Science.gov

Sample records for polymer-based autologous chondrocyte

  1. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results

    PubMed Central

    Kreuz, Peter C; Müller, Sebastian; Ossendorf, Christian; Kaps, Christian; Erggelet, Christoph

    2009-01-01

    Introduction Second-generation autologous chondrocyte implantation with scaffolds stabilizing the grafts is a clinically effective procedure for cartilage repair. In this ongoing prospective observational case report study, we evaluated the effectiveness of BioSeed®-C, a cell-based cartilage graft based on autologous chondrocytes embedded in fibrin and a stable resorbable polymer scaffold, for the treatment of clinical symptomatic focal degenerative defects of the knee. Methods Clinical outcome after 4-year clinical follow-up was assessed in 19 patients with preoperatively radiologically confirmed osteoarthritis and a Kellgren-Lawrence score of 2 or more. Clinical scoring was performed before implantation of the graft and 6, 12, and 48 months after implantation using the Lysholm score, the Knee injury and Osteoarthritis Outcome Score (KOOS), the International Knee Documentation Committee (IKDC) score, and the International Cartilage Repair Society (ICRS) score. Cartilage regeneration and articular resurfacing were assessed by magnetic resonance imaging (MRI) 4 years after implantation of the autologous cartilage graft. Results Significant improvement (P < 0.05) of the Lysholm and ICRS scores was observed as early as 6 months after implantation of BioSeed®-C and remained stable during follow-up. The IKDC score showed significant improvement compared with the preoperative situation at 12 and 48 months (P < 0.05). The KOOS showed significant improvement in the subclasses pain, activities of daily living, and knee-related quality of life 6 months as well as 1 and 4 years after implantation of BioSeed®-C in osteoarthritic defects (P < 0.05). MRI analysis showed moderate to complete defect filling with a normal to incidentally hyperintense signal in 16 out of 19 patients treated with BioSeed®-C. Two patients without improvement in the clinical and MRI scores received a total knee endoprosthesis after 4 years. Conclusions The results show that the good clinical

  2. [Cartilage biopsy for autologous chondrocyte implantation (ACI)].

    PubMed

    Pestka, J M; Salzmann, G M; Südkamp, N P; Niemeyer, P

    2013-06-01

    Autologous chondrocyte implantation (ACI) is an established two-step procedure for the treatment of full-thickness cartilage defects of the knee. Cartilage harvest from the affected knee joint represents the first step of this procedure and is essential for further in vitro expansion of autologous chondrocytes. Nevertheless, the cartilage biopsy process itself is underrepresented in the scientific literature and currently there is only a limited amount of data available addressing this process. Biopsy location as well as the technique itself and instruments used for cartilage collection are not well defined and only little standardisation can be found. The article describes the relevant aspects of the biopsy in the context of ACI with regard to the literature available. Follow-up studies to better define and standardise the cartilage biopsy process are thus required.

  3. AUTOLOGOUS CHONDROCYTE TRANSPLANTATION-SERIES OF 3 CASES

    PubMed Central

    Gobbi, Riccardo Gomes; Demange, Marco Kawamura; Barreto, Ronald Bispo; Pécora, José Ricardo; Rezende, Múrcia Uchõa de; Filho, Tarcisio E.P Barros; Lombello, Christiane Bertachini

    2015-01-01

    Hyaline cartilage covers joint surfaces and plays an important role in reducing friction and mechanical loading on synovial joints such as the knee. This tissue is not supplied with blood vessels, nerves or lymphatic circulation, which may be one of the reasons why joint cartilage has such poor capacity for healing. Chondral lesions that reach the subchondral bone (osteochondral lesions) do not heal and may progress to arthrosis with the passage of time. In young patients, treatment of chondral defects of the knee is still a challenge, especially in lesions larger than 4 cm. One option for treating these patients is autologous chondrocyte transplantation/implantation. Because this treatment does not violate the subchondral bone and repairs the defect with tissue similar to hyaline cartilage, it has the theoretical advantage of being more biological, and mechanically superior, compared with other techniques. In this paper, we describe our experience with autologous chondrocyte transplantation/implantation at the Institute of Orthopedics and Traumatology, Hospital das Clínicas, University of Sâo Paulo, through a report on three cases. PMID:27022579

  4. Increasing the Dose of Autologous Chondrocytes Improves Articular Cartilage Repair

    PubMed Central

    Guillén-García, Pedro; Rodríguez-Iñigo, Elena; Guillén-Vicente, Isabel; Caballero-Santos, Rosa; Guillén-Vicente, Marta; Abelow, Stephen; Giménez-Gallego, Guillermo

    2014-01-01

    Background: We hypothesized that implanting cells in a chondral defect at a density more similar to that of the intact cartilage could induce them to synthesize matrix with the features more similar to that of the uninjured one. Methods: We compared the implantation of different doses of chondrocytes: 1 million (n = 5), 5 million (n = 5), or 5 million mesenchymal cells (n = 5) in the femoral condyle of 15 sheep. Tissue generated by microfracture at the trochlea, and normal cartilage from a nearby region, processed as the tissues resulting from the implantation, were used as references. Histological and molecular (expression of type I and II collagens and aggrecan) studies were performed. Results: The features of the cartilage generated by implantation of mesenchymal cells and elicited by microfractures were similar and typical of a poor repair of the articular cartilage (presence of fibrocartilage, high expression of type I collagen and a low mRNA levels of type II collagen and aggrecan). Nevertheless, in the samples obtained from tissues generated by implantation of chondrocytes, hyaline-like cartilage, cell organization, low expression rates of type I collagen and high levels of mRNA corresponding to type II collagen and aggrecan were observed. These histological features, show less variability and are more similar to those of the normal cartilage used as control in the case of 5 million cells implantation than when 1 million cells were used. Conclusions: The implantation of autologous chondrocytes in type I/III collagen membranes at high density could be a promising tool to repair articular cartilage. PMID:26069691

  5. The Knee Joint Loose Body as a Source of Viable Autologous Human Chondrocytes

    PubMed Central

    Melrose, J.

    2016-01-01

    Loose bodies are fragments of cartilage or bone present in the synovial fluid. In the present study we assessed if loose bodies could be used as a source of autologous human chondrocytes for experimental purposes. Histochemical examination of loose bodies and differential enzymatic digestions were undertaken, the isolated cells were cultured in alginate bead microspheres and immunolocalisations were undertaken for chondrogenic markers such as aggrecan, and type II collagen. Isolated loose body cells had high viability (≥90% viable), expressed chondrogenic markers (aggrecan, type II collagen) but no type I collagen. Loose bodies may be a useful source of autologous chondrocytes of high viability. PMID:27349321

  6. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation

    PubMed Central

    2009-01-01

    Introduction Autologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Methods Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score > 3, Ahlbäck Score > 2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using real-time PCR. Results Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (ACAN, COL2A1, COMP, CRTL1, SOX9) and genes involved in matrix synthesis (BGN, CILP2, COL9A2, COL11A1, TIMP4) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (ALPL, COL1A1, COL3A1, COL10A1, MMP13, POSTN, PTH1R, RUNX2) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, was differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Conclusions Only few genes were differentially expressed between OA and

  7. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix.

    PubMed

    Demoor, M; Maneix, L; Ollitrault, D; Legendre, F; Duval, E; Claus, S; Mallein-Gerin, F; Moslemi, S; Boumediene, K; Galera, P

    2012-06-01

    Since the emergence in the 1990s of the autologous chondrocytes transplantation (ACT) in the treatment of cartilage defects, the technique, corresponding initially to implantation of chondrocytes, previously isolated and amplified in vitro, under a periosteal membrane, has greatly evolved. Indeed, the first generations of ACT showed their limits, with in particular the dedifferentiation of chondrocytes during the monolayer culture, inducing the synthesis of fibroblastic collagens, notably type I collagen to the detriment of type II collagen. Beyond the clinical aspect with its encouraging results, new biological substitutes must be tested to obtain a hyaline neocartilage. Therefore, the use of differentiated chondrocytes phenotypically stabilized is essential for the success of ACT at medium and long-term. That is why researchers try now to develop more reliable culture techniques, using among others, new types of biomaterials and molecules known for their chondrogenic activity, giving rise to the 4th generation of ACT. Other sources of cells, being able to follow chondrogenesis program, are also studied. The success of the cartilage regenerative medicine is based on the phenotypic status of the chondrocyte and on one of its essential component of the cartilage, type II collagen, the expression of which should be supported without induction of type I collagen. The knowledge accumulated by the scientific community and the experience of the clinicians will certainly allow to relief this technological challenge, which influence besides, the validation of such biological substitutes by the sanitary authorities.

  8. [Technique of Autologous Chondrocyte Implantation for Severe Radiocarpal Arthrosis: Status Quo after 24 Months].

    PubMed

    Medved, F; Schubert, M; Held, M; Notohamiprodjo, M; Lotter, O; Schaller, H-E

    2015-06-01

    We illustrate the operative technique of autologous chondrocyte implantation (ACI) to restore a 4° cartilage damage of the radius surface in the case of a 22-year-old patient, and report on the clinical and radiological results at 6 and 24 months postoperatively.

  9. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    PubMed Central

    Dewan, Ashvin K.; Gibson, Matthew A.; Elisseeff, Jennifer H.; Trice, Michael E.

    2014-01-01

    Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI) and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells) and associated scaffolds (natural or synthetic, hydrogels or membranes). ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient's knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients. PMID:25210707

  10. Effective implantation of autologous chondrocytes in a patient suffering from a painful and invalidating rizoarthrosis: a case report

    PubMed Central

    Sgherzi, Stefano; Sillani, Alessandro; Magris, Cecilia

    2009-01-01

    A 45-year-old patient, caucasian, affected by severe, painful and invalidating rizoarthrosis has been treated by implanting autologous chondrocytes, normally used for degenerative joint diseases of the knee and ankle. PMID:19918494

  11. Repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation

    SciTech Connect

    Grande, D.A.; Pitman, M.I.; Peterson, L.; Menche, D.; Klein, M.

    1989-01-01

    Using the knee joints of New Zealand White rabbits, a baseline study was made to determine the intrinsic capability of cartilage for healing defects that do not fracture the subchondral plate. A second experiment examined the effect of autologous chondrocytes grown in vitro on the healing rate of these defects. To determine whether any of the reconstituted cartilage resulted from the chondrocyte graft, a third experiment was conducted involving grafts with chondrocytes that had been labeled prior to grafting with a nuclear tracer. Results were evaluated using both qualitative and quantitative light microscopy. Macroscopic results from grafted specimens displayed a marked decrease in synovitis and other degenerative changes. In defects that had received transplants, a significant amount of cartilage was reconstituted (82%) compared to ungrafted controls (18%). Autoradiography on reconstituted cartilage showed that there were labeled cells incorporated into the repair matrix.

  12. Standardized cartilage biopsies from the intercondylar notch for autologous chondrocyte implantation (ACI).

    PubMed

    Niemeyer, Philipp; Pestka, Jan M; Kreuz, Peter C; Salzmann, Gian M; Köstler, Wolfgang; Südkamp, Norbert P; Steinwachs, Matthias

    2010-08-01

    Autologous chondrocyte implantation (ACI) is an established therapy for the treatment of cartilage defects across the knee joint. Even though different techniques for initial biopsy have been described, the exact location, depth, and volume of the biopsy are chosen individually by the treating surgeon. This study evaluated 252 consecutive cartilage biopsies taken from the intercondylar notch with a standardized hollow cylinder system for the isolation and in vitro cultivation of human chondrocytes assigned to ACI. All biopsies were assessed for weight of total cartilage obtained, cartilage biopsy weight per cylinder, biopsy cylinder quality, and initial cell count after digestive cellular isolation as well as cell vitality. Parameters were correlated with individual patient parameters. Mean patient age was 35.1 years (median 35.9; range 14.7-56.4). Adequate amounts of cartilage assigned to chondrocyte in vitro cultivation could be harvested in all cases. The mean overall biopsy weight averaged 75.5 mg (SD +/- 44.9) and could be identified as main factor for initial cell number (mean 1.05E+05; SD +/- 7.44E+04). No correlation was found between the initial cell count and patient age (correlation coefficient r = 0.005) or grade of joint degeneration (r = 0.040). Concerning cell viability, a total of 4.4% (SD + 3.0) of the chondrocytes harvested were apoptotic. Cartilage biopsies from the intercondylar notch using a standardized hollow cylinder system provides a reliable, safe, and successful method to obtain articular cartilage for further in vitro cultivation of articular chondrocytes to achieve autologous chondrocyte transplantation.

  13. [Autologous chondrocyte transplantation for treatment of cartilage defects of the knee joint. Clinical results].

    PubMed

    Erggelet, C; Browne, J E; Fu, F; Mandelbaum, B R; Micheli, L J; Mosely, J B

    2000-01-01

    Cartilage defects in the knee joint are common and have a bad tendency for healing due to the limited regeneration of hyaline cartilage. Surgeons have an ample choice of various operative treatment measures. Especially for the treatment of larger lesions first results of autologous chondrocyte transplantation (ACT) were published in 1994 [3]. Autologous chondrocytes are isolated from an arthoscopically harvested cartilage biopsy, cultured in vitro and implanted in the defect under a periostal flap in a second procedure. In an international multicenter study 1,051 patients treated with ACT between 6/95 and 12/98 were documented with follow-up examinations after 12 months (588 patients), 24 months (220 patients) and 36 months (40 patients). The majority of the defects (61.2%) were localized on the medial femoral condyle, measuring 4.6 cm2 and mostly described as grade III/IV lesions. The clinical evaluation was performed using a modified Cincinnati knee rating system independently for clinician and patient. Evaluations showed an increase from 3.35 to 6.25 after 24 months and from 3.10 to 6.77 in a scale from 1 (bad) to 10 (excellent). ACT favours defects of the femur with an improvement rate of 85%. Adverse events possibly related to ACT were described in 4.8% of the patients. Diagnostic second-look arthroscopies are included in the reoperation rate of 5.1%. The presented data indicate autologous chondrocyte transplantation as an effective and safe option for the treatment of large full thickness cartilage defects in the knee joint.

  14. Sequential outcome following autologous chondrocyte implantation of the knee: A six-year follow-up

    PubMed Central

    David, Lee A.; Briggs, Tim W. R.

    2009-01-01

    This prospective six-year longitudinal study reviews the clinical outcome of patients undergoing autologous chondrocyte implantation (ACI) and a porcine type I/III collagen membrane cover for deep chondral defects of the knee. We present 57 patients (31 male, 26 female) with a mean age of 31.6 years (range 15–51 years) that have undergone ACI since July 1998. The mean size of the defect was 3.14 cm2 (range 1.0–7.0 cm2). All patients were assessed annually using seven independent validated clinical rating scores with the data analysed using ANOVA. ACI using a porcine type I/III collagen membrane cover produced statistically significant improvements (p < 0.001), maintained for up to six years, in knee symptoms compared to pre-operative levels. This study provides evidence of the medium-term benefit achieved by transplanting autologous chondrocytes to osteochondral defects. PMID:19669763

  15. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation.

