the exciton dissociation is an intrachain process and that aggregation of the PT-R chains causes an increase in quenching due to the onset of interchain interactions. Measurements of the field-induced quenching on single chains indicate that in PT-R, the exciton dissociation is a slower process that takes place only after the exciton is localized on one conjugated segment.

  16. A Study on the Impact of Poly(3-hexylthiophene) Chain Length and Other Applied Side-Chains on the NO2 Sensing Properties of Conducting Graft Copolymers

    PubMed Central

    Kepska, Kinga

    2018-01-01

    The detection and concentration measurements of low concentrations of nitrogen dioxide (NO2) are important because of its negative effects on human health and its application in many fields of industry and safety systems. In our approach, conducting graft copolymers based on the poly(3-hexylthiophene) (P3HT) conducting polymer and other side-chains, polyethylene glycol (PEG) and dodec-1-en, grafted on a poly(methylhydrosiloxane) backbone, were investigated. The grafts containing PEG (PEGSil) and dodec-1-en (DodecSil) in two variants, namely, fractions with shorter (hexane fraction -H) and longer (chloroform fraction -CH) side-chains of P3HT, were tested as receptor structures in NO2 gas sensors. Their responses to NO2, within the concentration range of 1–20 ppm, were investigated in an nitrogen atmosphere at different operating temperatures—room temperature (RT) = 25 °C, 50 °C, and 100 °C. The results indicated that both of the copolymers with PEG side-chains had higher responses to NO2 than the materials with dodec-1-en side-chains. Furthermore, the results indicated that, in both cases, H fractions were more sensitive than CH fractions. The highest response to 1 ppm of NO2, from the investigated graft copolymers, had PEGSil H, which indicated a response of 1330% at RT and 1980% at 100 °C. The calculated lower-limit of the detection of this material is lower than 300 ppb of NO2 at 100 °C. This research indicated that graft copolymers of P3HT had great potential for low temperature NO2 sensing, and that the proper choice of other side-chains in graft copolymers can improve their gas sensing properties. PMID:29558448

  17. Highly conductive side chain block copolymer anion exchange membranes.

    PubMed

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  18. Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): Synthesis and characterizations

    DOE PAGES

    Xu, Yuewen; Wang, Weiyu; Wang, Yangyang; ...

    2015-11-25

    Bottlebrush polymers are densely grafted polymers with long side-chains attached to a linear polymeric backbone. Their unusual structures endow them with a number of unique and potentially useful properties in solution, in thin films, and in bulk. Despite the many studies of bottlebrushes that have been reported, the structure–property relationships for this class of materials are still poorly understood. In this contribution, we report the synthesis and characterization of fluorinated bottlebrush polymers based on poly(2,2,2-trifluoroethyl methacrylate). The synthesis was achieved by atom transfer radical polymerization (ATRP) using an α-bromoisobutyryl bromide functionalized norbornene initiator, followed by ring-opening metathesis polymerization (ROMP) usingmore » a third generation Grubbs’ catalyst (G3). Rheological characterization revealed that the bottlebrush polymer backbones remained unentangled as indicated by the lack of a rubbery plateau in the modulus. By tuning the size of the backbone of the bottlebrush polymers, near-spherical and elongated particles representing single brush molecular morphologies were observed in a good solvent as evidenced by TEM imaging, suggesting a semi-flexible nature of their backbones in dilute solutions. Thin films of bottlebrush polymers exhibited noticeably higher static water contact angles as compared to that of the macromonomer reaching the hydrophobic regime, where little differences were observed between each bottlebrush polymer. Further investigation by AFM revealed that the surface of the macromonomer film was relatively smooth; in contrast, the surface of bottlebrush polymers displayed certain degrees of nano-scale roughness (R q = 0.8–2.4 nm). The enhanced hydrophobicity of these bottlebrushes likely results from the preferential enrichment of the fluorine containing end groups at the periphery of the molecules and the film surface due to the side chain crowding effect. Furthermore, our results provide key information towards the design of architecturally tailored fluorinated polymers with desirable properties.« less

  19. Molecular engineering of fracture energy dissipating sacrificial bonds into cellulose nanocrystal nanocomposites.

    PubMed

    McKee, Jason R; Huokuna, Johannes; Martikainen, Lahja; Karesoja, Mikko; Nykänen, Antti; Kontturi, Eero; Tenhu, Heikki; Ruokolainen, Janne; Ikkala, Olli

    2014-05-12

    Even though nanocomposites have provided a plethora of routes to increase stiffness and strength, achieving increased toughness with suppressed catastrophic crack growth has remained more challenging. Inspired by the concepts of mechanically excellent natural nanomaterials, one-component nanocomposites were fabricated involving reinforcing colloidal nanorod cores with polymeric grafts containing supramolecular binding units. The concept is based on mechanically strong native cellulose nanocrystals (CNC) grafted with glassy polymethacrylate polymers, with side chains that contain 2-ureido-4[1H]-pyrimidone (UPy) pendant groups. The interdigitation of the grafts and the ensuing UPy hydrogen bonds bind the nanocomposite network together. Under stress, UPy groups act as sacrificial bonds: simultaneously providing adhesion between the CNCs while allowing them to first orient and then gradually slide past each other, thus dissipating fracture energy. We propose that this architecture involving supramolecular binding units within side chains of polymer grafts attached to colloidal reinforcements opens generic approaches for tough nanocomposites. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Controlling Microstructure-Transport Interplay in Highly Phase-Separated Perfluorosulfonated Aromatic Multiblock Ionomers via Molecular Architecture Design.

    PubMed

    Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine

    2017-01-18

    Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.

  1. Silicone derivatives for contact lenses: functionalization, chemical characterization, and cell compatibility assessment.

    PubMed

    Migonney, V; Lacroix, M D; Ratner, B D; Jozefowicz, M

    1995-01-01

    Epoxy ring-opening functionalization of polymers at random sites along chains with various chemical groups has been demonstrated. The reaction is performed in an aqueous solution under mild conditions in order to minimize degradation of the macromolecular chains. Silicone lenses made of copolymers with epoxy side chains were functionalized with 4-hydroxybutyric acid, sodium salt. The carboxylated silicone derivatives were characterized by ESCA and radiotracers. A mean value of 30% reaction yield was concluded, based upon data from both methods; nevertheless, the latter can be improved up to 50% or more if the conditions of preparation of the epoxydized silicone lenses are optimized. Derivatized silicones were coated in the wells of culture plates to evaluate the cell compatibility of these new polymers with a fibroblast cell line (McCoy's). No cellular toxicity was observed.

  2. Structural properties of atactic polystyrene adsorbed onto solid surfaces.

    PubMed

    Tatek, Yergou B; Tsige, Mesfin

    2011-11-07

    In the present work, we are studying the local conformation of chains in a thin film of polystyrene adsorbed on a solid substrate by using atomistically detailed simulations. The simulations are carried out by using the readily available and massively parallel molecular dynamics code known as LAMMPS. In particular, a special emphasis is given to the density and orientation of side chains (which consist of phenyl groups and methylene units) at solid/polymer and polymer/vacuum interfaces. Three types of substrates were used in our study: α-quartz, graphite, and amorphous silica. Our investigation was restricted to atactic polystyrene. Our results show that the density and structural properties of side chains depend on the type of surface. An excess of phenyl rings is observed near the α-quartz substrate while the film adsorbed on graphite is depleted in C(6)H(5). Moreover, the orientation of the rings and methylene units on the substrate/film interface show a strong dependence on the type of the substrate, while the rings at the film/vacuum interface show a marked tendency to point outward, away from the film. The results we obtained are in a large part in good agreement with previous experimental and simulation results.

  3. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 2, NMR assignments and photoyellowing of aromatic ring 1-, 3-, 4-, and 5-13C DHPs

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...

  4. Side-Chain Liquid Crystalline Poly(meth)acrylates with Bent-Core Mesogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,X.; Tenneti, K.; Li, C.

    2007-01-01

    We report the design, synthesis, and characterization of side-chain liquid crystalline (LC) poly(meth)acrylates with end-on bent-core liquid crystalline (BCLC) mesogens. Both conventional free radical polymerization and atom transfer radical polymerization have been used to synthesize these liquid crystalline polymers (LCP). The resulting polymers exhibit thermotropic LC behavior. Differential scanning calorimetry, thermopolarized light microscopy, wide-angle X-ray diffraction, and small-angle X-ray scattering were used to characterize the LC structure of both monomers and polymers. The electro-optic (EO) measurement was carried out by applying a triangular wave and measuring the LC EO response. SmCP (Smectic C indicates the LC molecules are tilted withmore » respect to the layer normal; P denotes polar ordering) phases were observed for both monomers and polymers. In LC monomers, typical antiferroelectric switching was observed. In the ground state, SmCP{sub A} (A denotes antiferroelectric) was observed which switched to SmCP{sub F} (F denotes ferroelectric) upon applying an electric field. In the corresponding LCP, a unique bilayer structure was observed, which is different from the reported BCLC bilayer SmCG (G denotes generated) phase. Most of the LCPs did not switch upon applying electric field while weak AF switching was observed in a low molecular weight poly{l_brace}3'-[4-(4-n-dodecyloxybenzoyloxy)benzoyloxy]-4-(12-acryloyloxydodecyloxy)benzoyloxybiphenyl{r_brace} sample.« less

  5. Sequestration of Single-Walled Carbon Nanotubes in a Polymer

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2007-01-01

    Sequestration of single-walled carbon nanotubes (SWCNs) in a suitably chosen polymer is under investigation as a means of promoting the dissolution of the nanotubes into epoxies. The purpose of this investigation is to make it possible to utilize SWCNs as the reinforcing fibers in strong, lightweight epoxy-matrix/carbon-fiber composite materials. SWCNs are especially attractive for use as reinforcing fibers because of their stiffness and strength-to-weight ratio: Their Young s modulus has been calculated to be 1.2 TPa, their strength has been calculated to be as much as 100 times that of steel, and their mass density is only one-sixth that of steel. Bare SWCNs cannot be incorporated directly into composite materials of the types envisioned because they are not soluble in epoxies. Heretofore, SWCNS have been rendered soluble by chemically attaching various molecular chains to them, but such chemical attachments compromise their structural integrity. In the method now under investigation, carbon nanotubes are sequestered in molecules of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) [PmPV]. The strength of the carbon nanotubes is preserved because they are not chemically bonded to the PmPV. This method exploits the tendency of PmPV molecules to wrap themselves around carbon nanotubes: the wrapping occurs partly because there exists a favorable interface between the conjugated face of a nanotube and the conjugated backbone of the polymer and partly because of the helical molecular structure of PmPV. The constituents attached to the polymer backbones (the side chains) render the PmPV-wrapped carbon nanotubes PmPV soluble in organic materials that, in turn, could be used to suspend the carbon nanotubes in epoxy precursors. At present, this method is being optimized: The side chains on the currently available form of PmPV are very nonpolar and unable to react with the epoxy resins and/or hardeners; as a consequence, SWCN/PmPV composites have been observed to precipitate out of epoxies while the epoxies were being cured. If the side chains of the PmPV molecules were functionalized to make them capable of reacting with the epoxy matrices, it might be possible to make progress toward practical applications. By bonding the side chains of the PmPV molecules to an epoxy matrix, one would form an PmPV conduit between the epoxy matrix and the carbon nanotubes sequestered in the PmPV. This conduit would transfer stresses from the epoxy matrix to the nanotubes. This proposed load-transfer mode is similar to that of the current practice in which silane groups are chemically bonded to both the epoxy matrices and the fibers (often glass fibers) in epoxymatrix/fiber composites.

  6. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation.

    PubMed

    Saleh, H M; Annuar, M S M; Simarani, K

    2017-11-01

    Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm -2 , irradiation time 120min and 0.1gL -1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis and optical properties of azo -dye-attached novel second-order NLO polymers with high thermal stability

    NASA Astrophysics Data System (ADS)

    Ushiwata, Takami; Okamoto, Etsuya; Komatsu, Kyoji; Kaino, Toshikuni

    2001-06-01

    Novel second order nonlinear optical (NLO) polymethacrylate or polyacrylate polymers with high glass transition temperatures containing an azo dye attached as side-chain have been prepared using a new approach from polymethacrylic acid or polyacrylic acid as starting materials. Glass transition temperatures of 150 approximately 170 degree Celsius were obtained for Disperse red 1 dye attached polymethacrylic acid. These are attributed to the hydrogen bonding between the residual carboxyl groups in the starting polymers. Poled films by corona poling exhibited large NLO susceptibilities, (chi) (2)33 up to 53 pm/V at a wavelength of 1.3 micrometer. Due to the high glass transition temperatures of the polymers, long-term stability of the optical nonlinearity at 100 degrees Celsius was observed for 200 hrs or more. However residual carboxyl groups caused absorbance decrease mainly by hydrolysis of the ester bonds of the polymers investigated by UV-Vis absorption measurement. The stability of induced polar order of the NLO polymer was enhanced by using aminoalkyl chromophore and imidizing it thermally to introduce imide structure into the polymer main-chain. This imidized polymer exhibited (chi) (2)33 of 45 pm/V at a wavelength of 1.3 micrometer and maintained about 90% of the initial value after 230 hrs or more at 100 degrees Celsius.

  8. Effect of chain stiffness on the structure of single-chain polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Moreno, Angel J.; Bacova, Petra; Lo Verso, Federica; Arbe, Arantxa; Colmenero, Juan; Pomposo, José A.

    2018-01-01

    Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer precursors. We investigate a broad range of characteristic ratios from the fully flexible case to those typical of bulky synthetic polymers. Increasing stiffness hinders bonding of groups separated by short contour distances and increases looping over longer distances, leading to more compact nanoparticles with a structure of highly interconnected loops. This feature is reflected in a crossover in the scaling behaviour of several structural observables. The scaling exponents change from those characteristic for Gaussian chains or rings in θ-solvents in the fully flexible limit, to values resembling fractal or ‘crumpled’ globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs.

  9. Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall.

    PubMed

    Xayarath, Bobbi; Yother, Janet

    2007-05-01

    Extracellular polysaccharides of many bacteria are synthesized by the Wzy polymerase-dependent mechanism, where long-chain polymers are assembled from undecaprenyl-phosphate-linked repeat units on the outer face of the cytoplasmic membrane. In gram-positive bacteria, Wzy-dependent capsules remain largely cell associated via membrane and peptidoglycan linkages. Like many Wzy-dependent capsules, the Streptococcus pneumoniae serotype 2 capsule is branched. In this study, we found that deletions of cps2K, cps2J, or cps2H, which encode a UDP-glucose dehydrogenase necessary for side chain synthesis, the putative Wzx transporter (flippase), and the putative Wzy polymerase, respectively, were obtained only in the presence of suppressor mutations. Most of the suppressor mutations were in cps2E, which encodes the initiating glycosyltransferase for capsule synthesis. The cps2K mutants containing the suppressor mutations produced low levels of high-molecular-weight polymer that was detected only in membrane fractions. cps2K-repaired mutants exhibited only modest increases in capsule production due to the effect of the secondary mutation, but capsule was detectable in both membrane and cell wall fractions. Lethality of the cps2K, cps2J, and cps2H mutations was likely due to sequestration of undecaprenyl-phosphate in the capsule pathway and either preclusion of its turnover for utilization in essential pathways or destabilization of the membrane due to an accumulation of lipid-linked intermediates. The results demonstrate that proper polymer assembly requires not only a functional transporter and polymerase but also complete repeat units. A central role for the initiating glycosyltransferase in controlling capsule synthesis is also suggested.

  10. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    PubMed

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-09

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  11. Design and preparation of novel polyarylene ether materials based on Diels-Alder reaction as the crosslinker for electrooptical modulators

    NASA Astrophysics Data System (ADS)

    Gao, Wu; Hou, Wenjun; Zhen, Zhen; Liu, Xinhou; Liu, Jialei; Fedorchuk, A. A.; Czaja, P.

    2016-07-01

    Novel crosslinkable organic linear electro-optical (EO) material based on polyarylene ether as the main chain host polymer was designed and prepared. The host polymer with rigid aromatic has demonstrated a good compatibility with the guest chromophore. Long side chain with anthracene ensured the crosslinkable reaction and appropriate glass transition temperature of the host polymer (55 °C). The EO r33 tensor coefficient for this novel EO material has been magnitude of 66 pm/V at 1310 nm and the excellent long term stability at 85 °C. These parameters permit to consider their application in fabrication of organic electro optical devices. The semi-empirical and DFT quantum chemical simulations were performed for 4 principal chromophores to clarify a role of cross-linker in the enhancement of the ground state dipole moments and effective hyperpolarizabilities.

  12. New synthesis of maleic anhydride modified polyolefins and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Bing

    Maleic anhydride (MA) modified polyolefins are the most useful commercial functional polyolefins. The current technology of producing MA modified polyolefins, mainly free radical modification, usually results in low MA graft contents, extensive side reactions, and poor control of graft structures. In this thesis, we show a new synthetic route for preparing MA modified polyolefins with excellent control of polymer structures and MA concentrations. The synthesis is based on the "reactive" polyolefin copolymers, i.e. polyolefins containing p-methylstyrene or alkylborane groups. The p-methylstyrene copolymers lead to selectively grafting reactions on the p-methyl groups, greatly reducing the side reactions on the polyolefin backbone. The MA graft content was proportional to the concentration of p-methylstyrene. In the borane approach, under controlled selective oxidation, the alkylborane containing PP polymers formed the "stable" polymeric radical in situ which initiated the graft-from reaction. By varying the monomer concentrations of MA and styrene, reaction time and temperature, a broad range of MA modified PP polymers were prepared from a single MA terminated or grafted PP to a very long SMA segment blocked or grafted PP, and there is no detectable side reaction on the PP backbone. MA modified polyolefins were investigated in the applications of glass fiber reinforced PP, elastomer toughened Nylon, and polyolefin/Nylon blends. The MA modified polyolefin compatibilizers showed the significant improved mechanical properties and morphology of the blends. The effectiveness of compatibilization depends on the MA concentration, molecular weight of the polyolefin segments, the structure of the compatibilizers, and the composition of the blend. By amidation or imidation reaction of MA modified PP with amine terminated PP, long chain branched PP polymers were also prepared. The results of IR, GPC, intrinsic viscosity and DSC studies clearly indicate the formation of long chain branched PP.

  13. Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals

    NASA Astrophysics Data System (ADS)

    Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2011-09-01

    We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.

  14. The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules.

    PubMed

    Abou Matar, Tamara; Karam, Pierre

    2018-02-01

    It is generally accepted that positively charged molecules are the gold standard to by-pass the negatively charged cell membrane. Here, it is shown that cellular uptake is also possible for polymers with negatively charged side chains and hydrophobic backbones. Specifically, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], a conjugated polyelectrolyte with sulfonate, as water-soluble functional groups, is shown to accumulate in the intracellular region. When the polymer hydrophobic backbone is dissolved using polyvinylpyrrolidone, an amphiphilic macromolecule, the cellular uptake is dramatically reduced. The report sheds light on the fine balance between negatively charged side groups and the hydrophobicity of polymers to either enhance or reduce cellular uptake. As a result, these findings will have important ramifications on the future design of targeted cellular delivery nanocarriers for imaging and therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thermoresponsive Polyurethane Bearing Oligo(Ethylene Glycol) as Side Chain Without Polyol at Polymer Backbone Achieved Excellent Hydrophilic and Hydrophobic Switching.

    PubMed

    Aoki, Daisuke; Ajiro, Hiroharu

    2018-06-13

    In order to prepare thermoresponsive polyurethane gels, a novel polyurethane bearing oligo(ethylene glycol) (OEG) as the side chain is successfully synthesized with hexamethylene diisocyanate and OEG tartrate ester. The aqueous solution of the polyurethane shows sharp and clear lower critical solution temperature behavior at 34 °C. Furthermore, a hydrogel based on the same polyurethane is also successfully prepared using glycerol as the crosslinker. This polyurethane hydrogel including 10 mol% of glycerol presents a large swelling ratio change between 4 °C and 37 °C from 250% to 40%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai [Argonne, IL; Xu, Su [Santa Clara, CA; McBranch, Duncan [Santa Fe, NM; Whitten, David [Santa Fe, NM

    2003-05-27

    The addition of oppositely charged surfactant to fluorescent ionic conjugated polymer forms a polymer-surfactant complex that exhibits at least one improved photophysical property. The conjugated polymer is a fluorescent ionic polymer that typically has at least one ionic side chain or moiety that interacts with the specific surfactant selected. The photophysical property improvements may include increased fluorescence quantum efficiency, wavelength-independent emission and absorption spectra, and more stable fluorescence decay kinetics. The complexation typically occurs in a solution of a polar solvent in which the polymer and surfactant are soluble, but it may also occur in a mixture of solvents. The solution is commonly prepared with a surfactant molecule:monomer repeat unit of polymer ratio ranging from about 1:100 to about 1:1. A polymer-surfactant complex precipitate is formed as the ratio approaches 1:1. This precipitate is recoverable and usable in many forms.

  17. Structural features and complement-fixing activity of pectin from three Brassica oleracea varieties: white cabbage, kale, and red kale.

    PubMed

    Samuelsen, Anne Berit; Westereng, Bjørge; Yousif, Osman; Holtekjølen, Ann Katrin; Michaelsen, Terje E; Knutsen, Svein H

    2007-02-01

    Leaves of different cabbage species are used both as food and as wound healing remedies in traditional medicine. This supposed wound healing activity might be connected to presence of immunomodulating water soluble polysaccharides. To study this, three different cabbage varieties, white cabbage (W), kale (K), and red kale (RK), were pretreated with 80% ethanol and then extracted with water at 50 degrees C and 100 degrees C for isolation of polysaccharide-containing fractions. The fractions were analyzed for monosaccharide composition, glycosidic linkages, Mw distribution, protein content, and phenolic compounds and then tested for complement-fixing activity. All fractions contained pectin type polysaccharides with linkages corresponding to homogalacturonan and hairy regions. Those extracted at 50 degrees C contained higher amounts of neutral side chains and were more active in the complement-fixation test than those extracted at 100 degrees C. The fractions can be ranged by decreasing activity: K-50 > RK-50 > W-50 approximately = K-100 > RK100 approximately = W-100. Studies on structure-activity relationships (SAR) employing multivariate statistical analysis strongly suggest that the magnitude of the measured activity is influenced by the content of certain side chains in the polymers. High activity correlates to large neutral side chains with high amounts of (1-->6)- and (1-->3,6)-linked Gal and low amounts of (1-->4)-linked GalA but not on molecular weight distribution of the polymers.

  18. Effect of Pendant Side-Chain Sterics and Dipole Forces on Short Range Ordering in Random Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Nwosu, Chinomso; Pandey, Tara; Herring, Andrew; Coughlin, Edward; University of Massachusetts, Amherst Collaboration; Colorado School of Mines Collaboration

    Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, CnBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(CnBr) show that when n <5 the dipole forces dominate leading to the formation of ionic clusters. However, when n >4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented. US Army MURI project (W911NF1010520).

  19. Application of geometric algebra for the description of polymer conformations.

    PubMed

    Chys, Pieter

    2008-03-14

    In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.

  20. Controlling the mode of operation of organic transistors through side-chain engineering.

    PubMed

    Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B; Bandiello, Enrico; Hanifi, David A; Sessolo, Michele; Malliaras, George G; McCulloch, Iain; Rivnay, Jonathan

    2016-10-25

    Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors.

  1. Controlling the mode of operation of organic transistors through side-chain engineering

    PubMed Central

    Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B.; Bandiello, Enrico; Hanifi, David A.; Sessolo, Michele; Malliaras, George G.; McCulloch, Iain; Rivnay, Jonathan

    2016-01-01

    Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors. PMID:27790983

  2. Shape-Persistent, Thermoresponsive Polypeptide Brushes Prepared by Vapor Deposition Surface-Initiated Ring-Opening Polymerization of α-Amino Acid N -Carboxyanhydrides

    DOE PAGES

    Shen, Yong; Desseaux, Solenne; Aden, Bethany; ...

    2015-04-20

    We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less

  3. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymers.

    PubMed

    Ayzner, Alexander L; Mei, Jianguo; Appleton, Anthony; DeLongchamp, Dean; Nardes, Alexandre; Benight, Stephanie; Kopidakis, Nikos; Toney, Michael F; Bao, Zhenan

    2015-12-30

    Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  4. Polyphosphazine-based polymer materials

    DOEpatents

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  5. Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione-based Photovoltaic Polymer by Grafting Alkylthio Functional Groups.

    PubMed

    Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui

    2016-10-06

    Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (J sc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Study of biodegradable polymers for ``green'' devices

    NASA Astrophysics Data System (ADS)

    Perez, Carlos; Jiang, Xiaomei; Jiang Group Team

    2015-03-01

    Π - conjugated polymers such as polythiophenes are conventional picks for cost-effective organic solar cells. However, these organic semiconductors are not environment-friendly since the polymer back bones require temperature higher than 3000C to be decomposed, thus will cause potential environment problems upon disposal. In this work, the optical and electronic properties of biodegradable polymers, conjugated poly(disulfidediamine), were examined via continuous wave laser spectroscopy, FTIR spectroscopy and conductivity measurement. We found that the attachment of a side chain to aromatic ring increases both photo and thermal stability, as well as higher conductivity. Thermal annealing improved the film morphological, photophysical and electronic properties. Photo-Induced Absorption (PIA) reveals different features comparing with conventional pi-conjugated polymers. No observation of long-lived photoexcitations such as polarons or triplets which are common with pi-conjugated polymers. Instead, we found the formation of low energy species upon thermal annealing in these biodegradable polymers.

  7. [Use of a novel polymer, the in-situ gelling mucoadhesive thiolated poly(aspartic acid) in ophthalmic drug delivery].

    PubMed

    Horvát, Gabriella; Budai-Szűcs, Mária; Berkó, Szilvia; Szabóné-Révész, Piroska; Gyarmati, Benjámin; Szilágyi, Barnabas Áron; Szilágyi, András; Csányi Erzsébet

    2015-01-01

    The bioavailability of drugs used on mucosal surfaces can be increased by the use of mucoadhesive polymers. A new type of mucoadhesive polymers is the group of thiolated polymers with thiol group containing side chains. These polymers are able to form covalent bonds (disulphide linkages) with the mucin glycoproteins. For the formulation of an ocular drug delivery system (DDS) thiolated poly(aspartic acid) polymer (ThioPASP) was used. Our aim was to determine their biocompatibility, mucoadhesion and drug release property. According to the results it can be established that the thiolated poly(aspartic acid) polymers can be a potential vehicle of an ocular drug delivery system due to their biocompatibility, good mucoadhesive property and drug release profile. Thanks to their properties controlled drug delivery can be achieved and bioavailability of the ophthalmic formulation can be increased, while the usage frequency can be decreased.

  8. Influence of acceptor on charge mobility in stacked π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel

    2018-02-01

    We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.

  9. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization.

    PubMed

    Yan, Yi; Zhang, Jiuyang; Qiao, Yali; Tang, Chuanbing

    2014-01-01

    A facile method to prepare cationic cobaltocenium-containing polyelectrolyte is reported. Cobaltocenium monomer with methacrylate is synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between 2-azidoethyl methacrylate and ethynylcobaltocenium hexafluorophosphate. Further controlled polymerization is achieved by reversible addition-fragmentation chain transfer polymerization (RAFT) by using cumyl dithiobenzoate (CDB) as a chain transfer agent. Kinetic study demonstrates the controlled/living process of polymerization. The obtained side-chain cobaltocenium-containing polymer is a metal-containing polyelectrolyte that shows characteristic redox behavior of cobaltocenium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and Side Chain Liquid Crystal Polymers by Living Ring Opening Metathesis Polymerization. 5. Influence of Mesogenic Group and Interconnecting Group on the Thermotropic Behavior of the Resulting Polymers

    DTIC Science & Technology

    1992-07-22

    Scheme I. The first nucleophilic displacement of halide of an n-haloalkan-l-ol with 4-cyano-4’-hydroxybiphenyl employed potassium carbonate in...21 𔃼 polysiloxanes, 23.24 and polyacrylates . 2- All these polymers exhibit an odd-even effect. If one considers the total number of atoms between the...0.019 mol) and 4’-methoxy-4-hydroxybiphenyl (4.0g, 0.020 tool) were heated at 100°C in 40 mL of dimethylformamide in the presence of potassium carbonate

  11. Synthesis and characterization of poly(phenylacetylene)s with Ru(II) bis-terpyridine complexes in the side-chain.

    PubMed

    Breul, Alexander M; Kübel, Joachim; Häupler, Bernhard; Friebe, Christian; Hager, Martin D; Winter, Andreas; Dietzek, Benjamin; Schubert, Ulrich S

    2014-04-01

    An alkyne-functionalized ruthenium(II) bis-terpyridine complex is directly copolymerized with phenylacetylene by alkyne polymerization. The polymer is characterized by size-exclusion chromatography (SEC), (1) H NMR spectroscopy, cyclic voltammetry (CV) measurements, and thermal analysis. The photophysical properties of the polymer are studied by UV-vis absorption spectroscopy. In addition, spectro-electrochemical measurements are carried out. Time-resolved luminescence lifetime decay curves show an enhanced lifetime of the metal complex attached to the conjugated polymer backbone compared with the Ru(tpy)2 (2+) model complex. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Cheol; Douglas, Jack F.

    2015-10-14

    The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M{sup β}, is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from −1.8 to −2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature T{sub g} where dynamic heterogeneity does not complicate the descriptionmore » of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔH{sub a} and entropy ΔS{sub a} of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a “critical” chain length, n ≈ 17. A close examination of this phenomenon indicates that a “buckling transition” from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔS{sub a} ∝ ΔH{sub a}, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔH{sub a} and ΔS{sub a} with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.« less

  13. Novel Effects of Compressed CO 2 Molecules on Structural Ordering and Charge Transport in Conjugated Poly(3-hexylthiophene) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Naisheng; Sendogdular, Levent; Sen, Mani

    We report the effects of compressed CO 2 molecules as a novel plasticization agent for poly(3- hexylthiophene) (P3HT) conjugated polymer thin films. In-situ neutron reflectivity experiment demonstrated the excess sorption of CO 2 molecules in the P3HT thin films (about 40 nm in thickness) at low pressure (P = 8.2 MPa) under the isothermal condition of T = 36 °C, which is far below the polymer bulk melting point. The results evidenced that these CO 2 molecules accelerated the crystallization process of the polymer on the basis of ex-situ grazing incidence Xray diffraction measurements after drying the films via rapidmore » depressurization to atmospheric pressure: not only the out-of-plane lamellar ordering of the backbone chains but also intra-plane π-π stacking of the side chains were significantly improved, when compared to those in the control P3HT films subjected to conventional thermal annealing (at T = 170 °C). Electrical measurements elucidated that the CO 2-annealed P3HT thin films exhibited enhanced charge carrier mobility along with decreased background charge carrier concentration and trap density compared to those in the thermally annealed counterpart. This is attributed to the CO 2-induced increase in polymer chain mobility that can drive the detrapping of molecular oxygen and healing of conformational defects in the polymer thin film. Given the universality of the excess sorption of CO 2regardless of the type of polymers, the present findings suggest that the CO 2 annealing near the critical point can be useful as a robust processing strategy for improving structural and electrical characteristics of other semiconducting conjugated polymers and related systems such as polymer: fullerene bulk heterojunction films.tion films.« less

  14. Novel Effects of Compressed CO 2 Molecules on Structural Ordering and Charge Transport in Conjugated Poly(3-hexylthiophene) Thin Films

    DOE PAGES

    Jiang, Naisheng; Sendogdular, Levent; Sen, Mani; ...

