USDA-ARS?s Scientific Manuscript database
Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...
Rudolph, Andreas; Teske, Michael; Illner, Sabine; Kiefel, Volker; Sternberg, Katrin; Grabow, Niels; Wree, Andreas; Hovakimyan, Marina
2015-01-01
Purpose Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Materials and Methods Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Results Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Conclusion Surface modification of polymers can provide a useful approach to enhance their biocompatibility. For clinical application, attempts should be made to stabilize the plasma modification and use it for coupling of biomolecules to accelerate the re-endothelialization of stent surfaces in vivo. PMID:26641662
Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.
Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal
2014-04-01
This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.
Tanahashi, Mitsuru
2010-01-01
Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites) by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.
Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation.
Inam Ul Ahad; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Korczyc, Barbara; Ciach, Tomasz; Brabazon, Dermot
2014-09-01
Polymeric biomaterials are being widely used for the treatment of various traumata, diseases and defects in human beings due to ease in their synthesis. As biomaterials have direct interaction with the extracellular environment in the biological world, biocompatibility is a topic of great significance. The introduction or enhancement of biocompatibility in certain polymers is still a challenge to overcome. Polymer biocompatibility can be controlled by surface modification. Various physical and chemical methods (e.g., chemical and plasma treatment, ion implantation, and ultraviolet irradiation etc.) are in use or being developed for the modification of polymer surfaces. However an important limitation in their employment is the alteration of bulk material. Different surface and bulk properties of biomaterials are often desirable for biomedical applications. Because extreme ultraviolet (EUV) radiation penetration is quite limited even in low density mediums, it could be possible to use it for surface modification without influencing the bulk material. This article reviews the degree of biocompatibility of different polymeric biomaterials being currently employed in various biomedical applications, the surface properties required to be modified for biocompatibility control, plasma and laser ablation based surface modification techniques, and research studies indicating possible use of EUV for enhancing biocompatibility. © 2013 Wiley Periodicals, Inc.
Potentiometric Detection of Pathogens
2012-01-01
nanosize organic electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field...electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field effect transistors, in...the conducting polymer top-layer, which makes the devices very functional and competitive. Secondly, the device development is discussed and finally
Buckling Instabilities in Polymer Brush Surfaces via Postpolymerization Modification
Guo, Wei; Reese, Cassandra M.; Xiong, Li; ...
2017-10-30
We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using postpolymerization modification (PPM), where the length scale of the buckled features can be tuned using PPM reaction time. Here, we show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling.
Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T
2009-04-07
We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1-2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips.
Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T.
2009-01-01
We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1–2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips. PMID:19294306
Damage-free polymer surface modification employing inward-type plasma
NASA Astrophysics Data System (ADS)
Kanou, Ryo; Suga, Hiroshi; Utsumi, Hideyuki; Takahashi, Satoshi; Shirayama, Yuya; Watanabe, Norimichi; Petit, Stèphane; Shimizu, Tetsuo
2017-08-01
Inward-type plasmas, which spread upstream against the gas flow in the capillary tube where the gas is discharged, can react with samples placed near the entrance of such a capillary tube. In this study, surface modification of polymer surfaces is conducted using inward plasma. The modification is also done by conventional microplasma jet, and the modified surfaces with two plasma techniques are characterized by contact angle measurement, X-ray photoemission spectroscopy (XPS), and atomic force microscopy (AFM). Although inward-plasma-treated surfaces are less hydrophilic than conventional plasma-treated ones, they are still sufficiently hydrophilic for surface coatings. In addition, it turns out that the polymer surfaces irradiated with the inward plasma yield much smoother surfaces than those treated with the conventional plasma jet. Thus, the inward plasma treatment is a viable technique when the surface flatness is crucial, such as for the surface coating of plastic lenses.
Surface modification for interaction study with bacteria and preosteoblast cells
NASA Astrophysics Data System (ADS)
Song, Qing
Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted on the polyelectrolyte modified HA scaffolds. The mineralized scaffolds stimulated osteogenesis of preosteoblast cells compared with the control HA scaffolds. Therefore, the surface modification through vapor deposition of polyelectrolytes and polymer-controlled mineralization can improve osteoinduction of bone materials. In summary, the iCVD-mediated surface modification is a simple and promising approach to biofunctionalizing various structured substrates and generating antimicrobial and biocompatible biomaterials.
UV light induced surface modification of HDPE films with bioactive compounds
NASA Astrophysics Data System (ADS)
Daniloska, Vesna; Blazevska-Gilev, Jadranka; Dimova, Vesna; Fajgar, Radek; Tomovska, Radmila
2010-01-01
The development of different techniques for surface modification of polymers becomes popular in a last decade. These techniques preserve useful bulk polymer properties unchanged, while the activation of the polymer surface offers more possibilities for polymer applications. In this work, a new, one-step method for bio-activation of HDPE (high density polyethylene) surface by UV irradiation is presented. HDPE films coupled with selected active compound and a photoinitiator was treated by UV lamp, emitting light at 254 nm. For surface functionalization of HDPE films, the following compounds were employed: 2-aminopyridine (AP), N 1-(2-pyridylaminomethyl)-1,2,4-triazole (TA) and benzocaine (BC). The influence of irradiation time on the extent of surface changes was investigated. The modified polymer surfaces were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, scanning electron microscopy (SEM) and contact angle measurements, demonstrating successful functionalization of HDPE surface.
Antibacterial Drug Releasing Materials by Post-Polymerization Surface Modification
NASA Astrophysics Data System (ADS)
Chng, Shuyun; Moloney, Mark G.; Wu, Linda Y. L.
Functional materials are available by the post-polymerization surface modification of diverse polymers in a three-step process mediated, firstly, by carbene insertion chemistry, secondly, by diazonium coupling, and thirdly by modification with a remotely tethered spiropyran unit, and these materials may be used for the reversible binding and release of Penicillin V. Surface loading densities of up to 0.19mmol/g polymer are achievable, leading to materials with higher loading densities and release behavior relative to unmodified controls, and observable antibacterial biocidal activity.
Surface Modification of Biomaterials: A Quest for Blood Compatibility
de Mel, Achala; Cousins, Brian G.; Seifalian, Alexander M.
2012-01-01
Cardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility. A great deal of research efforts are attributed towards realising such a surface, which comprise of a range of methods on surface modification. Surface modification methods can be broadly categorized as physicochemical modifications and biological modifications. These modifications aim to modulate platelet responses directly through modulation of thrombogenic proteins or by inducing antithrombogenic biomolecules that can be biofunctionalised onto surfaces or through inducing an active endothelium. Nanotechnology is recognising a great role in such surface modification of cardiovascular implants through biofunctionalisation of polymers and peptides in nanocomposites and through nanofabrication of polymers which will pave the way for finding a closer blood match through haemostasis when developing cardiovascular implants with a greater degree of patency. PMID:22693509
Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification.
Pegalajar-Jurado, A; Joslin, J M; Hawker, M J; Reynolds, M M; Fisher, E R
2014-08-13
Herein, we describe the surface modification of an S-nitrosated polymer derivative via H2O plasma treatment, resulting in polymer coatings that maintained their nitric oxide (NO) releasing capabilities, but exhibited dramatic changes in surface wettability. The poly(lactic-co-glycolic acid)-based hydrophobic polymer was nitrosated to achieve a material capable of releasing the therapeutic agent NO. The NO-loaded films were subjected to low-temperature H2O plasma treatments, where the treatment power (20-50 W) and time (1-5 min) were varied. The plasma treated polymer films were superhydrophilic (water droplet spread completely in <100 ms), yet retained 90% of their initial S-nitrosothiol content. Under thermal conditions, NO release profiles were identical to controls. Under buffer soak conditions, the NO release profile was slightly lowered for the plasma-treated materials; however, they still result in physiologically relevant NO fluxes. XPS, SEM-EDS, and ATR-IR characterization suggests the plasma treatment resulted in polymer rearrangement and implantation of hydroxyl and carbonyl functional groups. Plasma treated samples maintained both hydrophilic surface properties and NO release profiles after storage at -18 °C for at least 10 days, demonstrating the surface modification and NO release capabilities are stable over time. The ability to tune polymer surface properties while maintaining bulk properties and NO release properties, and the stability of those properties under refrigerated conditions, represents a unique approach toward creating enhanced therapeutic biopolymers.
Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL
2008-10-07
A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.
Takashima, Yohei; Miras, Haralampos N; Glatzel, Stefan; Cronin, Leroy
2016-06-14
We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.
Printing-assisted surface modifications of patterned ultrafiltration membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem
Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less
Printing-assisted surface modifications of patterned ultrafiltration membranes
Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; ...
2016-10-17
Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less
Excimer UV lamp irradiation induced grafting on synthetic polymers
NASA Astrophysics Data System (ADS)
Praschak, D.; Bahners, T.; Schollmeyer, E.
Surface modifications on polyethyleneterephthalate (PET) films following excimer UV lamp irradiation induced grafting were studied. Characteristics of the modifications depending on the conditions during the irradiation were analysed using contact-angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Depending on the conditions during the irradiation different surface modifications were obtained, which can generally be classified regarding the hydrophilic or hydrophobic characteristics of the resulting surface. It is shown that not every substance that meets the general demands will be grafted on synthetic polymers using excimer UV radiation. Examples of agents that can simply be grafted onto polymer surfaces and those that undergo further crosslinking, building up thin films are listed. Agents used for grafting on polymers are 1,5-hexadiene, perfluoro-4-methyl-pent-2-ene, polyethyleneglycol 200, monosilane and polyethylene. The transferability of the effects achieved to substrates such as polyparaphenylene terephthalamide or polymetaphenylene isophthalamide is shown.
NASA Astrophysics Data System (ADS)
Urbaniak, Daniel J.
2004-11-01
In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens via a burst effect. Improved surface characterization methods were another aspect of this research. New nanomechanical testing techniques were developed and used to evaluate the viscoelastic surface mechanical properties of low modulus surface-modified specimens. Dynamic nanoindentation characterization techniques were designed to measure the storage modulus and loss modulus of compliant viscoelastic substrate surfaces. The results of these experiments were compared with modulus data obtained by conventional dynamic mechanical spectroscopy. Nanoscratch testing methods were also developed that qualitatively compared the abrasion resistance of surface-modified substrates. (Abstract shortened by UMI.)
Laser surface texturing of polymers for biomedical applications
NASA Astrophysics Data System (ADS)
Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan
2018-02-01
Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.
Ferritin nanocontainers that self-direct in synthetic polymer systems
NASA Astrophysics Data System (ADS)
Sengonul, Merih C.
Currently, there are many approaches to introduce functionality into synthetic polymers. Among these, for example, are copolymerization, grafting, and blending methods. However, modifications made by such methods also change the thermodynamics and rheological properties of the polymer system of interest, and each new modification often requires a costly reoptimization of polymer processing. Such a reoptimalization would not be necessary if new functionality could be introduced via a container whose external surface is chemically and physically tuned to interact with the parent polymer. The contents of the container could then be changed without changing other important properties of the parent polymer. In this context this thesis project explores an innovative nanocontainer platform which can be introduced into phase-separating homopolymer blends. Ferritin is a naturally existing nanocontainer that can be used synthetically to package and selectively transport functional moieties to a particular phase that is either in the bulk or on the surface of a homopolymer blend system. The principal focus of this work centers on modifying the surface of wild ferritin to: (1) render modified ferritin soluble in a non-aqueous solvent; and (2) impart it with self-directing properties when exposed to a homopolymer blend surface or incorporated into the bulk of a homopolymer blend. Wild ferritin is water soluble, and this research project successfully modified wild ferritin by grafting either amine-functional poly(ethylene glycol) (PEG) or short-chain alkanes to carbodiimide activated carboxylate groups on ferritin's surface. Such modified ferritin is soluble in dichloromethane (DCM). Modification was confirmed by ion-exchange chromatography, zeta-potential measurements, and electrospray mass spectroscopy. FT-IR was used to quantify the extent of PEGylation of the reaction products through area ratios of the -C-O-C asymmetric stretching vibration of the grafted PEG chains to the carbonyl stretching vibration (amide I band) of the protein. The dimensionless grafting density after PEGylation was found to be 0.13 with 120 average grafted PEG chains per ferritin nanocontainer. Modified ferritin was used for bulk modification of a phase-separated polymer blend of poly(desaminotyrosyl tyrosine dodecyl ester carbonate) [PDTD] and PEG. TEM micrographs showed remarkable selectivity of PEGylated ferritin to PEG domains, while alkylated ferritin self-directs to the PDTD matrix. We explain this strong selectivity by the favourable interaction energies between the grafted and free matrix chains. In addition, both modified and wild ferritin were used for surface modification of the phase-separated homopolymer blend of PDTD and poly(ε-caprolactone) (PCL). At physiological pH wild ferritin selectively adsorbed onto the PDTD phase, while alkylated ferritin showed a striking selectivity to PCL phase. We attribute this behavior to the increase in protein's pI point above physiological pH after modification, which changes the electrostatic interactions between the ferritin and the polymer surface. Collectively, these results demonstrate the versatile use of ferritin as a model nanocontainer for the selective modification of surface and bulk properties of polymers.
Novotna, Katarina; Bacakova, Marketa; Kasalkova, Nikola Slepickova; Slepicka, Petr; Lisa, Vera; Svorcik, Vaclav; Bacakova, Lucie
2013-01-01
Cell colonization of synthetic polymers can be regulated by physical and chemical modifications of the polymer surface. High-density and low-density polyethylene (HDPE and LDPE) were therefore activated with Ar+ plasma and grafted with fibronectin (Fn) or bovine serum albumin (BSA). The water drop contact angle usually decreased on the plasma-treated samples, due to the formation of oxidized groups, and this decrease was inversely related to the plasma exposure time (50–300 s). The presence of nitrogen and sulfur on the polymer surface, revealed by X-ray photoelectron spectroscopy (XPS), and also by immunofluorescence staining, showed that Fn and BSA were bound to this surface, particularly to HDPE. Plasma modification and grafting with Fn and BSA increased the nanoscale surface roughness of the polymer. This was mainly manifested on HDPE. Plasma treatment and grafting with Fn or BSA improved the adhesion and growth of vascular smooth muscle cells in a serum-supplemented medium. The final cell population densities on day 6 after seeding were on an average higher on LDPE than on HDPE. In a serum-free medium, BSA grafted to the polymer surface hampered cell adhesion. Thus, the cell behavior on polyethylene can be modulated by its type, intensity of plasma modification, grafting with biomolecules, and composition of the culture medium. PMID:28809234
NASA Technical Reports Server (NTRS)
Beger, Lauren; Roberts, Lily; deGroh, Kim; Banks, Bruce
2007-01-01
In the low Earth orbit (LEO) space environment, spacecraft surfaces can be altered during atomic oxygen exposure through oxidation and erosion. There can be terrestrial benefits of such interactions, such as the modification of hydrophobic or hydrophilic properties of polymers due to chemical modification and texturing. Such modification of the surface may be useful for biomedical applications. For example, atomic oxygen texturing may increase the hydrophilicity of polymers, such as chlorotrifluoroethylene (Aclar), thus allowing increased adhesion and spreading of cells on textured Petri dishes. The purpose of this study was to determine the effect of atomic oxygen exposure on the hydrophilicity of nine different polymers. To determine whether hydrophilicity remains static after atomic oxygen exposure or changes with exposure, the contact angles between the polymer and a water droplet placed on the polymer s surface were measured. The polymers were exposed to atomic oxygen in a radio frequency (RF) plasma asher. Atomic oxygen plasma treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Significant decreases in the water contact angle occurred with atomic oxygen exposure. Fluorinated polymers were found to be less sensitive to changes in hydrophilicity for equivalent atomic oxygen exposures, and two of the fluorinated polymers became more hydrophobic. The majority of change in water contact angle of the non-fluorinated polymers was found to occur with very low fluence exposures, indicating potential cell culturing benefit with short treatment time.
NASA Astrophysics Data System (ADS)
Saito, Tatsuro; Momose, Takeshi; Hoshi, Toru; Takai, Madoka; Ishihara, Kazuhiko; Shimogaki, Yukihiro
2010-11-01
The surface of 500-mm-long microchannels in SiO2 microchips was modified using supercritical CO2 (scCO2) and a biocompatible polymer was coated on it to confer biocompatibility to the SiO2 surface. In this method, the SiO2 surface of a microchannel was coated with poly(ethylene glycol monomethacrylate) (PEGMA) as the biocompatible polymer using allyltriethoxysilane (ATES) as the anchor material in scCO2 as the reactive medium. Results were compared with those using the conventional wet method. The surface of a microchannel could not be modified by the wet method owing to the surface tension and viscosity of the liquid, but it was modified uniformly by the scCO2 method probably owing to the near-zero surface tension, low viscosity, and high diffusivity of scCO2. The effect of the surface modification by the scCO2 method to prevent the adsorption of protein was as high as that of the modification by the wet method. Modified microchips can be used in biochemical and medical analyses.
Vacuum-based surface modification of organic and metallic substrates
NASA Astrophysics Data System (ADS)
Torres, Jessica
Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous-containing polymer surfaces through ion implantation of trimethyl phosphine onto PE is presented. Air exposure of the resulting P-implanted PE leads to the surface selective oxidation of phosphorous moieties. P-containing hydrocarbon films are used to model the surface chemical changes of P-containing polymers exposed to AO. Results indicate that oxidized phosphorous species protect the film from AO-induced erosion. The low temperature (<150 K) oxidation of nitrided iron surfaces exposed to oxygen reveal the formation of iron oxynitride (FexNyO z, nitrosonium ions (NO+) as well as nitrite/nitrito and nitrate type species. The production of nitrite/nitrito and nitrate species is taken as evidence for the existence of oxygen insertion chemistry into the iron nitride lattice under these low temperature oxidation conditions. Upon annealing the oxidized iron nitride surface, nitrogen desorbs exclusively as nitric oxide (NO).
Modifying Silicates for Better Dispersion in Nanocomposites
NASA Technical Reports Server (NTRS)
Campbell, Sandi
2005-01-01
An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces, the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.
NASA Astrophysics Data System (ADS)
Laskarakis, A.; Gravalidis, C.; Logothetidis, S.
2004-02-01
The continuously increasing application of polymeric materials in many scientific and technological fields has motivated an extensive use of polymer surface treatments, which modify the physical and chemical properties of polymer surfaces leading to surface activation and promotion of the surface adhesion. Fourier transform IR spectroscopic ellipsometry (FTIRSE) and phase modulated ellipsometry (PME) in the IR and Vis-FUV spectral regions respectively have been employed for in situ and real time monitoring of the structural changes on the polymer surface obtained by Ar + ion bombardment. The polymers were industrially supplied polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) membranes. The Ar + ion bombardment has found to change the chemical bonding of the films and especially the amount of the CO, C-C and CC groups. The detailed study of the FTIRSE spectra reveals important information about the effect of the Ar + ion bombardment on each of the above bonding groups. Also, the modification of the characteristic features, attributed to electronic transitions in specific bonds of PET and PEN macromolecules, has been studied using PME.
NASA Astrophysics Data System (ADS)
Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.
2014-08-01
Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.
Liu, S X; Kim, J-T; Kim, S
2008-04-01
Surface modification of flat sheet ultrafiltration membranes, polyethersulfone (PES), was investigated to improve the hydrophilicity of the membrane surface thereby reducing adsorption of the proteins onto the membrane. Grafting of hydrophilic polymers onto UV/ozone-treated PES was used to improve the hydrophilicity of the commercial PES membranes. Hydrophilic polymers, that is, poly(vinyl alcohol) (PVA), polyethylene glycol (PEG), and chitosan, were employed to graft onto PES membrane surfaces because of their excellent hydrophilic property. The surfaces of modified PES membranes were characterized by contact angle measurement, FTIR, and AFM. The FTIR spectra indicated that PES membranes were successfully modified by grafting of the hydrophilic polymers. The modified PES membranes showed 20% to 50% reduction in contact angle measurements in comparison with those of the virgin PES membrane. The tapping mode AFM technique was employed to investigate the changes of surface topography, cross-section, and root mean square roughness of the modified PES membrane surfaces. The modified PES membranes showed elevated roughness (ranging from 7.0 to 25.7 nm) compared with that of the virgin PES membrane (2.1 nm). It is concluded that grafting of PVA, PEG, or chitosan onto UV/ozone-treated PES membranes increases hydrophilicity and lowers protein adsorption by 20% to 60% compared to the virgin PES membrane. Among the 3 hydrophilic polymers studied, PEG showed the most favorable result in terms of contact angle and protein adsorption.
Goh, C K; Valavan, S E; Low, T K; Tang, L H
2016-12-01
Incineration fly ash, a waste from municipal solid waste incineration plant can be used to replace conventional filler as reinforcing filler to enhance the mechanical strength of a composite. Surface modification was performed on the incineration fly ash before mixing into the soft polymer matrix so as to improve interfacial bond of the filler and epoxy resin. In this study, detailed characterisation of mechanical, morphological and leaching behaviours of municipal solid waste incineration (MSWI) fly ash infused composite has been carried out. Flexural and tensile test was conducted to determine the effect on mechanical properties of the composite by varying the concentration of incineration fly ash filler added into polymer matrix and surface modification of incineration fly ash filler using silane coupling agent and colloidal mesoporous silica (CMS). The results indicated that composite infused with incineration fly ash filler surface treated with CMS shown improvement on the tensile and flexural strengths. In addition, SEM images showed that surface modification of incineration fly ash with colloidal mesoporous silica enhanced the interfacial bonding with polymer resin which explained the improvement of mechanical strength. Leaching test showed result of toxic metals such as Pb, Zn, Fe, Cu, Cr, Cd and Rb immobilised in the polymer matrix of the composite. Hence, the use of MSWI fly ash as reinforcing filler in the composite appears green and sustainable because this approach is a promising opportunity to substitute valuable raw material with MSWI fly ash. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A
2015-01-28
Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Liu, Jiankai; Hu, Wenjie; Feng, Ying; Zhao, Jiruo
2017-08-01
In this study, a novel chemical surface modification method of polyolefin membranes is applied following the in-situ chlorinating graft copolymerization (ISCGC). Polypropylene (PP)/methyl methacrylate (MMA) system was used as an example. A unique structure was formed by the modification process on the original membrane surface and the product exhibited an environmental response. Chlorine free radicals were generated using ultraviolet and heat and were used to capture the hydrogen in the polymer chains on the substrate surface. The formed macromolecular radicals could react with MMA over 2 h to achieve a high coverage ratio polymer on the PP membrane surface. The graft copolymers were characterized using FTIR, 1H-NMR, DSC, and XPS, which all proved the feasibility of chemically modifying the PP membrane surface by ISCGC. The surface morphology of the grafted PP membrane was characterized using SEM and AFM. The results showed that the grafted product presents a uniform, neat, and dense mastoid structure with an average thickness of 4.44 μm, which was expected to be similar to the brush-like surface structure. The contact angle and AFM tests indicated that the product surface is responsive to solvent and pH. The experimental results showed that the PP membrane surface structure can be reconstructed using ISCGC, a method that can be used for environment-responsive polymer materials. Moreover, the product has the characteristics of polymer interfacial brush.
Polymer-Nanoparticle Composites: From Synthesis to Modern Applications
Hanemann, Thomas; Szabó, Dorothée Vinga
2010-01-01
The addition of inorganic spherical nanoparticles to polymers allows the modification of the polymers physical properties as well as the implementation of new features in the polymer matrix. This review article covers considerations on special features of inorganic nanoparticles, the most important synthesis methods for ceramic nanoparticles and nanocomposites, nanoparticle surface modification, and composite formation, including drawbacks. Classical nanocomposite properties, as thermomechanical, dielectric, conductive, magnetic, as well as optical properties, will be summarized. Finally, typical existing and potential applications will be shown with the focus on new and innovative applications, like in energy storage systems.
Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions.
Avens, Heather J; Randle, Thomas James; Bowman, Christopher N
2008-10-17
Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm(2)) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities.
Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions
Avens, Heather J.; Randle, Thomas James; Bowman, Christopher N.
2008-01-01
Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm2) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities. PMID:19838291
Perrin, Elsa; Schoen, Martin; Coudert, François-Xavier; Boutin, Anne
2018-04-26
Whereas it is experimentally known that the inclusion of nanoparticles in hydrogels can lead to a mechanical reinforcement, a detailed molecular understanding of the adhesion mechanism is still lacking. Here we use coarse-grained molecular dynamics simulations to investigate the nature of the interface between silica surfaces and solvated polymers. We show how differences in the nature of the polymer and the polymer-solvent interactions can lead to drastically different behavior of the polymer-surface adhesion. Comparing explicit and implicit solvent models, we conclude that this effect cannot be fully described in an implicit solvent. We highlight the crucial role of polymer solvation for the adsorption of the polymer chain on the silica surface, the significant dynamics of polymer chains on the surface, and details of the modifications in the structure solvated polymer close to the interface.
Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong
2017-10-01
Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on biomaterial surfaces. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Synthesis and characterization of polymer layers for control of fluid transport
NASA Astrophysics Data System (ADS)
Vatansever, Fehime
The level of wetting of fiber surface with liquids is an important characteristic of fibrous materials. It is related to fiber surface energy and the structure of the material. Surface energy can be changed by surface modification via the grafting methodologies that have been reported for introducing new and stable functionality to fibrous substrates without changing bulk properties. Present work is dedicated to synthesis and characterization of macromolecular layers grafted to fiber surface in order to achieve directional liquid transport for the modified fabric. Modification technique used here is based on formation of stable polymer layer on fabric surface using "grafting to" technique. Specifically, modification of fabric with wettability gradient for facilitated one way-liquid transport, and pointed modification of yarn-based channels on textile microfluidic device for directional liquid transport are reported here. First, fabric was activated with alkali (NaOH) solution. Second, poly (glycidyl methacrylate) (PGMA) was deposited on fabric as an anchoring layer. Finally, polymers of interest were grafted to surface through the epoxy functionality of PGMA. Effect of polymer grafting on the wicking property of the fabric has been evaluated by vertical wicking technique at the each step of surface modification. The results shows that wicking performance of fabric can be altered by grafting of a thin nanoscale polymeric film. For the facilitated liquid transport, the gradient polymer coating was created using "grafting to" technique and its dependence on the grafting temperature. Wettability gradient from hydrophilic to hydrophobic (change in water contact angle from 0 to 140 degrees on fabric) was achieved by grafting of polystyrene (PS) and polyacrylic acid (PAA) sequentially with concentration gradient. This study proposes that fabric with wettability gradient property can be used to transfer sweat from skin and support moisture management when it is used in a laminated garment structure. For cooling performance evaluation, modified fabrics were tested with surface differential scanning calorimeter, and improved cooling effect was found with the fabric that has wettability gradient. Directional liquid transport can be achieved on amphiphilic fabric. To this end, fabric consisting of PET and PP yarn is fabricated. Activation and PGMA deposition yields an array of highly reactive PET channels that are constrained by hydrophobic PP boundaries. Aqueous solutions are transported in the channels by capillary forces where the direction of the liquid transport is defined by pH-response of the grafted polymers. The system of pH-selective channels in the developed textile based microfluidic chip could find analytical applications and can be used for smart cloth.
Copper cladding on polymer surfaces by ionization-assisted deposition
NASA Astrophysics Data System (ADS)
Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki
2018-03-01
Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.
Composite fabrication and polymer modification using neoteric solvents
NASA Astrophysics Data System (ADS)
Eastman, Scott A.
This thesis is divided into two research initiatives: The fabrication and study of bulk, co-continuous, cellulosic-polymer composites with the aid of supercritical CO2 (SC CO2); and the study of poly(vinyl alcohol) (PVOH) modification and surface activity in ionic liquids. The first part of this thesis utilizes the tunable solubility, gas-like diffusivity, and omniphilic wettability of SC CO2 to incorporate and subsequently polymerize silicone and poly(enemer) prepolymer mixtures throughout various cellulosic substrates. Chapters two and three investigate the mechanical properties of these composites and demonstrate that nearly every resulting composite demonstrates an improved flexural modulus and energy release rate upon splitting. Fire resistance of these composites was also investigated and indicates that the heat release rate, total heat released, and char yield were significantly improved upon for all silicone composites compared to the untreated cellulosic material. Chapter four looks specifically at aspen-silicone composites for thermo-oxidative studies under applied loads in order to study the effect of silicone incorporation on the failure kinetics of aspen. The aspen-silicone composites tested under these conditions demonstrated significantly longer lifetimes under the same loading and heating conditions compared with untreated aspen. The second part of this thesis focuses on studying ionic liquids as potentially useful solvents and reaction media for poly(vinyl alcohol). Two ionic liquids (1-Butyl-3-methylimidizolium chloride and tributylethylphosphonium diethylphosphate) were found to readily dissolve PVOH. More importantly, we have demonstrated that these solvents can be used as inert reaction media for PVOH modification. Both ionic liquids were found to facilitate the quantitative esterification of PVOH, while only the phosphonium ionic liquid supports the quantitative urethanation of the polymer. In an attempt to tune the surface properties of ionic liquid/polymer solutions, PVOH was also partially esterified with low surface energy substituents. Both surface tension and surface composition of the ionic liquid/polymer solutions can be manipulated by the stoichiometric addition of low surface energy acid chlorides. This work on the modification of PVOH can be directly applied to the modification of polysaccharides such as cellulose which could have important implications from a sustainability and energy standpoint.
Surface modification of cellulose using silane coupling agent.
Thakur, Manju Kumari; Gupta, Raju Kumar; Thakur, Vijay Kumar
2014-10-13
Recently there has been a growing interest in substituting traditional synthetic polymers with natural polymers for different applications. However, natural polymers such as cellulose suffer from few drawbacks. To become viable potential alternatives of synthetic polymers, cellulosic polymers must have comparable physico-chemical properties to that of synthetic polymers. So in the present work, cellulose polymer has been modified by a series of mercerization and silane functionalization to optimize the reaction conditions. Structural, thermal and morphological characterization of the cellulose has been done using FTIR, TGA and SEM, techniques. Surface modified cellulose polymers were further subjected to evaluation of their properties like swelling and chemical resistance behavior. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullin, I.Sh.; Bragin, V.E.; Bykanov, A.N.
Gas discharge plasma modification of polymer materials and metals is one of the known physical approaches for improving of materials biocompatibility in ophthalmology and surgery. The surface treatment in RF discharges can be effectively realized in the discharge afterglow and in the discharge region itself too. This modification method is more convenient and produces more uniform surfaces in comparison with other discharge types. The carried out experiments and published up to now results show that interaction of UV radiation, fluxes of ions, electrons and metastable particles with material`s surface changes chemical composition and surface structure. The exerting of these agentsmore » on the sample surface produces the following effects. There are processes of physical and plasma-chemical surface etching producing effective surface cleaning of different types of contaminations. It may be surface contaminations by hydrocarbons because of preliminary surface contacts with biological or physical bodies. It may be surface contaminations caused by characteristic properties of chemical technology too. There is a surface layer with thickness from some angstroms up to few hundreds of angstroms. The chemical content and structure of this layer is distinguished from the bulk polymer properties. The presence of such {open_quotes}technological{close_quotes} contaminations produces the layer of material substantially differing from the base polymer. The basic layer physical and chemical properties for example, gas permeation rate may substantially differ from the base polymer. Attempts to clean the surface from these contaminations by chemical methods (solutions) have not been successful and produced contaminations of more deep polymer layers. So the plasma cleaning is the most profitable method of polymer treatment for removing the surface contaminations. The improving of wettability occurs during this stage of treatment.« less
NASA Astrophysics Data System (ADS)
Mahfoudh, A.; Poncin-Épaillard, F.; Moisan, M.; Barbeau, J.
2010-08-01
The current work describes a novel technique by which certain types of polymers subjected to dry gaseous ozone acquire the ability to inactivate microorganisms, including those as resistant as bacterial spores. The originality and advantages of this ozone treatment of polymer surfaces rest on its simplicity (achieved at ambient temperature and pressure, a one step process …) and its efficacy. The inactivation efficiency is found to be specific to the nature of the treated polymer: 24 h after deposition of 10 6B. atrophaeus spores from a 100 µL suspension, high inactivation rates are observed with polymethyldisiloxane (99.997%, almost 5 log) and polystyrene (99.7%, more than 2 log), a lower rate with polyurethane (99.1%, 2 log) whereas polytetrafluoroethylene shows no detectable biocidal activity. Changes in hydrophilicity of these surfaces are monitored by means of contact-angle measurements while topographic modifications are characterized through atomic force microscopy. Ozone exposure brings about important topographic changes and chemical modifications on some polymers, which can be correlated with oxidation processes, increased wettability and surface energy. Variations of the dispersive and non-dispersive (polar) components of the surface energy are partially correlated with the polymer biocidal response. Furthermore, the basic component of the treated polymer (in contrast to its acidic component) seems to be correlated with the biocidal activity of the treated surfaces. Chemical species bearing ester groups, probably partially-oxidized styrene oligomers, as revealed by chemical analysis, could be involved in the biocidal activity. On practical grounds, since some of these treated polymers can strongly reduce microorganism loads on their surfaces, they could be particularly useful in hospital environment.
NASA Astrophysics Data System (ADS)
Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.
2017-01-01
The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.
Kirby, Brian J; Reichmuth, David S; Renzi, Ronald F; Shepodd, Timothy J; Wiedenman, Boyd J
2005-02-01
This paper presents the first systematic engineering study of the impact of chemical formulation and surface functionalization on the performace of free-standing microfluidic polymer elements used for high-pressure fluid control in glass microsystems. System design, chemical wet-etch processes, and laser-induced polymerization techniques are described, and parametric studies illustrate the effects of polymer formulation, glass surface modification, and geometric constraints on system performance parameters. In particular, this study shows that highly crosslinked and fluorinated polymers can overcome deficiencies in previously-reported microvalve architectures, particularly limited solvent compatibility. Substrate surface modification is shown effective in reducing the friction of the polymer-glass interface and thereby facilitating valve actuation. A microchip one-way valve constructed using this architecture shows a 2 x 10(8) ratio of forward and backward flow rates at 7 MPa. This valve architecture is integrated on chip with minimal dead volumes (70 pl), and should be applicable to systems (including chromatography and chemical synthesis devices) requiring high pressures and solvents of varying polarity.
Proceedings of the 10th international symposium on polymer surface modification
USDA-ARS?s Scientific Manuscript database
Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...
Coclite, Anna Maria; Howden, Rachel M; Borrelli, David C; Petruczok, Christy D; Yang, Rong; Yagüe, Jose Luis; Ugur, Asli; Chen, Nan; Lee, Sunghwan; Jo, Won Jun; Liu, Andong; Wang, Xiaoxue; Gleason, Karen K
2013-10-11
Well-adhered, conformal, thin (<100 nm) coatings can easily be obtained by chemical vapor deposition (CVD) for a variety of technological applications. Room temperature modification with functional polymers can be achieved on virtually any substrate: organic, inorganic, rigid, flexible, planar, three-dimensional, dense, or porous. In CVD polymerization, the monomer(s) are delivered to the surface through the vapor phase and then undergo simultaneous polymerization and thin film formation. By eliminating the need to dissolve macromolecules, CVD enables insoluble polymers to be coated and prevents solvent damage to the substrate. CVD film growth proceeds from the substrate up, allowing for interfacial engineering, real-time monitoring, and thickness control. Initiated-CVD shows successful results in terms of rationally designed micro- and nanoengineered materials to control molecular interactions at material surfaces. The success of oxidative-CVD is mainly demonstrated for the deposition of organic conducting and semiconducting polymers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Burke, Jeffrey M; Smela, Elisabeth
2012-03-01
A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.
NASA Astrophysics Data System (ADS)
Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Belousov, O. A.; Frolov, V. A.
2018-04-01
The objects of this study are petroleum road bitumen and polymeric bituminous binder for road surfaces obtained by polymer materials. The subject of the study is monitoring the polymer-bitumen binder quality changes as a result of varying the bitumen modification process. The purpose of the work is to identify the patterns of the modification process and build a mathematical model that provides the ability to calculate and select technological equipment. It is shown that the polymer-bitumen binder production with specified quality parameters can be ensured in apparatuses with agitators in turbulent mode without the colloidal mills use. Bitumen mix and modifying additives limiting indicators which can be used as restrictions in the form of mathematical model inequalities are defined. A mathematical model for the polymer-bitumen binder preparation has been developed and its adequacy has been confirmed.
Liu, Yanfei; Wang, Zhenqing; Li, Hao; Sun, Min; Wang, Fangxin; Chen, Bingjie
2018-01-01
In this paper, a new shape memory alloy (SMA) hybrid basalt fibre reinforced polymer (BFRP) composite laminate was fabricated and a new surface modification method with both silane coupling agent KH550 and Al2O3 nanoparticles was conducted to enhance the interface performance. The mechanical performance of BFRP composite laminates with and without SMA fibres and the influence of SMA surface modification were studied in this paper. Different SMA fibre surface treatment methods, including etching with both H2SO4 and NaOH, modification with the silane coupling agent KH550 and new modification method with both KH550 and Al2O3 nanoparticles, were conducted to enhance the bonding between the SMA fibres and polymer matrix. Scanning electron microscopy (SEM) was used to observe the micromorphology of the SMA fibre surfaces exposed to different treatments and the damage morphology of composite laminates. The mechanical performance of the composites was investigated with tensile, three-point bending and low-velocity impact tests to study the influence of embedded SMA fibres and the different surface modifications of the SMA fibres. The results demonstrated that the embedded Ni-Ti SMA fibres can significantly enhance the mechanical performance of BFRP composite laminates. SMA fibres modified with both the silane coupling agent KH550 and Al2O3 nanoparticles illustrate the best mechanical performance among all samples. PMID:29300321
Huang, Zhenhua; Wu, Zhengfang; Yang, Peng; Yang, Wantai
2014-09-01
It is generally accepted that Ce(4+) is unable to directly oxidize unreactive alkyl C-H bonds without the assistance of adjacent polar groups. Herein, we demonstrate in our newly developed confined photochemical reaction system that this recognized issue may be challenged. As we found, when a thin layer of a CeCl(3)/HCl aqueous solution was applied to a polymeric substrate and the substrate subjected to UV irradiation, Ce(3+) was first photooxidized to form Ce(4+) in the presence of H(+), and the in situ formed Ce(4+) then performs an oxidation reaction on the C-H bonds of the polymer surface to form surface-carbon radicals for radical graft polymerization reactions and functional-group transformations, while reducing to Ce(3+) and releasing H(+) in the process. This photoinduced cerium recycling redox (PCRR) reaction behaved as a biomimetic system in an artificial recycling reaction, leading to a sustainable chemical modification strategy for directly transforming alkyl C-H bonds on polymer surfaces into small-molecule groups and polymer brushes. This method is expected to provide a green and economical tool for industrial applications of polymer-surface modification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface properties of functional polymer systems
NASA Astrophysics Data System (ADS)
Wong, Derek
Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was confined to the top 2--3 nm of the surface. Contact angle results showed also that the reorganization process proceeded as a function of (time) 1/2, indicating that it is likely diffusion controlled. The magnitudes of the activation energies determined from the experimental data according to the Arhenius equation, suggest that the process is possibly correlated with known bulk beta and gamma relaxations in the polymer.
NASA Technical Reports Server (NTRS)
Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.
2005-01-01
Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.
NASA Astrophysics Data System (ADS)
Alamri, Sabri; Lasagni, Andrés. F.
2017-02-01
It is well known that micro and sub-micrometer periodical structures play a significant role on the properties of a surface. Ranging from friction reduction to the bacterial adhesion control, the modification of the material surface is the key for improving the performance of a device or even creating a completely new function. Among different laser processing techniques, Direct Laser Interference Patterning (DLIP) relies on the local surface modification process induced when two or more beams interfere and produce periodic surface structures. Although the produced features have controllable pitch and geometry, identical experimental conditions applied to different polymers can result on totally different topologies. In this frame, observations from pigmented and transparent polycarbonate treated with ultraviolet (263 nm) and infrared (1053 nm) laser radiation permitted to identify different phenomena related with the optical and chemical properties of the polymers. As a result from the experimental data analysis, a set of material-dependent constants can be obtained and both profile and surface simulations can be retrieved, reproducing the material surface topography after the surface patterning process.
Poly(ethylene oxide) surfactant polymers.
Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E
2004-01-01
We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.
Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarova, Olga V.; Adams, Daniel L.; Divan, Ralu
There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and withoutmore » an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. Copyright 2016 The Authors. Published by Elsevier B.V. All rights reserved.« less
Facile hydrophobicity/hydrophilicity modification of SMP surface based on metal constrained cracking
NASA Astrophysics Data System (ADS)
Han, Yu; Li, Peng; Zhao, Liangyu; Wang, Wenxin; Leng, Jinsong; Jin, Peng
2015-04-01
This study demonstrates an easy way to change surface characteristics, the water contact angle on styrene based shape memory polymer (SMP) surface alters before and after cracking formation and recovery. The contact angle of water on the original SMP surface is about 85 degree, after coating with Al and then kneading from side face at glass transition temperature Tg, cracking appeared both on Al film and SMP; cooling down and removing the Al film, cracks remain on SMP surface while the contact angle reduced to about 25 degree. When reheated above Tg, the cracks disappeared, and the contact angle go back to about 85 degree. The thin Al film bonded on SMP surface was coated by spurting, that constrains the deformation of SMP. Heating above Tg, there are complex interactions between soft SMP and hard metal film under kneading. The thin metal film cracked first with the considerable deformation of soft polymer, whereafter, the polymer was ripped by the metal cracks thus polymer cracked as well. Cracks on SMP can be fixed cooling down Tg, while reheated, cracks shrinking and the SMP recovers to its original smooth surface. Surface topography changed dramatically while chemical composition showed no change during the deformation and recovery cycle, as presented by SEM and EDS. Furthermore, the wetting cycle is repeatable. This facile method can be easily extended to the hydropobicity/hydrophilicity modification of other stimuli-responsive polymers and put forward many potential applications, such as microfluidic switching and molecule capture and release.
Pashkuleva, I; Marques, A P; Vaz, F; Reis, R L
2005-01-01
The surface modification of three starch based polymeric biomaterials, using a KMnO4/HNO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows--starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds. The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.
Surface layer modification of ion bombarded HDPE
NASA Astrophysics Data System (ADS)
Bielinski, D.; Lipinski, P.; Slusarski, L.; Grams, J.; Paryjczak, T.; Jagielski, J.; Turos, A.; Madi, N. K.
2004-08-01
Press-moulded, high density polyethylene (HDPE) samples were subjected to ion bombardment and effects of the modification studied. He + ions of energy 100 keV or Ar + ions of energy 130 keV were applied in the range of dose 1-30 × 10 15/cm 2 or 1-100 × 10 14/cm 2, respectively. This paper has been focused on structural changes of the surface layer. The consequences of the modification were studied with TOF-SIMS and FTIR-IRS techniques. The results point on two mechanisms taking place simultaneously: ionization of polymer macromolecules and chain scission--resulting in creation of macroradicals. Both of them produce oxidation and lead to significant release of hydrogen. The former diminishes for the highest ion doses, however, creation of molecular oxygen cannot be excluded. The latter in the case of Ar + ion bombardment is reflected by prevailing degradation of the surface layer of HDPE. Contrary to the effect of heavy ions, He + ion bombardment was found to produce significant increase of the material hardness, which was explained by crosslinking of polyethylene. A mechanism of polyacetylene formation, proceeding finally to cross-polymerization of the polymer was proposed. Apart from structural changes, the modification revealed additionally a possibility to improve the wettability of the polymer.
Structural and morphological modifications of polymer thin film in the presence of nonsolvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talukdar, Hrishikesh, E-mail: hiasst@yahoo.in; Kundu, Sarathi
Thin films of sodium poly(acrylic acid) salt (Na-PAA) have been investigated to obtain the modification of the out-of-plane structure and surface morphology in the presence of toluene which is considered as nonsolvent for Na-PAA. X-ray reflectivity analysis show that the out-of-plane thickness of the Na-PAA film increases if the film is kept for longer time inside the toluene. For the thicker film the effect of toluene is more pronounced than the thinner one. Surface morphology obtained from the atomic force microscopy shows that the top surface becomes relatively rough after the dipping of the Na-PAA film inside toluene. Although toluenemore » is nonsolvent for Na-PAA molecules, however, the effect of restructuring of the nanometer-thick polymer film cannot be ignored. The reason for such structural modification has been proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
2017-03-08
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J
2017-01-01
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247
NASA Astrophysics Data System (ADS)
Kudryavtseva, Valeriya; Stankevich, Ksenia; Kibler, Elina; Golovkin, Alexey; Mishanin, Alexander; Bolbasov, Evgeny; Choynzonov, Evgeny; Tverdokhlebov, Sergei
2018-04-01
Biodegradable polymer scaffolds for tissue engineering is a promising technology for therapies of patients suffering from the loss of tissue or its function including cardiac tissues. However, limitations such as hydrophobicity of polymers prevent cell attachment, cell conductivity, and endothelialization. Plasma modification of polymers allows producing materials for an impressive range of applications due to their unique properties. Here, we demonstrate the possibility of bioresorbable electrospun polycaprolacton (PCL) scaffold surface modification by reactive magnetron sputtering of the titanium target in a nitrogen atmosphere. The influence of the plasma treatment time on the structure and properties of electrospun PCL scaffolds was studied. We show that the plasma treatment does not change the physico-mechanical properties of electrospun PCL scaffolds, leads to an increase in PCL scaffold biocompatibility, and, simultaneously, increases their hydrophilicity. In conclusion, this modification method opens a route to producing scaffolds with enhanced biocompatibility for tissue engineered vascular grafts.
Zhai, Qingfeng; Jiang, Hong; Zhang, Xiaowei; Li, Jing; Wang, Erkang
2016-01-01
A simple, rapid and general method of self-initiated photografting and photopolymerization (SIPGP) was first introduced to fabricate dual-responsive nanochannel with a solid-state conical nanopore for the first time. The high density of carboxyl and hydroxyl groups on the internal surface of the etched poly(ethylene terephthalate) (PET) nanochannel acted as photo-active sites to provide further growth and amplification of polymer brushes via SIPGP. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) was chosen as a prototypical polymer which can be grafted on the surface of the nanochannel with high efficiency. SIPGP provided a smart and simple strategy to graft polymer brush on the surface of the nanochannel without the need of a surface bonded initiator. Series of characterizations including current-voltage curves, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) indicated the successful construction of the polymer. The functionalized nanochannel was finally used for the construction of smart gate with perfect responsibility, reversibility and stability towards CO2 and temperature. This modification strategy combined with unique character of the polymer may hold a great potential in building various smart responsive systems. Copyright © 2015. Published by Elsevier B.V.
Griffiths, Peter C; Paul, Alison; Fallis, Ian A; Wellappili, Champa; Murphy, Damien M; Jenkins, Robert; Waters, Sarah J; Nilmini, Renuka; Heenan, Richard K; King, Stephen M
2007-10-15
The physical properties of weak polyelectrolytes may be tailored via hydrophobic modification to exhibit useful properties under appropriate pH and ionic strength conditions as a consequence of the often inherently competing effects of electrostatics and hydrophobicity. Pulsed-gradient spin-echo NMR (PGSE-NMR), electron paramagnetic resonance (EPR), small-angle neutron scattering (SANS) surface tension, fluorescence, and pH titration have been used to examine the solution conformation and aggregation behavior of a series of hydrophobically modified hyperbranched poly(ethylene imine) (PEI) polymers in aqueous solution, and their interaction with sodium dodecylsulfate (SDS). PGSE-NMR gave a particularly insightful picture of the apparent molecular weight distribution. The presence of the hydrophobes led to a lower effective charge on the polymer at any given pH, compared to the (parent) nonmodified samples. Analysis of the SANS data showed that the propensity to form highly elliptical or rod-like aggregates at higher pHs, reflecting both the changes in protonation behavior induced by the hydrophobic modification and an hydrophobic interaction, but that these structures were disrupted with decreasing pH (increasing charge). The parent samples were not surface active yet the hydrophobically modified samples show pronounced surface activity and the presence of small hydrophobic domains. The surface activity increased with an increase in the degree of modification. On addition of SDS, the onset of the formation of polymer/surfactant complexes was insensitive to the degree of modification with the resultant PEI/SDS complexes resembling the size and shape of simple SDS micelles. Indeed, the presence of the SDS effectively nullifies the effects of the hydrophobe. Hydrophobic modification is therefore a viable option to tailor pH dependent properties, whose effects may be removed by the presence of surfactant.