    PubMed Central

    Mistry, Hema; Connock, Martin; Pink, Joshua; Shyangdan, Deepson; Clar, Christine; Royle, Pamela; Court, Rachel; Biant, Leela C; Metcalfe, Andrew; Waugh, Norman

    2017-01-01

    BACKGROUND The surfaces of the bones in the knee are covered with articular cartilage, a rubber-like substance that is very smooth, allowing frictionless movement in the joint and acting as a shock absorber. The cells that form the cartilage are called chondrocytes. Natural cartilage is called hyaline cartilage. Articular cartilage has very little capacity for self-repair, so damage may be permanent. Various methods have been used to try to repair cartilage. Autologous chondrocyte implantation (ACI) involves laboratory culture of cartilage-producing cells from the knee and then implanting them into the chondral defect. OBJECTIVE To assess the clinical effectiveness and cost-effectiveness of ACI in chondral defects in the knee, compared with microfracture (MF). DATA SOURCES A broad search was done in MEDLINE, EMBASE, The Cochrane Library, NHS Economic Evaluation Database and Web of Science, for studies published since the last Health Technology Assessment review. REVIEW METHODS Systematic review of recent reviews, trials, long-term observational studies and economic evaluations of the use of ACI and MF for repairing symptomatic articular cartilage defects of the knee. A new economic model was constructed. Submissions from two manufacturers and the ACTIVE (Autologous Chondrocyte Transplantation/Implantation Versus Existing Treatment) trial group were reviewed. Survival analysis was based on long-term observational studies. RESULTS Four randomised controlled trials (RCTs) published since the last appraisal provided evidence on the efficacy of ACI. The SUMMIT (Superiority of Matrix-induced autologous chondrocyte implant versus Microfracture for Treatment of symptomatic articular cartilage defects) trial compared matrix-applied chondrocyte implantation (MACI(®)) against MF. The TIG/ACT/01/2000 (TIG/ACT) trial compared ACI with characterised chondrocytes against MF. The ACTIVE trial compared several forms of ACI against standard treatments, mainly MF. In the SUMMIT

  16. Activin A/BMP2 chimera AB235 drives efficient redifferentiation of long term cultured autologous chondrocytes

    PubMed Central

    Jiménez, G.; López-Ruiz, E.; Kwiatkowski, W.; Montañez, E.; Arrebola, F.; Carrillo, E.; Gray, P. C.; Belmonte, J. C. Izpisua; Choe, S.; Perán, M.; Marchal, J. A.

    2015-01-01

    Autologous chondrocyte implantation (ACI) depends on the quality and quantity of implanted cells and is hindered by the fact that chondrocytes cultured for long periods of time undergo dedifferentiation. Here we have developed a reproducible and efficient chondrogenic protocol to redifferentiate chondrocytes isolated from osteoarthritis (OA) patients. We used morphological, histological and immunological analysis together with a RT-PCR detection of collagen I and collagen II gene expression to show that chondrocytes isolated from articular cartilage biopsies of patients and subjected to long-term culture undergo dedifferentiation and that these cells can be redifferentiated following treatment with the chimeric Activin A/BMP2 ligand AB235. Examination of AB235-treated cell pellets in both in vitro and in vivo experiments revealed that redifferentiated chondrocytes synthesized a cartilage-specific extracellular matrix (ECM), primarily consisting of vertically-orientated collagen fibres and cartilage-specific proteoglycans. AB235-treated cell pellets also integrated into the surrounding subcutaneous tissue following transplantation in mice as demonstrated by their dramatic increase in size while non-treated control pellets disintegrated upon transplantation. Thus, our findings describe an effective protocol for the promotion of redifferentiation of autologous chondrocytes obtained from OA patients and the formation of a cartilage-like ECM that can integrate into the surrounding tissue in vivo. PMID:26563344

  17. Autologous chondrocyte implantation for cartilage injury treatment in Chiang Mai University Hospital: a case report.

    PubMed

    Wongtriratanachai, Prasit; Pruksakorn, Dumnoensun; Pothacharoen, Peraphan; Nimkingratana, Puwapong; Pattamapaspong, Nuttaya; Phornphutkul, Chanakarn; Setsitthakun, Sasiwariya; Fongsatitkul, Ladda; Phrompaet, Sureeporn

    2013-11-01

    Autologous chondrocyte implantation (ACI) has become one of the standard procedures for articular cartilage defect treatment. This technique provides a promising result. However the procedural process requires an approach of several steps from multidisciplinary teams. Although the success of this procedure has been reported from Srinakharinvirot University since 2007, the application of ACI is still limited in Thailand due to the complexity of processes and stringent quality control. This report is to present the first case of the cartilage defect treatment using the first generation-ACI under Chiang Mai University's (CMU) own facility and Ethics Committee. This paper also reviews the process of biotechnology procedures, patient selection, surgical, and rehabilitation techniques. The success of the first case is an important milestone for the further development of the CMU Human Translational Research Laboratory in near future.

  18. Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair.

    PubMed

    Foldager, Casper Bindzus; Gomoll, Andreas H; Lind, Martin; Spector, Myron

    2012-04-01

    Cartilage repair techniques have been among the most intensively investigated treatments in orthopedics for the past decade, and several different treatment modalities are currently available. Despite the extensive research effort within this field, the generation of hyaline cartilage remains a considerable challenge. There are many parameters attendant to each of the cartilage repair techniques that can affect the amount and types of reparative tissue generated in the cartilage defect, and some of the most fundamental of these parameters have yet to be fully investigated. For procedures in which in vitro-cultured autologous chondrocytes are implanted under a periosteal or synthetic membrane cover, or seeded onto a porous membrane or scaffold, little is known about how the number of cells affects the clinical outcome. Few published clinical studies address the cell seeding density that was employed. The principal objective of this review is to provide an overview of the cell seeding densities used in cell-based treatments currently available in the clinic for cartilage repair. Select preclinical studies that have informed the use of specific cell seeding densities in the clinic are also discussed.

  19. The use of autologous chondrocyte implantation following and combined with anterior cruciate ligament reconstruction

    PubMed Central

    Bartlett, W.; Gooding, C. R.; Sood, M.; Skinner, J. A.; Carrington, R. W.J.; Briggs, T. W.R.; Bentley, G.

    2005-01-01

    We report our experience of using autologous chondrocyte implantation (ACI) to treat osteochondral defects of the knee in combination with anterior cruciate ligament (ACL) reconstruction. The outcome of symptomatic osteochondral lesions treated with ACI following previous successful ACL reconstruction is also reviewed. Patients were followed for a mean of 23 months. Nine patients underwent ACL reconstruction in combination with ACI. Mean modified Cincinnati knee scores improved from 42 to 69 following surgery. Seven patients described their knee as better and two as the same. A second group of nine patients underwent ACI for symptomatic articular cartilage defects following previous ACL reconstruction. In this group, the mean modified Cincinnati knee score improved from 53 to 62 after surgery. Six patients described their knee as better and three as worse. Combined treatment using ACI with ACL reconstruction is technically feasible and resulted in sustained improvement in pain and function. The results following previous ACL reconstruction also resulted in clinical improvement, although results were not as good as following the combined procedure. PMID:16320051

  20. Cotransplantation of autologous bone marrow stromal cells and chondrocytes as a novel therapy for reconstruction of condylar cartilage.

    PubMed

    Dai, Jiewen; Wang, Xudong; Shen, Guofang

    2011-07-01

    Condylar cartilage is absolutely necessary for the normal function of temporomandibular joint (TMJ). Unfortunately, condylar cartilage defect or missing is also one of the common clinical problems. Repair or reconstruction of cartilage is always a hot topic. Cell based cartilage regeneration is suggested as novel therapies in cartilage tissue engineering, and autologous chondrocytes were initially regarded as the ideal cell source. However, there are some disadvantages such as its limited augmentation capability for culture in vitro and may differentiate to other types of cells. On the other hand, bone marrow stromal cells (BMSCs) have gained special interest in tissue engineering. Because they can be obtained easily, cause relatively minor trauma and show the potential of long-run ex vivo expansion capacity. What most important is their capacity of multi-directional differentiation. They can differentiate into a variety of other types of cells when there are supplement exogenous factors or genes, but their clinical use is limited by safety concerns such as toxicity, insertional teratogenic, uncontrollable gene expression. Fortunately, the chondrocytes microenvironment has been demonstrated that could induce BMSCs to structure cartilage when culture in vitro or reimplanted in nude mice subcutaneously area. So in this article, we hypothesize that cotransplantation of autologous BMSCs and chondrocytes, which coculture with extracellular scaffolds, is a novel therapy for reconstruction of TMJ condylar cartilage. In our strategy, advantages of two types of cells are utilized and shortcomings are avoided, which strongly improve the feasibility and clinical safety, finally bring great hope to the patients with TMJ disease.

  1. Influence of response shift on early patient-reported outcomes following autologous chondrocyte implantation

    PubMed Central

    Howard, Jennifer S.; Mattacola, Carl G.; Mullineaux, David R.; English, Robert A.; Lattermann, Christian

    2013-01-01

    Purpose Response shift is the phenomenon by which an individual's standards for evaluation change over time. The purpose of this study was to determine whether patients undergoing autologous chondrocyte implantation (ACI) experience response shift. Methods Forty-eight patients undergoing ACI participated. The “then-test” method was used to evaluate response shift in commonly used patient-reported outcome measures (PROMs)—the SF-36 Physical Component Scale (SF-36 PCS), WOMAC, IKDC, and Lysholm. Each PROM was completed pre- and 6 and 12 months post-surgery. At 6 and 12 months, an additional “then” version of each form was also completed. The “then” version was identical to the original except that patients were instructed to assess how they were prior to ACI. Traditional change, response shift adjusted change, and response shift magnitude were calculated at 6 and 12 months. T tests (p < 0.05) were used to compare traditional change to response-shift-adjusted change, and response shift magnitude values to previously established minimal detectable change. Results There were no differences between traditional change and response-shift-adjusted change for any of the PROMs. The mean response shift magnitude value of the WOMAC at 6 months (15 ± 14, p = 0.047) was greater than the previously established minimal detectable change (10.9). The mean response shift magnitude value for the SF-36 PCS at 12 months (9.4 ± 6.8, p = 0.017) also exceeded the previously established minimal detectable change (6.6). Conclusions There was no evidence of a group-level effect for response shift. These results support the validity of pre-test/post-test research designs in evaluating treatment effects. However, there is evidence that response shifts may occur on a patient-by-patient basis, and scores on the WOMAC and SF-36 in particular may be influenced by response shift. Level of evidence II. PMID:24061717

  2. Biological Knee Reconstruction With Concomitant Autologous Chondrocyte Implantation and Meniscal Allograft Transplantation

    PubMed Central

    Ogura, Takahiro; Bryant, Tim; Minas, Tom

    2016-01-01

    Background: Treating articular cartilage defects and meniscal deficiency is challenging. Although some short- to mid-term follow-up studies report good clinical outcomes after concurrent autologous chondrocyte implantation (ACI) and meniscal allograft transplantation (MAT), longer follow-up is needed. Purpose: To evaluate mid- to long-term outcomes after combined ACI with MAT. Study Design: Case series; Level of evidence, 4. Methods: We performed a retrospective review of prospectively gathered data from patients who had undergone ACI with MAT between 1999 and 2013. A single surgeon treated 18 patients for symptomatic full-thickness chondral defects with meniscal deficiency. One patient was lost to follow-up. Thus, 17 patients (18 knees; mean age, 31.7 years) were evaluated over a mean 7.9-year follow-up (range, 2-16 years). A mean 1.8 lesions per knee were treated over a total surface area of 7.6 cm2 (range, 2.3-21 cm2) per knee. Seventeen lateral and 1 medial MATs were performed. Survival was analyzed using the Kaplan-Meier method. The modified Cincinnati Knee Rating Scale, Western Ontario and McMaster Universities Osteoarthritis Index, visual analog scale, and Short Form–36 were used to evaluate clinical outcomes. Patients also self-reported knee function and satisfaction. Standard radiographs were scored for Kellgren-Lawrence (K-L) grade. Results: Both 5- and 10-year survival rates were 75%. Outcomes for 6 knees were considered failures. Of the 6 failures, 4 knees were converted to arthroplasty and the other 2 knees underwent biological revision surgery. Of the 12 successfully operated knees, all clinical measures significantly improved postoperatively. Ten patients representing 11 of the 12 knees rated outcomes for their knees as good or excellent, and 1 rated their outcome as fair. Eight patients representing 9 of the 12 knees were satisfied with the procedure. There was no significant osteoarthritis progression based on K-L grading from preoperatively to a

  3. Intermediate- to Long-Term Results of Combined Anterior Cruciate Ligament Reconstruction and Autologous Chondrocyte Implantation

    PubMed Central

    Pike, Andrew N.; Bryant, Tim; Ogura, Takahiro; Minas, Tom

    2017-01-01

    Background: Cartilage injury associated with anterior cruciate ligament (ACL) ruptures is common; however, relatively few reports exist on concurrent cartilage repair with ACL reconstruction. Autologous chondrocyte implantation (ACI) has been utilized successfully for treatment of moderate to large chondral defects. Hypothesis: ACL insufficiency with relatively large chondral defects may be effectively managed with concurrent ACL reconstruction and ACI. Study Design: Case series; Level of evidence, 4. Methods: Patients undergoing concurrent ACL primary or revision reconstruction with ACI of single or multiple cartilage defects were prospectively evaluated for a minimum 2 years. Pre- and postoperative outcome measures included the modified Cincinnati Rating Scale (MCRS), Western Ontario and McMaster Universities Osteoarthritis Index, visual analog pain scales, and postsurgery satisfaction surveys. ACI graft failure or persistent pain without functional improvement were considered treatment failures. Results: Twenty-six patients were included, with 13 primary and 13 revision ACL reconstructions performed. Mean defect total surface area was 8.4 cm2, with a mean follow-up of 95 months (range, 24-240 months). MCRS improved from 3.62 ± 1.42 to 5.54 ± 2.32, Western Ontario and McMaster Universities Osteoarthritis Index from 45.31 ± 17.27 to 26.54 ± 17.71, and visual analog pain scale from 6.19 ± 1.27 to 3.65 ± 1.77 (all Ps <.001). Eight patients were clinical failures, 69% of patients were improved at final follow-up, and 92% stated they would likely undergo the procedure again. No outcome correlation was found with regard to age, body mass index, sex, defect size/number, follow-up time, or primary versus revision ACL reconstruction. In subanalysis, revision ACL reconstructions had worse preoperative MCRS scores and greater defect surface areas. However, revision MCRS score improvements were greater, resulting in similar final functional scores when compared with

  4. Is autologous chondrocyte implantation (ACI) an adequate treatment option for repair of cartilage defects in paediatric patients?