    2016-10-06

    We report the effects of compressed CO 2 molecules as a novel plasticization agent for poly(3- hexylthiophene) (P3HT) conjugated polymer thin films. In-situ neutron reflectivity experiment demonstrated the excess sorption of CO 2 molecules in the P3HT thin films (about 40 nm in thickness) at low pressure (P = 8.2 MPa) under the isothermal condition of T = 36 °C, which is far below the polymer bulk melting point. The results evidenced that these CO 2 molecules accelerated the crystallization process of the polymer on the basis of ex-situ grazing incidence Xray diffraction measurements after drying the films via rapidmore » depressurization to atmospheric pressure: not only the out-of-plane lamellar ordering of the backbone chains but also intra-plane π-π stacking of the side chains were significantly improved, when compared to those in the control P3HT films subjected to conventional thermal annealing (at T = 170 °C). Electrical measurements elucidated that the CO 2-annealed P3HT thin films exhibited enhanced charge carrier mobility along with decreased background charge carrier concentration and trap density compared to those in the thermally annealed counterpart. This is attributed to the CO 2-induced increase in polymer chain mobility that can drive the detrapping of molecular oxygen and healing of conformational defects in the polymer thin film. Given the universality of the excess sorption of CO 2regardless of the type of polymers, the present findings suggest that the CO 2 annealing near the critical point can be useful as a robust processing strategy for improving structural and electrical characteristics of other semiconducting conjugated polymers and related systems such as polymer: fullerene bulk heterojunction films.tion films.« less

  15. Increasing the open-circuit voltage in high-performance organic photovoltaic devices through conformational twisting of an indacenodithiophene-based conjugated polymer.

    PubMed

    Chen, Chih-Ping; Hsu, Hsiang-Lin

    2013-10-01

    A fused ladder indacenodithiophene (IDT)-based donor-acceptor (D-A)-type alternating conjugated polymer, PIDTHT-BT, presenting n-hexylthiophene conjugated side chains is prepared. By extending the degree of intramolecular repulsion through the conjugated side chain moieties, an energy level for the highest occupied molecular orbital (HOMO) of -5.46 eV--a value approximately 0.27 eV lower than that of its counterpart PIDTDT-BT--is obtained, subsequently providing a fabricated solar cell with a high open-circuit voltage of approximately 0.947 V. The hole mobility (determined using the space charge-limited current model) in a blend film containing 20 wt% PIDTHT-BT) and 80 wt% [6,6]-phenyl-C71 butyric acid methyl ester (PC71 BM) is 2.2 × 10(-9) m(2) V(-1) s(-1), which is within the range of reasonable values for applications in organic photovoltaics. The power conversion efficiency is 4.5% under simulated solar illumination (AM 1.5G, 100 mW cm(-2)). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polymeric Selectin Ligands Mimicking Complex Carbohydrates: From Selectin Binders to Modifiers of Macrophage Migration.

    PubMed

    Moog, Kai E; Barz, Matthias; Bartneck, Matthias; Beceren-Braun, Figen; Mohr, Nicole; Wu, Zhuojun; Braun, Lydia; Dernedde, Jens; Liehn, Elisa A; Tacke, Frank; Lammers, Twan; Kunz, Horst; Zentel, Rudolf

    2017-01-24

    Novel polymeric cell adhesion inhibitors were developed in which the selectin tetrasaccharide sialyl-Lewis X (SLe X ) is multivalently presented on a biocompatible poly(2-hydroxypropyl)methacrylamide (PHPMA) backbone either alone (P1) or in combination with O-sulfated tyramine side chains (P2). For comparison, corresponding polymeric glycomimetics were prepared in which the crucial "single carbohydrate" substructures fucose, galactose, and sialic acid side chains were randomly linked to the PHPMA backbone (P3 or P4 (O-sulfated tyramine)). All polymers have an identical degree of polymerization, as they are derived from the same precursor polymer. Binding assays to selectins, to activated endothelial cells, and to macrophages show that polyHPMA with SLe X is an excellent binder to E-, L-, and P-selectins. However, mimetic P4 can also achieve close to comparable binding affinities in in vitro measurements and surprisingly, it also significantly inhibits the migration of macrophages; this provides new perspectives for the therapy of severe inflammatory diseases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tuning polarity and improving charge transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Oh, Joon Hak; Han, A.-Reum; Yu, Hojeong; Lee, Eun Kwang; Jang, Moon Jeong

    2013-09-01

    Although state-of-the-art ambipolar polymer semiconductors have been extensively reported in recent years, highperformance ambipolar polymers with tunable dominant polarity are still required to realize on-demand, target-specific, high-performance organic circuitry. Herein, dithienyl-diketopyrrolopyrrole (TDPP)-based polymer semiconductors with engineered side-chains have been synthesized, characterized and employed in ambipolar organic field-effect transistors, in order to achieve controllable and improved electrical properties. Thermally removable tert-butoxycarbonyl (t-BOC) groups and hybrid siloxane-solubilizing groups are introduced as the solubilizing groups, and they are found to enable the tunable dominant polarity and the enhanced ambipolar performance, respectively. Such outstanding performance based on our molecular design strategies makes these ambipolar polymer semiconductors highly promising for low-cost, large-area, and flexible electronics.

  18. Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.

    2018-04-01

    Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.

  19. Alternative Thieno[3,2-b][1]benzothiophene Isoindigo Polymers for Solar Cell Applications.

    PubMed

    Neophytou, Marios; Bryant, Daniel; Lopatin, Sergei; Chen, Hu; Hallani, Rawad K; Cater, Lewis; McCulloch, Iain; Yue, Wan

    2018-03-05

    This work reports the synthesis, characterization, photophysical, and photovoltaic properties of five new thieno[3,2-b][1]benzothiophene isoindigo (TBTI)-containing low bandgap donor-acceptor conjugated polymers with a series of comonomers and different side chains. When TBTI is combined with different electron-rich moieties, even small structural variations can have significant impact on thin film morphology of the polymer:phenyl C70 butyric acid methyl ester (PCBM) blends. More importantly, high-resolution electron energy loss spectroscopy is used to investigate the phase-separated bulk heterojunction domains, which can be accurately and precisely resolved, enabling an enhanced correlation between polymer chemical structure, photovoltaic device performance, and morphology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polymer translocation through a nanopore: a showcase of anomalous diffusion.

    PubMed

    Milchev, A; Dubbeldam, Johan L A; Rostiashvili, Vakhtang G; Vilgis, Thomas A

    2009-04-01

    We investigate the translocation dynamics of a polymer chain threaded through a membrane nanopore by a chemical potential gradient that acts on the chain segments inside the pore. By means of diverse methods (scaling theory, fractional calculus, and Monte Carlo and molecular dynamics simulations), we demonstrate that the relevant dynamic variable, the transported number of polymer segments, s(t), displays an anomalous diffusive behavior, both with and without an external driving force being present. We show that in the absence of drag force the time tau, needed for a macromolecule of length N to thread from the cis into the trans side of a cell membrane, scales as tauN(2/alpha) with the chain length. The anomalous dynamics of the translocation process is governed by a universal exponent alpha= 2/(2nu + 2 - gamma(1)), which contains the basic universal exponents of polymer physics, nu (the Flory exponent) and gamma(1) (the surface entropic exponent). A closed analytic expression for the probability to find s translocated segments at time t in terms of chain length N and applied drag force f is derived from the fractional Fokker-Planck equation, and shown to provide analytic results for the time variation of the statistical moments and . It turns out that the average translocation time scales as tau proportional, f(-1)N(2/alpha-1). These results are tested and found to be in perfect agreement with extensive Monte Carlo and molecular dynamics computer simulations.

  1. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates.

    PubMed

    Pelegri-O'Day, Emma M; Maynard, Heather D

    2016-09-20

    Protein-polymer conjugates are unique constructs that combine the chemical properties of a synthetic polymer chain with the biological properties of a biomacromolecule. This often leads to improved stabilities, solubilities, and in vivo half-lives of the resulting conjugates, and expands the range of applications for the proteins. However, early chemical methods for protein-polymer conjugation often required multiple polymer modifications, which were tedious and low yielding. To solve these issues, work in our laboratory has focused on the development of controlled radical polymerization (CRP) techniques to improve synthesis of protein-polymer conjugates. Initial efforts focused on the one-step syntheses of protein-reactive polymers through the use of functionalized initiators and chain transfer agents. A variety of functional groups such as maleimide and pyridyl disulfide could be installed with high end-group retention, which could then react with protein functional groups through mild and biocompatible chemistries. While this grafting to method represented a significant advance in conjugation technique, purification and steric hindrance between large biomacromolecules and polymer chains often led to low conjugation yields. Therefore, a grafting from approach was developed, wherein a polymer chain is grown from an initiating site on a functionalized protein. These conjugates have demonstrated improved homogeneity, characterization, and easier purification, while maintaining protein activity. Much of this early work utilizing CRP techniques focused on polymers made up of biocompatible but nonfunctional monomer units, often containing oligoethylene glycol meth(acrylate) or N-isopropylacrylamide. These branched polymers have significant advantages compared to the historically used linear poly(ethylene glycols) including decreased viscosities and thermally responsive behavior, respectively. Recently, we were motivated to use CRP techniques to develop polymers with rationally designed and functional biological properties for conjugate preparation. Specifically, two families of saccharide-inspired polymers were developed for stabilization and activation of therapeutic biomolecules. A series of polymers with trehalose side-chains and vinyl backbones were prepared and used to stabilize proteins against heat and lyophilization stress as both conjugates and additives. These materials, which combine properties of osmolytes with nonionic surfactants, have significant potential for in vivo therapeutic use. Additionally, polymers that mimic the structure of the naturally occurring polysaccharide heparin were prepared. These polymers contained negatively charged sulfonate groups and imparted stabilization to a heparin-binding growth factor after conjugation. A screen of other sulfonated polymers led to the development of a polymer with improved heparin mimesis, enhancing both stability and activity of the protein to which it was attached. Chemical improvements over the past decade have enabled the preparation of a diverse set of protein-polymer conjugates by controlled polymerization techniques. Now, the field should thoroughly explore and expand both the range of polymer structures and also the applications available to protein-polymer conjugates. As we move beyond medicine toward broader applications, increased collaboration and interdisciplinary work will result in the further development of this exciting field.

  2. Hydrophobic-Sheath Segregated Macromolecular Fluorophores: Colloidal Nanoparticles of Polycaprolactone-Grafted Conjugated Polymers with Bright Far-Red/Near-Infrared Emission for Biological Imaging.

    PubMed

    Yang, Cangjie; Liu, Hui; Zhang, Yingdan; Xu, Zhigang; Wang, Xiaochen; Cao, Bin; Wang, Mingfeng

    2016-05-09

    This article describes molecular design, synthesis and characterization of colloidal nanoparticles containing polycaprolactone-grafted conjugated polymers that exhibit strong far red/near-infrared (FR/NIR) fluorescence for bioimaging. Specifically, we synthesized two kinds of conjugated polymer bottle brushes (PFTB(out)-g-PCL and PFTB(in)-g-PCL) with different positions of the hexyl groups on the thiophene rings. A synthetic amphiphilic block copolymer PCL-b-POEGMA was employed as surfactants to encapsulate PFTB-g-PCL polymers into colloidal nanoparticles (denoted as "nanoREDs") in aqueous media. The chain length of the PCL side chains in PFTB-g-PCL played a critical role in determining the fluorescence properties in both bulk solid states and the colloidal nanoparticles. Compared to semiconducting polymer dots (Pdots) composed of PFTB(out) without grafted PCL, nanoRED(out) showed at least four times higher fluorescence quantum yield (∼20%) and a broader emission band centered at 635 nm. We further demonstrated the application of this new class of nanoREDs for effective labeling of L929 cells and HeLa cancer cells with good biocompatibility. This strategy of hydrophobic-sheath segregated macromolecular fluorophores is expected to be applicable to a broad range of conjugated polymers with tunable optical properties for applications such as bioimaging.

  3. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells.

    PubMed

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Yan, Hongping; Yang, Bei; Liu, Delong; Li, Wanning; Ade, Harald; Hou, Jianhui

    2018-05-21

    To simultaneously achieve low photon energy loss ( E loss ) and broad spectral response, the molecular design of the wide band gap (WBG) donor polymer with a deep HOMO level is of critical importance in fullerene-free polymer solar cells (PSCs). Herein, we developed a new benzodithiophene unit, i.e., DTBDT-EF, and conducted systematic investigations on a WBG DTBDT-EF-based donor polymer, namely, PDTB-EF-T. Due to the synergistic electron-withdrawing effect of the fluorine atom and ester group, PDTB-EF-T exhibits a higher oxidation potential, i.e., a deeper HOMO level (ca. -5.5 eV) than most well-known donor polymers. Hence, a high open-circuit voltage of 0.90 V was obtained when paired with a fluorinated small molecule acceptor (IT-4F), corresponding to a low E loss of 0.62 eV. Furthermore, side-chain engineering demonstrated that subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T. With the benefits of the stronger interchain π-π interaction, the improved ordering structure, and thus the highest hole mobility, the most symmetric charge transport and reduced recombination are achieved for the linear decyl-substituted PDTB-EF-T (P2)-based PSCs, leading to the highest short-circuit current density and fill factor (FF). Due to the high Flory-Huggins interaction parameter (χ), surface-directed phase separation occurs in the P2:IT-4F blend, which is supported by X-ray photoemission spectroscopy results and cross-sectional transmission electron microscope images. By taking advantage of the vertical phase distribution of the P2:IT-4F blend, a high power conversion efficiency (PCE) of 14.2% with an outstanding FF of 0.76 was recorded for inverted devices. These results demonstrate the great potential of the DTBDT-EF unit for future organic photovoltaic applications.

  4. Synthesis of Side Chain Liquid Crystal Polymers by Living Ring Opening Metathesis Polymerization. 3. Influence of Molecular Weight, Interconnecting Unit and Substituent on the Mesomorphic behavior of Polymers with Laterally Attached Mesogens

    DTIC Science & Technology

    1992-04-08

    polymethylsiloxanes, 6 -7 polyacrylates ,2,4,5 polymethacrylates, 1 ,3 and polychloroacrylates, 5 exhibit only nematic mesophases regardless of the...corresponding carboxyl chloride. Potassium bicyclo[2.2.1]hept-2-ene-5- carboxylate was prepared by titrating a methanolic solution of the carboxylic acid...Esterification of the Corresponding Benzyl Bromides. Monomers 1I-n were prepared in 47-88% yield using the following procedure. A mixture of potassium bicyclo

  5. Effect of Molecular Flexibility upon Ice Adhesion Shear Strength

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Wohl, Christopher J.; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin

    2016-01-01

    Ice formation on aircraft surfaces effects aircraft performance by increasing weight and drag leading to loss of lift. Current active alleviation strategies involve pneumatic boots, heated surfaces, and usage of glycol based de-icing fluids. Mitigation or reduction of in-flight icing by means of a passive approach may enable retention of aircraft capabilities, i.e., no reduction in lift, while reducing the aircraft weight and mechanical complexity. Under a NASA Aeronautics Research Institute Seedling activity, the effect of end group functionality and chain length upon ice adhesion shear strength (IASS) was evaluated with the results indicating that chemical functionality and chain length (i.e. molecular flexibility) affected IASS. Based on experimental and modeling results, diamine monomers incorporating molecular flexibility as either a side chain or in between diamine functionalities were prepared, incorporated into epoxy resins that were subsequently used to fabricate coatings on aluminum substrates, and tested in a simulated icing environment. The IASS was found to be lower when molecular flexibility was incorporated in the polymer chain as opposed to a side chain.

  6. Comparative Experimental Study on Ionic Polymer Mental Composite based on Nafion and Aquivion Membrane as Actuators

    NASA Astrophysics Data System (ADS)

    Luo, B.; Chen, Z.

    2017-11-01

    Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.

  7. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    PubMed

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.

  8. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens

    2018-05-01

    We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.

  9. Complexation of amyloid fibrils with charged conjugated polymers.

    PubMed

    Ghosh, Dhiman; Dutta, Paulami; Chakraborty, Chanchal; Singh, Pradeep K; Anoop, A; Jha, Narendra Nath; Jacob, Reeba S; Mondal, Mrityunjoy; Mankar, Shruti; Das, Subhadeep; Malik, Sudip; Maji, Samir K

    2014-04-08

    It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.

  10. Highly Sensitive Thin-Film Field-Effect Transistor Sensor for Ammonia with the DPP-Bithiophene Conjugated Polymer Entailing Thermally Cleavable tert-Butoxy Groups in the Side Chains.

    PubMed

    Yang, Yang; Zhang, Guanxin; Luo, Hewei; Yao, Jingjing; Liu, Zitong; Zhang, Deqing

    2016-02-17

    The sensing and detection of ammonia have received increasing attention in recent years because of the growing emphasis on environmental and health issues. In this paper, we report a thin-film field-effect transistor (FET)-based sensor for ammonia and other amines with remarkable high sensitivity and satisfactory selectivity by employing the DPP-bithiophene conjugated polymer pDPPBu-BT in which tert-butoxycarboxyl groups are incorporated in the side chains. This polymer thin film shows p-type semiconducting property. On the basis of TGA and FT-IR analysis, tert-butoxycarboxyl groups can be transformed into the -COOH ones by eliminating gaseous isobutylene after thermal annealing of pDPPBu-BT thin film at 240 °C. The FET with the thermally treated thin film of pDPPBu-BT displays remarkably sensitive and selective response toward ammonia and volatile amines. This can be attributed to the fact that the elimination of gaseous isobutylene accompanies the formation of nanopores with the thin film, which will facilitate the diffusion and interaction of ammonia and other amines with the semiconducting layer, leading to high sensitivity and fast response for this FET sensor. This FET sensor can detect ammonia down to 10 ppb and the interferences from other volatile analytes except amines can be negligible.

  11. Effect of side-chain structure of rigid polyimide dispersant on mechanical properties of single-walled carbon nanotube/cyanate ester composite.

    PubMed

    Yuan, Wei; Li, Weifeng; Mu, Yuguang; Chan-Park, Mary B

    2011-05-01

    Three kinds of polymer, polyimide without side-chain (PI), polyimide-graft-glyceryl 4-nonylphenyl ether (PI-GNE), and polyimide-graft-bisphenol A diglyceryl acrylate (PI-BDA), have been synthesized and used to disperse single-walled carbon nanotubes (SWNTs) and to improve the interfacial bonding between SWNTs and cyanate ester (CE) matrix. Visual observation, UV-vis-near-IR (UV-vis-NIR) spectra, and atomic force microscopy (AFM) images show that both PI-GNE and PI-BDA are highly effective at dispersing and debundling SWNTs in DMF, whereas PI is less effective. Interaction between SWNTs and PI, PI-GNE or PI-BDA was confirmed by computer simulation and Raman spectra. A series of CE-based composite films reinforced with different loadings of SWNTs, SWNTs/PI, SWNTs/PI-GNE and SWNTs/PI-BDA were prepared by solution casting. It was found that, because of the unique side-chain structure of PI-BDA, SWNTs/PI-BDA disperse better in CE matrix than do SWNTs/PI-GNE, SWNTs/PI, and SWNTs. As a result, SWNTs/PI-BDA/CE composites have the greatest improvement in mechanical properties of the materials tested. These results imply that the choice of side-chain on a dispersant is very important to the dispersion of SWNTs in matrix and the filler/matrix interfacial adhesion, which are two key requirements for achieving effective reinforcement.

  12. Design of polymer conjugated 3-helix micelles as nanocarriers with tunable shapes.

    PubMed

    Ma, Dan; DeBenedictis, Elizabeth P; Lund, Reidar; Keten, Sinan

    2016-11-24

    Amphiphilic peptide-polymer conjugates have the ability to form stable nanoscale micelles, which show great promise for drug delivery and other applications. A recent design has utilized the end-conjugation of alkyl chains to 3-helix coiled coils to achieve amphiphilicity, combined with the side-chain conjugation of polyethylene glycol (PEG) to tune micelle size through entropic confinement forces. Here we investigate this phenomenon in depth, using coarse-grained dissipative particle dynamics (DPD) simulations in an explicit solvent and micelle theory. We analyze the conformations of PEG chains conjugated to three different positions on 3-helix bundle peptides to ascertain the degree of confinement upon assembly, as well as the ordering of the subunits making up the micelle. We discover that the micelle size and stability is dictated by a competition between the entropy of PEG chain conformations in the assembled state, as well as intermolecular cross-interactions among PEG chains that promote cohesion between neighboring conjugates. Our analyses build on the role of PEG molecular weight and conjugation site and lead to computational phase diagrams that can be used to design 3-helix micelles. This work opens pathways for the design of multifunctional micelles with tunable size, shape and stability.

  13. Dibenzopyran-Based Wide Band Gap Conjugated Copolymers: Structural Design and Application for Polymer Solar Cells.

    PubMed

    Zhou, Yuanyuan; Li, Miao; Guo, Yijing; Lu, Heng; Song, Jinsheng; Bo, Zhishan; Wang, Hua

    2016-11-16

    With the efficient synthesis of the crucial dibenzopyran building block, a series of PDBPTBT polymers containing different alkyl side chains and/or fluorine substitution were designed and synthesized via the microwave-assisted Suzuki polycondensation. Quantum chemistry calculations based on density functional theory indicated that different substitutions have significant impacts on the planarity and rigidity of the polymer backbones. Interestingly, the alkyloxy chains of PDBPTBT-4 tend to stay in the same plane with the benzothiadiazole unit, but the others appear to be out of plane. With the S···O and F···H/F···S supramolecular interactions, the conformations of the four polymers will be locked in different ways as predicted by the quantum chemistry calculation. Such structural variation resulted in varied solid stacking and photophysical properties as well as the final photovoltaic performances. Conventional devices based on these four polymers were fabricated, and PDBPTBT-5 displayed the best PCE of 5.32%. After optimization of the additive types, ratios, and the interlayers at the cathode, a high PCE of 7.06% (V oc = 0.96 V, J sc = 11.09 mA/cm 2 , and FF = 0.67) is obtained for PDBPTBT-5 with 2.0% DIO as the additive and PFN-OX as the electron-transporting layer. These results indicated DBP-based conjugated polymers are promising wide band gap polymer donors for high-efficiency polymer solar cells.

  14. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.

    PubMed

    Xu, Lirong; Yang, Liu; Lei, Shengbin

    2012-08-07

    In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of conjugated oligomers and polymers. The information obtained could benefit the understanding of the elements affecting the film morphology and helps the optimization of device performance.

  15. Charge Mobility Enhancement for Conjugated DPP-Selenophene Polymer by Simply Replacing One Bulky Branching Alkyl Chain with Linear One at Each DPP Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhijie; Liu, Zitong; Ning, Lu

    Here, we demonstrate a simple, but efficient, approach for improving the semiconducting performances of DPP-based conjugated D-A polymers. This approach involves the replacement of one bulky branching alkyl chain with the linear one at each DPP unit in regular polymer PDPPSe-10 and PDPPSe-12. The UV–vis absorption, Raman spectra, PDS data, and theoretical calculations support that the replacement of bulky branching chains with linear ones can weaken the steric hindrance, and accordingly conjugated backbones become more planar and rigid. GIWAXS data show that the incorporation of linear alkyl chains as in PDPPSe-10 and PDPPSe-12 is beneficial for side-chain interdigitation and interchainmore » dense packing, leading to improvement of interchain packing order and thin film crystallinity by comparing with PDPPSe, which contains branching alkyl chains. On the basis of field-effect transistor (FET) studies, charge mobilities of PDPPSe-10 and PDPPSe-12 are remarkably enhanced. Hole mobilities of PDPPSe-10 and PDPPSe-12 in air are boosted to 8.1 and 9.4 cm 2 V –1 s –1, which are about 6 and 7 times, respectively, than that of PDPPSe (1.35 cm 2 V –1 s –1). Furthermore, both PDPPSe-10 and PDPPSe-12 behave as ambipolar semiconductors under a nitrogen atmosphere with increased hole/electron mobilities up to 6.5/0.48 cm 2 V –1 s –1 and 7.9/0.79 cm 2 V –1 s –1, respectively.« less

  16. Charge Mobility Enhancement for Conjugated DPP-Selenophene Polymer by Simply Replacing One Bulky Branching Alkyl Chain with Linear One at Each DPP Unit

    DOE PAGES

    Wang, Zhijie; Liu, Zitong; Ning, Lu; ...

    2018-04-17

    Here, we demonstrate a simple, but efficient, approach for improving the semiconducting performances of DPP-based conjugated D-A polymers. This approach involves the replacement of one bulky branching alkyl chain with the linear one at each DPP unit in regular polymer PDPPSe-10 and PDPPSe-12. The UV–vis absorption, Raman spectra, PDS data, and theoretical calculations support that the replacement of bulky branching chains with linear ones can weaken the steric hindrance, and accordingly conjugated backbones become more planar and rigid. GIWAXS data show that the incorporation of linear alkyl chains as in PDPPSe-10 and PDPPSe-12 is beneficial for side-chain interdigitation and interchainmore » dense packing, leading to improvement of interchain packing order and thin film crystallinity by comparing with PDPPSe, which contains branching alkyl chains. On the basis of field-effect transistor (FET) studies, charge mobilities of PDPPSe-10 and PDPPSe-12 are remarkably enhanced. Hole mobilities of PDPPSe-10 and PDPPSe-12 in air are boosted to 8.1 and 9.4 cm 2 V –1 s –1, which are about 6 and 7 times, respectively, than that of PDPPSe (1.35 cm 2 V –1 s –1). Furthermore, both PDPPSe-10 and PDPPSe-12 behave as ambipolar semiconductors under a nitrogen atmosphere with increased hole/electron mobilities up to 6.5/0.48 cm 2 V –1 s –1 and 7.9/0.79 cm 2 V –1 s –1, respectively.« less

  17. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  18. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE PAGES

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; ...

    2015-07-17

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  19. Interaction of polyhedral oligomeric silsesquioxanes and dipalmitoylphosphatidylcholine at the air/water interface: Thermodynamic and rheological study.

    PubMed

    Skrzypiec, M; Georgiev, G As; Rojewska, M; Prochaska, K

    2017-10-01

    Polyhedral oligomeric silsesquioxanes (POSS) derivatives containing open silsesquioxane cage bear great potential for biomedical applications and therefore their lateral interactions with phospholipids, major biomembranes and drug vehicles constituent, should be studied in detail. That is why the properties of surface films by two POSS-derivatives, POSS-polyethylene glycol (POSS-PEG) and POSS-perfluoroalkyl (POSS-OFP), pure and in presence of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) were studied using Langmuir surface balance. Side chains of opposite nature (PEG is hydrophilic; OFP is hydrophobic) were selected, so that to evaluate their impact on polymers' surface properties. Two types of measurements were performed: (i) the miscibility of POSS-derivatives with DPPC was evaluated via thermodynamic analysis of the surface pressure (π)-area (A) isotherms and (ii) the dilatational rheology of selected POSS-polymer containing films was studied by the stress relaxation method. Fourier transformation analysis of the relaxation transients allows to access films' dynamic interfacial properties in broad frequency range (10 -5 -1Hz). Film morphology was monitored with Brewster Angle Microscopy. PEG moiety enabled POSS-PEG to stably incorporate in DPPC films, modifying their equilibrium and dynamic properties. In contrast OFP chains excluded from interactions with other molecules and diminished PEG-OFP amphiphilicity. Therefore at high packing densities (π≥25mN/m) PEG-OFP was expelled from the air/water interface in DPPC/PEG-OFP mixtures, and the binary films equilibrium and dynamic surface properties were determined primarily by DPPC. Thus the choice of POSS side chains can play key role in biomedical applications depending on whether strong or weak incorporation of POSS-polymers in lipid environment is aimed for. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Breaking of the Bancroft rule for multiple emulsions stabilized by a single stimulable polymer.

    PubMed

    Besnard, L; Protat, M; Malloggi, F; Daillant, J; Cousin, F; Pantoustier, N; Guenoun, P; Perrin, P

    2014-09-28

    We investigated emulsions of water and toluene stabilized by (co)polymers consisting of styrene (S) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) monomer units with different compositions and structures such as a PDMAEMA homopolymer, a P(S-co-DMAEMA) random copolymer and various PS-b-PDMAEMA and PS-b-(S-co-DMAEMA) block copolymers. The model system is used to study the fundamental conditions under which the different kinds of polymer-stabilized emulsions (direct oil in water, inverse water in oil and multiple emulsions) are stabilized or destabilized by pH change (at constant temperature). Polymer properties like chain conformation at the toluene-water interface as probed by SANS and neutron reflectivity at the liquid-liquid interface, the oil-water partitioning of the polymer chains (Bancroft's rule of thumb) as determined by UV spectroscopy and interfacial tensions measured by the rising and spinning drop techniques are determined. Overall, results evidence that the curvature sign, as defined by positive and negative values as the chain segments occupy preferentially the water and toluene sides of the interface respectively, reliably predicts the emulsion kind. In contrast, the Bancroft rule failed at foreseeing the emulsion type. In the region of near zero curvature the crossover from direct to inverse emulsions occurs through the formation of either unstable coexisting direct and inverse emulsions (i) or multiple emulsions (ii). The high compact adsorption of the chains at the interface as shown by low interfacial tension values does not allow to discriminate between both cases. However, the toluene-water partitioning of the polymeric emulsifier is still a key factor driving the formation of (i) or (ii) emulsions. Interestingly, the stabilization of the multiple emulsions can be tuned to a large extent as the toluene-water polymer partitioning can be adjusted using quite a large number of physico-chemical parameters linked to polymer architecture like diblock length ratio or polymer total molar mass, for example. Moreover, we show that monitoring the oil-water partitioning aspect of the emulsion system can also be used to lower the interfacial tension at low pH to values slightly higher than 0.01 mN m(-1), irrespective of the curvature sign.

  1. Electroactive polymer-peptide conjugates for adhesive biointerfaces.

    PubMed

    Maione, Silvana; Gil, Ana M; Fabregat, Georgina; Del Valle, Luis J; Triguero, Jordi; Laurent, Adele; Jacquemin, Denis; Estrany, Francesc; Jiménez, Ana I; Zanuy, David; Cativiela, Carlos; Alemán, Carlos

    2015-10-15

    Electroactive polymer-peptide conjugates have been synthesized by combining poly(3,4-ethylenedioxythiophene), a polythiophene derivative with outstanding properties, and an Arg-Gly-Asp (RGD)-based peptide in which Gly has been replaced by an exotic amino acid bearing a 3,4-ethylenedioxythiophene ring in the side chain. The incorporation of the peptide at the ends of preformed PEDOT chains has been corroborated by both FTIR and X-ray photoelectron spectroscopy. Although the morphology and topology are not influenced by the incorporation of the peptide at the ends of PEDOT chains, this process largely affects other surface properties. Thus, the wettability of the conjugates is considerably higher than that of PEDOT, independently of the synthetic strategy, whereas the surface roughness only increases when the conjugate is obtained using a competing strategy (i.e. growth of the polymer chains against termination by end capping). The electrochemical activity of the conjugates has been found to be higher than that of PEDOT, evidencing the success of the polymer-peptide links designed by chemical similarity. Density functional theory calculations have been used not only to ascertain the conformational preferences of the peptide but also to interpret the electronic transitions detected by UV-vis spectroscopy. Electroactive surfaces prepared using the conjugates displayed the higher bioactivities in terms of cell adhesion, with the relative viabilities being dependent on the roughness, wettability and electrochemical activity of the conjugate. In addition to the influence of the peptide fragment in the initial cell attachment and subsequent cell spreading and survival, the results indicate that PEDOT promotes the exchange of ions at the conjugate-cell interface.

  2. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    NASA Astrophysics Data System (ADS)

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-10-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  3. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation.

    PubMed

    Paternò, G M; Skoda, M W A; Dalgliesh, Robert; Cacialli, F; Sakai, V García

    2016-10-04

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  4. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    PubMed Central

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-01-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs). PMID:27698410

  5. Small Angle Neutron Scattering experiments on ``side-on fixed"" liquid crystal polyacrylates

    NASA Astrophysics Data System (ADS)

    Leroux, N.; Keller, P.; Achard, M. F.; Noirez, L.; Hardouin, F.