NASA Astrophysics Data System (ADS)
Fan, Yanyan; Wang, Guanyao; Huang, Xingyi; Bu, Jing; Sun, Xiaojin; Jiang, Pingkai
2016-02-01
Surface modification of nanoparticles by grafting silane coupling agents has proven to be a significant approach to improve the interfacial compatibility between inorganic filler and polymer matrix. However, the impact of grafted silane molecular structure after the nanoparticle surface modification, induced by the utilized solvents and the silane alkoxy groups, on the electrical properties of the corresponding nanocomposites, has been seldom investigated. Herein, the silanization on the surface of hydroxylated barium titanate (BT-OH) nanoparticles was introduced by using two kinds of trialkoxysilane, 3-aminopropyltriethoxysilane (AMEO) and 3-aminopropyltrimethoxysilane (AMMO), with different solvents (toluene and ethanol), respectively. Solid-state 13C, 29Si nuclear magnetic resonance (NMR) spectroscopy and high-resolution X-ray photoelectron spectroscopy (XPS) were employed to validate the structure differences of alkoxysilane attachment to the nanoparticles. The effect of alkoxysilane structure attached to the nanoparticle surface on the dielectric properties of the BT based poly(vinylidene fluoride) (PVDF) nanocomposites were investigated. The results reveal that the solvents used for BT nanoparticle surface modification exhibit a significant effect on the breakdown strength of the nanocomposites. Nevertheless, the alkoxy groups of silane show a marginal influence on the dielectric properties of the nanocomposites. These research results provide important insights into the fabrication of advanced polymer nanocomposites for dielectric applications.
Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.
Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki
2015-05-21
A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide.
McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.
2006-11-21
A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.
McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA
2011-12-27
A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakudo, N.; Ikenaga, N.; Ikeda, F.
2011-01-07
Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will bemore » simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.« less
Zhao, Xiaobin; Courtney, James M
2009-07-01
In this article, a novel approach for the surface modification of polymeric biomaterials by the utilization of supramolecules was studied. The supramolecules selected were cyclodextrin inclusion complexes (CICs). The biomaterial selected for surface modification was plasticized poly (vinyl chloride) (PVC-P). Results indicate that when the CICs were blended into PVC-P, they tend to migrate and "anchor" on the surface to achieve a remarkable protein-resistant surface, with improved blood compatibility. In comparison with a physical mixture of cyclodextrins and a "guest" molecule, such as poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO and PPO-PEO-PPO for PVC-P modification, CICs modified PVC-P are more consistent in processing and achieve reproducible surface characteristics. Based on this study, a novel "anchor modification" was proposed regarding CICs modified surface. This "anchor modification" is likely to reduce plasticizer extraction from PVC-P and also can be utilized for the modification of polymers other than PVC-P.
NASA Astrophysics Data System (ADS)
Tompkins, Brendan D.
This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the membrane surfaces was significantly improved by plasma treatment. XPS and SEM analyses revealed increased oxygen incorporation onto the surface of the membranes, without any damage to the surface or pore structure. Contact angle measurements on a membrane treated in a stacked assembly suggest the plasma effectively modified the entire pore cross section. Plasma treatment also increased water flux through the membranes, with results from plasma modified membranes matching those from commercially available hydrophilic membranes (treated with wetting agent). Mechanisms for the observed modification are discussed in terms of OH and O radicals implanting oxygen functionality into the polymers. Oxidizing plasma systems (O2, CO2, H2O vapor, and formic acid vapor) were used to modify track-etched polycarbonate membranes and explore the mechanisms and species responsible for etching polycarbonate during plasma processing. Etch rates were measured using scanning electron microscopy; modified polycarbonate surfaces were further characterized using x-ray photoelectron spectroscopy and water contact angles. Etch rates and surface characterization results were combined with optical emission spectroscopy data used to identify gas-phase species and their relative densities. Although the oxide functionalities implanted by each plasma system were similar, the H2O vapor and formic acid vapor plasmas yielded the lowest contact angles after treatment. The CO2, H2O vapor, and formic acid vapor plasma-modified surfaces were, however, found to be similarly stable one month after treatment. Overall, etch rate correlated directly to the relative gas-phase density of atomic oxygen and, to a lesser extent, hydroxyl radicals. PECVD of acetic acid vapor (CH3COOH) was used to deposit films on PC-TE and silicon wafer substrates. The CH3COOH films were characterized using XPS, wCA, and SEM. This modification technique resulted in continuous deposition and self-limiting deposition of a-CxO yHz films on Si wafers and PC-TE, respectively. The self-limiting deposition on PC-TE revealed that resulting films have minimal impact on 3D PC structures. This technique would allow for more precise fabrication of patterned or nano-textured PC. PECVD is used to synthesize hydrocarbon/fluorocarbon thin films with compositional gradients by continuously changing the ratio of gases in a C 3F8/H2 plasma. The films are characterized using variable angle spectroscopic ellipsometry (VASE), Fourier transform infrared spectroscopy (FTIR), XPS, wCA, and SEM. These methods revealed that shifting spectroscopic signals can be used to characterize organization in the deposited film. Using these methods, along with gas-phase diagnostics, film chemistry and the underlying deposition mechanisms are elucidated, leading to a model that accurately predicts film thickness.
Verbraeken, Bart; Hoogenboom, Richard
2017-06-12
Cyclic versus linear: The superiority of cyclic polymers over their linear counterparts is highlighted. Cyclic poly(2-oxazoline)s have been shown to provide excellent shielding properties when grafted to TiO 2 surfaces and Fe 3 O 4 nanoparticles owing to their ultrahigh grafting densities leading to low friction surfaces, superior antifouling properties, and extreme nanoparticle stabilization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hosoya, Ken; Kubo, Takuya; Takahashi, Katsuo; Ikegami, Tohru; Tanaka, Nobuo
2002-12-06
Uniformly sized packing materials based on synthetic polymer particles for high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) have been prepared from polymerization mixtures containing methacrylic acid (MAA) as a functional monomer and by using a novel surface modification method. This "dispersion method" affords effectively modified separation media. Both the amount of MAA utilized in the preparation and reaction time affect the selectivity of chromatographic separation in both the HPLC and the CEC mode and electroosmotic flow. This detailed study revealed that the dispersion method effectively modified internal surface of macroporous separation media and, based on the amount of MAA introduced, exclusion mechanism for the separation of certain solutes could be observed.
Barakat, Hala; Saunier, Johanna; Aymes Chodur, Caroline; Aubert, Pascal; Vigneron, Jackie; Etcheberry, Arnaud; Yagoubi, Najet
2013-11-01
A cyclo-olefin copolymer was subjected to an e-beam ionizing treatment. Two doses were studied: one corresponding to the recommended dose for the sterilization of pharmaceutical packaging (25 kGy), and a greater one to enhance the modifications caused by the treatment (150 kGy). The surface modifications were studied by X-ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM). The roughness and the wettability of the surface were enhanced by the treatment. The consequences of the surface modifications on the drug interaction with the polymer were studied. Copyright © 2013 Elsevier B.V. All rights reserved.
Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet)
Silva, Cleuzilene V.; Royer, Betina; Rodrigues Filho, Guimes; Cerqueira, Daniel A.; Assunção, Rosana M. N.
2017-01-01
The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC) as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS) showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet) from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1). Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer. PMID:29137158
NASA Astrophysics Data System (ADS)
Kamiya, Hidehiro; Iijima, Motoyuki
2010-08-01
Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.
Natural and synthetic polymers in fabric and home care applications
NASA Astrophysics Data System (ADS)
Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana
2017-07-01
Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.
Sezen, Meltem; Bakan, Feray
2015-12-01
Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.
NASA Astrophysics Data System (ADS)
Hai, Thien An Phung; Sugimoto, Ryuichi
2018-06-01
A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.
Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing
2013-04-01
Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.
Surface changes of biopolymers PHB and PLLA induced by Ar+ plasma treatment and wet etching
NASA Astrophysics Data System (ADS)
Slepičková Kasálková, N.; Slepička, P.; Sajdl, P.; Švorčík, V.
2014-08-01
Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar+ plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers - polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.
Pranantyo, Dicky; Xu, Li Qun; Neoh, Koon-Gee; Kang, En-Tang; Ng, Ying Xian; Teo, Serena Lay-Ming
2015-03-09
Inspired by tea stains, plant polyphenolic tannic acid (TA) was beneficially employed as the primer anchor for functional polymer brushes. The brominated TA (TABr) initiator primer was synthesized by partial modification of TA with alkyl bromide functionalities. TABr with trihydroxyphenyl moieties can readily anchor on a wide range of substrates, including metal, metal oxide, polymer, glass, and silicon. Concomitantly, the alkyl bromide terminals serve as initiation sites for atom transfer radical polymerization (ATRP). Cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride (META) and zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) were graft-polymerized from the TABr-anchored stainless steel (SS) surface. The cationic polymer brushes on the modified surfaces are bactericidal, while the zwitterionic coatings exhibit resistance against bacterial adhesion. In addition, microalgal attachment (microfouling) and barnacle cyprid settlement (macrofouling) on the functional polymer-grafted surfaces were significantly reduced, in comparison to the pristine SS surface. Thus, the bifunctional TABr initiator primer provides a unique surface anchor for the preparation of functional polymer brushes for inhibiting both microfouling and macrofouling.
Laser Micro and Nano Processing of Metals , Ceramics , and Polymers
NASA Astrophysics Data System (ADS)
Pfleging, Wilhelm; Kohler, Robert; Südmeyer, Isabelle; Rohde, Magnus
Laser -based material processing is well investigated for structuring , modification , and bonding of metals , ceramics , glasses, and polymers . Especially for material processing on micrometer, and nanometer scale laser-assisted processes will very likely become more prevalent as lasers offer more cost-effective solutions for advanced material research, and application. Laser ablation , and surface modification are suitable for direct patterning of materials and their surface properties. Lasers allow rapid prototyping and small-batch manufacturing . They can also be used to pattern moving substrates, permitting fly-processing of large areas at reasonable speed. Different types of laser processes such as ablation, modification, and welding can be successfully combined in order to enable a high grade of bulk and surface functionality. Ultraviolet lasers favored for precise and debris-free patterns can be generated without the need for masks, resist materials, or chemicals. Machining of materials, for faster operation, thermally driven laser processes using NIR and IR laser radiation, could be increasingly attractive for a real rapid manufacturing.
Multiple Ion Implantation Effects on Wear and Wet Ability of Polyethylene Based Polymers
NASA Astrophysics Data System (ADS)
Torrisi, L.; Visco, A. M.; Campo, N.
2004-10-01
Polyethylene based polymers were ion implanted with multiple irradiations of different ions (N+, Ar+ and Kr+) at energies between 30 keV and 300 keV and doses ranging between 1013 and 1016 ions/cm2. The ion implantation dehydrogenises the polyethylene inducing cross-link effects in the residual polymer carbons. At high doses the irradiated surface show properties similar to graphite surfaces. The depth of the modified layers depends on the ion range in polyethylene at the incident ion energy. The chemical modification depends on the implanted doses and on the specie of the incident ions. A "pin-on-disc" machine was employed to measure the polymer wear against AISI-316 L stainless steel. A "contact-angle-test" machine was employed to measure the wet ability of the polymer surface for 1 μl pure water drop. Measurements demonstrate that the multiple ion implantation treatments decrease the surface wear and the surface wetting and produce a more resistant polymer surface. The properties of the treated surfaces improves the polymer functionality for many bio-medical applications, such as those relative to the polyethylene friction discs employed in knee and hip prosthesis joints. The possibility to use multiply ion implantations of polymers with traditional ion implanters and with laser ion sources producing plasmas is investigated.
NASA Astrophysics Data System (ADS)
Chen, W. X.; Yu, J. S.; Hu, W.; Chen, G. L.
2016-11-01
In this paper, the partial modification of the biaxially oriented polypropylene (BOPP) film for potential biological and packaging applications was achieved via hydrophilic modification using atmospheric pressure plasma jet (APPJ). In the APPJ system, the allylamine (ALA) monomer was polymerized on the BOPP surface by either the Ar/O2 or the He/O2 plasma. The results showed that plasmatic modification created many micro/nano sized holes on the BOPP film, which increased the surface roughness dramatically and the increased roughness enhanced the combining intensity between the BOPP film and the ALA polymer. However, such a plasmatic modification increased the water vapor permeability. The FTIR and XPS characterizations showed that the amine groups were grafted onto the BOPP film, and the contact angle of the BOPP film decreases from 98.5° to 8°. Compared with the BOPP films treated by the Ar or He plasma, the barrier property of the modified BOPP film increased significantly when the ALA polymer was incorporated. The bio-affinity/toxicity of ALA polymer was illustrated by the attachment of the cultured SMMC-7721 hepatoma cells on the modified BOPP film. The significant enhancement in the cell density indicated that modified BOPP film was highly bio-compatible and non-toxic, especially treated with the Ar/O2/ALA plasma.
NASA Astrophysics Data System (ADS)
Shu-hui, Zhang; Guo-zheng, Liang; Wei, Zhang; Jin-fang, Zeng
2006-11-01
The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed.
NASA Astrophysics Data System (ADS)
Hassan, Mohammad M.; Leighs, Samuel J.
2017-10-01
The surface of wool fabrics is frequently modified to make them shrink-resistant, water repellent and also to improve their handle properties. In this work, we investigated the effect of common surface modification treatments on fabric stain-resistance, hydrophilicity and UV absorption performance. The surface of wool fabrics was modified by chlorination and also by reacting the chlorinated wool fabrics with a polyamide, a fibre-reactive amino-functional siloxane and a fluorocarbon polymer. The surface of the various treated fabrics was characterised by ATR-FTIR, contact angle measurement and scanning electron microscopy. The effect of surface modification on the tensile strength, surface hydrophilicity, stain-resistance, and UV absorption capacity of the fabric was investigated. It was found that all the treatments except the treatment with the amino-functional siloxane polymer slightly improved the tensile strength of the fabric. The chlorination treatment and the treatment with the polyamide resin made the fabric hydrophilic, and fluorocarbon and silicone resin treatment made the fabric hydrophobic.
Wang, Lei; Wang, Weiqi; Zheng, Xiaohua; Li, Zhensheng; Xie, Zhigang
2017-01-26
Polymer-modified metal-organic frameworks combine the advantages of both soft polymers and crystalline metal-organic frameworks (MOFs). It is a big challenge to develop simple methods for surface modification of MOFs. In this work, MOF@microporous organic polymer (MOP) hybrid nanoparticles (UNP) have been synthesized by epitaxial growth of luminescent boron-dipyrromethene (BODIPYs)-imine MOPs on the surface of UiO-MOF seeds, which exhibit low cytotoxicity, smaller size distribution, well-retained pore integrity, and available functional sites. After folic acid grafting, the enhanced intracellular uptake and bioimaging was validated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuettner, Lindsey A.
Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.
Specific modification of polysulfone with cluster bombardment with assistance of Ar ion irradiation
NASA Astrophysics Data System (ADS)
Xu, Guochun; Hibino, Y.; Awazu, K.; Tanihara, M.; Imanishi, Y.
2000-02-01
Objective: To develop a rapid method for the modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation with a multi-source cluster deposition apparatus. These surfaces mimicking the structure of heparin, a bioactive molecule, have a high anti-thrombosis property. Experimental Design: Polysulfone film, setting on a turning holder, was irradiated by Ar ions during bombardment with ammonium sulfamate clusters. The Ar ion source serves for the activation of a polymer surface and a cluster ion source supplies ammonium sulfamate molecules to react with the activated surface. After thorough washing with de-ionized sterile water, the modified surfaces were evaluated in terms of the contact angle of water, elemental composition, and binding state on electron spectroscopy for chemical analysis and platelet adhesion with platelet rich plasma. Results: The modification of polysulfone decreased the contact angle of water on surfaces from 82.6 ° down to 34.5 °. Ammonium, amine, sulfate, and thiophene combinations were formed on the modified surfaces. The adhesion numbers of the platelet were decreased to one tenth compared to the original surface. The same process was also applied to other polymers such as polyethylene, polypropylene, and polystyrene and similar outcomes were also observed. Conclusion: The primary studies showed successful modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation. Since the same concept can also be applied to other materials with various substrates, combined with the features of no solvent and no topographic changes, this method might be developed into a promising way for modification of polymeric materials.
Parrillo, Viviana; de Los Santos Pereira, Andres; Riedel, Tomas; Rodriguez-Emmenegger, Cesar
2017-06-08
Progress in biosensors for clinical detection critically relies on modifications of the transducer surface to prevent non-specific adsorption from matrix components (i.e. antifouling) while supporting biomolecular recognition elements to capture the analyte. Such combination of properties presents a significant challenge. Hierarchically structured polymer brushes comprising an antifouling polymer bottom block and a functionalizable top block are proposed as a promising strategy to achieve this goal. We employed the catalyst-free strain-promoted alkyne-azide cycloaddition (SPAAC) "click" reaction to biofunctionalize antifouling polymer brushes without impairing their resistance to fouling. The functionalization was performed on the side chains along the top polymer block or only on the end-groups of the polymer brush. The immobilized amounts of bioreceptors (streptavidin followed by biotin-conjugated proteins) and the resistance to fouling from blood plasma of the surfaces obtained were evaluated via surface plasmon resonance. The end group functionalization approach resulted in very low immobilization of bioreceptor. On the other hand, the side group modification of a top polymer block led to immobilization of 83% of a monolayer of streptavidin. Following binding of a biotin-conjugated antibody (66 ng cm -2 ) the functionalized layer was able to reduce the fouling from undiluted human blood plasma by 89% in comparison with bare gold. Finally, the functionalized hierarchical polymer brushes were applied to the label-free detection of a model analyte in diluted human blood plasma, highlighting the potential for translation to medical applications. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei; Reese, Cassandra M.; Xiong, Li
We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using postpolymerization modification (PPM), where the length scale of the buckled features can be tuned using PPM reaction time. Here, we show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling.
Sahu, Nabaprakash; Lakshmi, Namratha; Azhagarasan, N.S.; Agnihotri, Yoshaskam; Rajan, Manoj; Hariharan, Ramasubramanian
2014-01-01
Background: In cement-retained implant-supported restoration it is important to gain adequate retention of definitive restoration as well as retrievability of prosthesis. The surface of the abutment, alloy of the restoration and the type of cement used influences the retention of the restoration. There is a need to analyze the influence of surface modifications of abutments on the retentive capabilities of provisional implant cements. Purpose of study: To compare the effect of implant abutment surface modifications on retention of implant-supported restoration cemented with polymer based cement. Materials and method: Thirty solid titanium implant abutments (ADIN), 8mm height, were divided into 3 groups. Ten abutments with retentive grooves (Group I) as supplied by the manufacturer, Ten abutments milled to 20 taper circumferentially (Group II), and Ten abutments milled and air-abraded with 110 μm aluminum oxide (Group III) were used in this study. Ni-Cr coping were casted for each abutment and polymer based cement was used to secure them to the respective abutments. Using a universal testing machine at a crosshead speed of 0.5 cm/minute, tensile bond strength was recorded (N). Results: Mean tensile bond strength of Group I, II and III were found to be 408.3, 159.9 and 743.8 Newton respectively. The values were statistically different from each other (p<0.001). Conclusion: Abutments with milled and sandblasted surface provide the highest retention followed by abutments with retentive grooves and then by abutments with milled surface when cast copings were cemented to implant abutments with polymer based cement. Clinical implications: Retention of restoration depends on the surface of the abutment as well as the luting agents used. Incorporation of retentive grooves or particle abrasion can enhance retention especially in situation of short clinical crown. PMID:24596785
Water adsorption on surface-modified cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Wei, Zonghui; Sinko, Robert; Keten, Sinan; Luijten, Erik
Cellulose nanocrystals (CNCs) have attracted much attention as a filler phase for polymer nanocomposites due to their impressive mechanical properties, low cost, and environmental sustainability. Despite their promise for this application, there are still numerous obstacles that prevent optimal performance of CNC-polymer nanocomposites, such as poor filler dispersion and high levels of water absorption. One way to mitigate these negative effects is to modify CNC surfaces. Computational approaches can be utilized to obtain direct insight into the properties of modified CNC surfaces and probe the interactions of CNCs with other materials to facilitate the experimental design of nanocomposites. We use atomistic grand-canonical Monte Carlo simulations to study how surface modification of ion-exchanged sulfated cellulose nanocrystals (Na-CNCs) impacts water adsorption. We find that methyl(triphenyl)phosphonium-exchanged CNCs adsorb less water than Na-CNCs at the same relative humidity, supporting recent experimental dynamic vapor sorption measurements. By characterizing the distribution and configuration of water molecules near the modified CNC surfaces we determine how surface modifications disrupt CNC-water interactions.
Electron beam surface modifications in reinforcing and recycling of polymers
NASA Astrophysics Data System (ADS)
Czvikovszky, T.; Hargitai, H.
1997-08-01
Thermoplastic polymers can be fiber-reinforced in the recycling step through a reactive modification of the interface between the polymer matrix and fiber. Recollected automobile bumpers made of polypropylene copolymers have been reinforced during the reprocessing with eight different types of high-strength fibers, with waste cord-yarns of the tire industry. A thin layer reactive interface of acrylic oligomers has been applied and activated through low energy (175 keV) electron beam (EB). The upcycling (upgrading recycling) resulted in a series of extrudable and injection-mouldable, fiber-reinforced thermoplastic of enhanced bending strength, increased modulus of elasticity and acceptable impact strength. EB treatment has been compared with conventional methods.
Nanocellulose in Polymer Composites and Biomedical: Research and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yuan; Tekinalp, Halil L; Peter, William H
Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thusmore » been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.« less
Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J
2016-12-15
Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Fasoli, Marianna; Dell'Anna, Rossana; Dal Santo, Silvia; Balestrini, Raffaella; Sanson, Andrea; Pezzotti, Mario; Monti, Francesca; Zenoni, Sara
2016-06-01
Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Surface-modified polymers for cardiac tissue engineering.
Moorthi, Ambigapathi; Tyan, Yu-Chang; Chung, Tze-Wen
2017-09-26
Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought. Such new approaches are developed to induce tissue regeneration following injury. Hence, regenerative medicine plays a key role in treating CVD. Recently, the extrinsic stimulation of cardiac regeneration has involved the use of potential polymers to stimulate stem cells toward the differentiation of cardiomyocytes as a new therapeutic intervention in cardiac tissue engineering (CTE). The therapeutic potentiality of natural or synthetic polymers and cell surface interactive factors/polymer surface modifications for cardiac repair has been demonstrated in vitro and in vivo. This review will discuss the recent advances in CTE using polymers and cell surface interactive factors that interact strongly with stem cells to trigger the molecular aspects of the differentiation or formulation of cardiomyocytes for the functional repair of heart injuries or cardiac defects.
NASA Astrophysics Data System (ADS)
Zhang, Lingling; Chen, Xiaojuan; Liu, Pingsheng; Wang, Jing; Zhu, Haomiao; Li, Li
2018-06-01
A facile procedure to modify glass film with zwitterionic polymers for improving the blood compatibility was introduced. The glass slides were first silanized with 3-methacryloxypropyltrimethoxysilane (MPT) to generate methacrylate groups on the surface. Then, N, N’-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium (DMMSA), a sulfobetaine zwitterionic monomer, was polymerized on the silanized glass substrates by free-radical polymerization in order to graft the zwitterionic polymers onto the substrates. X-ray Photoelectron Spectroscopy (XPS), water contact angle, scanning electron microscope (SEM) and atomic force microscopy (AFM) were utilized to analyze the surface properties of the grafted glass. The blood compatibility of the grafted glass was verified by whole blood contacting and platelet adhesion experiments in vitro. The results showed that the zwitterionic polymers were successfully grafted on the glass surface, and consequently significantly inhibited the platelet adhesion and whole blood cell attachment.
Surface modification with the selected polymers is expected to reduce the fouling and scaling propensity of desalination membranes by strongly binding water at the membrane surface. Foulants will interact with this bound water layer and not with the membrane surface itself....
NASA Astrophysics Data System (ADS)
Iskanderova, Zelina; Kleiman, Jacob I.; Tennyson, Rod C.
2009-01-01
Space flight data, collected and published by NASA Glenn Research Center (GRC) team for a set of pristine polymeric materials selected, compiled, and tested in two LEO flight experiments at the International Space Station, as part of the "Materials International Space Station Experiment" (MISSE), has been used for comparison with previously developed atomic oxygen erosion predictive models. The same set of materials was used for a ground-based fast atomic beam (FAO) experimental erosion study at ITL/UTIAS, where the FAO exposure was performed mostly at a standard fluence of 2×1020 cm-2, with the results collected in a database for the development of a prototype of predictive software. A comparison of MISSE-1 flight data with two predictive correlations has shown good agreement, confirming the developed approach to polymers erosion resistance forecast that might be used also for newly developed or untested in space polymeric materials. A number of surface-modified thin film space polymers, treated by two ITL-developed and patented surface modification technologies, Implantox™ [5] and Photosil™ [6], have been also included in MISSE flight experiment. The results from those MISSE samples have shown full protection of AO-sensitive main space-related hydrocarbon polymers, such as Kapton HN, back-metalized Kapton H and Kapton E, and Mylar, when treated by Implantox™ surface modification technology and significant erosion resistance enhancement up to full protection by Photosil™ treatment.
Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken
2016-06-01
The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.
2015-12-29
Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed thatmore » the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.« less
Modified silicas with different structure of grafted methylphenylsiloxane layer
NASA Astrophysics Data System (ADS)
Bolbukh, Yuliia; Terpiłowski, Konrad; Kozakevych, Roman; Sternik, Dariusz; Deryło-Marczewska, Anna; Tertykh, Valentin
2016-06-01
The method of a chemical assembly of the surface polymeric layer with high contents of the modifying agent was developed. Powders of nanodispersed silica with chemisorbed polymethylphenylsiloxane (PMPS) were synthesized by solvent-free chemical assembly technique with a dimethyl carbonate (DMC) as scission agent. Samples were characterized using FTIR spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis (CHN analysis). Coating microstructure, morphology, and hydrophilic-hydrophobic properties of nanoparticles were estimated. The results indicate a significant effect of the PMPS/DMC ratio at each modification stage on hydrophobic properties of modified silicas. Modification with a similar composition of the PMPS/DMC mixture, even with different polymer amount at each stage, provides the worst hydrophobicity. Results suggest that the highest hydrophobicity (contact angle θ = 135°-140°) is achieved in the case when silica modified with the PMPS/DMC mixture using multistage approach that providing a formation of the monomolecular layer of polysiloxane at the first modification step. The characteristics of surface structure were interpreted in terms of density of polymer-silica bonds at the interfaces that, usually, are reduced for modified surfaces, in a coupling with conformation model that accented the shape of chains (arch- and console-like) adsorbed on solid surfaces.
Dependence of nanomechanical modification of polymers on plasma-induced cross-linking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, S.; Komvopoulos, K.
2007-01-01
The nanomechanical properties of low-density polyethylene (LDPE) modified by inductively coupled, radio-frequency Ar plasma were investigated by surface force microscopy. The polymer surface was modified under plasma conditions of different ion energy fluences and radiation intensities obtained by varying the sample distance from the plasma power source. Nanoindentation results of the surface stiffness versus maximum penetration depth did not reveal discernible differences between untreated and plasma-treated LDPE, presumably due to the small thickness of the modified surface layer that resulted in a substrate effect. On the contrary, nanoscratching experiments demonstrated a significant increase in the surface shear resistance of plasma-modifiedmore » LDPE due to chain cross-linking. These experiments revealed an enhancement of cross-linking with increasing ion energy fluence and radiation intensity, and a tip size effect on the friction force and dominant friction mechanisms (adhesion, plowing, and microcutting). In addition, LDPE samples with a LiF crystal shield were exposed to identical plasma conditions to determine the role of vacuum ultraviolet (VUV) and ultraviolet (UV) radiation in the cross-linking process. The cross-linked layer of plasma-treated LDPE exhibited much higher shear strength than that of VUV/UV-treated LDPE. Plasma-induced surface modification of the nanomechanical properties of LDPE is interpreted in the context of molecular models of the untreated and cross-linked polymer surfaces derived from experimental findings.« less
Modification of surface properties of cellulosic substrates by quaternized silicone emulsions.
Purohit, Parag S; Somasundaran, P
2014-07-15
The present work describes the effect of quaternization of silicones as well as the relevant treatment parameter pH on the frictional, morphological and relaxation properties of fabric substrates. Due to their unique surface properties, silicone polymers are extensively used to modify surface properties of various materials, although the effects of functionalization of silicones and relevant process conditions on modification of substrates are not well understood. Specifically we show a considerable reduction in fabric friction, roughness and waviness upon treatment with quaternized silicones. The treatment at acidic pH results in better deposition of silicone polymers onto the fabric as confirmed through streaming potential measurements which show charge reversal of the fabric. Interestingly, Raman spectroscopy studies show the band of C-O ring stretching mode at ∼1095 cm(-1) shift towards higher wavenumber indicating lowering of stress in fibers upon appropriate silicone treatment. Thus along with the morphological and frictional properties being altered, silicone treatment can lead to a reduction in fabric strain. It is concluded that the electrostatic interactions play an initial role in modification of the fiber substrate followed by multilayer deposition of polymer. This multi-technique approach to study fiber properties upon treatment by combining macro to molecular level methods has helped in understanding of new functional coating materials. Copyright © 2014 Elsevier Inc. All rights reserved.
Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K
2014-09-15
Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Small-Angle Neutron Scattering Investigation of Growth Modifiers on Hydrate Crystal Surfaces
NASA Astrophysics Data System (ADS)
Sun, Thomas; Hutter, Jeffrey L.; Lin, M.; King, H. E., Jr.
1998-03-01
Hydrates are crystals consisting of small molecules enclathrated within an ice-like water cage. Suppression of their growth is important in the oil industry. The presence of small quantities of specific polymers during hydrate crystallization can induce a transition from an octahedral to planar growth habit. This symmetry breaking is surprising because of the suppression of two 111 planes relative to the other six crystallographically equivalent faces. To better understand the surface effects leading to this behavior, we have studied the surface adsorption of these growth-modifing polymers onto the hydrate crytals using SANS. The total hydrate surface area, as measured by Porod scattering, increases in the presence of the growth modifier, but, no significant increase in polymer concentration on the crystal surfaces is found. Implications for possible growth mechanisms will be discussed.
Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo
2012-10-01
Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modification of polymeric surface for improved adhesion via electron beam exposure
Kelber, Jeffry A.
1989-01-01
Treating polymer surfaces, e.g., Teflon, particularly very thin surfaces, e.g., 50-10,000 .ANG. with low energy electron radiation, e.g., 100-1000 eV, in a high vacuum environment, e.g., less than 10.sup.-6 Torr, to enhance the ability of the surface to be adhered to a variety of substrates.
Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Jin Young; Heeger, Alan J
2015-02-04
Modification of an ITO electrode with small-molecule organic surface modifier, 4-chloro-benzoic acid (CBA), via a simple spin-coating method produces a high-work-function electrode with high transparency and a hydrophobic surface. As an alternative to PEDOT:PSS, CBA modification achieves efficiency enhancement up to 8.5%, which is attributed to enhanced light absorption within the active layer and smooth hole transport from the active layer to the anode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bartis, Elliot; Knoll, Andrew; Luan, Pingshan; Hart, Connor; Seog, Joonil; Oehrlein, Gottlieb; Graves, David; Lempert, Walter
2014-10-01
In this work, polymer- and lipopolysaccharide-coated Si substrates were exposed to a surface microdischarge (SMD) and an atmospheric pressure plasma jet (APPJ) in controlled ambients. We seek to understand how plasma-ambient interactions impact biodeactivation and surface modifications by regulating the ambient gas chemistry and the proximity of the plasma to the ambient. A key difference between the SMD and APPJ is that the APPJ needs an Ar feed gas and the SMD does not. By adding small N2/O2 admixtures to Ar, we find that the O2 admixture in the APPJ is a key factor for both deactivation and surface modification. After plasma treatments, we detected a new chemical species on a variety of surfaces that was identified as NO3. We find that NO3 forms even with no N2 in the feed gas, demonstrating that this species forms due to interactions with ambient N2. Despite a very different discharge mechanism, the SMD modifies surfaces similarly to the APPJ, including NO3 formation. The SMD generates large O3 concentrations, which do not correlate with NO3, suggesting that O3 alone is not involved in the NO3 formation mechanism. The authors gratefully acknowledge financial support by the US Department of Energy (DE-SC0005105 and DE-SC0001939) and National Science Foundation (PHY-1004256).
Wang, Ting; Cheng, Cheng; Wu, Li-Guang; Shen, Jiang-Nan; Van der Bruggen, Bart; Chen, Qian; Chen, Di; Dong, Chun-Ying
2017-06-06
Two kinds of isocyanate were used to modify graphene oxide (GO) samples. Then, polyimide (PI) hybrid membranes containing GO and modified GO were prepared by in situ polymerization. The permeation of CO 2 and N 2 was studied using these novel membranes. The morphology experiments showed that the isocyanate groups were successfully grafted on the surface of GO by replacement of the oxygen-containing functional groups. After modification, the surface polarity of the GO increased, and more defect structures were introduced into the GO surface. This resulted in a good distribution of more modified GO samples in the PI polymer matrix. Thus, the PI hybrid membranes incorporated by modified GO samples showed a high gas permeability and ideal selectivity of membranes. In addition, enhancement of the selectivity due to the solubility of CO 2 played a major role in the increase in the separation performance of the hybrid membranes for CO 2 , although the diffusion coefficients for CO 2 also increased. Both the higher condensability and the strong affinity between CO 2 molecules and GO in the polymer matrix caused an enhancement of the solubility selectivity higher than the diffusion selectivity after GO surface modification.
Joining the un-joinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers.
Jin, Xin; Strueben, Jan; Heepe, Lars; Kovalev, Alexander; Mishra, Yogendra K; Adelung, Rainer; Gorb, Stanislav N; Staubitz, Anne
2012-11-08
Tetrapodal ZnO crystals are used for mechanical interlocking of PTFE and cross-linked PDMS, classically non-adhesive polymers. This novel approach is straightforward and easily applicable and leads to a peel strength that is higher than 200 N m(-1) without chemical modification of the surfaces. The shape of these fillers emerged as a crucial aspect of the interlocking mechanism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kelber, J.A.
1987-04-08
Treating polymer surfaces, e.g., Teflon, particularly very thin surfaces, e.g., 50-10,000 A, with low energy electron radiation, e.g., 100-1000 eV, in a high vacuum environment, e.g., less than 10 /sup /minus/6/ Torr, to enhance the ability of the surface to be adhered to a variety of substrates.
NASA Astrophysics Data System (ADS)
Bekkara, Mohammed Fethi; Dascalescu, Lucien; Benmimoun, Youcef; Zeghloul, Thami; Tilmatine, Amar; Zouzou, Noureddine
2018-01-01
The aim of this paper is to quantify the effects of dielectric barrier discharge (DBD) exposure on the physico-chemical and tribo-electric properties of polymers. The study was conducted in atmospheric air on polypropylene, polyethylene and polyvinyl-chloride. These three types of polymers are widely used in industry. The polymers were characterized by means of an optical profilometer, a fourier-transform infrared (FTIR) spectrometer and an electric charge measurement system. The latter is composed of a Faraday pail connected to an electrometer. The profilometer analyses showed that the DBD plasma treatment has increased the surface roughness of the three polymers. FTIR revealed that oxygen atoms and polar groups were grafted on their surfaces, thereby conferring them a hydrophilic character. The short (2 sec) DBD plasma treatment has considerably improved the electrostatic charge acquired by the polymers during electrostatic tribo-charging, while longer exposures conferred the polymer anti-static properties and decreased its tribo-charging capability. The correlation between the results of the physico-chemical analyses and the tribo-electric behavior has been discussed.
[Chemical modification on the surface of nano-particles of ZnO and its characterization].
Yu, Hai-yin; Du, Jun; Gu, Jia-shan; Guan, Ming-yun; Wu, Zheng-cui; Ling, Qing; Sun, Yi-min
2004-02-01
After nano-particles (ZnO) had been encapsulated by a kind of water-soluble cellulose Hydoxyl-Propyl-Methyl Cellulose (HPMC), then methyl methacrylate was grafted onto the surface of them. Thus the surface of nano-ZnO had been successfully modified. FTIR, DTA and TEM were utilized to confirm the results. FTIR shows that HPMC was adsorbed onto the surface of ZnO, and PMMA was also grafted onto its surface, DTA says that the heat stability of HPMC, HPMC-g-PMMA and ZnO/HPMC-g-PMMA increased greatly, TEM photo demonstrates that polymer adhered onto the surface of nano-ZnO which was encapsulated by a layer of film-like polymer.
Functionalization of polymer surfaces by medium frequency non-thermal plasma
NASA Astrophysics Data System (ADS)
Felix, T.; Trigueiro, J. S.; Bundaleski, N.; Teodoro, O. M. N. D.; Sério, S.; Debacher, N. A.
2018-01-01
This work addresses the surface modification of different polymers by argon dielectric barrier discharge, using bromoform vapours. Atomic Force Microscopy and Scanning Electron Microscopy showed that plasma etching occurs in stages and may be related to the reach of the species generated and obviously the gap between the electrodes. In addition, the stages of flatten surface or homogeneity may be the result of the transient crosslinking promoted by the intense UV radiation generated by the non- thermal plasma. X-ray Photoelectron Spectroscopy analysis showed that bromine was inserted on the polymer surface as Csbnd Br bonds and as adsorbed HBr. The obtained results demonstrate that the highest degree of bromofunctionalization was achieved on polypropylene surface, which contains about 8,5% of Br. After its derivatization in ammonia, Br disappeared and about 6% of nitrogen in the form of amine group was incorporated at the surface. This result can be considered as a clear fingerprint of the Br substitution by the amine group, thus illustrating the efficiency of the proposed method for functionalization of polymer surfaces.
Obstals, Fabian; Vorobii, Mariia; Riedel, Tomáš; de Los Santos Pereira, Andres; Bruns, Michael; Singh, Smriti; Rodriguez-Emmenegger, Cesar
2018-03-01
Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen
2015-05-22
Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of themore » polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.« less
NASA Astrophysics Data System (ADS)
Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin
2017-09-01
Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju
2013-08-21
Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion andmore » maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.« less
NASA Astrophysics Data System (ADS)
Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk
2018-05-01
We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.
Purification of boron nitride nanotubes via polymer wrapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jin-Hyuk; Kim, Jaewoo; WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353
2013-03-15
Highlights: ► Surface modification of boron nitride nanotubes using polymeric materials. ► Surface-modified BNNT was purified with a simple dilution-centrifugation step. ► Surface-modified BNNT can be directly used for polymer composite fabrication ► Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitoredmore » by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.« less
NASA Astrophysics Data System (ADS)
Hayes, Heather J.
1999-11-01
Three distinct heterogeneous polymer modification reactions are explored in this work. The first is a bulk reaction commonly conducted on polyolefins---the free radical addition of maleic anhydride. This reaction was run using supercritical carbon dioxide (SC CO2) as the solvent. The second was the chemical surface modification of an amorphous fluorocopolymer of tetrafluoroethylene and a perfluorodioxole monomer (Teflon AF). Several reactions were explored to reduce the surface of the fluorocopolymer for the enhancement of wettability. The last modification was also on Teflon AF and involved the physical modification of the surface through the transport polymerization of xylylene in order to synthesize a novel bilayer membrane. The bulk maleation of poly-4-methyl-1-pentene (PMP) was the focus of the first project. SC CO2 was utilized as both solvent and swelling agent to promote this heterogeneous reaction and led to successful grafting of anhydride groups on both PMP and linear low density polyethylene. Varying the reaction conditions and reagent concentrations allowed optimization of the reaction. The grafted anhydride units were found to exist as single maleic and succinic grafts, and the PMP became crosslinked upon maleation. The surface of a fluoropolymer can be difficult to alter. An examination of three reactions was made to determine the reactivity of Teflon AF: sodium naphthalenide treatment (Na-Nap), aluminum metal modification through deposition and dissolution, and mercury/ammonia photosensitization. The fluorocopolymer with the lower perfluorodioxole percentage was found to be more reactive towards modification with the Na-Nap treatment. The other modification reactions appeared to be nearly equally reactive toward both fluorocopolymers. The functionality of the Na-Nap-treated surface was examined in detail with the use of several derivatization reactions. In the final project, an asymmetric gas separation membrane was synthesized using Teflon AF as the highly permeable support layer and chemical vapor deposited poly(p-xylylene) (PPX) as the thin selective layer. This bilayer membrane has oxygen and nitrogen permeability values close to those predicted by the series resistance model. To enhance the weak adhesive bond between Teflon AF and PPX, Na-Nap reduction was used to modify the Teflon AF surface prior to the vapor deposition polymerization of di-p-xylylene monomer.
NASA Astrophysics Data System (ADS)
Buruga, Kezia; Kalathi, Jagannathan T.
2018-04-01
Halloysite nanotubes (HNTs) were modified with γ-methacryloxypropyltrimethoxysilane (γ-MPS) to improve their interaction with the polymer, and the modified HNTs (MHNTs) were subsequently used for the synthesis of MHNT-polymethylmethacrylate (PMMA) nanocomposites by miniemulsion polymerization assisted by ultrasound. Reduced agglomeration of HNTs due to modification with γ-MPS was evident from scanning electron microscopy analysis. Modification of HNTs and exfoliation of MHNTs in the polymer nanocomposite were confirmed by the presence of their respective characteristic peaks in Fourier-transform infrared spectra and x-ray diffraction patterns. Transmission electron microscopic analysis showed that the surface of the MHNTs differed significantly from that of unmodified HNTs. MHNT-PMMA nanocomposite exhibited significantly higher glass-transition temperature (T g) compared with neat PMMA or unmodified HNT-PMMA nanocomposite. Hence, such modification of HNTs along with miniemulsion polymerization assisted by ultrasound is a promising approach to achieve better dispersion of HNTs in the polymer and to obtain nanocomposites with enhanced properties.
NASA Astrophysics Data System (ADS)
Yoshida, Wayne Hiroshi
Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of gyration 4.5--6.8 times larger than the membrane pore radius. Methanol separation factors for the PVP and PVAc-grafted alumina pervaporation membranes reached values of 26 and 100 (respectively) at total permeate fluxes of 0.055--1.26 kg/m 2 hr and 0.55--6.19 kg/m2 hr. The present study demonstrated that selective pervaporation membranes for separation of both organic/organic and organic/aqueous mixtures can be effectively designed by careful selection of the surface-grafted polymer chain density and the ratio of the polymer chain size to the native support pore size.
Surface changes of poly-L-lactic acid due to annealing
NASA Astrophysics Data System (ADS)
Juřík, P.; Michaljaničová, I.; Slepička, P.; Kolskáa, Z.; Švorčík, V.
2017-11-01
Surface modifications are very important part of both current cutting-edge research and modern manufacturing. Our research is focused on poly-L-lactic acid, which is biocompatible and biodegradable polymer that offers applications in modern medicine. We observed morphological changes of the surface of metalized samples due to annealing and studied effect of modifications on total surface area and pore surface and volume. We observed that annealing of non-metalized samples had most pronounced effect up to the 70°C, after which all observed parameters dropped significantly. Metallization has changed behaviour of the samples significantly and resulted in generally lower surface area and porosity when compared to non-metalized samples.
Huang, Hongye; Liu, Meiying; Jiang, Ruming; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen
2018-03-01
Due to their excellent chemical stability and remarkable biocompatibility, nanodiamonds (NDs) have received widespread research attention by the biomedical field. The excellent water dispersibility of NDs has significant importance for biomedical applications. Therefore, surface modification of NDs with hydrophilic polymers has been extensively investigated over the past few decades. In this study, we synthesize β-CD containing hyperbranched polymer functionalized ND (ND-β-CD-HPG) composites with high water dispersibility via supramolecular chemistry based on the host-guest interactions between β-Cyclodextrin (β-CD) and adamantine (Ad). The hydroxyl groups of NDs first reacted with 1, 1-adamantanecarbonyl chloride to obtain ND-Ad, which was further functionalized with β-CD containing hyperbranched polymers to form the final ND-β-CD-HPG composites. The successful preparation of ND-β-CD-HPG composites was confirmed by several characterization techniques. Furthermore, the loading and release of the anticancer agent doxorubicin hydrochloride (DOX) on ND-β-CD-HPG composites was also examined to explore its potential in drug delivery. When compared with traditional methods of surface modification of NDs, this method was convenient, fast and efficient. We demonstrated that ND-β-CD-HPG composites have great water dispersibility, low toxicity, high drug-loading capacity and controlled drug-release behavior. Based on these characteristics, ND-β-CD-HPG composites are expected to have high potential for biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...
2017-07-31
Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.
Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less
Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna
2016-11-01
Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weilnboeck, F.; Metzler, D.; Kumar, N.
2011-12-26
Roughening of nanoscale polymer masks during plasma etching (PE) limits feature critical dimensions in current and future lithographic technologies. Roughness formation of 193 nm photoresist (PR) is mechanistically explained by plasma-induced changes in mechanical properties introduced at the PR surface ({approx}2 nm) by ions and in parallel in the material bulk ({approx}200 nm) by ultraviolet (UV) plasma radiation. Synergistic roughening of polymer masks can be prevented by pretreating PR patterns with a high dose of He plasma UV exposure to saturate bulk material modifications. During subsequent PE, PR patterns are stabilized and exhibit improved etch resistance and reduced surface/line-edge roughness.
Liao, Sih-Hao; Jhuo, Hong-Jyun; Cheng, Yu-Shan; Chen, Show-An
2013-09-14
Modification of a ZnO cathode by doping it with a hydroxyl-containing derivative - giving a ZnO-C60 cathode - provides a fullerene-derivative-rich surface and enhanced electron conduction. Inverted polymer solar cells with the ZnO-C60 cathode display markedly improved power conversion efficiency compared to those with a pristine ZnO cathode, especially when the active layer includes the low-bandgap polymer PTB7-Th. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites
Rajendran Royan, Nishata Royan; Sulong, Abu Bakar; Yuhana, Nor Yuliana; Ab Ghani, Mohd Hafizuddin; Ahmad, Sahrim
2018-01-01
The use of rice husks (RH) to reinforce polymers in biocomposites are increasing tremendously. However, the incompatibility between the hydrophilic RH fibers and the hydrophobic thermoplastic matrices leads to unsatisfactory biocomposites. Surface modification of the fiber surface was carried out to improve the adhesion between fiber and matrix. In this study, the effect of surface modification of RH via alkali, acid and ultraviolet-ozonolysis (UV/O3) treatments on the properties of composites recycled high density polyethylene (rHDPE) composites was investigated. The untreated and treated RH were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The composites containing 30 wt% of RH (treated and untreated) were then prepared via extrusion and followed by compression molding. As compared to untreated RH, all surface treated RH exhibited rougher surface and showed improved adhesion with rHDPE matrix. Tensile strength of UV/O3-treated RH composites showed an optimum result at 18.37 MPa which improved about 5% in comparison to the composites filled with untreated RH. UV/O3 treatment promotes shorter processing time and lesser raw material waste during treatment process where this is beneficial for commercialization in the future developments of wood plastic composites (WPCs). Therefore, UV/O3 treatment can be served as an alternative new method to modify RH surface in order to improve the adhesion between hydrophilic RH fibre and hydrophobic rHDPE polymer matrix. PMID:29847568
Functionalization of silicon nanowires by conductive and non-conductive polymers
NASA Astrophysics Data System (ADS)
Belhousse, S.; Tighilt, F.-Z.; Sam, S.; Lasmi, K.; Hamdani, K.; Tahanout, L.; Megherbi, F.; Gabouze, N.
2017-11-01
The work reports on the development of hybrid devices based on silicon nanowires (SiNW) with polymers and the difference obtained when using conductive and non-conductive polymers. SiNW have attracted much attention due to their importance in understanding the fundamental properties at low dimensionality as well as their potential application in nanoscale devices as in field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. SiNW arrays were formed using metal assisted chemical etching method. This process is simple, fast and allows obtaining a wide range of silicon nanostructures. Hydrogen-passivated SiNW surfaces show relatively poor stability. Surface modification with organic species confers the desired stability and enhances the surface properties. For this reason, this work proposes a covalent grafting of organic material onto SiNW surface. We have chosen a non-conductive polymer polyvinylpyrrolidone (PVP) and conductive polymers polythiophene (PTh) and polypyrrole (PPy), in order to evaluate the electric effect of the polymers on the obtained materials. The hybrid structures were elaborated by the polymerization of the corresponding conjugated monomers by electrochemical route; this electropolymerization offers several advantages such as simplicity and rapidity. SiNW functionalization by conductive polymers has shown to have a huge effect on the electrical mobility. Hybrid surface morphologies were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR-ATR) and contact angle measurements.
PH-Sensitive WO(3)-Based Microelectrochemical Transistors.
1986-09-22
electronics, microelectrochemistry, microelectrodes, surface L- modification, molecuale based transistors, polyaniline , poly-3-methylthiophene Chemical...polymer, as in the cases of polypyrrole,8 poly(N-methyl pyrrole), 8b polyaniline , 9 or poly(3-methylthiophene),1 0 the polymer- % .4_. connected...Polypyrrole, 8 polyaniline , 9 and poly(3-methylthiophene) I0 are similar in that they are conducting when oxidized, and transistors based on these materials
Polymer-metal hybrid transparent electrodes for flexible electronics
NASA Astrophysics Data System (ADS)
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-03-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq-1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.