    PubMed

    Kaszkin-Bettag, Marietta

    2013-08-01

    Cartilage lesions in the knee of juvenile patients require an effective repair to regain life-long functional activity of the joint. Autologous chondrocyte implantation (ACI) is discussed to be advantageous over other methods for cartilage repair regarding long-term outcome. ACI has successfully been applied in juvenile patients, although currently recommended for patients ≥18 years of age. Only few controlled clinical trials present evidence of efficacy and safety of ACI in adolescent patients. ACI products have to undergo the process of a marketing authorisation application, including the submission of a paediatric investigation plan (PIP). Data from prospective clinical studies or retrospective collection of long-term data in paediatric patients should be submitted for risk-benefit evaluation by the Paediatric Committee (PDCO).

  5. Mechanical characterization of matrix-induced autologous chondrocyte implantation (MACI®) grafts in an equine model at 53 weeks.

    PubMed

    Griffin, Darvin J; Bonnevie, Edward D; Lachowsky, Devin J; Hart, James C A; Sparks, Holly D; Moran, Nance; Matthews, Gloria; Nixon, Alan J; Cohen, Itai; Bonassar, Lawrence J

    2015-07-16

    There has been much interest in using autologous chondrocytes in combination with scaffold materials to aid in cartilage repair. In the present study, a total of 27 animals were used to compare the performance of matrix-assisted chondrocyte implantation (MACI®) using a collagen sponge as a chondrocyte delivery vehicle, the sponge membrane alone, and empty controls. A total of three distinct types of mechanical analyses were performed on repaired cartilage harvested from horses after 53 weeks of implantation: (1) compressive behavior of samples to measure aggregate modulus (HA) and hydraulic permeability (k) in confined compression; (2) local and global shear modulus using confocal strain mapping; and (3) boundary friction coefficient using a custom-built tribometer. Cartilage defects receiving MACI® implants had equilibrium modulus values that were 70% of normal cartilage, and were not statistically different than normal tissue. Defects filled with Maix™ membrane alone or left empty were only 46% and 51-63% of control, respectively. The shear modulus of tissue from all groups of cartilage defects were between 4 and 10 times lower than control tissue, and range from 0.2 to 0.4 MPa. The average values of boundary mode friction coefficients of control tissue from all groups ranged from 0.42 to 0.52. This study represents an extensive characterization of the mechanical performance of the MACI® grafts implant in a large animal model at 53 weeks. Collectively, these data demonstrate a range of implant performance, revealing similar compressive and frictional properties to native tissue, with inferior shear properties.

  6. One-Year Clinical and Radiological Results of a Prospective, Investigator-Initiated Trial Examining a Novel, Purely Autologous 3-Dimensional Autologous Chondrocyte Transplantation Product in the Knee

    PubMed Central

    Gerwien, Philip; Helmert, Benjamin; Schattenberg, Torsten; Weckbach, Sabine; Kaszkin-Bettag, Marietta; Lehmann, Lars

    2012-01-01

    Background: The 3-dimensional autologous chondrocyte transplantation (ACT3D) comprises isolation of chondrocytes from cartilage biopsies, cultivation to spheroids, and transplantation into the cartilage defect. Objectives: To evaluate the patients’ general health and functionality and to assess the defect repair after ACT3D with spheroids by MRI and MOCART scoring. Methods: Thirty-seven patients with isolated chondral lesions of the knee underwent ACT3D with spheroids through medial arthrotomy. Patient-administered scores were assessed at baseline (day before transplantation), at 6 weeks, and at 3, 6, and 12 months. MRI and MOCART scoring were performed at 3 and 12 months after ACT3D. Results: Patients were diagnosed with full-thickness patellofemoral (n = 16), femoral condylar (n = 18), or both defect types (n = 3), International Cartilage Repair Society (ICRS) grade 3 or 4, with defect sizes between 1.0 and 12.0 cm2. On average, 59.5 spheroids/cm2 in defect size were transplanted. An overall statistically significant improvement from baseline to 12 months was observed for all assessment scores (Lysholm, International Knee Documentation Committee [IKDC], SF-36, Tegner) combined with a significant reduction in the visual analog scale (VAS) for pain and an advanced defect filling. Subgroup analyses revealed a positive clinical outcome independent on defect size, defect locations, spheroid dosage, age, duration of symptoms, and severity of complaints at baseline. Seven patients experienced in total 8 adverse events, of which knee joint effusion and blocking were assessed as possibly or probably related to ACT3D. Conclusions: The patient-administered assessment scores along with the fast defect filling with ACT3D using spheroids demonstrated an increase in activity level and quality of life after a 1-year follow-up. PMID:26069617

  7. Acid Ceramidase Treatment Enhances the Outcome of Autologous Chondrocyte Implantation in a Rat Osteochondral Defect Model

    PubMed Central

    Frohbergh, Michael E.; Guevara, Johana M.; Grelsamer, Ronald P.; Barbe, Mary F.; He, Xingxuan; Simonaro, Calogera M.; Schuchman, Edward H.

    2015-01-01

    Objective The overall aim of this study was to evaluate how supplementation of chondrocyte media with recombinant acid ceramidase (rhAC) influenced cartilage repair in a rat osteochondral defect model. Methods Primary chondrocytes were grown as monolayers in polystyrene culture dishes with and without rhAC (added once at the time of cell plating) for 7 days, and then seeded onto Bio-Gide® collagen scaffolds and grown for an additional 3 days. The scaffolds were then introduced into osteochondroal defects created in Sprague-Dawley rat trochlea by a micordrilling procedure. Analysis was performed 6 weeks post-surgery macroscopically, by micro-CT, histologically, and by immunohistochemistry. Results Treatment with rhAC led to increased cell numbers and glycosaminoglycan production (~2 and 3-fold, respectively) following 7 days of expansion in vitro. Gene expression of collagen 2, aggrecan and Sox-9 also was significantly elevated. After seeding onto Bio-Gide®, more rhAC treated cells were evident within 4 hours. At 6 weeks post-surgery, defects containing rhAC-treated cells exhibited more soft tissue formation at the articular surface, as evidenced by microCT, as well as histological evidence of enhanced cartilage repair. Notably, collagen 2 immunostaining revealed greater surface expression in animals receiving rhAC treated cells as well. Collagen 10 staining was not enhanced. Conclusion The results further demonstrate the positive effects of rhAC treatment on chondrocyte growth and phenotype in vitro, and reveal for the first time the in vivo effects of the treated cells on cartilage repair. PMID:26524412

  8. "Take" of a polymer-based autologous cultured composite "skin" on an integrated temporizing dermal matrix: proof of concept.

    PubMed

    Dearman, Bronwyn L; Stefani, Kristian; Li, Amy; Greenwood, John E

    2013-01-01

    This study aimed to investigate the ability of an autologous cultured composite skin (CCS) to close similar biodegradable temporizing matrix (BTM)-integrated wounds, and its effectiveness in healing fresh full-thickness wounds after the failure of cultured epithelial autograft in its two forms (sheets and suspensions) to epithelialize over an integrated polymer BTM. Using a porcine model, autologous split-skin grafts were harvested three of four dorsal 8 × 8 cm treatment sites. These three sites were subsequently converted to full-thickness wounds and BTMs were implanted. The grafts were used to produce autologous CCSs for each pig. These consisted of a 1 mm thick biodegradable polymer foam scaffold into which fibroblasts and keratinocytes harvested from the grafts were cocultured. At Day 28, on each animal, the autologous CCSs were applied to two of the integrated BTMs, an autologous split-skin graft was applied to the third integrated BTM, and one CCS was applied immediately into a fresh, "naked" (no BTM applied) wound. The CCSs were capable of generating a bilayer repair over the naked wound's fat base and BTM-integrated wounds, which consisted of dermal elements and a keratinized stratified squamous epidermis anchored with a basement membrane by day 7. The CCSs behaved in different ways: either as a delivery vehicle allowing similar development of a bilayer repair while the polymer foam was shed from the wound, or generating a bilayer repair with the foam scaffold being retained (composite "take"). These results conclude our porcine program and provide proof of concept that the integrated BTM can be closed with an autologous CCS. Once fully optimized, this may provide robust repair without resorting to the split-skin graft, important in those cases where unburned donor site is unavailable.

  9. Autologous chondrocyte implantation for the treatment of cartilage lesions of the knee: a systematic review of randomized studies.

    PubMed

    Vasiliadis, Haris S; Wasiak, Jason; Salanti, Georgia

    2010-12-01

    Autologous chondrocyte implantation (ACI) techniques are becoming more popular for the treatment of full thickness cartilage lesions of the knee joint. However, there is no systematic information for the efficacy of the new generation ACI techniques compared to other treatment options. A systematic review of the existing evidence from randomized clinical trials of ACI treatment would contribute to understanding the advantages and limitations of this method and would inform the planning of future studies. Using pre-defined criteria, we searched a number of electronic databases to identify all the existing randomized control trials of any type of ACI treatment. Risk of bias was assessed and an analysis of the reported outcomes was performed. Information on the clinical efficacy and safety of ACI compared to other interventions was collected and presented. Nine trials were identified with 626 patients. Patients ranged from 15 to 52 years, and the size of treated lesions was between 1 and 22 cm(2). ACI was associated with improvement in clinical outcomes compared to baseline. However, the body of evidence did not suggest any superiority of ACI over other treatments. Complication rates were comparable between interventions except from an increased rate of graft hypertrophies after ACI with periosteum. ACI is an effective treatment for full thickness chondral defects of the knee, providing an improvement of clinical outcomes. However, there is insufficient data to say whether ACI is superior to other treatment strategies. More high quality studies and harmonization in the reported outcomes are needed before specific suggestions for practice can be made.

  10. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation.

    PubMed

    Roberts, S; Menage, J; Sandell, L J; Evans, E H; Richardson, J B

    2009-10-01

    This study has assessed the relative proportions of type I and II collagens and IIA procollagen in full depth biopsies of repair tissue in a large sample of patients treated with autologous chondrocyte implantation (ACI). Sixty five full depth biopsies were obtained from knees of 58 patients 8-60 months after treatment by ACI alone (n=55) or in combination with mosaicplasty (n=10). In addition articular cartilage was examined from eight individuals (aged 10-50) as controls. Morphology and semi-quantitative immunohistochemistry for collagen types I and II and procollagen IIA in the repair tissue were studied. Repair cartilage thickness was 2.89+/-1.5 mm and there was good basal integration between the repair cartilage, calcified cartilage and subchondral bone. Sixty five percent of the biopsies were predominantly fibrocartilage (mostly type I collagen and IIA procollagen), 15% were hyaline cartilage (mostly type II collagen), 17% were of mixed morphology and 3% were fibrous tissue (mostly type I collagen). Type II collagen and IIA procollagen were usually found in the lower regions near the bone and most type II collagen was present 30-60 months after treatment. The presence of type IIA procollagen in the repair tissue supports our hypothesis that this is indicative of a developing cartilage, with the ratio of type II collagen:procollagen IIA increasing from <2% in the first two years post-treatment to 30% three to five years after treatment. This suggests that cartilage repair tissue produced following ACI treatment, is likely to take some years to mature.

  11. Combined autologous chondrocyte implantation (ACI) with supra-condylar femoral varus osteotomy, following lateral growth-plate damage in an adolescent knee: 8-year follow-up

    PubMed Central

    2011-01-01

    We report the 8-year clinical and radiographic outcome of an adolescent patient with a large osteochondral defect of the lateral femoral condyle, and ipsilateral genu valgum secondary to an epiphyseal injury, managed with autologous chondrocyte implantation (ACI) and supracondylar re-alignment femoral osteotomy. Long-term clinical success was achieved using this method, illustrating the effective use of re-alignment osteotomy in correcting mal-alignment of the knee, protecting the ACI graft site and providing the optimum environment for cartilage repair and regeneration. This is the first report of the combined use of ACI and femoral osteotomy for such a case. PMID:21418566

  12. Combined autologous chondrocyte implantation (ACI) with supra-condylar femoral varus osteotomy, following lateral growth-plate damage in an adolescent knee: 8-year follow-up.

    PubMed

    Vijayan, Sridhar; Bentley, George

    2011-03-18

    We report the 8-year clinical and radiographic outcome of an adolescent patient with a large osteochondral defect of the lateral femoral condyle, and ipsilateral genu valgum secondary to an epiphyseal injury, managed with autologous chondrocyte implantation (ACI) and supracondylar re-alignment femoral osteotomy. Long-term clinical success was achieved using this method, illustrating the effective use of re-alignment osteotomy in correcting mal-alignment of the knee, protecting the ACI graft site and providing the optimum environment for cartilage repair and regeneration. This is the first report of the combined use of ACI and femoral osteotomy for such a case.

  13. Prospective evaluation of serum biomarker levels and cartilage repair by autologous chondrocyte transplantation and subchondral drilling in a canine model

    PubMed Central

    Nganvongpanit, Korakot; Pothacharoen, Peraphan; Chaochird, Patama; Klunklin, Kasisin; Warrit, Kanawee; Settakorn, Jongkolnee; Pattamapaspong, Nuttaya; Luevitoonvechkij, Sirichai; Arpornchayanon, Olarn; Kongtawelert, Prachya; Pruksakorn, Dumnoensun

    2009-01-01

    Introduction The purpose of this study was to evaluate serum chondroitin sulfate (CS) and hyaluronic acid (HA) levels and the capability of cartilage repair of full-thickness cartilage defects after treatment with two different fundamental surgical techniques: autologous chondrocyte transplantation (AC) and subchondral drilling (SD). Methods A 4-mm-diameter full-thickness cartilage defect was created in each of 10 skeletally mature male outbred dogs. The dogs were randomly separated into two groups. Groups A and B were treated with AC and SD, respectively. An evaluation was made at the 24th week of the experiment. Serum was analyzed prospectively – preoperatively and at 6-week intervals – for CS and HA levels by enzyme-linked immunosorbent assay (ELISA) and ELISA-based assays, respectively. Results The cartilage repair assessment score (median ± standard deviation) of group A (9.5 ± 2.5) was significantly higher than that of group B (2.5 ± 1.3) (P < 0.05). Group A also demonstrated a better quality of hyaline-like cartilage repair. Prospective analysis of serum WF6 and HA levels between the two groups did not show any significant difference. Serum WF6 levels at the 24th week of the experiment had a negative correlation (r = -0.69, P < 0.05) with the cartilage repair assessment score, whereas serum HA levels tended to correlate positively (r = 0.46, 0.1

  14. [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group "Tissue Regeneration" of the German Society of Orthopaedic Surgery and Traumatology (DGOU)].