    1993-08-01

    Small Angle Neutron Scattering experiments were carried out on liquid crystalline “side-on fixed” polyacrylates : we observe that the polymer backbone adopts a prolate conformation in the nematic phase. Such anisotropy of the global backbone is larger for smaller spacer length. In every case we measure at low temperatures a large chain extension as previously described in polysiloxanes. Par diffusion des neutrons aux petits angles nous observons que la chaîne de polyacrylates “en haltère” adopte une conformation type prolate en phase nématique. Son anisotropie est d'autant plus grande que l'espaceur est plus court. Dans tous les cas, nous retrouvons à basse température la forte extension de la chaîne polymère qui fut d'abord révélée dans les polysiloxanes.

  6. Synthesis and characterization of donor-acceptor copolymers carrying triphenylamine units for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Neumann, Katharina; Thelakkat, Mukundan

    2012-09-01

    The synthesis and analysis of solution processable polymers for organic solar cells is crucial for innovative solar cell technologies such as printing processes. In the field of donor materials for photovoltaic applications, polymers based on tetraphenylamine (TPA) are well known hole conducting materials. Here, we synthesized two conjugated TPA containing copolymers via Suzuki polycondensation. We investigated the tuning of the energy levels of the TPA based polymers by two different concepts. Firstly, we introduced an acceptor unit in the side chain. The main-chain of this copolymer was built from TPA units. The resulting copolymer 2-(4-((4'-((4-(2-ethylhexyloxy)phenyl)(paratolyl) amino)biphenyl-4-yl)(para-tolyl)amino)benzylidene) malononitrile P1 showed a broader absorption up to 550 nm. Secondly, we used a donor-acceptor concept by synthesizing a copolymer with alternating electron donating TPA and electron withdrawing Thieno[3,4-b]thiophene ester units. Consequently, the absorption maximum in the copolymer octyl-6-(4-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)phenyl)-4-methylthieno[3,4-b]thiophene-2-carboxylate P2 was red shifted to 580 nm. All three polymers showed high thermal stability. By UV-vis and Cyclic voltammetry measurements the optical and electrochemical properties of the polymers were analyzed.

  7. Brush-Like Polymers: New Design Platforms for Soft, Dry Materials with Unique Property Relations

    NASA Astrophysics Data System (ADS)

    Daniel, William Francis McKemie, Jr.

    Elastomers represent a unique class of engineering materials due to their light weight, low cost, and desirable combination of softness (105 -107 Pa) and large extensibilities (up to 1000%). Despite these advantages, there exist applications that require many times softer modulus, greater extensibility, and stronger strain hardening for the purpose of mimicking the mechanical properties of systems such as biological tissues. Until recently, only liquid-filled gels were suitable materials for such applications, including soft robotics and implants. A considerable amount of work has been done to create gels with superior properties, but despite unique strengths they also suffer from unique weaknesses. This class of material displays fundamental limitations in the form of heterogeneous structures, solvent loss and phase transitions at extreme temperatures, and loss of liquid fraction upon high deformations. In gels the solvent fraction also introduces a large solvent/polymer interaction parameter which must be carefully considered when designing the final mechanical properties. These energetic considerations further exaggerate the capacity for inconstant mechanical properties caused by fluctuations of the solvent fraction. In order to overcome these weaknesses, a new platform for single component materials with low modulus (<105 Pa) must be developed. Single component systems do not suffer from compositional changes over time and display more stable performance in a wider variety of temperatures and humidity conditions. A solvent-free system also has the potential to be homogeneous which replaces the large energetic interactions with comparatively small architectural interaction parameters. If a solvent-free alternative to liquid-filled gels is to be created, we must first consider the fundamental barrier to softer elastomers, i.e. entanglements - intrinsic topological restrains which define a lower limit of modulus ( 105 Pa). These entanglements are determined by chemistry specific parameters (repeat unit volume and Kuhn segment size) in the polymer liquid (melt) prior to crosslinking. Previous solvent free replacements for gels include elastomers end-linked in semidilute conditions. These materials are generated through crosslinking telechelic polymer chains in semidilute solutions at the onset of chain overlap. At such low polymer concentrations entanglements are greatly diluted and once the resulting gel is dried it creates a supersoft and super-elastic network. Although such methods have successfully generated materials with moduli below the 105 Pa limit and high extensibilities ( 1000%) they present their own limitations. Firstly, the semidilute crosslinking methods uses an impractically large volume of solvent which is unattractive in industry. Second, producing and crosslinking large monodisperse telechelic chains is a nontrivial process leading to large uncertainties in the final network architecture and properties. Specifically, telechelics have a distribution of end-to-end distances and in semidilute solutions with extremely low fraction of chain ends the crosslink reaction is diffusion limited, very slow, and imprecise. In order to achieve a superior solvent-free platform, we propose alteration of mechanical properties through the architectural disentanglement of brush-like polymer structures. In recent year there has been an increase in the synthetic conditions and crosslinking schemes available for producing brush-like structures. This makes brush-like materials an attractive alternative to more restrictive methods such as end-linking. Standard networks have one major control factor outside of chemistry, the network stand length. Brush-like architectures are created from long strands with regularly grafted side chains creating three characteristic length scales which may be independently manipulated. In collaboration with M. Rubinstein, we have utilized bottlebrush polymer architectures (a densely grafted brush-like polymer) to experimentally verify theoretical predictions of disentangled bottlebrush melts. By attaching well-defined side chains onto long polymer backbones, individual polymer strands are separated in space (similar to dilution with solvent) accompanied by a comparatively small increase in the rigidity of the strands. The end result is an architectural disentangled melt with an entanglement plateau modulus as much as three orders of magnitude lower than typical linear polymers and a broadly expanded potential for extensibility once crosslinked.

  8. Glucose-Responsive Trehalose Hydrogel for Insulin Stabilization and Delivery.

    PubMed

    Lee, Juneyoung; Ko, Jeong Hoon; Mansfield, Kathryn M; Nauka, Peter C; Bat, Erhan; Maynard, Heather D

    2018-05-01

    Effective delivery of therapeutic proteins is important for many biomedical applications. Yet, the stabilization of proteins during delivery and long-term storage remains a significant challenge. Herein, a trehalose-based hydrogel is reported that stabilizes insulin to elevated temperatures prior to glucose-triggered release. The hydrogel is synthesized using a polymer with trehalose side chains and a phenylboronic acid end-functionalized 8-arm poly(ethylene glycol) (PEG). The hydroxyls of the trehalose side chains form boronate ester linkages with the PEG boronic acid cross-linker to yield hydrogels without any further modification of the original trehalose polymer. Dissolution of the hydrogel is triggered upon addition of glucose as a stronger binder to boronic acid (K b = 2.57 vs 0.48 m -1 for trehalose), allowing the insulin that is entrapped during gelation to be released in a glucose-responsive manner. Moreover, the trehalose hydrogel stabilizes the insulin as determined by immunobinding after heating up to 90 °C. After 30 min heating, 74% of insulin is detected by enzyme-linked immunosorbent assay in the presence of the trehalose hydrogel, whereas only 2% is detected without any additives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Detection Of Uric Acid Based On Multi-Walled Carbon Nanotubes Polymerized With A Layer Of Molecularly Imprinted PMAA

    NASA Astrophysics Data System (ADS)

    Chen, Po-Yen; Lin, Chia-Yu; Ho, Kuo-Chuan

    2009-05-01

    A molecularly imprinted poly-metharylic acid (PMAA), polymerizing on the surface of multi-walled carbon nanotube (MWCNT), was synthesized. The MWCNT was modified by a layer of carboxylic acid and reacted with EDC and NHS to activate the carboxylic acid, which was prepared for the purpose of bonding allyl amine and getting an unsaturated side chain (-C=C). The resultant structure is abbreviated as MWCNTs-CH=CH2. It is well known that the vinyl group side chain provides good attachment between the MWCNTs and the molecularly imprinted polymer (MIP). The MIP based on PMAA was polymerized on the surface of MWCNTs-CH=CH2 with the addition of uric acid (UA). The non-imprinted polymer (NIP) was polymerized without adding UA. The adsorbed amount of UA approached the equilibrium value upon 60 min adsorption. The adsorption isotherm was obtained by immersing 10 mg of MIP or NIP in 5 mL aqueous solution containing different concentrations of UA. The adsorbed amounts were measured via a UV-Vis spectrometer at a wavelength of 292 nm. From the adsorption isotherm, it is seen that the MIP particles possess a good imprinting efficiency of about 4.41.

  10. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  11. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  12. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    PubMed Central

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of catalytically active macromolecular networks in the form of soluble polymers, crosslinked polymer beads or nanoparticulate systems. The objective of the present review is to increase awareness of the existence and convenience of this methodology, assess its competitiveness compared to newer and more elaborate procedures for chemoselective O-acylation reactions, spur its further development, and finally to chronicle the informative, but poorly documented history of its development. PMID:25977719

  13. Synthesis and characterization of polyphosphazene electrolytes including cyclic ether side groups

    NASA Astrophysics Data System (ADS)

    Fiedler, Carsten; Luerssen, Bjoern; Lucht, Brett; Janek, Juergen

    2018-04-01

    This paper presents the synthesis and detailed characterization of two polyphosphazene based polymers, including different cyclic ether side groups. The final polymers were obtained by a well-known method employing a living cationic polymerization and subsequent nucleophilic substitution. The synthesized polymers Poly [(1,3-dioxane-5-oxy) (1,3-dioxolane-4-methoxy)phosphazene] (DOPP) and Poly[bis(2-Tetrahydro-3-furanoxy)phosphazene] (THFPP) were mixed with varied amounts of lithium bis(trifluoromethane)sulfonamide (LiTFSI) and the interactions between the salt and the polymer chains were studied by Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) measurements. Electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS) and direct current polarization in the temperature range of 20-60 °C. These measurements were utilized to calculate the lithium transference number (t+), the lithium conductivity (σ) and its activation energy in order to elucidate the lithium transport behavior. Relatively high lithium transference numbers of 0.6 (DOPP) and 0.7 (THFPP) at 60 °C are found and reveal maximum lithium conductivities of 2.8·10-6 Sṡcm-1 and 9.0·10-7 Sṡcm-1 for DOPP and THFPP at 60 °C, respectively.

  14. Effect of Polycation Structure on Interaction with Lipid Membranes.

    PubMed

    Wilkosz, Natalia; Jamróz, Dorota; Kopeć, Wojciech; Nakai, Keita; Yusa, Shin-Ichi; Wytrwal-Sarna, Magdalena; Bednar, Jan; Nowakowska, Maria; Kepczynski, Mariusz

    2017-08-03

    Interaction of polycations with lipid membranes is a very important issue in many biological and medical applications such as gene delivery or antibacterial usage. In this work, we address the influence of hydrophobic substitution of strong polycations containing quaternary ammonium groups on the polymer-zwitterionic membrane interactions. In particular, we focus on the polymer tendency to adsorb on or/and incorporate into the membrane. We used complementary experimental and computational methods to enhance our understanding of the mechanism of the polycation-membrane interactions. Polycation adsorption on liposomes was assessed using dynamic light scattering (DLS) and zeta potential measurements. The ability of the polymers to form hydrophilic pores in the membrane was evaluated using a calcein-release method. The polymer-membrane interaction at the molecular scale was explored by performing atomistic molecular dynamics (MD) simulations. Our results show that the length of the alkyl side groups plays an essential role in the polycation adhesion on the zwitterionic surface, while the degree of substitution affects the polycation ability to incorporate into the membrane. Both the experimental and computational results show that the membrane permeability can be dramatically affected by the amount of alkyl side groups attached to the polycation main chain.

  15. Molecular origin of photovoltaic performance in donor- block-acceptor all-conjugated block copolymers

    DOE PAGES

    Smith, Kendall A.; Lin, Yen -Hao; Mok, Jorge W.; ...

    2015-11-03

    All-conjugated block copolymers may be an effective route to self-assembled photovoltaic devices, but we lack basic information on the relationship between molecular characteristics and photovoltaic performance. Here, we synthesize a library of poly(3-hexylthiophene) (P3HT) block poly((9,9-dialkylfluorene)-2,7-diyl-alt-[4,7-bis(alkylthiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT) donor- block-acceptor all-conjugated block copolymers and carry out a comprehensive study of processing conditions, crystallinity, domain sizes, and side-chain structure on photovoltaic device performance. We find that all block copolymers studied exhibit an out-of-plane crystal orientation after deposition, and on thermal annealing at high temperatures the crystal orientation flips to an in-plane orientation. By varying processing conditions on polymer photovoltaic devices, we showmore » that the crystal orientation has only a modest effect (15-20%) on photovoltaic performance. The addition of side-chains to the PFTBT block is found to decrease photovoltaic power conversion efficiencies by at least an order of magnitude. Through grazing-incidence X-ray measurements we find that the addition of side-chains to the PFTBT acceptor block results in weak segregation and small (< 10 nm) block copolymer self-assembled donor and acceptor domains. This work is the most comprehensive to date on all-conjugated block copolymer systems and suggests that photovoltaic performance of block copolymers depends strongly on the miscibility of donor and acceptor blocks, which impacts donor and acceptor domain sizes and purity. Lastly, strategies for improving the device performance of block copolymer photovoltaics should seek to increase segregation between donor and acceptor polymer domains.« less

  16. Molecular origin of photovoltaic performance in donor- block-acceptor all-conjugated block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kendall A.; Lin, Yen -Hao; Mok, Jorge W.

    All-conjugated block copolymers may be an effective route to self-assembled photovoltaic devices, but we lack basic information on the relationship between molecular characteristics and photovoltaic performance. Here, we synthesize a library of poly(3-hexylthiophene) (P3HT) block poly((9,9-dialkylfluorene)-2,7-diyl-alt-[4,7-bis(alkylthiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT) donor- block-acceptor all-conjugated block copolymers and carry out a comprehensive study of processing conditions, crystallinity, domain sizes, and side-chain structure on photovoltaic device performance. We find that all block copolymers studied exhibit an out-of-plane crystal orientation after deposition, and on thermal annealing at high temperatures the crystal orientation flips to an in-plane orientation. By varying processing conditions on polymer photovoltaic devices, we showmore » that the crystal orientation has only a modest effect (15-20%) on photovoltaic performance. The addition of side-chains to the PFTBT block is found to decrease photovoltaic power conversion efficiencies by at least an order of magnitude. Through grazing-incidence X-ray measurements we find that the addition of side-chains to the PFTBT acceptor block results in weak segregation and small (< 10 nm) block copolymer self-assembled donor and acceptor domains. This work is the most comprehensive to date on all-conjugated block copolymer systems and suggests that photovoltaic performance of block copolymers depends strongly on the miscibility of donor and acceptor blocks, which impacts donor and acceptor domain sizes and purity. Lastly, strategies for improving the device performance of block copolymer photovoltaics should seek to increase segregation between donor and acceptor polymer domains.« less

  17. Methods for removing contaminant matter from a porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  18. Systems and strippable coatings for decontaminating structures that include porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  19. Design, synthesis, and characterization of new phosphazene related materials, and study the structure property correlations

    NASA Astrophysics Data System (ADS)

    Tian, Zhicheng

    The work described in this thesis is divided into three major parts, and all of which involve the exploration of the chemistry of polyphosphazenes. The first part (chapters 2 and 3) of my research is synthesis and study polyphoshazenes for biomedical applications, including polymer drug conjugates and injectable hydrogels for drug or biomolecule delivery. The second part (chapters 4 and 5) focuses on the synthesis of several organic/inorganic hybrid polymeric structures, such as diblock, star, brush and palm tree copolymers using living cationic polymerization and atom transfer radical polymerization techniques. The last part (chapters 6 and 7) is about exploratory synthesis of new polymeric structures with fluorinated side groups or cycloaliphatic side groups, and the study of new structure property relationships. Chapter 1 is an outline of the fundamental concepts for polymeric materials, as such the history, important definitions, and some introductory material for to polymer chemistry and physics. The chemistry and applications of phopshazenes is also briefly described. Chapter 2 is a description of the design, synthesis, and characterization of development of a new class of polymer drug conjugate materials based on biodegradable polyphosphazenes and antibiotics. Poly(dichlorophosphazene), synthesized by a thermal ring opening polymerization, was reacted with up to 25 mol% of ciprofloxacin or norfloxacin and three different amino acid esters (glycine, alanine, or phenylalanine) as cosubstituents via macromolecular substitutions. Nano/microfibers of several selected polymers were prepared by an electrospinning technique. Chapter 3 is concerned with the development of a class of injectable and biodegradable hydrogels based on water-soluble poly(organophosphazenes) containing oligo(ethylene glycol) methyl ethers and glycine ethyl esters. The hydrogels can be obtained by mixing alpha-cyclodextrin aqueous solution and poly(organophosphazenes) aqueous solution in various gelation rates depending on the polymer structures and the concentrations. The rheological measurements of the supramolecular hydrogels indicate a fast gelation process and flowable character under a large stain. Chapter 4 outlines the preparation of a number of amphiphilic diblock copolymers based on poly[bis(trifluoroethoxy)phosphazene] (TFE) as the hydrophobic block and poly(dimethylaminoethylmethacrylate) (PDMAEMA) as the hydrophilic block. The TFE block was synthesized first by the controlled living cationic polymerization of a phosphoranimine, followed by replacement of all the chlorine atoms using sodium trifluoroethoxide. To allow for the growth of the PDMAEMA block, 3-azidopropyl-2-bromo-2-methylpropanoate, an atom transfer radical polymerization (ATRP) initiator, was grafted onto the endcap of the TFE block via the 'click' reaction followed by the ATRP of 2-(dimethylamino)ethyl methacrylate (DMAEMA). Chapter 5 is a report on the design and assembly of polyphosphazene materials based on the non-covalent "host--guest" interactions either at the terminus of the polymeric main-chains or the pendant side-chains. The supramolecular interaction at the main chain terminus was used to produce amphiphilic palm-tree like pseudo-block copolymers via host-guest interactions between an adamantane end-functionalized polyphosphazene and a 4-armed beta-cyclodextrin (beta-CD) initiated poly[poly(ethylene glycol) methyl ether methacylate] branched-star type polymer. The formation of micelles of the obtained amphiphiles was analyzed by fluorescence technique, dynamic light scattering, transmission electron microscopy, and atomic force microscopy. Chapter 6 is an investigation of the influence of bulky fluoroalkoxy side groups on the properties of polyphosphazenes. A new series of mixed-substituent high polymeric poly(fluoroalkoxyphosphazenes) containing trifluoroethoxy and branched fluoroalkoxy side groups was synthesized and characterized by NMR and GPC methods. These polymers contained 19--29 mol% of di-branched hexafluoropropoxy groups or 4mol% of tri-branched tert-perfluorobutoxy groups, which serve as regio-irregularities to reduce the macromolecular microcrystallinity. The structure--property correlations of the polymers were then analyzed and interpreted by several techniques: specifically by the thermal behavior by DSC and TGA methods, the crystallinity by wide-angle X-ray diffraction, and the surface hydrophobicity/oleophobicity by contact angle measurements. (Abstract shortened by UMI.). Chapter 7 is an outline of the exploratory synthesis of a new series of phosphazene model cyclic trimers and single- and mixed- substituent high polymers containing cyclic aliphatic rings, --CnH2n-1 (where n = 4--8). The cylco-aliphatic side group containing phosphazenes expand the structural and property boundaries of phosphazene chemistry, and suggest additional approaches for studying slow macromolecular substitution reactions and substituent exchange reactions.

  20. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    PubMed

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  1. Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry.

    PubMed

    Brisson, Emma R L; Xiao, Zeyun; Franks, George V; Connal, Luke A

    2017-01-09

    The copolymerization of N-isopropylacrylamide (NiPAm) with aldehyde functional monomers facilitates postpolymerization functionalization with amino acids via reductive amination, negating the need for protecting groups. In reductive amination, the imine formed from the condensation reaction between an amine and an aldehyde is reduced to an amine. In this work, we categorize amino acids into four classes based on the functionality of their side chains (acidic, polar neutral, neutral, and basic) and use their amine groups in condensation reactions with aldehyde functional polymers. The dynamic nature of the imine as well as the versatility of reductive amination to functionalize a polymer with a range of amino acids is highlighted. In this manner, amino acid functional polymers are synthesized without the use of protecting groups with high yields, demonstrating the high functional group tolerance of carbonyl condensation chemistry and the subsequent reduction of the imine. Prior to the reduction of the imine bond, transimination reactions are used to demonstrate dynamic polymers that shuffle from a glycine- to a histidine-functional polymer.

  2. Controlling the Morphology of Side Chain Liquid Crystalline Block Copolymer Thin Films through Variations in Liquid Crystalline Content

    PubMed Central

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T.

    2009-01-01

    In this paper we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the inter-material dividing surface (IMDS). By manipulating the strength of these interactions the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nano-patterning applications without manipulation of the surface chemistry or the application of external fields. PMID:18763835

  3. Molecular engineering to improve carrier lifetimes for organic photovoltaic devices with thick active layers

    DOE PAGES

    Oosterhout, Stefan D.; Braunecker, Wade A.; Owczarczyk, Zbyslaw R.; ...

    2017-04-27

    The morphology of the bulk heterojunction absorber layer in an organic photovoltaic (OPV) device has a profound effect on the electrical properties and efficiency of the device. Previous work has consistently demonstrated that the solubilizing side-chains of the donor material affect these properties and device performance in a non-trivial way. Here, using Time-Resolved Microwave Conductivity (TRMC), we show by direct measurements of carrier lifetimes that the choice of side chains can also make a substantial difference in photocarrier dynamics. We have previously demonstrated a correlation between peak photoconductance measured by TRMC and device efficiencies; here, we demonstrate that TRMC photocarriermore » dynamics have an important bearing on device performance in a case study of devices made from donor materials with linear vs. branched side-chains and with variable active layer thicknesses. We use Grazing-Incidence Wide Angle X-ray Scattering to elucidate the cause of the different carrier lifetimes as a function of different aggregation behavior in the polymers. Consequently, the results help establish TRMC as a technique for screening OPV donor materials whose devices maintain performance in thick active layers (>250 nm) designed to improve light harvesting, film reproducibility, and ease of processing.« less

  4. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    PubMed

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  5. Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration.

    PubMed

    Lee, Sang-Bae; González-Cabezas, Carlos; Kim, Kwang-Mahn; Kim, Kyoung-Nam; Kuroda, Kenichi

    2015-08-10

    This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe(3+) additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe-catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives.

  6. Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance.

    PubMed

    Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Spanos, Michael; Ameri, Tayebeh; Brabec, Christoph J; Chochos, Christos L; Avgeropoulos, Apostolos

    2015-10-01

    The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration

    PubMed Central

    2015-01-01

    This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe3+ additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe–catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives. PMID:26176305

  8. Effect of the side chain spacer structure on the pH-responsive properties of polycarboxylates.

    PubMed

    Harada, Atsushi; Teranishi, Ryoma; Yuba, Eiji; Kono, Kenji

    The properties of stimuli-responsive polymers change significantly with changes to their environment, such as temperature and pH. This behavior can be utilized for the preparation of stimuli-responsive carriers for efficient cytosolic delivery of active drugs. Among the possible environmental conditions, pH is one of the most useful stimuli because the pH in an endosome is lower than under physiological conditions, depending on endosomal development. This pH difference is an important factor in the design of pH-responsive polymers, which can be used to enhance the transport of endocytosed drugs from the endosomal compartment to the cytoplasm. Such polymers can destabilize the endosomal bilayer under mildly acidic conditions and be nondisruptive at pH 7.4 not only for efficient endosomal escape but also for the suppression of nonspecific interaction with lipids existing under physiological conditions. In this study, we developed polycarboxylates with well-controlled pH-responsive properties bearing various spacer structures with different hydrophobicity. 3-methyl glutarylated polyallylamine and 2-carboxy-cyclohexanoylated polyallylamine were synthesized through the reaction between primary amine of PAA and acid anhydrides. Side chain spacers with higher hydrophobicity induced significant interactions with liposomal membranes at higher pH. pH-destabilizing liposomes could be modulated through the changing the composition of spacer structures with different hydrophobicity. Such formulations may represent an attractive strategy for the improvement of cytosolic delivery of active molecules.

  9. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Bao, Zhenan

    2015-10-01

    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as crystallinity, surface roughness, charge carrier mobility, and absorptions of the polymers blends are found irrelevant to the performance of these all polymer solar cells. This work demonstrates that a better understanding of tuning polymer phase separation domain size provides an important path towards high performance, all-polymer solar cells. The use of polymer side-chain engineering provides an effective molecular engineering approach that may be combined with additional processing parameter control to further elevate the performance of all-polymer solar cells. We obtained a record PCE of 4.8% (avarage from 20 devices), with an average JSC of 9.8 mA cm-2. The highest PCE shoots to 5.1%, with JSC as high as 10.2 mA cm-2, and VOC of 1.02 V. It is the highest performance ever published for an all-polymer solar cell.4 1. Li, G.; Zhu, R.; Yang, Y., Nat. Photon. 2012, 6 , 153-161. 2. (a) Nelson, J., Mater. Today 2011, 14 , 462-470; (b) Lin, Y.; Li, Y.; Zhan, X., Chem. Soc. Rev. 2012, 41, 4245-4272; (c) Chen, J.; Cao, Y., Acc. Chem. Res. 2009, 42, 1709-1718. 3. Sonar, P.; Fong Lim, J. P.; Chan, K. L., Energy Environ. Sci. 2011, 4, 1558. 4. Facchetti, A., Mater. Today 2013, 16 , 123-132.

  10. Comment on "Relating side chain organization of PNIPAm with its conformation in aqueous methanol" by D. Mukherji, M. Wagner, M. D. Watson, S. Winzen, T. E. de Oliveira, C. M. Marques and K. Kremer, Soft Matter, 2016, 12, 7995.

    PubMed

    Pica, Andrea; Graziano, Giuseppe

    2017-11-01

    In a recent article, Kremer and co-workers have combined NMR measurements and very long, all-atom MD simulations to strengthen their original claim that PNIPAM cononsolvency in water-methanol solutions is driven by the ability of MeOH molecules to bridge different monomers far away along the polymeric chain. In this comment, the results presented by Kremer and co-workers are reviewed, analyzed, and questioned regarding their ability to provide support to the bridging mechanism. Here, some pieces of evidence are provided to show that: (1) the solvent-excluded volume effect plays always a fundamental role in polymer collapse; (2) PNIPAM cononsolvency is caused by the geometric-energetic frustration experienced by the polymer when it can interact with both water and methanol molecules at the same time.

  11. Looped star polymers show conformational transition from spherical to flat toroidal shapes.

    PubMed

    Reiss, Pascal; Fritsche, Miriam; Heermann, Dieter W

    2011-11-01

    Inspired by the topological organization of the circular Escherichia coli chromosome, which is compacted by separate domains, we study a polymer architecture consisting of a central ring to which either looped or linear side chains are grafted. A shape change from a spherical to a toroidal organization takes place as soon as the inner ring becomes large enough for the attached arms to fit within its circumference. Building up a torus, the system flattens, depending on the effective bending rigidity of the chain induced by entropic repulsion of the attached loops and, to a lesser extent, linear arms. Our results suggest that the natural formation of a toroidal structure with a decreased amount of writhe induced by a specific underlying topology could be one driving force, among others, that nature exploits to ensure proper packaging of the genetic material within a rod-shaped, bacterial envelope.

  12. A new series of lanthanide coordination polymers with 2,2‧-bipyridine and glutaric acid: Synthesis, crystal structures and properties of [Ln(bipy)(glut)(NO3)

    NASA Astrophysics Data System (ADS)

    Wang, Chunguang; Xing, Yongheng; Li, Zhangpeng; Li, Jing; Zeng, Xiaoqing; Ge, Maofa; Niu, Shuyun

    2009-08-01

    A series of new lanthanide coordination polymers, with the formula [Ln(bipy)(glut)(NO 3)] (Ln = Eu ( 1), Tb ( 2), Sm ( 3), Pr ( 4); bipy = 2,2'-bipyridine; H 2glut = glutaric acid), have been synthesized under the hydrothermal condition and characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. Structural analyses reveal that all four complexes are isostructural and crystallized in monoclinic system, P2 1/ c space group. For these complexes, the Ln 3+ are all linked through glutaric acid ligands to form 1D chain-like polymeric structures, and bipy and NO3- are coordinated on two sides of the chains. The thermogravimetric analysis of 1 and photoluminescent properties of 1 and 2 are discussed in detail.

  13. Engineered Biomimetic Polymers as Tunable Agents for Controlling CaCO₃ Mineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chun-Long; Qi, Jiahui; Zuckermann, Ronald N.

    2011-01-01

    In nature, living organisms use peptides and proteins to precisely control the nucleation and growth of inorganic minerals and sequester CO₂ via mineralization of CaCO₃. Here we report the exploitation of a novel class of sequence-specific non-natural polymers called peptoids as tunable agents that dramatically control CaCO₃ mineralization. We show that amphiphilic peptoids composed of hydrophobic and anionic monomers exhibit both a high degree of control over calcite growth morphology and an unprecedented 23-fold acceleration of growth at a peptoid concentration of only 50 nM, while acidic peptides of similar molecular weight exhibited enhancement factors of only ~2 or less.more » We further show that both the morphology and rate controls depend on peptoid sequence, side-chain chemistry, chain length, and concentration. These findings provide guidelines for developing sequence-specific non-natural polymers that mimic the functions of natural peptides or proteins in their ability to direct mineralization of CaCO₃, with an eye toward their application to sequestration of CO₂ through mineral trapping.« less

  14. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells

    PubMed Central

    Francis, Brian R.

    2015-01-01

    Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and polypeptides is proposed. The cell consists of an iron-sulfide particle enclosed by tholin, a heterogeneous organic material that is produced by Miller-Urey type experiments that simulate conditions on the early Earth. As the synthesis of nucleic acids evolved from β-linked polyesters, the singlet coding system for replication evolved into a four nucleotide/four amino acid process (AMP = aspartic acid, GMP = glycine, UMP = valine, CMP = alanine) and then into the triplet ribosomal process that permitted multiple copies of protein to be synthesized independent of replication. This hypothesis reconciles the “genetics first” and “metabolism first” approaches to the origin of life and explains why there are four bases in the genetic alphabet. PMID:25679748

  15. Semi-flexible polymer engendered aggregation/dispersion of fullerene (C60) nano-particles: An atomistic investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Pattanayek, Sudip K.

    2018-06-01

    Semi flexible polymer chain has been modeled by choosing various values of persistent length (stiffness). As the polymer chain stiffness increases, the shape of polymer chain changes from globule to extended cigar to toroid like structure during cooling from a high temperature. The aggregation of fullerene nano-particles is found to depend on the morphology of polymer chain. To maximize, the number of polymer bead-nanoparticle contacts, all nano-particle have positioned inside the polymer globule. To minimize, the energy penalty, due to bending of the polymer chain, all nano-particle have positioned on the surface of the polymer's cigar and toroid morphology.

  16. Catalyst-free "click" functionalization of polymer brushes preserves antifouling properties enabling detection in blood plasma.

    PubMed

    Parrillo, Viviana; de Los Santos Pereira, Andres; Riedel, Tomas; Rodriguez-Emmenegger, Cesar

    2017-06-08

    Progress in biosensors for clinical detection critically relies on modifications of the transducer surface to prevent non-specific adsorption from matrix components (i.e. antifouling) while supporting biomolecular recognition elements to capture the analyte. Such combination of properties presents a significant challenge. Hierarchically structured polymer brushes comprising an antifouling polymer bottom block and a functionalizable top block are proposed as a promising strategy to achieve this goal. We employed the catalyst-free strain-promoted alkyne-azide cycloaddition (SPAAC) "click" reaction to biofunctionalize antifouling polymer brushes without impairing their resistance to fouling. The functionalization was performed on the side chains along the top polymer block or only on the end-groups of the polymer brush. The immobilized amounts of bioreceptors (streptavidin followed by biotin-conjugated proteins) and the resistance to fouling from blood plasma of the surfaces obtained were evaluated via surface plasmon resonance. The end group functionalization approach resulted in very low immobilization of bioreceptor. On the other hand, the side group modification of a top polymer block led to immobilization of 83% of a monolayer of streptavidin. Following binding of a biotin-conjugated antibody (66 ng cm -2 ) the functionalized layer was able to reduce the fouling from undiluted human blood plasma by 89% in comparison with bare gold. Finally, the functionalized hierarchical polymer brushes were applied to the label-free detection of a model analyte in diluted human blood plasma, highlighting the potential for translation to medical applications. Copyright © 2017. Published by Elsevier B.V.