Polymer-metal hybrid transparent electrodes for flexible electronics
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-01-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq−1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides. PMID:25790133
Tleugabulova, Dina; Duft, Andy M; Brook, Michael A; Brennan, John D
2004-01-06
The fluorescence-based nanosize metrology approach, proposed recently by Geddes and Birch (Geddes, C. D.; Birch, D. J. S. J. Non-Cryst. Solids 2000, 270, 191), was used to characterize the extent of binding of a fluorescent cationic solute, rhodamine 6G (R6G), to the surface of silica particles after modification of the surface with the hydrophilic polymer poly(ethylene oxide) (PEO) of various molecular weights. The measurement of the rotational dynamics of R6G in PEO solutions showed the absence of strong interactions between R6G and PEO chains in water and the ability of the dye to sense the presence of polymer clusters in 30 wt % solutions. Time-resolved anisotropy decays of polymer-modified Ludox provided direct evidence for distribution of the dye between bound and free states, with the bound dye showing two decay components: a nanosecond decay component that is consistent with local motions of bound probes and a residual anisotropy component due to slow rotation of large silica particles. The data showed that the dye was strongly adsorbed to unmodified silica nanoparticles, to the extent that less than 1% of the dye was present in the surrounding aqueous solution. Addition of PEO blocked the adsorption of the dye to a significant degree, with up to 50% of the probe being present in the aqueous solution for Ludox samples containing 30 wt % of low molecular weight PEO. The addition of such agents also decreased the value and increased the fractional contribution of the nanosecond rotational correlation time, suggesting that polymer adsorption altered the degree of local motion of the bound probe. Atomic force microscopy imaging studies provided no evidence for a change in the particle size upon surface modification but did suggest interparticle aggregation after polymer adsorption. Thus, this redistribution of the probe is interpreted as being due to coverage of particles with the polymer, resulting in lower adsorption of R6G to the silica. The data clearly show the power of time-resolved fluorescence anisotropy decay measurements for probing the modification of silica surfaces and suggest that this method should prove useful in characterization of new chromatographic stationary phases and nanocomposite materials.
NASA Astrophysics Data System (ADS)
Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka
2018-06-01
For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.
NASA Astrophysics Data System (ADS)
Mashkov, Yu K.; Ruban, A. S.; Rogachev, E. A.; Chemisenko, O. V.
2018-01-01
Conditions of polymer materials usage containing nanoelements as modifiers significantly affect the requirements for their physic-mechanical and tribological properties. However, the mechanisms of nanoparticles effect to the polymers tribotechnical properties have not been studied enough. The article aim is to analyze the results of studying polytetrafluoroethylene modified with cryptocrystalline graphite and silicon dioxide and to determine the effectiveness of the modification methods used and methods for further improving filled PTFE mechanical and tribotechnical properties. The effect of modifiers to PCM supramolecular structure was analyzed with SEM methods. The results of modifying the PCM samples surface by depositing a copper film with ion-vacuum deposition methods and changing the structural-phase composition and tribological characteristics are considered. The findings make possible to characterize the physicochemical processes under frictional interaction in metal polymer tribosystems.
Huang, Qiang; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Zeng, Guangjian; Huang, Hongye; Jiang, Ruming; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-08-01
Monodispersed SiO 2 particles functionalized with cationic polymers poly-((3-acrylamidopropyl)trimethylammonium chloride) (PAPTCl) were prepared using mussel inspired surface modification strategy and surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, X-ray photoelectron spectroscopy, and zeta potential were employed to characterize these SiO 2 samples. The adsorption performance of the functionalized SiO 2 (donated as SiO 2 -PDA-PAPTCl) towards anionic organic dye Congo red (CR) was investigated to evaluate their potential environmental applications. We demonstrated that the surface of SiO 2 particles can be successfully functionalized with cationic PAPTCl. The adsorption capability of as-prepared SiO 2 was found to increases from 28.70 and 106.65mg/g after surface grafted with cationic polymers. The significant enhancement in the adsorption capability of SiO 2 -PDA-PAPTCl is mainly attributed to the introduction of cationic polymers. More importantly, this strategy is expected to be promising for fabrication of many other functional polymer nanocomposites for environmental applications due to the universality of mussel inspired chemistry and well designability and good monomer adaptability of SI-ATRP. Copyright © 2017 Elsevier Inc. All rights reserved.
Amdjadi, Parisa; Nojehdehian, Hanieh; Najafi, Farhood; Ghasemi, Amir; Seifi, Massoud; Dashtimoghadam, Erfan; Fahimipour, Farahnaz; Tayebi, Lobat
2017-07-01
Since octafluoropentyl methacrylate is an antifouling polymer, surface modification of polyether ether ketone with octafluoropentyl methacrylate is a practical approach to obtaining anti-biofilm biocompatible devices. In the current study, the surface treatment of polyether ether ketone by the use of ultraviolet irradiation, so as to graft (octafluoropentyl methacrylate) polymer chains, was initially implemented and then investigated. The Fourier-transform infrared and nuclear magnetic resonance spectra corroborated the appearance of new signals associated with the fluoroacrylate group. Thermogravimetric curves indicated enhanced asymmetry in the polymer structure due to the introduction of the said new groups. Measuring the peak area in differential scanning calorimetry experiments also showed additional bond formation. Static water contact angle measurements indicated a change in wettability to the more hydrophobic surface. The polyether ether ketone-octafluoropentyl methacrylate surface greatly reduced the protein adsorption. This efficient method can modulate and tune the surface properties of polyether ether ketone according to specific applications.
Computational design of surfaces, nanostructures and optoelectronic materials
NASA Astrophysics Data System (ADS)
Choudhary, Kamal
Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of the materials to ensure that no spurious phases had a lower cohesive energy. Thirdly, lanthanide doped and co-doped Y3Al5O 12 were examined using density functional theory (DFT) with semi-local and local functional. Theoretical results were compared and validated with experimental data and new co-doped materials with high efficiency were predicted. Finally, Transition element doped CH3NH3PbI3 were studied with DFT for validation of the model with experimental data and replacement materials for toxic Pb were predicted.
Structure and Modification of Electrode Materials for Protein Electrochemistry.
Jeuken, Lars J C
The interactions between proteins and electrode surfaces are of fundamental importance in bioelectrochemistry, including photobioelectrochemistry. In order to optimise the interaction between electrode and redox protein, either the electrode or the protein can be engineered, with the former being the most adopted approach. This tutorial review provides a basic description of the most commonly used electrode materials in bioelectrochemistry and discusses approaches to modify these surfaces. Carbon, gold and transparent electrodes (e.g. indium tin oxide) are covered, while approaches to form meso- and macroporous structured electrodes are also described. Electrode modifications include the chemical modification with (self-assembled) monolayers and the use of conducting polymers in which the protein is imbedded. The proteins themselves can either be in solution, electrostatically adsorbed on the surface or covalently bound to the electrode. Drawbacks and benefits of each material and its modifications are discussed. Where examples exist of applications in photobioelectrochemistry, these are highlighted.
Ferritin-Polymer Conjugates: Grafting Chemistry and Self-Assembly
2009-10-26
a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...Chemoselective modification of M13 bacteriophage and cell imaging We systematically investigated the chemical modification of three kinds of reactive...tyrosine residues, on M13 surface. The reactivity for each group was identified by conjugation with small fluorescent molecules. Furthermore, the
Kumar, Deepak; Pandey, Jyoti; Raj, Vinit; Kumar, Pramendra
2017-01-01
Introduction: Graft copolymerization is one of the most promising technique uses to modify the properties of naturally available polymers with a minimum loss in their native characteristics. Methods and Materials: Graft copolymerization is a very significant technique to add hybrid properties in backbone of polymers. The grafting generally initiated through the formation of free radical centers on the polymer backbone as well as monomer. Results: Grafted polysaccharides have various applications in different important scientific areas such as drug delivery, pharmaceutical field, plastic industry, waste water treatment, tannery effluent treatment, textile industry, agriculture area, etc. all of this fascinated us to summarize the major research articles over the last two decades outlining different methods of grafting, surface modification, graft copolymerization of synthetic and natural polymers. Conclusion: Various redox initiator systems viz. Ceric ammonium nitrate, per sulfate, Irradiation, FAS-H2O2 etc. is also explored for grafting of vinyl through conventional and non-conventional techniques. PMID:29151987
Double Modification of Polymer End Groups through Thiolactone Chemistry.
Driessen, Frank; Martens, Steven; Meyer, Bernhard De; Du Prez, Filip E; Espeel, Pieter
2016-06-01
A straightforward synthetic procedure for the double modification and polymer-polymer conjugation of telechelic polymers is performed through amine-thiol-ene conjugation. Thiolactone end-functionalized polymers are prepared via two different methods, through controlled radical polymerization of a thiolactone-containing initiator, or by modification of available end-functionalized polymers. Next, these different linear polymers are treated with a variety of amine/acrylate-combinations in a one-pot procedure, creating a library of tailored end-functionalized polymers. End group conversions are monitored via SEC, NMR, and MALDI-TOF analysis, confirming the quantitative modification after each step. Finally, this strategy is applied for the synthesis of block copolymers via polymer-polymer conjugation and the successful outcome is analyzed via LCxSEC measurements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fang, Jun; Ye, Sang-Ho; Shankarraman, Venkat; Huang, Yixian; Mo, Xiumei; Wagner, William R.
2015-01-01
While surface modification is well suited for imparting biomaterials with specific functionality for favorable cell interactions, the modification of degradable polymers would be expected to provide only temporary benefit. Bulk modification by incorporating pendant reactive groups for subsequent functionalization of biodegradable polymers would provide a more enduring approach. Towards this end, a series of biodegradable poly(ester urethane)urea elastomers with variable amino content (PEUU-NH2 polymers) were developed. Carboxylated phosphorycholine was synthesized and conjugated to the PEUU-NH2 polymers for subsequent bulk functionalization to generate PEUU-PC polymers. Synthesis was verified by 1H NMR, X-ray photoelectron spectroscopy and ATR-FTIR. The impact of amine incorporation and phosphorylcholine conjugation was shown on mechanical, thermal and degradation properties. Water absorption increased with increasing amine content, and further with PC conjugation. In wet conditions, tensile strength and initial modulus generally decreased with increasing hydrophilicity, but remained in the range of 5–30 MPa and 10–20 MPa respectively. PC conjugation was associated with significantly reduced platelet adhesion in blood contact testing and the inhibition of rat vascular smooth muscle cell proliferation. These biodegradable PEUU-PC elastomers offer attractive properties for applications as non-thrombogenic, biodegradable coatings and for blood-contacting scaffold applications. Further, the PEUU-NH2 base polymers offer the potential to have multiple types of biofunctional groups conjugated onto the backbone to address a variety of design objectives. PMID:25132273
Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films
Al-Jumaili, Ahmed; Bazaka, Kateryna
2017-01-01
Bacterial colonisation of biomedical devices demands novel antibacterial coatings. Plasma-enabled treatment is an established technique for selective modification of physicochemical characteristics of the surface and deposition of polymer thin films. We investigated the retention of inherent antibacterial activity in geranium based plasma polymer thin films. Attachment and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was significantly reduced on the surfaces of samples fabricated at 10 W radio frequency (RF) power, compared to that of control or films fabricated at higher input power. This was attributed to lower contact angle and retention of original chemical functionality in the polymer films fabricated under low input power conditions. The topography of all surfaces was uniform and smooth, with surface roughness of 0.18 and 0.69 nm for films fabricated at 10 W and 100 W, respectively. Hardness and elastic modules of films increased with input power. Independent of input power, films were optically transparent within the visible wavelength range, with the main absorption at ~290 nm and optical band gap of ~3.6 eV. These results suggest that geranium extract-derived polymers may potentially be used as antibacterial coatings for contact lenses. PMID:28902134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Chang-Yun; Yang, Hongta, E-mail: hyang@dragon.nchu.edu.tw; Lin, Kun-Yi Andrew
This article reports a scalable technology for fabricating polymer films with excellent water-repelling and anti-ultraviolet properties. A roll-to-roll compatible doctor blade coating technology is utilized to prepare silica colloidal crystal-polymer composites. The silica microspheres can then be selectively removed to create flexible self-standing macroporous polymer films with crystalline arrays of pores. The void sizes are controlled by tuning the duration of a reactive ion etching process prior to the removal of the templating silica microspheres. After surface modification, superhydrophobic surface can be achieved. This study further demonstrates that the as-prepared transparent porous films with 200 nm of pores exhibit diffraction ofmore » ultraviolet lights originated from the Bragg's diffractive of light from the three-dimensional highly ordered air cavities.« less
NASA Astrophysics Data System (ADS)
Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen
2017-08-01
The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH2-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH2-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization temperature and short polymerization time). Taken together, we have developed a rather promising strategy method for fabrication of multifunctional MSNs-NH2-poly(IA-co-PEGMA) with great potential for biomedical applications.
Peptide surface modification of P(HEMA-co-MMA)-b-PIB-b-P(HEMA-co-MMA) block copolymers.
Ojha, Umaprasana; Feng, Dingsong; Chandekar, Amol; Whitten, James E; Faust, Rudolf
2009-06-02
Peptide surface modification of poly[(methyl methacrylate-co-hydroxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-hydroxyethyl methacrylate)] P(MMA-co-HEMA)-b-PIB-b-P(MMA-co-HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished using an efficient synthetic procedure. The triblock copolymers were reacted with 4-fluorobenzenesulfonyl chloride (fosyl chloride) in pyridine to obtain the activated polymers [poly{(methyl methacrylate-co-fosyloxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-fosyloxyethyl methacrylate)}] P(MMA-co-FEMA)-b-PIB-b-P(MMA-co-FEMA), with an activating efficiency of 80-90%. The resulting polymers were soluble in chloroform, and their solutions were used to coat thin uniform films with a predetermined thickness on smooth steel surfaces. The presence of reactive activating groups on the film surface was confirmed by X-ray photoelectron spectroscopy (XPS), dye labeling, and confocal laser scanning microscopic studies. Activation of the triblock copolymer films was also achieved under heterogeneous conditions in polar (acetonitrile) and nonpolar (hexanes) media. The extent of activation was controlled by varying the dipping time and polarity of the medium. Peptide attachment was accomplished by immersing the coated steel strips into aqueous buffer solution of Gly-Gly or GYIGSR. XPS and solubility studies revealed successful attachment of peptides to the polymer surface. Virtually all remaining activating groups were successfully replaced in the subsequent step by a treatment with Tris(hydroxymethyl)amino methane in a buffered methanol/water mixture.
Surface modification of food contact materials for processing and packaging applications
NASA Astrophysics Data System (ADS)
Barish, Jeffrey A.
This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further work was performed to test the stability of non-fouling material after extended exposure to an alkali detergent or acid sanitizer formulated for clean-in-place procedures in dairy processing facilities. Additionally, the anti-corrosive property of the surface coating was tested on carbon steel against chlorine ions, a common corrosive agent found in the food industry. Accelerated corrosion and long-term chemical exposure studies were conducted to measure the coating stability against the harsh corrosive agents.
Improvement of PET surface hydrophilicity and roughness through blending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolahchi, Ahmad Rezaei; Ajji, Abdellah; Carreau, Pierre J.
Controlling the adhesion of the polymer surface is a key issue in surface science, since polymers have been a commonly used material for many years. The surface modification in this study includes two different aspects. One is to enhance the hydrophilicity and the other is to create the roughness on the PET film surface. In this study we developed a novel and simple approach to modify polyethylene terephthalate (PET) film surface through polymer blending in twin-screw extruder. One example described in the study uses polyethylene glycol (PEG) in polyethylene terephthalate (PET) host to modify a PET film surface. Low contentmore » of polystyrene (PS) as a third component was used in the system to increase the rate of migration of PEG to the surface of the film. Surface enrichment of PEG was observed at the polymer/air interface of the polymer film containing PET-PEG-PS whereas for the PET-PEG binary blend more PEG was distributed within the bulk of the sample. Furthermore, a novel method to create roughness at the PET film surface was proposed. In order to roughen the surface of PET film, a small amount of PKHH phenoxy resin to change PS/PET interfacial tension was used. The compatibility effect of PKHH causes the formation of smaller PS droplets, which were able to migrate more easily through PET matrix. Consequently, resulting in a locally elevated concentration of PS near the surface of the film. The local concentration of PS eventually reached a level where a co-continuous morphology occurred, resulting in theinstabilities on the surface of the film.« less
Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang
2018-05-08
The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.
Shivapooja, Phanindhar; Yu, Qian; Orihuela, Beatriz; Mays, Robin; Rittschof, Daniel; Genzer, Jan; López, Gabriel P
2015-11-25
We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.
An overview of biofunctionalization of metals in Japan
Hanawa, Takao
2009-01-01
Surface modification is an important and predominant technique for obtaining biofunction and biocompatibility in metals for biomedical use. The surface modification technique is a process that changes the surface composition, structure and morphology of a material, leaving the bulk mechanical properties intact. A tremendous number of surface modification techniques using dry and wet processes to improve the hard tissue compatibility of titanium have been developed. Some are now commercially available. Most of these processes have been developed by Japanese institutions since the 1990s. A second approach is the immobilization of biofunctional molecules to the metal surface to control the adsorption of proteins and adhesion of cells, platelets and bacteria. The immobilization of poly(ethylene glycol) to a metal surface with electrodeposition and its effect on biofunction are reviewed. The creation of a metal–polymer composite is another way to obtain metal-based biofunctional materials. The relationship between the shear bonding strength and the chemical structure at the bonding interface of a Ti-segmentated polyurethane composite through a silane coupling agent is explained. PMID:19158014
Gulati, Karan; Ramakrishnan, Saminathan; Aw, Moom Sinn; Atkins, Gerald J; Findlay, David M; Losic, Dusan
2012-01-01
Bacterial infection, extensive inflammation and poor osseointegration have been identified as the major reasons for [early] orthopaedic implant failures based on titanium. Creating implants with drug-eluting properties to locally deliver drugs is an appealing way to address some of these problems. To improve properties of titanium for orthopaedic applications, this study explored the modification of titanium surfaces with titaniananotube (TNT) arrays, and approach that combines drug delivery into bone and potentially improved bone integration. A titania layer with an array of nanotube structures (∼120 nm in diameter and 50 μm in length) was synthesized on titanium surfaces by electrochemical anodization and loaded with the water-insoluble anti-inflammatory drug indomethacin. A simple dip-coating process of polymer modification formed thin biocompatible polymer films over the drug-loaded TNTs to create TNTs with predictable drug release characteristics. Two biodegradable and antibacterial polymers, chitosan and poly(lactic-co-glycolic acid), were tested for their ability to extend the drug release time of TNTs and produce favourable bone cell adhesion properties. Dependent on polymer thickness, a significant improvement in the drug release characteristics was demonstrated, with reduced burst release (from 77% to >20%) and extended overall release from 4 days to more than 30 days. Excellent osteoblast adhesion and cell proliferation on polymer-coated TNTs compared with uncoated TNTs were also observed. These results suggest that polymer-modified implants with a TNT layer are capable of delivering a drug to a bone site over an extended period and with predictable kinetics. In addition, favourable bone cell adhesion suggests that such an implant would have good biocompatibility. The described approach is broadly applicable to a wide range of drugs and implants currently used in orthopaedic practice. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Siduo; Teng, Chao; Cai, Sheng; Jiang, Biwang; Wang, Yong; Meng, Hong; Tao, Huchun
2017-11-01
A novel triphenylphosphine-based porous polymer (TPDB) with a high Brunauer-Emmett-Teller (BET) surface area was synthesized through Friedel-Crafts alkylation of triphenylphosphine and α-dibromo- p-xylene. Then, the functional hydroxyl groups were successfully grafted onto the polymer framework by post modification of TPDB with 3-bromo-1-propanol (BP) and triethanolamine (TEA). The resulting sample TPDB-BP-TEA was characterized by various techniques such as FT-IR, TG, SEM, EDS mapping, ICP-MS, and N2 adsorption-desorption. This new polymer was tested as the catalyst in the solvent-free cycloaddition reaction of CO2 with epoxides, which exhibited excellent performance, with high yield, selectivity, and stable recyclability for several catalytic cycles. The comparison experiment results demonstrate that the bromide ions and hydroxyl groups, as well as high surface area, are key factors in improving the catalytic activity of this new catalyst.
Miksa, Beata J; Sochacki, Marek; Sroka-Bartnicka, Anna; Uznański, Paweł; Nosal, Andrzej; Potrzebowski, Marek J
2013-04-15
Synthetic polymers of molecular masses up to a few kDa can be analyzed without the use of any matrix by direct laser desorption/ionization mass spectrometry (LDI-MS). In this technique, the surface of the sample plate plays a crucial role, and many attempts have been made to understand the influence of the surface on the ease of desorption. Since this technique requires no tedious sample pretreatment, it is a promising method for the rapid characterization of various synthetic polymers. Parylene (poly(p-xylylenes), PPX) was tested as a surface support for studying the molecular masses of biocompatible polymers: poly(ethylene glycol) (PEG), poly(L-lactide) (PLLA), and poly(methyl methacrylate) (PMMA). The average molecular masses of the polymers were: PEG (600.0 Da and 3.5 kDa), PMMA (2.0 kDa), and PLLA (2.8 kDa). LDI mass spectra of polymers deposited on parylene were enhanced by a factor of two over those obtained directly from the gold target plate. Modification of the surface of the target plate by the addition of a PPX layer extended the functionality of LDI-TOF MS, especially for the analysis of low-mass compounds. The LDI analysis using the PPX-coated target plate provided details of polymers including: end-group, composition, monomer unit, and molecular mass distribution. The average molecular weights of four tested polymers on the gold target plate and the PPX support were unchanged, indicating that sample degradation was not occurring despite the high energy of the laser beam. The LDI investigations showed that the PPX support boosted ion yields by a factor of two compared with the gold target plate. Copyright © 2013 John Wiley & Sons, Ltd.
Biocompatibility of modified ultra-high-molecular-weight polyethylene
NASA Astrophysics Data System (ADS)
Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.
2016-09-01
Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.
Modification of Ti6Al4V surface by diazonium compounds
NASA Astrophysics Data System (ADS)
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-01
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid.
Space environment effects on polymers in low earth orbit
NASA Astrophysics Data System (ADS)
Grossman, E.; Gouzman, I.
2003-08-01
Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment.
Nano-patterned SU-8 surface using nanosphere-lithography for enhanced neuronal cell growth
NASA Astrophysics Data System (ADS)
Kim, Eunhee; Yoo, Seung-Jun; Kim, Eunjung; Kwon, Tae-Hwan; Zhang, Li; Moon, Cheil; Choi, Hongsoo
2016-04-01
Mimicking the nanoscale surface texture of the extracellular matrix can affect the regulation of cellular behavior, including adhesion, differentiation, and neurite outgrowth. In this study, SU-8-based polymer surfaces with well-ordered nanowell arrays were fabricated using nanosphere lithography with polystyrene nanoparticles. We show that the SU-8 surface with nanowells resulted in similar neuronal development of rat pheochromocytoma (PC12) cells compared with an unpatterned poly-L-lysine (PLL)-coated SU-8 surface. Additionally, even after soaking the substrate in cell culture medium for two weeks, cells on the nanowell SU-8 surface showed long-term neurite outgrowth compared to cells on the PLL-coated SU-8 surface. The topographical surface modification of the nanowell array demonstrates potential as a replacement for cell adhesive material coatings such as PLL, for applications requiring long-term use of polymer-based implantable devices.
Modification of polycarbonate surface in oxidizing plasma
NASA Astrophysics Data System (ADS)
Ovtsyn, A. A.; Smirnov, S. A.; Shikova, T. G.; Kholodkov, I. V.
2017-11-01
The properties of the surface of the film polycarbonate Lexan 8010 were experimentally studied after treatment in a DC discharge plasma in oxygen and air at pressures of 50-300 Pa and a discharge current of 80 mA. The contact angles of wetting and surface energies are measured. The topography of the surface was investigated by atomic force microscopy. The chemical composition of the surface was determined from the FT-IR spectroscopy data in the variant of total internal reflection, as well as X-ray photoelectron spectroscopy. Treatment in the oxidizing plasma leads to a change in morphology (average roughness increases), an increase in the surface energy, and the concentration of oxygen-containing groups (hydroxyl groups, carbonyl groups in ketones or aldehydes and in oxyketones) on the surface of the polymer. Possible reasons for the difference in surface properties of polymer under the action of oxygen and air plasma on it are discussed.
Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong
2015-08-07
Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.
Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid.
Ma, Fengcang; Chen, Sai; Liu, Ping; Geng, Fang; Li, Wei; Liu, Xinkuan; He, Daihua; Pan, Deng
2016-05-01
Poly-L-lactide (PLLA) is a biodegradable polymer and used widely. Incorporation of beta tricalcium phosphate (β-TCP) into PLLA can enhance its osteoinductive properties. But the interfacial layer between β-TCP particles with PLLA matrix is easy to be destroyed due to inferior interfacial compatibility of the organic/inorganic material. In this work, a method of β-TCP surface modification with stearic acid was investigated to improve the β-TCP/PLLA biomaterial. The effects of surface modification on the β-TCP were investigated by FTIR, XPS, TGA and CA. It was found that the stearic acid reacted with β-TCP and oxhydryl was formed during the surface modification. Hydrophilicity of untreated or modified β-TCP/PLLA composite was increased by the addition of 10 wt.% β-TCP, but it decreased as the addition amount increased from 10 wt.% to 20 wt.%. Two models were suggested to describe the effect of β-TCP concentration on CA of the composites. Mechanical properties of β-TCP/PLLA composites were tested by bending and tensile tests. Fractures of the composites after mechanical test were observed by SEM. It was found that surface modification with stearic acid improved bending and tensile strengths of the β-TCP/PLLA composites obviously. The SEM results indicated that surface modification decreased the probability of interface debonding between fillers and matrix under load. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Baojian; Ye, WeiWei; Zhang, Yu; Shi, JingYu; Chan, ChunYu; Yao, XiaoQiang; Yang, Mo
2014-03-15
This paper presents a microfluidic planar patch clamp system based on a hydrophilic polymer poly(ethylene glycol) diacrylate (PEGDA) for whole cell current recording. The whole chip is fabricated by UV-assisted molding method for both microfluidic channel structure and planar electrode partition. This hydrophilic patch clamp chip has demonstrated a relatively high gigaseal success rate of 44% without surface modification compared with PDMS based patch clamp devices. This chip also shows a capability of rapid intracellular and extracellular solution exchange with high stability of gigaseals. The capillary flow kinetic experiments demonstrate that the flow rates of PEGDA microfluidic channels are around two orders of magnitude greater than those for PDMS-glass channels with the same channel dimensions. This hydrophilic polymer based patch clamp chips have significant advantages over current PDMS elastomer based systems such as no need for surface modification, much higher success rate of cell gigaseals and rapid solution exchange with stable cell gigaseals. Our results indicate the potential of these devices to serve as useful tools for pharmaceutical screening and biosensing tasks. © 2013 Elsevier B.V. All rights reserved.
Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers.
Venkatesan, Swaminathan; Ngo, Evan; Khatiwada, Devendra; Zhang, Cheng; Qiao, Qiquan
2015-07-29
The role of electron selective interfaces on the performance and lifetime of polymer solar cells were compared and analyzed. Bilayer interfaces consisting of metal oxide films with cationic polymer modification namely poly ethylenimine ethoxylated (PEIE) were found to enhance device lifetime compared to bare metal oxide films when used as an electron selective cathode interface. Devices utilizing surface-modified metal oxide layers showed enhanced lifetimes, retaining up to 85% of their original efficiency when stored in ambient atmosphere for 180 days without any encapsulation. The work function and surface potential of zinc oxide (ZnO) and ZnO/PEIE interlayers were evaluated using Kelvin probe and Kelvin probe force microscopy (KPFM) respectively. Kelvin probe measurements showed a smaller reduction in work function of ZnO/PEIE films compared to bare ZnO films when aged in atmospheric conditions. KPFM measurements showed that the surface potential of the ZnO surface drastically reduces when stored in ambient air for 7 days because of surface oxidation. Surface oxidation of the interface led to a substantial decrease in the performance in aged devices. The enhancement in the lifetime of devices with a bilayer interface was correlated to the suppressed surface oxidation of the metal oxide layers. The PEIE passivated surface retained a lower Fermi level when aged, which led to lower trap-assisted recombination at the polymer-cathode interface. Further photocharge extraction by linearly increasing voltage (Photo-CELIV) measurements were performed on fresh and aged samples to evaluate the field required to extract maximum charges. Fresh devices with a bare ZnO cathode interlayer required a lower field than devices with ZnO/PEIE cathode interface. However, aged devices with ZnO required a much higher field to extract charges while aged devices with ZnO/PEIE showed a minor increase compared to the fresh devices. Results indicate that surface modification can act as a suitable passivation layer to suppress oxidation in metal oxide thin films for enhanced lifetime in inverted organic solar cells.
NASA Astrophysics Data System (ADS)
Chen, Hsien-Yeh
Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended storage time prior to bonding, and (iii) well-defined surface functionalities for subsequent surface modifications. Finally, we have also prepared surface microstructures and surface patterns using reactive coatings via photopatterning, projection lithography, supramolecular nanostamping (SuNS), and vapor-assisted micropatterning in replica structures (VAMPIR). These patterning techniques can be complimentarily used and provide access to precisely confined microenvironments on flat and curved geometries. Reactive coatings provide a technology platform that creates active, long-term control and may lead to improved mimicry of biological systems for effective bio-functional modifications.
Ultrathin Polymer Films, Patterned Arrays, and Microwells
NASA Astrophysics Data System (ADS)
Yan, Mingdi
2002-05-01
The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.
Silica nanoparticles carrying boron-containing polymer brushes
NASA Astrophysics Data System (ADS)
Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya
2014-05-01
A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.
Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells
NASA Astrophysics Data System (ADS)
Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.
High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.
Plasma immersion ion implantation modification of surface properties of polymer material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husein, I.F.; Zhou, Y.; Qin, S.
1997-12-01
The use of plasma immersion ion implantation (PIII) as a novel method for the treatment of polymer surfaces is investigated. The effect of PIII treatment on the coefficient of friction, contact angle modification, and surface energy of silicone and EPDM (ethylene-propylene-diene monomer) rubber are investigated as a function of pulse voltage, treatment time, and gas species. Low energy (0--8 keV) and high dose ({approximately}10{sup 17}--10{sup 18} ions/cm{sup 2}) implantation of N{sub 2}, Ar, and CF{sub 4} is performed using an inductively coupled plasma source (ICP) at low pressure (0.2 mTorr). PIII treatment reduces the coefficient of friction ({micro}) of siliconemore » rubber from {mu} = 0.464 to the range {mu} = 0.176--0.274, and {mu} of EPDM rubber decreases from 0.9 to the range {mu} = 0.27--0.416 depending on processing conditions. The contact angle of water and diiodomethylene decreases after implantation and increases at higher doses for both silicone and EPDM rubber.« less
AFM-based micro/nanoscale lithography of poly(dimethylsiloxane): stick-slip on a softpolymer
NASA Astrophysics Data System (ADS)
Watson, Jolanta A.; Myhra, Sverre; Brown, Christopher L.; Watson, Gregory S.
2005-02-01
Silicone rubbers have steadily gained importance in industry since their introduction in the 1960"s. Poly(dimethylsiloxane) (PDMS) is a relatively soft and optically clear, two-part elastomer with interesting and, more importantly, useful physical and electrical properties. Some of its common applications include protective coatings (e.g., against moisture, environmental attack, mechanical and thermal shock and vibrations), and encapsulation (e.g., amplifiers, inductive coils, connectors and circuit boards). The polymer has attracted recent interest for applications in soft lithography. The polymer is now routinely used as a patterned micro-stamp for chemical modification of surfaces, in particular Au substrates. Prominent stick-slip effects, surface relaxation and elastic recovery were found to be associated with micro/nano manipulation of the polymer by an AFM-based contact mode methodology. Those effects provide the means to explore in detail the meso-scale tip-to-surface interactions between a tip and a soft surface. The dependence of scan speed, loading force, attack angle and number of scan lines have been investigated.
Thermal oxidative degradation of ethylene tetrafluoroethylene copolymer systems
NASA Astrophysics Data System (ADS)
Elders, Jonathan Patrick
Thermo-oxidative degradation of ethylene tetrafluoroethylene (ETFE) was investigated to determine how modifications for use in an electrical wire system affected its thermal stability. Modifications included electron irradiation and subsequent cross-linking during manufacture and contact with a metal surface. Samples with irradiation histories between 0 and 48 MRads were investigated. Degradation of ETFE was enhanced by contact with a metal "conductor" surface: silver - coated copper. Polymer degradation was analyzed by weight loss kinetics (thermogravimetric analysis (TGA)), changes in polymer morphology (differential scanning calorimetry (DSC)), optical microscopy, attenuated total reflectance (ATR) infrared spectroscopy, and gas chromatography - mass spectroscopy (GC/MS). Conductor aging (copper permeation through silver with subsequent oxidation) was investigated using scanning Auger Electron Spectroscopy (AES). Conductor aging is enhanced in the presence of the polymer surface. Interactions between conductor and polymer were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The rate of polymer degradation from 220°C to 280°C was independent of time and extent of degradation, and rate was proportional to irradiation dose. The activation energy for degradation of unirradiated ETFE was 227 kJ/mol and decreased from 150 to 138 kJ/mol for ETFE irradiated to doses between 6 and 48 MRads. Rates of degradation at 300°C to 320°C were dependent on the extent of degradation. Rates of degradation at temperatures between 230°C and 310°C were an order of magnitude larger in the presence of a conductor than in its absence, and activation energies for degradation in the presence of conductor were reduced to 120 kJ/mol. Degradation was modeled as the combination of bulk polymer degradation and catalytic degradation at the polymer-metal interface. ETFE aged at 250°C in the presence or absence of a conductor exhibited a double melting endotherm. ATR spectra of aged ETFE indicated polymer oxidation. Based on AES experiments, copper permeation during aging in the presence or absence of ETFE was consistent with Fickian diffusion. The coefficient for copper diffusion through silver was approximately 10 -15 cm2/second, and catalytic ETFE degradation was proportional to conductor aging. The copper oxidized on the surface to yield a material with a stoichiometric composition of Cu3O 2.
Zhang, Hongbin; Bian, Chao; Jackson, John K; Khademolhosseini, Farzad; Burt, Helen M; Chiao, Mu
2014-06-25
A durable hydrophilic and protein-resistant surface of polydimethylsiloxane (PDMS) based devices is desirable in many biomedical applications such as implantable and microfluidic devices. This paper describes a stable antifouling hydrogel coating on PDMS surfaces. The coating method combines chemical modification and surface microstructure fabrication of PDMS substrates. Three-(trimethoxysilyl)propyl methacrylates containing C═C groups were used to modify PDMS surfaces with micropillar array structures fabricated by a replica molding method. The micropillar structures increase the surface area of PDMS surfaces, which facilitates secure bonding with a hydrogel coating compared to flat PMDS surfaces. The adhesion properties of the hydrogel coating on PDMS substrates were characterized using bending, stretching and water immersion tests. Long-term hydrophilic stability (maintaining a contact angle of 55° for a month) and a low protein adsorption property (35 ng/cm(2) of adsorbed BSA-FITC) of the hydrogel coated PDMS were demonstrated. This coating method is suitable for PDMS modification with most crosslinkable polymers containing C═C groups, which can be useful for improving the anti-biofouling performance of PDMS-based biomedical microdevices.
NASA Astrophysics Data System (ADS)
Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming
2016-11-01
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes--including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH--in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media.
Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming
2016-01-01
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes—including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH—in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media. PMID:27834380
Polymer membranes as separators for supercapacitors
NASA Astrophysics Data System (ADS)
Szubzda, Bronisław; Szmaja, Aleksandra; Ozimek, Mariusz; Mazurkiewicz, Sławomir
2014-12-01
The purpose of the studies described was to examine the influence of low-energy plasma modification of polyamide and polypropylene polymer nonwoven fabrics on the usable properties of supercapacitors when using these fabrics as the separator material. To achieve this goal the following investigations were carried out: testing the time required for electrolyte saturation of separators and the conductivity of the electrolyte contained in the separator, as well as electrochemical examinations of supercapacitor models in which the modified fabric separators were used. The tests conducted fully confirm the usability of this modification for cleaning the surface and improving the wettability of separators by the electrolyte, which in turn results in a significant decrease of the internal resistance of the supercapacitor, thus increasing the usable power of the device.
Jazwiecka-Koscielniak, Ewa; Kozakiewicz, Marcin
2014-10-01
Orbital reconstruction makes higher demands on symmetry and axial precision than other parts of the skull, because the position of the eye globe determines proper vision. The aim of this study is to evaluate titanium surface marking of polymers (UHMW-PE and PA6) to check implants position in CT examination and clinical application of such modified individual implant. One hundred and twenty-four polymer blocks were prepared. New method of ultrasounds welding to connect the titanium markers to the polymer surface was developed and tested. Titanium marked polymer blocks were examined by CT to evaluate the quality of the cover. Then, two modified UHMW-PE individual implants were applied clinically and implant position was checked by CT. The biggest titanium cover was in PA6 [25 ± 18% of processed surface] and for UHMW-PE [19 ± 12%] without significance [p = 0.14]. Both covers were visible in CT. Clinical application revealed proper reconstruction, uneventful post-operational outcome and well visible surface of the implants in CT. The conducted tests make it possible to determine the suitability of ultrasonic technology for the deposition of titanium markers in polymer. The clinical use of modified individual implants allows to confirm the correct position of the implants because they are accurate visible in CT. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Jiang, Liuwei; Marcus, R Kenneth
2016-02-01
Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.
Influence of substrate and film thickness on polymer LIPSS formation
NASA Astrophysics Data System (ADS)
Cui, Jing; Nogales, Aurora; Ezquerra, Tiberio A.; Rebollar, Esther
2017-02-01
Here we focus on the influence of both, substrate and film thickness on polymer Laser Induced Periodic Surface Structures (LIPSS) formation in polymer films. For this aim a morphological description of ripples structures generated on spin-coated polystyrene (PS) films by a linearly polarized laser beam with a wavelength of 266 nm is presented. The influence of different parameters on the quality and characteristics of the formed laser-induced periodic surface structures (LIPSS) was investigated. We found that well-ordered LIPSS are formed either on PS films thinner than 200 nm or thicker than 400 nm supported on silicon substrates as well as on thicker free standing films. However less-ordered ripples are formed on silicon supported films with intermediate thicknesses in the range of 200-380 nm. The effect of the thermal and optical properties of the substrate on the quality of LIPSS was analyzed. Differences observed in the fluence and number of pulses needed for the onset of surface morphological modifications is explained considering two main effects which are: (1) The temperature increase on polymer surface induced by the action of cumulative laser irradiation and (2) The differences in thermal conductivity between the polymer and the substrate which strongly affect the heat dissipation generated by irradiation.
Preparation of a bonelike apatite-polymer fiber composite using a simple biomimetic process.
Yokoyama, Yoshiro; Oyane, Ayako; Ito, Atsuo
2008-08-01
A bonelike apatite-polymer fiber composite may be useful as an implant material to replace bone, the enthesis of a tendon, and the joint part of a ligament. We treated an ethylene-vinyl alcohol copolymer (EVOH) plate and knitted EVOH fibers with an oxygen plasma to produce oxygen-containing functional groups on their surfaces. The plasma-treated samples were alternately dipped in alcoholic calcium and phosphate ion solutions three times to deposit apatite precursors onto their surfaces. The surface-modified samples formed a dense and uniform bonelike surface apatite layer after immersion for 24 h in a simulated body fluid with ion concentrations approximately equal to those of human blood plasma. The adhesive strength between the apatite layer and the sample's surface increased with increasing power density of the oxygen plasma. The apatite-EVOH fiber composite obtained by our process has similarities to natural bone in that apatite crystals are deposited on organic polymer fibers. The resulting composite would possess osteoconductivity due to the apatite phase. With proper polymer selection and optimized synthesis techniques, a composite could be made that would have bonelike mechanical properties. Hence, the present surface modification and coating process would be a promising route to obtain new implant materials with bonelike mechanical properties and osteoconductivity. (c) 2007 Wiley Periodicals, Inc.
Nanotribology of charged polymer brushes
NASA Astrophysics Data System (ADS)
Klein, Jacob
Polymers at surfaces, whose modern understanding may be traced back to early work by Sam Edwards1, have become a paradigm for modification of surface properties, both as steric stabilizers and as remarkable boundary lubricants2. Charged polymer brushes are of particular interest, with both technological implications and especially biological relevance where most macromolecules are charged. In the context of biolubrication, relevant in areas from dry eye syndrome to osteoarthritis, charged polymer surface phases and their complexes with other macromolecules may play a central role. The hydration lubrication paradigm, where tenaciously-held yet fluid hydration shells surrounding ions or zwitterions serve as highly-efficient friction-reducing elements, has been invoked to understand the excellent lubrication provided both by ionized3 and by zwitterionic4 brushes. In this talk we describe recent advances in our understanding of the nanotribology of such charged brush systems. We consider interactions between charged end-grafted polymers, and how one may disentangle the steric from the electrostatic surface forces5. We examine the limits of lubrication by ionized brushes, both synthetic and of biological origins, and how highly-hydrated zwitterionic chains may provide extremely effective boundary lubrication6. Finally we describe how the lubrication of articular cartilage in the major joints, a tribosystem presenting some of the greatest challenges and opportunities, may be understood in terms of a supramolecular synergy between charged surface-attached polymers and zwitterionic groups7. Work supported by European Research Council (HydrationLube), Israel Science Foundation (ISF), Petroleum Research Fund of the American Chemical Society, ISF-NSF China Joint Program.
Gargoubi, Sondes; Tolouei, Ranna; Chevallier, Pascale; Levesque, Lucie; Ladhari, Neji; Boudokhane, Chedly; Mantovani, Diego
2016-08-20
Recently, antimicrobial and decontaminating textiles, such as cotton a natural carbohydrate polymer, are generating more attention. Plant materials used for natural dyes are expected to impart biofunctional properties and high added valued functional textiles. In the current study, surface modification of cotton to maximize the dye amount on the surface has been investigated. Physical modification using nitrogen-hydrogen plasma, chemical modification using chitosan and chemical modification using dopamine as biopolymers imparting amino groups were explored. Furthermore, dye exhaustion of curcumin, as a natural functional dye has been studied. Dye stability tests were also performed after fabric washing using hospital washing protocol to predict the durability of the functionalizations. The results demonstrated that cotton surfaces treated with dopamine exhibit a high level of dye uptake (78%) and a good washing fastness. The use of non-toxic and natural additives during cotton finishing process could give the opportunity of cradle to cradle design for antimicrobial textile industries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of degumming time on silkworm silk fibre for biodegradable polymer composites
NASA Astrophysics Data System (ADS)
Ho, Mei-po; Wang, Hao; Lau, Kin-tak
2012-02-01
Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.
Improving biocompatibility by surface modification techniques on implantable bioelectronics.
Lin, Peter; Lin, Chii-Wann; Mansour, Raafat; Gu, Frank
2013-09-15
For implantable bioelectronic devices, the interface between the device and the biological environment requires significant attention as it dictates the device performance in vivo. Non-specific protein adsorption onto the device surface is the initial stage of many degradation mechanisms that will ultimately compromise the functionality of the device. In order to preserve the functionality of any implanted bioelectronics overtime, protein adsorption must be controlled. This review paper outlines two major approaches to minimize protein adsorption onto the surface of implantable electronics. The first approach is surface coating, which minimizes close proximity interactions between proteins and device surfaces by immobilizing electrically neutral hydrophilic polymers as surface coating. These coatings reduce protein fouling by steric repulsion and formation of a hydration layer which acts as both a physical and energetic barrier that minimize protein adsorption onto the device. Relevant performances of various conventional hydrophilic coatings are discussed. The second approach is surface patterning using arrays of hydrophobic nanostructures through photolithography techniques. By establishing a large slip length via super hydrophobic surfaces, the amount of proteins adsorbed to the surface of the device can be reduced. The last section discusses emerging surface coating techniques utilizing zwitterionic polymers where ultralow-biofouling surfaces have been demonstrated. These surface modification techniques may significantly improve the long-term functionality of implantable bioelectronics, thus allowing researchers to overcome challenges to diagnose and treat chronic neurological and cardiovascular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhu, Liping; Yang, Yuan; Farquhar, Kirsten; Wang, Jingjing; Tian, Chixia; Ranville, James; Boyes, Stephen G
2016-02-01
Despite recent advances in the understanding of fundamental cancer biology, cancer remains the second most common cause of death in the United States. One of the primary factors indicative of high cancer morbidity and mortality and aggressive cancer phenotypes is tumors with a low extracellular pH (pHe). Thus, the ability to measure tumor pHe in vivo using noninvasive and accurate techniques that also provide high spatiotemporal resolution has become increasingly important and is of great interest to researchers and clinicians. In an effort to develop a pH-responsive magnetic resonance imaging (MRI) contrast agent (CA) that has the potential to be used to measure tumor pHe, well-defined pH-responsive polymers, synthesized via reversible addition-fragmentation chain transfer polymerization, were attached to the surface of gadolinium-based nanoparticles (GdNPs) via a "grafting to" method after reduction of the thiocarbonylthio end groups. The successful modification of the GdNPs was verified by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and dynamic light scattering. The performance of the pH-responsive polymer modified GdNPs was then evaluated for potential use as smart MRI CAs via monitoring the relaxivity changes with changing environmental pH. The results suggested that the pH-responsive polymers can be used to effectively modify the GdNPs surface to prepare a smart contrast agent for MRI.
Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates.
Chen, Ying-Chu; Huang, Zhe-Sheng; Yang, Hongta
2015-11-18
The cicada has transparent wings with remarkable self-cleaning properties and high transmittance over the whole visible spectral range, which is derived from periodic conical structures covering the wing surface. Here we report a scalable self-assembly technique for fabricating multifunctional optical coatings that mimic cicada-wing structures. Spin-coated two-dimensional non-close-packed colloidal crystals are utilized as etching masks to pattern subwavelength-structured cone arrays directly on polymer substrates. The resulting gratings exhibit broadband antireflection performance and superhydrophobic properties after surface modification. The dependence of the cone shape and size on the antireflective and self-cleaning properties has also been investigated in this study.
Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings.
Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J; Rodriguez-Emmenegger, Cesar
2017-06-12
Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian
Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA < GO-PAM < GO-PEG < GO-pSB. Thus, zwitterionic polymer-modified GO is superior to other GO derivatives with different charges in enhancing the specificity of PCR. GO derivatives are also successfully used to enhance the specificity of PCR for the amplification of human mitochondrial DNA using blood genomic DNA as template. Molecular dynamics simulations and molecular docking are performed to elucidate the interaction between the polymers and Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR.
Chemical copatterning strategies using azlactone-based block copolymers
Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.; ...
2017-09-01
Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less
Chemical copatterning strategies using azlactone-based block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.
Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less
Rebollar, Esther; Pérez, Susana; Hernández, Margarita; Domingo, Concepción; Martín, Margarita; Ezquerra, Tiberio A; García-Ruiz, Josefa P; Castillejo, Marta
2014-09-07
This work reports on the formation of different types of structures on the surface of polymer films upon UV laser irradiation. Poly(ethylene terephthalate) was irradiated with nanosecond UV pulses at 193 and 266 nm. The polarization of the laser beam and the irradiation angle of incidence were varied, giving rise to laser induced surface structures with different shapes and periodicities. The irradiated surfaces were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via micro-Raman and fluorescence spectroscopies. Contact angle measurements were performed with different liquids, and the results evaluated in terms of surface free energy components. Finally, in order to test the influence of surface properties for a potential application, the modified surfaces were used for mesenchymal stem cell culture assays and the effect of nanostructure and surface chemistry on cell adhesion was evaluated.
Polymer Layered Silicate Nanocomposites: A Review
Mittal, Vikas
2009-01-01
This review aims to present recent advances in the synthesis and structure characterization as well as the properties of polymer layered silicate nanocomposites. The advent of polymer layered silicate nanocomposites has revolutionized research into polymer composite materials. Nanocomposites are organic-inorganic hybrid materials in which at least one dimension of the filler is less than 100 nm. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or pre-polymers from solution, in-situ polymerization, melt intercalation etc. The nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modifications, exhibit significant improvement in the composite properties, which include enhanced mechanical strength, gas barrier, thermal stability, flame retardancy etc. Only a small amount of filler is generally required for the enhancement in the properties, which helps the composite materials retain transparency and low density.