    PubMed

    Niemeyer, P; Andereya, S; Angele, P; Ateschrang, A; Aurich, M; Baumann, M; Behrens, P; Bosch, U; Erggelet, C; Fickert, S; Fritz, J; Gebhard, H; Gelse, K; Günther, D; Hoburg, A; Kasten, P; Kolombe, T; Madry, H; Marlovits, S; Meenen, N M; Müller, P E; Nöth, U; Petersen, J P; Pietschmann, M; Richter, W; Rolauffs, B; Rhunau, K; Schewe, B; Steinert, A; Steinwachs, M R; Welsch, G H; Zinser, W; Albrecht, D

    2013-02-01

    Autologous chondrocyte transplantation/implantation (ACT/ACI) is an established and recognised procedure for the treatment of localised full-thickness cartilage defects of the knee. The present review of the working group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Traumatology (DGOU) describes the biology and function of healthy articular cartilage, the present state of knowledge concerning potential consequences of primary cartilage lesions and the suitable indication for ACI. Based on current evidence, an indication for ACI is given for symptomatic cartilage defects starting from defect sizes of more than 3-4 cm2; in the case of young and active sports patients at 2.5 cm2. Advanced degenerative joint disease is the single most important contraindication. The review gives a concise overview on important scientific background, the results of clinical studies and discusses advantages and disadvantages of ACI.

  15. Evaluation and analysis of graft hypertrophy by means of arthroscopy, biochemical MRI and osteochondral biopsies in a patient following autologous chondrocyte implantation for treatment of a full-thickness-cartilage defect of the knee.

    PubMed

    Niemeyer, Philipp; Uhl, Markus; Salzmann, Gian M; Morscheid, Yannik P; Südkamp, Norbert P; Madry, Henning

    2015-06-01

    Graft hypertrophy represents a characteristic complication following autologous chondrocyte implantation (ACI) for treatment of cartilage defects. Although some epidemiological data suggest that incidence is associated with first-generation ACI using autologous chondrocyte implantation, it has also been reported in other technical modifications of ACI using different biomaterials. Nevertheless, it has not been described in autologous, non-periosteum, implant-free associated ACI. In addition, little is known about histological and T2-relaxation appearance of graft hypertrophy. The present case report provides a rare case of extensive graft hypertrophy following ACI using an autologous spheres technique with clinical progression over time. Detailed clinical, MR tomographic and histological evaluation has been performed, which demonstrates a high quality of repair tissue within the hypertrophic as well as non-hypertrophic transplanted areas of the repair tissue. No expression of collagen type X (a sign of chondrocyte hypertrophy), only slight changes of the subchondral bone and a nearly normal cell-matrix ratio suggest that tissue within the hypertrophic area does not significantly differ from intact and high-quality repair tissue and therefore seems not to cause graft hypertrophy. This is in contrast to the assumption that histological hypertrophy might cause or contribute to an overwhelming growth of the repair tissue within the transplantation site. Data presented in this manuscript might contribute to further explain the etiology of graft hypertrophy following ACI.

  16. Reconstruction of Alar Nasal Cartilage Defects Using a Tissue Engineering Technique Based on a Combined Use of Autologous Chondrocyte Micrografts and Platelet-rich Plasma: Preliminary Clinical and Instrumental Evaluation

    PubMed Central

    Scioli, Maria G.; Bielli, Alessandra; Orlandi, Augusto; Cervelli, Valerio

    2016-01-01

    Background: Developing cartilage constructs with injectability, appropriate matrix composition, and persistent cartilaginous phenotype remains an enduring challenge in cartilage repair. The combined use of autologous chondrocyte micrografts and platelet-rich plasma (PRP) is an alternative that opens a new era in this field. Methods: At the Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, Italy, 11 patients underwent nasal alar reconstruction with chondrocyte micrografts gently poured onto PRP in solid form. A computed tomographic scan control was performed after 12 months. Pearson’s Chi-square test was used to investigate difference in cartilage density between native and newly formed cartilages. Results: The constructs of chondrocyte micrografts–PRP that were subcutaneously injected resulted in a persistent cartilage tissue with appropriate morphology, adequate central nutritional perfusion without central necrosis or ossification, and further augmented nasal dorsum without obvious contraction and deformation. Conclusion: This report demonstrated that chondrocyte micrografts derived from nasal septum poured onto PRP in solid form are useful for cartilage regeneration in patients with external nasal valve collapse. PMID:27826462

  17. Morphological, genetic and phenotypic comparison between human articular chondrocytes and cultured chondrocytes.

    PubMed

    Mata-Miranda, Mónica Maribel; Martinez-Martinez, Claudia María; Noriega-Gonzalez, Jesús Emmanuel; Paredes-Gonzalez, Luis Enrique; Vázquez-Zapién, Gustavo Jesús

    2016-08-01

    Articular cartilage is an avascular and aneural tissue with limited capacity for regeneration. On large articular lesions, it is recommended to use regenerative medicine strategies, like autologous chondrocyte implantation. There is a concern about morphological changes that chondrocytes suffer once they have been isolated and cultured. Due to the fact that there is little evidence that compares articular cartilage chondrocytes with cultured chondrocytes, in this research we proposed to obtain chondrocytes from human articular cartilage, compare them with themselves once they have been cultured and characterize them through genetic, phenotypic and morphological analysis. Knee articular cartilage samples of 10 mm were obtained, and each sample was divided into two fragments; a portion was used to determine gene expression, and from the other portion, chondrocytes were obtained by enzymatic disaggregation, in order to be cultured and expanded in vitro. Subsequently, morphological, genetic and phenotypic characteristics were compared between in situ (articular cartilage) and cultured chondrocytes. Obtained cultured chondrocytes were rounded in shape, possessing a large nucleus with condensed chromatin and a clear cytoplasm; histological appearance was quite similar to typical chondrocyte. The expression levels of COL2A1 and COL10A1 genes were higher in cultured chondrocytes than in situ chondrocytes; moreover, the expression of COL1A1 was almost undetectable on cultured chondrocytes; likewise, COL2 and SOX9 proteins were detected by immunofluorescence. We concluded that chondrocytes derived from adult human cartilage cultured for 21 days do not tend to dedifferentiate, maintaining their capacity to produce matrix and also retaining their synthesis capacity and morphology.

  18. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    PubMed Central

    Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha

    2016-01-01

    Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002

  19. DNA Methylation Profiling in Chondrocyte Dedifferentiation In Vitro.

    PubMed

    Duan, Li; Liang, Yujie; Ma, Bin; Wang, Daming; Liu, Wei; Huang, Jianghong; Xiong, Jianyi; Peng, Liangquan; Chen, Jielin; Zhu, Weimin; Wang, Daping

    2017-07-01

    DNA methylation has emerged as a crucial regulator of chondrocyte dedifferentiation, which severely compromises the outcome of autologous chondrocyte implantation (ACI) treatment for cartilage defects. However, the full-scale DNA methylation profiling in chondrocyte dedifferentiation remains to be determined. Here, we performed a genome-wide DNA methylation profiling of dedifferentiated chondrocytes in monolayer culture and chondrocytes treated with DNA methylation inhibitor 5-azacytidine (5-AzaC). This research revealed that the general methylation level of CpG was increased while the COL-1A1 promoter methylation level was decreased during the chondrocyte dedifferentiation. 5-AzaC could reduce general methylation levels and reverse the chondrocyte dedifferentiation. Surprisingly, the DNA methylation level of COL-1A1 promoter was increased after 5-AzaC treatment. The COL-1A1 expression level was increased while that of SOX-9 was decreased during the chondrocyte dedifferentiation. 5-AzaC treatment up-regulated the SOX-9 expression while down-regulated the COL-1A1 promoter activity and gene expression. Taken together, these results suggested that differential regulation of the DNA methylation level of cartilage-specific genes might contribute to the chondrocyte dedifferentiation. Thus, the epigenetic manipulation of these genes could be a potential strategy to counteract the chondrocyte dedifferentiation accompanying in vitro propagation. J. Cell. Physiol. 232: 1708-1716, 2017. © 2016 Wiley Periodicals, Inc.

  20. Polymer based tunneling sensor

    NASA Technical Reports Server (NTRS)

    Cui, Tianhong (Inventor); Wang, Jing (Inventor); Zhao, Yongjun (Inventor)

    2006-01-01

    A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.

  1. Microfluidics‑based optimization of neuroleukin‑mediated regulation of articular chondrocyte proliferation.

    PubMed

    Tian, Kang; Zhong, Weiliang; Zhang, Yingqiu; Yin, Baosheng; Zhang, Weiguo; Liu, Han

    2016-01-01

    Due to the low proliferative and migratory capacities of chondrocytes, cartilage repair remains a challenging clinical problem. Current therapeutic strategies for cartilage repair result in unsatisfactory outcomes. Autologous chondrocyte implantation (ACI) is a cell based therapy that relies on the in vitro expansion of healthy chondrocytes from the patient, during which proliferation‑promoting factors are frequently used. Neuroleukin (NLK) is a multifunctional protein that possesses growth factor functions, and its expression has been associated with cartilage development and bone regeneration, however its direct role in chondrocyte proliferation remains to be fully elucidated. In the current study, the role of NLK in chondrocyte proliferation in vitro in addition to its potential to act as an exogenous factor during ACI was investigated. Furthermore, the concentration of NLK for in vitro chondrocyte culture was optimized using a microfluidic device. An NLK concentration of 12.85 ng/ml was observed to provide optimal conditions for the promotion of chondrocyte proliferation. Additionally, NLK stimulation resulted in an increase in type II collagen synthesis by chondrocytes, which is a cartilaginous secretion marker and associated with the phenotype of chondrocytes. Together these data suggest that NLK is able to promote cell proliferation and type II collagen synthesis during in vitro chondrocyte propagation, and thus may serve as an exogenous factor for ACI.

  2. Opiates do not violate the viability and proliferative activity of human articular chondrocytes.

    PubMed

    Chechik, Ofir; Arbel, Ron; Salai, Moshe; Gigi, Roy; Beilin, Mark; Flaishon, Ron; Sever, Ronen; Khashan, Morsi; Ben-Tov, Tomer; Gal-Levy, Ronit; Yayon, Avner; Blumenstein, Sara

    2014-09-01

    Articular cartilage injuries present a challenge for the clinician. Autologous chondrocyte implantation embedded in scaffolds are used to treat cartilage defects with favorable outcomes. Autologous serum is often used as a medium for chondrocyte cell culture during the proliferation phase of the process of such products. A previous report showed that opiate analgesics (fentanyl, alfentanil and diamorphine) in the sera have a significant inhibitory effect on chondrocyte proliferation. In order to determine if opiates in serum inhibit chondrocyte proliferation, twenty two patients who underwent knee arthroscopy and were anesthetized with either fentanyl or remifentanil were studied. Blood was drawn before and during opiate administration and up to 2 h after its discontinuation. The sera were used as medium for in vitro proliferation of both cryopreserved and freshly isolated chondrocytes, and the number and viability of cells were measured. There was no difference in the yield or cell viability between the serum samples of patients anesthetized with fentanyl when either fresh or cryopreserved human articular chondrocytes (hACs) were used. Some non-significant reduction in the yield of cells was observed in the serum samples of patients anesthetized with remifentanil when fresh hAC were used. We conclude that Fentanyl in human autologous serum does not inhibit in vitro hAC proliferation. Remifentanil may show minimal inhibitory effect on in vitro fresh hAC proliferation.

  3. Should human chondrocytes fly? The impact of electromagnetic irradiation on chondrocyte viability and implications for their use in tissue engineering.

    PubMed

    Koehler, C; Niederbichler, A D; Scholz, T; Bode, B; Roos, J; Jung, F J; Hoerstrup, S P; Hellermann, J P; Wedler, V

    2006-12-01

    A significant logistic factor as to the successful clinical application of the autologous tissue engineering concept is efficient transportation: the donor cells need to be delivered to tissue processing facilities which in most cases requires air transportation. This study was designed to evaluate how human chondrocytes react to X-ray exposure. Primary cell cultures were established, cultured, incubated and exposed to different doses and time periods of radiation. Subsequently, quantitative cell proliferation assays were done and qualitative evaluation of cellular protein production were performed. Our results show that after irradiation of chondrocytes with different doses, no significant differences in terms of cellular viability occurred compared with the control group. These results were obtained when chondrocytes were exposed to luggage transillumination doses as well as exposure to clinically used radiation doses. Any damage affecting cell growth or quality was not observed in our study. However, information about damage of cellular DNA remains incomplete.

  4. The Interplay between Chondrocyte Redifferentiation Pellet Size and Oxygen Concentration

    PubMed Central

    Babur, Betul Kul; Ghanavi, Parisa; Levett, Peter; Lott, William B.; Klein, Travis; Cooper-White, Justin J.; Crawford, Ross; Doran, Michael R.

    2013-01-01

    Chondrocytes dedifferentiate during ex vivo expansion on 2-dimensional surfaces. Aggregation of the expanded cells into 3-dimensional pellets, in the presence of induction factors, facilitates their redifferentiation and restoration of the chondrogenic phenotype. Typically 1×105–5×105 chondrocytes are aggregated, resulting in “macro” pellets having diameters ranging from 1–2 mm. These macropellets are commonly used to study redifferentiation, and recently macropellets of autologous chondrocytes have been implanted directly into articular cartilage defects to facilitate their repair. However, diffusion of metabolites over the 1–2 mm pellet length-scales is inefficient, resulting in radial tissue heterogeneity. Herein we demonstrate that the aggregation of 2×105 human chondrocytes into micropellets of 166 cells each, rather than into larger single macropellets, enhances chondrogenic redifferentiation. In this study, we describe the development of a cost effective fabrication strategy to manufacture a microwell surface for the large-scale production of micropellets. The thousands of micropellets were manufactured using the microwell platform, which is an array of 360×360 µm microwells cast into polydimethylsiloxane (PDMS), that has been surface modified with an electrostatic multilayer of hyaluronic acid and chitosan to enhance micropellet formation. Such surface modification was essential to prevent chondrocyte spreading on the PDMS. Sulfated glycosaminoglycan (sGAG) production and collagen II gene expression in chondrocyte micropellets increased significantly relative to macropellet controls, and redifferentiation was enhanced in both macro and micropellets with the provision of a hypoxic atmosphere (2% O2). Once micropellet formation had been optimized, we demonstrated that micropellets could be assembled into larger cartilage tissues. Our results indicate that micropellet amalgamation efficiency is inversely related to the time cultured as discreet

  5. Modelling and Simulating the Adhesion and Detachment of Chondrocytes in Shear Flow

    NASA Astrophysics Data System (ADS)

    Hao, Jian; Pan, Tsorng-Whay; Rosenstrauch, Doreen

    Chondrocytes are typically studied in the environment where they normally reside such as the joints in hips, intervertebral disks or the ear. For example, in [SKE+99], the effect of seeding duration on the strength of chondrocyte adhesion to articulate cartilage has been studied in shear flow chamber since such adhesion may play an important role in the repair of articular defects by maintaining cells in positions where their biosynthetic products can contribute to the repair process. However, in this investigation, we focus mainly on the use of auricular chondrocytes in cardiovascular implants. They are abundant, easily and efficiently harvested by a minimally invasive technique. Auricular chondrocytes have ability to produce collagen type-II and other important extracellular matrix constituents; this allows them to adhere strongly to the artificial surfaces. They can be genetically engineered to act like endothelial cells so that the biocompatibility of cardiovascular prothesis can be improved. Actually in [SBBR+02], genetically engineered auricular chondrocytes can be used to line blood-contacting luminal surfaces of left ventricular assist device (LVAD) and a chondrocyte-lined LVAD has been planted into the tissue-donor calf and the results in vivo have proved the feasibility of using autologous auricular chondrocytes to improve the biocompatibility of the blood-biomaterial interface in LVADs and cardiovascular prothesis. Therefore, cultured chondrocytes may offer a more efficient and less invasive means of covering artificial surface with a viable and adherent cell layer.