  17. From Fullerene-Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control.

    PubMed

    Kang, Hyunbum; Lee, Wonho; Oh, Jiho; Kim, Taesu; Lee, Changyeon; Kim, Bumjoon J

    2016-11-15

    All-polymer solar cells (all-PSCs), consisting of conjugated polymers as both electron donor (P D ) and acceptor (P A ), have recently attracted great attention. Remarkable progress has been achieved during the past few years, with power conversion efficiencies (PCEs) now approaching 8%. In this Account, we first discuss the major advantages of all-PSCs over fullerene-polymer solar cells (fullerene-PSCs): (i) high light absorption and chemical tunability of P A , which affords simultaneous enhancement of both the short-circuit current density (J SC ) and the open-circuit voltage (V OC ), and (ii) superior long-term stability (in particular, thermal and mechanical stability) of all-PSCs due to entangled long P A chains. In the second part of this Account, we discuss the device operation mechanism of all-PSCs and recognize the major challenges that need to be addressed in optimizing the performance of all-PSCs. The major difference between all-PSCs and fullerene-PSCs originates from the molecular structures and interactions, i.e., the electron transport ability in all-PSCs is significantly affected by the packing geometry of two-dimensional P A chains relative to the electrodes (e.g., face-on or edge-on orientation), whereas spherically shaped fullerene acceptors can facilitate isotropic electron transport properties in fullerene-PSCs. Moreover, the crystalline packing structures of P D and P A at the P D -P A interface greatly affect their free charge carrier generation efficiencies. The design of P A polymers (e.g., main backbone, side chain, and molecular weight) should therefore take account of optimizing three major aspects in all-PSCs: (1) the electron transport ability of P A , (2) the molecular packing structure and orientation of P A , and (3) the blend morphology. First, control of the backbone and side-chain structures, as well as the molecular weight, is critical for generating strong intermolecular assembly of P A and its network, thus enabling high electron transport ability of P A comparable to that of fullerenes. Second, the molecular orientation of anisotropically structured P A should be favorably controlled in order to achieve efficient charge transport as well as charge transfer at the P D -P A interface. For instance, face-to-face stacking between P D and P A at the interface is desired for efficient free charge carrier generation because misoriented chains often cause an additional energy barrier for overcoming the binding energy of the charge transfer state. Third, large-scale phase separation often occurs in all-PSCs because of the significantly reduced entropic contribution by two macromolecular chains of P D and P A that energetically disfavors mixing. In this Account, we review the recent progress toward overcoming each recognized challenge and intend to provide guidelines for the future design of P A . We believe that by optimization of the parameters discussed above the PCE values of all-PSCs will surpass the 10% level in the near future and that all-PSCs are promising candidates for the successful realization of flexible and portable power generators.

  18. The effect of polymer architecture on the interdiffusion in thin polymer films

    NASA Astrophysics Data System (ADS)

    Caglayan, Ayse; Yuan, Guangcui; Satija, Sushil K.; Uhrig, David; Hong, Kunlun; Akgun, Bulent

    Branched polymer chains have been traditionally used in industrial applications as additives. Recently they have found applications in electrochromic displays, lithography, biomedical coatings and targeting multidrug resistant bacteria. In some of these applications where they are confined in thin layers, it is important to understand the relation between the mobility and polymer chain architecture to optimize the processing conditions. Earlier interdiffusion measurements on linear and cyclic polymer chains demonstrated the key role of chain architecture on mobility. We have determined the vertical diffusion coefficients of the star polystyrene chains in thin films as a function of number of polymer arms, molecular weight per arm, and film thickness using neutron reflectivity (NR) and compare our results with linear chains of identical total molecular weight. Bilayer samples of 4-arm and 8-arm protonated polystyrenes (hPS) and deuterated polystyrenes (dPS) were used to elucidate the effect of polymer chain architecture on polymer diffusion. NR measurements indicate that the mobility of polymer chains in thin films get faster as the number of polymer arms increases and the arm molecular weight decreases. Both star polymers showed faster interdiffusion compared to their linear analog. Diffusion coefficient of branched PS chains has a weak dependence on the film thickness.

  19. Two Dimensional Polymer That Generates Nitric Oxide.

    DOEpatents

    McDonald, William F.; Koren, Amy B.

    2005-10-04

    A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.

  20. Application of Bottlebrush Block Copolymers as Photonic Crystals.

    PubMed

    Liberman-Martin, Allegra L; Chu, Crystal K; Grubbs, Robert H

    2017-07-01

    Brush block copolymers are a class of comb polymers that feature polymeric side chains densely grafted to a linear backbone. These polymers display interesting properties due to their dense functionality, low entanglement, and ability to rapidly self-assemble to highly ordered nanostructures. The ability to prepare brush polymers with precise structures has been enabled by advancements in controlled polymerization techniques. This Feature Article highlights the development of brush block copolymers as photonic crystals that can reflect visible to near-infrared wavelengths of light. Fabrication of these materials relies on polymer self-assembly processes to achieve nanoscale ordering, which allows for the rapid preparation of photonic crystals from common organic chemical feedstocks. The characteristic physical properties of brush block copolymers are discussed, along with methods for their preparation. Strategies to induce self-assembly at ambient temperatures and the use of blending techniques to tune photonic properties are emphasized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. End Functionalized Nonionic Water-Dispersible Conjugated Polymers.

    PubMed

    Zhan, Ruoyu; Liu, Bin

    2017-09-01

    2,7-Dibromofluorene monomers carrying two or four oligo(ethylene glycol) (OEG) side chains are synthesized. Heck coupling between the monomers and 1,4-divinylbenzene followed by end capping with [4-(4-bromophenoxy)butyl]carbamic acid tert-butyl ester leads to two nonionic water-dispersible poly(fluorene-alt-1,4-divinylenephenylene)s end-functionalized with amine groups after hydrolysis. In water, the polymer with a lower OEG density (P1) has poor water dispersibility with a quantum yield of 0.24, while the polymer with a higher OEG density (P2) possesses excellent water-dispersibility with a high quantum yield of 0.45. Both polymers show fluorescence enhancement and blue-shifted absorption and emission maxima in the presence of surfactant sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The polymers are also resistant to ionic strength with minimal nonspecific interactions to bovine serum albumin. When biotin is incorporated into the end of the polymer backbones through N-hydroxysuccinimide/amine coupling reaction, the biotinylated polymers interact specifically with streptavidin on solid surface. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A one-dimensional zinc(II) coordination polymer with a three-dimensional supramolecular architecture incorporating 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole and adipate.

    PubMed

    Liu, Chun Li; Huang, Qiu Ying; Meng, Xiang Ru

    2016-12-01

    The synthesis of coordination polymers or metal-organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one-dimensional coordination polymer, catena-poly[[[bis{1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κN 3 }zinc(II)]-μ-hexane-1,6-dicarboxylato-κ 4 O 1 ,O 1' :O 6 ,O 6' ] monohydrate], {[Zn(C 6 H 8 O 4 )(C 9 H 8 N 6 ) 2 ]·H 2 O} n , has been synthesized by the reaction of Zn(Ac) 2 (Ac is acetate) with 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) and adipic acid (H 2 adi) at room temperature. In the polymer, each Zn II ion exhibits an irregular octahedral ZnN 2 O 4 coordination geometry and is coordinated by two N atoms from two symmetry-related bimt ligands and four O atoms from two symmetry-related dianionic adipate ligands. Zn II ions are connected by adipate ligands into a one-dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the Zn II ions in a monodentate mode on both sides of the main chain. In the crystal, the one-dimensional chains are further connected through N-H...O hydrogen bonds, leading to a three-dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.

  3. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Vladimir B.; Serbin, Alexander V.

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  4. Comment on "Relating side chain organization of PNIPAm with its conformation in aqueous methanol" by D. Mukherji, M. Wagner, M. D. Watson, S. Winzen, T. E. de Oliveira, C. M. Marques and K. Kremer, Soft Matter, 2016, 12, 7995.

    PubMed

    van der Vegt, Nico F A; Rodríguez-Ropero, Francisco

    2017-03-22

    In a recent paper, Mukherji et al. describe the collapse of poly(N-isopropyl acrylamide) in methanol-water mixtures based on experiments and molecular dynamics simulations. The conclusion of their work is that chain collapse is dominated by enthalpic bridging interactions while entropic effects play no major role. Here we show that this claim arises from an improper interpretation of preferential binding and the corresponding thermodynamic data presented. When interpreted correctly, the data instead provide evidence for repulsive enthalpic interactions of methanol with the polymer, supporting the emerging view of entropic chain collapse.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Wei, Yang; Wang, Cheng

    The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less

  6. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  7. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  8. Liquid Crystalline Polymers Containing Heterocycloalkane Mesogens. 2. Side-Chain Liquid Crystalline Polysiloxanes Containing 2,5-Disubstituted-1,3-Dioxane Mesogens.

    DTIC Science & Technology

    1986-10-01

    units and an aliphatic spacer containing eleven and respectively, ten methylene units were synthesized. Their phase behavior was studied by differential...scanning calorimetry and optical polarization microscopy, and compared with the phase behavior of the polysiloxanes and copolysiloxanes containing 4...containing eleven and respectively, ten methylene -units were synthesized. Their phase behavior was studied by differential * scanning calorimetry

  9. Fundamental Investigations of Durability at a Polymer Electrolyte-Electrode Interface

    DTIC Science & Technology

    2008-04-01

    before before σ -σ σ after before before σ -σ σ Cleavage of the side chain ether linkage (Fig. 3), which intrudes into the hydrophilic ionic cluster...directly correlated to peroxide yields measured Figure 3: ATR-FTIR Spectrum of Nafion ®112 (H-form) indicating absorption bands obtained using...electrocatalyst-based fuel cell electrode (referred as sacrificial electrode) directly into the liquid electrolyte, in which oxygen reduction was

  10. Validation of molecularly imprinted polymers for side chain selective phosphopeptide enrichment.

    PubMed

    Chen, Jing; Shinde, Sudhirkumar; Subedi, Prabal; Wierzbicka, Celina; Sellergren, Börje; Helling, Stefan; Marcus, Katrin

    2016-11-04

    Selective enrichment techniques are essential for mapping of protein posttranslational modifications (PTMs). Phosphorylation is one of the PTMs which continues to be associated with significant analytical challenges. Particularly problematic are tyrosine-phosphorylated peptides (pY-peptides) resulting from tryptic digestion which commonly escape current chemo- or immuno- affinity enrichments and hence remain undetected. We here report on significant improvements in this regard using pY selective molecularly imprinted polymers (pY-MIPs). The pY-MIP was compared with titanium dioxide (TiO 2 ) affinity based enrichment and immunoprecipitation (IP) with respect to selective enrichment from a mixture of 13 standard peptides at different sample loads. At a low sample load (1pmol of each peptide), IP resulted in enrichment of only a triply phosphorylated peptide whereas TiO 2 enriched phosphopeptides irrespective of the amino acid side chain. However, with increased sample complexity, TiO 2 failed to enrich the doubly phosphorylated peptides. This contrasted with the pY-MIP showing enrichment of all four tyrosine phosphorylated peptides at 1pmol sample load of each peptide with a few other peptides binding unselectively. At an increased sample complexity consisting of the standard peptides spiked into mouse brain digest, the MIP showed clear enrichment of all four pY- peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A versatile platform for precise synthesis of asymmetric molecular brush in one shot.

    PubMed

    Xu, Binbin; Feng, Chun; Huang, Xiaoyu

    2017-08-24

    Asymmetric molecular brushes emerge as a unique class of nanostructured polymers, while their versatile synthesis keeps a challenge for chemists. Here we show the synthesis of well-defined asymmetric molecular double-brushes comprising two different side chains linked to the same repeat unit along the backbone by one-pot concurrent atom transfer radical polymerization (ATRP) and Cu-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The double-brushes are based on a poly(Br-acrylate-alkyne) homopolymer possessing an alkynyl for CuAAC reaction and a 2-bromopropionate initiating group for ATRP in each repeat unit. The versatility of this one-shot approach is demonstrated by CuAAC reaction of alkynyl/poly(ethylene oxide)-N 3 and ATRP of various monomers. We also show the quantitative conversion of pentafluorophenyl ester groups to amide groups in side chains, allowing for the further fabrication of diverse building blocks. This work provides a versatile platform for facile synthesis of Janus-type double-brushes with structural and functional control, in a minimum number of reactions.Producing well-defined polymer compositions and structures facilitates their use in many different applications. Here the authors show the synthesis of well-defined asymmetric double-brushes by a one-pot concurrent atom transfer radical polymerization and Cu-catalyzed Click reaction.

  12. Enhanced production of longer side-chain polyhydroxyalkanoic acid with omega-aromatic group substitution in phaZ-disrupted Pseudomonas fluorescens BM07 mutant through unrelated carbon source cometabolism and salicylic acid beta-oxidation inhibition.

    PubMed

    Choi, Mun Hwan; Xu, Ju; Rho, Jong Kook; Zhao, Xu Ping; Yoon, Sung Chul

    2010-06-01

    The deletion of the intracellular polyhydroxyalkanoate (PHA) depolymerase gene (phaZ) in Pseudomonas fluorescens BM07 was found to increase more efficiently the levels of longer medium-chain-length (MCL) omega-aromatic monomer-units than in the wild-type strain when the cells were grown with a mixture of fructose and MCL omega-aromatic fatty acid in the presence of salicylic acid that is known as a beta-oxidation inhibitor in BM07 strain. When 11-phenoxyundecanoic acid was used as co-carbon source, the longest monomer-unit 3-hydroxy-11-phenoxyundecanoate, not reported in literature yet, was incorporated into the polymer chain up to approximately 10 mol%. An advantage of salicylic acid inhibition technique is that salicylic acid is not metabolized in BM07 strain, thus, the effective concentration of the inhibitor remaining constant throughout the cultivation. In conclusion, this new technique could be exploited for the enhanced production of side-chain modulated functional MCL-PHA with improved physicochemical properties in P. fluorescens BM07. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Critical Casimir effect in a polymer chain in supercritical solvents.

    PubMed

    Sumi, Tomonari; Imazaki, Nobuyuki; Sekino, Hideo

    2009-03-01

    Density fluctuation effects on the conformation of a polymer chain in a supercritical solvent were investigated by performing a multiscale simulation based on the density-functional theory. We found (a) a universal swelling of the polymer chain near the critical point, irrespective of whether the polymer chain is solvophilic or solvophobic, and (b) a characteristic collapse of the polymer chain having a strong solvophilicity at a temperature slightly higher than the critical point, where the isothermal compressibility becomes less than the ideal one.

  14. Organic materials able to detect analytes

    NASA Technical Reports Server (NTRS)

    Swager, Timothy M. (Inventor); Zhu, Zhengguo (Inventor); Bulovic, Vladimir (Inventor); Rose, Aimee (Inventor); Madigan, Conor Francis (Inventor)

    2012-01-01

    The present invention generally relates to polymers with lasing characteristics that allow the polymers to be useful in detecting analytes. In one aspect, the polymer, upon an interaction with an analyte, may exhibit a change in a lasing characteristic that can be determined in some fashion. For example, interaction of an analyte with the polymer may affect the ability of the polymer to reach an excited state that allows stimulated emission of photons to occur, which may be determined, thereby determining the analyte. In another aspect, the polymer, upon interaction with an analyte, may exhibit a change in stimulated emission that is at least 10 times greater with respect to a change in the spontaneous emission of the polymer upon interaction with the analyte. The polymer may be a conjugated polymer in some cases. In one set of embodiments, the polymer includes one or more hydrocarbon side chains, which may be parallel to the polymer backbone in some instances. In another set of embodiments, the polymer may include one or more pendant aromatic rings. In yet another set of embodiments, the polymer may be substantially encapsulated in a hydrocarbon. In still another set of embodiments, the polymer may be substantially resistant to photobleaching. In certain aspects, the polymer may be useful in the detection of explosive agents, such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT).

  15. Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries

    DOE PAGES

    Zhao, Hui; Wei, Yang; Wang, Cheng; ...

    2018-01-15

    The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less

  16. Improving the in vivo therapeutic index of siRNA polymer conjugates through increasing pH responsiveness.

    PubMed

    Guidry, Erin N; Farand, Julie; Soheili, Arash; Parish, Craig A; Kevin, Nancy J; Pipik, Brenda; Calati, Kathleen B; Ikemoto, Nori; Waldman, Jacob H; Latham, Andrew H; Howell, Bonnie J; Leone, Anthony; Garbaccio, Robert M; Barrett, Stephanie E; Parmar, Rubina Giare; Truong, Quang T; Mao, Bing; Davies, Ian W; Colletti, Steven L; Sepp-Lorenzino, Laura

    2014-02-19

    Polymer based carriers that aid in endosomal escape have proven to be efficacious siRNA delivery agents in vitro and in vivo; however, most suffer from cytotoxicity due in part to a lack of selectivity for endosomal versus cell membrane lysis. For polymer based carriers to move beyond the laboratory and into the clinic, it is critical to find carriers that are not only efficacious, but also have margins that are clinically relevant. In this paper we report three distinct categories of polymer conjugates that improve the selectivity of endosomal membrane lysis by relying on the change in pH associated with endosomal trafficking, including incorporation of low pKa heterocycles, acid cleavable amino side chains, or carboxylic acid pH sensitive charge switches. Additionally, we determine the therapeutic index of our polymer conjugates in vivo and demonstrate that the incorporation of pH responsive elements dramatically expands the therapeutic index to 10-15, beyond that of the therapeutic index (less than 3), for polymer conjugates previously reported.

  17. Brownian dynamics simulation of a polymer chain in a solid-state nanopore attached to a molecular stop

    NASA Astrophysics Data System (ADS)

    Wells, Craig; Hulings, Zachery; Melnikov, Dmitriy; Gracheva, Maria

    We study a nanopore inside a silicon dioxide membrane submerged in a KCl solution with a negatively charged polymer chain of varying lengths whose movement is described using Brownian dynamics. The polymer is attached to a molecule with a radius larger than that of the nanopore's which acts as a molecular stop, allowing the chain to thread the nanopore but preventing it from translocating. We found that the polymer chain's variation of movement along the nanopore decreased when increasing applied biases and chain lengths for portions of the chain closest to the molecular stop. The chain displacement within the pore is also compared to a freely translocating polymer where preliminary results show the free polymer having a greater variation in the radial direction. Overall, our preliminary results indicate that the radial direction of the polymer chain is dominated by the confinement in the narrow nanopore with restrictions imposed by the molecular stop and bias playing a lesser role. Understanding the interaction behavior of the polymer chain-stop molecule may lead to methods that decrease movement variation, facilitating an improvement on characterizing and identification of molecules. NSF DMR and CBET Grant No. 1352218.

  18. Flory-type theories of polymer chains under different external stimuli

    NASA Astrophysics Data System (ADS)

    Budkov, Yu A.; Kiselev, M. G.

    2018-01-01

    In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.

  19. Fabrication of chiroptically switchable films via co-gelation of a small chiral gelator with an achiral azobenzene-containing polymer.

    PubMed

    Yang, Dong; Zhang, Li; Yin, Lu; Zhao, Yin; Zhang, Wei; Liu, Minghua

    2017-09-20

    Helical polymers are widely found in nature and synthetic functional materials. Although a number of elaborate strategies have been developed to endow polymers with helicity through either covalent bonds or supramolecular techniques, it still remains a challenge to get the desired helical polymers with controlled handedness in an easy but effective manner. In this study, we report an easily accessible gelation-guided self-assembly system where the chirality of a gelator can be easily transferred to an achiral azobenzene-containing polymer during gelation. It is found that during the process of chiral induction, the induced chirality of the polymer was entirely dominated by the molecular chirality of the gelator. Experimentally, achiral azobenzene-containing polymers with different side-chain lengths were doped into a supramolecular gel system formed with amphiphilic N,N'-bis-(octadecyl)-l(d)-Boc-glutamic (LBG-18 or DBG-18 for short). CD spectra and SEM observation confirmed that the co-assembly of polymer/LBG-18 or polymer/DBG-18 in the xerogel state exhibited supramolecular chirality. More importantly, alternate UV and visible light irradiation on the xerogel film caused the induced CD signal to switch between on and off states. Thus a chiroptical switch was fabricated based on the isomerization of the azo-polymer in xerogel films.

  20. Molecular structure of dextran sulphate sodium in aqueous environment

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Every, Hayley A.; Jiskoot, Wim; Witkamp, Geert-Jan; Buijs, Wim

    2018-03-01

    Here we propose a 3D-molecular structural model for dextran sulphate sodium (DSS) in a neutral aqueous environment based on the results of a molecular modelling study. The DSS structure is dominated by the stereochemistry of the 1,6-linked α-glucose units and the presence of two sulphate groups on each α-glucose unit. The structure of DSS can be best described as a helix with various patterns of di-sulphate substitution on the glucose rings. The presence of a side chain does not alter the 3D-structure of the linear main chain much, but affects the overall spatial dimension of the polymer. The simulated polymers have a diameter similar to or in some cases even larger than model α-hemolysin nano-pores for macromolecule transport in many biological processes, indicating a size-limited translocation through such pores. All results of the molecular modelling study are in line with previously reported experimental data. This study establishes the three-dimensional structure of DSS and summarizes the spatial dimension of the polymer, serving as the basis for a better understanding on the molecular level of DSS-involved electrostatic interaction processes with biological components like proteins and cell pores.

  1. Solid polymeric electrolytes for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  2. Effects of alkoxy substitution on molecular structure, physicochemical and photovoltaic properties of 2D-conjugated polymers based on benzo[1,2-b:4,5-b‧]dithiophene and fluorinated benzothiadiazole

    NASA Astrophysics Data System (ADS)

    Wang, Wengong; Wang, Guo; Yang, Jie; Zhang, Jing; Chen, Lixia; Weng, Chao; Zhang, Zhi-Guo; Li, Yongfang; Shen, Ping

    2017-03-01

    Two donor-acceptor (D-A) copolymers (PMT-FBT and PET-FBT) with alkoxythiophene-substituted benzo[1,2-b:4,5-b‧]dithiophene as donor unit and difluorobenzothiazole as acceptor unit, were synthesized and employed as donor material for polymer solar cells (PSCs). The comparative study showed that the type (methoxyl versus ethylenedioxyl) and the position (3- and 4-positons) of alkoxy substituents on thiophene side chains have great effects on the molecular geometries and optoelectronic properties of these copolymers. PSCs based on two polymers exhibit maximum power conversion efficiencies of 3.29% and 2.40%, with open-circuit voltage (Voc) values as high as 0.85 and 1.02 V for PMT-FBT and PET-FBT, respectively.

  3. Nanostructured bio-functional polymer brushes.

    PubMed

    Padeste, Celestino; Farquet, Patrick; Potzner, Christian; Solak, Harun H

    2006-01-01

    Structured poly(glycidyl methracrylate) (poly-GMA) brushes have been grafted onto flexible fluoro-polymer films using a radiation grafting process. The reactive epoxide of poly-GMA provides the basis for a versatile biofunctionalization of the grafted brushes. Structure definition by extreme ultraviolet (EUV) exposure allowed nanometer-scale resolution of periodic patterns. By variation of the exposure dose the height of the grafted structures can be adapted in a wide range. Derivatization of the grafted brushes included reaction with various amines with different side chains, hydrolysis of the epoxide to diols to increase protein resistance and introduction of ionic groups to yield poly-electrolytes. As an example for biofunctionalization, biotin was linked to the grafted brush and biofunctionality was demonstrated in a competitive biotin-streptavidin assay. In this article we also present a brief review of other approaches to obtain structured biofunctional polymer brushes.

  4. Dependence of Ion Dynamics on the Polymer Chain Length in Poly(ethylene oxide)-Based Polymer Electrolytes.

    PubMed

    Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas

    2015-06-04

    It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.

  5. Tension Amplification in Molecular Brushes in Solutions and on Substrates

    PubMed Central

    Panyukov, Sergey; Zhulina, Ekaterina B.; Sheiko, Sergei S.; Randall, Greg C.; Brock, James; Rubinstein, Michael

    2009-01-01

    Molecular bottle-brushes are highly branched macromolecules with side chains densely grafted to a long polymer backbone. The brush-like architecture allows focusing of the side-chain tension to the backbone and its amplification from the picoNewton to nanoNewton range. The backbone tension depends on the overall molecular conformation and the surrounding environment. Here we study the relation between the tension and conformation of the molecular brushes in solutions, melts, and on substrates. In solutions, we find that the backbone tension in dense brushes with side chains attached to every backbone monomer is on the order of f0N3/8 in athermal solvents, f0N1/3 in θ-solvents, and f0 in poor solvents and melts, where N is the degree of polymerization of side chains, f0≃ kBT/b is the maximum tension in side chains, b is the Kuhn length, kB is Boltzmann constant, and T is absolute temperature. Depending on the side chain length and solvent quality, molecular brushes in solutions develop tension on the order of 10–100 picoNewtons, which is sufficient to break hydrogen bonds. Significant amplification of tension occurs upon adsorption of brushes onto a substrate. On a strongly attractive substrate, maximum tension in the brush backbone is ~ f0N, reaching values on the order of several nanoNewtons which exceed the strength of a typical covalent bond. At low grafting density and high spreading parameter the cross-sectional profile of adsorbed molecular brush is approximately rectangular with thicknes ~bA/S, where A is the Hamaker constant and S is the spreading parameter. At a very high spreading parameter (S > A), the brush thickness saturates at monolayer ~ b. At a low spreading parameter, the cross-sectional profile of adsorbed molecular brush has triangular tent-like shape. In the cross-over between these two opposite cases, covering a wide range of parameter space, the adsorbed molecular brush consists of two layers. Side chains in the lower layer gain surface energy due to the direct interaction with the substrate, while the second layer spreads on the top of the first layer. Scaling theory predicts that this second layer has a triangular cross-section with width R ~ N3/5 and height h ~ N2/5. Using self-consistent field theory we calculate the cap profile y (x) = h (1 − x2/R2)2, where x is the transverse distance from the backbone. The predicted cap shape is in excellent agreement with both computer simulation and experiment. PMID:19673133

  6. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  7. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  8. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  9. Solution properties of the capsular polysaccharide produced by Klebsiella pneumoniae SK1.

    PubMed

    Cescutti, P; Paoletti, S; Navarini, L; Flaibani, A

    1993-08-01

    The solution properties of the capsular polysaccharide produced by Klebsiella pneumoniae SK1, SK1-CPS, were investigated by various methods. The SK1-CPS repeating unit is a branched pentasaccharide containing one glucuronic acid as single unit side chain; acetyl groups are present as non-carbohydrate substituents on the uronic acid residue in non-stoichiometric amounts. Chiro-optical, potentiometric, viscometric and rheological measurements have been performed in order to characterize the conformational behaviour of the polymer in water and in aqueous salt solutions. Under the investigated experimental conditions, changes of temperature, ionic strength and pH were shown not to induce any cooperative conformational transition. All the results obtained suggest that the solution conformation of SK1-CPS is a random coil with a certain degree of chain flexibility. The removal of the acetyl substituents apparently does not modify the overall conclusions drawn for the native polymer, except for an incipient tendency to aggregation revealed for high salt conditions.

  10. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]-phenyl-C{sub 61}-butyric acid methyl ester composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafalce, E.; Toglia, P.; Jiang, X.

    2012-05-21

    A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P{sup +}/C{sub 60}{sup -} charge transfer complex was not completely ruled out.more » The large exciton binding energy (E{sub b} = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (« less

  11. Distribution of Chains in Polymer Brushes Produced by a “Grafting From” Mechanism

    DOE PAGES

    Martinez, Andre P.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.; ...

    2016-01-11

    The molecular weight and polydispersity of the chains in a polymer brush are critical parameters determining the brush properties. However, the characterization of polymer brushes is hindered by the vanishingly small mass of polymer present in brush layers. In this study, in order to obtain sufficient quantities of polymer for analysis, polymer brushes were grown from high surface area fibrous nylon membranes by ATRP. We synthesized the brushes with varying surface initiator densities, polymerization times, and amounts of sacrificial initiator, then cleaved from the substrate, and analyzed by GPC and NMR. Characterization showed that the surface-grown polymer chains were moremore » polydisperse and had lower average molecular weight compared to solution-grown polymers synthesized concurrently. Furthermore, the molecular weight distribution of the polymer brushes was observed to be bimodal, with a low molecular weight population of chains representing a significant mass fraction of the polymer chains at high surface initiator densities. Moreover, the origin of this low MW polymer fraction is proposed to be the termination of growing chains by recombination during the early stages of polymerization, a mechanism confirmed by molecular dynamics simulations of brush polymerization.« less

  12. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking: anchors modified polyanions interference with the HIV-1 fusion mediator.

    PubMed

    Tsvetkov, Vladimir B; Serbin, Alexander V

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 (HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics (MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  13. A Langevin dynamics simulation study of the tribology of polymer loop brushes.

    PubMed

    Yin, Fang; Bedrov, Dmitry; Smith, Grant D; Kilbey, S Michael

    2007-08-28

    The tribology of surfaces modified with doubly bound polymer chains (loops) has been investigated in good solvent conditions using Langevin dynamics simulations. The density profiles, brush interpenetration, chain inclination, normal forces, and shear forces for two flat substrates modified by doubly bound bead-necklace polymers and equivalent singly bound polymers (twice as many polymer chains of 12 the molecular weight of the loop chains) were determined and compared as a function of surface separation, grafting density, and shear velocity. The doubly bound polymer layers showed less interpenetration with decreasing separation than the equivalent singly bound layers. Surprisingly, this difference in interpenetration between doubly bound polymer and singly bound polymer did not result in decreased friction at high shear velocity possibly due to the decreased ability of the doubly bound chains to deform in response to the applied shear. However, at lower shear velocity, where deformation of the chains in the flow direction is less pronounced and the difference in interpenetration is greater between the doubly bound and singly bound chains, some reduction in friction was observed.

  14. Stirring Up Acceptor Phase and Controlling Morphology via Choosing Appropriate Rigid Aryl Rings as Lever Arms in Symmetry-Breaking Benzodithiophene for High-Performance Fullerene and Fullerene-Free Polymer Solar Cells.

    PubMed

    Liu, Deyu; Wang, Junyi; Gu, Chunyang; Li, Yonghai; Bao, Xichang; Yang, Renqiang

    2018-02-01

    Two series of new polymers with medium and wide bandgaps to match fullerene (PC 71 BM) and fullerene-free 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC) acceptors are designed and synthesized, respectively. For constructing the key donor building blocks, the effective symmetry-breaking strategy is employed. Two common aromatic rings (thiophene and benzene) are chosen as one side substituted groups in the asymmetric benzodithiophene (BDT) monomers. In addition, another rigid benzene ring is inserted between aryl and thioether in the side chains, which results in larger twisting and destroying the aggregation and forming longer lever arms. As a result, highly ordered polymers (PBDTsTh-FBT and PBDTsPh-FBT) with strong aggregation properties can blend well with roughly spherical PC 71 BM, while amorphous polymers (PBDTsThPh-BDD and PBDTsPhPh-BDD) with long and rigid aryl rings show good miscibility with elongated ITIC, and finally, both devices exhibit excellent power conversion efficiencies over 10%. Thus, it clearly shows that the asymmetric BDT unit is an excellent donor building block to construct highly efficient photovoltaic polymers. Meanwhile, this work demonstrates that it is not necessary that high-performance fullerene-free polymer solar cells (PSCs) require highly ordered microstructures in the blending films, different from the fullerene-based PSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Adsorption of poly(ethylene succinate) chain onto graphene nanosheets: A molecular simulation.