Preparation of Mach-Zehnder interferometric photonic biosensors by inkjet printing technology
NASA Astrophysics Data System (ADS)
Strasser, Florian; Melnik, Eva; Muellner, Paul; Jiménez-Meneses, Pilar; Nechvile, Magdalena; Koppitsch, Guenther; Lieberzeit, Peter; Laemmerhofer, Michael; Heer, Rudolf; Hainberger, Rainer
2017-05-01
Inkjet printing is a versatile method to apply surface modification procedures in a spatially controlled, cost-effective and mass-fabrication compatible manner. Utilizing this technology, we investigate two different approaches for functionalizing label-free optical waveguide based biosensors: a) surface modification with amine-based functional polymers (biotin-modified polyethylenimine (PEI-B)) employing active ester chemistry and b) modification with dextran based hydrogel thin films employing photoactive benzophenone crosslinker moieties. Whereas the modification with PEI-B ensures high receptor density at the surface, the hydrogel films can serve both as a voluminous matrix binding matrix and as a semipermeable separation layer between the sensor surface and the sample. We use the two surface modification strategies both individually and in combination for binding studies towards the detection of the protein inflammation biomarker, C-reactive protein (CRP). For the specific detection of CRP, we compare two kinds of capture molecules, namely biotinylated antibodies and biotinylated CRP-specific DNA based aptamers. Both kinds of capture molecules were immobilized on the PEI-B by means of streptavidin-biotin affinity binding. As transducer, we use an integrated four-channel silicon nitride (Si3N4) waveguide based Mach-Zehnder interferometric (MZI) photonic sensing platform operating at a wavelength of 850nm (TM-mode).
NASA Astrophysics Data System (ADS)
Chailly, M.; Charmeau, J.-Y.; Bereaux, Y.; Monasse, B.
2007-04-01
Due to increasing expectations from the market, the aspect of molded parts has to be improved constantly. Some of the defects observed on these parts such as weldlines are related to the filling stage. To limit this, we investigated the influence on weldlines using various surface deposits on the mold surface, mainly PVD and PACVD deposits : Chromium nitride (CrN), Titanium nitride (TiN), Diamond like Carbon (DLC), Chromium and polished steel (PG) on an instrumented plate mold. Injection campaign was led on three polymers which differ in terms of nature (amorphous, semi-crystalline, copolymers). We studied the evolution of the dimensions of weldlines appearing on the plate using the same injection parameters for a given polymer, but with various deposits and thicknesses. Another aspect that had been investigated is the morphology of the weldline through the thickness of the part, depending on polymer nature. Adhesion of polymer at the flow front with the mold surface proved to change. The modification of the initial contact in the filling stage and thus the thermal resistance at the mold implied a change in the process, increasing or reducing the pressure loss in the flow and differential shrinkage in the final part. The induced impact on dimensions of the weldlines allowed to distinguish which surface treatments were able to reduce the defect. A complementary study was led on both polymers in molten state and deposits in terms of wetting using a sessile drop method to confirm the adhesion at the polymer/mold interface. This study proved the influence of the use of surface treatments has clearly an impact on the filling stage of the injection molding process, and it is necessary to get a better knowledge of the interactions between physical adhesion, tribology of polymer/mold contact, and thermal properties of the coatings and their impact on solidification of the polymer.
NASA Astrophysics Data System (ADS)
Zhou, Mingyong; Xiong, Xiang; Jiang, Bingyan; Weng, Can
2018-01-01
Polymer products with micro/nano-structures have excellent mechanical and optical properties, chemical resistance, and other advantages. Injection molding is one of the most potential techniques to fabricate polymer products with micro/nano-structures artificially in large numbers. In this study, a surface approach to fabricate high aspect ratio nanopillars and micro/nano combined structures was presented. Mold insert with micropillar arrays and nanopillars on its surface was prepared by combing anodic aluminum oxide (AAO) template and etched plate. Anti-sticking modification was done on the template to realize a better demolding quality. The influences of mold temperature and polymer material on the final replication quality were investigated. The results showed that the final replication quality of high aspect ratio nanopillars was greatly improved as compared with the unprocessed template. Polymer with low elongation at break was not suitable to fabricate structures with high aspect ratio via injection molding. For polypropylene surface, the experimental results of static contact angles were almost consistent with Cassie-Baxter equation. When the mold temperature reached 178 °C, hair-like polycarbonate nanopillars were observed, resulting in an excellent hydrophobic characteristic.
Liu, Caihong; Lee, Jongho; Ma, Jun; Elimelech, Menachem
2017-02-21
In this study, we demonstrate a highly antifouling thin-film composite (TFC) membrane by grafting a zwitterionic polymer brush via atom-transfer radical-polymerization (ATRP), a controlled, environmentally benign chemical process. Initiator molecules for polymerization were immobilized on the membrane surface by bioinspired catechol chemistry, leading to the grafting of a dense zwitterionic polymer brush layer. Surface characterization revealed that the modified membrane exhibits reduced surface roughness, enhanced hydrophilicity, and lower surface charge. Chemical force microscopy demonstrated that the modified membrane displayed foulant-membrane interaction forces that were 1 order of magnitude smaller than those of the pristine TFC membrane. The excellent fouling resistance imparted by the zwitterionic brush layer was further demonstrated by significantly reduced adsorption of proteins and bacteria. In addition, forward osmosis fouling experiments with a feed solution containing a mixture of organic foulants (bovine-serum albumin, alginate, and natural organic matter) indicated that the modified membrane exhibited significantly lower water flux decline compared to the pristine TFC membrane. The controlled architecture of the zwitterionic polymer brush via ATRP has the potential for a facile antifouling modification of a wide range of water treatment membranes without compromising intrinsic transport properties.
NASA Astrophysics Data System (ADS)
Zhou, Zhaoli
Cell-surface interaction is crucial in many cellular functions such as movement, growth, differentiation, proliferation and survival. In the present work, we have developed several strategies to design and prepare synthetic polymeric materials with selected cues to control cell attachment. To promote neuronal cell adhesion on the surfaces, biocompatible, non-adhesive PEG-based materials were modified with neurotransmitter acetylcholine functionalities to produce hydrogels with a range of porous structures, swollen states, and mechanical strengths. Mice hippocampal cells cultured on the hydrogels showed differences in number, length of processes and exhibited different survival rates, thereby highlighting the importance of chemical composition and structure in biomaterials. Similar strategies were used to prepare polymer brushes to assess how topographical cues influence neuronal cell behaviors. The brushes were prepared using the "grown from" method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions and further patterned via UV photolithography. Protein absorption tests and hippocampal neuronal cell culture of the brush patterns showed that both protein and neuronal cells can adhere to the patterns and therefore can be guided by the patterns at certain length scales. We also prepared functional polymers to discourage attachment of undesirable cells on the surfaces. For example, we synthesized PEG-perfluorinated alkyl amphiphilic surfactants to modify polystyrene-block-poly(ethylene-ran-butylene)- block-polyisoprene (SEBI or K3) triblock copolymers for marine antifouling/fouling release surface coatings. Initial results showed that the polymer coated surfaces can facilitate removal of Ulva sporelings on the surfaces. In addition, we prepared both bioactive and dual functional biopassive/bioactive antimicrobial coatings based on SEBI polymers. Incubating the polymer coated surfaces with gram-positive bacteria (S. aureus), gram-negative bacteria (E. coli) and marine bacteria (C. marina ) species demonstrated that, unlike biopassive surfaces, the dual functionality polymer coated surfaces can significantly reduce both live and dead cells, without killing the cells in the culture media. The knowledge gained from those studies offers opportunities for further modification and potential applications of those types of polymers in the future.
NASA Astrophysics Data System (ADS)
Purohit, Parag
Surface treatment is very important step in many applications such as fabric finishing, coatings, cosmetics and personal care. Silicone polymers are a class of organic/inorganic materials that show unique properties such as weak intermolecular forces and high flexibility enabling even a very high molecular weight chain to achieve optimal orientation on surfaces. Material properties such as softness, repellency, bounciness and friction can therefore be tailored by using appropriately modified silicone polymers. Despite wide applications, the underlying mechanisms of material modification are unknown and tailoring silicones for applications remains mostly empirical. Thus the objective of this research is to understand the solution and interfacial behavior of functionalized silicone polymers, which govern their performance in material modification. Modified silicones are simultaneously hydrophobic and oleophobic in nature and due to this nearly universal non-compatibility, the studies of these polymers present unusual challenges. Due to this incompatible nature, the functionalized silicone polymers were emulsified into O/W emulsions to study their solution and interfacial properties. The colloidal properties such as electrokinetic and droplet distribution of these emulsions are assumed to play an important role in the observed surface and physical properties of solid substrates (in present study, cellulosic substrates) as well the stability of emulsions itself. To understand the effects of modified silicones on cellulosic substrates a variety of techniques such as frictional analysis, scanning electron microscopy and atomic force microscopy that can probe from macro to nano level were used. It is hypothesized that the size distribution and charge of silicone emulsions as well as the physiochemical conditions such as pH, control silicone conformation which in turn affect the modification of the substrate properties. With bimodal droplet distribution of silicone emulsions, the nano-sized droplets can penetrate deeper into the substrate to provide bounciness, whereas macro-sized droplets can coat the top layer leading to friction reduction. It was observed that at pH 5.5 the silicone treatment resulted in charge reversal of fibers as opposed to treatment at pH 9.5. On a macroscopic scale 20% reduction in frictional coefficient of the fabric was observed after treatment with quaternized (cationically modified) silicones as compared to untreated fibers. It was also observed using AFM that the fibrils treated with quaternized silicones are uniform, well stacked and smoother than the untreated fibers. Spectroscopic analysis of treated fibers using Raman spectroscopy indicated a decrease in fiber stress as a function of modification of silicone polymer and the interaction pH. It is concluded that the protonated amine functional silicone (below pH 7) as well as the quaternized silicone interacts with the negatively charged cellulose fibers primarily through electrostatic interactions. It is proposed that this initial surface coating is a uniform thin film which allows further deposition of polymer from the emulsion. It was observed that at high pH the zetapotential of silicone emulsions decreases drastically and the nano emulsions turn turbid. It is proposed that the observed electrophoretic and nephelometric behavior at high pH is due to flocculation of nanosized droplets to micron size, which eventually leads to droplets coalescing and emulsion destabilization. It is also postulated that the nano emulsion possess a critical dilution concentration (CDC), above which dilution leads to rapid coalescence. This critical dilution phase was further confirmed through polarity parameter and excimer formation studies which show significantly different polymer and surfactant microstructures near the CDC. Hence it is concluded that the observed surface properties of the substrate obtained above the CDC are significantly different than those below the CDC. The results reveal the vital role of physiochemical parameters such as pH, droplet size, and concentration on the emulsion stability as well as the observed physical/chemical properties of the substrates.
Affinity Electrophoresis Using Ligands Attached To Polymers
NASA Technical Reports Server (NTRS)
Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.
1990-01-01
In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.
Modification of Ti6Al4V surface by diazonium compounds.
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-15
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO 2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid. Copyright © 2017 Elsevier B.V. All rights reserved.
Glucose-sensitive QCM-sensors via direct surface RAFT polymerization.
Sugnaux, Caroline; Klok, H-A
2014-08-01
Thin, phenylboronic acid-containing polymer coatings are potentially attractive sensory layers for a range of glucose monitoring systems. This contribution presents the synthesis and properties of glucose-sensitive polymer brushes obtained via surface RAFT polymerization of 3-methacrylamido phenylboronic acid (MAPBA). This synthetic strategy is attractive since it allows the controlled growth of PMAPBA brushes with film thicknesses of up to 20 nm via direct polymerization of MAPBA without the need for additional post-polymerization modification or deprotection steps. QCM-D sensor chips modified with a PMAPBA layer respond with a linear change in the shift of the fundamental resonance frequency over a range of physiologically relevant glucose concentrations and are insensitive toward the presence of fructose, thus validating the potential of these polymer brush films as glucose sensory thin coatings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poly(hydroxy alkanoate)s in Medical Applications
Luef, K. P.; Stelzer, F.; Wiesbrock, F.
2017-01-01
This review summarizes the state-of-the-art knowledge of the usage of poly(hydroxy alkanoate)s in medical and sanitary applications. Depending on the monomers incorporated into the polymers and copolymers, this class of polymers exhibits a broad range of (thermo-)plastic properties, enabling their processing by, e.g., solution casting or melt extrusion. In this review, strategies for the polymer analogous modification of these materials and their surfaces are highlighted and correlated with the potential applications of the corresponding materials and blends. While the commercial availability of purified PHAs is addressed in brief, special focus is put on the (bio-)degradability of these polymers and ways to influence the degradation mechanism and/or the duration of degradation. PMID:28239227
Structural modification in the formation of starch - silver nanocomposites
NASA Astrophysics Data System (ADS)
Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal
2016-05-01
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.
Molino, Paul J; Higgins, Michael J; Innis, Peter C; Kapsa, Robert M I; Wallace, Gordon G
2012-06-05
Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.
Water-Stable Nanoporous Polymer Films with Excellent Proton Conductivity.
Wang, Zhengbang; Liang, Cong; Tang, Haolin; Grosjean, Sylvain; Shahnas, Artak; Lahann, Joerg; Bräse, Stefan; Wöll, Christof
2018-03-01
Achieving high values for proton conductivity in a material critically depends on providing hopping sites arranged in a regular fashion. Record values reported for regular, molecular crystals cannot yet be reached by technologically relevant systems, and the best values measured for polymer membranes suited for integration into devices are almost two orders of magnitude lower. Here, an alternative polymer membrane synthesis strategy based on the chemical modification of surface-mounted, monolithic, crystalline metal-organic framework thin films is demonstrated. Due to chemical crosslinking and subsequent removal of metal ions, these surface-mounted gels (SURGELs) are found to exhibit high proton conductivity (0.1 S cm -1 at 30 °C and 100% RH (relative humidity). These record values are attributed to the highly ordered polymer network structure containing regularly spaced carboxylic acid side groups. These covalently bound organic frameworks outperform conventional, ion-conductive polymers with regard to ion conductivity and water stability. Pronounced water-induced swelling, which causes severe mechanical instabilities in commercial membranes, is not observed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.
2016-05-01
Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.
Microplates with adaptive surfaces.
Akbulut, Meshude; Lakshmi, Dhana; Whitcombe, Michael J; Piletska, Elena V; Chianella, Iva; Güven, Olgun; Piletsky, Sergey A
2011-11-14
Here we present a new and versatile method for the modification of the well surfaces of polystyrene microtiter plates (microplates) with poly(N-phenylethylene diamine methacrylamide), (poly-NPEDMA). The chemical grafting of poly-NPEDMA to the surface of microplates resulted in the formation of thin layers of a polyaniline derivative bearing pendant methacrylamide double bonds. These were used as the attachment point for various functional polymers through photochemical grafting of various, for example, acrylate and methacrylate, polymers with different functionalities. In a model experiment, we have modified poly-NPEDMA-coated microplates with a small library of polymers containing different functional groups using a two-step approach. In the first step, double bonds were activated by UV irradiation in the presence of N,N-diethyldithiocarbamic acid benzyl ester (iniferter). This enabled grafting of the polymer library in the second step by UV irradiation of solutions of the corresponding monomers in the microplate wells. The uniformity of coatings was confirmed spectrophotometrically, by microscopic imaging and by contact angle measurements (CA). The feasibility of the current technology has been shown by the generation of a small library of polymers grafted to the microplate well surfaces and screening of their affinity to small molecules, such as atrazine, a trio of organic dyes, and a model protein, bovine serum albumin (BSA). The stability of the polymers, reproducibility of measurement, ease of preparation, and cost-effectiveness make this approach suitable for applications in high-throughput screening in the area of materials research.
Shang, Barry Z; Wang, Zuowei; Larson, Ronald G
2008-03-13
We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.
Bugno, Jason; Hsu, Hao-Jui; Hong, Seungpyo
2016-01-01
Nanoparticles have shown great promise in the treatment of cancer, with a demonstrated potential in targeted drug delivery. Among a myriad of nanocarriers that have been recently developed, dendrimers have attracted a great deal of scientific interests due to their unique chemical and structural properties that allow for precise engineering of their characteristics. Despite this, the clinical translation of dendrimers has been hindered due to their drawbacks, such as scale-up issues, rapid systemic elimination, inefficient tumor accumulation, and limited drug loading. In order to overcome these limitations, a series of reengineered dendrimers have been recently introduced using various approaches, including: i) modifications of structure and surfaces; ii) integration with linear polymers; and iii) hybridization with other types of nanocarriers. Chemical modifications and surface engineering have tailored dendrimers to improve their pharmacokinetics and tissue permeation. Copolymerization of dendritic polymers with linear polymers has resulted in various amphiphilic copolymers with self-assembly capabilities and improved drug loading efficiencies. Hybridization with other nanocarriers integrates advantageous characteristics of both systems, which includes prolonged plasma circulation times and enhanced tumor targeting. This review provides a comprehensive summary of the newly emerging drug delivery systems that involve reengineering of dendrimers in an effort to precisely control their nano-bio interactions, mitigating their inherent weaknesses. PMID:26453160
NASA Astrophysics Data System (ADS)
Bhowal, Ashim Chandra; Kundu, Sarathi
2018-04-01
PEDOT:PSS is a water soluble conducting polymer consists of positively charged PEDOT and negatively charged PSS. However, this polymer suffers low conductivity problem which restrict its use. In this paper, electrical conductivity of PEDOT:PSS thin films is improved by using charged gold nanoparticles. The nanoparticles used are synthesized using lysozyme protein. The nanoparticles coated with lysozyme protein possess positive zeta potential. In the presence of gold nanoparticles due to electrostatic interaction between positively charged nanoparticles and negatively charged PSS chains, modification takes place in the surface morphology and electrical behaviors of PEDOT:PSS thin films. The changes in the polymer matrix conformations in the presence of nanoparticles are studied by Fourier transformed Infra-red (FTIR) spectroscopy, whereas the surface morphology of prepared thin films before and after interaction with nanoparticles is investigated through atomic force microscopy (AFM). Four probe method is used to measure the variation of electrical conductivity from I-V characteristics curves.
Effect of Phthalic Anhydride Modified Soy Protein on Viscoelastic Properties of Polymer Composites
USDA-ARS?s Scientific Manuscript database
Phthalic anhydride (PA) modified soy protein isolates (SPI), both hydrolyzed and un-hydrolyzed, are investigated as reinforcement fillers in styrene-butadiene (SB) composites. The modification of SPI by PA increases the number of carboxylic acid functional groups on the protein surface and therefor...
Yamamoto, Y; Sefton, M V
1998-01-01
Poly(ethylene glycol) (PEG) was grafted onto poly(acrylamide-co-vinyl amine) (poly(AM-co-VA)) film using tresylated PEG (TPEG) at 37 degrees C in aqueous buffers (pH 7.4) with a view to surface-modifying microencapsulated mammalian cells. Poly(AM-co-VA) film was synthesized by Hofmann degradation of a cross-linked poly(acrylamide) film. Conversion to vinyl amine on the surface of the film was approximately 50%, but bulk conversion was not observed; surface specificity was thought to be the result of cleavage of aminated polymer chains at the surface due to chain scission. Reaction between primary amine and TPEG gave a graft yield of 2 mol% (based on XPS) with respect to available surface amine groups, equivalent to 54 mol% ethylene oxide based on monomer units. Physical adsorption of non-activated polymer was done under identical conditions as a control and the difference in oxygen content was significant compared to TPEG. The type of buffer agent and buffer concentration did not influence graft yields. This graft reaction, which was completed in as little as 2 h was considered to be mild enough to be used for a surface modification of microcapsules containing cells without affecting their viability. Such a surface modification technique may prove to be a useful means of enhancing the biocompatibility of microcapsules (or any tissue engineering construct) even after cell encapsulation or seeding.
NASA Astrophysics Data System (ADS)
Pizarro, Guadalupe del C.; Marambio, Oscar G.; Jeria-Orell, Manuel; Sánchez, Julio; Oyarzún, Diego P.
2018-02-01
The current work presents the synthesis, characterization and preparation of organic-inorganic hybrid polymer films that contain inorganic magnetic nanoparticles (NPs). The block copolymer, prepared by Atom-Transfer Radical Polymerization (ATRP), was used as a nanoreactor for iron oxide NPs. The NPs were embedded in poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) matrix. The following topographical modifications of the surface of the film were specially analyzed: control of pore features and changes in surface roughness. Finally, the NPs functionality inside the polymer matrix and how it may affect the thermal and optical properties of the films were assessed.
NASA Astrophysics Data System (ADS)
Komarov, P.; Markina, A.; Ivanov, V.
2016-06-01
The problems of constructing of a meso-scale model of composites based on polymers and aluminosilicate nanotubes for prediction of the filler's spatial distribution at early stages of material formation have been considered. As a test system for the polymer matrix, the mixture of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as epoxy resin monomers and 4-methylhexahydrophthalic anhydride as curing agent has been used. It is shown that the structure of a mixture of uncured epoxy resin and nanotubes is (mainly) determined by the surface functionalization of nanotubes. The results indicate that only nanotubes with maximum functionalization can preserve a uniform distribution in space.
Structural and chemical aspects of HPMA copolymers as drug carriers.
Ulbrich, Karel; Subr, Vladimír
2010-02-17
Synthetic strategies and chemical and structural aspects of the synthesis of HPMA copolymer conjugates with various drugs and other biologically active molecules are described and discussed in this chapter. The discussion is held from the viewpoint of design and structure of the polymer backbone and biodegradable spacer between a polymer and drug, structure and methods of attachment of the employed drugs to the carrier and structure and methods of conjugation with targeting moieties. Physicochemical properties of the water-soluble polymer-drug conjugates and polymer micelles including mechanisms of drug release are also discussed. Detailed description of biological behavior of the polymer-drug conjugates as well as application of the copolymers for surface modification and targeting of gene delivery vectors are not included, they are presented and discussed in separate chapters of this issue. Copyright 2009 Elsevier B.V. All rights reserved.
Engineering the performance of mixed matrix membranes for gas separations
NASA Astrophysics Data System (ADS)
Shu, Shu
Mixed matrix membranes that comprise domains of organic and inorganic components are investigated in this research. Such materials effectively circumvent the polymeric 'upper bound trade-off curve' and show properties highly attractive for industrial gas separations. Nevertheless, lack of intrinsic compatibility between the organic polymers and inorganic fillers poses the biggest challenge to successful fabrication of mixed matrix membranes. Consequently, control of the nanoscale interface between the sieve and polymer has been the key technical challenge to the implementation of composite membrane materials. The overarching goal of this research was to devise and explore approaches to enhance the performance of mixed matrix membranes by properly tailoring the sieve/polymer interface. In an effort to pursue the aforementioned objective, three approaches were developed and inspected: (i) use of silane coupling agents, (ii) hydrophobizing of sieve surface through alcohol etherification reactions, and (iii) a two-step modification sequence involving the use of a Grignard reagent. A comparison was drawn to evaluate these methodologies and the most effective strategy (Grignard treatment) was selected and further investigated. Successful formulation and characterization of mixed matrix membranes constituting zeolite 4A modified via the Grignard treatment are described in detail. Membranes with impressive improvements in gas separation efficiency and mechanical properties were demonstrated. The basis for the improvements in polymer/sieve compatibility enabled by this specific process were proposed and investigated. A key aspect of the present study was illuminating the detailed chemical mechanisms involved in the Grignard modification. Systematic characterization and carefully designed experiments revealed that the formation of distinctive surface structures is essentially a heterogeneous nucleation process, where Mg(OH)2 crystals grow from the nuclei previously extracted from zeolites. In addition to the main work, discovery of sonication-induced dealumination of zeolites was made during the systematic exploration of Grignard chemistry. The new procedure employing sonication can potentially be applied to prepare zeolites with a variety of Si/Al ratios under relatively mild conditions. The last part of this thesis focused on development of a technique to generalize the highly specific Grignard treatment to inorganic materials other than zeolite 4A. This work delivered composite membranes with improved interfacial adhesion. Moreover, research revealed the effect of surface nuclei density on the ultimate morphology of deposited nanostructures and how different surface morphologies influence polymer/filler interaction in composite membranes. Methods were devised to tailor the morphologies of such structures in order to optimize adhesion enhancement. The acquired results demonstrated the potential of extending this modification process to a broad domain of materials and render it a general methodology for interfacial adhesion promotion.
The synthesis and protein resistance of amphiphilic PDMS-b-(PDMS-g-cysteine) copolymers
NASA Astrophysics Data System (ADS)
Lei, Yufeng; Lin, Yaling; Zhang, Anqiang
2017-10-01
Zwitterionic polymers have been used to cope with nonspecific protein adsorption and bio-fouling problems for a wide range of materials, including biomedical devices, marine coatings and membrane separation. However, direct surface modification with highly water-soluble zwitterionic polymers is rather difficult due to their poor attachment to hydrophobic solid surfaces. In this work, we utilize the hydrophobic interaction to anchor zwitterionic polysiloxanes grafted with cysteine onto surfaces by adding an hydrophobic block of polydimethylsiloxanes, referred as PDMS-b-(PDMS-g-Cys)s. The synthesis involves only three steps of reactions, and the structures of each product were characterized using GPC, FT-IR and 1H NMR. The adsorption and protein resistance of PDMS-b-(PDMS-g-Cys)s on a gold surface are investigated with QCM-D. The results show that the hydrophobic interaction moieties of the additional PDMS blocks help the hydrophilic cysteine-grafted blocks stably attach and then function on the sensor. These findings suggest that the addition of hydrophobic moieties provides an effective approach to construct anti-fouling interfaces with zwitterionic polymers in aqueous solution.
Structural and Interfacial Properties of Hyperbranched-Linear Polymer Surfactant.
Qiang, Taotao; Bu, Qiaoqiao; Huang, Zhaofeng; Wang, Xuechuan
2014-01-01
With oleic acid grafting modification, a series of hyperbranched-linear polymer surfactants (HLPS) were prepared by hydroxyl-terminated hyperbranched polymer (HBP), which was gained through a step synthesis method using trimethylolpropane and AB 2 monomer. The AB 2 monomers were obtained through the Michael addition reaction of methyl acrylate and diethanol amine. The structures of HLPS were characterised by Fourier transform infrared spectrophotometer and nuclear magnetic resonance (NMR), which indicated that HBP was successfully modified by oleic acid. Furthermore, the properties of surface tension and critical micelle concentration of HLPS solution showed that HLPS can significantly reduce the surface tension of water. The morphology of the HLPS solution was characterised by dynamic light scattering, which revealed that HLPS exhibited a nonmonotonic appearance in particle size at different scattering angles owing to the different replaced linear portions. The relationships of the surface pressure to monolayer area and time were measured using the Langmuir-Blodgett instrument, which showed that the surface tension of monolayer molecules increased with the increasing of hydrophobic groups. In addition, the interface conditions of different replaced HLPS solutions were simulated.
Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation
Fuoco, Alessio; Khdhayyer, Muhanned R.; Attfield, Martin P.; Esposito, Elisa; Jansen, Johannes C.; Budd, Peter M.
2017-01-01
Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability. PMID:28208658
Surface modification and characterization of indium-tin oxide for organic light-emitting devices.
Zhong, Z Y; Jiang, Y D
2006-10-15
In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.
Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces.
Tian, Yu Shun; Kim, Hyun Jung; Kim, Hyun-Man
2009-08-28
Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21(cip1) and p27(kip1) and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.
Mazloum-Ardakani, Mohammad; Barazesh, Behnaz; Khoshroo, Alireza; Moshtaghiun, Mohammad; Sheikhha, Mohammad Hasan
2018-06-01
In this work we report the synthesis of a stable composite with excellent electrical properties, on the surface of a biosensor. Conductive polymers offer both high electrical conductivity and mechanical strength. Many reports have focused on synthesizing conductive polymers with the aid of high-cost enzymes. In the current work we introduce a novel electrochemical, one-step, facile and cost effective procedure for synthesizing poly (catechol), without using expensive enzymes. The poly (catechol) conductivity was enhanced by modification with graphene sheets and biosynthesized gold nanoparticles. Four different robust methods, DPV, EIS, CV and chronoamperometry, were used to monitor the biosensor modifications. The peak currents of the catechol (an electroactive probe) were linearly related to the logarithm of the concentrations of target DNA in the range 100.0 μM to 10.0 pM, with a detection limit of 1.0 pM for the DNA strand. The current work investigates a new, stable composite consisting of conductive polymers and nanoparticles, which was applied to the detection of acute lymphoblastic leukemia. Copyright © 2018 Elsevier B.V. All rights reserved.
Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J
2007-09-25
The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.
Du, Yanqiu; Li, Chunming; Jin, Jing; Li, Chao; Jiang, Wei
2018-01-01
Amino acid-based P(acryloyl-6-aminocaproic acid) (PAACA) brushes were fabricated on polyisobutylene (PIB) surface combined with plasma pre-treatment and UV-induced grafting polymerization to construct an antifouling and functional material. The hydrophilicity and hemocompatibility of PIB were largely improved by surface modification of AACA, which were confirmed by water contact angle and platelet adhesion, respectively. PAACA brushes were precisely located onto the surface of PIB to create a patterned PIB-g-PAACA structure, and then the carboxyl groups on PAACA was activated to immobilize functional protein-Concanavalin A (Con A). The obtained Con A-coupled microdomains could further capture erythrocytes. This method developed a platform on commercial PIB surface via amino acid-based polymer brushes which had a promising application in drug delivery and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Ion irradiation induced surface modification studies of polymers using SPM
NASA Astrophysics Data System (ADS)
Tripathi, A.; Kumar, Amit; Singh, F.; Kabiraj, D.; Avasthi, D. K.; Pivin, J. C.
2005-07-01
Various types of scanning probe microscopy (SPM) techniques: atomic force microscopy (AFM) (contact and tapping in height and amplitude mode), scanning tunnelling microscopy (STM) and conducting atomic force microscopy (C-AFM) are used for studying ion beam induced surface modifications, nanostructure/cluster formation and disintegration in polymers and similar soft carbon based materials. In the present study, the results of studies on four materials, namely, (A) methyltriethoxysilane/phenyltriethoxysilane (MTES/PTES) based gel, (B) triethoxisilane (TH) based gel, (C) highly oriented pyrolytic graphite (HOPG) bulk and (D) fullerene (C60) thin films are discussed. In the case of Si based gels prepared from pre-cursors containing organic groups (MTES/PTES), hillocks are observed at the surface and their size decreases from 70 to 25 nm with increasing fluence, whereas, in the case of a gel with a stoichiometry SiO1.25H1, prepared from TH, an increases in the size of hillocks is observed. Hillocks are also formed at the surface of HOPG irradiated with 120 MeV Au beam at a low fluence, whereas, formation of craters and a re-organisation of surface features is observed at a higher fluence. In the case of C60 films, 120 MeV Au ion irradiation induces the formation of conducting ion tracks, which is attributed to the transformation from insulating C60 to conducting graphite like carbon.
Tanaka, Masako; Iwasaki, Yasuhiko
2016-08-01
Novel photo-reactive phospholipid polymers were synthesized for use in the preparation of nonfouling surfaces with protein conjugation capacity. Poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-ran-N-methacryloyl-(l)-tyrosinemethylester (MAT)] (P(MPC/MAT)) was synthesized by conventional radical polymerization, with the MAT units capable of being oxidized by 254nm UV irradiation. Because of this photo-oxidation, active species such as catechol and quinone were alternately generated in the copolymer. A silicon wafer was subjected to surface modification through spin coating of P(MPC/MAT) from an aqueous solution for use as a model substrate. The surface was then irradiated several times with UV light. The thickness of the polymer layers formed on the Si wafers was influenced by various parameters such as polymer concentration, UV irradiation time, and composition of the MAT units in P(MPC/MAT). Oxidized MAT units were advantageous not only for polymer adhesion to a solid surface but also for protein conjugation with the adhered polymers. The amount of protein immobilized on UV-irradiated P(MPC/MAT) was dependent on the composition of the MAT units in the polymer. Furthermore, it was confirmed that protein immobilization on the polymer occurred through the oxidized MAT units because the protein adsorption was significantly reduced upon blocking these units through pretreatment with glycine. Conjugation of regiospecific protein could also be achieved through the use of a photomask. In addition, nonspecific protein adsorption was reduced on the non-irradiated regions whose surface was covered with physisorbed P(MPC/MAT). Therefore, P(MPC/MAT) can be used in the preparation of nonfouling substrates, which enable micrometer-sized manipulation of proteins through photo-irradiation. Function of proteins immobilized on MPC copolymers was also confirmed by cell adhesion test. As such, photo-reactive MPC copolymers are suitable for performing controlled protein conjugation and preparing polymer-protein hybrid platforms for use in biomedical and diagnostic devices. Novel photo-reactive phospholipid polymers have been synthesized for immobilization on solid surfaces and regiospecific protein conjugation. Tyrosine residues embedded in 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymers could be photo-oxidized, resulting in polymers able to form layers on a solid surface and conjugate with proteins. Moreover, nonspecific biofouling on the surface significantly reduced when the oxidized tyrosine units in the polymer layers were blocked. Upon UV irradiation through a photomask, the UV-exposed tyrosine units were selectively oxidized, forming the only specific regions in which protein conjugation could occur. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir
2015-12-01
The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.
Scislowska-Czarnecka, Anna; Szmigiel, Dariusz; Genet, Michel; Dupont-Gillain, Christine; Pamula, Elzbieta; Kolaczkowska, Elzbieta
2015-12-01
Here, we report on modification of one of the model biomedical polymers, poly L-lactide-co-glycolide (PLGA; 85:15), by reactive ion etching (RIE) oxygen plasma treatment. PLGA's major disadvantage is high hydrophobicity which restrains binding of cell-adhesive proteins and host cells. In the current approach, we aimed to answer two questions: (1) will only short (10 s) and moderate (20-200 mTorr, 45-90 W) RIE oxygen plasma treatment, leading to decrease of water contact angle by only up to 10°, sufficiently improve PLGA adherence to cells, and (2) how will this affect osteoblasts and activation of the immune system? All obtained modified PLGAs had improved hydrophilicity but unaltered roughness (as revealed by water contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy) resulting in significantly improved adhesion of osteoblasts (MG-63) and their low activation. Importantly, macrophages (RAW 264.7), one of the key cells initiating inflammation and bone resorption, responded significantly less vigorously to the modified polymers, expressing/releasing lower amounts of nitric oxide, matrix metalloproteinases (MMP-9), and pro-inflammatory cytokines (TNF-α, IL-6, IL-12p70, IFN-γ, IL-10). We conclude that already slight RIE oxygen plasma modification of PLGA is sufficient to improve its surface properties, and enhance cytocompatibility. Most importantly, this type of modification prevents excessive immune response. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhao, Guili; Chen, Wei Ning
2017-03-01
Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined "fouling resistance" and "fouling release" property of P(HEMA-co-NIPAAm) for PVDF membrane modification, even for other types of the membrane in wide application.
Clay-based polymer nanocomposites: research and commercial development.
Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R
2005-10-01
This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.
Structural modification in the formation of starch – silver nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com; Aswal, V. K.
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structuresmore » and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.« less
Akhmetshina, Alsu A; Davletbaeva, Ilsiya M; Grebenschikova, Ekaterina S; Sazanova, Tatyana S; Petukhov, Anton N; Atlaskin, Artem A; Razov, Evgeny N; Zaripov, Ilnaz I; Martins, Carla F; Neves, Luísa A; Vorotyntsev, Ilya V
2015-12-30
Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf₂N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N₂, NH₃, H₂S, and CO₂ gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF₆] and [emim][Tf₂N]. The modification of SILMs by nanosize silica particles leads to an increase of NH₃ separation relatively to CO₂ or H₂S.
Surface Modification of Carbon Fiber Polymer Composites after Laser Structuring
NASA Astrophysics Data System (ADS)
Sabau, Adrian S.; Chen, Jian; Jones, Jonaaron F.; Hackett, Alexandra; Jellison, Gerald D.; Daniel, Claus; Warren, David; Rehkopf, Jackie D.
The increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin on the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg — T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90° plaques. The effect of laser fluence, scanning speed, and wavelength was investigated on the removal rate of the resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on surface morphology.
NASA Astrophysics Data System (ADS)
Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan
2011-04-01
Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.
Corrosion and surface modification on biocompatible metals: A review.
Asri, R I M; Harun, W S W; Samykano, M; Lah, N A C; Ghani, S A C; Tarlochan, F; Raza, M R
2017-08-01
Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization of biodegradable polymers irradiated with swift heavy ions
NASA Astrophysics Data System (ADS)
Salguero, N. G.; del Grosso, M. F.; Durán, H.; Peruzzo, P. J.; Amalvy, J. I.; Arbeitman, C. R.; García Bermúdez, G.
2012-02-01
In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly- L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.
Fukunishi, Miya; Inoue, Yuuki; Morisaki, Hirobumi; Kuwata, Hirotaka; Ishihara, Kazuhiko; Baba, Kazuyoshi
The aim of this study was to examine the ability of a poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butylmethacrylate-co-2-methacryloyloxyethyloxy-p-azidobenzoate) (PMBPAz) coating on polymethyl methacrylate (PMMA)-based dental resin to inhibit bacterial plaque formation, as well as the polymer's durability against water soaking and chemical exposure. Successful application of PMBPAz on PMMA surfaces was confirmed by x-ray photoelectron spectroscopy (XPS) and measuring the static air contact angle in water. The anti-adhesive effects to bacterial plaque were evaluated using Streptococcus mutans biofilm formation assay. The mechanical and chemical durabilities of the PMBPAz coating on the PMMA surfaces were examined using soaking and immersion tests, respectively. XPS signals for phosphorus and nitrogen atoms and hydrophilic status on PMMA surfaces treated with PMBPAz were observed, indicating the presence of the polymer on the substrates. The treated PMMA surfaces showed significant inhibition of S mutans biofilm formation compared to untreated surfaces. The PMBPAz coating was preserved after water soaking and chemical exposure. In addition, water soaking did not decrease the ability of treated PMMA to inhibit biofilm formation compared to treated PMMA specimens not subjected to water soaking. This study suggests that PMBPAz coating may represent a useful modification to PMMA surfaces for inhibiting denture plaque accumulation.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications
NASA Astrophysics Data System (ADS)
Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.
2017-02-01
Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.
NASA Astrophysics Data System (ADS)
Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina
2016-07-01
Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.
Recent advances in the chemical modification of unsaturated polymers
NASA Technical Reports Server (NTRS)
Schulz, D. N.; Turner, S. R.; Golub, M. A.
1982-01-01
The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.
Surface modification of biomaterials using plasma immersion ion implantation and deposition
Lu, Tao; Qiao, Yuqin; Liu, Xuanyong
2012-01-01
Although remarkable progress has been made on biomaterial research, the ideal biomaterial that satisfies all the technical requirements and biological functions is not available up to now. Surface modification seems to be a more economic and efficient way to adjust existing conventional biomaterials to meet the current and ever-evolving clinical needs. From an industrial perspective, plasma immersion ion implantation and deposition (PIII&D) is an attractive method for biomaterials owing to its capability of treating objects with irregular shapes, as well as the control of coating composition. It is well acknowledged that the physico-chemical characteristics of biomaterials are the decisive factors greatly affecting the biological responses of biomaterials including bioactivity, haemocompatibility and antibacterial activity. Here, we mainly review the recent advances in surface modification of biomaterials via PIII&D technology, especially titanium alloys and polymers used for orthopaedic, dental and cardiovascular implants. Moreover, the variations of biological performances depending on the physico-chemical properties of modified biomaterials will be discussed. PMID:23741609
Science and engineering of nanodiamond particle surfaces for biological applications (Review).
Shenderova, Olga A; McGuire, Gary E
2015-09-05
Diamond has outstanding bulk properties such as super hardness, chemical inertness, biocompatibility, luminescence, to name just a few. In the nanoworld, in order to exploit these outstanding bulk properties, the surfaces of nanodiamond (ND) particles must be accordingly engineered for specific applications. Modification of functional groups on the ND's surface and the corresponding electrostatic properties determine their colloidal stability in solvents, formation of photonic crystals, controlled adsorption and release of cargo molecules, conjugation with biomolecules and polymers, and cellular uptake. The optical activity of the luminescent color centers in NDs depends on their proximity to the ND's surface and surface termination. In order to engineer the ND surface, a fundamental understanding of the specific structural features and sp(3)-sp(2) phase transformations on the surface of ND particles is required. In the case of ND particles produced by detonation of carbon containing explosives (detonation ND), it should also be taken into account that its structure depends on the synthesis parameters and subsequent processing. Thus, for development of a strategy of surface modification of detonation ND, it is imperative to know details of its production. In this review, the authors discuss ND particles structure, strategies for surface modification, electrokinetic properties of NDs in suspensions, and conclude with a brief overview of the relevant bioapplications.
Ultralow energy ion beam surface modification of low density polyethylene.
Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C
2005-12-01
Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.
Surface morphology of refractive-index waveguide gratings fabricated in polymer films
NASA Astrophysics Data System (ADS)
Dong, Yi; Song, Yan-fang; Ma, Lei; Gao, Fang-fang
2016-09-01
The characteristic modifications are reported on the surface of polymeric waveguide film in the process of volume- grating fabrication. The light from a mode-locked 76 MHz femtosecond laser with pulse duration of 200 fs and wavelength of 800 nm is focused normal to the surface of the sample. The surface morphology modifications are ascribed to a fact that surface swelling occurs during the process. Periodic micro-structure is inscribed with increasing incident power. The laser-induced swelling threshold on the grating, which is higher than that of two-photon initiated photo-polymerization (TPIP) (8 mW), is verified to be about 20 mW. It is feasible to enhance the surface smoothness of integrated optics devices for further encapsulation. The variation of modulation depth is studied for different values of incident power and scan spacing. Ablation accompanied with surface swelling appears when the power is higher. By optimizing the laser carving parameters, highly efficient grating devices can be fabricated.
Bioinspired Nanocellulose Based Hybrid Materials With Novel Interfacial Properties
NASA Astrophysics Data System (ADS)
Keten, Sinan
This talk will overview a simulation-based approach to enhancing the mechanical properties of nanocomposites by utilizing cellulose - the most abundant and renewable structural biopolymer found on our planet. Cellulose nanocrystals (CNCs) exhibit outstanding mechanical properties exceeding that of Kevlar, serving as reinforcing domains in nature's toughest hierarchical nanocomposites such as wood. Yet, weak interfaces at the surfaces of CNCs have so far made it impossible to scale these inherent properties to macroscopic systems. In this work, I will discuss how surface functionalization of CNCs influences their properties in their self-assembled films and nanocomposites with engineered polymer matrices . Specifically, the role of ion exchange based surface modifications and polymer conjugation will be discussed, where atomistic and coarse-grained simulations will reveal new insights into how superior mechanical properties can potentially be attained by hybrid constructs.
Applications of conducting polymers and their issues in biomedical engineering
Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram
2010-01-01
Conducting polymers (CPs) have attracted much interest as suitable matrices of biomolecules and have been used to enhance the stability, speed and sensitivity of various biomedical devices. Moreover, CPs are inexpensive, easy to synthesize and versatile because their properties can be readily modulated by (i) surface functionalization techniques and (ii) the use of a wide range of molecules that can be entrapped or used as dopants. This paper discusses the various surface modifications of the CP that can be employed in order to impart physico-chemical and biological guidance cues that promote cell adhesion/proliferation at the polymer–tissue interface. This ability of the CP to induce various cellular mechanisms widens its applications in medical fields and bioengineering. PMID:20610422
Dielectric Property Enhancement in Polymer Composites with Engineered Interfaces
NASA Astrophysics Data System (ADS)
Krentz, Timothy Michael
This thesis reports studies into the dielectric behavior of polymer composites filled with silica nanoparticles. The permittivity and dielectric breakdown strength (DBS) of these materials are critical to their performance in insulating applications such as high voltage power transmission. Until now, the mechanisms which lead to improvements in DBS in these systems have been poorly understood, in part because the effects of dispersion of the filler and the filler's surface electronic characteristics have been confused. The new surface modifications created in this thesis permit these two parameters to be addressed independently, leading to the hypothesis that nanocomposite dielectric materials exhibit DBS enhancement when electron avalanches are prevented from proceeding to reach a critical size capable of causing failure. The same control of dispersion and surface properties also lead to changes in the permittivity of the composite based upon the polarizability and trapping behavior of the filler. In this work, the dispersion and surface states of silica nanoparticles were independently controlled with two separate populations of surface molecules. Two matrix materials were studied, and in each system, a different, matrix-compatible long chain polymer is required to control dispersion. Conversely, a second population of short molecules is shown to be capable of creating electronic traps associated with the silica nanoparticle surface which lead to DBS enhancements largely independent of the matrix, indicating that the same failure mechanism is operating in both epoxy and polypropylene. Progressive variation in dispersion quality is attained with this surface modification scheme. This creates progressively smaller volumes of matrix polymer unaffected by the filler. This work shows that when these volumes approach and become smaller than the same scale as predicted for electron avalanches, the greatest changes in DBS are seen. Likewise, the plateau behavior of this data implicates that the DBS improvements occur as avalanches are halted in their early phases by the filler, before sufficiently energy can be gathered to damage the matrix. These data indicate that avalanche sizes on the order of 150 nm are sufficient to lead to failure. Furthermore, the depths of the traps induced by small molecules on the silica surface are shown to relate to the DBS enhancement obtained for well dispersed fillers based upon the ability of these localized traps to absorb the energy gathered by growing avalanches.
Microchemical Pen: An Open Microreactor for Region-Selective Surface Modification.
Mao, Sifeng; Sato, Chiho; Suzuki, Yuma; Yang, Jianmin; Zeng, Hulie; Nakajima, Hizuru; Yang, Ming; Lin, Jin-Ming; Uchiyama, Katsumi
2016-10-18
Various micro surface-modification approaches including photolithography, dip-pen lithography and ink-jet systems have been developed and used to extend the functionalities of solid surfaces. While those approaches work in the "open space", push-pull systems which work in solutions have recently drawn considerable attention. However, the confining flows performed by push-pull systems have realized only the dispense process, while microscale, region-selective chemical reactions have remained unattainable. This study reports a microchemical pen that enables region-selective chemical reactions for the micro surface modification/patterning. The chemical pen is based on the principle of microfluidic laminar flows and the resulting mixing of reagents by the mutual diffusion. The tiny diffusion layer performs as the working region. This report represents the first demonstration of an open microreactor in which two different reagents react on a real solid sample. The multifunctional characteristics of the microchemical pen are confirmed by different types of reactions in many research areas, including inorganic chemistry, polymer science, electrochemistry and biological sample treatment. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cevik, Emre; Carbas, Buket Bezgin; Senel, Mehmet; Yildiz, Huseyin Bekir
2018-08-15
In this study, a photo-bioelectrochemical fuel cell was constructed for photocurrent generation by illuminating the electrodes within an aqueous solution. In this purpose, gold electrode was coated with poly 4-(4H-Dithieno [3,2-b:2',3'-d]pyrol-4-yl) aniline, P(DTP-Ph-NH 2 ) conductive polymer film by using electrochemical polymerization. Then, P(DTP-Ph-NH 2 ) conductive polymer film coated surface was electrochemically modified with cytochrome C which covalently linked onto the surface via bis-aniline functionality of the polymer film and formed crosslinked-structure. The thylakoid membrane was attached on the surface of this electrode by using bissulfosaxinimidyl suberate (BS 3 ) and used as photo-anode in photo-bioelectrochemical fuel cell. The photo-cathode of the photo-bioelectrochemical fuel cell fabrication was followed by the modification of conductive polymer poly[5-(4H-dithieno [3,2-b:2',3'-d]pyrol-4-yl) naphtalene-1-amine] film coating, glutaraldehyde activation, and bilirubin oxidase enzyme immobilization. During the photosynthesis occurring in thylakoid membrane under the light, water was oxidized and separated; while oxygen was released in anode side, the cathode side was reduced the oxygen gas into the water via a bio-electro-catalytic method. The cytochrome C was used for binding of thylakoid membrane to the electrode surface and play an important role for transferring of electrons released as a result of photosynthesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Ion beam sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1976-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.
Ion-beam-sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1977-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.
Jiang, Jianjun; Zhao, Ziwei; Deng, Chao; Liu, Fa; Li, Dejia; Fang, Liangchao; Zhang, Dan; Castro Jose M; Chen, Feng; Lee, L James
2016-06-01
Carbon Nanofibers (CNFs) have shown great potential to improve the physical and mechanical properties of conventional Fiber Reinforced Polymer Composites (FRPCs) surface. Excellent dispersion CNFs into water or polymer matrix was very crucial to get good quality CNFs enhanced FRPCs. Because of the hydrophobic properties of CNFs, we apply the reversible switching principles to transfer the hydrophobic surface into hydrophilic surface by growing polyaniline nanograss on the surface of CNFs which was carried out in hydrochloric acid condition. Incorporating CNFs into FRPCs as a surface layer named CNFs Nanopaper to increase the erosion resistance and electrical conductivity in this research which was very important in the wind energy field. In order to get high quality dispersed CNFs suspension, a sonication unit was used to detangle and uniform disperse the functionalized CNFs. A filter with vacuum pressure used to filter the suspension of CNFs onto Carbon veil to make CNFs Nanopaper. Vacuum Aided Resin Transfer Modeling (VARTM) process was used to fabricate Nano-enhanced FRPCs samples. In order to characterize the mechanical properties, three point bending experiment was measured. The flexural strength capacity and deformation resistance and behavior were compared and analyzed. In this paper, we discussed the methods used and provided experimental parameter and experimental results.