  6. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  7. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes

    PubMed Central

    Vedicherla, Srujana

    2017-01-01

    Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT), Allogeneic Juvenile Chondrocyte Implantation (NuQu®), and Matrix-Induced Autologous Chondrocyte Implantation (MACI). Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml) and incubation time (1 and 12 h), combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen) of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation. PMID:28337445

  8. In vitro effect of a synthesized sulfonamido-based gallate on articular chondrocyte metabolism.

    PubMed

    Lin, Xiao; Zheng, Li; Liu, Qin; Liu, Buming; Jiang, Bingli; Peng, Xiaoyu; Lin, Cuiwu

    2014-06-01

    Autologous chondrocyte implantation (ACI) is a promising strategy for cartilage repair and reconstitution. However, limited cell numbers and the dedifferentiation of chondrocytes present major difficulties to the success of ACI therapy. Therefore, it is important to find effective pro-chondrogenic agents that restore these defects to ensure a successful therapy. In this study, we synthesized a sulfonamido-based gallate, namely N-[4-(4,6-dimethyl-pyrimidin-2-ylsulfamoyl)-phenyl]-3,4,5-trihydroxy-benzamide (EJTC), and investigated its effects on rabbit articular chondrocytes through an examination of its specific effects on cell proliferation, morphology, viability, GAG synthesis, and cartilage-specific gene expression. The results show that EJTC can effectively promote chondrocyte growth and enhance the secretion and synthesis of cartilage ECM by upregulating the expression levels of the aggrecan, collagen II, and Sox9 genes. The expression of the collagen I gene was effectively downregulated, which indicates that EJTC inhibits chondrocytes dedifferentiation. Chondrocyte hypertrophy, which may lead to chondrocyte ossification, was also undetectable in the EJTC-treated groups. The recommended dose of EJTC ranges from 3.125 μg/mL to 7.8125 μg/mL, and the most profound response was observed with 7.8125 μg/mL. This study may provide a basis for the development of a novel agent for the treatment of articular cartilage defects.

  9. Chondrogenic capability of osteoarthritic chondrocytes from the trapeziometacarpal and hip joints.

    PubMed

    Lovati, Arianna B; Colombini, Alessandra; Recordati, Camilla; Ceriani, Cristina; Zagra, Luigi; Berzero, Gianfranco; Moretti, Matteo

    2016-03-01

    Osteoarthritis is the most common degenerative disease of joints like the hip and the trapeziometacarpal joint (rhizarthrosis). In this in vitro study, we compared the chondrogenesis of chondrocytes derived from the trapezium and the femoral head cartilage of osteoarthritic patients to have a deeper insight on trapezium chondrocyte behavior as autologous cell source for the repair of cartilage lesions in rhizarthrosis. Chondrocytes collected from trapezium and femoral head articular cartilage were cultured in pellets and analyzed for chondrogenic differentiation, cell proliferation, glycosaminoglycan production, gene expression of chondrogenic and fibrous markers, histological and immunohistochemical analyses. Our results showed a higher cartilaginous matrix deposition and a lower fibrocartilaginous phenotype of the femoral chondrocytes with respect to the trapezium chondrocytes assessed by a higher absolute glycosaminoglycan and type II collagen production, thus demonstrating a superior chondrogenic potential of the femoral with respect to the trapezium chondrocytes. The differences in chondrogenic potential between trapezium and femoral head chondrocytes confirmed a lower regenerative capability in the trapezium than in the femoral head cartilage due to the different environment and loading acting on these joints that affects the metabolism of the resident cells. This could represent a limitation to apply the cell therapy for rhizoarthrosis.

  10. Conductive polymer-based material

    DOEpatents

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  11. Polymer-Based Organic Batteries.

    PubMed

    Muench, Simon; Wild, Andreas; Friebe, Christian; Häupler, Bernhard; Janoschka, Tobias; Schubert, Ulrich S

    2016-08-24

    The storage of electric energy is of ever growing importance for our modern, technology-based society, and novel battery systems are in the focus of research. The substitution of conventional metals as redox-active material by organic materials offers a promising alternative for the next generation of rechargeable batteries since these organic batteries are excelling in charging speed and cycling stability. This review provides a comprehensive overview of these systems and discusses the numerous classes of organic, polymer-based active materials as well as auxiliary components of the battery, like additives or electrolytes. Moreover, a definition of important cell characteristics and an introduction to selected characterization techniques is provided, completed by the discussion of potential socio-economic impacts.

  12. Effect of polystyrene and polyether imide cell culture inserts with different roughness on chondrocyte metabolic activity and gene expression profiles of aggrecan and collagen.

    PubMed

    König, Josephine; Kohl, Benjamin; Kratz, Karl; Jung, Friedrich; Lendlein, Andreas; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2013-01-01

    In vitro cultured autologous chondrocytes can be used for implantation to support cartilage repair. For this purpose, a very small number of autologous cells harvested from a biopsy have to be expanded in monolayer culture. Commercially available polymer surfaces lead to chondrocyte dedifferentiation. Hence, the demanding need for optimized polymers and surface topologies supporting chondrocytes' differentiated phenotypes in vitro arises. In this study we explored the effect of tailored cell culture plate inserts prepared from polystyrene (PS) and polyether imide (PEI) exhibiting three different roughness levels (R0, RI, RII) on chondrocyte morphology, metabolism and gene expression profile. As a control, commercially available tissue culture plastic (TCP) dishes were included. Primary porcine articular chondrocytes were seeded on tailored PS and PEI inserts with three different roughness levels. The metabolic activity of the chondrocytes was determined after 24 hours using alamar blue assay. Chondrocyte gene expression profiles (aggrecan, type I and type II collagen) were monitored after 48 hours using Real Time Detection (RTD)-PCR. Chondrocytes cultured on PS and PEI surfaces formed cell clusters after 24 and 48 hours, which was not observed on TCP. The metabolic activity of chondrocytes cultured on PS was lower than of chondrocytes cultured on PEI, but also lower than on TCP. Gene expression analyses revealed an elevated expression of cartilage-specific aggrecan and an impaired expression of both collagen types by chondrocytes on PS and PEI compared with TCP. In summary, PEI is a biocompatible biomaterial suitable for chondrocyte culturing, which can be further chemically functionalized for generating specific surface interactions or covalent binding of biomolecules.

  13. Cartilage tissue engineering of nasal septal chondrocyte-macroaggregates in human demineralized bone matrix.

    PubMed

    Liese, Juliane; Marzahn, Ulrike; El Sayed, Karym; Pruss, Axel; Haisch, Andreas; Stoelzel, Katharina

    2013-06-01

    Tissue Engineering is an important method for generating cartilage tissue with isolated autologous cells and the support of biomaterials. In contrast to various gel-like biomaterials, human demineralized bone matrix (DBM) guarantees some biomechanical stability for an application in biomechanically loaded regions. The present study combined for the first time the method of seeding chondrocyte-macroaggregates in DBM for the purpose of cartilage tissue engineering. After isolating human nasal chondrocytes and creating a three-dimensional macroaggregate arrangement, the DBM was cultivated in vitro with the macroaggregates. The interaction of the cells within the DBM was analyzed with respect to cell differentiation and the inhibitory effects of chondrocyte proliferation. In contrast to chondrocyte-macroaggregates in the cell-DBM constructs, morphologically modified cells expressing type I collagen dominated. The redifferentiation of chondrocytes, characterized by the expression of type II collagen, was only found in low amounts in the cell-DBM constructs. Furthermore, caspase 3, a marker for apoptosis, was detected in the chondrocyte-DBM constructs. In another experimental setting, the vitality of chondrocytes as related to culture time and the amount of DBM was analyzed with the BrdU assay. Higher amounts of DBM tended to result in significantly higher proliferation rates of the cells within the first 48 h. After 96 h, the vitality decreased in a dose-dependent fashion. In conclusion, this study provides the proof of concept of chondrocyte-macroaggregates with DBM as an interesting method for the tissue engineering of cartilage. The as-yet insufficient redifferentiation of the chondrocytes and the sporadic initiation of apoptosis will require further investigations.

  14. Precipitant induced porosity augmentation of polystyrene preserves the chondrogenicity of human chondrocytes.

    PubMed

    Joergensen, Natasja L; Foldager, Casper B; Le, Dang Q S; Lind, Martin; Lysdahl, Helle

    2016-12-01

    Cells constantly sense and receive chemical and physical signals from neighboring cells, interstitial fluid, and extracellular matrix, which they integrate and translate into intracellular responses. Thus, the nature of the surface on which cells are cultured in vitro plays an important role for cell adhesion, proliferation, and differentiation. Autologs chondrocyte implantation is considered the treatment of choice for larger cartilage defects in the knee. To obtain a sufficient number of chondrocytes for implantation multiple passaging is often needed, which raises concerns about the changes in the chondrogenic phenotype. In the present study, we analyzed the effect at cellular and molecular level of precipitant induced porosity augmentation (PIPA) of polystyrene surfaces on proliferation and differentiation of human chondrocytes. Human chondrocytes were isolated from healthy patients undergoing anterior cruciate ligament reconstruction and cultured on PIPA modified polystyrene surfaces. Microscopical analysis revealed topographically arranged porosity with micron pores and nanometer pits. Chondrocytes cultured on PIPA surfaces revealed no difference in cell viability and proliferation, but gene- and protein expressions of collagen type II were pronounced in the first passage of chondrocytes when compared to chondrocytes cultured on control surfaces. Additionally, an analysis of 40 kinases revealed that chondrocytes expanded on PIPA caused upregulated PI3K/mTOR pathway activation and inhibition of mTORC1 resulted in reduced sGAG synthesis. These findings indicate that PIPA modified polystyrene preserved the chondrogenicity of expanded human chondrocytes at gene and protein levels, which clinically may be attractive for the next generation of cell-culture surfaces for ex vivo cell growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3073-3081, 2016.

  15. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    SciTech Connect

    Saha, Sushmita; Kirkham, Jennifer; Wood, David; Curran, Stephen; Yang, Xuebin

    2010-10-22

    Research highlights: {yields} This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. {yields} Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. {yields} Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. {yields} Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed

  16. Macrophage-inducing FasL on chondrocytes forms immune privilege in cartilage tissue engineering, enhancing in vivo regeneration.

    PubMed

    Fujihara, Yuko; Takato, Tsuyoshi; Hoshi, Kazuto

    2014-05-01

    To obtain stable outcomes in regenerative medicine, controlling inflammatory reactions is a requirement. Previously, auricular chondrocytes in tissue-engineered cartilage have been shown to express factors related to immune privilege including Fas ligand (FasL) in mice. Since elucidation of mechanism on immune privilege formed in cartilage regeneration may contribute to suppression of excessive inflammation, in this study, we investigated the function of FasL and induction of immune privilege in tissue-engineered cartilage using a mouse subcutaneous model. When cocultured, auricular chondrocytes of FasL-dysfunctional mice, C57BL/6JSlc-gld/gld (gld), induced less cell death and apoptosis of macrophage-like cells, RAW264, compared with chondrocytes of C57BL/6 mice (wild), suggesting that FasL on chondrocytes could induce the apoptosis of macrophages. Meanwhile, the viability of chondrocytes was hardly affected by cocultured RAW264, although the expression of type II collagen was decreased, indicating that macrophages could hamper the maturation of chondrocytes. Tissue-engineered cartilage containing gld chondrocytes exhibited greater infiltration of macrophages, with less accumulation of proteoglycan than did wild constructs. Analysis of the coculture medium identified G-CSF as an inducer of FasL on chondrocytes, and G-CSF-treated tissue-engineered cartilage showed less infiltration of macrophages, with increased formation of cartilage after transplantation. The interactions between chondrocytes and macrophages may increase G-CSF secretion in macrophages and induce FasL on chondrocytes, which in turn induce the apoptosis of macrophages and suppress tissue reactions, promoting the maturation of tissue-engineered cartilage. These findings provide scientific insight into the mechanism of autologous chondrocyte transplantation, which could be applied as a novel strategy for cartilage tissue engineering.

  17. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    PubMed

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.

  18. Comprehensive characterization of chondrocyte cultures in plasma and whole blood biomatrices for cartilage tissue engineering.

    PubMed

    Schulz, Ronny M; Haberhauer, Marcus; Zernia, Göran; Pösel, Claudia; Thümmler, Christian; Somerson, Jeremy S; Huster, Daniel

    2014-07-01

    Many synthetic polymers and biomaterials have been used as matrices for 3D chondrocyte seeding and transplantation in the field of cartilage tissue engineering. To develop a fully autologous carrier for chondrocyte cultivation, we examined the feasibility of allogeneic plasma and whole blood-based matrices and compared them to agarose constructs. Primary articular chondrocytes isolated from 12-month-old pigs were embedded into agarose, plasma and whole blood matrices and cultivated under static-free swelling conditions for up to four weeks. To evaluate the quality of the synthesized extracellular matrix (ECM), constructs were subjected to weekly examinations using histological staining, spectrophotometry, immunohistochemistry and biochemical analysis. In addition, gene expression of cartilage-specific markers such as aggrecan, Sox9 and collagen types I, II and X was determined by RT-PCR. Chondrocyte morphology was assessed via scanning electron microscopy and viability staining, including proliferation and apoptosis assays. Finally, (13)  C NMR spectroscopy provided further evidence of synthesis of ECM components. It was shown that chondrocyte cultivation in allogeneic plasma and whole-blood matrices promoted sufficient chondrocyte viability and differentiation behaviour, resulting in neo-formation of a hyaline-like cartilage matrix.

  19. Polymer-Based Carbon Monoxide Sensors

    NASA Technical Reports Server (NTRS)

    Homer, M. L.; Shevade, A. V.; Zhou, H.; Kisor, A. K.; Lara, L. M.; Yen, S.-P. S.; Ryan, M. A.