    PubMed

    Kelich, Payam; Asadinezhad, Ahmad

    2016-09-01

    Understanding the interaction between single polymer chain and graphene nanosheets at local and global length scales is essential for it underlies the mesoscopic properties of polymer nanocomposites. A computational attempt was then performed using atomistic molecular dynamics simulation to gain physical insights into behavior of a model aliphatic polyester, poly(ethylene succinate), single chain near graphene nanosheets, where the effects of the polymer chain length, graphene functionalization, and temperature on conformational properties of the polymer were studied comparatively. Graphene functionalization was carried out through extending the parameters set of an all-atom force field. The results showed a significant conformational transition of the polymer chain from three-dimensional statistical coil, in initial state, to two-dimensional fold, in final state, during adsorption on graphene. The conformational order, overall shape, end-to-end separation statistics, and mobility of the polymer chain were found to be influenced by the graphene functionalization, temperature, and polymer chain length. Furthermore, the polymer chain dynamics mode during adsorption on graphene was observed to transit from normal diffusive to slow subdiffusive mode. The findings from this computational study could shed light on the physics of the early stages of aliphatic polyester chain organization induced by graphene. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Model systems for single molecule polymer dynamics

    PubMed Central

    Latinwo, Folarin

    2012-01-01

    Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980

  17. Introduction to Polymer Chemistry.

    ERIC Educational Resources Information Center

    Harris, Frank W.

    1981-01-01

    Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)

  18. Structural and optical studies on selected web spinning spider silks

    NASA Astrophysics Data System (ADS)

    Karthikeyani, R.; Divya, A.; Mathavan, T.; Asath, R. Mohamed; Benial, A. Milton Franklin; Muthuchelian, K.

    2017-01-01

    This study investigates the structural and optical properties in the cribellate silk of the sheet web spider Stegodyphus sarasinorum Karsch (Eresidae) and the combined dragline, viscid silk of the orb-web spiders Argiope pulchella Thorell (Araneidae) and Nephila pilipes Fabricius (Nephilidae). X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Ultraviolet-visible (UV-Vis) and fluorescence spectroscopic techniques were used to study these three spider silk species. X-ray diffraction data are consistent with the amorphous polymer network which is arising from the interaction of larger side chain amino acid contributions due to the poly-glycine rich sequences known to be present in the proteins of cribellate silk. The same amorphous polymer networks have been determined from the combined dragline and viscid silk of orb-web spiders. From FTIR spectra the results demonstrate that, cribellate silk of Stegodyphus sarasinorum, combined dragline viscid silk of Argiope pulchella and Nephila pilipes spider silks are showing protein peaks in the amide I, II and III regions. Further they proved that the functional groups present in the protein moieties are attributed to α-helical and side chain amino acid contributions. The optical properties of the obtained spider silks such as extinction coefficients, refractive index, real and imaginary dielectric constants and optical conductance were studied extensively from UV-Vis analysis. The important fluorescent amino acid tyrosine is present in the protein folding was investigated by using fluorescence spectroscopy. This research would explore the protein moieties present in the spider silks which were found to be associated with α-helix and side chain amino acid contributions than with β-sheet secondary structure and also the optical relationship between the three different spider silks are investigated. Successful spectroscopic knowledge of the internal protein structure and optical properties of the spider silks could permit industrial production of silk-based fibres with unique properties under benign conditions.

  19. Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore

    NASA Astrophysics Data System (ADS)

    Wells, Craig C.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2017-08-01

    We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.

  20. Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore.

    PubMed

    Wells, Craig C; Melnikov, Dmitriy V; Gracheva, Maria E

    2017-08-07

    We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.

  1. Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics.

    PubMed

    Schellenberger, S; Gillgard, P; Stare, A; Hanning, A; Levenstam, O; Roos, S; Cousins, I T

    2018-02-01

    Fluorinated durable water repellent (DWR) agents are used to obtain water and stain repellent textiles. Due to the on-going phase-out of DWRs based on side-chain fluorinated polymers (SFP) with "long" perfluoroalkyl chains, the textile industry lacks suitable alternatives with comparable material characteristics. The constant development and optimization of SFPs for textile applications initiated more than half a century ago has resulted in a robust and very efficient DWR-technology and textiles with exceptional hydro- and oleo-phobic properties. The industry is now in the predicament that the long-chain SFPs with the best technical performance have undesirable toxicological and environmental behaviour. This study provides a comprehensive overview of the technical performance of presently available fluorinated and non-fluorinated DWRs as part of a chemical alternatives assessment (CAA). The results are based on a study with synthetic outdoor fabrics treated with alternative DWRs and tested for repellency using industrial standard and complementary methods. Using this approach, the complex structure-property relationships of DWR-polymers could be explained on a molecular level. Both short-chain SFPs and non-fluorinated DWRs showed excellent water repellency and durability in some cases while short-chain SFPs were the more robust of the alternatives to long-chain SFPs. A strong decline in oil repellency and durability with perfluoroalkyl chain length was shown for SFP DWRs. Non-fluorinated alternatives were unable to repel oil, which might limit their potential for substitution in textile application that require repellency towards non-polar liquids. Copyright © 2017. Published by Elsevier Ltd.

  2. Tuning Surface Properties of Poly(methyl methacrylate) Film Using Poly(perfluoromethyl methacrylate)s with Short Perfluorinated Side Chains.

    PubMed

    Sohn, Eun-Ho; Ha, Jong-Wook; Lee, Soo-Bok; Park, In Jun

    2016-09-27

    To control the surface properties of a commonly used polymer, poly(methyl methacrylate) (PMMA), poly(perfluoromethyl methacrylate)s (PFMMAs) with short perfluorinated side groups (i.e., -CF3, -CF2CF3, -(CF3)2, -CF2CF2CF3) were used as blend components because of their good solubility in organic solvents, low surface energies, and high optical transmittance. The surface energies of the blend films of PFMMA with the -CF3 group and PMMA increased continuously with increasing PMMA contents from 17.6 to 26.0 mN/m, whereas those of the other polymer blend films remained at very low levels (10.2-12.6 mN/m), similar to those of pure PFMMAs, even when the blends contained 90 wt %PMMA. Surface morphology and composition measurements revealed that this result originated from the different blend structures, such as lateral and vertical phase separations. We expect that these PFMMAs will be useful in widening the applicable window of PMMA.

  3. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems.

    PubMed

    Miyazaki, Maiko; Yuba, Eiji; Hayashi, Hiroshi; Harada, Atsushi; Kono, Kenji

    2018-01-17

    For the enhancement of therapeutic effects and reduction of side effects derived from anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery systems with cancer-specificity and controlled release function inside cancer cells. pH-sensitive liposomes are useful as an intracellular drug delivery system because of their abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes modified with various types of pH-sensitive polymers based on synthetic polymers and biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic acid (HA)-based pH-sensitive polymers were designed as multifunctional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic side chain structure than that of MGlu-HA, were synthesized by reaction with various dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, but showed content release under weakly acidic conditions. CHex-HA-modified liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the same liposomes were taken up only slightly by cells expressing CD44 proteins less. Competition assay using free HA or other polymers revealed that HA derivative-modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified liposomes are useful as cell-specific intracellular drug delivery systems.

  4. Characterization of Hydrophobic Interactions of Polymers with Water and Phospholipid Membranes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Drenscko, Mihaela

    Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of small membranes using all atomistic and coarse-grained methods. The molecular interaction between common polymer chains used in biomedical applications and the cell membrane is unknown. This interaction may affect the biocompatibility of the polymer chains. Molecular dynamics simulations offer an emerging tool to characterize the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. We systematically characterize with long-time all-atomistic molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a model phospholipid membrane. We find that the length of polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilize advanced sampling techniques in molecular dynamics to characterize the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. These results can be used to design polymer chain lengths and chemistries to optimize their interaction with cell membranes at the molecular level.

  5. Synthesis and biomedical applications of functional poly(α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides.

    PubMed

    Yin, Qian; Yin, Lichen; Wang, Hua; Cheng, Jianjun

    2015-07-21

    Poly(α-hydroxy acids) (PAHAs) are a class of biodegradable and biocompatible polymers that are widely used in numerous applications. One drawback of these conventional polymers, however, is their lack of side-chain functionalities, which makes it difficult to conjugate active moieties to PAHA or to fine-tune the physical and chemical properties of PAHA-derived materials through side-chain modifications. Thus, extensive efforts have been devoted to the development of methodology that allows facile preparation of PAHAs with controlled molecular weights and a variety of functionalities for widespread utilities. However, it is highly challenging to introduce functional groups into conventional PAHAs derived from ring-opening polymerization (ROP) of lactides and glycolides to yield functional PAHAs with favorable properties, such as tunable hydrophilicity/hydrophobicity, facile postpolymerization modification, and well-defined physicochemical properties. Amino acids are excellent resources for functional polymers because of their low cost, availability, and structural as well as stereochemical diversity. Nevertheless, the synthesis of functional PAHAs using amino acids as building blocks has been rarely reported because of the difficulty of preparing large-scale monomers and poor yields during the synthesis. The synthesis of functionalized PAHAs from O-carboxyanhydrides (OCAs), a class of five-membered cyclic anhydrides derived from amino acids, has proven to be one of the most promising strategies and has thus attracted tremendous interest recently. In this Account, we highlight the recent progress in our group on the synthesis of functional PAHAs via ROP of OCAs and their self-assembly and biomedical applications. New synthetic methodologies that allow the facile preparation of PAHAs with controlled molecular weights and various functionalities through ROP of OCAs are reviewed and evaluated. The in vivo stability, side-chain functionalities, and/or trigger responsiveness of several functional PAHAs are evaluated. Their biomedical applications in drug and gene delivery are also discussed. The ready availability of starting materials from renewable resources and the facile postmodification strategies such as azide-alkyne cycloaddition and the thiol-yne "click" reaction have enabled the production of a multitude of PAHAs with controlled molecular weights, narrow polydispersity, high terminal group fidelities, and structural diversities that are amenable for self-assembly and bioapplications. We anticipate that this new generation of PAHAs and their self-assembled nanosystems as biomaterials will open up exciting new opportunities and have widespread utilities for biological applications.

  6. Variation of the Side Chain Branch Position Leads to Vastly Improved Molecular Weight and OPV Performance in 4,8-dialkoxybenzo[1,2-b:4,5-b′]dithiophene/2,1,3-benzothiadiazole Copolymers

    DOE PAGES

    Coffin, Robert C.; MacNeill, Christopher M.; Peterson, Eric D.; ...

    2011-01-01

    Tmore » hrough manipulation of the solubilizing side chains, we were able to dramatically improve the molecular weight ( M w ) of 4,8-dialkoxybenzo[1,2- b :4,5- b ′ ]dithiophene (BD)/2,1,3-benzothiadiazole (B) copolymers. When dodecyl side chains ( P1 ) are employed at the 4- and 8-positions of the BD unit, we obtain a chloroform-soluble copolymer fraction with M w of 6.3 kg/mol. Surprisingly, by moving to the commonly employed 2-ethylhexyl branch ( P2 ), M w decreases to 3.4 kg/mol. his is despite numerous reports that this side chain increases solubility and M w . By moving the ethyl branch in one position relative to the polymer backbone (1-ethylhexyl, P3 ), M w is dramatically increased to 68.8 kg/mol. As a result of this M w increase, the shape of the absorption profile is dramatically altered, with λ max = 637 nm compared with 598 nm for P1 and 579 nm for P2 . he hole mobility as determined by thin film transistor (F) measurements is improved from ~ 1 × 10 − 6  cm 2 /Vs for P1 and P2 to 7 × 10 − 4  cm 2 /Vs for P3 , while solar cell power conversion efficiency in increased to 2.91 % for P3 relative to 0.31 % and 0.19 % for P1 and P2 , respectively.« less

  7. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk electrode (RDE) experiments determined the interfacial resistance imposed during cell assembly between the AEM, catalyst, and ionomer was a factor in fuel cell performance. Further RDE studies investigated the electrochemical stability of the PIL block copolymer ionomer under applied potentials, where it was determined that potential cycling increased the degradation compared to constant voltage or open circuit voltage studies. The PIL diblock copolymer was then anion exchanged to the bis(trifluoromethane)sulfonamide (TFSI-) anion form and imbibed with a lithium salt and ionic liquid solution for use as a SPE in lithium-ion batteries resulting in a maximum discharge capacity of 112 mAh g-1 at 0.1 C with a Coulombic efficiency greater than 94% over 100 cycles. PIL block copolymers have promising mechanical properties and transport properties (i.e., ion conductivity) in both the hydrated (hydrophilic anions; Br-, OH-) and dry (hydrophobic anions; TFSI-) states resulting in highly conductive, chemically/thermally stable, and mechanically robust solid-state polymer separators for use as AEMs in AFCs and as SPEs in lithium-ion batteries.

  8. Polymer Self-Assembly into Unique Fractal Nanostructures in Solution by a One-Shot Synthetic Procedure.

    PubMed

    Shin, Suyong; Gu, Ming-Long; Yu, Chin-Yang; Jeon, Jongseol; Lee, Eunji; Choi, Tae-Lim

    2018-01-10

    A fractal nanostructure having a high surface area is potentially useful in sensors, catalysts, functional coatings, and biomedical and electronic applications. Preparation of fractal nanostructures on solid substrates has been reported using various inorganic or organic compounds. However, achieving such a process using polymers in solution has been extremely challenging. Here, we report a simple one-shot preparation of polymer fractal nanostructures in solution via an unprecedented assembly mechanism controlled by polymerization and self-assembly kinetics. This was possible only because one monomer was significantly more reactive than the other, thereby easily forming a diblock copolymer microstructure. Then, the second insoluble block containing poly(p-phenylenevinylene) (PPV) without any side chains spontaneously underwent self-assembly during polymerization by an in situ nanoparticlization of conjugated polymers (INCP) method. The formation of fractal structures in solution was confirmed by various imaging techniques such as atomic force microscopy, transmission electron microscopy (TEM), and cryogenic TEM. The diffusion-limited aggregation theory was adopted to explain the branching patterns of the fractal nanostructures according to the changes in polymerization conditions such as the monomer concentration and the presence of additives. Finally, after detailed kinetic analyses, we proposed a plausible mechanism for the formation of unique fractal nanostructures, where the gradual formation and continuous growth of micelles in a chain-growth-like manner were accounted for.

  9. Confined dynamics of grafted polymer chains in solutions of linear polymer

    DOE PAGES

    Poling-Skutvik, Ryan D.; Olafson, Katy N.; Narayanan, Suresh; ...

    2017-09-11

    Here, we measure the dynamics of high molecular weight polystyrene grafted to silica nanoparticles dispersed in semidilute solutions of linear polymer. Structurally, the linear free chains do not penetrate the grafted corona but increase the osmotic pressure of the solution, collapsing the grafted polymer and leading to eventual aggregation of the grafted particles at high matrix concentrations. Dynamically, the relaxations of the grafted polymer are controlled by the solvent viscosity according to the Zimm model on short time scales. On longer time scales, the grafted chains are confined by neighboring grafted chains, preventing full relaxation over the experimental time scale.more » Adding free linear polymer to the solution does not affect the initial Zimm relaxations of the grafted polymer but does increase the confinement of the grafted chains. Finally, our results elucidate the physics underlying the slow relaxations of grafted polymer.« less

  10. Confined dynamics of grafted polymer chains in solutions of linear polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poling-Skutvik, Ryan D.; Olafson, Katy N.; Narayanan, Suresh

    Here, we measure the dynamics of high molecular weight polystyrene grafted to silica nanoparticles dispersed in semidilute solutions of linear polymer. Structurally, the linear free chains do not penetrate the grafted corona but increase the osmotic pressure of the solution, collapsing the grafted polymer and leading to eventual aggregation of the grafted particles at high matrix concentrations. Dynamically, the relaxations of the grafted polymer are controlled by the solvent viscosity according to the Zimm model on short time scales. On longer time scales, the grafted chains are confined by neighboring grafted chains, preventing full relaxation over the experimental time scale.more » Adding free linear polymer to the solution does not affect the initial Zimm relaxations of the grafted polymer but does increase the confinement of the grafted chains. Finally, our results elucidate the physics underlying the slow relaxations of grafted polymer.« less

  11. Reduced viscosity for flagella moving in a solution of long polymer chains

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Li, Gaojin; Ardekani, Arezoo M.

    2018-02-01

    The bacterial flagellum thickness is smaller than the radius of gyration of long polymer chain molecules. The flow velocity gradient over the length of polymer chains can be nonuniform and continuum models of polymeric liquids break in this limit. In this work, we use Brownian dynamics simulations to study a rotating helical flagellum in a polymer solution and overcome this limitation. As the polymer size increases, the viscosity experienced by the flagellum asymptotically reduces to the solvent viscosity. The contribution of polymer molecules to the local viscosity in a solution of long polymer chains decreases with the inverse of polymer size to the power 1/2. The difference in viscosity experienced by the bacterial cell body and flagella can predict the nonmonotonic swimming speed of bacteria in polymer solutions.

  12. Signature of hydrophobic hydration in a single polymer

    PubMed Central

    Li, Isaac T. S.; Walker, Gilbert C.

    2011-01-01

    Hydrophobicity underpins self-assembly in many natural and synthetic molecular and nanoscale systems. A signature of hydrophobicity is its temperature dependence. The first experimental evaluation of the temperature and size dependence of hydration free energy in a single hydrophobic polymer is reported, which tests key assumptions in models of hydrophobic interactions in protein folding. Herein, the hydration free energy required to extend three hydrophobic polymers with differently sized aromatic side chains was directly measured by single molecule force spectroscopy. The results are threefold. First, the hydration free energy per monomer is found to be strongly dependent on temperature and does not follow interfacial thermodynamics. Second, the temperature dependence profiles are distinct among the three hydrophobic polymers as a result of a hydrophobic size effect at the subnanometer scale. Third, the hydration free energy of a monomer on a macromolecule is different from a free monomer; corrections for the reduced hydration free energy due to hydrophobic interaction from neighboring units are required. PMID:21911397

  13. Dynamics of polydots: Soft luminescent polymeric nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.

    The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less

  14. Dynamics of polydots: Soft luminescent polymeric nanoparticles

    DOE PAGES

    Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.; ...

    2016-03-04

    The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less

  15. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers

    NASA Astrophysics Data System (ADS)

    Karaman, Mustafa; Uçar, Tuba

    2016-01-01

    Thin films of poly(2,2,3,4,4,4 hexafluorobutyl acrylate-glycidyl methacrylate) (P(HFBA-GMA) were deposited on different surfaces using an inductively coupled RF plasma reactor. Fluorinated polymer was used to impart hydrophobicity, whereas epoxy polymer was used for improved durability. The deposition at a low plasma power and temperature was suitable for the functionalization of fragile surfaces such as textile fabrics. The coated rough textile surfaces were found to be superhydrophobic with water contact angles greater than 150° due to the high retention of long fluorinated side chains. The hydrophobicity of the surfaces was observed to be stable after many exposures to ultrasonification tests, which is attributed to the mechanical durability of the films due to their epoxide functionality. FTIR and XPS analyses of the deposited films confirmed that the epoxide functionality of the polymers increased with increasing glycidyl methacrylate fraction in the reactor inlet. The modulus and hardness values of the films also increase with increasing epoxide functionality.

  16. Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics

    DOE PAGES

    Dong, Ban Xuan; Li, Anton; Strzalka, Joseph; ...

    2016-09-18

    The morphological structure of poly(3-hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin-casting methods are investigated. We found that the MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side-chain stacking, π-π stacking, and conjugated backbone directions. Furthermore, the average molecular orientations and relative degrees of crystallinity of MAPLE-deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin-casting technique. In spite of the seemingly unfavorable molecular orientations andmore » the highly disordered morphologies, the in-plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin-cast samples, exhibiting similar transport activation energies (56 meV versus 54 meV) to those reported in the literature for high mobility polymers.« less

  17. Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ban Xuan; Li, Anton; Strzalka, Joseph

    The morphological structure of poly(3-hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin-casting methods are investigated. We found that the MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side-chain stacking, π-π stacking, and conjugated backbone directions. Furthermore, the average molecular orientations and relative degrees of crystallinity of MAPLE-deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin-casting technique. In spite of the seemingly unfavorable molecular orientations andmore » the highly disordered morphologies, the in-plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin-cast samples, exhibiting similar transport activation energies (56 meV versus 54 meV) to those reported in the literature for high mobility polymers.« less

  18. Stretching of a polymer chain anchored to a surface: the massive field theory approach

    NASA Astrophysics Data System (ADS)

    Usatenko, Zoryana

    2014-09-01

    Taking into account the well-known correspondence between the field theoretical φ4 O(n)-vector model in the limit n → 0 and the behaviour of long-flexible polymer chains, the investigation of stretching of an ideal and a real polymer chain with excluded volume interactions in a good solvent anchored to repulsive and inert surfaces is performed. The calculations of the average stretching force which arises when the free end of a polymer chain moves away from a repulsive or inert surface are performed up to one-loop order of the massive field theory approach in fixed space dimensions d = 3. The analysis of the obtained results indicates that the average stretching force for a real polymer chain anchored to a repulsive surface demonstrates different behaviour for the cases \\tilde{z}\\ll1 and \\tilde{z}\\gg1 , where \\tilde{z}=z^\\prime/Rz . Besides, the results obtained in the framework of the massive field theory approach are in good agreement with previous theoretical results for an ideal polymer chain and results of a density functional theory approach for the region of small applied forces when deformation of a polymer chain in the direction of the applied force is not bigger than the linear extension of a polymer chain in this direction. The better agreement between these two methods is observed in the case where the number of monomers increases and the polymer chain becomes longer.

  19. Bacterial Sunscreen: Layer-by-Layer Deposition of UV-Absorbing Polymers on Whole-Cell Biosensors (POSTPRINT)

    DTIC Science & Technology

    2012-06-13

    mycosporine - like amino acids that absorb in the UV range and can quench UV-induced intracellular free radicals.2,3 Common in both microorganisms and higher...oxygen, which will react with amino acid side chains and reduce protein stability. GFPuv is excited by long-wave UV and requires ionization for...vinyl sulfate, poly-4-styrenesulfonic acid , and humic acid ) were used to encapsulate E. coli cells expressing green fluorescent protein (GFP) either

  20. Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces.

    PubMed

    Wei, Qiang; Schlaich, Christoph; Prévost, Sylvain; Schulz, Andrea; Böttcher, Christoph; Gradzielski, Michael; Qi, Zhenhui; Haag, Rainer; Schalley, Christoph A

    2014-11-19

    Supramolecular polymerization for non-wetting surface coatings is described. The self-assembly of low-molecular-weight gelators (LMWGs) with perfluorinated side chains can be utilized to rapidly construct superhydrophobic, as well as liquid-infused slippery surfaces within minutes. The lubricated slippery surface exhibits impressive repellency to biological li-quids, such as human serum and blood, and very fast self-healing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  2. Clustering of Cyclodextrin-Functionalized Microbeads by an Amphiphilic Biopolymer: Real-Time Observation of Structures Resembling Blood Clots.

    PubMed

    Arya, Chandamany; Saez Cabesas, Camila A; Huang, Hubert; Raghavan, Srinivasa R

    2017-10-25

    Colloidal particles can be induced to cluster by adding polymers in a process called bridging flocculation. For bridging to occur, the polymer must bind strongly to the surfaces of adjacent particles, such as via electrostatic interactions. Here, we introduce a new system where bridging occurs due to specific interactions between the side chains of an amphiphilic polymer and supramolecules on the particle surface. The polymer is a hydrophobically modified chitosan (hmC) while the particles are uniform polymeric microbeads (∼160 μm in diameter) made by a microfluidic technique and functionalized on their surface by α-cyclodextrins (CDs). The CDs have hydrophobic binding pockets that can capture the n-alkyl hydrophobes present along the hmC chains. Clustering of CD-coated microbeads in water by hmC is visualized in real time using optical microscopy. Interestingly, the clustering follows two distinct stages: first, the microbeads are bridged into clusters by hmC chains, which occurs by the interaction of individual chains with the CDs on adjacent particles. Thereafter, additional hmC from the solution adsorbs onto the surfaces of the microbeads and an hmC "mesh" grows around the clusters. This growing nanostructured mesh can trap surrounding microsized objects and sequester them within the overall cluster. Such clustering is reminiscent of blood clotting where blood platelets initially cluster at a wound site, whereupon they induce growth of a protein (fibrin) mesh around the clusters, which entraps other passive cells. Clustering does not occur with the native chitosan (lacking hydrophobes) or with the bare particles (lacking CDs); these results confirm that the clustering is indeed due to hydrophobic interactions between the hmC and the CDs. Microbead clustering via amphiphilic biopolymers could be applicable in embolization, which is a surgical technique used to block blood flow to a particular area of the body, or in agglutination assays.

  3. Thermally induced texture flip in semiconducting polymer stabilized by epitaxial relationship

    NASA Astrophysics Data System (ADS)

    O'Hara, Kathryn A.; Pokuri, Balaji S. S.; Takacs, Christopher J.; Beaujuge, Pierre M.; Ganapathysubramanian, Baskar; Chabinyc, Michael L.

    The morphology of semiconducting polymer films has a large effect on the charge transport properties. Charges can move easily along the conjugated backbone and in the pi-pi stacking direction. However, transport through the film is determined by the connectivity between domains, which is not well understood. We previously observed quadrites in the polymer, PSBTBT, and proposed that the preferential overlap between lamellae may improve connectivity and provide an additional conduction pathway. Now, the presence of quadrites is revealed in another successful donor polymer, PBDTTPD, using high resolution transmission electron microscopy (HRTEM). A study of how side-chain substitution affects the epitaxial crossing is conducted by examining several PBDTTPD derivatives. The stability of the film texture with annealing is also examined as a function of quadrite formation. It has been shown that heating some semicrystalline polymers above the melting temperature and slow cooling can flip the lamellar texture from face-on to edge-on. We hypothesize that the orientation of lamellar crystallites in PBDTTPD films is stabilized by the epitaxial overlap between adjacent crystalline domains. This may have important implications for the electronic transport properties.

  4. Solution‐crystallization and related phenomena in 9,9‐dialkyl‐fluorene polymers. II. Influence of side‐chain structure

    PubMed Central

    Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul

    2015-01-01

    ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506 PMID:27546983

  5. Oxidation reaction of polyether-based material and its suppression in lithium rechargeable battery using 4 V class cathode, LiNi1/3Mn1/3Co1/3O2.

    PubMed

    Kobayashi, Takeshi; Kobayashi, Yo; Tabuchi, Masato; Shono, Kumi; Ohno, Yasutaka; Mita, Yuichi; Miyashiro, Hajime

    2013-12-11

    The all solid-state lithium battery with polyether-based solid polymer electrolyte (SPE) is regarded as one of next-generation lithium batteries, and has potential for sufficient safety because of the flammable-electrolyte-free system. It has been believed that polyether-based SPE is oxidized at the polymer/electrode interface with 4 V class cathodes. Therefore, it has been used for electric devices such as organic transistor, and lithium battery under 3 V. We estimated decomposition reaction of polyether used as SPE of all solid-state lithium battery. We first identified the decomposed parts of polyether-based SPE and the conservation of most main chain framework, considering the results of SPE analysis after long cycle operations. The oxidation reaction was found to occur slightly at the ether bond in the main chain with the branched side chain. Moreover, we resolved the issue by introducing a self-sacrificing buffer layer at the interface. The introduction of sodium carboxymethyl cellulose (CMC) to the 4 V class cathode surface led to the suppression of SPE decomposition at the interface as a result of the preformation of a buffer layer from CMC, which was confirmed by the irreversible exothermic reaction during the first charge, using electrochemical calorimetry. The attained 1500 cycle operation is 1 order of magnitude longer than those of previously reported polymer systems, and compatible with those of reported commercial liquid systems. The above results indicate to proceed to an intensive research toward the realization of 4 V class "safe" lithium polymer batteries without flammable liquid electrolyte.

  6. Study of methyl- and phenyl-substituted thermostable polysiloxane-silarylene motionless phases for capillary gas chromatography

    NASA Astrophysics Data System (ADS)

    Komarova, A. O.; Shashkov, M. V.; Sidel'nikov, V. N.

    2017-11-01

    Capillary columns based on a number of thermostable polysiloxane-silarylene motionless phases are prepared and their properties are studied. Three polymers with different contents of methyl and phenyl groups are synthesized: dimethylsiloxanesilarylene (DMS), methylphenylsiloxanesilarylene (MPhS), and diphenylsiloxanesilarylene (DPhS). Studies of their thermostability show that the level of the background current of these columns upon heating to 350°C is several times lower than that of a column based on polydimethylsiloxane. Based on McReynolds' studies of polarity and Abraham's studies of the selectivity of prepared columns according to the parameters of intermolecular interactions, it is found that silarylene MLPs are more affected by the contributions from specific interactions (especially for dipole-dipole, π-π-, and n-π-interactions) than MLPs with no phenylene inserts. The effect on the selectivity of a phenyl group inside a chain differs from the one produced by the phenyl groups in side MLP chains. The effect on the selectivity of a phenyl group inside a chain differs from the one produced by the phenyl groups in side MLP chains. Examples of the separation of test mixtures of aromatic and oxygen-containing compounds are obtained, along with an extract of thistle oil containing tocopherols and phytosterols at a final temperature of analysis of 350°C.

  7. Electrohydrodynamics in nanochannels coated by mixed polymer brushes: effects of electric field strength and solvent quality

    NASA Astrophysics Data System (ADS)

    Cao, Qianqian; Tian, Xiu; You, Hao

    2018-04-01

    We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.

  8. SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi

    Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less

  9. SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid

    DOE PAGES

    Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi; ...

    2016-06-17

    Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less

  10. Structure-induced switching of interpolymer adhesion at a solid-polymer melt interface.

    PubMed

    Jiang, Naisheng; Sen, Mani; Zeng, Wenduo; Chen, Zhizhao; Cheung, Justin M; Morimitsu, Yuma; Endoh, Maya K; Koga, Tadanori; Fukuto, Masafumi; Yuan, Guangcui; Satija, Sushil K; Carrillo, Jan-Michael Y; Sumpter, Bobby G

    2018-02-14

    Here we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: "flattened chains" which lie flat on the solid and are densely packed, and "loosely adsorbed polymer chains" which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesion testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer-adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as "connector molecules", bridging the free chains and substrate surface and improving the interfacial adhesion. These findings not only shed light on the structure-property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.

  11. Fundamental and future prospects of printed ambipolar fluorene-type polymer light-emitting transistors for improved external quantum efficiency, mobility, and emission pattern

    NASA Astrophysics Data System (ADS)

    Kajii, Hirotake

    2018-05-01

    In this review, we focus on the improved external quantum efficiency, field-effect mobility, and emission pattern of top-gate-type polymer light-emitting transistors (PLETs) based on ambipolar fluorene-type polymers. A low-temperature, high-efficiency, printable red phosphorescent PLET based on poly(alkylfluorene) with modified alkyl side chains fabricated by a film transfer process is demonstrated. Device fabrication based on oriented films leads to an improved EL intensity owing to the increase in field-effect mobility. There are three factors that affect the transport of carriers, i.e., the energy level, threshold voltage, and mobility of each layer for heterostructure PLETs, which result in various emission patterns such as the line-shaped, multicolor and in-plane emission pattern in the full-channel area between source and drain electrodes. Fundamentals and future prospects in heterostructure devices are discussed and reviewed.

  12. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels.

    PubMed

    Tarasevich, B J; Gutowska, A; Li, X S; Jeong, B-M

    2009-04-01

    Graft copolymers consisting of a poly(D,L-lactic acid-co-glycolic acid) backbone grafted with polyethylene glycol side chains were synthesized and formed thermoreversible gels in aqueous solutions that exhibited solution behavior at low temperature and sol-to-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid, glycolic acid, and ethylene glycol were varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15 to 34 degrees C by increasing the concentration of polyethylene glycol in the graft copolymer. The gelation temperature also depended on the polymer molecular weight and concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery. Copyright 2008 Wiley Periodicals, Inc.