Sami, Haider; Maparu, Auhin K; Kumar, Ashok; Sivakumar, Sri
2012-01-01
Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+) was observed after internalization of LaF(3):Tb(3+)(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification.
Surface Modification of ICF Target Capsules by Pulsed Laser Ablation
Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.
2016-06-30
Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less
NASA Astrophysics Data System (ADS)
Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen
2017-10-01
Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.
Shin, Dong Won; Guiver, Michael D; Lee, Young Moo
2017-03-22
A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.
Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.
2014-01-01
The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670
Modification of polyvinyl alcohol surface properties by ion implantation
NASA Astrophysics Data System (ADS)
Pukhova, I. V.; Kurzina, I. A.; Savkin, K. P.; Laput, O. A.; Oks, E. M.
2017-05-01
We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (sbnd Cdbnd O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.
Adaptable bioinspired special wetting surface for multifunctional oil/water separation
NASA Astrophysics Data System (ADS)
Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik
2017-01-01
Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes.
Adaptable bioinspired special wetting surface for multifunctional oil/water separation
Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik
2017-01-01
Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes. PMID:28051163
Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer
NASA Astrophysics Data System (ADS)
Sanghvi, Archit B.; Miller, Kiley P.-H.; Belcher, Angela M.; Schmidt, Christine E.
2005-06-01
The goal in biomaterial surface modification is to retain a material's bulk properties while modifying only its surface to possess desired recognition and specificity. Here we develop a unique strategy for surface functionalization of an electrically conductive polymer, chlorine-doped polypyrrole (PPyCl), which has been widely researched for various electronic and biomedical applications. An M13 bacteriophage library was used to screen 109 different 12-mer peptide inserts against PPyCl. A binding phage (ϕT59) was isolated, and its binding stability and specificity to PPyCl was assessed using fluorescence microscopy and titer count analysis. The relative binding strength and mechanism of the corresponding 12-mer peptide and its variants was studied using atomic force microscopy and fluorescamine assays. Further, the T59 peptide was joined to a cell adhesive sequence and used to promote cell attachment on PPyCl. This strategy can be extended to immobilize a variety of molecules to PPyCl for numerous applications. In addition, phage display can be applied to other polymers to develop bioactive materials without altering their bulk properties.
Recent progress of atomic layer deposition on polymeric materials.
Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun
2017-01-01
As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk
2017-03-31
The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer-solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.
The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.
Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia
2016-04-01
The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characterization of an atmospheric pressure air plasma source for polymer surface modification
NASA Astrophysics Data System (ADS)
Yang, Shujun; Tang, Jiansheng
2013-10-01
An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU
Experimental and numerical studies of tethered DNA dynamics in shear flow
NASA Astrophysics Data System (ADS)
Lueth, Christopher A.
Polymer physics has a rich tradition spanning nearly two centuries. In the 1830s, Henri Braconnot and coworkers were perhaps the first to work on what is today known as polymer science when they derived semi-synthetic materials from naturally occurring cellulose. However, the true nature of polymers, as long chain molecules, had not been proposed until 1910 by Pickles. It was not until the 1950's when polymer models were developed using statistical mechanics. Recently, the field has been revitalized by the ability to study individual polymer molecules for the first time. The development of DNA single molecule fluorescence microscopy coupled with ever increasing computational power has opened the door to molecular level understanding of polymer physics, resolving old disputes and uncovering new interesting phenomena. In this work, we use a combination of theoretical predictions and lambda-phage DNA single molecule fluorescence microscopy to study the behavior of polymers tethered to surfaces. Brownian dynamics simulations of a number of coarse-grained polymer models---dynamic and equilibrium Kratky-Porod chains as well as bead-spring chains---were completed and compared with analytical and experimental results. First, an expression is developed for the entropic exclusion force experienced by a tethered polymer chain. We propose that, for a freely jointed chain, a modification to the free entropic force of kBT/y is needed in the direction normal to the surface. Analogously, we propose that for a wormlike chain, a modification of 2kBT/y is needed, due to the finite curvature of the model. Then, the reliability of discretized bead spring simulations containing this modified entropic force are analyzed using Kratky-Porod simulations and are found to reproduce most statistics, except for those very near the surface, such as end-wall contact. Next, experiments of tethered lambda-phage DNA in shear flow are presented for the first time in the flow-gradient plane. The tethering surface chemistry proved to be arduous work, but with the aide of contact angle and ellipsometry measurements, success was achieved. Extension behavior was shown to agree well with bead spring simulations, but deviations were discovered for weak flows in the extensional fluctuations, mean distance from the wall, and orientation angle. Cyclic dynamics---where the polymer continuously diffuses away from the wall, subsequently undergoes stretch in the flow direction, is then "entropically pulled back" towards the wall, and finally recoils---was observed and quantified through correlation and power spectral densities. Again, quantitative agreement was observed between experiments and bead spring simulations. The onset of cyclic dynamics was found to occur at Wi ≈ 3 and was found to decline with increasing Wi up to ≈ 200. Finally, a reliable procedure was developed utilizing Dip Pen Nanolithography to controllably tether DNA to gold surfaces. Preliminary experiments were performed and successful tethering was achieved, an important first step toward creating DNA scaffolds for molecular wires. However, further research is needed to fully develop the process and successfully double tether DNA molecules between gold electrodes.
Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui
2018-02-23
Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chu, Elza
Phase separation in soft matter has been the crucial element in generating hybrid materials, such as polymer blends and mixed polymer brushes. This dissertation discusses two methods of developing self-assembled nanoscale templates via microphase separation induced by polymer brush synthesis. This work introduces a novel soft substrate approach with renewable grafting sites where polyacrylamide is "grafted through" chitosan soft substrates. The mechanism of grafting leads to ordered arrays of filament-like nanostructures spanning the chitosan-air interface. Additionally, the chemical composition of the filaments allows for post-chemical modification to change the physical properties of the filaments, and subsequently tailor surfaces for specific application. Unlike traditional materials, multi-functional or "smart" materials, such as binary polymer brushes (BPB) are capable of spontaneously changing the spatial distribution of functional groups and morphology at the surface upon external stimuli. Although promising in principle, the limited range of available complementary polymers with common non-selective solvents confines the diversity of usable materials and restricts any further advancement in the field. This dissertation also covers the fabrication and characterization of responsive nanoscale polystyrene templates or "mosaic" brushes that are capable of changing interfacial composition upon exposure to varying solvent qualities. Using a "mosaic" brush template is a unique approach that allows the fabrication of strongly immiscible polymer BPB without the need for a common solvent. The synthesis of such BPB is exemplified by two strongly immiscible polymers, i.e. polystyrene (polar) and polyacrylamide (non-polar), where polyacrylamide brush is "graft through" a Si-substrate modified with the polystyrene collapsed "mosaic" brush. The surface exhibits solvent-triggered responses, as well as application potential for anti-biofouling.
Akhmetshina, Alsu A.; Davletbaeva, Ilsiya M.; Grebenschikova, Ekaterina S.; Sazanova, Tatyana S.; Petukhov, Anton N.; Atlaskin, Artem A.; Razov, Evgeny N.; Zaripov, Ilnaz I.; Martins, Carla F.; Neves, Luísa A.; Vorotyntsev, Ilya V.
2015-01-01
Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S. PMID:26729177
Stimuli-Responsive Polymeric Nanoparticles.
Liu, Xiaolin; Yang, Ying; Urban, Marek W
2017-07-01
There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Feng; Liu, Jianrui; Li, Li; Zhang, Xiaoxiao; Luo, Rui; Ye, Yusheng; Chen, Renjie
2016-09-07
Composites of lithium-rich Li1.2Ni0.2Mn0.6O2 and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) are synthesized through coprecipitation followed by a wet coating method. In the resulting samples, the amorphous conductive polymer films on the surface of the Li1.2Ni0.2Mn0.6O2 particles are 5-20 nm thick. The electrochemical properties of Li1.2Ni0.2Mn0.6O2 are obviously enhanced after PSS coating. The composite sample with an optimal 3 wt % coating exhibits rate capability and cycling properties that are better than those of Li1.2Ni0.2Mn0.6O2, with an excellent initial discharge capacity of 286.5 mA h g(-1) at a current density of 0.1 C and a discharge capacity that remained at 146.9 mA h g(-1) at 1 C after 100 cycles. The improved performances are ascribed to the high conductivity of the PSS coating layer, which can improve the conductivity of the composite material. The PSS layer also suppresses the formation and growth of a solid electrolyte interface. Surface modification with PSS is a feasible approach for improving the comprehensive properties of cathode materials.
NASA Astrophysics Data System (ADS)
More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.
2018-01-01
Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.
Suppression of protein adsorption on a charged phospholipid polymer interface.
Xu, Yan; Takai, Madoka; Ishihara, Kazuhiko
2009-02-09
High capability of a charged interface to suppress adsorption of both anionic and cationic proteins was reported. The interface was covalently constructed on quartz by modifying with an anionic phospholipid copolymer, poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-potassium 3-methacryloyloxypropyl sulfonate (PMPS)-co-3-methacryloxypropyl trimethoxysilane (MPTMSi)) (PMBSSi). The PMBSSi interfaces were very hydrophilic and homogeneous and could function effectively for a long time even under long-term fluidic working conditions. The PMBSSi density on the interface, which was controllable by adjusting the PMBSSi concentration of the modification solution, affected the surface properties, including the surface contact angle, the surface roughness, and the surface zeta-potential. When a PMBSSi modification was applied, the adsorption of various proteins (isoelectric point varying from 1.0 to 11.0) on quartz was reduced to at least 87% in amount, despite the various electrical natures these proteins have. The protein adsorption behavior on the PMBSSi interface depended more on the PMBSSi density than on the surface charge. The PMBSSi modification had a stable impact on the surface, not only at the physiologic ionic strength, but also over a range of the ionic strength, suggesting that electrostatic interactions do not dominate the behavior of protein adsorption to the PMBSSi surface.
Mahjoubi, Hesameddin; Kinsella, Joseph M; Murshed, Monzur; Cerruti, Marta
2014-07-09
Scaffolds made with synthetic polymers such as polyesters are commonly used in bone tissue engineering. However, their hydrophobicity and the lack of specific functionalities make their surface not ideal for cell adhesion and growth. Surface modification of these materials is thus crucial to enhance the scaffold's integration in the body. Different surface modification techniques have been developed to improve scaffold biocompatibility. Here we show that diazonium chemistry can be used to modify the outer and inner surfaces of three-dimensional poly(D,L-lactic acid) (PDLLA) scaffolds with phosphonate groups, using a simple two-step method. By changing reaction time and impregnation procedure, we were able to tune the concentration of phosphonate groups present on the scaffolds, without degrading the PDLLA matrix. To test the effectiveness of this modification, we immersed the scaffolds in simulated body fluid, and characterized them with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and infrared spectroscopy. Our results showed that a layer of hydroxyapatite particles was formed on all scaffolds after 2 and 4 weeks of immersion; however, the precipitation was faster and in larger amounts on the phosphonate-modified than on the bare PDLLA scaffolds. Both osteogenic MC3T3-E1 and chondrogenic ATDC5 cell lines showed increased cell viability/metabolic activity when grown on a phosphonated PDLLA surface in comparison to a control PDLLA surface. Also, more calcium-containing minerals were deposited by cultures grown on phosphonated PDLLA, thus showing the pro-mineralization properties of the proposed modification. This work introduces diazonium chemistry as a simple and biocompatible technique to modify scaffold surfaces, allowing to covalently and homogeneously bind a number of functional groups without degrading the scaffold's polymeric matrix.
Radiation effects on ETFE polymer exposed to glow discharge
NASA Astrophysics Data System (ADS)
Minamisawa, Renato Amaral; Abidzina, Volha; de Almeida, Adelaide; Budak, Satilmis; Tereshko, I.; Elkin, I.; Ila, Daryush
2007-08-01
The polymer ethylenetetrafluoroethylene (ETFE) is composed of alternating ethylene and tetrafluoroethylene segments. Because it has applications in areas such as medical physics and industrial coatings, there is a great interest in surface modification studies of ETFE polymer. When this material is exposed to ionizing radiation it suffers damage that depends on the type, energy and intensity of the irradiation. In order to determine the radiation damage mechanism from exposure to low voltage plasma, ETFE films were exposed to residual gas plasma in glow discharge regime to a fluence of 2 × 1017 ions/cm2. Irradiated films were analyzed with optical absorption photospectrometry, Fourier transform infrared (FTIR) and Raman spectroscopy to determine the chemical nature of the structural changes caused by low energy glow discharge.
2014-11-01
Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2014 DRDC-RDDC-2014-R102 i...avec la surface des matériaux est d’une importance fondamentale pour de nombreux processus, dont l’adhésion, les réactions chimiques, le transport...hydrodynamique et la nettoyabilité des surfaces. Les propriétés des surfaces peuvent se situer dans une gamme allant d’un caractère hydrophile ou
NASA Astrophysics Data System (ADS)
da Maia, J. V.; Pereira, F. P.; Dutra, J. C. N.; Mello, S. A. C.; Becerra, E. A. O.; Massi, M.; Sobrinho, A. S. da Silva
2013-11-01
The ethylene propylene diene monomer (EPDM) rubber possesses excellent physical/chemical bulk properties, is cost-effective, and has been used in the mechanical and aerospace industry. However, it has an inert surface and needs a surface treatment in order to improve its adhesion properties. Plasma modification is the most accepted technique for surface modification of polymers without affecting the properties of the bulk. In this study, an afterglow microwave plasma reactor was used to generate the plasma species responsible for the EPDM surface modification. The plasma modified surfaces were analyzed by means of contact angle measurement, adhesion tests, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. Two experimental variables were analyzed: type of the plasma gases and exposure time were considered. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed and the best conditions tested there was an increase of the rupture strength of about 27%, that can be associated mainly with the creation of oxygen containing functional groups on the rubber surface (CO, COC and CO) identified by spectroscopic methods. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed. In various conditions tested the contact angles easily decreased more than 500%. What can be concluded that high wettability is a necessary condition to obtain good adhesion, but this is not a sufficient condition.
A study of diazonium couplings with aromatic nucleophiles both in solution and on a polymer surface
NASA Astrophysics Data System (ADS)
Chng, Shuyun; Parker, Emily M.; Griffiths, Jon-Paul; Moloney, Mark G.; Wu, Linda Y. L.
2017-04-01
Diazonium coupling is a technique finding wider application to materials and biological science, for hybridization and linking processes, and for the construction of responsive surface functionality. For this reason, detailed examination of solution and surface processes was warranted, and results of such a study are reported here. The modification of polystyrene surfaces was examined as a model, and the process compared to a solution mimic using N,N-dimethylaniline. It was confirmed that solution and solid surface reactions proceed in a similar manner in terms of the chemical functionality generated, but with lower chemical efficiency and reaction times slower for the latter, in a reaction which was pH dependent. The solution process was shown to give only the trans-azo para- coupled products. Whilst there are clear similarities between the solution and surface chemistry, the efficiency of coupling at a surface is not necessarily replicated in the chemical yield of the mimicking solution processes, but nonetheless provides an alternative to other Click-type surface modifications. It should not be assumed that such couplings occur with quantitative efficiency at the surface.
Hu, Yunzi; Daoud, Walid A.; Cheuk, Kevin Ka Leung; Lin, Carol Sze Ki
2016-01-01
Polycondensation and ring-opening polymerization are two important polymer synthesis methods. Poly(lactic acid), the most typical biodegradable polymer, has been researched extensively from 1900s. It is of significant importance to have an up-to-date review on the recent improvement in techniques for biodegradable polymers. This review takes poly(lactic acid) as the example to present newly developed polymer synthesis techniques on polycondensation and ring-opening polymerization reported in the recent decade (2005–2015) on the basis of industrial technique modifications and advanced laboratory research. Different polymerization methods, including various solvents, heating programs, reaction apparatus and catalyst systems, are summarized and compared with the current industrial production situation. Newly developed modification techniques for polymer properties improvement are also discussed based on the case of poly(lactic acid). PMID:28773260
Mussel inspired polymerized P(TA-TETA) for facile functionalization of carbon nanotube
NASA Astrophysics Data System (ADS)
Si, Shuxian; Gao, Tingting; Wang, Junhao; Liu, Qinze; Zhou, Guowei
2018-03-01
This article describes a novel and effective approach for non-covalent modification of carbon nanotube (CNT) via the mussel inspired polymerization of tannic acid (TA) and triethylenetetramine (TETA) and subsequent surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photograph were used to study the successful preparation of polymer brush grafted CNT (CNT-P(TA-TETA)-PDMAEMA) composite as well as the pH-responsive behavior of the composite. Furthermore, by amine protonation and in situ reduction, gold nanoparticles were successfully uploaded and the catalytic property of CNT-P(TA-TETA)-PDMAEMA/Au was investigated. We believe that the surface functionalization strategy can be extended to graphene and other substrates, and the surface properties can be regulated by grafting polymer brushes with different functionalities.
Santos, Mariane Gonçalves; Moraes, Gabriel de Oliveira Isac; Nakamura, Maurício Gustavo; dos Santos-Neto, Álvaro José; Figueiredo, Eduardo Costa
2015-11-21
Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion.
NASA Astrophysics Data System (ADS)
Tan, Yuan; Jing, Lijing; Ding, Yonghong; Wei, Tianxin
2015-07-01
This work aimed to prepare a novel double-layer structure molecularly imprinted polymer film (MIF) on the surface plasmon resonance (SPR) sensor chips for detection of testosterone in aqueous media. The film was synthesized by in-situ UV photo polymerization. Firstly, the modification of gold surface of SPR chip was performed by 1-dodecanethiol. Then double-layer MIF was generated on the 1-dodecanethiol modified gold surface. The non-modified and imprinted surfaces were characterized by atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy and contact angle measurements. Analysis of SPR spectroscopy showed that the imprinted sensing film displayed good selectivity for testosterone compared to other analogues and the non-imprinted polymer film (NIF). Within the concentrations range of 1 × 10-12-1 × 10-8 mol/L, the coupling angle changes of SPR were linear with the negative logarithm of testosterone concentrations (R2 = 0.993). Based on a signal/noise ratio of three, the detection limit was estimated to be 10-12 mol/L. Finally, the developed MIF was successfully applied to the seawater detection of testosterone. The results in the experiments suggested that a combination of SPR sensing with MIF was a promising alternative method for detection of testosterone in aqueous media.
Claeys, Bart; De Coen, Ruben; De Geest, Bruno G; de la Rosa, Victor R; Hoogenboom, Richard; Carleer, Robert; Adriaensens, Peter; Remon, Jean Paul; Vervaet, Chris
2013-11-01
Polymethacrylates such as Eudragit® polymers are well established as drug delivery matrix. Here, we synthesize several Eudragit E PO (n-butyl-, dimethylaminoethyl-, methyl-methacrylate-terpolymer) analogues via free radical polymerization. These polymers are processed via hot melt extrusion, followed by injection molding and evaluated as carriers to produce immediate release solid solution tablets. Three chemical modifications increased the glass transition temperature of the polymer: (a) substitution of n-butyl by t-butyl groups, (b) reduction of the dimethylaminoethyl methacrylate (DMAEMA) content, and (c) incorporation of a bulky isobornyl repeating unit. These structural modifications revealed the possibility to increase the mechanical stability of the tablets via altering the polymer Tg without influencing the drug release characteristics and glassy solid solution forming properties. The presence of DMAEMA units proved to be crucial with respect to API/polymer interaction (essential in creating glassy solid solutions) and drug release characteristics. Moreover, these chemical modifications accentuate the need for a more rational design of (methacrylate) polymer matrix excipients for drug formulation via hot melt extrusion and injection molding. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.
2018-04-01
We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.
Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system
NASA Astrophysics Data System (ADS)
Tang, Erjun; Cheng, Guoxiang; Ma, Xiaolu; Pang, Xingshou; Zhao, Qiang
2006-05-01
Commercial zinc oxide nanoparticles were modified by polymethacrylic acid (PMAA) in aqueous system. The hydroxyl groups of nano-ZnO particle surface can interact with carboxyl groups (COO-) of PMAA and form poly(zinc methacrylate) complex on the surface of nano-ZnO. The formation of poly(zinc methacrylate) complex was testified by Fourier-transform infrared spectra (FT-IR). Thermogravimetric analysis (TGA) indicated that PMAA molecules were absorbed or anchored on the surface of nano-ZnO particle, which facilitated to hinder the aggregation of nano-ZnO particles. Through particle size analysis and transmission electron micrograph (TEM) observation, it was found that PMAA enhanced the dispersibility of nano-ZnO particles in water. The dispersion stabilization of modified ZnO nanoparticles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nanoparticles. The modification did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns.
PEG-stabilized core-shell surface-imprinted nanoparticles.
Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey
2013-08-06
Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.
Ferrocene-decorated nanocrystalline cellulose with charge carrier mobility.
Eyley, Samuel; Shariki, Sara; Dale, Sara E C; Bending, Simon; Marken, Frank; Thielemans, Wim
2012-04-24
Ferrocene-decorated cellulose nanowhiskers were prepared by the grafting of ethynylferrocene onto azide functionalized cotton-derived cellulose nanowhiskers using azide-alkyne cycloaddition. Successful surface modification and retention of the crystalline morphology of the nanocrystals was confirmed by elemental analysis, inductively coupled plasma-atomic emission spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The coverage with ferrocenyl is high (approximately 1.14 × 10(-3) mol g(-1) or 4.6 × 10(13) mol cm(-2) corresponding to a specific area of 61 Å(2) per ferrocene). Cyclic voltammetry measurements of films formed by deposition of ferrocene-decorated nanowhiskers showed that this small spacing of redox centers along the nanowhisker surface allowed conduction hopping of electrons. The apparent diffusion coefficient for electron (or hole) hopping via Fe(III/II) surface sites is estimated as Dapp = 10(-19) m(2)s(-1) via impedance methods, a value significantly less than nonsolvated ferrocene polymers, which would be expected as the 1,2,3-triazole ring forms a rigid linker tethering the ferrocene to the nanowhisker surface. In part, this is believed to be also due to "bottleneck" diffusion of charges across contact points where individual cellulose nanowhiskers contact each other. However, the charge-communication across the nanocrystal surface opens up the potential for use of cellulose nanocrystals as a charge percolation template for the preparation of conducting films via covalent surface modification (with applications similar to those using adsorbed conducting polymers), for use in bioelectrochemical devices to gently transfer and remove electrons without the need for a solution-soluble redox mediator, or for the fabrication of three-dimensional self-assembled conducting networks.
NASA Astrophysics Data System (ADS)
Wang, Suhuan; Liu, Jianguo; Lv, Ming; Zeng, Xiaoyan
2014-09-01
In this paper, a low-cost, high-efficiency and high-flexibility surface modification technology for polymer materials was achieved at high laser scanning speeds (600-1000 mm s-1) and using an all-solid state, Q-switched, high-average power, and nanosecond pulse ultraviolet (355 nm wavelength) laser. During the surface modification of a very important engineering plastic, i.e., black bisphenol A polycarbonate (BAPC) board, it was found that different laser parameters (e.g., laser fluence and pulse frequency) were able to result in different surface microstructures (e.g., many tiny protuberances or a porous microstructure with periodical V-type grooves). After the modification, although the total relative content of the oxygen-containing groups (e.g., Csbnd O and COO-) on the BAPC surface increased, however, the special microstructures played a deciding role in the surface properties (e.g., contact angle and surface energy) of the BAPC. The change trend of the water contact angle on the BAPC surface was with an obvious increase, that of the diiodomethane contact angle was with a most decrease, and that of the ethylene glycol contact angle was between the above two. It showed that the wetting properties of the three liquids on the modified BAPC surface were different. Basing on the measurements of the contact angles of the three liquids, and according to the Young equation and the Lifshitz van der Waals and Lewis acid-base theory, the BAPC surface energy after the modification was calculated. The results were that, in a broad range of laser fluences, pulse frequencies and scanning speeds, the surface energy had a significant increase (e.g., from the original of about 44 mJ m-2 to the maximum of about 70 mJ m-2), and the higher the laser pulse frequency, the more significant the increase. This would be very advantageous to fabricate the high-quality micro-devices and micro-systems on the modified surface.
Hydroxylation of organic polymer surface: method and application.
Yang, Peng; Yang, Wantai
2014-03-26
It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl groups preserve their own reactivity toward other complementary compounds, thus creating a novel base with distinct surface properties. Thanks to this functionalized platform, a wide range of organic, inorganic and metal materials have been attached to conventional organic polymer substrates through the rational engineering of surface molecular templates from small functional groups to macromolecules. It is expected that the proposed novel CPO method and its versatile usages in advanced material applications will offer new opportunities for a variety of scientific communities, especially for those working on surface/interface modulation.
Joseph, Emil; Saha, Ranendra N
2017-04-01
The present study focuses on the effect of material used for the preparation of nanoparticulate (NP) systems and surface modification on the pharmacokinetics and biodistribution of atypical antipsychotic, olanzapine (OLN). NP carriers of OLN were prepared from two different materials such as polymer (polycaprolactone) and solid lipid (Glyceryl monostearate). These systems were further surface modified with surfactant, Polysorbate 80 and studied for pharmacokinetics-biodistribution in Wistar rats using in-house developed bioanalytical methods. The pharmacokinetics and biodistribution studies resulted in a modified and varied distribution of NP systems with higher area under curve (AUC) values along with prolonged residence time of OLN in the rat blood circulation. The distribution of OLN to the brain was significantly enhanced with surfactant surface-modified NP systems, followed by nonsurface-modified NP formulations as compared with pure OLN solution. Biodistribution study demonstrated a low uptake of obtained NP systems by kidney and heart, thereby decreasing the nephrotoxicity and adverse cardiovascular effects. By coating the NP with surfactant, uptake of macrophage was found to be reduced. Thus, our studies confirmed that the biodistribution OLN could be modified effectively by incorporating in NP drug delivery systems prepared from different materials and surface modifications. A judicious selection of materials used for the preparation of delivery carriers and surface modifications would help to design a most efficient drug delivery system with better therapeutic efficacy.
Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yang; He, Qiming; Zhang, Fan
Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less
Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification
Zhou, Yang; He, Qiming; Zhang, Fan; ...
2017-08-14
Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less
Reverse-mode microdroplet liquid crystal display
NASA Astrophysics Data System (ADS)
Ma, Yao-Dong; Wu, Bao Gang; Xu, Gang
1990-04-01
This paper presents the production of the a reverse-mode microdroplet liquid crystal (RMLC) light shutter display. In this unit, the display is formed by a thin polymer film with dispersed liquid crystal microdroplets. The display is light transmissive in the absence of an applied electrical field. The display is converted to a non-transmissive state (i.e. absorbing or scattering) when an electrical field is applied. The "off' and "on" state. of this display are thus exactly opposite to that encountered in "normal-mode" microdroplet liquid crystal display devices such as polymer dispersed liquid crystals (PDLC)15 or Nematic Curvilinear Aligned Phase (NCAP)6. The Reverse Mode Microdroplet Liquid Crystal is obtained by modification of the surface energy of the polymer which encases liquid crystals via reaction of a dopant incorporated inside of the microdroplet during the droplet formation within the inside polymer layer. The liquid crystal used in RMLC is of negative dielectric anisotropy.
Kwak, Moo Jin; Yoo, Youngmin; Lee, Han Sol; Kim, Jiyeon; Yang, Ji-Won; Han, Jong-In; Im, Sung Gap; Kwon, Jong-Hee
2016-01-13
For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.
Sunshine, Joel C.; Peng, Daniel Y.; Green, Jordan J.
2012-01-01
Development of non-viral particles for gene delivery requires a greater understanding of the properties that enable gene delivery particles to overcome the numerous barriers to intracellular DNA delivery. Linear poly(beta-amino) esters (PBAE) have shown substantial promise for gene delivery, but the mechanism behind their effectiveness is not well quantified with respect to these barriers. In this study, we synthesized, characterized, and evaluated for gene delivery an array of linear PBAEs that differed by small changes along the backbone, side chain, and end-group of the polymers. We examined particle size and surface charge, polymer molecular weight, polymer degradation rate, buffering capacity, cellular uptake, transfection, and cytotoxicity of nanoparticles formulated with these polymers. Significantly, this is the first study that has quantified how small differential structural changes to polymers of this class modulate buffering capacity and polymer degradation rate and relates these findings to gene delivery efficacy. All polymers formed positively charged (zeta potential 21–29 mV) nanosized articles (~ 150 nm). The polymers hydrolytically degraded quickly in physiological conditions, with half-lives ranging from 90 minutes to 6 hours depending on polymer structure. The PBAE buffering capacities in the relevant pH range (pH 5.1 – 7.4) varied from 34% to 95% protonable amines, and on a per mass basis, PBAEs buffered 1.4–4.6 mmol H+/g. When compared to 25 kDa branched polyethyleneimine (PEI), PBAEs buffer significantly fewer protons/mass, as PEI buffers 6.2 mmol H+/g over the same range. However, due to the relatively low cytotoxicity of PBAEs, higher polymer mass can be used to form particles than with PEI and total buffering capacity of PBAE-based particles significantly exceeds that of PEI. Uptake into COS-7 cells ranged from 0% to 95% of cells and transfection ranged from 0% to 93% of cells, depending on the base polymer structure and the end-modifications examined. Five polymers achieved higher uptake and transfection efficacy with less toxicity than branched-PEI control. Surprisingly, acrylate-terminated base polymers were dramatically less efficacious than their end-capped versions, both in terms of uptake (1–3% for acrylate, 75–94% for end-capped) and transfection efficacy (0–1% vs. 20–89%), even though there are minimal differences between acrylate and end-capped polymers in terms of DNA retardation in gel electrophoresis, particle size, zeta potential, and cytotoxicity. These studies further elucidate the role of polymer structure for gene delivery and highlight that small molecule end-group modification of a linear polymer can be critical for cellular uptake in a manner that is largely independent of polymer/DNA binding, particle size, and particle surface charge. PMID:22970908
NASA Astrophysics Data System (ADS)
Ansari, R.; Ajori, S.; Rouhi, S.
2015-03-01
The importance of covalent and non-covalent functionalization approaches for modification the properties of carbon nanotubes is being more widely recognized. To this end, elastic properties and buckling behavior of oxygenated CNT with atomic oxygen and hydroxyl under physical adsorption of PE (Polyethylene) and PEO (Poly (ethylene oxide)) are determined through employing the molecular dynamics (MD) simulations. The results demonstrate that non-covalent bonding of polymer on the surface of oxygenated CNT causes reductions in the variations of critical buckling load and critical strain compared to oxygenated CNTs. Critical buckling load and critical strain of oxygenated CNT/polymer are higher than those of oxygenated CNT. Also, it is demonstrated that critical buckling load and critical strain values in the case of oxygenated CNT/polymer are independent of polymer type unlike the value of Young's modulus. It is shown that variations of Young's modulus decrease as PE adsorbed on the surface of oxygenated CNT. Moreover, the presence of oxygen atom on PEO chain leads to bigger variations of Young's modulus with weight percentage of chemisorbed component, i.e. atomic oxygen and hydroxyl. It is also demonstrated that Young's modulus reduces more considerably in the presence of PEO chain compared to PE one.
Texturing of polypropylene (PP) with nanosecond lasers
NASA Astrophysics Data System (ADS)
Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.
2016-06-01
Polypropylene (PP) is a biocompatible and biostable polymer, showing good mechanical properties that has been recently introduced in the biomedical field for bone repairing applications; however, its poor surface properties due to its low surface energy limit their use in biomedical applications. In this work, we have studied the topographical modification of polypropylene (PP) laser textured with Nd:YVO4 nanosecond lasers emitting at λ = 1064 nm, 532 nm, and 355 nm. First, optical response of this material under these laser wavelengths was determined. The application of an absorbing coating was also studied. The influence of the laser processing parameters on the surface modification of PP was investigated by means of statistically designed experiments. Processing maps to tailor the roughness, and wettability, the main parameters affecting cell adhesion characteristics of implants, were also determined. Microhardness measurements were performed to discern the impact of laser treatment on the final mechanical properties of PP.
Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel
2017-08-01
A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe 3 O 4 ) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Hafezeqoran, Ali; Koodaryan, Roodabeh
2017-09-21
Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O 2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TS T and TS G groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of AP T were statistically significant compared to controls (p = 0.017). Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide denture base. Amino-functionalized silica coating could represent a more applicable and convenient option for improving the repair strength of autopolymerizing resin to polyamide polymer. © 2017 by the American College of Prosthodontists.
Clafshenkel, William P.; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Russell, Alan J.
2016-01-01
Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system. PMID:27331401
Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J
2016-01-01
Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.
FEL for the polymer processing industries
NASA Astrophysics Data System (ADS)
Kelley, Michael J.
1997-05-01
Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.
Cavalli, Gabriel; Banu, Shahanara; Ranasinghe, Rohan T; Broder, Graham R; Martins, Hugo F P; Neylon, Cameron; Morgan, Hywel; Bradley, Mark; Roach, Peter L
2007-01-01
SU-8 is an epoxy-novolac resin and a well-established negative photoresist for microfabrication and microengineering. The photopolymerized resist is an extremely highly crosslinked polymer showing outstanding chemical and physical robustness with residual surface epoxy groups amenable for chemical functionalization. In this paper we describe, for the first time, the preparation and surface modification of SU-8 particles shaped as microbars, the attachment of appropriate linkers, and the successful application of these particles to multistep solid-phase synthesis leading to oligonucleotides and peptides attached in an unambiguous manner to the support surface.
NASA Astrophysics Data System (ADS)
El Majdoub, Lotfia; Shi, Yasai; Yuan, Yuan; Zhou, Annan; Abutartour, Abubaker; Xu, Qinghong
2015-10-01
Zirconocene catalyst supported on silica gel was prepared for olefin polymerization by surface modification of calcined silica with SiCl4, and the reaction between the modified silica and cyclopentadienyl sodium and ZrCl4. The catalyst was characterized by using Fourier-transform infrared (FT-IR) spectrometer, thermogravimetric (TG), and differential scanning calorimetric (DSC) analytic spectrometer. It was found that the metallocene structure could be formed and connected on silica surface by chemical bond. Initial catalytic tests showed that the supported metallocene was catalytically active (methylaluminoxane as a cocatalyst), producing polymer with higher molecular weight than the metallocene just immobilized on the surface of silica gel.
Surface Engineering and Patterning Using Parylene for Biological Applications
Tan, Christine P.; Craighead, Harold G.
2010-01-01
Parylene is a family of chemically vapour deposited polymer with material properties that are attractive for biomedicine and nanobiotechnology. Chemically inert parylene “peel-off” stencils have been demonstrated for micropatterning biomolecular arrays with high uniformity, precise spatial control down to nanoscale resolution. Such micropatterned surfaces are beneficial in engineering biosensors and biological microenvironments. A variety of substituted precursors enables direct coating of functionalised parylenes onto biomedical implants and microfluidics, providing a convenient method for designing biocompatible and bioactive surfaces. This article will review the emerging role and applications of parylene as a biomaterial for surface chemical modification and provide a future outlook.
Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells.
Xie, Jian; Zhao, Cui-E; Lin, Zong-Qiong; Gu, Pei-Yang; Zhang, Qichun
2016-05-20
To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy-related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high-performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei
2016-01-01
Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents. PMID:27713563
Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion
NASA Astrophysics Data System (ADS)
Pantoja, M.; Encinas, N.; Abenojar, J.; Martínez, M. A.
2013-09-01
Polypropylene is one of the most used polymers due to its lightweight and recyclability properties, among others. However, its poor characteristics regarding surface energy and lack of polar functional groups have to be overcome to perform adhesion processes. The main objective of this work is to improve the adhesion behavior of polypropylene by combining atmospheric pressure plasma surface activation and silane adhesion promoter. Tetraethoxysilane hydrolysis and condensation are followed through infrared spectroscopy by attenuated total reflectance in order to set the coating conditions. Contact angle measurements and surface energy calculations as well as infrared and X-ray photoelectron spectroscopy are used to evaluate polymer chemical modifications. Morphological changes are studied through scanning electron and atomic force microscopy. Results show the ability of plasma treatment to create active oxydised functional groups on the polypropylene surface. These groups lead to a proper wetting of the polymer by the silane. Shear strength of single-lap bonding of polypropylene with a polyurethane adhesive suffers a significant improvement when the silane coating is applied on previously plasma activated samples. It has been also demonstrated that the silane curing conditions play a decisive role on the adhesion response. Finally, the stability of the silane solution is tested up to 30 days, yielding diminished but still acceptable adhesion strength values.
Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.
2016-01-01
The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791
NASA Astrophysics Data System (ADS)
Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.
2016-03-01
The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.
Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W
2016-03-09
The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.
Use of radiation in biomaterials science
NASA Astrophysics Data System (ADS)
Benson, Roberto S.
2002-05-01
Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.
Surface Treatment on Physical Properties and Biocompatibility of Orthodontic Power Chains
Cheng, H. C.; Chen, M. S.; Peng, B. Y.; Lin, W. T.; Wang, Y. H.
2017-01-01
The conventional orthodontic power chain, often composed of polymer materials, has drawbacks such as a reduction of elasticity owing to water absorption as well as surface discoloration and staining resulting from food or beverages consumed by the patient. The goal of this study was to develop a surface treatment (nanoimprinting) for orthodontic power chains and to alleviate their shortcomings. A concave template (anodic alumina) was manufactured by anodization process using pure aluminum substrate by employing the nanoimprinting process. Convex nanopillars were fabricated on the surface of orthodontic power chains, resulting in surface treatment. Distinct parameters of the nanoimprinting process (e.g., imprinting temperature, imprinting pressure, imprinting time, and demolding temperature) were used to fabricate nanopillars on the surface of orthodontic power chains. The results of this study showed that the contact angle of the power chains became larger after surface treatment. In addition, the power chains changed from hydrophilic to hydrophobic. The power chain before surface treatment without water absorption had a water absorption rate of approximately 4%, whereas a modified chain had a water absorption rate of approximately 2%–4%. Furthermore, the color adhesion of the orthodontic power chains after surface modification was less than that before surface modification. PMID:28540299
NASA Astrophysics Data System (ADS)
Oehrlein, Gottlieb; Luan, Pingshan; Knoll, Andrew; Kondeti, Santosh; Bruggeman, Peter
2016-09-01
An Ar/O2/H2O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H2O in the feed gas and/or present in the N2, O2, or N2/O2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O2 or H2O admixture to Ar enhances polymer etching, simultaneous addition of O2 and H2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO2 in the gas phase. Results where O2 and/or H2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature. We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).
Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R
2015-07-06
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.
Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R.
2015-01-01
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed. PMID:26109634
NASA Astrophysics Data System (ADS)
Kamgang, J. O.; Naitali, M.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Brisset, J.-L.; Briandet, R.
2009-04-01
This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafluoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested.
NASA Astrophysics Data System (ADS)
Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng
2016-01-01
Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.
Parizek, Martin; Slepickova Kasalkova, Nikola; Bacakova, Lucie; Bacakova, Marketa; Lisa, Vera; Svorcik, Vaclav
2013-01-01
The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted. PMID:23586032
Parizek, Martin; Slepickova Kasalkova, Nikola; Bacakova, Lucie; Svindrych, Zdenek; Slepicka, Petr; Bacakova, Marketa; Lisa, Vera; Svorcik, Vaclav
2013-01-01
The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar(+) plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.
Nonthrombogenic, biodegradable elastomeric polyurethanes with variable sulfobetaine content.
Ye, Sang-Ho; Hong, Yi; Sakaguchi, Hirokazu; Shankarraman, Venkat; Luketich, Samuel K; D'Amore, Antonio; Wagner, William R
2014-12-24
For applications where degradable polymers are likely to have extended blood contact, it is often important for these materials to exhibit high levels of thromboresistance. This can be achieved with surface modification approaches, but such modifications may be transient with degradation. Alternatively, polymer design can be altered such that the bulk polymer is thromboresistant and this is maintained with degradation. Toward this end a series of biodegradable, elastic polyurethanes (PESBUUs) containing different zwitterionic sulfobetaine (SB) content were synthesized from a polycaprolactone-diol (PCL-diol):SB-diol mixture (100:0, 75:25, 50:50, 25:75 and 0:100) reacted with diisocyanatobutane and chain extended with putrescine. The chemical structure, tensile mechanical properties, thermal properties, hydrophilicity, biodegradability, fibrinogen adsorption and thrombogenicity of the resulting polymers was characterized. With increased SB content some weakening in tensile properties occurred in wet conditions and enzymatic degradation also decreased. However, at higher zwitterionic molar ratios (50% and 75%) wet tensile strength exceeded 15 MPa and breaking strain was >500%. Markedly reduced thrombotic deposition was observed both before and after substantial degradation for both of these PESBUUs and they could be processed by electrospinning into a vascular conduit format with appropriate compliance properties. The mechanical and degradation properties as well as the acute in vitro thrombogenicity assessment suggest that these tunable polyurethanes could provide options appropriate for use in blood contacting applications where a degradable, elastomeric component with enduring thromboresistance is desired.
Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide).
Vandorpe, J; Schacht, E; Stolnik, S; Garnett, M C; Davies, M C; Illum, L; Davis, S S
1996-10-05
The use of biodegradable derivatives of poly(organo phosphazenes) for the preparation of nanoparticles and their surface modification with the novel poly(ethylene oxide) derivative of poly(organo phosphazene) has been assessed using a range of in vitro characterization methods. The nanoparticles were produced by the precipitation solvent evaporation method from the derivative co-substituted with phenylalanine and glycine ethyl ester side groups. A reduction in particle size to less than 200 nm was achieved by an increase in pH of the preparation medium. The formation (and colloidal stability) of these nanoparticles seems to be controlled by two opposite effects: attractive hydrophobic interactions between phenylalanine ester groups and electrostatic repulsions arising from the carboxyl groups formed due to (partial) hydrolysis of the ester bond(s) at the high pH of the preparation medium. The poly[(glycine ethyl ester)phosphazene] derivative containing 5000-Da poly(ethylene oxide) as 5% of the side groups was used for the surface modification of nanoparticles. Adsorbed onto the particles, the polymer produced a thick coating layer of approximately 35 nm. The coated nanoparticles exhibited reduced surface negative potential and improved colloidal stability toward electrolyte-induced flocculation, relative to the uncoated system. However, the steric stabilization provided was less effective than that of a Poloxamine 908 coating. This difference in effectiveness of the steric stabilization might indicate that, although both the stabilizing polymers possess a 5000-Da poly(ethylene oxide) moiety, there is a difference in the arrangements of these poly(ethylene oxide) chains at the particle surface. (c) 1996 John Wiley & Sons, Inc.
Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation
NASA Astrophysics Data System (ADS)
Nordin, Nik Abdul Hadi Md; Ismail, Ahmad Fauzi; Misdan, Nurasyikin; Nazri, Noor Aina Mohd
2017-10-01
Tunability of metal-organic frameworks (MOFs) properties enables them to be tailored for specific applications. In this study, zeolitic imidazole framework 8 (ZIF-8), sub-class of MOF, underwent pre-synthesis and post-synthesis modifications. The pre-synthesis modification using GO (ZIF-8/GO) shows slight decrease in textural properties, while the post-synthesis modification using amine solution (ZIF-8/NH2) resulted in superior BET surface area and pore volume. Mixed matrix membranes (MMMs) derived from polysulfone (PSf) and the modified ZIF-8s were then prepared via dry/wet phase inversion. The polymer chain flexibility of the resulted MMMs shows rigidification, where ZIF-8/NH2 as filler resulting higher rigidification compared to ZIF-8/GO. The MMMs were further subjected to pure CO2 and CH4 gas permeation experiments. The PSf/ZIF-8/NH2 shows superior CO2/CH4 selectivity (88% increased) while sacrificing CO2 permeance due to combination of severe polymer chain rigidification and the presence of CO2-philic group, amine. Whereas, the PSf/ZIF-8/GO possess 64% increase in CO2 permeance without notable changes in CO2/CH4 selectivity.
NASA Astrophysics Data System (ADS)
Chung, C. K.; Hong, Y. Z.
2007-02-01
The effect of O2 plasma treatment on the surface property of exposed and unexposed SU8 photoresist has been investigated for the fabrication of a monolithic MEMS microstructure. It can solve the non-uniformity problem of second resist coating on the SU8 with high intrinsic shrinkage after exposure and post-exposure baking (PEB) in the fabrication of the stacked polymer-metal or polymer-polymer structure, which was used in the application of microfluid, bio and chemistry. The thickness difference of untreated SU8 before PEB between the exposed and unexposed SU8 was about 0.3% while that after PEB increased to about 6%. It could result in large non-uniformity of about 18 µm thickness difference for the following second resist coating on the hydrophobic surface without plasma treatment. The surface property of SU8 in terms of the contact angle and surface energy can be adjusted by O2 plasma treatment for enhancing the coating uniformity of the following resist. The measured contact angles of the exposed and unexposed SU8 decrease with O2 plasma time, corresponding to the increased surface energy determined by the Lifshitz-van der Waals/Lewis acid-base approach. It displayed that the similar hydrophilic surface property can minimize the thickness difference of second resist coating on the first shrunken SU8. A monolithic nozzle plate with a physical resolution of 600 dpi in a single column was demonstrated for an inkjet application based on the improved uniformity.
UV excimer laser and low temperature plasma treatments of polyamide materials
NASA Astrophysics Data System (ADS)
Yip, Yiu Wan Joanne
Polyamides have found widespread application in various industrial sectors, for example, they are used in apparel, home furnishings and similar uses. However, the requirements for high quality performance products are continually increasing and these promote a variety of surface treatments for polymer modification. UV excimer laser and low temperature plasma treatments are ideally suited for polyamide modification because they can change the physical and chemical properties of the material without affecting its bulk features. This project aimed to study the modification of polyamides by UV excimer laser irradiation and low temperature plasma treatment. The morphological changes in the resulting samples were analysed by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM-AFM). The chemical modifications were studied by x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and chemical force microscopy (CFM). Change in degree of crystallinity was examined by differential scanning calorimetry (DSC). After high-fluence laser irradiation, topographical results showed that ripples of micrometer size form on the fibre surface. By contrast, sub-micrometer size structures form on the polyamide surface when the applied laser energy is well below its ablation threshold. After high-fluence laser irradiation, chemical studies showed that the surface oxygen content of polyamide is reduced. A reverse result is obtained with low-fluence treatment. The DSC result showed no significant change in degree of crystallinity in either high-fluence or low-fluence treated samples. The same modifications in polyamide surfaces were studied after low temperature plasma treatment with oxygen, argon or tetrafluoromethane gas. The most significant result was that the surface oxygen content of polyamide increased after oxygen and argon plasma treatments. Both treatments induced many hydroxyl (-OH) and carboxylic acid (-COOH) functional groups, which increased water absorption. However, after tetrafluoromethane plasma treatment it was found that the -CF, -CF2 and -CF3 groups were introduced to the polyamide surface and this enhanced the hydrophobicity of the fabric. Suggested explanations are given of the mechanisms that produce the structure of the polyamide after the processes of laser irradiation (both high- and low-fluence) and plasma treatment. The fundamental approach used in modelling was considered the temperature profile of the material during the treatment. The development of high-fluence induced structures was caused by elevated temperatures in the subsurface volume and preexisting stress caused by fiber extrusion. The structure formation under LF laser irradiation was determined by thermal effect accompanied by the optical phenomenon of interference. Ripple structures formed by plasma were closely related to physical or chemical etching. Possible applications of plasma and laser technologies in the textile and clothing industries are considered. Oxygen plasma seems to be the best candidate to improve the wettability of the fabric, while tetrafluoromethane plasma can be applied to produce a water repellent surface. Surface treatments including CF4 plasma, high-fluence and low-fluence laser treatments produce a deeper color in disperse dyed fabrics using the same amount of dyestuff as chemicals like leveling agents and dyestuff can be reduced during the textile manufacturing process. UV laser and low temperature plasma modification processes are promising techniques for polymer/fabric surface modification and have industrial potential as they are environmentally friendly dry processes which do not involve any solvents.