    2010-01-01

    Polymer-based sensors have been used primarily to detect volatile organics and inorganics; they are not usually used for smaller, gas phase molecules. We report the development and use of two types of polymer-based sensors for the detection of carbon monoxide. Further understanding of the experimental results is also obtained by performing molecular modeling studies to investigate the polymer-carbon monoxide interactions. The first type is a carbon-black-polymer composite that is comprised of a non-conducting polymer base that has been impregnated with carbon black to make it conducting. These chemiresistor sensors show good response to carbon monoxide but do not have a long lifetime. The second type of sensor has a non-conducting polymer base but includes both a porphyrin-functionalized polypyrrole and carbon black. These sensors show good, repeatable and reversible response to carbon monoxide at room temperature.

  20. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA)

    PubMed Central

    Gradišnik, Lidija; Gorenjak, Mario; Vogrin, Matjaž

    2017-01-01

    Background Cartilage tissue engineering is a fast-evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous chondrocyte implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue. Methods Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA) was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2), collagen 1 (COL1) and aggrecan (ACAN) was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production. Results Cartilage specific gene expression of COL2 and ACAN has been shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well. Discussion In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a common and very

  1. A Biosynthetic Scaffold that Facilitates Chondrocyte-Mediated Degradation and Promotes Articular Cartilage Extracellular Matrix Deposition

    PubMed Central

    Sridhar., Balaji V.; Dailing, Eric A.; Brock, J. Logan; Stansbury, Jeffrey W.; Randolph, Mark A.; Anseth, Kristi S.

    2015-01-01

    Articular cartilage remains a significant clinical challenge to repair because of its limited self-healing capacity. Interest has grown in the delivery of autologous chondrocytes to cartilage defects, and combining cell-based therapies with scaffolds that capture aspects of native tissue and allow cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with encapsulated chondrocytes permit matrix production; however, resorption of the scaffold often does not match the rate of matrix production by chondrocytes, which can limit functional tissue regeneration. Here, we designed a hybrid biosynthetic system consisting of poly (ethylene glycol) (PEG) endcapped with thiols and crosslinked by norbornene-functionalized gelatin via a thiol-ene photopolymerization. The protein crosslinker was selected to facilitate chondrocyte-mediated scaffold remodeling and matrix deposition. Gelatin was functionalized with norbornene to varying degrees (~4–17 norbornenes/gelatin), and the shear modulus of the resulting hydrogels was characterized (<0.1–0.5 kPa). Degradation of the crosslinked PEG-gelatin hydrogels by chondrocyte-secreted enzymes was confirmed by gel permeation chromatography. Finally, chondrocytes encapsulated in these biosynthetic scaffolds showed significantly increased glycosaminoglycan deposition over just 14 days of culture, while maintaining high levels of viability and producing a distributed matrix. These results indicate the potential of a hybrid PEG-gelatin hydrogel to permit chondrocyte-mediated remodeling and promote articular cartilage matrix production. Tunable scaffolds that can easily permit chondrocyte-mediated remodeling may be useful in designing treatment options for cartilage tissue engineering applications. PMID:26900597

  2. Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human ear-shaped substitutes in vitro.

    PubMed

    Kang, Ning; Liu, Xia; Yan, Li; Wang, Qian; Cao, Yilin; Xiao, Ran

    2013-01-01

    The application of chondrocyte-based cartilage tissue engineering is limited because of the lack of autologous cartilage sources and chondrocyte dedifferentiation after in vitro expansion. Coculture of bone marrow mesenchymal stem cells (BMSCs) and chondrocytes has been a promising strategy for cartilage engineering as chondrocytes can provide a chondrogenic environment for BMSCs. However, there are no systematic comparison studies for engineered cartilage constructed using different mixing ratios of BMSCs and chondrocytes, and the most effective mixing ratio with the lowest number of chondrocytes is unknown. Here, we set a gradient of mixing ratios of BMSCs to chondrocytes for an in vitro coculture system and compared the shape retention and quality of the engineered cartilage using macroscopic and histological assays, glycosaminoglycan content assessment and immunohistochemical staining of type II collagen, biomechanical evaluation and hypertrophy-related gene expression analysis. The results showed that at least 30% chondrocytes were required to generate cartilage tissue with satisfactory shape and quality. Therefore, we preliminarily assessed the feasibility of engineering a human ear-shaped substitute using a coculture system with a 7:3 ratio of BMSCs to chondrocytes. After 8 weeks of in vitro culture, the precise architecture of the human ear-shaped construct was well maintained with the typical cartilaginous composition confirmed by histological assays.

  3. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model

    PubMed Central

    Pomerantseva, Irina; Bichara, David A.; Tseng, Alan; Cronce, Michael J.; Cervantes, Thomas M.; Kimura, Anya M.; Neville, Craig M.; Roscioli, Nick; Vacanti, Joseph P.; Randolph, Mark A.

    2016-01-01

    Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage

  4. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model.

    PubMed

    Pomerantseva, Irina; Bichara, David A; Tseng, Alan; Cronce, Michael J; Cervantes, Thomas M; Kimura, Anya M; Neville, Craig M; Roscioli, Nick; Vacanti, Joseph P; Randolph, Mark A; Sundback, Cathryn A

    2016-02-01

    Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage

  5. Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension.

    PubMed

    Atala, A; Kim, W; Paige, K T; Vacanti, C A; Retik, A B

    1994-08-01

    Injection of polytetrafluoroethylene (Teflon) or collagen has been used in the endoscopic treatment of vesicoureteral reflux. Although the principle of an endoscopic treatment is valid, there are concerns regarding the long-term safety and effectiveness of these substances. In search of a different injectable material we conducted experiments using chondrocytes in a biodegradable polymer solution for the treatment of vesicoureteral reflux in an animal model. Reflux was created in 4 mini-pigs and confirmed with a cystogram. Cartilage was obtained from the auricular surface of each animal. Chondrocytes were harvested and expanded in vitro. The cells were individually quantitated and concentrated to 40 million cells per cc. The cell suspensions were mixed with a sodium alginate and calcium sulfate solution. Each pig was injected unilaterally in the subureteral region with the autologous chondrocyte suspension. The opposite ureter served as an internal control in all animals. Cystograms showed resolution of reflux in the treated side and persistence of reflux in the opposite untreated side in each instance. Excretory urograms revealed no evidence of obstruction. Histological examination of the subureteral region demonstrated cartilage. Autologous chondrocytes can be readily harvested, expanded in vitro and injected cystoscopically. The cells survive and form a cartilage nidus that is nonantigenic. This system is able to correct reflux without any evidence of obstruction.

  6. Chondrocytes expressing intracellular collagen type II enter the cell cycle and co-express collagen type I in monolayer culture.

    PubMed

    Tekari, Adel; Luginbuehl, Reto; Hofstetter, Willy; Egli, Rainer J

    2014-11-01

    For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to <0.1%, whereas transcript levels encoding COL1 increased 370-fold as compared to primary chondrocytes. Flow cytometry for intracellular proteins revealed that chondrocytes acquired a COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to <2% in primary chondrocytes to passage six cells, the fraction of COL1 positive cells increased from <1% to >95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue.

  7. Cellular automata model for human articular chondrocytes migration, proliferation and cell death: An in vitro validation.

    PubMed

    Vaca-González, J J; Gutiérrez, M L; Guevara, J M; Garzón-Alvarado, D A

    2016-01-07

    Articular cartilage is characterized by low cell density of only one cell type, chondrocytes, and has limited self-healing properties. When articular cartilage is affected by traumatic injuries, a therapeutic strategy such as autologous chondrocyte implantation is usually proposed for its treatment. This approach requires in vitro chondrocyte expansion to yield high cell number for cell transplantation. To improve the efficiency of this procedure, it is necessary to assess cell dynamics such as migration, proliferation and cell death during culture. Computational models such as cellular automata can be used to simulate cell dynamics in order to enhance the result of cell culture procedures. This methodology has been implemented for several cell types; however, an experimental validation is required for each one. For this reason, in this research a cellular automata model, based on random-walk theory, was devised in order to predict articular chondrocyte behavior in monolayer culture during cell expansion. Results demonstrated that the cellular automata model corresponded to cell dynamics and computed-accurate quantitative results. Moreover, it was possible to observe that cell dynamics depend on weighted probabilities derived from experimental data and cell behavior varies according to the cell culture period. Thus, depending on whether cells were just seeded or proliferated exponentially, culture time probabilities differed in percentages in the CA model. Furthermore, in the experimental assessment a decreased chondrocyte proliferation was observed along with increased passage number. This approach is expected to having other uses as in enhancing articular cartilage therapies based on tissue engineering and regenerative medicine.

  8. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold

    PubMed Central

    Musumeci, G.; Loreto, C.; Carnazza, M.L.; Coppolino, F.; Cardile, V.; Leonardi, R.

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. PMID:22073377

  9. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine.

    PubMed

    Nazempour, A; Van Wie, B J

    2016-05-01

    Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies.

  10. Porcine Intervertebral Disc Repair Using Allogeneic Juvenile Articular Chondrocytes or Mesenchymal Stem Cells

    PubMed Central

    Acosta, Frank L.; Metz, Lionel; Adkisson, Huston Davis; Liu, Jane; Carruthers-Liebenberg, Ellen; Milliman, Curt; Maloney, Michael

    2011-01-01

    Tissue engineering strategies for intervertebral disc repair have focused on the use of autologous disc-derived chondrocytes. Difficulties with graft procurement, harvest site morbidity, and functionality, however, may limit the utility of this cell source. We used an in vivo porcine model to investigate allogeneic non-disc-derived chondrocytes and allogeneic mesenchymal stem cells (MSCs) for disc repair. After denucleation, lumbar discs were injected with either fibrin carrier alone, allogeneic juvenile chondrocytes (JCs), or allogeneic MSCs. Discs were harvested at 3, 6, and 12 months, and cell viability and functionality were assessed qualitatively and quantitatively. JC-treated discs demonstrated abundant cartilage formation at 3 months, and to a lesser extent at 6 and 12 months. For the carrier and MSC-treated groups, however, there was little evidence of proteoglycan matrix or residual notochordal/chondrocyte cells, but rather a type I/II collagen-enriched scar tissue. By contrast, JCs produced a type II collagen-rich matrix that was largely absent of type I collagen. Viable JCs were observed at all time points, whereas no evidence of viable MSCs was found. These data support the premise that committed chondrocytes are more appropriate for use in disc repair, as they are uniquely suited for survival in the ischemic disc microenvironment. PMID:21910592

  11. BMP-2, Hypoxia, and COL1A1/HtrA1 siRNAs Favor Neo-Cartilage Hyaline Matrix Formation in Chondrocytes

    PubMed Central

    Ollitrault, David; Legendre, Florence; Drougard, Carole; Briand, Mélanie; Benateau, Hervé; Goux, Didier; Chajra, Hanane; Poulain, Laurent; Hartmann, Daniel; Vivien, Denis; Shridhar, Vijayalakshmi; Baldi, Alfonso; Mallein-Gerin, Frédéric; Boumediene, Karim; Demoor, Magali

    2015-01-01

    Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets. PMID:24957638

  12. Xiphoid process-derived chondrocytes: a novel cell source for elastic cartilage regeneration.

    PubMed

    Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun; Lee, EunAh; Son, Youngsook

    2014-11-01

    Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage.

  13. Tissue responses against tissue-engineered cartilage consisting of chondrocytes encapsulated within non-absorbable hydrogel.

    PubMed

    Kanazawa, Sanshiro; Fujihara, Yuko; Sakamoto, Tomoaki; Asawa, Yukiyo; Komura, Makoto; Nagata, Satoru; Takato, Tsuyoshi; Hoshi, Kazuto

    2013-01-01

    To disclose the influence of foreign body responses raised against a non-absorbable hydrogel consisting of tissue-engineered cartilage, we embedded human/canine chondrocytes within agarose and transplanted them into subcutaneous pockets in nude mice and donor beagles. One month after transplantation, cartilage formation was observed in the experiments using human chondrocytes in nude mice. No significant invasion of blood cells was noted in the areas where the cartilage was newly formed. Around the tissue-engineered cartilage, agarose fragments, a dense fibrous connective tissue and many macrophages were observed. On the other hand, no cartilage tissue was detected in the autologous transplantation of canine chondrocytes. Few surviving chondrocytes were observed in the agarose and no accumulation of blood cells was observed in the inner parts of the transplants. Localizations of IgG and complements were noted in areas of agarose, and also in the devitalized cells embedded within the agarose. Even if we had inhibited the proximity of the blood cells to the transplanted cells, the survival of the cells could not be secured. We suggest that these cytotoxic mechanisms seem to be associated not only with macrophages but also with soluble factors, including antibodies and complements.

  14. Doublecortin is expressed in articular chondrocytes.

    PubMed

    Zhang, Yi; Ryan, James A; Di Cesare, Paul E; Liu, Judy; Walsh, Christopher A; You, Zongbing

    2007-11-23

    Articular cartilage and cartilage in the embryonic cartilaginous anlagen and growth plates are both hyaline cartilages. In this study, we found that doublecortin (DCX) was expressed in articular chondrocytes but not in chondrocytes from the cartilaginous anlagen or growth plates. DCX was expressed by the cells in the chondrogenous layers but not intermediate layer of joint interzone. Furthermore, the synovium and cruciate ligaments were DCX-negative. DCX-positive chondrocytes were very rare in tissue engineered cartilage derived from in vitro pellet culture of rat chondrosarcoma, ATDC5, and C3H10T1/2 cells. However, the new hyaline cartilage formed in rabbit knee defect contained mostly DCX-positive chondrocytes. Our results demonstrate that DCX can be used as a marker to distinguish articular chondrocytes from other chondrocytes and to evaluate the quality of tissue engineered or regenerated cartilage in terms of their "articular" or "non-articular" nature.

  15. Dynamic gold nanoparticle, polymer-based composites

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent; Junghans, Ann; Hayden, Steven; Majeski, Jaroslaw; CINT, Lujan Team

    2014-03-01

    Artificial polymer-based biomembranes may serve as a foundational architecture for the integration and spatial organization of metal nanoparticles forming functional nanocomposites. Nonionic triblock copolymer (PEO-PPO-PEO), lipid-based gels, containing Au nanoparticles (NPs) can be prepared by either external doping of the preformed nanoparticles or by in-situ reduction of Au 3+. Neutron reflectivity on quartz supported thin films of the Au NP -doped polymer-based biomembranes was used to determine the location of the Au. The nanoparticles were found to preferentially reside within the ethylene oxide chains located at the interface of the bulk water channels and the amphiphile bilayers. The embedded Au nanoparticles can act as localized heat sinks, inducing changes in the polymer conformation. The collective, thermally-triggered expansion and contraction of the EO chains modulate the mesophase structure of the gels. Synchrotron X-ray scattering (SAXS) was used to monitor mesophase structure as a function of both temperature and photo-irradiation. These studies represent a first step towards designingexternally-responsive polymer-nanoparticle composites.

  16. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William; Krulevitch, Peter; Maghribi, Mariam; Hamilton, Julie; Rose, Klint; Wang, Amy W.

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  17. In Vitro Expression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes.

    PubMed

    Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M

    2017-02-01

    The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells.