  13. Polymer chain alignment and transistor properties of nanochannel-templated poly(3-hexylthiophene) nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Seungjun; Hayakawa, Ryoma; Pan, Chengjun; Sugiyasu, Kazunori; Wakayama, Yutaka

    2016-08-01

    Nanowires of semiconducting poly(3-hexylthiophene) (P3HT) were produced by a nanochannel-template technique. Polymer chain alignment in P3HT nanowires was investigated as a function of nanochannel widths (W) and polymer chain lengths (L). We found that the ratio between chain length and channel width (L/W) was a key parameter as regards promoting polymer chain alignment. Clear dichroism was observed in polarized ultraviolet-visible (UV-Vis) absorption spectra only at a ratio of approximately L/W = 2, indicating that the L/W ratio must be optimized to achieve uniaxial chain alignment in the nanochannel direction. We speculate that an appropriate L/W ratio is effective in confining the geometries and conformations of polymer chains. This discussion was supported by theoretical simulations based on molecular dynamics. That is, the geometry of the polymer chains, including the distance and tilting angles of the chains in relation to the nanochannel surface, was dominant in determining the longitudinal alignment along the nanochannels. Thus prepared highly aligned polymer nanowire is advantageous for electrical carrier transport and has great potential for improving the device performance of field-effect transistors. In fact, a one-order improvement in carrier mobility was observed in a P3HT nanowire transistor.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Andre P.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.

    The molecular weight and polydispersity of the chains in a polymer brush are critical parameters determining the brush properties. However, the characterization of polymer brushes is hindered by the vanishingly small mass of polymer present in brush layers. In this study, in order to obtain sufficient quantities of polymer for analysis, polymer brushes were grown from high surface area fibrous nylon membranes by ATRP. We synthesized the brushes with varying surface initiator densities, polymerization times, and amounts of sacrificial initiator, then cleaved from the substrate, and analyzed by GPC and NMR. Characterization showed that the surface-grown polymer chains were moremore » polydisperse and had lower average molecular weight compared to solution-grown polymers synthesized concurrently. Furthermore, the molecular weight distribution of the polymer brushes was observed to be bimodal, with a low molecular weight population of chains representing a significant mass fraction of the polymer chains at high surface initiator densities. Moreover, the origin of this low MW polymer fraction is proposed to be the termination of growing chains by recombination during the early stages of polymerization, a mechanism confirmed by molecular dynamics simulations of brush polymerization.« less

  15. Linear and Nonlinear Elasticity of Networks Made of Comb-like Polymers and Bottle-Brushes

    NASA Astrophysics Data System (ADS)

    Liang, H.; Dobrynin, A.; Everhart, M.; Daniel, W.; Vatankhah-Varnoosfaderani, M.; Sheiko, S.

    We study mechanical properties of networks made of combs and bottle-brushes by computer simulations, theoretical calculations and experimental techniques. The networks are prepared by cross-linking backbones of combs or bottle-brushes with linear chains. This results in ``hybrid'' networks consisting of linear chains and strands of combs or bottle-brushes. In the framework of the phantom network model, the network modulus at small deformations G0 can be represented as a sum of contributions from linear chains, G0 , l, and strands of comb or bottle-brush, G0 , bb. If the length of extended backbone between crosslinks, Rmax, is much longer than the Kuhn length, bk, the modulus scales with the degree of polymerization of the side chains, nsc, and number of monomers between side chains, ng, as G0 , bb (nsc/ng + 1)-1. In the limit when bk becomes of the order of Rmax, the combs and bottle-brushes can be considered as semiflexible chains, resulting in a network modulus to be G0 , bb (nsc/ng + 1)-1(nsc2/2/ng) . In the nonlinear deformation regime, the strain-hardening behavior is described by the nonlinear network deformation model, which predicts that the true stress is a universal function of the structural modulus, G, first strain invariant, I1, and deformation ratio, β. The results of the computer simulations and predictions of the theoretical model are in a good agreement with experimental results. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.

  16. Co-crystallization phase transformations in all π-conjugated block copolymers with different main-chain moieties.

    PubMed

    Lee, Yi-Huan; Chen, Wei-Chih; Yang, Yi-Lung; Chiang, Chi-Ju; Yokozawa, Tsutomu; Dai, Chi-An

    2014-05-21

    Driven by molecular affinity and balance in the crystallization kinetics, the ability to co-crystallize dissimilar yet self-crystallizable blocks of a block copolymer (BCP) into a uniform domain may strongly affect its phase diagram. In this study, we synthesize a new series of crystalline and monodisperse all-π-conjugated poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) BCPs and investigate this multi-crystallization effect. Despite vastly different side-chain and main-chain structures, PPP and P3EHT blocks are able to co-crystallize into a single uniform domain comprising PPP and P3EHT main-chains with mutually interdigitated side-chains spaced in-between. With increasing P3EHT fraction, PPP-P3EHTs undergo sequential phase transitions and form hierarchical superstructures including predominately PPP nanofibrils, co-crystalline nanofibrils, a bilayer co-crystalline/pure P3EHT lamellar structure, a microphase-separated bilayer PPP-P3EHT lamellar structure, and finally P3EHT nanofibrils. In particular, the presence of the new co-crystalline lamellar structure is the manifestation of the interaction balance between self-crystallization and co-crystallization of the dissimilar polymers on the resulting nanostructure of the BCP. The current study demonstrates the co-crystallization nature of all-conjugated BCPs with different main-chain moieties and may provide new guidelines for the organization of π-conjugated BCPs for future optoelectronic applications.

  17. Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces.

    PubMed

    Morgese, Giulia; Ramakrishna, Shivaprakash N; Simic, Rok; Zenobi-Wong, Marcy; Benetti, Edmondo M

    2018-02-12

    Comb-like polymers presenting a hydroxybenzaldehyde (HBA)-functionalized poly(glutamic acid) (PGA) backbone and poly(2-methyl-2-oxazoline) (PMOXA) side chains chemisorb on aminolized substrates, including cartilage surfaces, forming layers that reduce protein contamination and provide lubrication. The structure, physicochemical, biopassive, and tribological properties of PGA-PMOXA-HBA films are finely determined by the copolymer architecture, its reactivity toward the surface, i.e. PMOXA side-chain crowding and HBA density, and by the copolymer solution concentration during assembly. Highly reactive species with low PMOXA content form inhomogeneous layers due to the limited possibility of surface rearrangements by strongly anchored copolymers, just partially protecting the functionalized surface from protein contamination and providing a relatively weak lubrication on cartilage. Biopassivity and lubrication can be improved by increasing copolymer concentration during assembly, leading to a progressive saturation of surface defects across the films. In a different way, less reactive copolymers presenting high PMOXA side-chain densities form uniform, biopassive, and lubricious films, both on model aminolized silicon oxide surfaces, as well as on cartilage substrates. When assembled at low concentrations these copolymers adopt a "lying down" conformation, i.e. adhering via their backbones onto the substrates, while at high concentrations they undergo a conformational transition, assuming a more densely packed, "standing up" structure, where they stretch perpendicularly from the substrate. This specific arrangement reduces protein contamination and improves lubrication both on model as well as on cartilage surfaces.

  18. Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration.

    PubMed

    Shovsky, Alexander; Varga, Imre; Makuska, Ricardas; Claesson, Per M

    2009-06-02

    The formation of complexes with stoichiometric (1:1) as well as nonstoichiometric (2:1) and (1:2) compositions between oppositely charged synthetic polyelectrolytes carrying strong ionic groups and significantly different molecular weights is reported in this contribution. Poly(sodium styrenesulfonate) (NaPSS) was used as polyanion, and a range of copolymers with various molar ratios of the poly(methacryloxyethyltrimethylammonium) chloride, poly(METAC), and the nonionic poly(ethylene oxide) ether methacrylate, poly(PEO45MEMA), were used as polycations. Formation and stability of PECs have been investigated by dynamic and static light scattering (LS), turbidity, and electrophoretic mobility measurements as a function of polyelectrolyte solution concentration, charge density of the cationic polyelectrolyte, and mixing ratio. The data obtained demonstrate that in the absence of PEO45 side chains the 100% charged polymer (polyMETAC) formed insoluble PECs with PSS that precipitate from solution when exact stoichiometry is achieved. In nonstoichiometric complexes (1:2) and (2:1) large colloidally stable aggregates were formed. The presence of even a relatively small amount of PEO45 side chains (25%) in the cationic copolymer was sufficient for preventing precipitation of the formed stoichiometric and nonstoichiometric complexes. These PEC's are sterically stabilized by the PEO45 chains. By further increasing the PEO45 side-chain content (50 and 75%) of the cationic copolymer, small, water-soluble molecular complexes could be formed. The data suggest that PSS molecules and the charged backbone of the cationic brush form a compact core, and with sufficiently high PEO45 chain density (above 25%) molecular complexes are formed that are stable over prolonged times.

  19. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE PAGES

    Miller, Brad; Imel, Adam E.; Holley, Wade; ...

    2015-11-12

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  20. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Brad; Imel, Adam E.; Holley, Wade

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  1. Development and Modeling of a Novel Self-Assembly Process for Polymer and Polymeric Composite Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumpter, Bobby G.; Carrillo, Jan-Michael Y.; Ahn, Suk-Kyun

    Extensive computational simulations and experiments have been used to investigate the structure, dynamics and resulting photophysical properties of a number para-phenylenevinylene (PPV) based polymers and oligomers. These studies have shown how the morphology and structure are controlled to a large extent by the nature of the solute-solvent interactions in the initial solution phase preparation. A good solvent such as dichloromethane generates non-compact structures with more of a defect-extended chain like morphology while a bad solvent such as toluene leads to compact organized and folded structures with rod-like morphologies. Secondary structural organization is induced by using the solution phase structures tomore » generate solvent-free single molecule nanoparticles. These nanoparticles are very compact and rod shaped, consisting of near-cofacial ordering of the conjugated PPV chain backbones between folds located at tetrahedral defects (sp3 C-C bonds). The resulting photophysical properties exhibit a significant enhancement in the photoluminescence quantum yield, lifetime, and stability. In addition, the single molecule nanoparticles have Gaussian-like emission spectra with discrete center frequencies that are correlated to a conjugation length, allowing the design of nanoparticles which luminesces at a particular frequency. We followed a similar approach and applied a comparable methodology in our recent work on polythiophenes in order to study the effect of polymer architecture on nanoscale assembly. Unlike linear chains of comparable size, we observed aggregation of the bottlebrush architecture of poly(norbornene)-g-poly(3-hexylthiophene) (PNB-g-P3HT) after the freeze-drying and dissolution processes. The behavior can be attributed to a significant enhancement in the number of π-π interactions between grafted P3HT side chains.« less

  2. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    PubMed

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. UV and γ-ray resistance of poly(N-methylmaleimide-alt-isobutene) and poly(diisopropyl fumarate) as transparent polymer films

    NASA Astrophysics Data System (ADS)

    Imaizumi, Ryota; Furuta, Masakazu; Okamura, Haruyuki; Matsumoto, Akikazu

    2017-09-01

    UV and γ-ray resistance of transparent polymers obtained by radical polymerization of maleic and fumaric acid derivatives, i.e., an alternating copolymer of N-methylmaleimide and isobutene (PMI) and poly(diisopropyl fumarate) (PDiPF), was investigated. Transmittance in UV and visible regions of these polymers were examined after UV irradiation and compared with the results for poly(methyl methacrylate) (PMMA) and polycarbonate (PC) as conventional transparent polymers. The order of stability toward UV irradiation was PMMA≈PDiPF>PMI>>PC, deduced from changes in the transmittance of 380 nm light. Tensile mechanical properties, such as elastic modulus, maximum strength, and elongation values of PMI, PDiPF, and PMMA were also investigated after UV and γ-radiation. UV irradiation induced the side chain scission of PMI and PDiPF via Norrish I type reaction as well as crosslinking by combination between formed polymer radicals, leading to deterioration in their optical and mechanical properties. γ-radiation induced significant changes in molecular weight and mechanical properties of the polymers. In conclusion, PMI exhibited unchanged mechanical properties and PDiPF maintained its high transparency under various irradiation conditions.

  4. General approach to polymer chains confined by interacting boundaries

    NASA Astrophysics Data System (ADS)

    Freed, Karl F.; Dudowicz, Jacek; Stukalin, Evgeny B.; Douglas, Jack F.

    2010-09-01

    Polymer chains, confined to cavities or polymer layers with dimensions less than the chain radius of gyration, appear in many phenomena, such as gel chromatography, rubber elasticity, viscolelasticity of high molar mass polymer melts, the translocation of polymers through nanopores and nanotubes, polymer adsorption, etc. Thus, the description of how the constraints alter polymer thermodynamic properties is a recurrent theoretical problem. A realistic treatment requires the incorporation of impenetrable interacting (attractive or repulsive) boundaries, a process that introduces significant mathematical complications. The standard approach involves developing the generalized diffusion equation description of the interaction of flexible polymers with impenetrable confining surfaces into a discrete eigenfunction expansion, where the solutions are normally truncated at the first mode (the "ground state dominance" approximation). This approximation is mathematically well justified under conditions of strong confinement, i.e., a confinement length scale much smaller than the chain radius of gyration, but becomes unreliable when the polymers are confined to dimensions comparable to their typically nanoscale size. We extend a general approach to describe polymers under conditions of weak to moderate confinement and apply this semianalytic method specifically to determine the thermodynamics and static structure factor for a flexible polymer confined between impenetrable interacting parallel plate boundaries. The method is first illustrated by analyzing chain partitioning between a pore and a large external reservoir, a model system with application to chromatography. Improved agreement is found for the partition coefficients of a polymer chain in the pore geometry. An expression is derived for the structure factor S(k ) in a slit geometry to assist in more accurately estimating chain dimensions from scattering measurements for thin polymer films.

  5. Macromolecular properties of cepacian in water and in dimethylsulfoxide.

    PubMed

    Herasimenka, Yury; Cescutti, Paola; Sampaio Noguera, Carlos E; Ruggiero, Josè R; Urbani, Ranieri; Impallomeni, Giuseppe; Zanetti, Flavio; Campidelli, Stéphane; Prato, Maurizio; Rizzo, Roberto

    2008-01-14

    Cepacian is the exopolysaccharide produced by the majority of the so far investigated clinical strains of the Burkholderia cepacia complex. This is a group of nine closely related bacterial species that might cause serious lung infections in cystic fibrosis patients, in some cases leading to death. In this paper the aggregation ability and the conformational properties of cepacian chain were investigated to understand its role in biofilm formation. Viscosity and atomic force microscopy studies in water and in mixed (dimethylsulfoxide/water) solvent indicated the formation of double stranded molecular structures in aqueous solutions. Inter-residue short distances along cepacian chain were investigated by NOE NMR, which showed that two side chains of cepacian were not conformationally free due to strong interactions with the polymer backbone. These interactions were attributed to hydrogen bonding and contributed to structure rigidity.

  6. Evaluation of Feruloylated and p-Coumaroylated Arabinosyl Units in Grass Arabinoxylans by Acidolysis in Dioxane/Methanol.

    PubMed

    Lapierre, Catherine; Voxeur, Aline; Karlen, Steven D; Helm, Richard F; Ralph, John

    2018-05-30

    The arabinosyl side chains of grass arabinoxylans are partially acylated by p-coumarate ( pCA) and ferulate (FA). These aromatic side chains can cross-couple wall polymers resulting in modulation of cell wall physical properties. The determination of p-coumaroylated and feruloylated arabinose units has been the target of analytical efforts with trifluoroacetic acid hydrolysis the standard method to release feruloylated and p-coumaroylated arabinose units from arabinoxylans. Herein, we report on a more robust method to measure these acylated units. Acidolysis of extractive-free grass samples in a dioxane/methanol/aqueous 2 M HCl mixture provided the methyl 5- O- p-coumaroyl- and 5- O-feruloyl-l-arabinofuranoside anomers ( pCA-MeAra and FA-MeAra). These conjugates were readily analyzed by liquid chromatography combined with both UV and MS detection. The method revealed the variability of the relative acylation of arabinose units by pCA or FA in grass cell walls. This methodology will permit delineation of hydroxycinnamate acylation patterns in arabinoxylans.

  7. Molecular structure of bottlebrush polymers in melts

    PubMed Central

    Paturej, Jarosław; Sheiko, Sergei S.; Panyukov, Sergey; Rubinstein, Michael

    2016-01-01

    Bottlebrushes are fascinating macromolecules that display an intriguing combination of molecular and particulate features having vital implications in both living and synthetic systems, such as cartilage and ultrasoft elastomers. However, the progress in practical applications is impeded by the lack of knowledge about the hierarchic organization of both individual bottlebrushes and their assemblies. We delineate fundamental correlations between molecular architecture, mesoscopic conformation, and macroscopic properties of polymer melts. Numerical simulations corroborate theoretical predictions for the effect of grafting density and side-chain length on the dimensions and rigidity of bottlebrushes, which effectively behave as a melt of flexible filaments. These findings provide quantitative guidelines for the design of novel materials that allow architectural tuning of their properties in a broad range without changing chemical composition. PMID:28861466

  8. Strong liquid-crystalline polymeric compositions

    DOEpatents

    Dowell, Flonnie

    1993-01-01

    Strong liquid-crystalline polymeric (LCP) compositions of matter. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment.

  9. pH-programmable self-assembly of plasmonic nanoparticles: hydrophobic interaction versus electrostatic repulsion.

    PubMed

    Li, Weikun; Kanyo, Istvan; Kuo, Chung-Hao; Thanneeru, Srinivas; He, Jie

    2015-01-21

    We report a general strategy to conceptualize a new design for the pH-programmable self-assembly of plasmonic gold nanoparticles (AuNPs) tethered by random copolymers of poly(styrene-co-acrylic acid) (P(St-co-AA)). It is based on using pH as an external stimulus to reversibly change the surface charge of polymer tethers and to control the delicate balance of interparticle attractive and repulsive interactions. By incorporating -COOH moieties locally within PSt hydrophobic segments, the change in the ionization degree of -COOH moieties can dramatically disrupt the hydrophobic attraction within a close distance. pH acts as a key parameter to control the deprotonation of -COOH moieties and "programs" the assembled nanostructures of plasmonic nanoparticles in a stepwise manner. At a higher solution pH where -COOH groups of polymer tethers became highly deprotonated, electrostatic repulsion dominated the self-assembly and favored the formation of end-to-end, anisotropic assemblies, e.g. 1-D single-line chains. At a lower pH, the less deprotonated -COOH groups led to the decrease of electrostatic repulsion and the side-to-side aggregates, e.g. clusters and multi-line chains of AuNPs, became favorable. The pH-programmable self-assembly allowed us to engineer a "manual" program for a sequential self-assembly by changing the pH of the solution. We demonstrated that the two-step pH-programmable assembly could generate more sophisticated "multi-block" chains using two differently sized AuNPs. Our strategy offers a general means for the programmable design of plasmonic nanoparticles into the specific pre-ordained nanostructures that are potentially useful for the precise control over their plasmon coupling.

  10. Structure of Irreversibly Adsorbed Star Polymers

    NASA Astrophysics Data System (ADS)

    Akgun, Bulent; Aykan, Meryem Seyma; Canavar, Seda; Satija, Sushil K.; Uhrig, David; Hong, Kunlun

    Formation of irreversibly adsorbed polymer chains on solid substrates have a huge impact on the wetting, glass transition, aging and polymer chain mobility in thin films. In recent years there has been many reports on the formation, kinetics and dynamics of these layers formed by linear homopolymers. Recent studies showed that by varying the number of polymer arms and arm molecular weight one can tune the glass transition temperature of thin polymer films. Using polymer architecture as a tool, the behavior of thin films can be tuned between the behavior of linear chains and soft colloids. We have studied the effect of polymer chain architecture on the structure of dead layer using X-ray reflectivity (XR) and atomic force microscopy. Layer thicknesses and densities of flattened and loosely adsorbed chains has been measured for linear, 4-arm, and 8-arm star polymers with identical total molecular weight as a function of substrate surface energy, annealing temperature and annealing time. Star polymers have been synthesized using anionic polymerization. XR measurements showed that 8-arm star PS molecules form the densest and the thickest dead layers among these three molecules.

  11. Structure-function study of Poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) and its derivatives.

    PubMed

    Lee, Chen-Jung; Wang, Huifang; Young, Megan; Li, Shengxi; Cheng, Fang; Cong, Hongbo; Cheng, Gang

    2018-06-04

    Poly(3,4-ethylenedioxythiophene) (PEDOT) has been widely studied in recent decades due to its high stability, biocompatibility, low redox potential, moderate band gap, and optical transparency in its conducting state. However, for its long-term in vivo applications, the biocompatibility of PEDOT still need to be improved. To address this challenge, zwitterionic Poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) that contains EDOT backbone with sulfobetaine functional side chains were developed in our previous study. Although PSBEDOT showed great resistance to proteins, cells, and bacteria, it is still not clear how the zwitterionic sulfobetaine side chain affects the electrochemical properties of the polymer and reactivity of the monomer. To have better understanding on the structure-function relationship of zwitterionic conducting polymer, we synthesized two derivatives of PSBEDOT, PSBEDOT-4 and PSBEDOT-5, by introducing the alkoxyl spacer between EDOT and sulfobetaine. The interfacial impedance of PSBEDOT-4 and PSBEDOT-5 was examined by electrochemical impedance spectroscopy and showed significant improvement which is about 20 times lower than PSBEDOT on both gold and indium tin oxide substrates at 1 Hz. In the protein adsorption test, PSBEDOT, PSBEDOT-4 and PSBEDOT-5 exhibited comparable resistance to the fibrinogen solution. All three polymers had low protein adsorption around 3%-5% comparing to the control sample, PEDOT, which was normalized to 100%. Additionally, the morphology of PSBEDOT, PSBEDOT-4 and PSBEDOT-5 with different synthesis parameter have been investigated by scanning electron microscope. We believe that these stable and biocompatible materials can be good candidates for developing long-term bioelectronics devices. To address the challenges associated existing conducting materials for bioelectronics, we developed a versatile and high performance zwitterionic conducting material platform with excellent stability, electrochemical, antifouling and controllable antimicrobial/antifouling properties. In this work, we developed two high-performance conducting polymers and systematically investigated how its structure affect their properties. Our study shows we can accurately tune the molecular structure of the monomer to dramatically improve the performance of zwitterionic conducting polymer. This zwitterionic conducting polymer platform may dramatically increase the performance and service life of electrochemical devices for many long-term applications, such as implantable biosensing, tissue engineering, wound healing, robotic prostheses, biofuel cell etc., which all require high performance conducting materials with excellent antifouling/biocompatibility at complex biointerfaces. Copyright © 2018. Published by Elsevier Ltd.

  12. Novel Polymers Containing Metal Ligands in the Side Chain

    DTIC Science & Technology

    2012-10-01

    10 2011): 0. doi: 10.1021/bm2010142 2012/10/01 15:35:02 10 Jun Cui, Melissa A. Lackey, Ahmad E. Madkour , Erika M. Saffer, David M. Griffin, Surita R...values for the linear fits are around 0.98. [M] denotes the monomer concentration. M- H measurement. If the RTF behavior of the previously...magnetization as a function of the applied field (M- H ) was measured at room temperature by a superconducting quantum interference device (SQUID) for all of

  13. High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets.

    PubMed

    Li, Ming; Guan, Qingbao; Dingemans, Theo J

    2018-05-21

    We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the M n of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227-285 °C. The thermosets based on the 1000 g mol -1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition ( T m ≥ 200 °C) and the glass transition ( T g = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%-139% and 40-82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior.

  14. High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets

    PubMed Central

    2018-01-01

    We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the Mn of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227–285 °C. The thermosets based on the 1000 g mol–1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition (Tm ≥ 200 °C) and the glass transition (Tg = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%–139% and 40–82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior. PMID:29742899

  15. Survival condition for low-frequency quasi-one-dimensional breathers in a two-dimensional strongly anisotropic crystal

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Zubova, E. A.; Manevitch, L. I.

    2005-06-01

    We investigate a two-dimensional (2D) strongly anisotropic crystal (2D SAC) on substrate: 2D system of coupled linear chains of particles with strong intrachain and weak interchain interactions, each chain being subjected to the sine background potential. Nonlinear dynamics of one of these chains when the rest of them are fixed is reduced to the well known Frenkel-Kontorova (FK) model. Depending on strengh of the substrate, the 2D SAC models a variety of physical systems: polymer crystals with identical chains having light side groups, an array of inductively coupled long Josephson junctions, anisotropic crystals having light and heavy sublattices. Continuum limit of the FK model, the sine-Gordon (sG) equation, allows two types of soliton solutions: topological solitons and breathers. It is known that the quasi-one-dimensional topological solitons can propagate also in a chain of 2D system of coupled chains and even in a helix chain in a three-dimensional model of polymer crystal. In contrast to this, numerical simulation shows that the long-living breathers inherent to the FK model do not exist in the 2D SAC with weak background potential. The effect changes scenario of kink-antikink collision with small relative velocity: at weak background potential the collision always results only in intensive phonon radiation while kink-antikink recombination in the FK model results in long-living low-frequency sG breather creation. We found the survival condition for breathers in the 2D SAC on substrate depending on breather frequency and strength of the background potential. The survival condition bears no relation to resonances between breather frequency and frequencies of phonon band—contrary to the case of the FK model.

  16. On-Chip Chemical Self-Assembly of Semiconducting Single-Walled Carbon Nanotubes (SWNTs): Toward Robust and Scale Invariant SWNTs Transistors.

    PubMed

    Derenskyi, Vladimir; Gomulya, Widianta; Talsma, Wytse; Salazar-Rios, Jorge Mario; Fritsch, Martin; Nirmalraj, Peter; Riel, Heike; Allard, Sybille; Scherf, Ullrich; Loi, Maria A

    2017-06-01

    In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self-assembly of the selected s-SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s-SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s-SWNT purity. Field-effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self-assembly of the SWNTs/thiolated-polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm 2 V -1 s -1 ), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.

    PubMed

    Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi

    2017-11-22

    We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.

  18. Understanding the interfacial chain dynamics of fiber-reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Carrillo, Jan-Michael; Naskar, Amit; Sumpter, Bobby

    The polymer-fiber interface plays a major role in determining the structural and dynamical properties of fiber reinforced composite materials. We utilized LAMMPS MD package to understand the interfacial properties at the nanoscale. Coarse-grained flexible polymer chains are introduced to compare the various structures and dynamics of the polymer chains. Our preliminary simulation study shows that the rigidity of the polymer chain affects the interfacial morphology and dynamics of the chain on a flat surface. In this work, we identified the `immobile inter-phase' morphology and relate it to rheological properties. We calculated the viscoelastic properties, e.g., shear modulus and storage modulus, which are compared with experiments. MD simulations are used to show the variation of viscoelastic properties with polymer volume fraction. The nanoscale segmental and chain relaxation are calculated from the MD simulations and compared to the experimental data. These observations will be able to identify the fundamental physics behind the effect of the polymer-fiber interactions and orientation of the fiber to the overall rheological properties of the fiber reinforced polymer matrix. Funding for the project was provided by ORNLs Laboratory Directed Research and Development (LDRD) program.

  19. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    PubMed

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole (DTS), or indacenodithiophene (IDT) donor unit and benzothiadiazole (BT), thienopyrrole-dione (TPD), or thiazolothiazole (TTz) acceptor units. The BDT unit with two thienyl conjugated side chains is a highly promising unit in constructing high-efficiency copolymer donor materials. The electron-withdrawing groups of ester, ketone, fluorine, or sulfonyl can effectively tune the HOMO energy levels downward. To improve the performance of fullerene derivative acceptors, researchers will need to strengthen absorption in the visible spectrum, upshift the LUMO (the lowest unoccupied molecular orbital) energy level, and increase the electron mobility. [6,6]-Phenyl-C(71)-butyric acid methyl ester (PC(70)BM) is superior to [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) because C(70) absorbs visible light more efficiently. Indene-C(60) bisadduct (ICBA) and Indene-C(70) bisadduct (IC(70)BA) show 0.17 and 0.19 eV higher LUMO energy levels, respectively, than PCBM, due to the electron-rich character of indene and the effect of bisadduct. ICBA and IC(70)BA are excellent acceptors for the P3HT-based PSCs.

  20. High-performance polymer waveguide devices via low-cost direct photolithography process

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.

    2002-09-01

    All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in-situ FTIR. The influence of various polymer

  1. Thiomers: a new generation of mucoadhesive polymers.

    PubMed

    Bernkop-Schnürch, Andreas

    2005-11-03

    Thiolated polymers or designated thiomers are mucoadhesive basis polymers, which display thiol bearing side chains. Based on thiol/disulfide exchange reactions and/or a simple oxidation process disulfide bonds are formed between such polymers and cysteine-rich subdomains of mucus glycoproteins building up the mucus gel layer. Thiomers mimic therefore the natural mechanism of secreted mucus glycoproteins, which are also covalently anchored in the mucus layer by the formation of disulfide bonds-the bridging structure most commonly encountered in biological systems. So far the cationic thiomers chitosan-cysteine, chitosan-thiobutylamidine as well as chitosan-thioglycolic acid and the anionic thiomers poly(acylic acid)-cysteine, poly(acrylic acid)-cysteamine, carboxy-methylcellulose-cysteine and alginate-cysteine have been generated. Due to the immobilization of thiol groups on mucoadhesive basis polymers, their mucoadhesive properties are 2- up to 140-fold improved. The higher efficacy of this new generation of mucoadhesive polymers in comparison to the corresponding unmodified mucoadhesive basis polymers could be verified via various in vivo studies on various mucosal membranes in different animal species and in humans. The development of first commercial available products comprising thiomers is in progress. Within this review an overview of the mechanism of adhesion and the design of thiomers as well as delivery systems comprising thiomers and their in vivo performance is provided.

  2. Strong liquid-crystalline polymeric compositions

    DOEpatents

    Dowell, F.

    1993-12-07

    Strong liquid-crystalline polymeric (LCP) compositions of matter are described. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment. 27 figures.

  3. Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani

    It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less

  4. Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films

    DOE PAGES

    Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani; ...

    2017-09-26

    It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less

  5. Anomalous charge transport in conjugated polymers reveals underlying mechanisms of trapping and percolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.

    While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less

  6. Anomalous charge transport in conjugated polymers reveals underlying mechanisms of trapping and percolation

    DOE PAGES

    Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.

    2016-11-10

    While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less

  7. Phase separation of a Lennard-Jones fluid interacting with a long, condensed polymer chain: implications for the nuclear body formation near chromosomes.

    PubMed

    Oh, Inrok; Choi, Saehyun; Jung, YounJoon; Kim, Jun Soo

    2015-08-28

    Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles. For a density of LJ particles above the phase boundary, phase separation occurs and a dense domain of LJ particles forms irrespective of interactions with the condensed polymer chain whereas its localization relative to the polymer chain is determined by the LJ-polymer attraction strength. Especially, in the case of moderately weak attractions, the domain forms separately from the polymer chain and subsequently associates with the polymer chain. When the density is below the phase boundary, however, the formation of a dense domain is possible only when the LJ-polymer attraction is strong enough, for which the domain grows in direct contact with the interacting polymer chain. In this work, different growth behaviors of LJ particles result from the differences in the density of LJ particles and in the LJ-polymer interaction, and this work suggests that the distinct formation of activity-dependent and activity-independent nuclear bodies (NBs) in a cell nucleus may originate from the differences in the concentrations of body-specific NB components and in their interaction with chromatins.

  8. Translocation time of a polymer chain through an energy gradient nanopore

    NASA Astrophysics Data System (ADS)

    Luo, Meng-Bo; Zhang, Shuang; Wu, Fan; Sun, Li-Zhen

    2017-06-01

    The translocation time of a polymer chain through an interaction energy gradient nanopore was studied by Monte Carlo simulations and the Fokker-Planck equation with double-absorbing boundary conditions. Both the simulation and calculation revealed three different behaviors for polymer translocation. These behaviors can be explained qualitatively from free-energy landscapes obtained for polymer translocation at different parameters. Results show that the translocation time of a polymer chain through a nanopore can be tuned by suitably designing the interaction energy gradient.