NASA Astrophysics Data System (ADS)
Hirabayashi, Mieko; Mehta, Beejal; Vahidi, Nasim W.; Khosla, Ajit; Kassegne, Sam
2013-11-01
In this study, the investigation of surface-treatment of chemically inert graphitic carbon microelectrodes (derived from pyrolyzed photoresist polymer) for improving their attachment chemistry with DNA molecular wires and ropes as part of a bionanoelectronics platform is reported. Polymer microelectrodes were fabricated on a silicon wafer using standard negative lithography procedures with negative-tone photoresist. These microelectrode structures were then pyrolyzed and converted to a form of conductive carbon that is referred to as PP (pyrolyzed polymer) carbon throughout this paper. Functionalization of the resulting pyrolyzed structures was done using nitric, sulfuric, 4-amino benzoic acids (4-ABA), and oxygen plasma etching and the surface modifications confirmed with Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and electron dispersion x-ray spectroscopy (EDS). Post surface-treatment analysis of microelectrodes with FTIR and Raman spectroscopy showed signature peaks characteristics of carboxyl functional groups while EDS showed an increase in oxygen content in the surface-treatment procedures (except 4-ABA) indicating an increase in carboxyl functional group. These functional groups form the basis for peptide bond with aminated oligonucleotides that in turn could be used as molecular wires and interconnects in a bionanoelectronics platform. Post-pyrolysis analysis using EDS showed relatively higher oxygen concentrations at the edges and location of defects compared to other locations on these microelectrodes. In addition, electrochemical impedance measurements showed metal-like behavior of PP carbon with high conductivity (|Z| <1 KΩ) and no detectable detrimental effect of oxygen plasma surface-treatment on electrical characteristic. In general, characterization results—taken together—indicated that oxygen plasma surface-treatment produced more reliable, less damaging, and consistently repeatable generation of carboxyl functional groups than diazonium salt and strong acid treatments.
Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization.
Shi, Yingge; Zeng, Guanjian; Xu, Dazhuang; Liu, Meiying; Wang, Ke; Li, Zhen; Fu, Lihua; Zhang, Qingsong; Zhang, Xiaoyong; Wei, Yen
2017-11-01
Carbon nanotubes (CNTs) are a type of one-dimensional carbon nanomaterials that possess excellent physicochemical properties and have been potentially utilized for a variety of applications. Surface modification of CNTs with polymers is a general route to expand and improve the performance of CNTs and has attracted great research interest over the past few decades. Although many methods have been developed previously, most of these methods still showed some disadvantages, such as low efficiency, complex experimental procedure and harsh reaction conditions etc. In this work, we reported a practical and novel way to fabricate CNTs based polymer composites via the combination of mussel inspired chemistry and reversible addition fragmentation chain transfer (RAFT) polymerization. First, the amino group was introduced onto the surface of CNTs via self-polymerization of dopamine. Then, chain transfer agent can be immobilized on the amino groups functionalized CNTs to obtain CNT-PDA-CTA, which can be utilized for surface-initiated RAFT polymerization. A water soluble and biocompatible monomer poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) was adopted to fabricate pPEGMA functionalized CNTs through RAFT polymerization. The successful preparation of CNTs based polymer composites (CNT-pPEGMA) was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy in details. The CNT-pPEGMA showed good dispersibility and desirable biocompatibility, making them highly potential for biomedical applications. More importantly, a large number of CNTs based polymer composites could also be fabricated through the same strategy when different monomers were used due to the good monomer adaptability of RAFT polymerization. Therefore, this strategy should be a general method for preparation of various multifunctional CNTs based polymer composites. Copyright © 2017 Elsevier B.V. All rights reserved.
Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar
2016-04-13
Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field.
Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.
Wen, Gang; Guo, ZhiGuang; Liu, Weimin
2017-03-09
Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world; thus, it is necessary to optimize the performances of such materials to yield durable superhydrophobic surfaces. To sum up, some challenges and perspectives regarding the future research and development of polymeric superhydrophobic surfaces are presented.
NASA Astrophysics Data System (ADS)
Labay, C.; Canal, J. M.; Navarro, A.; Canal, C.
2014-10-01
Cosmetic and medical applications of technical textiles are a research expanding field. One of the added values of these new materials would be that they are suitable to contain and release active ingredients in a controlled manner. The influence of the initial state of the surface of polyamide 6.6 (PA66) fibers on the wetting properties of the fibers as well as on the incorporation of caffeine on the fibers and on its release kinetics from the fibers has been investigated. Comparison between industrially-finished PA66 fabrics and laboratory washed fabrics has been done to carry out this study. Furthermore, surface modification of the PA66 fibers by low temperature plasma has been studied regarding the modification of the physical, chemical and topographical properties of the textile fibers. Corona plasma treatment has been investigated to achieve surface modification in the first nanometers of polymer fibers surface in order to modulate the incorporation and the release of caffeine. It has been demonstrated that both initial state of the PA66 surface and prior plasma treatment of the PA66 fibers before the active principle incorporation condition caffeine release kinetics from the textile fibers. The final release percentage increases linearly with the C-O and Cdbnd O functional groups incorporated by plasma on the surface. It has also been established that the release amounts of caffeine achieved after 8 h from the PA66 fabric are in the same order of magnitude than topical doses of commercial gel-based formulations.
Surface modifications for antimicrobial effects in the healthcare setting: a critical overview.
Adlhart, C; Verran, J; Azevedo, N F; Olmez, H; Keinänen-Toivola, M M; Gouveia, I; Melo, L F; Crijns, F
2018-02-02
The spread of infections in healthcare environments is a persistent and growing problem in most countries, aggravated by the development of microbial resistance to antibiotics and disinfectants. In addition to indwelling medical devices (e.g. implants, catheters), such infections may also result from adhesion of microbes either to external solid-water interfaces such as shower caps, taps, drains, etc., or to external solid-gas interfaces such as door handles, clothes, curtains, computer keyboards, etc. The latter are the main focus of the present work, where an overview of antimicrobial coatings for such applications is presented. This review addresses well-established and novel methodologies, including chemical and physical functional modification of surfaces to reduce microbial contamination, as well as the potential risks associated with the implementation of such anticontamination measures. Different chemistry-based approaches are discussed, for instance anti-adhesive surfaces (e.g. superhydrophobic, zwitterions), contact-killing surfaces (e.g. polymer brushes, phages), and biocide-releasing surfaces (e.g. triggered release, quorum sensing-based systems). The review also assesses the impact of topographical modifications at distinct dimensions (micrometre and nanometre orders of magnitude) and the importance of applying safe-by-design criteria (e.g. toxicity, contribution for unwanted acquisition of antimicrobial resistance, long-term stability) when developing and implementing antimicrobial surfaces. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
UV resistance and dimensional stability of wood modified with isopropenyl acetate.
Nagarajappa, Giridhar B; Pandey, Krishna K
2016-02-01
Chemical modification of Rubberwood (Hevea brasiliensis Müll.Arg) with isopropenyl acetate (IPA) in the presence of anhydrous aluminum chloride as a catalyst has been carried out under solvent free conditions. The level of modification was estimated by determining the weight percent gain and modified wood was characterized by FTIR-ATR and CP/MAS (13)C NMR spectroscopy. The effect of catalyst concentration on WPG was studied. UV resistance, moisture adsorption and dimensional stability of modified wood were evaluated. UV resistance of modified wood was evaluated by exposing unmodified and modified wood to UV irradiation in a QUV accelerated weathering tester. Unmodified wood showed rapid color changes and degradation of lignin upon exposure to UV light. Chemical modification of wood polymers with IPA was effective in reducing light induced color changes (photo-yellowing) at wood surfaces. In contrast to unmodified wood, modified wood exhibited bleaching. FTIR analysis of modified wood exposed to UV light indicated stabilization of wood polymers against UV degradation. Modified wood showed good dimensional stability and hydrophobicity. Thermogravimetric analysis showed that modification with IPA improved thermal stability of wood. Improved dimensional stability and UV resistance of modified wood indicates IPA as a promising reagent since there is no acid byproduct of reaction as observed in case of other esterification reactions. Copyright © 2015 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2013-09-01
Nationwide traffic loads are increasing, pushing conventional asphalt to its limit. In New Jersey matters are made : worse by the heavy use of the Northeast Corridor. Polymer modification of asphalt, which can improve both low and high : performance,...
Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk
2017-01-01
The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer–solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment. PMID:28772733
Effect of cellulose nanocrystals on crystallization kinetics of polycaprolactone
NASA Astrophysics Data System (ADS)
Migler, Kalman; Roy, Debjani; Kotula, Anthony; Natarajan, Bharath; Gilman, Jeffrey; Fox, Douglas
The development of biocompatible polymer composites that enhance mechanical properties while maintaining thermoplastic processability is a longstanding goal in sustainable materials. Here we compatibilize a crystallizable polymer and a nano-fiber via surface modification and study the properties and crystallization kinetics of the resulting composite. First we demonstrate that polycaprolactone (PCL) and cellulose nanocrystals (CNCs) can be well-compatibilized by replacing the Na+ of sulfated cellulose nanocrystals (Na-CNCs) with tertiary butyl ammonium cations and then melt mixing via twin-screw extrusion. Transmission electron microscope and high temperature melt rheology show that the modified CNCs were dispersed in the polymer matrix. We find the crystallization kinetics are substantially affected by the CNC as indicated by the simultaneous measures of modulus and conformational states; higher loadings of CNCs accelerated the kinetics. We further correlate the crystallization kinetics, mechanical properties and stability.
Non-Fouling Biodegradable Poly(ϵ-caprolactone) Nanofibers for Tissue Engineering.
Kostina, Nina Yu; Pop-Georgievski, Ognen; Bachmann, Michael; Neykova, Neda; Bruns, Michael; Michálek, Jiří; Bastmeyer, Martin; Rodriguez-Emmenegger, Cesar
2016-01-01
Poly(ϵ-caprolactone) (PCL) nanofibers are very attractive materials for tissue engineering (TE) due to their degradability and structural similarity to the extracellular matrix (ECM). However, upon exposure to biological media, their surface is rapidly fouled by proteins and cells, which may lead to inflammation and foreign body reaction. In this study, an approach for the modification of PCL nanofibers to prevent protein fouling from biological fluids and subsequent cell adhesion is introduced. A biomimetic polydopamine (PDA) layer was deposited on the surface of the PCL nanofibers and four types of antifouling polymer brushes were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) from initiator moieties covalently attached to the PDA layer. Cell adhesion was assessed with mouse embryonic fibroblasts (MEFs). MEFs rapidly adhered and formed cell-matrix adhesions (CMAs) with PCL and PCL-PDA nanofibers. Importantly, the nanofibers modified with antifouling polymer brushes were able to suppress non-specific protein adsorption and thereby cell adhesion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jiang, Tao; Wang, Xiaolong; Zhou, Jun
2017-12-01
A facial two-step reduction method was proposed to synthesize four-layer gold-silver-polymer-silver (Au@Ag@PSPAA@Ag) core-shell nanomushrooms (NMs) with inbuilt Raman molecule. The surface-enhanced Raman scattering (SERS) intensity of 4MBA adhered on the surface of Au core gradually increased with the modification of middle Ag shell and then Ag mushroom cap due to the formation of two kinds of ultra-small interior nanogap. Compared with the initial Au nanoparticles, the SERS enhancement ratio of the Au@Ag@PSPAA@Ag NMs approached to nearly 40. The novel core-shell NMs also exhibited homogeneous SERS signals for only one sample and reproducible signals for 10 different samples, certified by the low relative standard deviation values of less than 10% and 15% for the character peaks of 4-mercaptobenzoic acid, respectively. Such a novel four-layer core-shell nanostructure with reliable SERS performance has great potential application in quantitative SERS-based immunoassay.
Takaku, Yasuharu; Suzuki, Hiroshi; Ohta, Isao; Ishii, Daisuke; Muranaka, Yoshinori; Shimomura, Masatsugu; Hariyama, Takahiko
2013-01-01
Most multicellular organisms can only survive under atmospheric pressure. The reduced pressure of a high vacuum usually leads to rapid dehydration and death. Here we show that a simple surface modification can render multicellular organisms strongly tolerant to high vacuum. Animals that collapsed under high vacuum continued to move following exposure of their natural extracellular surface layer (or that of an artificial coat-like polysorbitan monolaurate) to an electron beam or plasma ionization (i.e., conditions known to enhance polymer formation). Transmission electron microscopic observations revealed the existence of a thin polymerized extra layer on the surface of the animal. The layer acts as a flexible “nano-suit” barrier to the passage of gases and liquids and thus protects the organism. Furthermore, the biocompatible molecule, the component of the nano-suit, was fabricated into a “biomimetic” free-standing membrane. This concept will allow biology-related fields especially to use these membranes for several applications. PMID:23589878
PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles
Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey
2016-01-01
Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging. PMID:23855734
The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review
Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia
2014-01-01
Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086
NASA Astrophysics Data System (ADS)
Ferreira, F. V.; Mariano, M.; Rabelo, S. C.; Gouveia, R. F.; Lona, L. M. F.
2018-04-01
This work presents the isolation and functionalization of cellulose nanocrystals (CNCs) extracted from sugarcane bagasse (SCB). CNCs were obtained by acid hydrolysis of bleached bagasse pulp and functionalized with adipic acid. The results showed that unmodified CNCs exhibit both a high crystallinity index and a significant aspect ratio. Surface modification with adipic acid decreases the nanocrystal dimensions due to removal of the amorphous region between the crystalline domains and also changes the electrostatic repulsion and hydrophilic affinity of CNCs. Unmodified CNCs offer potential applications as reinforcing phase in hydrophilic polymeric matrices, while modified CNCs interact better with hydrophobic matrices. The use of CNCs as reinforcement in polymer nanocomposites expands the application of this renewable material and increases its added value, providing nonenergy-based markets for the main biomass of the sugarcane industry.
Pauly, Anja C; Schöller, Katrin; Baumann, Lukas; Rossi, René M; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F; Scherer, Lukas J
2015-01-01
The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET–ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing. PMID:27877791
NASA Astrophysics Data System (ADS)
Pauly, Anja C.; Schöller, Katrin; Baumann, Lukas; Rossi, René M.; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F.; Scherer, Lukas J.
2015-06-01
The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET-ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing.
Reactive Diazonium-Modified Silica Fillers for High-Performance Polymers.
Sandomierski, Mariusz; Strzemiecka, Beata; Chehimi, Mohamed M; Voelkel, Adam
2016-11-08
We describe a simple way of modification of three silica-based fillers with in situ generated 4-hydroxymethylbenzenediazonium salt ( + N 2 -C 6 H 4 -CH 2 OH). The rationale for using a hydroxyl-functionalized diazonium salt is that it provides surface-functionalized fillers that can react with phenolic resins. The modification of silica by diazonium salts was assessed using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy permitted the tracking of benzene ring breathing and C-C. The absence of the characteristic N≡N stretching vibration in the 2200-2300 cm -1 range indicates the loss of the diazonium group. XPS results indicate a higher C/Si atomic ratio after the diazonium modification of fillers and the presence of π-π* C1s satellite peaks characteristic of the surface-tethered aromatic species. Adhesion of aryl layers to the silicas is excellent because they withstand harsh thermal and organic solvent treatments. Phenolic resins (used, for example, as binders in abrasive products) were filled with diazonium-modified silicas at 10-25 wt %. The reactivity of the fillers toward phenolic resins was evaluated by the determination of the flow distance. After annealing at 180 °C, the diazonium-modified silica/phenolic resin composites were mechanically tested using the three-point flexural method. The flexural strength was found to be up to 35% higher than that of the composites prepared without any diazonium salts. Diazonium-modified silica with surface-bound -CH 2 -OH groups is thus ideal reactive filler for phenolic resins. Such filler ensures interfacial chemical reactions with the matrix and imparts robust mechanical properties to the final composites. This specialty diazonium-modified silica will find potential application as fillers in the composites for the abrasive industry. More generally, aryl diazonium salts are a unique new series of compounds for tailoring the surface properties of fillers and tuning the physicochemical and mechanical properties of polymer composites.
Recent studies of laser science in paintings conservation and research.
Pouli, Paraskevi; Selimis, Alexandros; Georgiou, Savas; Fotakis, Costas
2010-06-15
The removal of aged and deteriorated molecular overlayers from the surface of paintings is a delicate and critical intervention in Cultural Heritage (CH) conservation. This irreversible action gets particularly complicated given the multitude of materials that may be present within a painted work of art (often in ultrathin layers or traces), as well as the exceptional sensitivity of the original surfaces to environmental conditions such as heat, light, and so on. Lasers hold an important role among the available cleaning methodologies, as they enable high control and accuracy, material selectivity, and immediate feedback. Still, prior to their implementation, it is imperative to optimize the cleaning parameters, so to ensure that any potential implications to the remaining materials are minimal and well understood. Toward this aim, research at IESL-FORTH is focused on both refining and continuously updating the laser-cleaning protocols (by introducing novel laser technologies into the field, i.e., ultrashort laser pulses), as well as on investigating and studying the nature and extent of laser-induced physicochemical alterations to the involved materials. In this Account, extended work for the understanding of ultraviolet (UV) laser ablation of polymers is presented. Emphasis is placed on the use of model systems (polymers doped with chromophores of known photochemistry) to examine the in-depth laser-induced modifications at the processed surfaces and thus to illustrate the dependence of their nature and extent on laser parameters and material properties. Furthermore, studies for the potential use of femtosecond UV pulses to overcome certain limitations involved with the nanosecond ablation of molecular overlayers from CH surfaces are highlighted. In particular, it is demonstrated that in the femtosecond regime any chemical modifications are, qualitatively and quantitatively, highly defined, limited and nearly independent of the material properties, such as the absorptivity and the degree of polymerization/molecular weight. Thus, they can be highly potent in the treatment of molecular substrates, enabling new material processing schemes that have not been possible with nanosecond laser technology, as for example, processing of ultrathin varnish layers. Finally, a sensitive indicator is introduced to elucidate the extent of any photochemical or structural modification induced at the substrate on the process of the laser-assisted removal of overpaints. A realistic scenario of an overlayered modern painting is simulated by a sensitive polymer film covered with acrylic paint. The indicator is doped with photosensitizers of known photochemistry and strong fluorescence emission, which allow the employment of laser induced fluorescence (LIF) for the detection of any chemical modifications generated into the substrate during laser cleaning. In addition, nonlinear microscopy techniques are successfully employed to examine the extent of these modifications. The suggested methodology is proven to reliably and accurately detect potential changes, and thus, it can serve as a monitoring tool to fine-tune the cleaning protocol and safeguard the original painting.
Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H
2002-01-01
A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.
[Characteristics of tenocyte adhesion to biologically-modified surface of polymer].
Qin, Tingwu; Yang, Zhiming; Xie, Huiqi; Li, Hong; Qin, Jian; Wu, Zezhi; Xu, Shirong; Cai, Shaoxi
2002-12-01
In this study we examined the in vitro characteristics of tenocyte adhesion to biologically-modified surface of polymer. Polylactic-co-glycolic acid (PLGA) 85/15 films were prepared by a solvent-casting technique. Each film was adhered onto the bottom of a chamber. The film was precoated with poly-D-lysine (PDL), and then coated with serum-free F12 medium containing various concentrations of fibronectin (FN), type I collagen (CN I), and insulin-like growth factor1 (IGF-1). The monoclonal antibodies (to FN and to CN I) with various dilutions were used to inhibit attachment of tenocytes to surface precoated with FN or CN I. Human embryonic tendon cells (HETCs) and transformed human embryonic tendon cells (THETCs) were used as the seeding cells. The system used for the measurement of adhesion force was the micropipette aspiration experiment system. The micropipette was manipulated to aspirate a small portion of the tenocyte body by using a small aspiration pressure. Then the pipette was pulled away from the adhesion area by micromanipulation. The minimum force required to detach the tenocyte from the substrate was defined as the adhesion force. The results showed that modification of FN or CN I by precoating significantly enhanced attachment of tenocytes to surface of polymer (P < 0.05). As antibodies to FN or CN I were added to a polymer film precoated with FN or CN I, the adhesion force decreased significantly (P < 0.05). We concluded that the specific adhesion forces of tenocytes to extracellular matrix adhesion proteins (FN and CN I) had coordinated action and showed good dependence on their precoating concentrations, and were inhibited by the antibodies to these adhesion proteins. Films precoated with IGF-1 strongly accelerated the adhesion of tenocytes to polymer. These results indicate that the specific adhesion of tenocytes to polymer can be promoted by coating extracellular matrix adhesive proteins and insulin-like growth factor1. It is of great importance to construct tissue-engineered tendon.
Cheng, Chen; Guironnet, Damien; Barborak, James; Brookhart, Maurice
2011-06-29
Conjugated polymers possessing a poly(2,5-dimethylene-2,5-dihydrofuran) backbone were prepared through postpolymerization reaction of styrenic polyketones with bromine in one-pot reactions. The modification is proposed to proceed via condensation of two repeating units to form a fully characterized polymer with a poly(2,5-dimethylenetetrahydrofuran) backbone. Subsequent bromination and elimination of HBr yield a polymer with a fully conjugated carbon backbone. The new conjugated polymers were characterized by NMR, IR, and UV-vis spectroscopies and by CV. These polymers have strong absorption in the visible region, with the absorption peaks shifted to the NIR region upon doping with acids. The ease of the synthesis of the starting polyketone and of the modifications allows large-scale preparation of those conjugated polymers.
Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances.
Desai, Kashappa Goud
2016-01-01
The objective of this review is to summarize recent advances in chitosan nanoparticles prepared by ionotropic gelation. Significant progress has occurred in this area since the method was first reported. The gelation technique has been improved through a number of creative methodological modifications. Ionotropic gelation via electrospraying and spinning disc processing produces nanoparticles with a more uniform size distribution. Large-scale manufacturing of the nanoparticles can be achieved with the latter approach. Hydrophobic and hydrophilic drugs can be simultaneously encapsulated with high efficiency by emulsification followed by ionic gelation. The turbulent mixing approach facilitates nanoparticle formation at a relatively high polymer concentration (5 mg/mL). The technique can be easily tuned to achieve the desired polymer/surface modifications (e.g., blending, coating, and surface conjugation). Using factorial-design-based approaches, optimal conditions for nanoparticle formation can be determined with a minimum number of experiments. New insights have been gained into the mechanism of chitosan-tripolyphosphate nanoparticle formation. Chitosan nanoparticles prepared by ionotropic gelation tend to aggregate/agglomerate in unfavorable environments. Factors influencing this phenomenon and strategies that can be adopted to minimize the instability are discussed. Ionically cross-linked nanoparticles based on native chitosan and modified chitosan have shown excellent efficacy for controlled and targeted drug-delivery applications.
Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".
Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie
2014-01-01
Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.
Li, Zhiqi; Liu, Chunyu; Zhang, Xinyuan; Li, Shujun; Zhang, Xulin; Guo, Jiaxin; Guo, Wenbin; Zhang, Liu; Ruan, Shengping
2017-09-20
Recent advances in the interfacial modification of inverted-type polymer solar cells (PSCs) have resulted from controlling the surface energy of the cathode-modified layer (TiO 2 or ZnO) to enhance the short-circuit current (J sc ) or optimizing the contact morphology of the cathode (indium tin oxide or fluorine-doped tin oxide) and active layer to increase the fill factor. Herein, we report that the performance enhancement of PSCs is achieved by incorporating a donor macromolecule copper phthalocyanine (CuPc) as an anode modification layer. Using the approach based on orienting the microstructure evolution, uniformly dispersed island-shaped CuPc spot accumulations are built on the top of PTB7:PC 71 BM blend film, leading to an efficient spectral absorption and photogenerated exciton splitting. The best power conversion efficiency of PSCs is increased up to 9.726%. In addition to the enhanced light absorption, the tailored anode energy level alignment and optimized boundary morphology by incorporating the CuPc interlayer boost charge extraction efficiency and suppress the interfacial molecular recombination. These results demonstrate that surface morphology induction through molecular deposition is an effective method to improve the performance of PSCs, which reveals the potential implications of the interlayer between the organic active layer and the electrode buffer layer.
Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”
Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie
2014-01-01
Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022
Biju, Vasudevanpillai
2014-02-07
As prepared nanomaterials of metals, semiconductors, polymers and carbon often need surface modifications such as ligand exchange, and chemical and bioconjugate reactions for various biosensor, bioanalytical, bioimaging, drug delivery and therapeutic applications. Such surface modifications help us to control the physico-chemical, toxicological and pharmacological properties of nanomaterials. Furthermore, introduction of various reactive functional groups on the surface of nanomaterials allows us to conjugate a spectrum of contrast agents, antibodies, peptides, ligands, drugs and genes, and construct multifunctional and hybrid nanomaterials for the targeted imaging and treatment of cancers. This tutorial review is intended to provide an introduction to newcomers about how chemical and bioconjugate reactions transform the surface of nanomaterials such as silica nanoparticles, gold nanoparticles, gold quantum clusters, semiconductor quantum dots, carbon nanotubes, fullerene and graphene, and accordingly formulate them for applications such as biosensing, bioimaging, drug and gene delivery, chemotherapy, photodynamic therapy and photothermal therapy. Nonetheless, controversial reports and our growing concerns about toxicity and pharmacokinetics of nanomaterials suggest the need for not only rigorous in vivo experiments in animal models but also novel nanomaterials for practical applications in the clinical settings. Further reading of original and review articles cited herein is necessary to buildup in-depth knowledge about the chemistry, bioconjugate chemistry and biological applications of individual nanomaterials.
Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples
Veerapandian, Murugan; Seo, Yeong-Tai; Shin, Hyunkyung; Yun, Kyusik; Lee, Min-Ho
2012-01-01
A novel clinical glucose biosensor fabricated using functionalized metalloid-polymer (silver-silica coated with polyethylene glycol) hybrid nanoparticles on the surface of a graphene oxide nanosheet is reported. The cyclic voltammetric response of glucose oxidase modification on the surface of a functionalized graphene oxide electrode showed a surface-confined reaction and an effective redox potential near zero volts, with a wide linearity of 0.1–20 mM and a sensitivity of 7.66 μA mM−1 cm−2. The functionalized graphene oxide electrode showed a better electrocatalytic response toward oxidation of H2O2 and reduction of oxygen. The practical applicability of the functionalized graphene oxide electrode was demonstrated by measuring the peak current against multiple urine and serum samples from diabetic patients. This new hybrid nanoarchitecture combining a three-dimensional metalloid-polymer hybrid and two-dimensional graphene oxide provided a thin solid laminate on the electrode surface. The easy fabrication process and retention of bioactive immobilized enzymes on the functionalized graphene oxide electrode could potentially be extended to detection of other biomolecules, and have broad applications in electrochemical biosensing. PMID:23269871
Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples.
Veerapandian, Murugan; Seo, Yeong-Tai; Shin, Hyunkyung; Yun, Kyusik; Lee, Min-Ho
2012-01-01
A novel clinical glucose biosensor fabricated using functionalized metalloid-polymer (silver-silica coated with polyethylene glycol) hybrid nanoparticles on the surface of a graphene oxide nanosheet is reported. The cyclic voltammetric response of glucose oxidase modification on the surface of a functionalized graphene oxide electrode showed a surface-confined reaction and an effective redox potential near zero volts, with a wide linearity of 0.1-20 mM and a sensitivity of 7.66 μA mM(-1) cm(-2). The functionalized graphene oxide electrode showed a better electrocatalytic response toward oxidation of H(2)O(2) and reduction of oxygen. The practical applicability of the functionalized graphene oxide electrode was demonstrated by measuring the peak current against multiple urine and serum samples from diabetic patients. This new hybrid nanoarchitecture combining a three-dimensional metalloid-polymer hybrid and two-dimensional graphene oxide provided a thin solid laminate on the electrode surface. The easy fabrication process and retention of bioactive immobilized enzymes on the functionalized graphene oxide electrode could potentially be extended to detection of other biomolecules, and have broad applications in electrochemical biosensing.
Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng
2014-11-12
Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.
Surface tension mediated conversion of light to work
Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J
2014-12-02
Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.
Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles
NASA Astrophysics Data System (ADS)
Miniewicz, A.; Tomkowicz, M.; Karpinski, P.; Sznitko, L.; Mossety-Leszczak, B.; Dutkiewicz, M.
2015-07-01
Hybrid inorganic-organic nanoparticles based on cubic siloxane cage (RSiO3/2)8, known as polyhedral oligosilsesquioxane (POSS), have been functionalized by eight groups of azo-benzene mesogens and dispersed in poly(methyl methacrylate) PMMA matrix. Presence of azo-benzene units adds an important light-driven functionality to the system due to their photoisomerization resulting in refractive index and/or absorption changes of the whole system. The polymer films containing various concentrations of azo-POSS nanoparticles show remarkable changes of surface morphology being either transparent (at low POSS concentration) or highly scattering (at high POSS concentration) for visible light. Surface structures were examined by optical microscopy as well as by atomic force microscopy (AFM). Results of photoinduced alignment are discussed in the framework of light-induced modification of the aliphatic chains containing azo-benzene photoisomerizing moieties and self-organization process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Ying; Wang, Bing; Yi, Yong
2013-09-15
The effect of surface Mo coating on the high-current electron emission performances for polymer velvet cathode has been investigated in a diode with A-K gap of 11.5 cm by the combination of time-resolved electrical diagnostic and temporal pressure variation. Compared with uncoated polymer velvet cathode under the single-pulsed emission mode, the Mo-coated one shows lower outgassing levels (∼0.40 Pa L), slower cathode plasma expansion velocity (∼2.30 cm/μs), and higher emission stability as evidences by the change in cathode current, temporal pressure variation, and diode perveance. Moreover, after Mo coating, the emission consistency of the polymer velvet cathode between two adjacentmore » pulses is significantly improved in double-pulsed emission mode with ∼500 ns interval between two pulses, which further confirms the effectiveness of Mo coating for enhancement of electron emission performance of polymer velvet cathodes. These results should be of interest to the high-repetitive high-power microwave systems with cold cathodes.« less
Fenoy, Gonzalo E; Giussi, Juan M; von Bilderling, Catalina; Maza, Eliana M; Pietrasanta, Lía I; Knoll, Wolfgang; Marmisollé, Waldemar A; Azzaroni, Omar
2018-05-15
We present the covalent modification of a Pani-like conducting polymer (polyaminobenzylamine, PABA) by grafting of a polyelectrolyte brush (poly [2-(methacryloyloxy)-ethyl-trimethylammonium chloride], PMETAC). As PABA has extra pendant amino moieties, the grafting procedure does not affect the backbone nitrogen atoms that are implicated in the electronic structure of the conducting polymers. Moreover, perchlorate anions interact very strongly with the quaternary ammonium pendant groups of PMETAC through ion pairing. Therefore, the grafting does not only keep the electroactivity of PABA in aqueous solutions but it adds the ion-actuation properties of the PMETAC brush to the modified electrode as demonstrated by contact angle measurements and electrochemical methods. In this way, the conjugation of the electron transfer properties of the conducting polymer with the anion responsiveness of the integrated brush renders perchlorate actuation of the electrochemical response. These results constitute a rational integration of nanometer-sized polymer building blocks that yields synergism of functionalities and illustrate the potentialities of nanoarchitectonics for pushing the limits of soft material science into the nanoworld. Copyright © 2018 Elsevier Inc. All rights reserved.
Cowieson, D; Piletska, E; Moczko, E; Piletsky, S
2013-08-01
An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.
A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs.
Li, Qianwen; Cai, Tiange; Huang, Yinghong; Xia, Xi; Cole, Susan P C; Cai, Yu
2017-05-27
Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid-polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core-shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs', PNPs', and PLNs' structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system.
A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs
Li, Qianwen; Cai, Tiange; Huang, Yinghong; Xia, Xi; Cole, Susan P. C.; Cai, Yu
2017-01-01
Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid–polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core–shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs’, PNPs’, and PLNs’ structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system. PMID:28554993
Quantitative fabrication of functional polymer surfaces
NASA Astrophysics Data System (ADS)
Rengifo, Hernan R.
Polymeric surfaces and films have very broad applications in industry. They have been employed as anticorrosive, abrasive and decorative coatings for many years. More recently, the applications of functional polymer films in microelectronics, optics, nanocomposites, DNA microarrays, and enzyme immobilizations has drawn a lot of attention. There are a number of challenges associated with the implementation of functional polymeric surfaces, and these challenges are especially important in the field of surface modification. In this thesis, three different challenges in the field of polymeric functional surfaces are addressed: first of all, a set of rules for the molecular design are presented in chapters 3 and 4 according to the surface needs. Second, some latent energy source must be incorporated into the material design to quantitative modify a surface. Third, the morphology of the surface, the method use to fabricate the design surface and their new applications are presented in chapters 4 and 5. The new polymeric surface functionalization method described in Chapter 3 is based upon an end-functionalized diblock copolymer design to self-assemble at the surface of both hard and soft surfaces. It is demonstrated that alkyne end-functional diblock copolymers can be used to provide precise control over areal densities of reactive functionality. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The modified surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. In Chapter 4, a simple means is demonstrated to covalently bond DNA to polymer-modified substrates; the method provides quantitative control of the DNA areal density. The approach is based upon synthesis of an alkyne-end-functional diblock copolymer alpha-alkyne-o-Br-poly(tBA- b-MMA). The block copolymer self-assembles to form a bilayer on the substrate and directs alkyne groups to the surface. Azido-functionalized DNA is immobilized on alkyne functionalized substrates by a "click" reaction. The density of immobilized DNA can be quantitatively controlled by varying the parameters used for spin-coating the polymer film or by adjusting the hydrophilicity of the polymer surface underlying the reactive alkyne functional groups. In Chapter 5, Layer by layer (LbL) assembly techniques construct multilayer thin films by sequential deposition of monomolecular layers of organic molecules. One of the drawbacks associated with their use is that monomolecular layers are usually held together by relatively weak forces such as Van der Waals, electrostatic and hydrogen bonding interactions, and can therefore be lacking in mechanical integrity. In this chapter, it is demonstrated that heterobifunctional polymers, functionalized with one azide chain terminus and a protected alkyne group as the other chain terminus, constitute a powerful and versatile means for the covalent layer-by-layer (CLbL) assembly of thin polymer films. Each monomolecular polymer layer is covalently bound to both the preceding and following layers to produce a robust multilayer structure. Because the coupling chemistry used, "click" chemistry, is highly chemoselective, the layering process is virtually independent of the chemical nature of the polymer so that the constitution of each layer can be selected at will. Unlike other layer-by-layer deposition techniques, the layer thickness in CLbL is not equivalent to the diameter of the polymer chain, but is related to the polymer chain length and can be controlled by adjustment of either the polymer molecular weight or the areal density of surface alkyne groups.
Click Chemistry, a Powerful Tool for Pharmaceutical Sciences
Hein, Christopher D.; Liu, Xin-Ming; Wang, Dong
2008-01-01
Click chemistry refers to a group of reactions that are fast, simple to use, easy to purify, versatile, regiospecific, and give high product yields. While there are a number of reactions that fulfill the criteria, the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes has emerged as the frontrunner. It has found applications in a wide variety of research areas, including materials sciences, polymer chemistry, and pharmaceutical sciences. In this manuscript, important aspects of the Huisgen cycloaddition will be reviewed, along with some of its many pharmaceutical applications. Bioconjugation, nanoparticle surface modification, and pharmaceutical-related polymer chemistry will all be covered. Limitations of the reaction will also be discussed. PMID:18509602
Biodegradable soy protein isolate-based materials: a review.
Song, Fei; Tang, Dao-Lu; Wang, Xiu-Li; Wang, Yu-Zhong
2011-10-10
Recently, there is an increasing interest of using bio-based polymers instead of conventional petroleum-based polymers to fabricate biodegradable materials. Soy protein isolate (SPI), a protein with reproducible resource, good biocompatibility, biodegradability, and processability, has a significant potential in the food industry, agriculture, bioscience, and biotechnology. Up to now, several technologies have been applied to prepare SPI-based materials with equivalent or superior physical and mechanical properties compared with petroleum-based materials. The aim of this review is focused on discussion of the advantages and limitations of native SPI as well as the bulk and surface modification strategies for SPI. Moreover, some applications of SPI-based materials, especially for food preservation and packaging technology, were discussed.
Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer.
Bakhshi, Raheleh; Darbyshire, Arnold; Evans, James Eaton; You, Zhong; Lu, Jian; Seifalian, Alexander M
2011-08-01
Stent angioplasty is a successful treatment for arterial occlusion, particularly in coronary artery disease. The clinical communities were enthusiastic about the use of drug-eluting stents; however, these stents have a tendency to be a contributory factor towards late stage thrombosis, leading to mortality in a significant number of patients per year. This work presents an innovative approach in self-expanding coronary stents preparation. We developed a new nanocomposite polymer based on polyhedral oligomeric silsesquioxanes (POSS) and poly(carbonate-urea)urethane (PCU), which is an antithrombogenic and a non-biodegradable polymer with in situ endothelialization properties. The aim of this work is to coat a NiTi stent alloy with POSS-PCU. In prolonged applications in the human body, the corrosion of the NiTi alloy can result in the release of deleterious ions which leads to unwanted biological reactions. Coating the nitinol (NiTi) surface with POSS-PCU can enhance surface resistance and improve biocompatibility. Electrohydrodynamic spraying was used as the polymer deposition process and thus a few experiments were carried out to compare this process with casting. Prior to deposition the NiTi has been surface modified. The peel strength of the deposit was studied before and after degradation of the coating. It is shown that the surface modification enhances the peel strength by 300%. It is also indicated how the adhesion strength of the POSS-PCU coating changes post-exposure to physiological solutions comprised of hydrolytic, oxidative, peroxidative and biological media. This part of the study shows that the modified NiTi presents far greater resistance to decay in peel strength compared to the non-modified NiTi. Copyright © 2011 Elsevier B.V. All rights reserved.
Selective cell response on natural polymer bio-interfaces textured by femtosecond laser
NASA Astrophysics Data System (ADS)
Daskalova, A.; Trifonov, A.; Bliznakova, I.; Nathala, C.; Ajami, A.; Husinsky, W.; Declercq, H.; Buchvarov, I.
2018-02-01
This study reports on the evaluation of laser processed natural polymer-chitosan, which is under consideration as a biointerface used for temporary applications as skin and cartilage substitutes. It is employed for tissue engineering purposes, since it possesses a significant degree of biocompatibility and biodegradability. Chitosan-based thin films were processed by femtosecond laser radiation to enhance the surface properties of the material. Various geometry patterns were produced on polymer surfaces and employed to examine cellular adhesion and orientation. The topography of the modified zones was observed using scanning electron microscopy and confocal microscopy. Test of the material cytotoxicity was performed by evaluating the life/dead cell correlation. The obtained results showed that texturing with femtosecond laser pulses is appropriate method to initiate a predefined cellular response. Formation of surface modifications in the form of foams with an expansion of the material was created under laser irradiation with a number of applied laser pulses from N = 1-5. It is shown that irradiation with N > 5 results in disturbance of microfoam. Material characterization reveals a decrease in water contact angle values after laser irradiation of chitosan films. Consequently, changes in surface roughness of chitosan thin-film surface result in its functionalization. Cultivation of MC3T3 and ATMSC cells show cell orientational migration concerning different surface patterning. The influence of various pulse durations (varying from τ = 30-500 fs) over biofilms surface was examined regarding the evolution of surface morphology. The goal of this study was to define the optimal laser conditions (laser energy, number of applied pulses, and pulse duration) to alter surface wettability properties and porosity to improve material performance. The acquired set of results indicate the way to tune the surface properties to optimize cell-interface interaction.
Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao
2016-07-20
A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP.
Galář, Pavel; Khun, Josef; Kopecký, Dušan; Scholtz, Vladimír; Trchová, Miroslava; Fučíková, Anna; Jirešová, Jana; Fišer, Ladislav
2017-11-08
Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.
The bactericidal activity of glutaraldehyde-impregnated polyurethane.
Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan
2016-10-01
Although glutaraldehyde is known to be bactericidal in solution, its potential use to create novel antibacterial polymers suitable for use in healthcare environments has not been evaluated. Here, novel materials were prepared in which glutaraldehyde was either incorporated into polyurethane using a simple "swell-encapsulation-shrink" method (hereafter referred to as "glutaraldehyde-impregnated polyurethane"), or simply applied to the polymer surface (hereafter referred to as "glutaraldehyde-coated polyurethane"). The antibacterial activity of glutaraldehyde-impregnated and glutaraldehyde-coated polyurethane samples was tested against Escherichia coli and Staphylococcus aureus. Glutaraldehyde-impregnated polyurethane resulted in a 99.9% reduction in the numbers of E. coli within 2 h and a similar reduction of S. aureus within 1 h, whereas only a minimal reduction in bacterial numbers was observed when the biocide was bound to the polymer surface. After 15 days, however, the bactericidal activity of the impregnated material was substantially reduced presumably due to polymerization of glutaraldehyde. Thus, although glutaraldehyde retains antibacterial activity when impregnated into polyurethane, activity is not maintained for extended periods of time. Future work should examine the potential of chemical modification of glutaraldehyde and/or polyurethane to improve the useful lifespan of this novel antibacterial polymer. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sun, Yunlong; Chen, Changlin; Xu, Heng; Lei, Kun; Xu, Guanzhe; Zhao, Li; Lang, Meidong
2017-10-01
Silicon (111) wafer was modified by triethoxyvinylsilane containing double bond as an intermedium, and then P4VP (polymer 4-vinyl pyridine) brush was "grafted" onto the surface of silicon wafer containing reactive double bonds by adopting the "grafting from" way and Si-P4VP substrate (silicon wafer grafted by P4VP) was obtained. Finally, P4VP brush of Si-P4VP substrate was modified by 1,3-propanesulfonate fully to obtain P4VP-psl brush (zwitterionic polypyridinium salt) and the functional Si-P4VP-psl substrate (silicon wafer grafted by zwitterionic polypyridinium salt based on polymer 4-vinyl pyridine) was obtained successfully. The antifouling property of the silicon wafer, the Si-P4VP substrate and the Si-P4VP-psl substrate was investigated by using bovine serum albumin, mononuclear macrophages (RAW 264.7) and Escherichia coli (E. coli) ATTC25922 as model bacterium. The results showed that compared with the blank sample-silicon wafer, the Si-P4VP-psl substrate had excellent anti-adhesion ability against bovine serum albumin, cells and bacterium, due to zwitterionic P4VP-psl brush (polymer 4-vinyl pyridine salt) having special functionality like antifouling ability on biomaterial field.
Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Wan, Qing; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen
2017-12-01
As a new type of mesoporous silica materials with large pore diameter (pore size between 2 and 50nm) and high specific surface areas, SBA-15 has been widely explored for different applications especially in the biomedical fields. The surface modification of SBA-15 with functional polymers has demonstrated to be an effective way for improving its properties and performance. In this work, we reported the preparation of PEGylated SBA-15 polymer composites through surface-initiated chain transfer free radical polymerization for the first time. The thiol group was first introduced on SBA-15 via co-condensation with γ-mercaptopropyltrimethoxysilane (MPTS), that were utilized to initiate the chain transfer free radical polymerization using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and itaconic acid (IA) as the monomers. The successful modification of SBA-15 with poly(PEGMA-co-IA) copolymers was evidenced by a series of characterization techniques, including 1 H NMR, FT-IR, TGA and XPS. The final SBA-15-SH- poly(PEGMA-co-IA) composites display well water dispersity and high loading capability towards cisplatin (CDDP) owing to the introduction of hydrophilic PEGMA and carboxyl groups. Furthermore, the CDDP could be released from SBA-15-SH-poly(PEGMA-co-IA)-CDDP complexes in a pH dependent behavior, suggesting the potential controlled drug delivery of SBA-15-SH-poly(PEGMA-co-IA). More importantly, the strategy should be also useful for fabrication of many other functional materials for biomedical applications owing to the advantages of SBA-15 and well monomer adoptability of chain transfer free radical polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.
Chitosan-based coatings in the prevention of intravascular catheter-associated infections.
Mendoza, Gracia; Regiel-Futyra, Anna; Tamayo, Alejandra; Monzon, Marta; Irusta, Silvia; de Gregorio, Miguel Angel; Kyzioł, Agnieszka; Arruebo, Manuel
2018-01-01
Central venous access devices play an important role in patients with prolonged intravenous administration requirements. In the last years, the coating of these devices with bactericidal compounds has emerged as a potential tool to prevent bacterial colonization. Our study describes the modification of 3D-printed reservoirs and silicone-based catheters, mimicking central venous access devices, through different approaches including their coating with the well known biocompatible and bactericidal polymer chitosan, with the anionic polysaccharide alginate; also, plasma treated surfaces were included in the study to promote polymer adhesion. The evaluation of the antimicrobial action of those surface modifications compared to that exerted by a model antibiotic (ciprofloxacin) adsorbed on the surface of the devices was carried out. Surface characterization was developed by different methodologies and the bactericidal effects of the different coatings were assayed in an in vitro model of Staphylococcus aureus infection. Our results showed a significant reduction in the reservoir roughness (≤73%) after coating though no changes were observed for coated catheters which was also confirmed by scanning electron microscopy, pointing to the importance of the surface device topography for the successful attachment of the coating and for the subsequent development of bactericidal effects. Furthermore, the single presence of chitosan on the reservoirs was enough to fully inhibit bacterial growth exerting the same efficiency as that showed by the model antibiotic. Importantly, chitosan coating showed low cytotoxicity against human keratinocytes, human lung adenocarcinoma epithelial cells, and murine colon carcinoma cells displaying viability percentages in the range of the control samples (>95%). Chitosan-based coatings are proposed as an effective and promising solution in the prevention of microbial infections associated to medical devices.
Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Watarai, Shinobu; Kono, Kenji
2013-04-01
Highly pH-sensitive liposomes that deliver antigenic molecules into cytosol through fusion with or destabilization of endosome were prepared by surface modification of egg yolk phosphatidylcholine/dioleoylphosphatidylethanolamine (1/1, mol/mol) liposomes with 3-methylglutarylated poly(glycidol) of linear (MGlu-LPG) or hyperbranched structure (MGlu-HPG). These polymer-modified liposomes were stable at neutral pH, but they became strongly destabilized below pH 6, which corresponds to the pH of endosome. These polymer-modified liposomes were taken up by murine dendritic cells (DCs) more efficiently than the unmodified liposomes were through an endocytic pathway. They introduced entrapped ovalbumin (OVA) molecules into cytosol. Subcutaneous or nasal administration of the polymer-modified liposomes loaded with OVA induced generation of OVA-specific cytotoxic T cells (CTL) much more effectively than the unmodified liposomes loaded with OVA. Furthermore, administration of the polymer-modified OVA-loaded liposomes to mice bearing E.G7-OVA tumor significantly reduced the tumor burden, although the OVA-loaded unmodified liposomes only slightly affected tumor growth. Results suggest that the polymer-modified liposomes with highly pH-sensitive destabilizing property are promising as antigen carriers for efficient cancer immunotherapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kuang, Jinghao; Messersmith, Phillip B.
2012-01-01
We report a universal method for the surface-initated polymerization (SIP) of a antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) which combines an atom transfer radical polymerization (ATRP) initiating alkyl bromide with l-3,4-dihydroxyphenylalanine (DOPA) and lysine. Simple dip-coating of substrates with variable wetting properties and compositions, including Teflon®, in a BrYKY solution at pH 8.5 led to formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA) on all substrates, resulting in high density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface grafted polymer brush modifications for biomedical and other applications. PMID:22506651
Photochemical coatings for the prevention of bacterial colonization.
Dunkirk, S G; Gregg, S L; Duran, L W; Monfils, J D; Haapala, J E; Marcy, J A; Clapper, D L; Amos, R A; Guire, P E
1991-10-01
Biomaterials are being used with increasing frequency for tissue substitution. Implantable, prosthetic devices are instrumental in the saving of patients' lives and enhancing the quality of life for many others. However, the greatest barrier to expanding the use of biomedical devices is the high probability of bacterial adherence and proliferation, causing very difficult and often untreatable medical-device centered infections. The difficulty in treating such infections results in great danger to the patient, and usually retrieval of the device with considerable pain and suffering. Clearly, development of processes that make biomedical devices resistant to bacterial adherence and colonization would have widespread application in the field of biomedical technology. A photochemical surface modification process is being investigated as a generic means of applying antimicrobial coatings to biomedical devices. The photochemical process results in covalent immobilization of coatings to all classes of medical device polymers. A discussion of the photochemical surface modification process and preliminary results demonstrating the success of photochemical coatings in formulating microbial-resistant surfaces are presented in this paper.
p-Chlorophenol adsorption on activated carbons with basic surface properties
NASA Astrophysics Data System (ADS)
Lorenc-Grabowska, Ewa; Gryglewicz, Grażyna; Machnikowski, Jacek
2010-05-01
The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO 2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pH PZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width < 1.4 nm for polymer-based ACs. Higher nitrogen content, including that in basic form, did not correspond to the enhanced adsorption of PCP from aqueous solution. The competitive effect of water molecule adsorption on the PCP uptake is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyola-Reynoso, S.; Tevis, I. D.; Chen, J.
Here, chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolyzable moieties in the presence of physisorbed water. In this report, we demonstrated that using alkyltrichlorosilanes (trivalent [i.e., 3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound particles. We infer that the presencemore » of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2–201.4 g m –2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from ~70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student's t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, paper-based houses can be rendered self-cleaning or tolerant to surface running water. In another application, we demonstrated that the felicitous choice of architectural design allows for the hydrophobic paper to be used for water harvesting.« less
Engineering tunable bio-inspired polymeric coatings for amphiphobic fibrous materials
NASA Astrophysics Data System (ADS)
Oyola-Reynoso, Stephanie
Chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolysable moieties in the presence of physisorbed water. In the following chapters, we demonstrate that using alkyltrichlorosilanes (trivalent [3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound polymeric particles. We infer that the presence of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane, prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2-201.4 g/m2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from 70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, cardboard houses can be rendered self-cleaning or tolerant to surface running water. Each of the chapters below supports the mechanism via a series of applications, material characterization, and/or, smart engineering.