  18. Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique.

    PubMed

    Shetty, Asode Ananthram; Kim, Seok Jung; Shetty, Vishvas; Jang, Jae Deog; Huh, Sung Woo; Lee, Dong Hwan

    2016-01-01

    The defects of articular cartilage in the knee joint are a common degenerative disease and currently there are several established techniques to treat this problem, each with their own advantages and shortcomings. Autologous chondrocyte implantation is the current gold standard but the technique is expensive, time-consuming and most versions require two stage procedures and an arthrotomy. Autologous collagen induced chondrogenesis (ACIC) is a single-stage arthroscopic procedure and we developed. This method uses microfracture technique with atelocollagen mixed with fibrin gel to treat articular cartilage defects. We introduce this ACIC techniques and its scientific background.

  19. Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model.

    PubMed

    Bichara, David A; Pomerantseva, Irina; Zhao, Xing; Zhou, Libin; Kulig, Katherine M; Tseng, Alan; Kimura, Anya M; Johnson, Matthew A; Vacanti, Joseph P; Randolph, Mark A; Sundback, Cathryn A

    2014-01-01

    Tissue-engineered cartilage has historically been an attractive alternative treatment option for auricular reconstruction. However, the ability to reliably generate autologous auricular neocartilage in an immunocompetent preclinical model should first be established. The objectives of this study were to demonstrate engineered autologous auricular cartilage in the immunologically aggressive subcutaneous environment of an immunocompetent animal model, and to determine the impact of in vitro culture duration of chondrocyte-seeded constructs on the quality of neocartilage maturation in vivo. Auricular cartilage was harvested from eight adult sheep; chondrocytes were isolated, expanded in vitro, and seeded onto fibrous collagen scaffolds. Constructs were cultured in vitro for 2, 6, and 12 weeks, and then implanted autologously in sheep and in control nude mice for 6 and 12 weeks. Explanted tissue was stained with hematoxylin and eosin, safranin O, toluidine blue, collagen type II, and elastin. DNA and glycosaminoglycans (GAGs) were quantified. The quality of cartilage engineered in sheep decreased with prolonged in vitro culture time. Superior cartilage formation was demonstrated after 2 weeks of in vitro culture; the neocartilage quality improved with increased implantation time. In nude mice, neocartilage resembled native sheep auricular cartilage regardless of the in vitro culture length, with the exception of elastin expression. The DNA quantification was similar in all engineered and native cartilage (p>0.1). All cartilage engineered in sheep had significantly less GAG than native cartilage (p<0.02); significantly more GAG was observed with increased implantation time (p<0.02). In mice, the GAG content was similar to that of native cartilage and became significantly higher with increased in vitro or in vivo durations (p<0.02). Autologous auricular cartilage was successfully engineered in the subcutaneous environment of an ovine model using expanded chondrocytes

  20. Low oxygen reduces the modulation to an oxidative phenotype in monolayer-expanded chondrocytes.

    PubMed

    Heywood, Hannah K; Lee, David A

    2010-01-01

    Autologous chondrocyte implantation requires a phase of in vitro cell expansion, achieved by monolayer culture under atmospheric oxygen levels. Chondrocytes reside under low oxygen conditions in situ and exhibit a glycolytic metabolism. However, oxidative phosphorylation rises progressively during culture, with concomitant reactive oxygen species production. We determine if the high oxygen environment in vitro provides the transformation stimulus. Articular chondrocytes were cultured in monolayer for up to 14 days under 2%, 5%, or 20% oxygen. Expansion under 2% and 5% oxygen reduced the rate at which the cells developed an oxidative phenotype compared to 20% oxygen. However, at 40 +/- 4 fmol cell(-1) h(-1) the oxygen consumption by chondrocytes expanded under 2% oxygen for 14 days was still 14 times the value observed for freshly isolated cells. Seventy-five to 78% of the increased oxygen consumption was accounted for by oxidative phosphorylation (oligomycin sensitive). Expansion under low oxygen also reduced cellular proliferation and 8-hydroxyguanosine release, a marker of oxidative DNA damage. However, these parameters remained elevated compared to freshly isolated cells. Thus, expansion under physiological oxygen levels reduces, but does not abolish, the induction of an oxidative energy metabolism. We conclude that simply transferring chondrocytes to low oxygen is not sufficient to either maintain or re-establish a normal energy metabolism. Furthermore, a hydrophobic polystyrene culture surface which promotes rounded cell morphology had no effect on the development of an oxidative metabolism. Although the shift towards an oxidative energy metabolism is often accompanied by morphological changes, this study does not support the hypothesis that it is driven by them.

  1. Stretchable polymer-based electronic device

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Wilson, Thomas S.; Hamilton, Julie K.; Benett, William J.; Tovar, Armando R.

    2008-02-26

    A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.

  2. Articular chondrocyte metabolism and osteoarthritis

    SciTech Connect

    Leipold, H.R.

    1989-01-01

    The three main objectives of this study were: (1) to determine if depletion of proteoglycans from the cartilage matrix that occurs during osteoarthritis causes a measurable increase of cartilage proteoglycan components in the synovial fluid and sera, (2) to observe what effect intracellular cAMP has on the expression of matrix components by chondrocytes, and (3) to determine if freshly isolated chondrocytes contain detectable levels of mRNA for fibronectin. Canine serum keratan sulfate and hyaluronate were measured to determine if there was an elevation of these serum glycosaminoglycans in a canine model of osteoarthritis. A single intra-articular injection of chymopapain into a shoulder joint increased serum keratan sulfate 10 fold and hyaluronate less than 2 fold in 24 hours. Keratan sulfate concentrations in synovial fluids of dogs about one year old were unrelated to the presence of spontaneous cartilage degeneration in the joints. High keratan sulfate in synovial fluids correlated with higher keratan sulfate in serum. The mean keratan sulfate concentration in sera of older dogs with osteoarthritis was 37% higher than disease-free controls, but the difference between the groups was not statistically significant. Treatment of chondrocytes with 0.5 millimolar (mM) dibutyryl cAMP (DBcAMP) caused the cells to adopt a more rounded morphology. There was no difference between the amount of proteins synthesized by cultures treated with DBcAMP and controls. The amount of fibronectin (FN) in the media of DBcAMP treated cultures detected by an ELISA was specifically reduced, and the amount of {sup 35}S-FN purified by gelatin affinity chromatography decreased. Moreover, the percentage of FN containing the extra domain. A sequence was reduced. Concomitant with the decrease in FN there was an increase in the concentration of keratan sulfate.

  3. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    PubMed

    Ito, Akira; Nagai, Momoko; Tajino, Junichi; Yamaguchi, Shoki; Iijima, Hirotaka; Zhang, Xiangkai; Aoyama, Tomoki; Kuroki, Hiroshi

    2015-01-01

    Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C) for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and citrate synthase (CS), which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1) and aggrecan (ACAN), was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y)-box 9 (SOX9), which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and chondrogenesis.

  4. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis

    PubMed Central

    Hwang, Hyun Sook; Kim, Hyun Ah

    2015-01-01

    Apoptosis is a highly-regulated, active process of cell death involved in development, homeostasis and aging. Dysregulation of apoptosis leads to pathological states, such as cancer, developmental anomalies and degenerative diseases. Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is characterized by progressive destruction of articular cartilage, resulting in significant disability. Because articular cartilage depends solely on its resident cells, the chondrocytes, for the maintenance of extracellular matrix, the compromising of chondrocyte function and survival would lead to the failure of the articular cartilage. The role of subchondral bone in the maintenance of proper cartilage matrix has been suggested as well, and it has been proposed that both articular cartilage and subchondral bone interact with each other in the maintenance of articular integrity and physiology. Some investigators include both articular cartilage and subchondral bone as targets for repairing joint degeneration. In late-stage OA, the cartilage becomes hypocellular, often accompanied by lacunar emptying, which has been considered as evidence that chondrocyte death is a central feature in OA progression. Apoptosis clearly occurs in osteoarthritic cartilage; however, the relative contribution of chondrocyte apoptosis in the pathogenesis of OA is difficult to evaluate, and contradictory reports exist on the rate of apoptotic chondrocytes in osteoarthritic cartilage. It is not clear whether chondrocyte apoptosis is the inducer of cartilage degeneration or a byproduct of cartilage destruction. Chondrocyte death and matrix loss may form a vicious cycle, with the progression of one aggravating the other, and the literature reveals that there is a definite correlation between the degree of cartilage damage and chondrocyte apoptosis. Because current treatments for OA act only on symptoms and do not prevent or cure OA, chondrocyte apoptosis would be a valid

  5. [Chondrocyte mecanobiology. Application in cartilage tissue engineering].

    PubMed

    Stoltz, Jean François; Netter, Patrick; Huselstein, Céline; de Isla, Natalia; Wei Yang, Jing; Muller, Sylvaine

    2005-11-01

    Cartilage is a hydrated connective tissue that withstands and distributes mechanical forces within joints. Chondrocytes utilize mechanical signals to maintain cartilaginous tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Some mechanotransduction mechanisms are known, while many others no doubt remain to be discovered. Various aspects of chondrocyte mechanobiology have been applied to tissue engineering, with the creation of replacement tissue in vitro from bioresorbable or non-bioresorbable scaffolds and harvested cells. The tissues are maintained in a near-physiologic mechanical and biochemical environment. This paper is an overview of both chondrocyte mechanobiology and cartilage tissue engineering

  6. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    SciTech Connect

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  7. From gristle to chondrocyte transplantation: treatment of cartilage injuries

    PubMed Central

    Lindahl, Anders

    2015-01-01

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. PMID:26416680

  8. From gristle to chondrocyte transplantation: treatment of cartilage injuries.

    PubMed

    Lindahl, Anders

    2015-10-19

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis.

  9. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression

    PubMed Central

    Liu, Qiang; Hu, Xiaoqing; Zhang, Xin; Duan, Xiaoning; Yang, Peng; Zhao, Fengyuan; Ao, Yingfang

    2016-01-01

    Mechanical factors play a key role in regulating the development of cartilage degradation in osteoarthritis. This study aimed to identify the influence of mechanical stress in cartilage and chondrocytes. To explore the effects of mechanical stress on cartilage morphology, we observed cartilages in different regions by histological and microscopic examination. Nanoindentation was performed to assess cartilage biomechanics. To investigate the effects of mechanical stress on chondrocytes, cyclic tensile strain (CTS, 0.5 Hz, 10%) was applied to monolayer cultures of human articular chondrocytes by using Flexcell-5000. We quantified the mechanical properties of chondrocytes by atomic force microscopy. Chondrocytes were stained with Toluidine blue and Alcian blue after exposure to CTS. The expression of extracellular matrix (ECM) molecules was detected by qPCR and immunofluorescence analyses in chondrocytes after CTS. Our results demonstrated distinct morphologies and mechanical properties in different cartilage regions. In conclusion, mechanical stress can affect the chondrocyte phenotype, thereby altering the expression of chondrocyte ECM. PMID:27853300

  10. What is autologous blood transfusion?

    PubMed

    Sansom, A

    1993-07-01

    The word autologous is Greek in origin. The definition is exact 'autos' means self and 'logus' means relation. Thus, the meaning is 'related to self'. Autologous blood transfusion, which also is referred to frequently but incorrectly and imprecisely as auto transfusion, designates the reinfusion of blood or blood components to the same individual from whom they were taken. Homologous blood is blood or blood components, from another human donor, taken and stored for later transfusion as required.

  11. Cultured chondrocyte and porcine cartilage-derived substance (PCS) construct as a possible dorsal augmentation material in rhinoplasty: A preliminary animal study.

    PubMed

    Kim, Yoo Suk; Park, Do-Yang; Cho, Yong Hyun; Chang, Jae Won; Choi, Jae Won; Park, Joo Kyung; Min, Byung Hyun; Shin, Yoo Seob; Kim, Chul Ho

    2015-05-01

    As there is no single ideal material for dorsal augmentation in rhinoplasty, there has been a continuing need for the development of improved materials. Therefore, we aimed to evaluate the outcome of using a novel tissue-engineered construct composed of autologous chondrocytes cultured with a porcine cartilage-derived substance (PCS) scaffold as an augmentation material in rhinoplasty. A scaffold derived from decellularized and powdered porcine articular cartilage was prepared. The rabbit articular cartilage was used as the source of homologous chondrocytes, which were expanded and cultured with the PCS scaffold for 7 weeks. The chondrocyte-PCS constructs were then surgically implanted on the nasal dorsum of six rabbits. Four and eight weeks after implantation, the gross morphology, radiologic images, and histologic features of the site of implant were analyzed. The rabbits showed no signs of postoperative inflammation and infection. The degree of dorsal augmentation was maintained during the 8-week postoperative observation period. Postoperative histologic examinations showed chondrocyte proliferation without an inflammatory response. However, neo-cartilage formation from the constructs was not confirmed. The biocompatibility and structural features of tissue-engineered chondrocyte-PCS constructs indicate their potential as candidate dorsal augmentation material for use in rhinoplasty.

  12. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.