  9. Effects of doping and interchain interactions on the metal-insulator transition in trans-polyacetylene

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    1999-09-01

    Using a tight-binding Hamiltonian the metal-insulator phase diagram for trans-polyacetylene was calculated as a function of doping concentration and interchain interaction strength. The phase boundary for the periodic system coincides with the gap closing, which occurs for certain combinations of critical values for the doping concentration and the interchain interaction strength. The values found are in good agreement with the experimentally observed increase in the Pauli susceptibility. To simulate disorder in the polymer, the effect of finite chain lengths was studied. This type of disorder pushes the metal/insulator phase boundary towards the metallic side of the phase diagram. An increase in the doping concentration and/or interchain interaction is shown to reduce the localizing effects of disorder effectively. For realistic values of the interchain interaction strength the number of chain breaks needed to localize the states at the Fermi energy is quite small, of the order of a few percent. The localization length is found to be substantially longer than the conjugation length of the polymer.

  10. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    PubMed

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    PubMed

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  12. Synthesis And Single Molecule Force Spectroscopy Of Poly(hydroxyethyl methacrylate-g-ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Ortiz, Christine

    2003-03-01

    With the advent of nanotechnology, miniaturized devices will soon need nanoscale springs with well-controlled nanomechanical properties such as shock absorbers, or to control the adhesive interactions between two components. In order to understand, manipulate, and control single macromolecule nanomechanical properties, mono(thiol)-terminated poly(hydroxyethyl methacrylate-g-ethylene glycol) has been synthesized via atom transfer radical polymerization. End-functionalization, chemical structure, molecular weight, side-chain graft density, radius of gyration, and polydispersity were characterized by 1H nuclear magnetic resonance, static light scattering, and gel permeation chromatography. The polymer chains were attached to Au-coated Si wafers via chemisorption to prepare well-separated "mushrooms", as verified by atomic force microscopy. Single molecule force spectroscopy was then used to measure the extensional elastic properties, i.e. force (nN) versus end-to-end separation distance (nm), of the individual chains by tethering to a Si3N4 probe tip via nonspecific, physisorption interactions.

  13. Integration of CuAAC Polymerization and Controlled Radical Polymerization into Electron Transfer Mediated "Click-Radical" Concurrent Polymerization.

    PubMed

    Xue, Wentao; Wang, Jie; Wen, Ming; Chen, Gaojian; Zhang, Weidong

    2017-03-01

    The successful chain-growth copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization employing Cu(0)/pentamethyldiethylenetriamine (PMDETA) and alkyl halide as catalyst is first investigated by a combination of nuclear magnetic resonance, gel-permeation chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In addition, the electron transfer mediated "click-radical" concurrent polymerization utilizing Cu(0)/PMDETA as catalyst is successfully employed to generate well-defined copolymers, where controlled CuAAC polymerization of clickable ester monomer is progressed in the main chain acting as the polymer backbone, the controlled radical polymerization (CRP) of acrylic monomer is carried out in the side chain. Furthermore, it is found that there is strong collaborative effect and compatibility between CRP and CuAAC polymerization to improve the controllability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. De-pinning of contact line of droplets on rough surfaces

    NASA Astrophysics Data System (ADS)

    Madhurima, V.; Nilavarasi, K.

    2016-10-01

    The present study reports the formation of self-assembled droplet pattern on the PDMS polymer coated over grooved side of DVD under saturated vapours of alcohols. Comparison of the results with breath figures formed over unconstrained side of DVD is made. Four different environments namely methanol, ethanol, 2-propanol and n-butanol are used for the analysis. It is observed that the pattern formation occurs with methanol and ethanol vapours and not with 2-propanol and n-butanol. The difference is pattern formation with different alcohols is attributed to the variation in chain length and the presence of hydrophobic groups in alcohols, as given by Traube's rule. The distortion of patterns over constrained surface is attributed to the depinning of contact lines.

  15. Stretching of Single Polymer Chains Using the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.

    1998-03-01

    A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.

  16. Photo-oxidation degradation mechanisms in P3HT for organic solar cells: Insights from first-principles simulations

    NASA Astrophysics Data System (ADS)

    Leung, Kevin; Sai, Na; Zador, Judit; Henkelman, Graeme

    2014-03-01

    Photo-oxidation is one of the leading chemical degradation mechanisms in polymer solar cells. In this work, using hybrid density functional theory and periodic boundary condition, we investigate reaction pathways that may lead to the sulfur oxidation in poly(3-hexylthiophene)(P3HT) as a step toward breaking the macromolecule backbone. We calculate energy barriers for reactions of P3HT backbone with oxidizing radicals suggested by infrared spectroscopy (IR) and XPS studies. Our results strongly suggest that an attack of hydroxyl radical on sulfur as proposed in the literature is unlikely to be thermodynamically favored. On the other hand, a reaction between the alkylperoxyl radical and the polymer backbone may provide low barrier reaction pathways to photo-oxidation of conjugated polymers with side chains. Our work paves way for future studies using ab-initio calculations in a condensed phase setting to model complex chemical reactions relevant to photochemical stability of novel polymers. Supported by the Energy Frontier Research Center funded by the U.S. DOE Office of Basic Energy Sciences under Award #DE-SC0001091.

  17. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    NASA Astrophysics Data System (ADS)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  18. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers.

    PubMed

    Congdon, Thomas; Dean, Bethany T; Kasperczak-Wright, James; Biggs, Caroline I; Notman, Rebecca; Gibson, Matthew I

    2015-09-14

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL(-1). Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes.

  19. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers

    PubMed Central

    2015-01-01

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL–1. Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes PMID:26258729

  20. Pyrene-Functionalized PTMA by NRC for Greater π-π Stacking with rGO and Enhanced Electrochemical Properties.

    PubMed

    Zhang, Kai; Hu, Yuxiang; Wang, Lianzhou; Monteiro, Michael J; Jia, Zhongfan

    2017-10-11

    Nitroxide radical polymers can undergo both excellent electrochemical redox reactions and a rapid "click" coupling reaction with carbon-centered radicals (i.e., nitroxide radical coupling (NRC) reaction). In this work, we report a strategy to functionalize poly(2,2,6,6,-tetramethylpiperidinyl-1-oxyl methacrylate) (PTMA) with pyrene side groups through a rapid and near quantitative NRC reaction. This resulted in P(TMA-co-PyMA) random copolymers with near quantitative amounts of pyrene along the PTMA chain for greater π-π interaction with rGO, while the nitroxide radicals on the polymer could simultaneously be used for energy storage. These copolymers can bind with reduced graphene oxide (rGO) and form layered composites through noncovalent π-π stacking, attaining molecular-level dispersion. Electrochemical performance of the composites with different polymer contents (24, 35, and 45 wt %), tested in lithium ion batteries, indicated that the layered structures consisting of P(TMA-co-PyMA) maintained greater capacities at high C-rates. This simple and efficient strategy to synthesize pyrene-functionalized polymers will provide new opportunities to fabricate many other polymer composite electrodes for desired electrochemical performance.

  1. Thermo-reversible morphology and conductivity of a conjugated polymer network embedded in polymeric self-assembly

    NASA Astrophysics Data System (ADS)

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G.; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S.; Do, Changwoo

    Self-assembly of block copolymers provides opportunities to create nano hybrid materials, utilizing self-assembled micro-domains with a variety of morphology and periodic architectures as templates for functional nano-fillers. Here we report new progress towards the fabrication of a thermally responsive conducting polymer self-assembly made from a water-soluble poly(thiophene) derivative with short PEO side chains and Pluronic L62 solution in water. The structural and electrical properties of conjugated polymer-embedded nanostructures were investigated by combining SANS, SAXS, CGMD simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellar-to-lamellar phase transition defines the embedded conjugated polymer network. The conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. The research was sponsored by the Scientific User Facilities Division, Office of BES, U.S. DOE and Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC.

  2. Drug-Free Macromolecular Therapeutics – A New Paradigm in Polymeric Nanomedicines

    PubMed Central

    Chu, Te-Wei; Kopeček, Jindřich

    2015-01-01

    This review highlights a unique research area in polymer-based nanomedicine designs. Drug-free macromolecular therapeutics induce apoptosis of malignant cells by the crosslinking of surface non-internalizing receptors. The receptor crosslinking is mediated by the biorecognition of high-fidelity natural binding motifs (such as antiparallel coiled-coil peptides or complementary oligonucleotides) that are grafted to the side chains of polymers or attached to targeting moieties against cell receptors. This approach features the absence of low-molecular-weight cytotoxic compounds. Here, we summarize the rationales, different designs, and advantages of drug-free macromolecular therapeutics. Recent developments of novel therapeutic systems for B-cell lymphomas are discussed, as well as relevant approaches for other diseases. We conclude by pointing out various potential future directions in this exciting new field. PMID:26191406

  3. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  4. Unexpected power-law stress relaxation of entangled ring polymers

    PubMed Central

    KAPNISTOS, M.; LANG, M.; PYCKHOUT-HINTZEN, W.; RICHTER, D.; CHO, D.; CHANG, T.

    2016-01-01

    After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers. PMID:18953345

  5. Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on l-Tyrosine for Intracellular Drug Delivery to Cancer Cells.

    PubMed

    Aluri, Rajendra; Saxena, Sonashree; Joshi, Dheeraj Chandra; Jayakannan, Manickam

    2018-06-11

    Multistimuli-responsive l-tyrosine-based amphiphilic poly(ester-urethane) nanocarriers were designed and developed for the first time to administer anticancer drugs in cancer tissue environments via thermoresponsiveness and lysosomal enzymatic biodegradation from a single polymer platform. For this purpose, multifunctional l-tyrosine monomer was tailor-made with a PEGylated side chain at the phenolic position along with urethane and carboxylic ester functionalities. Under melt dual ester-urethane polycondensation, the tyrosine monomer reacted with diols to produce high molecular weight amphiphilic poly(ester-urethane)s. The polymers produced 100 ± 10 nm spherical nanoparticles in aqueous medium, and they exhibited thermoresponsiveness followed by phase transition from clear solution into a turbid solution in heating/cooling cycles. Variable temperature transmittance, dynamic light scattering, and 1 H NMR studies revealed that the polymer chains underwent reversible phase transition from coil-to-expanded chain conformation for exhibiting the thermoresponsive behavior. The lower critical solution temperature of the nanocarriers was found to correspond to cancer tissue temperature (at 42-44 °C), which was explored as an extracellular trigger (stimuli-1) for drug delivery through the disassembly process. The ester bond in the poly(ester-urethane) backbones readily underwent enzymatic biodegradation in the lysosomal compartments that served as intracellular stimuli (stimuli-2) to deliver drugs. Doxorubicin (DOX) and camptothecin (CPT) drug-loaded polymer nanocarriers were tested for cellular uptake and cytotoxicity studies in the normal WT-MEF cell line and cervical (HeLa) and breast (MCF7) cancer cell lines. In vitro drug release studies revealed that the polymer nanoparticles were stable under physiological conditions (37 °C, pH 7.4) and they exclusively underwent disassembly at cancer tissue temperature (at 42 °C) and biodegradation by lysosomal-esterase enzyme to deliver 90% of DOX and CPT. Drug-loaded polymer nanoparticles exhibited better cytotoxic effects than their corresponding free drugs. Live cell confocal microscopy imaging experiments with lysosomal tracker confirmed the endocytosis of the polymer nanoparticles and their biodegradation in the lysosomal compartments in cancer cells. The increment in the drug content in the cells incubated at 42 °C compared to 37 °C supported the enhanced drug uptake by the cancer cells under thermoresponsive stimuli. The present work creates a new platform for the l-amino acid multiple-responsive polymer nanocarrier platform for drug delivery, and the proof-of-concept was successfully demonstrated for l-tyrosine polymers in cervical and breast cancer cells.

  6. Stochastic entangled chain dynamics of dense polymer solutions.

    PubMed

    Kivotides, Demosthenes; Wilkin, S Louise; Theofanous, Theo G

    2010-10-14

    We propose an adjustable-parameter-free, entangled chain dynamics model of dense polymer solutions. The model includes the self-consistent dynamics of molecular chains and solvent by describing the former via coarse-grained polymer dynamics that incorporate hydrodynamic interaction effects, and the latter via the forced Stokes equation. Real chain elasticity is modeled via the inclusion of a Pincus regime in the polymer's force-extension curve. Excluded volume effects are taken into account via the combined action of coarse-grained intermolecular potentials and explicit geometric tracking of chain entanglements. We demonstrate that entanglements are responsible for a new (compared to phantom chain dynamics), slow relaxation mode whose characteristic time scale agrees very well with experiment. Similarly good agreement between theory and experiment is also obtained for the equilibrium chain size. We develop methods for the solution of the model in periodic flow domains and apply them to the computation of entangled polymer solutions in equilibrium. We show that the number of entanglements Π agrees well with the number of entanglements expected on the basis of tube theory, satisfactorily reproducing the latter's scaling of Π with the polymer volume fraction φ. Our model predicts diminishing chain size with concentration, thus vindicating Flory's suggestion of excluded volume effects screening in dense solutions. The predicted scaling of chain size with φ is consistent with the heuristic, Flory theory based value.

  7. Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of 4-Vinylbenzaldehyde

    PubMed Central

    Sun, Guorong; Cheng, Chong; Wooley, Karen L.

    2008-01-01

    The direct reversible addition fragmentation chain transfer (RAFT) polymerization of 4-vinylbenzaldehyde (VBA) was established as a new synthetic method for the preparation of well-defined poly(vinylbenzaldehyde) (PVBA), a polymer having reactive aldehyde side chain substiuents. RAFT polymerization of VBA was investigated using S-1-dodecyl-S’-(α,α’-dimethyl-α”-acetic acid)trithiocarbonate (DDMAT) as chain transfer agent (CTA) and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator in 1,4-dioxane or 2-butanone at 70-75 °C for 7.5-22.5 h. With 45-76% of monomer conversion, the resulting PVBA had well controlled number-average molecular weight (Mn) and low polydispersity (PDI < 1.17). The living characteristic of the RAFT polymerization process was confirmed by the linearity between the Mn values of PVBA and monomer conversions. Well-defined PVBA was further used as a macromolecular chain transfer agent (macro-CTA) in RAFT polymerization of styrene (St), and a block copolymer PVBA-b-PSt with relatively low polydispersity (PDI = 1.20) was successfully synthesized. PMID:19066633

  8. Note: A simple picture of subdiffusive polymer motion from stochastic simulations

    NASA Astrophysics Data System (ADS)

    Gniewek, Pawel; Kolinski, Andrzej

    2011-02-01

    Entangled polymer solutions and melts exhibit unusual frictional properties. In the entanglement limit self-diffusion coefficient of long flexible polymers decays with the second power of chain length and viscosity increases with 3-3.5 power of chain length.1 It is very difficult to provide detailed molecular-level explanation of the entanglement effect.2 Perhaps, the problem of many entangled polymer chains is the most complex multibody issue of classical physics. There are different approaches to polymer melt dynamics. Some of these recognize hydrodynamic interactions as a dominant term, while topological constraints for polymer chains are assumed as a secondary factor. Other theories consider the topological constraints as the most important factors controlling polymer dynamics. Herman and co-workers describe polymer dynamics in melts, as a lateral sliding of a chain along other chains until complete mutual disentanglement. Despite the success in explaining the power-laws for viscosity, the model has some limitations. First of all, memory effects are ignored, that is, polymer segments are treated independently. Also, each entanglement/obstacle is treated as a separate entity, which is certainly a simplification of the memory effect problem. In addition to that, correlated motions of segments are addressed within the framework of renormalized Rouse-chain theory,7 without calling any topological entanglements in advance. This approach leads to the generalized Langevin equation characterized by distinct memory kernels describing local and nonlocal segment correlations or to the Smoluchowski equation in which the segments' mobility is treated as a stochastic variable.11 Both models describe the polymer segments motion at a microscopic level. An interesting alternative is to solve the integrodifferential equation for the chain relaxation with a sophisticated kernel function.12 The design of the kernel function is based on a mesoscopic description of the polymer melt. These theories explain some experimental data, although the description of the crossover between the Rouse and non-Rouse behavior is not satisfactory. Obviously, within the scope of a short note we cannot review all theoretical concepts of the polymer melt dynamics. Here we focus just on the interpretation of the observed single segment autocorrelation function.

  9. Solid-phase submonomer synthesis of peptoid polymers and their self-assembly into highly-ordered nanosheets.

    PubMed

    Tran, Helen; Gael, Sarah L; Connolly, Michael D; Zuckermann, Ronald N

    2011-11-02

    Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.

  10. Chain conformations and phase behavior of conjugated polymers.

    PubMed

    Kuei, Brooke; Gomez, Enrique D

    2016-12-21

    Conjugated polymers may play an important role in various emerging optoelectronic applications because they combine the chemical versatility of organic molecules and the flexibility, stretchability and toughness of polymers with semiconducting properties. Nevertheless, in order to achieve the full potential of conjugated polymers, a clear description of how their structure, morphology, and macroscopic properties are interrelated is needed. We propose that the starting point for understanding conjugated polymers includes understanding chain conformations and phase behavior. Efforts to predict and measure the persistence length have significantly refined our intuition of the chain stiffness, and have led to predictions of nematic-to-isotropic transitions. Exploring mixing between conjugated polymers and small molecules or other polymers has demonstrated tremendous advancements in attaining the needed properties for various optoelectronic devices. Current efforts continue to refine our knowledge of chain conformations and phase behavior and the factors that influence these properties, thereby providing opportunities for the development of novel optoelectronic materials based on conjugated polymers.

  11. Enzymatic polymerization of natural anacardic acid and antibiofouling effects of polyanacardic acid coatings.

    PubMed

    Chelikani, Rahul; Kim, Yong Hwan; Yoon, Do-Young; Kim, Dong-Shik

    2009-05-01

    Anacardic acid, separated from cashew nut shell liquid, is well known for its strong antibiotic and antioxidant activities. Recent findings indicate that phenolic compounds from plant sources have an effect on Gram-negative bacteria biofilm formation. In this work, a polyphenolic coating was prepared from anacardic acid using enzymatic synthesis and tested for its effects on biofilm formation of both Gram-negative and Gram-positive bacteria. Natural anacardic acid was enzymatically polymerized using soybean peroxidase. Hydrogen peroxide and phenothiazine-10-propionic acid were used as an oxidizing agent and redox mediator, respectively. Nuclear magnetic resonance and Fourier transform infrared (FTIR) analyses showed the formation of oxyphenylene and phenylene units through the phenol rings. No linkage through the alkyl chain was observed, which proved a high chemo-selectivity of the enzyme. Aqueous solvents turned out to play an important role in the polymer production yield and molecular weight. With 2-propanol, the highest production yield (61%) of polymer (molecular weight = 3,900) was observed, and with methanol, higher-molecular-weight polymers (5,000) were produced with lower production yields (43%). The resulting polyanacardic acid was cross-linked on a solid surface to form a permanent natural polymer coating. The FTIR analysis indicates that the cross-linking between the polymers took place through the unsaturated alkyl side chains. The polyanacardic acid coating was then tested for its antibiofouling effect against Gram-negative and Gram-positive bacteria and compared with the antibiofouling effects of polycardanol coatings reported in the literature. The polyanacardic acid coating showed more reduction in biofilm formation on its surface than polycardanol coatings in the case of Gram-positive bacteria, while in the case of Gram-negative bacteria, it showed a similar reduction in biofilm formation as polycardanol.

  12. The role of living/controlled radical polymerization in the formation of improved imprinted polymers.

    PubMed

    Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E

    2012-06-01

    In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Polarizable polymer chain under external electric field: Effects of many-body electrostatic dipole correlations.

    PubMed

    Budkov, Yu A; Kolesnikov, A L

    2016-11-01

    We present a new simple self-consistent field theory of a polarizable flexible polymer chain under an external constant electric field with account for the many-body electrostatic dipole correlations. We show the effects of electrostatic dipole correlations on the electric-field-induced globule-coil transition. We demonstrate that only when the polymer chain is in the coil conformation, the electrostatic dipole correlations of monomers can be considered as pairwise. However, when the polymer chain is in a collapsed state, the dipole correlations have to be considered at the many-body level.

  14. Efficient protein-repelling thin films regulated by chain mobility of low-Tg polymers with increased stability via crosslinking

    NASA Astrophysics Data System (ADS)

    Zhang, Jinghui; Huang, Zhiwei; Liu, Dan

    2017-12-01

    Polymer thin films are generally employed as coatings on implants to prevent protein adsorption. Polymer chain mobility and surface softness have been found to contribute to the protein resistance, but also bring film instability in a liquid protein medium. We investigated the protein resistance ability of three low-Tg polymers, including hydrophobic polymers polyisoprene (PI), poly(n-butyl methacrylate) (PnBMA) and hydrophilic polyethylene oxide (PEO), by overcoming the instability issue with crosslinking. We found that the Tgs of PI and PEO can be increased to around 0 °C after crosslinking. The remained strong chain mobility of both films can still resist protein adsorption regardless the hydrophobicity, yet greatly increases the film stability under an aqueous circumstance. The PnBMA film increased its Tg to around room temperature after crosslinking, which deteriorated the protein-resistance ability having the surface covered by BSA molecules. Our results support that the chain mobility of a polymer film plays an important role in resisting protein adsorption due to the increased entropy associated with more mobile polymer chains. By tune the degree of crosslinking, the stability of polymer in aqueous environment can be increased while the protein resistant ability can be remained. Our results provide a new strategy to design polymer materials for effective antifouling.

  15. Annealed scaling for a charged polymer in dimensions two and higher

    NASA Astrophysics Data System (ADS)

    Berger, Q.; den Hollander, F.; Poisat, J.

    2018-02-01

    This paper considers an undirected polymer chain on {Z}d , d ≥slant 2 , with i.i.d. random charges attached to its constituent monomers. Each self-intersection of the polymer chain contributes an energy to the interaction Hamiltonian that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The object of interest is the annealed free energy per monomer in the limit as the length n of the polymer chain tends to infinity. We show that there is a critical curve in the parameter plane spanned by the charge bias and the inverse temperature separating an extended phase from a collapsed phase. We derive the scaling of the critical curve for small and for large charge bias and the scaling of the annealed free energy for small inverse temperature. We argue that in the collapsed phase the polymer chain is subdiffusive, namely, on scale \

  16. Quantifying side-chain conformational variations in protein structure

    PubMed Central

    Miao, Zhichao; Cao, Yang

    2016-01-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs. PMID:27845406

  17. Quantifying side-chain conformational variations in protein structure

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Cao, Yang

    2016-11-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  18. Quantifying side-chain conformational variations in protein structure.

    PubMed

    Miao, Zhichao; Cao, Yang

    2016-11-15

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  19. Doubly self-consistent field theory of grafted polymers under simple shear in steady state.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  20. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils.

    PubMed

    Punihaole, David; Jakubek, Ryan S; Workman, Riley J; Asher, Sanford A

    2018-04-19

    We determined an empirical correlation that relates the amide I vibrational band frequencies of the glutamine (Q) side chain to the strength of hydrogen bonding, van der Waals, and Lewis acid-base interactions of its primary amide carbonyl. We used this correlation to determine the Q side chain carbonyl interaction enthalpy (Δ H int ) in monomeric and amyloid-like fibril conformations of D 2 Q 10 K 2 (Q10). We independently verified these Δ H int values through molecular dynamics simulations that showed excellent agreement with experiments. We found that side chain-side chain and side chain-peptide backbone interactions in fibrils and monomers are more enthalpically favorable than are Q side chain-water interactions. Q10 fibrils also showed a more favorable Δ H int for side chain-side chain interactions compared to backbone-backbone interactions. This work experimentally demonstrates that interamide side chain interactions are important in the formation and stabilization of polyQ fibrils.

  1. Structural relaxation processes in polyethylene glycol/CCl4 solutions by Brillouin scattering.

    PubMed

    Pochylski, M; Aliotta, F; Błaszczak, Z; Gapiński, J

    2005-03-10

    We present results of a Brillouin scattering experiment on solutions of poly(ethylene glycol) of mean molecular mass 600 g/mol (PEG600) in CCl4. The relaxation process detected has been assigned to conformational rearrangements of the polymeric chains, triggered by reorientation of the side groups. The concentration dependencies of the hypersound velocity and normalized absorption are compared against the indications from several models proposed in the literature. The concentration evolution of the system is described in terms of two distinct regimes. At high polymer content, the system is dominated by the structure of the dense polymer, where polymer-polymer interactions, together with excluded volume effects, induce the existence of a preferred local arrangement resulting in a narrow distribution of the relaxation times, with the average value of the relaxation time following a simple Arrhenius temperature dependence. As the concentration decreases, the original structure of the hydrogen bonded polymer network is destroyed, and a number of different local configuration coexist, giving rise to a wider distribution of relaxation times or to a multiple relaxation. At low concentrations, the experimental data are well fitted assuming a Vogel-Fulker-Tammon behavior for the average relaxation time. In addition, the observed deviation from the ideal behavior for the refractive index and the density suggests that CCl4 does not behave as an inert solvent, and due to polarization effects, it can develop local hetero-associated structures via electrostatic interaction with the O-H end groups of the polymeric chains. The hypothesis has been successfully tested by fitting the concentration behavior of the hypersonic velocity to a recent three-component model, suitable to describe the concentration dependence of sound velocity in moderately interacting fluids. The indication of the model furnishes a very high value for the association constant of the PEG600, confirming the literature indication that, in polymeric systems capable of developing long liner aggregates via hydrogen bonding interaction, the Brillouin probe is insensitive to the true length of the polymeric chains. The Brillouin scattering experiment just sees an effective hydrogen bonded aggregate that is huge relative to the length of the single polymeric chain and becomes sensitive only to the density fluctuations of the local segmental motions.

  2. Polymer dynamics: Floored by the rings

    NASA Astrophysics Data System (ADS)

    McLeish, Tom

    2008-12-01

    The tube model can explain how mutually entangled polymer chains move and interact, but it relies on the loose ends of chains to generate relaxation. Ring polymers have no ends - so how do they relax?

  3. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation.

    PubMed

    Skaat, Hadas; Chen, Ravit; Grinberg, Igor; Margel, Shlomo

    2012-09-10

    Protein aggregation into amyloid fibrils is implicated in the pathogenesis of many neurodegenerative diseases. Engineered nanoparticles have emerged as a potential approach to alter the kinetics of protein fibrillation process. Yet, there are only a few reports describing the use of nanoparticles for inhibition of amyloid-β 40 (Aβ(40)) peptide aggregation, involved in Alzheimer's disease (AD). In the present study, we designed new uniform biocompatible amino-acid-based polymer nanoparticles containing hydrophobic dipeptides in the polymer side chains. The dipeptide residues were designed similarly to the hydrophobic core sequence of Aβ. Poly(N-acryloyl-L-phenylalanyl-L-phenylalanine methyl ester) (polyA-FF-ME) nanoparticles of 57 ± 6 nm were synthesized by dispersion polymerization of the monomer A-FF-ME in 2-methoxy ethanol, followed by precipitation of the obtained polymer in aqueous solution. Cell viability assay confirmed that no significant cytotoxic effect of the polyA-FF-ME nanoparticles on different human cell lines, e.g., PC-12 and SH-SY5Y, was observed. A significantly slow secondary structure transition from random coil to β-sheets during Aβ(40) fibril formation was observed in the presence of these nanoparticles, resulting in significant inhibition of Aβ(40) fibrillation kinetics. However, the polyA-FF-ME analogous nanoparticles containing the L-alanyl-L-alanine (AA) dipeptide in the polymer side groups, polyA-AA-ME nanoparticles, accelerate the Aβ(40) fibrillation kinetics. The polyA-FF-ME nanoparticles and the polyA-AA-ME nanoparticles may therefore contribute to a mechanistic understanding of the fibrillation process, leading to the development of therapeutic strategies against amyloid-related diseases.

  4. Variability in Lignin Composition and Structure in Cell Walls of Different Parts of Macaúba (Acrocomia aculeata) Palm Fruit.

    PubMed

    Rencoret, Jorge; Kim, Hoon; Evaristo, Anderson B; Gutiérrez, Ana; Ralph, John; Del Río, José C

    2018-01-10

    The lignins from different anatomical parts of macaúba (Acrocomia aculeata) palm fruit, namely stalks, epicarp, and endocarp, were studied. The lignin from stalks was enriched in S-lignin units (S/G 1.2) and β-ether linkages (84% of the total) and was partially acylated at the γ-OH of the lignin side-chains (26% lignin acylation), predominantly with p-hydroxybenzoates and acetates. The epicarp lignin was highly enriched in G-lignin units (S/G 0.2) and consequently depleted in β-ethers (65%) and enriched in condensed structures such as phenylcoumarans (24%) and dibenzodioxocins (3%). The endocarp lignin was strikingly different from the rest and presented large amounts of piceatannol units incorporated into the polymer. This resulted in a lignin polymer depleted in β-ethers but enriched in condensed structures and linked piceatannol moieties. The incorporation of piceatannol into the lignin polymer seems to have a role in seed protection.

  5. Hyaluronic Acid Graft Copolymers with Cleavable Arms as Potential Intravitreal Drug Delivery Vehicles.

    PubMed

    Borke, Tina; Najberg, Mathie; Ilina, Polina; Bhattacharya, Madhushree; Urtti, Arto; Tenhu, Heikki; Hietala, Sami

    2018-01-01

    Treatment of retinal diseases currently demands frequent intravitreal injections due to rapid clearance of the therapeutics. The use of high molecular weight polymers can extend the residence time in the vitreous and prolong the injection intervals. This study reports a water soluble graft copolymer as a potential vehicle for sustained intravitreal drug delivery. The copolymer features a high molecular weight hyaluronic acid (HA) backbone and poly(glyceryl glycerol) (PGG) side chains attached via hydrolysable ester linkers. PGG, a polyether with 1,2-diol groups in every repeating unit available for conjugation, serves as a detachable carrier. The influence of synthesis conditions and incubation in physiological media on the molecular weight of HA is studied. The cleavage of the PGG grafts from the HA backbone is quantified and polymer-from-polymer release kinetics are determined. The biocompatibility of the materials is tested in different cell cultures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Functionalized Poly(3,4-ethylenedioxy bithiophene) Films for Tuning Electrochromic and Thermoelectric Properties.

    PubMed

    Hu, Yongjing; Liu, Xiaofang; Jiang, Fengxing; Zhou, Weiqiang; Liu, Congcong; Duan, Xuemin; Xu, Jingkun

    2017-10-05

    Conductive thiophene-based polymers have garnered great attention for use in organic electron materials such as electrochromic and thermoelectric materials. However, they suffer from poor electron transport properties and long-term stability, leading to limited development eventually. Here, we proposed a strategy of functionalized thiophene-based polymers with oligo(ethylene glycol) or alkyl side chains and synthesized a series of poly(3,4-ethylenedioxy bithiophene)s (PEDTs) to tune their electrochromic and thermoelectric properties. An alkyl group bearing electronic ability at the thiophene ring effectively achieved a large increase in the electrical conductivity with nearly invariable Seebeck coefficient, resulting in an enhancement by 1 order of magnitude for the thermoelectric power factor. Moreover, the electrochromic properties of functionalized PEDTs gained an effective improvement in the optical contrast and coloration efficiency as well as stability with multicolor changes between neutral and oxidized states. The functionalized PEDTs can be proposed as an alternative strategy to tune the electrochromic and thermoelectric properties for organic polymer materials.