NASA Astrophysics Data System (ADS)
Bolbasov, E. N.; Antonova, L. V.; Stankevich, K. S.; Ashrafov, A.; Matveeva, V. G.; Velikanova, E. A.; Khodyrevskaya, Yu. I.; Kudryavtseva, Yu. A.; Anissimov, Y. G.; Tverdokhlebov, S. I.; Barbarash, L. S.
2017-03-01
The deposition of thin titanium coatings using magnetron spattering on the surface of bioresorbable fibrous scaffolds produced by electrospinning was investigated. Parameters that allow the surface modification without damaging the "macro" structure of scaffolds were determined. Physicochemical properties of the modified scaffolds were described using SEM, EDS, DSC, optical goniometry, and mechanical testing. It was shown that plasma treatment has a significant influence on the scaffolds' fiber surface relief. The modification process leads to a slight decrease of the scaffold mechanical performance mainly caused by polymer crystallization. Increasing the deposition time increases the amount of titanium on the surface. The biocompatibility of the modified scaffolds was studied using hybridoma of the endothelial cells of human umbilical vein and human lung carcinoma (EA.hy 926 cell line). Cell adhesion, viability, and secretion of interleukin-6 (IL6), interleukin-8 (IL8), and vascular endothelial growth factor (VEGF) were investigated. It was demonstrated that the deposition of thin titanium coatings on the fibrous scaffolds' surface enhances cell adhesion. Additionally, it was determined that modified scaffolds have proangiogenic activity.
Gnanasundaram, Saraswathy; Ranganathan, Mohan; Das, Bhabendra Nath; Mandal, Asit Baran
2013-02-01
Foot odor and foot infection are major problems of athletes and persons with hyperhidrosis. Many shoes especially sports shoes have removable cushion insoles/foot beds for foot comfort. Polyurethane (PU) foam and elastomer have been used as cushion insole in shoes. In the present work, new insole materials based on porous viscoelastic PU sheets having hydrophilic property and antimicrobial drug coating to control foot infection and odor were developed. Bacteria and fungus that are causing infection and bad odor of the foot of athletes were isolated by microbial cell culturing of foot sweat. The surface of porous viscoelastic PU sheets was modified using hydrophilic polymers and coated with antimicrobial agent, silver sulfadiazine (SS). The surface modified PU sheets were characterized using ATR-FTIR, TGA, DSC, SEM, contact angle measurement and water absorption study. Results had shown that modified PU sheets have hydrophilicity greater than that of original PU sheet. FTIR spectra and SEM pictures confirmed modification of PU surface with hydrophilic polymers and coating with SS. Minimum inhibitory concentration studies indicated that SS has activity on all isolated bacteria of athletic foot sweat. The maximum inhibition was found for Pseudomonas (20mm) followed by Micrococci (17 mm), Diphtheroids (16 mm) and Staphylococci (12 mm). During perspiration of foot the hydrophilic polymers on PU surface will swell and release SS. Future work will confirm the application of these materials as inserts in athletic shoes. Copyright © 2012 Elsevier B.V. All rights reserved.
Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer
NASA Astrophysics Data System (ADS)
Yada, Shuhei; Terakawa, Mitsuhiro
2015-03-01
We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.
Chaudhary, Bhumika; Kulkarni, Ashish; Jena, Ajay Kumar; Ikegami, Masashi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Miyasaka, Tsutomu
2017-06-09
It is well known that the surface trap states and electronic disorders in the solution-processed CH 3 NH 3 PbI 3 perovskite film affect the solar cell performance significantly and moisture sensitivity of photoactive perovskite material limits its practical applications. Herein, we show the surface modification of a perovskite film with a solution-processable hydrophobic polymer (poly(4-vinylpyridine), PVP), which passivates the undercoordinated lead (Pb) atoms (on the surface of perovskite) by its pyridine Lewis base side chains and thereby eliminates surface-trap states and non-radiative recombination. Moreover, it acts as an electron barrier between the perovskite and hole-transport layer (HTL) to reduce interfacial charge recombination, which led to improvement in open-circuit voltage (V oc ) by 120 to 160 mV whereas the standard cell fabricated in same conditions showed V oc as low as 0.9 V owing to dominating interfacial recombination processes. Consequently, the power conversion efficiency (PCE) increased by 3 to 5 % in the polymer-modified devices (PCE=15 %) with V oc more than 1.05 V and hysteresis-less J-V curves. Advantageously, hydrophobicity of the polymer chain was found to protect the perovskite surface from moisture and improved stability of the non-encapsulated cells, which retained their device performance up to 30 days of exposure to open atmosphere (50 % humidity). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antimicrobial 3D Porous Scaffolds Prepared by Additive Manufacturing and Breath Figures.
Vargas-Alfredo, Nelson; Dorronsoro, Ane; Cortajarena, Aitziber L; Rodríguez-Hernández, Juan
2017-10-25
We describe herein a novel strategy for the fabrication of efficient 3D printed antibacterial scaffolds. For this purpose, both the surface topography as well as the chemical composition of 3D scaffolds fabricated by additive manufacturing were modified. The scaffolds were fabricated by fused deposition modeling (FDM) using high-impact polystyrene (HIPS) filaments. The surface of the objects was then topographically modified providing materials with porous surfaces by means of the Breath Figures approach. The strategy involves the immersion of the scaffold in a polymer solution during a precise period of time. This approach permitted the modification of the pore size varying the immersion time as well as the solution concentration. Moreover, by using polymer blend solutions of polystyrene and polystyrene-b-poly(acrylic acid) (PS 23 -b-PAA 18 ) and a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate) (PS 42 -b-PDMAEMAQ 17 ), the scaffolds were simultaneously chemically modified. The surfaces were characterized by scanning electron microscopy and infrared spectroscopy. Finally, the biological response toward bacteria was explored. Porous surfaces prepared using quaternized PDMAEMA as well as those prepared using PAA confer antimicrobial activity to the films, i.e., were able to kill on contact Staphylococcus aureus employed as model bacteria.
Cloning strategy for producing brush-forming protein-based polymers.
Henderson, Douglas B; Davis, Richey M; Ducker, William A; Van Cott, Kevin E
2005-01-01
Brush-forming polymers are being used in a variety of applications, and by using recombinant DNA technology, there exists the potential to produce protein-based polymers that incorporate unique structures and functions in these brush layers. Despite this potential, production of protein-based brush-forming polymers is not routinely performed. For the design and production of new protein-based polymers with optimal brush-forming properties, it would be desirable to have a cloning strategy that allows an iterative approach wherein the protein based-polymer product can be produced and evaluated, and then if necessary, it can be sequentially modified in a controlled manner to obtain optimal surface density and brush extension. In this work, we report on the development of a cloning strategy intended for the production of protein-based brush-forming polymers. This strategy is based on the assembly of modules of DNA that encode for blocks of protein-based polymers into a commercially available expression vector; there is no need for custom-modified vectors and no need for intermediate cloning vectors. Additionally, because the design of new protein-based biopolymers can be an iterative process, our method enables sequential modification of a protein-based polymer product. With at least 21 bacterial expression vectors and 11 yeast expression vectors compatible with this strategy, there are a number of options available for production of protein-based polymers. It is our intent that this strategy will aid in advancing the production of protein-based brush-forming polymers.
Fujii, Yuji; Henares, Terence G; Kawamura, Kunio; Endo, Tatsuro; Hisamoto, Hideaki
2012-04-21
To enhance sensitivity and facilitate easy sample introduction into a combinable poly(dimethylsiloxane) (PDMS) capillary (CPC) sensor array, PDMS was modified in bulk and on its surface to prepare "black" PDMS coated with a silver layer and self-assembled monolayer (SAM). India ink, a traditional Japanese black ink, was added to the PDMS pre-polymer for bulk modification. The surface was modified by a silver mirror reaction followed by SAM formation using cysteine. These modifications enhanced the fluorescence signals by reflecting them from the surface and reducing background interference. A decrease in the water contact angle led to enhanced sensitivity and easy sample introduction. Furthermore, a CPC sensor array for multiplex detection of serum sample components was prepared that could quantify the analytes glucose, potassium, and alkaline phosphatase (ALP). When serum samples were introduced by capillary action, the CPC sensor array showed fluorescence responses for each analyte and successfully identified the components with elevated concentrations in the serum samples.
NASA Astrophysics Data System (ADS)
Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong
2016-05-01
We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.
NASA Astrophysics Data System (ADS)
Cole, Martin A.; Thissen, Helmut; Losic, Dusan; Voelcker, Nicolas H.
2007-04-01
Biomedical and biotechnological devices often require surface modifications to improve their performance. In most cases, uniform coatings are desired which provide a specific property or lead to a specific biological response. In the present work, we have generated pinhole-free coatings providing amine functional groups achieved by electropolymerisation of tyramine on highly doped silicon substrates. Furthermore, amine groups were used for the subsequent grafting of poly(ethylene oxide) aldehyde via reductive amination. All surface modification steps were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results indicate that the stability and the density of amine functional groups introduced at the surface via electropolymerisation compare favourably with alternative coatings frequently used in biomedical and biotechnological devices such as plasma polymer films. Furthermore, protein adsorption on amine and poly(ethylene oxide) coatings was studied by XPS and a colorimetric assay to test enzymatic activity. The grafting of poly(ethylene oxide) under cloud point conditions on electropolymerised tyramine layers resulted in surfaces with extremely low protein fouling character.
NASA Astrophysics Data System (ADS)
Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu
2013-11-01
The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.
Modification of nanofibrillated cellulose using amphiphilic block-structured galactoglucomannans.
Lozhechnikova, Alina; Dax, Daniel; Vartiainen, Jari; Willför, Stefan; Xu, Chunlin; Österberg, Monika
2014-09-22
Nanofibrillated cellulose (NFC) and hemicelluloses have shown to be highly promising renewable components both as barrier materials and in novel biocomposites. However, the hydrophilic nature of these materials restricts their use in some applications. In this work, the usability of modified O-acetyl galactoglucomannan (GGM) for modification of NFC surface properties was studied. Four GGM-block-structured, amphiphilic derivatives were synthesized using either fatty acids or polydimethylsiloxane as hydrophobic tails. The adsorption of these GGM derivatives was consecutively examined in aqueous solution using a quartz crystal microbalance with dissipation monitoring (QCM-D). It was found that the hydrophobic tails did not hinder adsorption of the GGM derivatives to cellulose, which was concluded to be due to the presence of the native GGM-block with high affinity to cellulose. The layer properties of the adsorbed block-co-polymers were discussed and evaluated. Self-standing NFC films were further prepared and coated with the GGM derivatives and the effect of the surface modification on wetting properties and oxygen permeability (OP) of the modified films was assessed. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qi, Yanli; Chen, Tingting; Zhang, Jun
2018-03-01
Hydrophobic surface modification is conducted in this study by using additives with long alkyl chains. Several kinds of metallic soaps, such as calcium stearate (CaSt), zinc stearate (ZnSt), magnesium stearate (MgSt) and barium stearate (BaSt) were employed. Polymer matrix is acrylonitrile-styrene-acrylate (ASA) terpolymer due to its wonderful weather resistance property. The surface chemical characterization was studied by Fourier transformed infrared (FTIR) technology and X-ray photoelectron spectroscopy (XPS). Carboxylate (Osbnd Csbnd O-) indexes of composites in both transmittance and reflection modes were calculated according to FTIR results. As to the ratio of carboxylate index in reflection mode to that in transmittance mode, the sample added with 5 wt% ZnSt shows a higher value of 8.77, and a much higher value of 14.47 for the sample added with 10 wt% ZnSt. The corresponding Csbnd C/ Csbnd H /Cdbnd C peak areas of the samples added with 5 wt% or 10 wt% ZnSt are 75.4% and 77.3% respectively, much higher than other samples. This indicates ZnSt is much easier to out-migrate to material surface and therefore is more suitable for hydrophobic surface modification. In particular, the water contact angle of the ASA/ZnSt composite added with 10 wt% ZnSt significantly increased to 127o (40o increase in comparison with pure ASA), successfully converting the surface wettability from hydrophilic to hydrophobic.
ERIC Educational Resources Information Center
Tsarevsky, Nicolay V.; Woodruf, Shannon R.; Wisian-Neilson, Patty J.
2016-01-01
A two-session experiment is designed to introduce undergraduate students to concepts in catalysis, transition metal complexes, polymer synthesis, and postpolymerization modifications. In the first session, students synthesize poly(glycidyl methacrylate) via low-catalyst-concentration atom transfer radical polymerization (ATRP). The…
Yin, Hongyao; Feng, Yujun; Billon, Laurent
2018-01-09
Amphiphilic copolymers are widely used in the fabrication of hierarchically honeycomb-structured films through a "breath figure" (BF) process because the hydrophilic block plays a key role in stabilising water templating. However, the hydrophilic monomers reported are mainly confined to acrylic acid and its derivatives, which largely limits understanding of the formation of BF arrays and the introduction of additional functions on porous films. The relationship between polymer composition, film microstructure and surface properties are also less documented. Herein, a novel melamine-based hydrophilic moiety, N-[3-({3-[(4,6-bis{[3-(dimethylamino)propyl]amino}-1,3,5-triazin-2yl)amino]propyl}(methyl)amino)propyl]methacrylamide (ANME), was incorporated into polystyrene (PS) chains by combining atom-transfer radical polymerisation and post-modification to afford three well-defined end-functionalised PS-PANME derivatives. These polymers were used to fabricate honeycomb films through the BF technique. Both inner and outer microstructures of the films were characterised by optical microscopy, AFM and SEM. Polymer hydrophilicity is enhanced upon increasing the PANME content, which results in variation of the film microstructure and porosity, and provokes a transition from Cassie-Baxter to Wenzel behaviour. Furthermore, the surface wettability of as-prepared honeycomb films and corresponding pillared films is mainly governed by film morphology, rather than by the properties of the polymers. Knowledge of the relationships between polymer composition and film structure, as well as surface wettability, is beneficial to design and prepare hierarchically porous films with desirable structures and properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bilek, M. M. M.; Newton-McGee, K.; McKenzie, D. R.; McCulloch, D. G.
2006-01-01
Plasma processes for the synthesis of new materials as thin films have enabled the production of a wide variety of new materials. These include meta-stable phases, which are not readily found in nature, and more recently, materials with structure on the nanoscale. Study of plasma synthesis processes at the fundamental level has revealed that ion energy, depositing flux and growth surface temperature are the critical parameters affecting the microstructure and the properties of the thin film materials formed. In this paper, we focus on the role of ion flux and impact energy in the creation of thin films with nanoscale structure in the form of multilayers. We describe three synthesis strategies, based on the extraction of ions from plasma sources and involving modulation of ion flux and ion energy. The microstructure, intrinsic stress and physical properties of the multilayered samples synthesized are studied and related back to the conditions at the growth surface during deposition. When energetic ions of a non-condensing species are used, it is possible to place active groups on the surfaces of materials such as polymers. These active groups can then be used as bonding sites in subsequent chemical attachment of proteins or other macromolecules. If the energy of the non-condensing ions is increased to a few keV then modified layers buried under the surface can be produced. Here we describe a method by which the aging effect, which is often observed in plasma surface modifications on polymers, can be reduced and even eliminated using high energy ion bombardment.
Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta
2016-08-01
The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.
The use of radiation-induced graft polymerization for modification of polymer track membranes
NASA Astrophysics Data System (ADS)
Shtanko, N. I.; Kabanov, V. Ya.; Apel, P. Yu.; Yoshida, M.
1999-05-01
Track membranes (TM) made of poly(ethylene terephtalate) (PET) and polypropylene (PP) films have a number of peculiarities as compared with other ones. They have high mechanical strength at a low thickness, narrow pore size distribution, low content of extractables. However, TM have some disadvantages such as low chemical resistance in alkaline media (PET TM), the low water flow rate due to the hydrophobic nature of their surface. The use of radiation-induced graft polymerization makes it possible to improve the basic characteristics of TM. In this communication our results on the modification of PET and PP TM are presented. The modified membranes were prepared by radiation-induced graft polymerization from the liquid phase. Three methods of grafting were used: (a) the direct method in argon atmosphere; (b) the pre-irradiation of TM in air followed by grafting in argon atmosphere; (c) pre-irradiation in vacuum followed by grafting in vacuum without contacting oxygen. The aim of the work was to investigate some properties of TM modified by grafted poly(methylvinyl pyridine) (PMVP) and poly(N-isopropylacrylamide) (PNIPAAM). It was shown that the modification of TM with hydrophilic polymer results in the growth of the water flow rate. In the past few years many works have been devoted to the synthesis of new polymers - the so-called "intelligent" materials - such as PNIPAAM. However, it is very difficult to make thin membranes of this polymer. Recently, it has been proposed to manufacture composite membranes by grafting stimulus-responsive polymers onto TM. Following this principle, we prepared thermosensitive membranes by the radiation-induced graft polymerization of N-isopropylacrylamide (NIPAAM) onto PET TM. PET TM with the pore size of about 1 μm and pore density of 10 6 cm -2 were first inserted into a solution of NIPAAM containing inhibitor of homopolymerization (CuCl 2) and then exposed to the γ-rays from a 60Co source. The transport properties of the grafted TM were investigated. The permeation of water through the TM was controlled by temperature. The grafted TM exhibited almost the same transition temperature (about 33°C) as that of PNIPAAM.
Screening of anionic-modified polymers in terms of stability, disintegration, and swelling behavior.
Laffleur, Flavia; Ijaz, Muhammad; Menzel, Claudia
2017-11-01
This study aimed to screen the stability, disintegration, and swelling behavior of chemically modified anionic polymers. Investigated polymers were well-known and widely used staples of the pharmaceutical and medical field, namely, alginate (AL), carboxymethyl cellulose (CMC), polycarbophil (PC), and hyaluronic acid (HA). On the basis of amide bond formation between the carboxylic acid moieties of anionic polymers and the primary amino group of the modification ligand cysteine (CYS), the modified polymers were obtained. Unmodified polymers served as controls throughout all studies. With the Ellman's assay, modification degrees were determined of synthesized polymeric excipients. Stability assay in terms of erosion study at physiological conditions were performed. Moreover, water uptake of compressed polymeric discs were evaluated and further disintegration studies according to the USP were carried out to define the potential ranking. Results ranking figured out PCCYS > CMCCYS > HACYS > ALCYS in terms of water uptake capacity compared to respective controls. Cell viability assays on Caco-2 cell line as well as on RPMI 2650 (ATTC CCL30) proved modification not being harmful to those. Due to the results of this study, an intense screening of prominent anionic polymer derivate was performed in order to help the pharmaceutical research for the best choice of polymeric excipients for developments of controlled drug release systems.
Selected Topics on the Synthesis, Properties and Applications of Multiwalled Carbon Nanotubes
Stoner, B.R.; Brown, B.; Glass, J.T.
2014-01-01
Summary In summary, MWCNTs have been examined for a variety of electronic applications due to their unique structure and chemistry. Electrodes for field emission, energy and sensor applications hold particular interest. MWCNTs provide a very high surface area, relatively easy methods of surface modification, controllable and high concentration of reactive surface sites, and high specific capacitance. Combining MWCNTs with graphene structures, oxide and metal nanoparticles and certain polymers extends their performance and functionality. Such hybrid structures have been produced in situ during CNT growth and in two-step processes. Excellent progress on understanding the mechanisms of CNT growth has enabled numerous growth methods to all yield MWCNT structures in a variety of morphologies. PMID:24910503
Nanocomposite protective coatings for battery anodes
Lemmon, John P; Xiao, Jie; Liu, Jun
2014-01-21
Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.
Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri
2012-01-01
Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489
Oil-Impregnated Polyethylene Films
NASA Astrophysics Data System (ADS)
Mukherjee, Ranit; Habibi, Mohammad; Rashed, Ziad; Berbert, Otacilio; Shi, Shawn; Boreyko, Jonathan
2017-11-01
Slippery liquid-infused porous surfaces (SLIPS) minimize the contact angle hysteresis of a wide range of liquids and aqueous food products. Although hydrophobic polymers are often used as the porous substrate for SLIPS, the choice of polymer has been limited to silicone-based or fluorine-based materials. Hydrocarbon-based polymers, such as polyethylene, are cost effective and widely used in food packaging applications where SLIPS would be highly desirable. However, to date there have been no reports on using polyethylene as a SLIPS substrate, as it is considered highly impermeable. Here, we show that thin films of low-density polyethylene can be stably impregnated with carbon-based oils without requiring any surface modification. Wicking tests reveal that oils with sufficient chemical compatibility follow Washburn's equation. The nanometric effective pore size of the polyethylene does result in a very low wicking speed, but by using micro-thin films and a drawdown coater, impregnation can still be completed in under one second. The oil-impregnated polyethylene films promoted ultra-slippery behavior for water, ketchup, and yogurt while remaining durable even after being submerged in ketchup for over one month. This work was supported by Bemis North America (AT-23981).
Deformation sensor based on polymer-supported discontinuous graphene multi-layer coatings
NASA Astrophysics Data System (ADS)
Carotenuto, G.; Schiavo, L.; Romeo, V.; Nicolais, L.
2014-05-01
Graphene can be conveniently used in the modification of polymer surfaces. Graphene macromolecules are perfectly transparent to the visible light and electrically conductive, consequently these two properties can be simultaneously provided to polymeric substrates by surface coating with thin graphene layers. In addition, such coating process provides the substrates of: water-repellence, higher surface hardness, low-friction, self-lubrication, gas-barrier properties, and many other functionalities. Polyolefins have a non-polar nature and therefore graphene strongly sticks on their surface. Nano-crystalline graphite can be used as graphene precursor in some chemical processes (e.g., graphite oxide synthesis by the Hummer method), in addition it can be directly applied to the surface of a polyolefin substrate (e.g., polyethylene) to cover it by a thin graphene multilayer. In particular, the nano-crystalline graphite perfectly exfoliate under the application of a combination of shear and friction forces and the produced graphene single-layers perfectly spread and adhere on the polyethylene substrate surface. Such polymeric materials can be used as ITO (indium-tin oxide) substitute and in the fabrication of different electronic devices. Here the fabrication of transparent resistive deformation sensors based on low-density polyethylene films coated by graphene multilayers is described. Such devices are very sensible and show a high reversible and reproducible behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankow, J. W.; Glick, S. H.
2006-05-01
Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin-film PV (photovoltaic) modules. Silicon oxynitride (SiO{sub x}N{sub y}) deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have included a nitrogen-rich plasma pretreatment prior to barrier deposition with the intention of cleaning the PET surface and enhancing adhesion of the SiO{sub x}N{sub y} barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp-heat exposure. (EVA is ethylene vinyl acetate and TPE is Tedlar{reg_sign}-PET-EVA). PET substrates exposedmore » to plasma conditions similar to those used in pretreatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal that new low molecular weight PET fragments were created at the PET surface. These fragments are responsible for barrier/PET interfacial failure and barrier transfer to the EVA encapsulant side following damp heat exposure.« less
Catauro, Michelina; Bollino, Flavia; Giovanardi, Roberto; Veronesi, Paolo
2017-05-01
Surface modification of metallic implants is a promising strategy to improve tissue tolerance, osseointegration and corrosion resistance of them. In the present work, bioactive and biocompatible organic-inorganic hybrid coatings were prepared using a sol-gel dip coating route. They consist of an inorganic TiO 2 matrix in which different percentages of poly(ε-caprolactone) (PCL), a biodegradable and biocompatible polymer, were incorporated. The coatings were used to modify the surface of Ti6Al4V substrates in order to improve their wear and corrosion resistance. The chemical structure of the coatings was analyzed by attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. Coating microstructure, mechanical properties and ability to inhibit the corrosion of the substrates were evaluated as a function of the PCL amount. Scanning electron microscopy (SEM) showed that the polymer allows to obtain crack-free coatings, but when high percentages were added uncoated areas appear. Nano-indentation tests revealed that, as expected, surface hardness and elastic modulus decrease as the percentage of polymeric matrix increases, but scratch testing demonstrated that the coatings are effective in preventing scratching of the underlying metallic substrate, at least for PCL contents up to 20wt%. The electrochemical tests (polarization curves acquired in order to evaluate the corrosion resistance) allowed to asses that the coatings have a significant effect in term of corrosion potential (E corr ) but they do not significantly affect the passivation process that titanium undergoes in contact with the test solution used (modified Dulbecco's phosphate-buffered saline or DPBS). Copyright © 2016 Elsevier B.V. All rights reserved.
Optical properties of Si+ implanted PMMA
NASA Astrophysics Data System (ADS)
Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.; Zuk, J.
2010-04-01
In the present work, low energy ion beam irradiation was used for surface modification of polymethyl-methacrylate (PMMA) using silicon (Si+) as the ion species. After high doses ion implantation of Si+ in the polymer material, a characterization of the optical properties was performed using optical transmission measurements in the visible and near infra-red (IR) wavelength range. The optical absorption increase observed with the ion dose was attributed to ion beam induced structural changes in the modified material.
Enhancement of surface durability of space materials and structures in LEO environment
NASA Astrophysics Data System (ADS)
Gudimenko, Y.; Ng, R.; Kleiman, J. I.; Iskanderova, Z. A.; Tennyson, R. C.; Hughes, P. C.; Milligan, D.; Grigorevski, A.; Shuiski, M.; Kiseleva, L.; Edwards, D.; Finckenor, M.
2003-09-01
Results of on-going program that involves surface modification treatments of thin polymer films and various organic-based thermal control coatings by an innovative Photosil surface modification technology for space durability improvement are presented, as well as results of ground-based testing in an oxygen plasma asher and in fast atomic oxygen (FAO) beam facility. In addition, independent ground-based FAO + VUV test results from NASA Marshall Space Flight Center (MSFC) are also presented. Recent results are presented to further improve the AO durability of conductive thermal control paints, never previously treated by the Photosil process. The thermal control coatings evaluated in this program represent existing commercially available space-approved materials and experimental coatings, which are still under development. Functional properties and performance characteristics, such as AO stability, thermal optical properties, surface resistivity, and outgassing characteristics of pristine and treated materials were also verified. FAO+VUV exposure tests results revealed that some of the successfully treated materials did not show any mass loss or surface morphology change, thus indicating good protection from the severe oxidative environment. A few complementary surface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) have been used to examine the composition and structure of the protective surface-modified layer.
Supercritical fluid processing: opportunities for new resist materials and processes
NASA Astrophysics Data System (ADS)
Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.
1996-05-01
Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.
Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer.
Mosciatti, Thomas; Bonacchi, Sara; Gobbi, Marco; Ferlauto, Laura; Liscio, Fabiola; Giorgini, Loris; Orgiu, Emanuele; Samorì, Paolo
2016-03-01
Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans → cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans → cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements.
Can soil drying affect the sorption of pesticides in soil?
NASA Astrophysics Data System (ADS)
Chaplain, Véronique; Saint, Philippe; Mamy, Laure; Barriuso, Enrique
2010-05-01
The sorption of pesticides in soils mainly controls their further dispersion into the environment. Sorption is usually related to the physico-chemical properties of molecules but it also depends on the hydrophobic features of soils. However, the hydrophobicity of soils changes with wetting and drying cycles and this can be enhanced with climate change. The objective of this study was to measure by using controlled artificial soils the influence of the hydrophobic characteristic of soils on the retention of a model pesticide. Artificial soils consisted in silica particles covered by synthetic cationic polymers. Polymers were characterized by the molar ratio of monomers bearing an alkyl chain of 12C. Two polymers were used, with 20 and 80 % ratios, and the same degree of polymerization. In addition, porous and non-porous particles were used to study the accessibility notion and to measure the influence of diffusion on pesticide sorption kinetics. Lindane was chosen as model molecule because its adsorption is supposed mainly due to hydrophobic interactions. Results on polymers adsorption on silica showed that it was governed by electrostatic interactions, without any dependency of the hydrophobic ratio. Polymers covered the entire surface of porous particles. Kinetic measurements showed that lindane sorption was slowed in porous particles due to the molecular diffusion inside the microporosity. The adsorption of lindane on covered silica particles corresponded to a partition mechanism described by linear isotherms. The slope was determined by the hydrophobic ratio of polymers: the sorption of lindane was highest in the most hydrophobic artificial soil. As a result, modification in soil hydrophobicity, that can happen with climate change, might affect the sorption and the fate of pesticides. However additional experiments are needed to confirm these first results. Such artificial soils should be used as reference materials to compare the reactivity of pesticides, to identify the main adsorption mechanisms, and to study the effect of modifications in soil physico-chemical properties on the fate of pesticides.
Robust Functionalization of Large Microelectrode Arrays by Using Pulsed Potentiostatic Deposition
Rothe, Joerg; Frey, Olivier; Madangopal, Rajtarun; Rickus, Jenna; Hierlemann, Andreas
2016-01-01
Surface modification of microelectrodes is a central step in the development of microsensors and microsensor arrays. Here, we present an electrodeposition scheme based on voltage pulses. Key features of this method are uniformity in the deposited electrode coatings, flexibility in the overall deposition area, i.e., the sizes and number of the electrodes to be coated, and precise control of the surface texture. Deposition and characterization of four different materials are demonstrated, including layers of high-surface-area platinum, gold, conducting polymer poly(ethylenedioxythiophene), also known as PEDOT, and the non-conducting polymer poly(phenylenediamine), also known as PPD. The depositions were conducted using a fully integrated complementary metal-oxide-semiconductor (CMOS) chip with an array of 1024 microelectrodes. The pulsed potentiostatic deposition scheme is particularly suitable for functionalization of individual electrodes or electrode subsets of large integrated microelectrode arrays: the required deposition waveforms are readily available in an integrated system, the same deposition parameters can be used to functionalize the surface of either single electrodes or large arrays of thousands of electrodes, and the deposition method proved to be robust and reproducible for all materials tested. PMID:28025569
Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging
Reisch, Andreas; Klymchenko, Andrey S.
2017-01-01
Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many-fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye-loaded NPs) have emerged recently as attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye-loaded polymer NPs by emulsion polymerization and assembly of pre-formed polymers. Superior brightness requires strong dye loading without aggregation caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ~10-fold for comparable size and start reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye-loaded NPs for in vitro and in vivo imaging are reviewed. PMID:26901678
Advances in polymeric systems for tissue engineering and biomedical applications.
Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram
2012-03-01
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement
Etcheverry, Mariana; Barbosa, Silvia E.
2012-01-01
Glass fibers (GF) are the reinforcement agent most used in polypropylene (PP) based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers. PMID:28817025
NASA Astrophysics Data System (ADS)
Zhang, Ling; Khani, Mohammad M.; Krentz, Timothy M.; Huang, Yanhui; Zhou, Yuanxiang; Benicewicz, Brian C.; Nelson, J. Keith; Schadler, Linda S.
2017-03-01
Incorporating inorganic nanoparticles (NPs) into polymer matrices provides a promising solution for suppressing space charge effects that can lead to premature failure of electrical insulation used in high voltage direct current engineering. However, realizing homogeneous NP dispersion is a great challenge especially in high-molecular-weight polymers. Here, we address this issue in crosslinked polyethylene by grafting matrix-compatible polymer brushes onto spherical colloidal SiO2 NPs (10-15 nm diameter) to obtain a uniform NP dispersion, thus achieving enhanced space charge suppression, improved DC breakdown strength, and restricted internal field distortion (≤10.6%) over a wide range of external DC fields from -30 kV/mm to -100 kV/mm at room temperature. The NP dispersion state is the key to ensuring an optimized distribution of deep trapping sites. A well-dispersed system provides sufficient charge trapping sites and shows better performance compared to ones with large aggregates. This surface ligand strategy is attractive for future nano-modification of many engineering insulating polymers.
NASA Astrophysics Data System (ADS)
Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng
2016-05-01
Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.
Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng
2016-05-27
Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.
Hyperbranched polyglycerols at the biointerface
NASA Astrophysics Data System (ADS)
Moore, Eli; Thissen, Helmut; Voelcker, Nicolas H.
2013-08-01
The control over biointerfacial interactions is the key to a broad range of biomedical applications, ranging from implantable devices to drug delivery and nanomedicine. In many of these applications, coatings are required that reduce or prevent non-specific interactions with the biological environment, while at the same time presenting specific bioactive signals. Whilst surface coatings based on polymers such as poly(ethylene glycol) (PEG) have been used successfully, many limitations persist in regard to the biocompatibility, stability and functionality of state-of-the-art polymer coatings. Most of these limitations are related to the fact that, typically, linear polymers are used with associated limited chemical functionality. Here, we examine the development of hyperbranched polyglycerols (HPGs) as promising candidates for the replacement of traditional linear polymers, such as the chemically analogous PEG, for the control of biointerfacial interactions. HPGs are highly branched globular molecules that exhibit a high valency, allow easy access to a variety of functionalities and can present biologically active signals. In this review, a comprehensive overview is provided with respect to the history, synthetic strategies, modifications and applications of HPGs.
NASA Astrophysics Data System (ADS)
Hamed Mashhadzadeh, A.; Fereidoon, Ab.; Ghorbanzadeh Ahangari, M.
2017-10-01
In current study we combined theoretical and experimental studies to evaluate the effect of functionalization and silanization on mechanical behavior of polymer-based/CNT nanocomposites. Epoxy was selected as thermoset polymer, polypropylene and poly vinyl chloride were selected as thermoplastic polymers. The whole procedure is divided to two sections . At first we applied density functional theory (DFT) to analyze the effect of functionalization on equilibrium distance and adsorption energy of unmodified, functionalized by sbnd OH group and silanized epoxy/CNT, PP/CNT and PVC/CNT nanocomposites and the results showed that functionalization increased adsorption energy and reduced the equilibrium distance in all studied nanocomposites and silanization had higher effect comparing to OH functionalizing. Then we prepared experimental samples of all mentioned nanocomposites and tested their tensile and flexural strength properties. The obtained results showed that functionalization increased the studied mechanical properties in all evaluated nanocomposites. Finally we compared the results of experimental and theoretical sections with each other and estimated a suitable agreement between these parts.
Popescu, Marian C; Bita, Bogdan I; Tucureanu, Vasilica; Vasilache, Dan; Banu, Melania A; Avram, Andrei M; Giurescu-Dumitrescu, Raluca A
2018-02-01
The aim of this study is to conduct an extended surface and cross-section characterization of a denture base acrylic resin subjected to 500, 650, and 750 W microwave irradiation for 2, 3, and 5 min to assess its morphological modifications. A commercial heat-cured powder was polymerized according to the manufacturer's specifications and distributed into 20 circular samples. A stainless-steel wire was partially embedded in half of the discs, in order to investigate the metal-polymer interface. High-resolution scanning electron microscopy (SEM) imaging, white light interferometry, roughness measurements and Fourier transform infrared spectrometry were employed for morphological and structural evaluation of the irradiated polymer. Superficial adaptation was discovered after 5 min exposure at 500 W, 650 W, and 750 W, revealing significant roughness correction for 750 W. SEM characterization revealed the inner alteration of the resin for the 750 W protocol and a metal-polymer gap developed regardless of the irradiation conditions. The considerable temperature fluctuations that the samples were subject to during the experiments did not essentially change the poly(methyl-methacrylate) bond structure.
Nogueira, N; Conde, O; Miñones, M; Trillo, J M; Miñones, J
2012-11-01
The behavior of poly(2-hydroxyethyl methacrylate) (PHEMA) polymer monolayer spread on water was studied under various experimental conditions. The influence of subphase pH and temperature, compression speed, elapsed time from the deposit of the monolayer and the recording of the surface pressure-area (π-A) isotherms, as well as the number of polymer molecules deposited at the air/water surface (surface concentration) was studied. The obtained results show that PHEMA exhibits a very stable monolayer given that it is unaffected by modifications in the majority of these variables. Only the elapsed time between the spreading of the monolayer and the beginning of compression causes a small change in the π-A isotherms that consists in an increase in the area occupied by the film. This is attributed to the greater unfolding with time of the polymer's monomers at the air/water interface. The plateau that appears on π-A curves of the PHEMA monolayer is attributed to the reorientation of their hydroxyethyl polar groups through their C-O-C bonds, as well as to the reorientation of the ethylene (CH(2)) groups that link the monomers, which provokes a folding of the polymer's chains causing an accordion configuration. The existence of this structure is confirmed by the presence of numerous noise peaks in the relative thickness versus time curve corresponding to this region. In the same fashion, the images observed from Brewster angle microscopy (BAM) reveal the existence of light-dark "bands" relative to the different regions of this particular structure. Copyright © 2012 Elsevier Inc. All rights reserved.
Effect of polymer coating on the osseointegration of CP-Ti dental implant
NASA Astrophysics Data System (ADS)
Al-Hassani, Emad; Al-Hassani, Fatima; Najim, Manar
2018-05-01
Modifications achieved coatings of titanium samples were investigated in order to improve their surface characteristics so as to facilitate bio-integration. Chitosan coating was use for commercial pure Ti alloys manufactured by two different methods in which commercial pure titanium rod converted in form of implant screw by using wire cut machine and lathe, second method included the used of powder technology for producing the implant screws. The coating process of chitosan polymer was carried out using advance technology (electrospnning process) to create fibrous structure from Nano to micro scale of the chitosan on the implant surface which result in a bioactive surface. The characterization includes; microstructure observation, surface chemical composition analysis (EDS), surface roughness (AFM), and the histological analysis. from the SEM No morphological differences were observed among the implants surfaces except for some inconsiderable morphological differences that results from the manufacturing process, by using EDX analysis the surfaces chemical compositions were completely changed and there was large decrease in the percentage of titanium element at the surface which indicates that the surface is covered with chitosan and had a new surface composition and topography. The sample was produced by powder technology process have higher roughness (845.36 nm) than sample produced by machining without any surface treatment (531.7nm),finally The histological view of implant samples after 4weeks of implantation, showed active bone formation in all implant surface which give clear indication of tissue acceptance.
NASA Astrophysics Data System (ADS)
Van Deynse, Annick; Morent, Rino; Leys, Christophe; De Geyter, Nathalie
2017-10-01
In this paper, ethanol vapor up to 50% is added to an argon, air or nitrogen dielectric barrier discharge at medium pressure to profoundly investigate the effect of ethanol addition on the surface modification of low density polyethylene (LDPE). Water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS) measurements show that the ethanol vapor addition effect on the LDPE surface depends on the used carrier gas. Adding ethanol to an argon plasma has no significant effect on the wettability nor on the chemical composition of LDPE compared to a pure argon plasma treatment. Ethanol addition does however slightly increase the LDPE surface roughness. Addition of small amounts of ethanol vapor to an air plasma makes it possible to incorporate additional nitrogen and oxygen groups on the LDPE surface, resulting in an extra decrease of 11% in WCA value. Moreover, the LDPE surface roughness is slightly increased due to the ethanol vapor addition. The most significant effect of ethanol addition is however observed when nitrogen is used as carrier gas. After an N2/2% ethanol plasma treatment, an 85% reduction in WCA value to 8.5° is found compared to a pure N2 plasma treatment. This very hydrophilic LDPE surface is obtained due to a significantly high incorporation of oxygen and nitrogen groups on the surface with an O/C and N/C ratio reaching 32% and 53% respectively. FTIR measurements also reveal that the observed extremely high wettability of LDPE is not the result of plasma activation but is due to plasma polymerization effects occurring on the surface resulting into the deposition of a plasma polymer containing ketones, amides as well as Cdbnd N groups. In addition, ageing studies have also been conducted and these studies reveal that for all carrier gases, ethanol addition to the discharge gas significantly suppresses the ageing effect. All the above mentioned conclusions therefore indicate that ethanol vapor based plasmas can be an excellent tool to increase the surface energy of polymers.
Gh, Darshan; Kong, Dexu; Gautrot, Julien; Vootla, Shyam Kumar
2017-07-01
Conductive polymers are interesting materials for a number of biological and medical applications requiring electrical stimulation of cells or tissues. Highly conductive polymers (polypyrrole and polyaniline)/Antheraea mylitta silk fibroin coated fibers are fabricated successfully by in situ polymerization without any modification of the native silk fibroin. Coated fibers characterized by scanning electron microscopy confirm the silk fiber surface is covered by conductive polymers. Thermogravimetric analysis reveals preserved thermal stability of silk fiber after coating process. X-ray diffraction of degummed fiber diffraction peaks at around 2θ = 20.4 and 16.5 confirms the preservation of the β-sheet structure typical of degummed silk II fibers. This phenomenon implies that both polypyrrole and polyaniline chains form interactions with peptide linkages in degummed fiber macromolecules, without significantly disrupting protein assembly. Fourier transform infrared spectroscopy of coated fibers indicates hydrogen bonding and electrostatic interactions exist between silk fibroin macromolecules and conductive polymers. Resulting fibers display good conductive properties compared to corresponding conjugated polymers. In vitro analysis (live/dead assay) of the behavior of human immortalized keratinocytes (HaCaTs) on coated fibers demonstrates improved cell-adhesive properties and viability after polymers coating. Hence, polypyrrole- and polyaniline-coated A. mylitta silk fibers are suitable for application in cell culture and for tissue engineering, where electrical conduction properties are required. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149
Soft contact lens biomaterials from bioinspired phospholipid polymers.
Goda, Tatsuro; Ishihara, Kazuhiko
2006-03-01
Soft contact lens (SCL) biomaterials originated from the discovery of a poly(2-hydroxyethyl methacrylate) (poly[HEMA])-based hydrogel in 1960. Incorporation of hydrophilic polymers into poly(HEMA) hydrogels was performed in the 1970-1980s, which brought an increase in the equilibrium water content, leading to an enhancement of the oxygen permeability. Nowadays, the poly(HEMA)-based hydrogels have been applied in disposable SCL. At the same time, high oxygen-permeable silicone hydrogels were produced, which made it possible to continually wear SCL. Recently, numerous trials for improving the water wettability of silicone hydrogels have been performed. However, little attention has been paid to improving their anti-biofouling properties and biocompatibility. Since biomimetic phospholipid polymers possess excellent anti-biofouling properties and biocompatibility they have the potential to play a valuable role in the surface modification of the silicone hydrogel. The representative phospholipid polymers containing a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit suppressed nonspecific protein adsorption, increased cell compatibility and contributed to blood compatible biomaterials. The MPC polymer coating on the silicone hydrogel improved its water wettability and biocompatibility, while maintaining high oxygen permeability compared with the original silicone hydrogel. Furthermore, the newly prepared phospholipid-type intermolecular crosslinker made it possible to synthesize a 100% phospholipid polymer hydrogel that can enhance the anti-biofouling properties and biocompatibility. In this review, the authors discuss how polymer hydrogels should be designed in order to obtain a biocompatible SCL and future perspectives.
Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim
2016-02-16
The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.
Nanomechanics of cellulose crystals and cellulose-based polymer composites
NASA Astrophysics Data System (ADS)
Pakzad, Anahita
Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.
Effects of viscoelasticity on drop impact and spreading on a solid surface
NASA Astrophysics Data System (ADS)
Izbassarov, Daulet; Muradoglu, Metin
2016-06-01
The effects of viscoelasticity on drop impact and spreading on a flat solid surface are studied computationally using a finite-difference-front-tracking method. The finitely extensible nonlinear elastic-Chilcott-Rallison model is used to account for the fluid viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the spreading phase, leading to a slight increase in the maximum spreading, in agreement with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18, 1221 (2015), 10.1007/s10404-014-1518-4]. However, in contrast with the well-known antirebound effects of polymeric additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the antirebound effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material properties of the drop fluid. A model is proposed to test this hypothesis. It is found that the model results in good qualitative agreement with the experimental observations and the antirebound behavior can be captured by the modification of surface wetting properties in the receding phase.
Polypeptide Functional Surface for the Aptamer Immobilization: Electrochemical Cocaine Biosensing.
Bozokalfa, Guliz; Akbulut, Huseyin; Demir, Bilal; Guler, Emine; Gumus, Z Pınar; Odaci Demirkol, Dilek; Aldemir, Ebru; Yamada, Shuhei; Endo, Takeshi; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf
2016-04-05
Electroanalytical technologies as a beneficial subject of modern analytical chemistry can play an important role for abused drug analysis which is crucial for both legal and social respects. This article reports a novel aptamer-based biosensing procedure for cocaine analysis by combining the advantages of aptamers as selective recognition elements with the well-known advantages of biosensor systems such as the possibility of miniaturization and automation, easy fabrication and modification, low cost, and sensitivity. In order to construct the aptasensor platform, first, polythiophene bearing polyalanine homopeptide side chains (PT-Pala) was electrochemically coated onto the surface of an electrode and then cocaine aptamer was attached to the polymer via covalent conjugation chemistry. The stepwise modification of the surface was confirmed by electrochemical characterization. The designed biosensing system was applied for the detection of cocaine and its metabolite, benzoylecgonine (BE), which exhibited a linear correlation in the range from 2.5 up to 10 nM and 0.5 up to 50 μM for cocaine and BE, respectively. In order to expand its practical application, the proposed method was successfully tested for the analysis of synthetic biological fluids.
Asphalt rheology and strengthening through polymer binders : final report.
DOT National Transportation Integrated Search
2016-11-01
This term paper investigates the influences of polymer modifications to asphalt rheology as compared to : conventional asphalt pavement sections. The addition of 2% to 3% of polymers into the wearing and base courses : of asphalt (flexible) pavements...
Surface patterning of CRFP composites using femtosecond laser interferometry
NASA Astrophysics Data System (ADS)
Oliveira, V.; Moreira, R. D. F.; de Moura, M. F. S. F.; Vilar, R.
2018-03-01
We report on the surface patterning of carbon fiber-reinforced polymer (CFRP) composites using femtosecond laser interferometry. The effect of experimental processing parameters, such as the pulse energy and scanning speed, on the quality of the patterns is studied. Using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed and textured with the desired pattern. The period of the patterns can be controlled by changing the distance between the two interfering beams. On the other hand, the amplitude of the patterns can be controlled by changing the pulse energy or the number of laser pulses applied. In addition, sub-micron ripples are created on the carbon fibers surface allowing multiscale surface modification which may contribute to improve bonding between CFRP parts.
Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties.
Tong, Tiezheng; Zhao, Song; Boo, Chanhee; Hashmi, Sara M; Elimelech, Menachem
2017-04-18
We investigated the relationship between membrane surface properties and silica scaling in reverse osmosis (RO). The effects of membrane hydrophilicity, free energy for heterogeneous nucleation, and surface charge on silica scaling were examined by comparing thin-film composite polyamide membranes grafted with a variety of polymers. Results show that the rate of silica scaling was independent of both membrane hydrophilicity and free energy for heterogeneous nucleation. In contrast, membrane surface charge demonstrated a strong correlation with the extent of silica scaling (R 2 > 0.95, p < 0.001). Positively charged membranes significantly facilitated silica scaling, whereas a more negative membrane surface charge led to reduced scaling. This observation suggests that deposition of negatively charged silica species on the membrane surface plays a critical role in silica scale formation. Our findings provide fundamental insights into the mechanisms governing silica scaling in reverse osmosis and highlight the potential of membrane surface modification as a strategy to reduce silica scaling.
Menapace, Ilaria; Masad, Eyad
2016-09-01
This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Liu, Shaohui; Xue, Shuangxi; Xiu, Shaomei; Shen, Bo; Zhai, Jiwei
2016-05-17
Ferroelectric-relaxor behavior of Ba(Zr0.3Ti0.7)O3 nanofibers (BZT NF) with a large aspect ratio were prepared via electrospinning and surface modified by PVP as dielectric fillers. The nanocomposite flexible films based on surface modified BZT NF and polyvinylidene fluoride (PVDF) were fabricated via a solution casting. The results show that the surface-modified BZT NF fillers are highly dispersed and well integrated in the PVDF nanocomposites. The nanocomposites exhibit enhanced dielectric constant and reduced loss tangents at a low volume fraction of surface-modified BZT NF. The polymer nanocomposites maintain a relatively high breakdown strength, which is favorable for enhancing energy storage density in the nanocomposites. The nanocomposite containing of 2.5 vol. % of PVP modified BZT NF exhibits energy density as high as 6.3 J/cm(3) at 3800 kV/cm, which is more than doubled that of the pure PVDF of 2.8 J/cm(3) at 4000 kV/cm. Such significant enhancement could be attributed to the combined effects of the surface modification and large aspect ratio of the BZT NF. This work may provide a route for using the surface modified ferroelectric-relaxor behavior of ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites.