  7. Thermosensitive Triterpenoid-Appended Polymers with Broad Temperature Tunability Regulated by Host-Guest Chemistry.

    PubMed

    Hao, Jie; Gao, Yuxia; Li, Ying; Yan, Qiang; Hu, Jun; Ju, Yong

    2017-09-05

    Thermoresponsive water-soluble polymers are of great importance since they typically show a lower critical solution temperature (LCST) in aqueous media. In this research, the LCST change in broad temperature ranges of copolymers composed of natural glycyrrhetinic acid (GA)-based methacrylate and N,N'-dimethylacrylamides (DMAs) was investigated as a function of the concentration and the content of GA pendants. By complexation of GA pendants with β-cyclodextrin (β-CD), a side-chain polypseudorotaxane was obtained, which exhibited a significant increase in the LCST of copolymers. Moreover, the precisely reversible control of the LCST behavior was realized through adding a competing guest molecule, sodium 1-admantylcarboxylate. This work illustrates a simple and effective approach to endow water-soluble polymers with broad temperature tunability and helps us further understand the effect of a biocompatible host-guest complementary β-CD/GA pair on the thermoresponsive process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Macromolecular 'size' and 'hardness' drives structure in solvent-swollen blends of linear, cyclic, and star polymers.

    PubMed

    Gartner, Thomas E; Jayaraman, Arthi

    2018-01-17

    In this paper, we apply molecular simulation and liquid state theory to uncover the structure and thermodynamics of homopolymer blends of the same chemistry and varying chain architecture in the presence of explicit solvent species. We use hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations in the Gibbs ensemble to study the swelling of ∼12 000 g mol -1 linear, cyclic, and 4-arm star polystyrene chains in toluene. Our simulations show that the macroscopic swelling response is indistinguishable between the various architectures and matches published experimental data for the solvent annealing of linear polystyrene by toluene vapor. We then use standard MD simulations in the NPT ensemble along with polymer reference interaction site model (PRISM) theory to calculate effective polymer-solvent and polymer-polymer Flory-Huggins interaction parameters (χ eff ) in these systems. As seen in the macroscopic swelling results, there are no significant differences in the polymer-solvent and polymer-polymer χ eff between the various architectures. Despite similar macroscopic swelling and effective interaction parameters between various architectures, the pair correlation function between chain centers-of-mass indicates stronger correlations between cyclic or star chains in the linear-cyclic blends and linear-star blends, compared to linear chain-linear chain correlations. Furthermore, we note striking similarities in the chain-level correlations and the radius of gyration of cyclic and 4-arm star architectures of identical molecular weight. Our results indicate that the cyclic and star chains are 'smaller' and 'harder' than their linear counterparts, and through comparison with MD simulations of blends of soft spheres with varying hardness and size we suggest that these macromolecular characteristics are the source of the stronger cyclic-cyclic and star-star correlations.

  9. Geometric somersaults of a polymer chain through cyclic twisting motions

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Hino, Taiko

    2017-01-01

    This study explores the significance of geometric angle shifts, which we call geometric somersaults, arising from cyclic twisting motions of a polymer chain. A five-bead polymer chain serves as a concise and minimal model of a molecular shaft throughout this study. We first show that this polymer chain can change its orientation about its longitudinal axis largely, e.g., 120∘, under conditions of zero total angular momentum by changing the two dihedral angles in a cyclic manner. This phenomenon is an example of the so-called "falling cat" phenomenon, where a falling cat undergoes a geometric somersault by changing its body shape under conditions of zero total angular momentum. We then extend the geometric somersault of the polymer chain to a noisy and viscous environment, where the polymer chain is steered by external driving forces. This extension shows that the polymer chain can achieve an orientation change keeping its total angular momentum and total external torque fluctuating around zero in a noisy and viscous environment. As an application, we argue that the geometric somersault of the polymer chain by 120∘ may serve as a prototypical and coarse-grained model for the rotary motion of the central shaft of ATP synthase (FOF1 -ATPase). This geometric somersault is in clear contrast to the standard picture for the rotary motion of the central shaft as a rigid body, which generally incurs nonzero total angular momentum and nonzero total external torque. The power profile of the geometric somersault implies a preliminary mechanism for elastic power transmission. The results of this study may be of fundamental interest in twisting and rotary motions of biomolecules.

  10. Langmuir Films of Flexible Polymers Transferred to Aqueous/Liquid Crystal Interfaces Induce Uniform Azimuthal Alignment of the Liquid Crystal

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.

    2009-01-01

    We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films of a novel flexible polymer. A second important outcome is the observation that the existence, extent, and dynamics of this order can be identified and characterized optically by transfer of the Langmuir film to a thin film of LC. Additional characterization of Langmuir films of two other flexible polymers [poly(methyl methacrylate) and poly(vinyl stearate)] using this method also resulted in uniform azimuthal alignment of 5CB, suggesting that the generation of long-range order in uniaxially compressed Langmuir films of polymers may also occur more generally over a broader range of polymers with flexible backbones. PMID:19836025

  11. Chemical Organization of the Cell Wall Polysaccharide Core of Malassezia restricta

    PubMed Central

    Stalhberger, Thomas; Simenel, Catherine; Clavaud, Cécile; Eijsink, Vincent G. H.; Jourdain, Roland; Delepierre, Muriel; Latgé, Jean-Paul; Breton, Lionel; Fontaine, Thierry

    2014-01-01

    Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% β-(1,3)-glucan, and 70% β-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and β-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is β-(1,6)-glucans, which are large molecules composed of a linear β-(1,6)-glucan chains with β-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both β-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date. PMID:24627479

  12. Chemical organization of the cell wall polysaccharide core of Malassezia restricta.

    PubMed

    Stalhberger, Thomas; Simenel, Catherine; Clavaud, Cécile; Eijsink, Vincent G H; Jourdain, Roland; Delepierre, Muriel; Latgé, Jean-Paul; Breton, Lionel; Fontaine, Thierry

    2014-05-02

    Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% β-(1,3)-glucan, and 70% β-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and β-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is β-(1,6)-glucans, which are large molecules composed of a linear β-(1,6)-glucan chains with β-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both β-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Michael B.; Van Horn, J. David; Wu, Fei

    The synthesis of microporous polymers generally requires postpolymerization modification via hyper-cross-linking to trap the polymeric network in a state with high void volume. An alternative approach utilizes rigid, sterically demanding monomers to inhibit efficient packing, thus leading to a high degree of free volume between polymer side groups and main chains. Herein we combine polymers of intrinsic microporosity with polymerization-induced microphase separation (PIMS), a versatile methodology for the synthesis of nanostructured materials that can be rendered mesoporous. Copolymerization of various styrenic monomers with divinylbenzene in the presence of a poly(lactide) terminated with a chain-transfer agent (PLA-CTA) results in kinetic trappingmore » of a microphase-separated state. Subsequent etching of PLA provides a bicontinuous mesoporous network. Using equilibrium and kinetic nitrogen sorption experiments as well as positron annihilation lifetime spectroscopy (PALS), we demonstrate that variations in the steric characteristics of the styrenic monomer impart the network with microporosity, resulting in hierarchically (meso and micro) porous materials. Additionally, structure–property relationships of the styrenic monomer with total surface area and pore volume indicate that the glass transition temperature (Tg) of the corresponding styrenic homopolymers provides a reasonable measure of the steric interactions and resultant microporosity in these systems. Finally, PALS provides insight into micro- and mesoscopic void volume differences between porous monoliths containing either tert-butyl or TMS-modified styrenic monomers compared to the parent, unmodified styrene.« less

  14. Modeling the tetraphenylalanine-PEG hybrid amphiphile: from DFT calculations on the peptide to molecular dynamics simulations on the conjugate.

    PubMed

    Zanuy, David; Hamley, Ian W; Alemán, Carlos

    2011-07-21

    The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helical-like arrangements. Furthermore, calculations indicate that backbone···side chain interactions involving the N-H of the amide groups and the π clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand, MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.

  15. Bipolar and Unipolar Silylene-Diphenylene σ-π Conjugated Polymer Route for Highly Efficient Electrophosphorescence

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Tang; Sharma, Sunil; Hung, Miao-Ken; Lee, Yu-Hsuan; Chen, Show-An

    2016-12-01

    σ-π conjugated polymer strategy is proposed for designing electroluminescent host polymers with silylene-diphenylene as the backbone repeat unit giving a high triplet energy (ET = 2.67 eV). By incorporation of high ET (3.0 eV) electron (oxadiazole, OXD) and hole (triphenyl amine, TPA) transport moieties, or TPA alone (in this case, the main chain acts as electron transport channel) as side arms on the silylene, the high ET bipolar and unipolar polymers are formed, allowing a use of iridium green phosphor (Ir(ppy)2(acac), Ir-G) (ET = 2.40 eV) as the dopant. The matching of energy levels of the dopant with the hosts, leading to charge trapping into it; and singlets and triplets of the exciplex and excimer can be harvested via energy transfer to the dopant. Using these host-guest systems as the emitting layer, chlorinated indium-tin-oxide (Cl-ITO) as the anode, and benzimidazole derivative (TPBI) as the electron transport layer, this two-layer device gives the high luminance efficiency 80.1 cd/A and external quantum efficiency 21.2%, which is the best among the report values for polymer light emitting diode (PLED) in the literatures. This example manifests that σ-π conjugated polymer strategy is a promising route for designing polymer host for efficient electrophosphorescence.

  16. Bipolar and Unipolar Silylene-Diphenylene σ-π Conjugated Polymer Route for Highly Efficient Electrophosphorescence

    PubMed Central

    Chang, Yao-Tang; Sharma, Sunil; Hung, Miao-Ken; Lee, Yu-Hsuan; Chen, Show-An

    2016-01-01

    σ-π conjugated polymer strategy is proposed for designing electroluminescent host polymers with silylene-diphenylene as the backbone repeat unit giving a high triplet energy (ET = 2.67 eV). By incorporation of high ET (3.0 eV) electron (oxadiazole, OXD) and hole (triphenyl amine, TPA) transport moieties, or TPA alone (in this case, the main chain acts as electron transport channel) as side arms on the silylene, the high ET bipolar and unipolar polymers are formed, allowing a use of iridium green phosphor (Ir(ppy)2(acac), Ir-G) (ET = 2.40 eV) as the dopant. The matching of energy levels of the dopant with the hosts, leading to charge trapping into it; and singlets and triplets of the exciplex and excimer can be harvested via energy transfer to the dopant. Using these host-guest systems as the emitting layer, chlorinated indium-tin-oxide (Cl-ITO) as the anode, and benzimidazole derivative (TPBI) as the electron transport layer, this two-layer device gives the high luminance efficiency 80.1 cd/A and external quantum efficiency 21.2%, which is the best among the report values for polymer light emitting diode (PLED) in the literatures. This example manifests that σ-π conjugated polymer strategy is a promising route for designing polymer host for efficient electrophosphorescence. PMID:27910921

  17. Equivalence of chain conformations in the surface region of a polymer melt and a single Gaussian chain under critical conditions.

    PubMed

    Skvortsov, A M; Leermakers, F A M; Fleer, G J

    2013-08-07

    In the melt polymer conformations are nearly ideal according to Flory's ideality hypothesis. Silberberg generalized this statement for chains in the interfacial region. We check the Silberberg argument by analyzing the conformations of a probe chain end-grafted at a solid surface in a sea of floating free chains of concentration φ by the self-consistent field (SCF) method. Apart from the grafting, probe chain and floating chains are identical. Most of the results were obtained for a standard SCF model with freely jointed chains on a six-choice lattice, where immediate step reversals are allowed. A few data were generated for a five-choice lattice, where such step reversals are forbidden. These coarse-grained models describe the equilibrium properties of flexible atactic polymer chains at the scale of the segment length. The concentration was varied over the whole range from φ = 0 (single grafted chain) to φ = 1 (probe chain in the melt). The number of contacts with the surface, average height of the free end and its dispersion, average loop and train length, tail size distribution, end-point and overall segment distributions were calculated for a grafted probe chain as a function of φ, for several chain lengths and substrate∕polymer interactions, which were varied from strong repulsion to strong adsorption. The computations show that the conformations of the probe chain in the melt do not depend on substrate∕polymer interactions and are very similar to the conformations of a single end-grafted chain under critical conditions, and can thus be described analytically. When the substrate∕polymer interaction is fixed at the value corresponding to critical conditions, all equilibrium properties of a probe chain are independent of φ, over the whole range from a dilute solution to the melt. We believe that the conformations of all flexible chains in the surface region of the melt are close to those of an appropriate single chain in critical conditions, provided that one end of the single chain is fixed at the same point as a chain in the melt.

  18. Experimental and numerical measurements of adhesion energies between PHEMA and PGLYMA with hydroxyapatite crystal.

    PubMed

    Youssefian, Sina; Liu, Pingsheng; Askarinejad, Sina; Shalchy, Faezeh; Song, Jie; Rahbar, Nima

    2015-07-16

    Synthetic orthopaedic materials consisting of a single bioinert polymeric material do not meet the complex biological and physical requirements of scaffold-guided bone tissue repair and regeneration. Of particular interest is the design of biocompatible hydrogel-hydroxyapatite composite bone substitutes with outstanding interfacial adhesion that would warranty the ability for the composite to withstand functional loadings without exhibiting brittle fractures during the dynamic guided tissue regeneration. For this purpose, the hydroxylated side chain of chemically cross-linked poly (2-hydroxyethyl methacrylate) (pHEMA) is substitute with a carboxylated side chain to make poly (glycerol methacrylate) (pGLYMA). Here, we carry out atomistic simulations and atomic force microscopy to predict and experimentally determine the interfacial adhesion energies of pHEMA and pGLYMA with the surface of single-crystalline hydroxyapatite (HA) whiskers. Both experimental and numerical results showed that pGLYMA has stronger adhesion forces with HA and may be used for preparing a high-affinity polymer-HA composite. The high adhesive interactions between pGLYMA and HA were found to be due to strong electrostatic energies.

  19. Role of monomer sequence and backbone chemistry in polypeptoid copolymers for marine antifouling coatings

    NASA Astrophysics Data System (ADS)

    Patterson, Anastasia; Wenning, Brandon; Rizis, Georgios; Calabrese, David; Finlay, John; Franco, Sofia; Clare, Anthony; Kramer, Edward; Ober, Christopher; Segalman, Rachel

    The design rules elucidated in this work suggest that antifouling coatings bearing pendant peptoid side chains perform better overall in marine fouling tests than those with peptide side chains, with extremely low attachment of N. incerta and high removal of U. linza. This difference in performance is likely due to the lack of a hydrogen bond donor in the peptoid backbone. Furthermore, we show that the bulk polymer material of these hierarchical coatings (based on PEO or PDMS) plays a key role in determining both surface presentation and fouling release performance. We demonstrate these trends utilizing a modular coating based on a triblock copolymer consisting of polystyrene and a vinyl-containing midblock, to which sequence-defined pendant oligomers (peptides or peptoids with sequences of oligo-PEO and fluoroalkyl groups) are attached via thiol-ene ``click'' chemistry. Surface presentation was analyzed with X-ray photoelectron spectroscopy and captive bubble water contact angle, and antifouling performance was evaluated with attachment and removal bioassays of the marine macroalga U. linza and diatom N. incerta. NSF GRFP and ONR PECASE.

  20. Structure-induced switching of interpolymer adhesion at a solid–polymer melt interface

    DOE PAGES

    Jiang, Naisheng; Sen, Mani; Zeng, Wenduo; ...

    2018-01-11

    In this paper, we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: “flattened chains” which lie flat on the solid and are densely packed, and “loosely adsorbed polymer chains” which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesionmore » testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer–adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as “connector molecules”, bridging the free chains and substrate surface and improving the interfacial adhesion. Finally, these findings not only shed light on the structure–property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.« less

  1. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    PubMed

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.

  2. Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases

    PubMed Central

    Senses, Erkan; Faraone, Antonio; Akcora, Pinar

    2016-01-01

    Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites. PMID:27457056

  3. Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes.

    PubMed

    Ansari, R; Ajori, S; Rouhi, S

    2015-12-01

    Molecular dynamics (MD) simulations were used to study the adsorption of different polymer chains on functionalized double-walled carbon nanotubes (DWCNTs). The nanotubes were functionalized with two different amines: NH2 (a small amine) and CH2-NH2 (a large amine). Considering three different polymer chains, all with the same number of atoms, the effect of polymer type on the polymer-nanotube interaction was studied. In general, it was found that covalent functionalization considerably improved the polymer-DWCNT interaction. By comparing the results obtained with different polymer chains, it was observed that, unlike polyethylene and polyketone, poly(styrene sulfonate) only weakly interacts with the functionalized DWCNTs. Accordingly, the smallest radius of gyration was obtained with adsorbed poly(styrene sulfonate). It was also observed that the DWCNTs functionalized with the large amine presented more stable interactions with polyketone and poly(styrene sulfonate) than with polyethylene, whereas the DWCNTs functionalized with the small amine showed better interfacial noncovalent bonding with polyethylene.

  4. High thermal conductivity in electrostatically engineered amorphous polymers

    PubMed Central

    Shanker, Apoorv; Li, Chen; Kim, Gun-Ho; Gidley, David; Pipe, Kevin P.; Kim, Jinsang

    2017-01-01

    High thermal conductivity is critical for many applications of polymers (for example, packaging of light-emitting diodes), in which heat must be dissipated efficiently to maintain the functionality and reliability of a system. Whereas uniaxially extended chain morphology has been shown to significantly enhance thermal conductivity in individual polymer chains and fibers, bulk polymers with coiled and entangled chains have low thermal conductivities (0.1 to 0.4 W m−1 K−1). We demonstrate that systematic ionization of a weak anionic polyelectrolyte, polyacrylic acid (PAA), resulting in extended and stiffened polymer chains with superior packing, can significantly enhance its thermal conductivity. Cross-plane thermal conductivity in spin-cast amorphous films steadily grows with PAA degree of ionization, reaching up to ~1.2 W m−1 K−1, which is on par with that of glass and about six times higher than that of most amorphous polymers, suggesting a new unexplored molecular engineering strategy to achieve high thermal conductivities in amorphous bulk polymers. PMID:28782022

  5. Behavior of grafted polymers on nanofillers and their influence on polymer nanocomposite properties

    NASA Astrophysics Data System (ADS)

    Dukes, Douglas Michael

    Polymer nanocomposites continue to receive wide-spread acclaim for their potential to improve composite materials beyond conventional macroscale fillers. The improvement lies both in the altered properties of the particle itself and in the interaction region surrounding the filler. As the surface area of the filler increases, a greater volume fraction of this interphase region is present in the composite. However, simply minimizing the particle size to maximize surface area introduces additional problems; the larger specific surface area promotes aggregation to reduce the surface energy. Since the composite's properties are largely tied to the morphology, aggregation prevents control over the dispersion state of the filler, and thus the properties. Therefore, disaggregation and morphology control are vital to achieving designable nanocomposites. To accomplish both tasks, this thesis focuses on the behavior of grafted polymer coatings on nanoparticles and their in uence on the macroscopic properties. Grafted chains play an integral role in both morphology control and reinforcement. To investigate the behavior of polymer brushes on nanoparticles, polystyrene was grafted on 15 nm silica particles at varying graft densities and molecular weights. Dynamic light scattering studies in dilute solution were performed to obtain the brush height as a function of both graft density and molecular weight. Three distinct regimes of behavior exist, the "mushroom", the semi-dilute polymer brush (SDPB), and the concentrated polymer brush (CPB) regimes. In the CPB regime, which is an extraordinary configuration of highly-stretched chains on densely grafted surfaces, the brush height h was found to scale as h ∝ N4/5, where N is the degree of polymerization. This result is contrary to the observed scaling of the CPB in flat interface systems, where h ∝ N1. To explore the behavior of grafted chains in the melt, molecular dynamics simulations were performed on grafted nanoparticles grafted with varying amounts of polymer chains at different curvatures. Particles as small as 15 monomers in size were found to already be in the large particle limit, a result that has many implications regarding the dispersibility of grafted fillers in composites. At low graft densities, melt chains were found to form entanglements with the brush all the way to the particle surface, implying the particle is not effectively screened by the grafted chains. The mechanical properties of these grafted silica composites were studied as a function of matrix polymer fraction. As more matrix polymer is introduced, the dominant contribution to the behavior shifts from the grafted chains to the matrix chains. This elucidates the role of grafted chains on the mechanical properties of grafted nanoparticle composites. As the graft density is increased, the wettability of grafted chains was shown to decrease, causing fewer entanglements between grafted chains and matrix chains, resulting in poorer reinforcement. Interesting behavior was observed at low graft densities; a pronounced shape memory effect occurred at high particle concentrations. It is proposed that the grafted chains entangle with adjacent grafted chains, forming a three-dimensional network of entangled brushes attached to silica cores. This structure effectively forms "cross-links" as in elastomeric systems, giving an entropic restorative force to stretched chains. Thus, above Tg, when chains have a higher degree of mobility, the composites can be stretched to over 800%. When cooled to below Tg, they retain the deformed geometry. Upon reheating above Tg, the composite is restored to its original dimensions. This work has identified means of improving theoretical models to better guide future experiments and lead to predictability in polymer composite design. Grafted chains have the demonstrated ability to control the morphology and reinforcement in polymer composites. The behavior of grafted chains were shown to demonstrate drastically different properties from their bulk polymer counterparts.

  6. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    PubMed

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with fullerenes via solution processing. The width of these fibers and the photon energy loss, defined as the energy difference between optical band gap and open-circuit voltage, together govern to a large extent the quantum efficiency for charge generation in these blends and thereby the power conversion efficiency of the photovoltaic devices. Lowering the photon energy loss and maintaining a high quantum yield for charge generation is identified as a major pathway to enhance the performance of organic solar cells. This can be achieved by controlling the structural purity of the materials and further control over morphology formation. We hope that this Account contributes to improved design strategies of DPP polymers that are required to realize new breakthroughs in organic solar cell performance in the future.

  7. The influence of polymer architectures on the dewetting behavior of thin polymer films: from linear chains to ring chains.

    PubMed

    Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia

    2017-05-03

    The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.

  8. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu; Freed, Karl F., E-mail: freed@uchicago.edu; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chainmore » stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.« less

  9. Enthalpic and Entropic Competition in Blends of Self-Suspended Hairy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhury, Snehashis; Agrawal, Akanksha; Archer, Lynden

    Self-suspended hairy nanoparticles, where polymer chains are grafted onto nanoparticles, have attracted significant recent attention. These materials have been reported to manifest several interesting phenomena like thermal jamming, slowing-down of polymer chain dynamics, as well as small-strain stress overshoots during start-up of steady shear. The entropic penalty on tethered polymers produced by the requirement that they fill the space between the nanoparticle cores explain most of these behaviors. Here, we show that the entropic attraction between tethered polymer chains can be manipulated in mixtures of hairy nanoparticles using different polymer chemistry to design materials with unusual characteristics. Specifically, the degree of interpenetration of polymer chains can be controlled by tuning their interaction parameter (χ) . For SiO2-PEG/SiO2-PMMA blends, oscillatory rheological measurements show that the plateau modulus and yielding energy are significantly increased, while an opposite effect is seen with SiO2-PEG/SiO2-PI blends. More subtle effects of this enthalpy-entropy competition are well captured in Dielectric Spectroscopy measurements and SAXS experiments that can be used to quantify the degree of stretch and interdigitation of polymer chains.

  10. Supramolecular Polymers Based on Non-Coplanar AAA-DDD Hydrogen-Bonded Complexes.

    PubMed

    Mendez, Iamnica J Linares; Wang, Hong-Bo; Yuan, Ying-Xue; Wisner, James A

    2018-03-01

    Non-coplanar triple-hydrogen-bond arrays are connected as telechelic groups to alkyl chains and their properties as AA/BB type supramolecular polymers are examined. Viscosity studies at three temperatures are used to study the ring-chain equilibrium and determine the critical concentrations where polymer chains are formed. It is observed that neither the temperature range studied nor the alkyl chain length of one component significantly affect the polymerization properties in this system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo, Tongchuan; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkmanmore » equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.« less

  12. Multiple dynamic regimes in colloid-polymer dispersions: New insight using X-ray photon correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Sunita; Kishore, Suhasini; Narayanan, Suresh

    We present an X-ray photon correlation spectros- copy (XPCS) study of dynamic transitions in an anisotropic colloid-polymer dispersion with multiple arrested states. The results provide insight into the mechanism for formation of repulsive glasses, attractive glasses, and networked gels of col- loids with weakly adsorbing polymer chains. In the presence of adsorbing polymer chains, we observe three distinct regimes: a state with slow dynamics consisting of finite particles and clusters, for which interparticle interactions are predominantly repulsive; a second dynamic regime occurring above the satu- ration concentration of added polymer, in which small clusters of nanoparticles form via a short-rangemore » depletion attraction; and a third regime above the overlap concentration in which dynamics of clusters are independent of polymer chain length. The observed complex dynamic state diagram is primarily gov- erned by the structural reorganization of a nanoparticle cluster and polymer chains at the nanoparticle-polymer surface and in the concentrated medium, which in turn controls the dynamics of the dispersion« less

  13. Changes in conformational dynamics of basic side chains upon protein–DNA association

    PubMed Central

    Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji

    2016-01-01

    Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446

  14. Phase Behavior of Pyrene and Vinyl Polymers with Aromatic Side Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangovi, Gagan N.; Lee, Sangwoo

    The phase behavior and thermodynamic properties of mixtures of pyrene and model vinyl polymers with and without aromatic side groups are investigated using differential scanning calorimetry (DSC) measurements. The melting temperature and associated heat of melting of the pyrene crystals in the mixtures are utilized to extract the effective interaction parameters χ and the composition of polymer-rich phases, respectively. The χ of pyrene mixed with polymers with aromatic side groups investigated in this study, polystyrene, poly(2-vinylpyridine), and poly(3-vinylanisole), is less than 0.5 at the melting point of the pyrene crystals, suggesting that pyrene and the polymers with aromatic sides groupsmore » are enthalpically compatible, likely due to aromatic π–π interactions. In contrast, the χ of pyrene mixed with poly(1,4-isoprene) or poly(ethylene-alt-propylene) is larger than 0.5. The DSC measurements also enable characterization of the composition of polymer-rich phases. Interestingly, the polymers with aromatic side groups are found to have more pronounced miscibility with pyrene at symmetric compositions.« less

  15. Property Enhancement Effects of Side-Chain-Type Naphthalene-Based Sulfonated Poly(arylene ether ketone) on Nafion Composite Membranes for Direct Methanol Fuel Cells.

    PubMed

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui

    2017-09-20

    Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.

  16. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions.

    PubMed

    Wong, Chin Ken; Mason, Alexander F; Stenzel, Martina H; Thordarson, Pall

    2017-11-01

    Polymersomes, made up of amphiphilic block copolymers, are emerging as a powerful tool in drug delivery and synthetic biology due to their high stability, chemical versatility, and surface modifiability. The full potential of polymersomes, however, has been hindered by a lack of versatile methods for shape control. Here we show that a range of non-spherical polymersome morphologies with anisotropic membranes can be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure. By controlling the extent of solvation/desolvation of the aromatic side chains through changes in solvent quality, we demonstrate facile access to polymersomes that are either ellipsoidal or tubular-shaped. Our results indicate that perylene aromatic interactions have a great potential in the design of non-spherical polymersomes and other structurally complex self-assembled polymer structures.

  17. Energy transfer in PPV-based conjugated polymers: a defocused widefield fluorescence microscopy study.

    PubMed

    Hooley, E N; Tilley, A J; White, J M; Ghiggino, K P; Bell, T D M

    2014-04-21

    Both pendant and main chain conjugated MEH-PPV based polymers have been studied at the level of single chains using confocal and widefield fluorescence microscopy techniques. In particular, defocused widefield fluorescence is applied to reveal the extent of energy transfer in these polymers by identifying whether they act as single emitters. For main chain conjugated MEH-PPV, molecular weight and the surrounding matrix play a primary role in determining energy transport processes and whether single emitter behaviour is observed. Surprisingly in polymers with a saturated backbone but containing the same pendant MEH-PPV oligomer on each repeating unit, intra-chain energy transfer to a single emitter is also apparent. The results imply there is chromophore heterogeneity that can facilitate energy funneling to the emitting site. Both main chain conjugated and pendant MEH-PPV polymers exhibit changes in orientation of the emission dipole during a fluorescence trajectory of many seconds, whereas a model MEH-PPV oligomer does not. The results suggest that, in the polymers, the nature of the emitting chromophores can change during the time trajectory.

  18. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing.

    PubMed

    Alzobaidi, Shehab; Lee, Jason; Jiries, Summer; Da, Chang; Harris, Justin; Keene, Kaitlin; Rodriguez, Gianfranco; Beckman, Eric; Perry, Robert; Johnston, Keith P; Enick, Robert

    2018-09-15

    The design of surfactants for CO 2 /oil emulsions has been elusive given the low CO 2 -oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO 2 /oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO 2 droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO 2 and oil through a beadpack (CO 2 volume fractions (ϕ) of 0.50-0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C 30 alkyl chains are CO 2 -insoluble but oil soluble (oleophilic), whereas PDMS with more than 50 repeat units is CO 2 -philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO 2 droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ∼88 and seven C 30 side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO 2 , with CO 2 droplets in the 10-150 µm range. These environmentally benign waterless emulsions are of interest for hydraulic fracturing, especially in water-sensitive formations. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Thermodynamics and mechanics of photochemcially reacting polymers

    NASA Astrophysics Data System (ADS)

    Long, Rong; Qi, H. Jerry; Dunn, Martin L.

    2013-11-01

    We develop a thermodynamics and mechanics theory for polymers that when irradiated with light, undergo photochemical reactions that alter their macromolecular structure, e.g., by bond breaking and/or reformation, and in turn affect their mechanical and physical behavior. This emerging class of highly-engineered active materials shows great promise for myriad applications and is a subset of a broader class of polymers with covalent bonds that can be dynamically tuned with various environmental stimuli. We formulate a general thermodynamic and kinetic framework to model the complex photochemical-thermal-mechanical coupling in these materials. Our theory considers the behavior of a polymer that is subjected to the combination of mechanical and thermal loading while simultaneously irradiated by light with multiple frequency components and directions. We introduce an approach to model the photochemical reactions that can change the network topology, resulting chemical species transport, heat conduction and finite deformation. We describe the interaction of the material with light via a radiometric description and show how it can be linked to a full electromagnetic treatment when appropriate and if desired. Our approach is sufficiently general to permit the modeling of various materials that operate via different photochemical reaction mechanisms. After formulating the general theory, we specialize it to a polymer that when irradiated with light undergoes a series of photochemical reactions that cause chain scission and reformation which continuously rearrange the polymer network into a stress-free configuration. Based on the operant physical mechanisms we develop a constitutive model using a polymer chain decomposition and evolution approach to track the molecular structure changes during simultaneous irradiation and mechanical loading. In the special case of isothermal conditions with monochromatic and unidirectional irradiation, we recover a previous model based on intuitive ad-hoc assumptions and thus put it on strong thermodynamic footing. Finally we use our model to simulate the behavior of a polymer that is biaxially stretched and then irradiated with light from one side. We simulate the process and emphasize the spontaneous bending that occurs due to inhomogeneous photoinduced stress relaxation. From our theory, we obtain an analytical expression of a characteristic time for photo-induced stress relaxation in terms of the dominating system parameters.

  20. Molecular engineered conjugated polymer with high thermal conductivity

    PubMed Central

    Song, Bai; Lee, Elizabeth M. Y.; Gleason, Karen K.

    2018-01-01

    Traditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices. Current research has so far been limited to engineering polymers either by strong intramolecular interactions, which enable efficient phonon transport along the polymer chains, or by strong intermolecular interactions, which enable efficient phonon transport between the polymer chains. However, it has not been possible until now to engineer both interactions simultaneously. We report the first realization of high thermal conductivity in the thin film of a conjugated polymer, poly(3-hexylthiophene), via bottom-up oxidative chemical vapor deposition (oCVD), taking advantage of both strong C=C covalent bonding along the extended polymer chain and strong π-π stacking noncovalent interactions between chains. We confirm the presence of both types of interactions by systematic structural characterization, achieving a near–room temperature thermal conductivity of 2.2 W/m·K, which is 10 times higher than that of conventional polymers. With the solvent-free oCVD technique, it is now possible to grow polymer films conformally on a variety of substrates as lightweight, flexible heat conductors that are also electrically insulating and resistant to corrosion. PMID:29670943

Top