Irreversible Phase-Changes in Nanophase RE-doped M2O3 and their Optical Signatures
2015-12-01
T.; Eilers, H. Synthesis of silver /SiO2/Eu:Lu2O3 core- shell nanoparticles and their polymer nanocomposites. Powder Technol. 2011, 210, 157-166...Schwartz, J. Surface modification of Y2O3 nanoparticles . Langmuir 2007, 23, 9158-9161 (11) Imanaka, N.; Masui, T.; Mayama, Y.; Koyabu, K. Synthesis ... Synthesis and luminescence characteristics of Eu3+-doped ZrO2 nanoparticles . J. Lumin. 2007, 122, 855-857 (32) Ray, J. C.; Park, D. W.; Ahn, W. S
NASA Astrophysics Data System (ADS)
Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena
2007-12-01
Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.
NASA Astrophysics Data System (ADS)
Helsen, Jef A.; Jürgen Breme, H.
1998-10-01
Biomaterials is a field that continues to attract a significant amount of attention from researchers, industry, educationalists and regulators. This book is the first to provide readers with an understanding of fundamental theory relating to the use of metals in biomedical applications in addition to comprehensively covering applied aspects encompassing practical and technical advantages and disadvantages. Topics highlighted in the book include guidelines for selecting materials; shape memory alloys; degradation and surface modification; adhesion to ceramics and polymers; biocompartibility and tissue-implant interactions; and European and North American regulatory issues.
NASA Astrophysics Data System (ADS)
Farsiani, Yasaman; Elbing, Brian
2017-11-01
High molecular weight polymer solutions in wall-bounded flows can reduce the local skin friction by as much as 80%. External flow studies have typical focused on injection of polymer within a developing turbulent boundary layer (TBL), allowing the concentration and drag reduction level to evolve with downstream distance. Modification of the log-law region of the TBL is directly related to drag reduction, but recent results suggest that the exact behavior is dependent on flow and polymer properties. Weissenberg number and the viscosity ratio (ratio of solvent viscosity to the zero-shear viscosity) are concentration dependent, thus the current study uses a polymer ocean (i.e. a homogenous concentration of polymer solution) with a developing TBL to eliminate uncertainty related to polymer properties. The near-wall modified TBL velocity profiles are acquired with particle image velocimetry. In the current presentation the mean velocity profiles and the corresponding flow (Reynolds number) and polymer (Weissenberg number, viscosity ratio, and length ratio) properties are reported. Note that the impact of polymer degradation on molecular weight will also be quantified and accounted for when estimating polymer properties This work was supported by NSF Grant 1604978.
The energetics of adhesion in composite materials
NASA Astrophysics Data System (ADS)
Harding, Philip Hiram
Composite materials are used throughout modern society, and often the most important parameter in determining their properties is the adhesion at material interfaces within the composite. A broad investigation is completed, the global objective of which is to develop understanding of the role of adhesion in composite materials. The scope of this study ranges from macroscopic effects of adhesion on filled polymer composites to microscopic adhesion measurements with engineered interfaces. The surface of a filler material is systematically modified and surface characterization techniques are used to quantify the influence of the surface treatments on surface energetics and wetting properties. Filled polymer composites are prepared and composite mechanical properties determined with beam deflection tests. Filler surface treatments significantly alter the composite yield stress for composites which fail interfacially and are observed to increase or decrease mechanical strength, depending on the chemical nature of the modification. Thermodynamic adhesion mechanisms active at the filler-matrix interfaces are then explored by making direct interfacial strength measurements whereby a single spherical particle is introduced into the polymeric matrix. Interfacial strength is determined by submitting the single-particle composite (SPC) to uni-axial tension and relating the macroscopic stress at interfacial failure to that experienced at the interface. The technique provides a measurement of interfacial strength between two elastic materials, one unaffected by frictional forces, viscoelasticity, and thermal stresses. The SPC measurements are used to verify proposed adhesion mechanisms at the various filler-polymer interfaces and establish the role of adhesion in the filled polymer composites. The SPC technique is then used to investigate the adhesion promotion mechanism of organofunctional silanes, which are shown to be controlled by the compatibility and penetration of the silane organofunctional group. The effects of thermal residual stresses on interfacial strength are also investigated using the SPC technique. Processing conditions, i.e., time-temperature profiles, are used to systematically vary the thermal residual stresses within the polymeric matrix. The interfaces studied are deleteriously affected by increases in thermal residual stresses.
Infrared spectroscopic investigations on the distribution of residual grease on textiles
NASA Astrophysics Data System (ADS)
Siedler, J.; Schumacher-Hamedat, Ursula; Hoecker, Hartwig
1992-03-01
Surface modification of textile materials is of major importance in the modern textile industry. Several methods are commonly applied to produce a broad range of coated materials. The adhesion between the coating polymers and the textile fibers often determines the quality. Improved adhesion of the coating is achieved by a chemical bonding (covalent or ionic) between the coating materials and the textile. The efficiency,however, is dependent on the orientation of the functional groups of the outmost molecular layers of the fibers. Therefore, we have used surface sensitive methods to analyze the surface structure of proteinaceous fibers. Homopoly(aminoacid) films like poly(-(gamma) -benzyl-L-glutamate) and poly(- (Beta) -benzyl-L-aspartate) have been chosen as models for natural fibers like wool.
Hu, Qiao -Sheng; Hong, Kunlun; Zhang, Hong -Hai
2015-08-12
In this study, a general strategy toward the synthesis of well-defined conjugated polymers with controlled heterobisfunctional chain ends via combination of controlled Pd(0)/t-Bu 3P Suzuki cross-coupling polymerization with the post-polymerization modification of the triflate (OTf) group was disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qiao -Sheng; Hong, Kunlun; Zhang, Hong -Hai
In this study, a general strategy toward the synthesis of well-defined conjugated polymers with controlled heterobisfunctional chain ends via combination of controlled Pd(0)/t-Bu 3P Suzuki cross-coupling polymerization with the post-polymerization modification of the triflate (OTf) group was disclosed.
Catalysts and Initiators as Instruments Controlling Structure of Polymers with Inorganic Backbone.
1991-05-02
lipophobic, electron reach/poor, mesogenic, bioactive , etc. Most modifications have been performed on polyphosphazenes (nucleophilic displacement of...chlorines) and on partially hydrogenated siloxanes (hydrosilylation). Modifications of polysilanes is also known. In this aiticle the main emphasis will...groups6 ,7 . Poly(dimethylsiloxane) is probably the only siloxane polymer which does not form a mesophase and has only one first order thermal
Oyola-Reynoso, S.; Tevis, I. D.; Chen, J.; ...
2016-08-18
Here, chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolyzable moieties in the presence of physisorbed water. In this report, we demonstrated that using alkyltrichlorosilanes (trivalent [i.e., 3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound particles. We infer that the presencemore » of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2–201.4 g m –2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from ~70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student's t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, paper-based houses can be rendered self-cleaning or tolerant to surface running water. In another application, we demonstrated that the felicitous choice of architectural design allows for the hydrophobic paper to be used for water harvesting.« less
Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery
Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin
2014-01-01
Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171
Self-Assembled Polysaccharide Nanotubes Generated from β-1,3-Glucan Polysaccharides
NASA Astrophysics Data System (ADS)
Numata, Munenori; Shinkai, Seiji
β-1,3-Glucans act as unique natural nanotubes, the features of which are greatly different from other natural or synthetic helical polymers. The origin mostly stems from their strong helix-forming nature and reversible interconversion between single-strand random coil and triple-strand helix. During this interconversion process, they can accept functional polymers, molecular assemblies and nanoparticles in an induced-fit manner to create water-soluble one-dimensional nanocomposites, where individual conjugated polymers or molecular assemblies can be incorporated into the one-dimensional hollow constructed by the helical superstructure of β-1,3-glucans. The advantageous point of the β-1,3-glucan hosting system is that the selective modification of β-1,3-glucans leads to the creation of various functional one-dimensional nanocomposites in a supramolecular manner, being applicable toward fundamental nanomaterials such as sensors or circuits. Furthermore, the composites with functional surfaces can act as one-dimensional building blocks toward further hierarchical self-assemblies, leading to the creation of two- or three-dimensional nanoarchitectures.
Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols.
Escorihuela, Jorge; Zuilhof, Han
2017-04-26
Surface functionalization of inorganic semiconductor substrates, particularly silicon, has focused attention toward many technologically important applications, involving photovoltaic energy, biosensing and catalysis. For such modification processes, oxide-free (H-terminated) silicon surfaces are highly required, and different chemical approaches have been described in the past decades. However, their reactivity is often poor, requiring long reaction times (2-18 h) or the use of UV light (10-30 min). Here, we report a simple and rapid surface functionalization for H-terminated Si(111) surfaces using alkyl silanols. This catalyst-free surface reaction is fast (15 min at room temperature) and can be accelerated with UV light irradiation, reducing the reaction time to 1-2 min. This grafting procedure leads to densely packed organic monolayers that are hydrolytically stable (even up to 30 days at pH 3 or 11) and can display excellent antifouling behavior against a range of organic polymers.
Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols
2017-01-01
Surface functionalization of inorganic semiconductor substrates, particularly silicon, has focused attention toward many technologically important applications, involving photovoltaic energy, biosensing and catalysis. For such modification processes, oxide-free (H-terminated) silicon surfaces are highly required, and different chemical approaches have been described in the past decades. However, their reactivity is often poor, requiring long reaction times (2–18 h) or the use of UV light (10–30 min). Here, we report a simple and rapid surface functionalization for H-terminated Si(111) surfaces using alkyl silanols. This catalyst-free surface reaction is fast (15 min at room temperature) and can be accelerated with UV light irradiation, reducing the reaction time to 1–2 min. This grafting procedure leads to densely packed organic monolayers that are hydrolytically stable (even up to 30 days at pH 3 or 11) and can display excellent antifouling behavior against a range of organic polymers. PMID:28409624
Plasma-induced polymerization for enhancing paper hydrophobicity.
Song, Zhaoping; Tang, Jiebin; Li, Junrong; Xiao, Huining
2013-01-30
Hydrophobic modification of cellulose fibers was conducted via plasma-induced polymerization in an attempt to graft the hydrophobic polymer chains on paper surface, this increasing the hydrophobicity of paper. Two hydrophobic monomers, butyl acrylate (BA) and 2-ethylhexyl acrylate (2-EHA), were grafted on cellulose fibers, induced by atmospheric cold plasma. Various influencing factors associated with the plasma-induced grafting were investigated. Contact-angle measurement, Fourier Transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to ascertain the occurrence of the grafting and characterized the changes of the cellulose fiber after modification. The results showed that the hydrophobicity of the modified paper sheet was improved significantly after the plasma-induced grafting. The water contact angle on the paper surface reached up to 130°. The morphological differences between modified and unmodified samples were also revealed by SEM observation. The resulting paper is promising as a green-based packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biomaterials in Cardiovascular Research: Applications and Clinical Implications
Jaganathan, Saravana Kumar; Supriyanto, Eko; Murugesan, Selvakumar; Balaji, Arunpandian; Asokan, Manjeesh Kumar
2014-01-01
Cardiovascular biomaterials (CB) dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs), is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB. PMID:24895577
Ibricevic, Aida; Guntsen, Sean P.; Zhang, Ke; Shrestha, Ritu; Liu, Yongjian; Sun, Jing Yi; Welch, Michael J.; Wooley, Karen L.; Brody, Steven L.
2013-01-01
The airway provides a direct route for administration of nanoparticles bearing therapeutic or diagnostic payloads to the lung, however optimization of nanoplatforms for intracellular delivery remains challenging. Poly(ethylene glycol) (PEG) surface modification improves systemic performance but less is known about PEGylated nanoparticles administered to the airway. To test this, we generated a library of cationic, shell crosslinked knedel-like nanoparticles (cSCKs), including PEG (1.5 kDa PEG; 2, 5, 10 molecules/polymer arm) on the outer shell. Delivery of PEGylated cSCK to the mouse airway showed significantly less inflammation in a PEG dose-dependent manner. PEGylation also enhanced the entry of cSCKs in lung alveolar epithelial cells and improved surfactant penetration. The PEGylation effect could be explained by the altered mechanism of endocytosis. While non-PEGylated cSCKs used the clathrin-dependent route for endocytosis, entry of PEGylated cSCK was clathrin-independent. Thus, nanoparticle surface modification with PEG represents an advantageous design for lung delivery. PMID:23453959
NASA Astrophysics Data System (ADS)
Singh, R. A.; Satyanarayana, N.; Kustandi, T. S.; Sinha, S. K.
2011-01-01
Micro/nano-electro-mechanical-systems (MEMS/NEMS) are miniaturized devices built at micro/nanoscales. At these scales, the surface/interfacial forces are extremely strong and they adversely affect the smooth operation and the useful operating lifetimes of such devices. When these forces manifest in severe forms, they lead to material removal and thereby reduce the wear durability of the devices. In this paper, we present a simple, yet robust, two-step surface modification method to significantly enhance the tribological performance of MEMS/NEMS materials. The two-step method involves oxygen plasma treatment of polymeric films and the application of a nanolubricant, namely perfluoropolyether. We apply the two-step method to the two most important MEMS/NEMS structural materials, namely silicon and SU8 polymer. On applying surface modification to these materials, their initial coefficient of friction reduces by ~4-7 times and the steady-state coefficient of friction reduces by ~2.5-3.5 times. Simultaneously, the wear durability of both the materials increases by >1000 times. The two-step method is time effective as each of the steps takes the time duration of approximately 1 min. It is also cost effective as the oxygen plasma treatment is a part of the MEMS/NEMS fabrication process. The two-step method can be readily and easily integrated into MEMS/NEMS fabrication processes. It is anticipated that this method will work for any kind of structural material from which MEMS/NEMS are or can be made.
Ghobeira, Rouba; Philips, Charlot; Declercq, Heidi; Cools, Pieter; De Geyter, Nathalie; Cornelissen, Ria; Morent, Rino
2017-01-24
For most tissue engineering applications, surface modification and sterilization of polymers are critical aspects determining the implant success. The first part of this study is thus dedicated to modifying polycaprolactone (PCL) surfaces via plasma treatment using a medium pressure dielectric barrier discharge, while the second part focuses on the sterilization of plasma-modified PCL. Chemical and physical surface changes are examined making use of water contact angle goniometry (WCA), x-ray photoelectron spectroscopy and atomic force microscopy. Bioresponsive properties are evaluated by performing cell culture tests. The results show that air and argon plasmas decrease the WCA significantly due to the incorporation of oxygen-containing functionalities onto the PCL surface, without modifying its morphology. Extended treatment times lead to PCL degradation, especially in the case of air plasma. In addition to surface modification, the plasma potential to sterilize PCL is studied with appropriate treatment times, but sterility has not been achieved so far. Therefore, plasma-modified films are subjected to UV, H 2 O 2 plasma (HP) and ethylene oxide (EtO) sterilizations. UV exposure of 3 h does not alter the PCL physico-chemical properties. A decreased wettability is observed after EtO sterilization, attributable to the modification of PCL chain ends reacting with EtO molecules. HP sterilization increases the WCA of the plasma-treated samples, presumably due to the scission of the hydrophilic bonds generated during the prior plasma treatments. Moreover, HP modifies the PCL surface morphology. For all the sterilizations, an improved cell adhesion and proliferation is observed on plasma-treated films compared to untreated ones. EtO shows the lowest proliferation rate compared to HP and UV. Overall, of the three sterilizations, UV is the most effective, since the physical alterations provoked by HP might interfere with the structural integrity when it comes to 3D scaffolds, and the chemical modifications caused by EtO, in addition to its toxicity, interfere with PCL bioactivity.
NASA Astrophysics Data System (ADS)
Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa
2017-05-01
The toxicity of ZnO nanoparticles (NPs) is a growing concern due to its increasing use in several products including sunscreens, paints, pigments and ceramics for its antibacterial, antifungal, anti-corrosive and UV filtering properties. The toxicity of ZnO NPs is mostly attributed to the Zn2+ release causing an increase in the intracellular reactive oxygen species (ROS) level. The surface modification with a biocompatible ligand or a polymer can be a good strategy to reduce dissolution based toxicity. In two previous studies, the conflicting results with EDC/NHS coupling chemistry for ZnO NPs were reported. In this study, the same surface modification strategy with an emphasis on the stability of ZnO NPs is clarified. First, the density of -OH groups on the ZnO NPs is increased with hydrogen peroxide (H2O2) treatment, and then a silica coating on the ZnO NPs (Si-ZnO) surface is performed. Finally, a covalent attachment of bovine serum albumin (BSA) on three different concentrations of ZnO-Si is carried out by EDC/NHS coupling chemistry. ZnO NPs have a very high dissolution rate under acidic conditions of EDC/NHS coupling chemistry as determined from the ICP-MS analysis. In addition, the amount of ZnO NPs in coupling reaction has an important effect on the dissolution rate of Zn2+ and dependently BSA attached on the ZnO NP surfaces. Finally, the cytotoxicity of the BSA modified Si-ZnO NPs on human lung cancer (A549) and human skin fibroblast (HSF) is evaluated. Although an increased association of BSA modified ZnO NPs with cells was observed, the modification significantly decreased their cytotoxicity. This can be explained with the decreased active surface area of ZnO NPs with the surface modification. However, an increase in the mitochondrial depolarization and ROS production was observed depending on the amount of BSA coverage.
Elahi, M. Fazley; Guan, Guoping; Wang, Lu; King, Martin W.
2014-01-01
To enhance the hemocompatibility of silk fibroin fabric as biomedical material, polyelectrolytes architectures have been assembled through the layer-by-layer (LbL) technique on silk fibroin fabric (SFF). In particular, 1.5 and 2.5 bilayer of oppositely charged polyelectrolytes were assembled onto SFF using poly(allylamine hydrochloride) (PAH) as polycationic polymer and poly(acrylic acid) (PAA) as polyanionic polymer with PAH topmost. Low molecular weight heparin (LMWH) activated with 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) was then immobilized on its surface. Alcian Blue staining, toluidine blue assay and X-ray photoelectron spectroscopy (XPS) confirmed the presence of heparin on modified SFF surfaces. The surface morphology of the modified silk fibroin fabric surfaces was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and obtained increased roughness. Negligible hemolytic effect and a higher concentration of free hemoglobin by a kinetic clotting time test ensured the improved biological performance of the modified fibroin fabric. Overall, the deposition of 2.5 bilayer was found effective in terms of biological and surface properties of the modified fibroin fabric compared to 1.5 bilayer self-assembly technique. Therefore, this novel approach to surface modification may demonstrate long term patency in future in vivo animal trials of small diameter silk fibroin vascular grafts. PMID:28788601
NASA Astrophysics Data System (ADS)
Silva, Simone dos Santos
In the last decades, tissue engineering has emerged as a potential therapeutical tool aimed at developing substitutes that are able to restore proper function of the damaged organs/tissues. Nature-inspired routes involving natural origin polymer-based systems represent an attractive alternative to produce novel materials by mimicking the tissue environment required for tissue regeneration. Moreover, further modifications of these systems allow the adjustment of their properties in accordance with the requirements for successful biomedical applications. The main goal of the present thesis is to develop and modify natural origin polymer-based systems using simple methodologies such as sol-gel, surface modification by means of plasma treatment and blending of chitosan with proteins (soy protein isolate and silk fibroin). A sol-gel method was used to improve the bulk properties of chitosan by the incorporation of an inorganic component at the sub-nanometric level. Chitosan/siloxane hybrid materials were synthesised, where essentially urea bridges covalently bond the chitosan to the polysiloxane network. These bifunctional materials exhibit interesting photoluminescence features and a bioactive behaviour. In most situations in the biomedical field, the surface of a biomaterial is in direct contact with living tissues. Therefore, the surface characteristics play a fundamental role on the implant biocompatibility. In this thesis, nitrogen and argon plasma treatment was applied on chitosan membranes in order to improve their surface properties. The applied modifications promoted differences on surface chemistry, wettability and roughness, which reflected in a significant improvement of fibroblast adhesion and proliferation onto chitosan membranes. Besides the surface modification, blending of chitosan with proteins such as soy protein isolate and silk fibroin was also used to modify the bulk properties of chitosan. In situ cross-linking with glutaraldehyde solutions was used to enhance the interaction between the components of the blend. Hence, membranes with different morphologies, water absorption and degradability were obtained. The biological assays suggested that the cross-linking with lower glutaraldehyde concentration promotes better cell adhesion on the membranes. The morphological characterization showed that both surface roughness surface and surface energy were dependent on soy protein content. Structural investigations by FTIR and NMR indicated that the blends are not completely miscible due to a weak polysaccharide-protein interaction. In another related work, novel hydrogels were produced combining Bombyx mori silk fibroin and chitosan. In this case, these systems were cross-linked with genipin. These hydrogels were freeze dried to obtain cross-linked chitosan/silk sponges. Rheological and mechanical properties, structural aspects and morphological features of the porous structures were evaluated. The results revealed stable and ordered structures, similar porosities, and swelling capability that depended on the pH. The cytotoxicity assay indicated that cellular viability was about 100% in all sponges and for all time points studied (1, 3, 7 and 14 days), demonstrating the extremely low cytotoxicity levels of the materials. Cell studies using chondrocytes-like cells seeded onto sponges, including cell viability (MTS assay), proliferation (DNA test), morphology (SEM analysis) and matrix production (GAGs quantification), showed a significant high adhesion, proliferation and matrix production with the time of culture. The findings in this work suggested that the properties of the sponges can be manipulated by either change chitosan/silk fibroin ratio or through genipin cross-linking. Parallel to this study, the possibility of obtaining modified silk nanometric nets using electrospinning processing from regenerated silk fibroin/formic acid with addition of genipin was explored. Modified silk nanofibers with diameters ranging from 140 nm to 590 nm were developed. The changes on the secondary structure of nanofibers, induced by the reaction of silk fibroin with genipin, promoted a higher integrity of these modified nanofibers in water. In summary, the findings from these works demonstrated the potential and versatility of the proposed strategies in obtaining different structures (e.g. membranes, hydrogels) using mixtures of chitosan with proteins or with inorganic agents for improving the performance of natural origin polymer-based materials to be used in biomedical applications.
High-energy radiation and polymers: A review of commercial processes and emerging applications
NASA Astrophysics Data System (ADS)
Clough, R. L.
2001-12-01
Ionizing radiation has been found to be widely applicable in modifying the structure and properties of polymers, and can be used to tailor the performance of either bulk materials or surfaces. Fifty years of research in polymer radiation chemistry has led to numerous applications of commercial and economic importance, and work remains active in the application of radiation to practical uses involving polymeric materials. This paper provides a survey of radiation-processing methods of industrial interest, ranging from technologies already commercially well established, through innovations in the active R&D stage which show exceptional promise for future commercial use. Radiation-processing technologies are discussed under the following categories: cross-linking of plastics and rubbers, curing of coatings and inks, heat-shrink products, fiber-matrix composites, chain-scission for processing control, surface modification, grafting, hydrogels, sterilization, natural product enhancement, plastics recycling, ceramic precursors, electronic property materials, ion-track membranes and lithography for microdevice production. In addition to new technological innovations utilizing conventional gamma and e-beam sources, a number of promising new applications make use of novel radiation types which include ion beams (heavy ions, light ions, highly focused microscopic beams and high-intensity pulses), soft X-rays which are focused, coherent X-rays (from a synchrotron) and e-beams which undergo scattering to generate patterns.
Chen, Jian; Tang, Ying; Wang, Hong; Zhang, Peisheng; Li, Ya; Jiang, Jianhui
2016-12-15
The design of effective tools capable of sensing lysosome pH is highly desirable for better understanding its biological functions in cellular behaviors and various diseases. Herein, a lysosome-targetable ratiometric fluorescent polymer nanoparticle pH sensor (RFPNS) was synthesized via incorporation of miniemulsion polymerization and surface modification technique. In this system, the donor: 4-ethoxy-9-allyl-1,8-naphthalimide (EANI) and the acceptor: fluorescein isothiocyanate (FITC) were covalently linked to the polymer nanoparticle to construct pH-responsive fluorescence resonance energy transfer (FRET) system. The FITC moieties on the surface of RFPNS underwent structural and spectral transformation as the presence of pH changes, resulting in ratiometric fluorescent sensing of pH. The as-prepared RFPNS displayed favorable water dispersibility, good pH-induced spectral reversibility and so on. Following the living cell uptake, the as-prepared RFPNS with good cell-membrane permeability can mainly stain in the lysosomes; and it can facilitate visualization of the intracellular lysosomal pH changes. This nanosensor platform offers a novel method for future development of ratiometric fluorescent probes for targeting other analytes, like ions, metabolites,and other biomolecules in biosamples. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Yichao; Li, Puwang; Truong-Dinh Tran, Thao; Zhang, Juan; Kong, Lingxue
2016-01-01
The evolution of polymer based nanoparticles as a drug delivery carrier via pharmaceutical nano/microencapsulation has greatly promoted the development of nano- and micro-medicine in the past few decades. Poly(lactide-co-glycolide) (PLGA) and chitosan, which are biodegradable and biocompatible polymers, have been approved by both the Food & Drug Administration (FDA) and European Medicine Agency (EMA), making them ideal biomaterials that can be advanced from laboratory development to clinical oral and parental administrations. PLGA and chitosan encapsulated nanoparticles (NPs) have successfully been developed as new oral drug delivery systems with demonstrated high efficacy. This review aims to provide a comprehensive overview of the fabrication of PLGA and chitosan particulate systems using nano/microencapsulation methods, the current progress and the future outlooks of the nanoparticulate drug delivery systems. Especially, we focus on the formulations and nano/micro-encapsulation techniques using top-down techniques. It also addresses how the different phases including the organic and aqueous ones in the emulsion system interact with each other and subsequently influence the properties of the drug delivery system. Besides, surface modification strategies which can effectively engineer intrinsic physicochemical properties are summarised. Finally, future perspectives and potential directions of PLGA and chitosan nano/microencapsulated drug systems are outlined. PMID:28344283
Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun
2015-11-01
Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing.
Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing
2017-09-04
Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yang, Hongsheng; Kim, Junghwan; Yamamoto, Koji; Xing, Xing; Hosono, Hideo
2018-03-01
We report a unique amorphous oxide semiconductor Znsbnd Sisbnd O (a-ZSO) which has a small work function of 3.4 eV for as-deposited films. The surface modification of a-ZSO thin films by plasma treatments is examined to apply it to the electron injection/transport layer of organic devices. It turns out that the energy alignment and exciton dissociation efficiency at a-ZSO/organic semiconductor interface significantly changes by choosing different gas (oxygen or argon) for plasma treatments (after a-ZSO was exposed to atmospheric environment for 5 days). In situ ultraviolet photoelectron spectroscopy (UPS) measurement reveals that the work function of a-ZSO is increased to 4.0 eV after an O2-plasma treatment, while the work function of 3.5 eV is recovered after an Ar-plasma treatment which indicates this treatment is effective for surface cleaning. To study the effects of surface treatments to device performance, OLEDs and hybrid polymer solar cells with O2-plasma or Ar-plasma treated a-ZSO are compared. Effects of these surface treatments on performance of inverted OLEDs and hybrid polymer solar cells are examined. Ar-plasma treated a-ZSO works well as the electron injection layer in inverted OLEDs (Alq3/a-ZSO) because the injection barrier is small (∼ 0.1 eV). On the other hands, O2-plasma treated a-ZSO is more suitable for application to hybrid solar cells which is benefiting from higher exciton dissociation efficiency at polymer (P3HT)/ZSO interface.
Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon
Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which aremore » anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.« less
Gossmann, R; Fahrländer, E; Hummel, M; Mulac, D; Brockmeyer, J; Langer, K
2015-06-01
The behavior of nanosized drug carrier systems under cell culture conditions and therefore also the destiny in the body are highly influenced by the protein corona, which is formed upon entering a biological environment. Some of the adsorbed proteins, named opsonins, lead to a shortened plasma circulation half-life of the nanoparticles. Others are attributed to promote the transport of nanoparticles into other compartments of the body, just to mention two examples. Hence, detailed knowledge concerning the composition of the protein corona is of great importance. The aim of this work was to investigate the influence of the nanoparticle starting material and the surface modification on the composition of the adsorbed serum proteins in a cell culture environment. Therefore, positively charged nanoparticles based on the biodegradable polymer poly(dl-lactide-co-glycolide) (PLGA) stabilized with didodecyldimethylammonium bromide (DMAB) and negatively charged nanoparticles based on human serum albumin (HSA) were prepared and modified with hydrophilic polymers. By incubating the nanoparticles with fetal bovine serum (FBS) the adsorption of serum proteins on the colloidal system was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) a semi-quantitative analysis of the protein corona was performed and after enzymatic in-solution-digestion the adsorbed proteins were identified using high resolution LC-MS. Our study accentuates the influence of the core material, surface charge, and surface modification on the amount and nature of the adsorbed proteins. The combination of SDS-PAGE and LC-MS turns out to be a simple and reliable method to investigate the protein corona of nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
Qin, Xin; Xia, Wenjie; Sinko, Robert; Keten, Sinan
2015-10-14
Cellulose nanocrystals (CNCs) exhibit impressive interfacial and mechanical properties that make them promising candidates to be used as fillers within nanocomposites. While glass-transition temperature (Tg) is a common metric for describing thermomechanical properties, its prediction is extremely difficult as it depends on filler surface chemistry, volume fraction, and size. Here, taking CNC-reinforced poly(methyl-methacrylate) (PMMA) nanocomposites as a relevant model system, we present a multiscale analysis that combines atomistic molecular dynamics (MD) surface energy calculations with coarse-grained (CG) simulations of relaxation dynamics near filler-polymer interfaces to predict composite properties. We discover that increasing the volume fraction of CNCs results in nanoconfinement effects that lead to an appreciation of the composite Tg provided that strong interfacial interactions are achieved, as in the case of TEMPO-mediated surface modifications that promote hydrogen bonding. The upper and lower bounds of shifts in Tg are predicted by fully accounting for nanoconfinement and interfacial properties, providing new insight into tuning these aspects in nanocomposite design. Our multiscale, materials-by-design framework is validated by recent experiments and breaks new ground in predicting, without any empirical parameters, key structure-property relationships for nanocomposites.
UV-Induced [2+2] Grafting-To Reactions for Polymer Modification of Cellulose.
Conradi, Matthias; Ramakers, Gijs; Junkers, Thomas
2016-01-01
Benzaldehyde-functional cellulose paper sheets have been synthesized via tosylation of cellulose (Whatman No 5) followed by addition of p-hydroxy benzaldehyde. Via UV-induced Paterno-Büchi [2+2] cycloaddition reactions, these aldehyde functional surfaces are grafted with triallylcyanurate, trimethylolpropane allyl ether, and vinyl chloroacetate. In the following, allyl-functional polymers (poly(butyl acrylate), pBA, Mn = 6990 g mol(-1) , Đ = 1.12 and poly(N-isopropyl acrylamide), pNIPAAm, Mn = 9500 g mol(-1) , Đ = 1.16) synthesized via reversible addition fragmentation chain transfer polymerization are conjugated to the celloluse surface in a UV-induced grafting-to approach. With pBA, hydrophobic cellulose sheets are obtained (water contact angle 116°), while grafting of pNIPAAm allows for generation of "smart" surfaces, which are hydrophilic at room temperature, but that become hydrophobic when heated above the characteristic lower critical solution temperature (93° contact angle). The Paterno-Büchi reaction has been shown to be a versatile synthetic tool that also performs well in grafting-to approaches whereby its overall performance seems to be close to that of radical thiol-ene reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Materials Design for Block Copolymer Lithography
NASA Astrophysics Data System (ADS)
Sweat, Daniel Patrick
Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up a wide slew of applications from directed self-assembly to biomaterial engineering.
The influence of surface coating on the properties of water-soluble CdSe and CdSe/ZnS quantum dots
NASA Astrophysics Data System (ADS)
Coto-García, Ana María; Fernández-Argüelles, María T.; Costa-Fernández, José M.; Sanz-Medel, Alfredo; Valledor, Marta; Campo, Juan C.; Ferrero, Francisco J.
2013-01-01
It is well-known that ligands coating the surface of luminescent semiconductor nanocrystals (quantum dots [QDs]) play an important role in the preparation, stability and physical properties of the colloidal QDs in both organic and aqueous media. Here we report on the synthesis and characterization of core (CdSe QDs) and core-shell structured QDs (CdSe/ZnS QDs), both of them stabilized in aqueous medium through different mechanisms of modification of their surface chemistry. The approaches evaluated for QDs transfer to aqueous media were ligand exchange and polymer coating. Experiments were performed using two typical thioalkyl acids as ligands, namely mercaptoacetic acid (QDs-MAA) and 2-mercaptoethanesulphonic acid (QDs-MES), and an amphiphilic polymer (PQDs) based on poly(maleic anhydride) functional groups. The effects of pH (buffer solution), illumination and the presence of ions in the QD environment on the spectroscopic properties of the different synthesized QDs are reported. The stability of the prepared QDs has been comparatively evaluated aimed to elucidate which surface chemistry provides the suitable properties to be employed as fluorescence labels in distinct types of applications. The experimental results and conclusions will be useful for the development of sensitive sensors or assays adopting QDs as fluorescence labels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ting; Wang, Wan; Zhu, Ding
2015-11-15
Graphical abstract: Polypyrrole(PPy) film has improved the rate performance of LiMn{sub 2}O{sub 4} efficiently due to its excellent conductivity. PPy@LiMn{sub 2}O{sub 4} could provide more energy under the higher power than pristine LMO. - Highlights: • The PPy layer on the surface of LMO particles hasn’t been studied in LiMn{sub 2}O{sub 4} so far. • The solvent in the synthesis process of PPy@LMO is absolute ethyl alcohol. • The differences of surface-modification between the PPy and PI for LMO. • The analyses of rate performances are through specific power. - Abstract: Polypyrrole (PPy) is an excellent conductive polymer and themore » study on its utilization in the surface modification of the LiMn{sub 2}O{sub 4} (LMO) is few. In this work, the structure, morphology and electrochemical performance of surface-modified LiMn{sub 2}O{sub 4} composites with PPy and polyimides (PI) were discussed. The crystal structure, chemical bonds and morphology were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. Moreover, the specific power and cycling performance were tested at room and high (55 °C) temperature. The PPy@LMO (surface-modified LMO composites with PPy) shows better performances than the pristine LMO. The addition of PPy not only weakens the corrosion caused by electrolyte, but also improves the discharge capacity at higher rates. The charge transfer resistance of the PPy@LMO is much lower than that of the pristine LMO after cycling.« less
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
Control of Fibrinogen Assembly by Changing a Polarity of Surfaces
NASA Astrophysics Data System (ADS)
Koo, Jaseung; Liu, Ying; Snow, Sara; Rambhia, Pooja; Koga, Tadanori; Rafailovich, Miriam; Galanakis, Dennis
2009-03-01
Thrombogenesis causes various problems associated with an interruption in the blood flow (e.g., myocardial and cerebral infarction), and a hindrance to use of blood-contact vascular biomaterials (e.g., hemodialysis and cardiopulmonary bypass) with long-term patency since undesired adsorption of blood components occurs on vessels or biomaterials, such as surface-induced thrombosis. we showed that this clotting procedure can be occurred on hydrophobic polymeric surfaces without thrombin cleavage. However, the fibrinogen fibers were not formed on the polar surface such as spun-cast polymer film with pyridine and phenol groups. We also found that αC domains play an important role in initiation of polymerization on surface. Therefore, molecular association was inhibited on the polar surfaces due to confinement of αC chains on the surfaces. These findings were directly applied to stent surface modification. The commercial stent consist of Co-Cr alloy forms undesired fiber formation. However, PS-r-PVPh (13% phenol) coated stent surfaces completely prevent fiber formation.
NASA Astrophysics Data System (ADS)
Gao, Jiefeng; Song, Xin; Huang, Xuewu; Wang, Ling; Li, Bei; Xue, Huaiguo
2018-05-01
Non-solvent assisted electrospinning was proposed for fabricating Polymethylmethacrylate (PMMA) microspheres and fibers with a hollow core and porous shell, which could be used for oil adsorption and oil/water separation. Propanediol was chosen as the non-solvent because of its high surface tension and viscosity as well as large phase separation tendency with polymer, which was beneficial to the formation of both the hollow core and porous shell during the electrospinning. With the increase of the polymer solution concentration, the microsphere gradually evolved to the bead-on-string geometry and finally to a continuous fiber form, indicating the transition from electro-spraying to electrospinning. The hollow core and dense surface pores enhanced the hydrophobicity, oleophilicity, permeability, and specific surface area of the fibers, and hence imparted the fibrous mat a high oil adsorption capacity. When the porous hollow microspheres were electro-sprayed onto the stainless steel mesh followed by the PDMS modification, the modified mesh became super-hydrophobic and super-oleophilic with the contact angle of 153° and sliding angle of 4°. The as-prepared mesh showed rapid oil/water separation with high efficiency and excellent recycling performance. The flux for separation of oil/water mixture could reach as high as 11,000 L m-2 h-1. This facile non-solvent assisted electrospinning method provides a new avenue for preparation of multifunctional porous materials which possess potential applications in large-scale oil/water separation.
NASA Astrophysics Data System (ADS)
Sheeja, Manaf, O.; Sujith, A.
2017-06-01
Polymer modification by radiation grafting of monomers onto polymers has received much attention recently. In the current study, γ-irradiation technique was used to achieve graft copolymerization of maleic anhydride (MA) onto low-density polyethylene (LDPE). To optimize, the process was performed at different γ-irradiation doses and MA concentration. The microstructure of grafted polymer film has been characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, field emission-scanning electron microscopy, and atomic force microscopy. The studies performed made possible the selection of experimental protocols adequate for the production of new copolymeric materials with high grafting yield.
A new route for chitosan immobilization onto polyethylene surface.
Popelka, Anton; Novák, Igor; Lehocký, Marián; Junkar, Ita; Mozetič, Miran; Kleinová, Angela; Janigová, Ivica; Slouf, Miroslav; Bílek, František; Chodák, Ivan
2012-11-06
Low-density polyethylene (LDPE) belongs to commodity polymer materials applied in biomedical applications due to its favorable mechanical and chemical properties. The main disadvantage of LDPE in biomedical applications is low resistance to bacterial infections. An antibacterial modification of LDPE appears to be a solution to this problem. In this paper, the chitosan and chitosan/pectin multilayer was immobilized via polyacrylic acid (PAA) brushes grafted on the LDPE surface. The grafting was initiated by a low-temperature plasma treatment of the LDPE surface. Surface and adhesive properties of the samples prepared were investigated by surface analysis techniques. An antibacterial effect was confirmed by inhibition zone measurements of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The chitosan treatment of LDPE led to the highest and most clear inhibition zones (35 mm(2) for E. coli and 275 mm(2) for S. aureus). Copyright © 2012 Elsevier Ltd. All rights reserved.
Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells
Mura, Simona; Hillaireau, Herve; Nicolas, Julien; Le Droumaguet, Benjamin; Gueutin, Claire; Zanna, Sandrine; Tsapis, Nicolas; Fattal, Elias
2011-01-01
Background Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells. Methods Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol), respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers. Results Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles. Conclusion These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines. PMID:22114491
Fabrication and Characterization of Silicon Carbide Epoxy Composites
NASA Astrophysics Data System (ADS)
Townsend, James
Nanoscale fillers can significantly enhance the performance of composites by increasing the extent of filler-to-matrix interaction. Thus far, the embedding of nanomaterials into composites has been achieved, but the directional arrangement has proved to be a challenging task. Even with advances in in-situ and shear stress induced orientation, these methods are both difficult to control and unreliable. Therefore, the fabrication of nanomaterials with an ability to orient along a magnetic field is a promising pathway to create highly controllable composite systems with precisely designed characteristics. To this end, the goal of this dissertation is to develop magnetically active nanoscale whiskers and study the effect of the whiskers orientation in a polymer matrix on the nanocomposite's behavior. Namely, we report the surface modification of silicon carbide whiskers (SiCWs) with magnetic nanoparticles and fabrication of SiC/epoxy composite materials. The magnetic nanoparticles attachment to the SiCWs was accomplished using polyelectrolyte polymer-to-polymer complexation. The "grafting to" and adsorption techniques were used to attach the polyelectrolytes to the surface of the SiCWs and magnetic nanoparticles. The anchored polyelectrolytes were polyacrylic acid (PAA) and poly(2-vinylpyridine) (P2VP). Next, the SiC/epoxy composites incorporating randomly oriented and magnetically oriented whiskers were fabricated. The formation of the composite was studied to determine the influence of the whiskers' surface composition on the epoxy curing reaction. After curing, the composites' thermal and thermo-mechanical properties were studied. These properties were related to the dispersion and orientation of the fillers in the composite samples. The obtained results indicated that the thermal and thermo-mechanical properties could be improved by orienting magnetically-active SiCWs inside the matrix. Silanization, "grafting to", adsorption, and complexation were used to modify the surface of SiCWs to further investigate the epoxy nanocomposite system. The process of composites formation was studied to evaluate the effects of the surface modification on the epoxy curing reaction. The obtained composites were tested and analyzed to assess their thermal and thermo-mechanical properties. These properties were related to the dispersion and surface chemical composition of the fillers in the nanocomposites. It was determined that magnetically modified SiCWs have lower ability for interfacial stress transfer in the composite systems under consideration. The final portion of this work was focused on reinforcing the magnetic layer of the SiCWs. This was accomplished by structurally toughening the magnetic layer with poly(glycidyl methacrylate) (PGMA) layer. As a result, the thermal and mechanical properties of the magnetic composite system were improved significantly.
Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers.
Leng, Chuan; Huang, Hao; Zhang, Kexin; Hung, Hsiang-Chieh; Xu, Yao; Li, Yaoxin; Jiang, Shaoyi; Chen, Zhan
2018-05-07
Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water, and how such structures change while exposing to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property while other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material.
NASA Technical Reports Server (NTRS)
Hockridge, R. R.
1973-01-01
Trade-off studies and screening evaluations were made of commercial polymers and silicone foam sheet stock. A low modulus, low density 0.26 gm/cc modification was developed of the GE-RESD PD-200 system based upon GE RTV-560 silicone polymer. The bond system modification was initially characterized for mechanical and thermal properties, evaluated for application methods, and its capability demonstrated as a strain arrestor bond system.
Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.
Liu, Peiming; Huang, Tao; Liu, Pingsheng; Shi, Shufeng; Chen, Qiang; Li, Li; Shen, Jian
2016-10-15
Polyurethane (PU) is a biopolymer that has been commonly used for biomedical applications. However, the biofouling phenomenon on the hydrophobic PU surface is one of the crucial issues that embarrassing its applications. Here, we report a facile & efficient approach to improve the anti-biofouling ability of the PU substrates. Active residues were firstly generated on the PU surface by using the low temperature air-plasma treatment, promoting the immobilization of the atom transfer radical polymerization (ATRP) initiators on the surface. Then, three types of zwitterionic polymer brushes, as well as PEG brushes, have been fabricated on the PU substrates through surface-initiated ATRP (SI-ATRP). Robust surface characterizations that capable of revealing the surface chemistry (including X-ray photoelectron spectroscopy (XPS) and wettability tests), and antifouling evaluations of the PU substrates (protein adsorption, platelet adhesion, and cell adhesion measurements) were performed. Results showed that three types of zwitterionic brushes have been successful grafted on the PU surface, respectively. And the three types of zwitterionic brushes, in general, significantly inhibited the protein adsorption, the platelet adhesion, and the cell adhesion on the PU surface, endowing a significantly improved anti-fouling ability to the PU substrates. Furthermore, we found that this facial zwitterionic surface modification did not compromise the mechanical property of the PU substrates. This strategy could be easily exploited to PU-based biomaterials to improve their performance in many applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers
Crespy, Daniel
2010-01-01
Summary The miniemulsion technique is a particular case in the family of heterophase polymerizations, which allows the formation of functionalized polymers by polymerization or modification of polymers in stable nanodroplets. We present here an overview of the different polymer syntheses within the miniemulsion droplets as reported in the literature, and of the current trends in the field. PMID:21160567
Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng
2016-01-01
Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification. PMID:27229174
Unraveling atomic-level self-organization at the plasma-material interface
NASA Astrophysics Data System (ADS)
Allain, J. P.; Shetty, A.
2017-07-01
The intrinsic dynamic interactions at the plasma-material interface and critical role of irradiation-driven mechanisms at the atomic scale during exposure to energetic particles require a priori the use of in situ surface characterization techniques. Characterization of ‘active’ surfaces during modification at atomic-scale levels is becoming more important as advances in processing modalities are limited by an understanding of the behavior of these surfaces under realistic environmental conditions. Self-organization from exposure to non-equilibrium and thermalized plasmas enable dramatic control of surface morphology, topography, composition, chemistry and structure yielding the ability to tune material properties with an unprecedented level of control. Deciphering self-organization mechanisms of nanoscale morphology (e.g. nanodots, ripples) and composition on a variety of materials including: compound semiconductors, semiconductors, ceramics, polymers and polycrystalline metals via low-energy ion-beam assisted plasma irradiation are critical to manipulate functionality in nanostructured systems. By operating at ultra-low energies near the damage threshold, irradiation-driven defect engineering can be optimized and surface-driven mechanisms controlled. Tunability of optical, electronic, magnetic and bioactive properties is realized by reaching metastable phases controlled by atomic-scale irradiation-driven mechanisms elucidated by novel in situ diagnosis coupled to atomistic-level computational tools. Emphasis will be made on tailored surface modification from plasma-enhanced environments on particle-surface interactions and their subsequent modification of hard and soft matter interfaces. In this review, we examine current trends towards in situ and in operando surface and sub-surface characterization to unravel atomic-scale mechanisms at the plasma-material interface. This work will emphasize on recent advances in the field of plasma and ion-induced nanopatterning and nanostructuring as well as ultra-thin film deposition. Future outlook will examine the critical role of complementary surface-sensitive techniques and trends towards advances in both in situ and in operando tooling.
Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J
2015-01-01
Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.
Selected applications for current polymers in prosthetic dentistry - state of the art.
Kawala, Maciej; Smardz, Joanna; Adamczyk, Lukasz; Grychowska, Natalia; Wieckiewicz, Mieszko
2018-05-10
Polymers are widely applied in medicine, including dentistry, i.e. in prosthodontics. The following paper is aimed at demonstrating the applications of selected modern polymers in prosthetic dentistry based on the reported literature. The study was conducted using the PubMed, SCOPUS and CINAHL databases in relation to documents published during 1999-2017. The following keywords were used: polymers with: prosthetic dentistry, impression materials, denture base materials, bite registration materials, denture soft liners, occlusal splint materials and 3D printing. Original papers and reviews which were significant from the modern clinical viewpoint and practical validity in relation to the possibility of using polymeric materials in prosthetic dentistry, were presented. Denture base materials were most commonly modified polymers. Modifications mainly concerned antimicrobial properties and reinforcement of the material structure by introducing additional fibers. Antimicrobial modifications were also common in case of relining materials. Polymeric materials have widely been used in prosthetic dentistry. Modifications of their composition allow achieving new, beneficial properties that affect quality of patients' life. Progress in science allows for a more methodologically-advanced research on the synthesis of new polymeric materials and incorporation of new substances into already known polymeric materials, that will require systematization and appropriate classification. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ying, Lin; Tahara, Kohei; Takeuchi, Hirofumi
2013-09-10
This work explored submicron-sized lipid emulsion as potential carriers for intraocular drug delivery to the posterior segment via eye drops. The effects of physicochemical properties of lipid emulsion on drug delivery were evaluated in vivo using mice. Different formulations of submicron-sized lipid emulsions were prepared using a high pressure homogenization system. Using coumairn-6 as a model drug and fluorescent marker, fluorescence could be observed in the retina after administration of the lipid emulsion. The fluorescence intensity observed after administration of medium chain triglycerides containing the same amount of coumarin-6 was much lower than that observed after administration of lipid emulsions. The inner oil property and phospholipid emulsifier did not affect the drug delivery efficiency to the retina. However, compared with unmodified emulsions, the fluorescence intensity in the retina increased by surface modification using a positive charge inducer and the functional polymers chitosan (CS) and poloxamer 407 (P407). CS-modified lipid emulsions could be electrostatically interacted with the eye surface. By its adhesive property, poloxamer 407, a surface modifier, possibly increased the lipid emulsion retention time on the eye surface. In conclusion, we suggested that surface-modified lipid emulsions could be promising vehicles of hydrophobic drug delivery to the ocular posterior segment. Copyright © 2013. Published by Elsevier B.V.
Biodegradable Materials and Metallic Implants—A Review
Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga
2017-01-01
Recent progress made in biomaterials and their clinical applications is well known. In the last five decades, great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. A variety of bioimplants are currently used in either one of the aforesaid forms. Some of these materials are designed to degrade or to be resorbed inside the body rather than removing the implant after its function is served. Many properties such as mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, and corrosion rate and scaffold design are taken into consideration. The current review focuses on state-of-the-art biodegradable bioceramics, polymers, metal alloys and a few implants that employ bioresorbable/biodegradable materials. The essential functions, properties and their critical factors are discussed in detail, in addition to their challenges to be overcome. PMID:28954399