    PubMed

    Tekari, Adel; Luginbuehl, Reto; Hofstetter, Willy; Egli, Rainer J

    2015-01-01

    Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of

  13. The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects.

    PubMed

    Kim, Mihye; Kim, Se Eun; Kang, Seong Soo; Kim, Young Ha; Tae, Giyoong

    2011-11-01

    Partial-thickness cartilage defects, with no subchondral bone injury, do not repair spontaneously, thus there is no clinically effective treatment for these lesions. Although the autologous chondrocyte transplantation (ACT) is one of the promising approaches for cartilage repair, it requires in vitro cell expansion to get sufficient cells, but chondrocytes lose their chondrogenic phenotype during expansion by monolayer culture, leading to de-differentiation. In this study, a heparin-based hydrogel was evaluated and optimized to induce cartilage regeneration with de-differentiated chondrocytes. First, re-differentiation of de-differentiated chondrocytes encapsulated in heparin-based hydrogels was characterized in vitro with various polymer concentrations (from 3 to 20 wt.%). Even under a normal cell culture condition (no growth factors or chondrogenic components), efficient re-differentiation of cells was observed with the optimum at 10 wt.% hydrogel, showing the complete re-differentiation within a week. Efficient re-differentiation and cartilage formation of de-differentiated cell/hydrogel construct were also confirmed in vivo by subcutaneous implantation on the back of nude mice. Finally, excellent cartilage regeneration and good integration with surrounding, similar to natural cartilage, was also observed by delivering de-differentiated chondrocytes using the heparin-based hydrogel in partial-thickness defects of rabbit knees whereas no healing was observed for the control defects. These results demonstrate that the heparin-based hydrogel is very efficient for re-differentiation of expanded chondrocytes and cartilage regeneration without using any exogenous inducing factors, thus it could serve as an injectable cell-carrier and scaffold for cartilage repair. Excellent chondrogenic nature of the heparin-based hydrogel might be associated with the hydrogel characteristic that can secure endogenous growth factors secreted from chondrocytes, which then can promote

  14. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes

    PubMed Central

    Komori, Toshihisa

    2016-01-01

    Cell death in skeletal component cells, including chondrocytes, osteoblasts, and osteocytes, plays roles in skeletal development, maintenance, and repair as well as in the pathogenesis of osteoarthritis and osteoporosis. Chondrocyte proliferation, differentiation, and apoptosis are important steps for endochondral ossification. Although the inactivation of P53 and RB is involved in the pathogenesis of osteosarcomas, the deletion of p53 and inactivation of Rb are insufficient to enhance chondrocyte proliferation, indicating the presence of multiple inhibitory mechanisms against sarcomagenesis in chondrocytes. The inflammatory processes induced by mechanical injury and chondrocyte death through the release of danger-associated molecular patterns (DAMPs) are involved in the pathogenesis of posttraumatic osteoarthritis. The overexpression of BCLXL increases bone volume with a normal structure and maintains bone during aging by inhibiting osteoblast apoptosis. p53 inhibits osteoblast proliferation and enhances osteoblast apoptosis, thereby reducing bone formation, but also exerts positive effects on osteoblast differentiation through the Akt–FoxOs pathway. Apoptotic osteocytes release ATP, which induces the receptor activator of nuclear factor κ-B ligand (Rankl) expression and osteoclastogenesis, from pannexin 1 channels. Osteocyte death ultimately results in necrosis; DAMPs are released to the bone surface and promote the production of proinflammatory cytokines, which induce Rankl expression, and osteoclastogenesis is further enhanced. PMID:27929439

  15. Sodium nitroprusside induces apoptosis of rabbit chondrocytes

    NASA Astrophysics Data System (ADS)

    Liang, Qian; Wang, Xiao-Ping; Chen, Tong-Sheng

    2013-02-01

    Osteoarthritis (OA) is characterized by a slowly progressing degradation of the matrix and destruction of articular cartilage. Apoptosis of chondrocyte is accounted for the mechanism of OA. Nitric oxide (NO), as a stimulus, has been shown to induce chondrocyte apoptosis by activating the matrix metalloproteinases (MMPs), increasing the expression of cyclooxygenase 2 (COX-2) and the level of prostaglandin E2 (PGE2), inhibiting the proteoglycan synthesis and type II collagen expression. In this study, sodium nitroprusside (SNP) was administered to be the NO donor to explore the mechanism of NO-induced apoptosis of rabbit chondrocytes obtained from six weeks old New Zealand rabbits. CCK-8 assay revealed the inhibitory effect of SNP on cell viability. We used flow cytometry (FCM) to assess the form of cell death by Annexin-V/propidium iodide (PI) double staining, and evaluate the change of mitochondrial membrane potential (ΔΨm). We found that the SNP induced chondrocyte apoptosis in a dose- and time-dependent manner and an observable reduction of ΔΨm. In conclusion, our findings indicate that SNP induces apoptosis of rabbit chondrocytes via a mitochondria-mediated pathway.

  16. Oxygen tension affects lubricin expression in chondrocytes.

    PubMed

    Hatta, Taku; Kishimoto, Koshi N; Okuno, Hiroshi; Itoi, Eiji

    2014-10-01

    We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology.

  17. Bovine achondrogenesis: evidence for defective chondrocyte differentiation.

    PubMed

    Horton, W A; Jayo, M J; Leipold, H W; Machado, M A; Campbell, D; Ahmed, S

    1987-01-01

    A survey study of growth cartilage abnormalities in bovine bone dysplasias revealed that a disorder in Holstein cattle called bulldog calf closely resembles human achondrogenesis Type II. Substantial amounts of Type I collagen and other non Type II collagens were detected in the bulldog cartilage which was comprised primarily of extensive vascular canals and cells having the characteristics of hypertrophic and degenerative chondrocytes normally found in the growth plate. It is proposed that chondrocytes throughout the bulldog growth cartilage prematurely differentiate into hypertrophic cells that degenerate and predispose the cartilage to vascular invasion and the formation of cartilage canals. The presence of these canals probably accounts for most of the observed collagen abnormalities.

  18. Adipose-Derived Stem Cells Cocultured with Chondrocytes Promote the Proliferation of Chondrocytes

    PubMed Central

    2017-01-01

    Articular cartilage injury and defect caused by trauma and chronic osteoarthritis vascularity are very common, while the repair of injured cartilage remains a great challenge due to its limited healing capacity. Stem cell-based tissue engineering provides a promising treatment option for injured articular cartilage because of the cells potential for multiple differentiations. However, its application has been largely limited by stem cell type, number, source, proliferation, and differentiation. We hypothesized that (1) adipose-derived stem cells are ideal seed cells for articular cartilage repair because of their accessibility and abundance and (2) the microenvironment of articular cartilage could induce adipose-derived stem cells (ADSCs) to differentiate into chondrocytes. In order to test our hypotheses, we isolated stem cells from rabbit adipose tissues and cocultured these ADSCs with rabbit articular cartilage chondrocytes. We found that when ADSCs were cocultured with chondrocytes, the proliferation of articular cartilage chondrocytes was promoted, the apoptosis of chondrocytes was inhibited, and the osteogenic and chondrogenic differentiation of ADSCs was enhanced. The study on the mechanism of this coculture system indicated that the role of this coculture system is similar to the function of TGF-β1 in the promotion of chondrocytes. PMID:28133485

  19. Giant crystals inside mitochondria of equine chondrocytes.

    PubMed

    Nürnberger, S; Rentenberger, C; Thiel, K; Schädl, B; Grunwald, I; Ponomarev, I; Marlovits, St; Meyer, Ch; Barnewitz, D

    2016-12-24

    The present study reports for the first time the presence of giant crystals in mitochondria of equine chondrocytes. These structures show dark contrast in TEM images as well as a granular substructure of regularly aligned 1-2 nm small units. Different zone axes of the crystalline structure were analysed by means of Fourier transformation of lattice-resolution TEM images proving the crystalline nature of the structure. Elemental analysis reveals a high content of nitrogen referring to protein. The outer shape of the crystals is geometrical with an up to hexagonal profile in cross sections. It is elongated, spanning a length of several micrometres through the whole cell. In some chondrocytes, several crystals were found, sometimes combined in a single mitochondrion. Crystals were preferentially aligned along the long axis of the cells, thus appearing in the same orientation as the chondrocytes in the tissue. Although no similar structures have been found in the cartilage of any other species investigated, they have been found in cartilage repair tissue formed within a mechanically stimulated equine chondrocyte construct. Crystals were mainly located in superficial regions of cartilage, especially in joint regions of well-developed superficial layers, more often in yearlings than in adult horses. These results indicate that intramitochondrial crystals are related to the high mechanical stress in the horse joint and potentially also to the increased metabolic activity of immature individuals.

  20. Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects.

    PubMed

    Mumme, Marcus; Steinitz, Amir; Nuss, Katja M; Klein, Karina; Feliciano, Sandra; Kronen, Peter; Jakob, Marcel; von Rechenberg, Brigitte; Martin, Ivan; Barbero, Andrea; Pelttari, Karoliina

    2016-11-01

    Nasal chondrocytes (NC) were previously demonstrated to remain viable and to participate in the repair of articular cartilage defects in goats. Here, we investigated critical features of tissue-engineered grafts generated by NC in this large animal model, namely cell retention at the implantation site, architecture and integration with adjacent tissues, and effects on subchondral bone changes. In this study, isolated autologous goat NC (gNC) and goat articular chondrocytes (gAC, as control) were expanded, green fluorescent protein-labelled and seeded on a type I/III collagen membrane. After chondrogenic differentiation, tissue-engineered grafts were implanted into chondral defects (6 mm in diameter) in the stifle joint for 3 or 6 months. At the time of explantation, surrounding tissues showed no or very low (only in the infrapatellar fat pad <0.32%) migration of the grafted cells. In repair tissue, gNC formed typical structures of articular cartilage, such as flattened cells at the surface and column-like clusters in the middle layers. Semi-quantitative histological evaluation revealed efficient integration of the grafted tissues with the adjacent native cartilage and underlying subchondral bone. A significantly increased subchondral bone area, as a sign for the onset of osteoarthritis, was observed following treatment of cartilage defects with gAC-, but not with gNC-grafts. Our results reinforce the use of NC-based engineered tissue for articular cartilage repair and preliminarily indicate their potential for the treatment of early osteoarthritic defects.

  1. High Density Polymer-Based Integrated Electgrode Array

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Hamilton, Julie K.

    2006-04-25

    A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.

  2. EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"

    SciTech Connect

    Russell, Thomas P.

    2016-12-08

    The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices with efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.

  3. Targeted Deletion of Capn4 in Cells of the Chondrocyte Lineage Impairs Chondrocyte Proliferation and Differentiation▿

    PubMed Central

    Kashiwagi, Aki; Schipani, Ernestina; Fein, Mikaela J.; Greer, Peter A.; Shimada, Masako

    2010-01-01

    Calpains are calcium-dependent intracellular cysteine proteases, which include ubiquitously expressed μ- and m-calpains. Both calpains are heterodimers consisting of a large catalytic subunit and a small regulatory subunit. The calpain small subunit encoded by the gene Capn4 directly binds to the intracellular C-terminal tail of the receptor for the parathyroid hormone (PTH) and PTH-related peptide and modulates cellular functions in cells of the osteoblast lineage in vitro and in vivo. To investigate a physiological role of the calpain small subunit in cells of the chondrocyte lineage, we generated chondrocyte-specific Capn4 knockout mice. Mutant embryos had reduced chondrocyte proliferation and differentiation in embryonic growth plates compared with control littermates. In vitro analysis further revealed that deletion of Capn4 in cells of the chondrocyte lineage correlated with impaired cell cycle progression at the G1/S transition, reduced cyclin D gene transcription, and accumulated cell cycle proteins known as calpain substrates. Moreover, silencing of p27Kip1 rescued an impaired cell growth phenotype in Capn4 knockdown cells, and reintroducing the calpain small subunit partially normalized cell growth and accumulated cyclin D protein levels in a dose-dependent manner. Collectively, our findings suggest that the calpain small subunit is essential for proper chondrocyte functions in embryonic growth plates. PMID:20368361

  4. Chondrocyte hypertrophy in skeletal development, growth, and disease.

    PubMed

    Sun, Margaret Man-Ger; Beier, Frank

    2014-03-01

    Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology.

  5. Human Articular Chondrocytes Regulate Immune Response by Affecting Directly T Cell Proliferation and Indirectly Inhibiting Monocyte Differentiation to Professional Antigen-Presenting Cells

    PubMed Central

    Pereira, Rui C.; Martinelli, Daniela; Cancedda, Ranieri; Gentili, Chiara; Poggi, Alessandro

    2016-01-01

    Autologous chondrocyte implantation is the current gold standard cell therapy for cartilage lesions. However, in some instances, the heavily compromised health of the patient can either impair or limit the recovery of the autologous chondrocytes and a satisfactory outcome of the implant. Allogeneic human articular chondrocytes (hAC) could be a good alternative, but the possible immunological incompatibility between recipient and hAC donor should be considered. Herein, we report that allogeneic hAC inhibited T lymphocyte response to antigen-dependent and -independent proliferative stimuli. This effect was maximal when T cells and hAC were in contact and it was not relieved by the addition of exogenous lymphocyte growth factor interleukin (IL)-2. More important, hAC impaired the differentiation of peripheral blood monocytes induced with granulocyte monocyte colony-stimulating factor and IL-4 (Mo) to professional antigen-presenting cells, such as dendritic cells (DC). Indeed, a marked inhibition of the onset of the CD1a expression and an ineffective downregulation of CD14 antigens was observed in Mo–hAC co-cultures. Furthermore, compared to immature or mature DC, Mo from Mo–hAC co-cultures did not trigger an efficacious allo-response. The prostaglandin (PG) E2 present in the Mo–hAC co-culture conditioned media is a putative candidate of the hAC-mediated inhibition of Mo maturation. Altogether, these findings indicate that allogeneic hAC inhibit, rather than trigger, immune response and strongly suggest that an efficient chondrocyte implantation could be possible also in an allogeneic setting. PMID:27822208

  6. Rhinoplasty using autologous costal cartilage.

    PubMed

    Miranda, Nancy; Larocca, Carlos Gil; Aponte, Ciro

    2013-06-01

    Most Latin American patients looking to have a primary septorhinoplasty share common characteristics in relation to an incorrect projection of the nasal tip complex and a low dorsal line. Thus, the frequent use of structural techniques and of surgical enhancement techniques becomes necessary to improve the nasal contour. In cases of secondary septorhinoplasty, it is also usual in our practice not to have sufficient septal cartilage available or with the required quality to give structure and support to the nasal tip complex, handle the nasal dorsum, and simultaneously correct postseptorhinoplasty deformities. For these reasons, in our practice costal cartilage represents an excellent option as autologous graft material. We present our experience using autologous costal cartilage for structural and nonstructural purposes in 286 selected patients who underwent open rhinoplasty between 2004 and 2011. We emphasize preoperative analyses, we discuss the criteria for selecting costal graft as graft material, we show key aspects of the dynamic of the surgery, and we consider the possibility of using autologous costal graft in combination with heterologous grafts. In this work we also establish the disadvantages of costal cartilage as graft material in specific areas of the surgical anatomy of the nose.

  7. Radiation-resistant polymer-based photonics for space applications

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, B.; Repak, Paul L.; Brost, George A.; Pirich, Andrew R.; Craig, Douglas M.; Le, Dang T.; Cardimona, David A.; Fetterman, Harold R.; Tsap, Boris; Castaneda, Carlos M.; Barto, Richard R.; Zeng, Tingying; Wood, David; Claus, Richard O.

    2004-10-01

    Empirical data regarding the radiation induced responses of Mach Zehnder interferometric electro-optic polymer based modulators (PBMs) operating at 1310 and 1550 nm and broadband InP quantum dot (QD) polymer photodetectors (PPDs) operating into the near infrared (NIR) are reported. Modulators composed of spun-on materials and hybrid electostatically self assembled (ESA) and spun-on NLO materials are examined for changes to their half-wave voltage and insertion losses following a gamma-ray total dose of 163 krad(Si) and irradiation by 25.6 MeV protons at a fluence of ~1011 cm-2. Pre- and post- irradiation responses of ESA grown polymer detectors using InP QDs are examined for photovoltage degradation and aging effects. The data indicates and excellent potential for developing polymer based photonic (PBP) devices with increased radiation resistance suitable for transition to photonic space applications.

  8. Smad4 regulates growth plate matrix production and chondrocyte polarity

    PubMed Central

    Whitaker, Amanda T.; Berthet, Ellora; Cantu, Andrea; Laird, Diana J.

    2017-01-01

    ABSTRACT Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre+/−;Smad4fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo, Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate. PMID:28167493

  9. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  10. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  11. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  12. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  13. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  14. Inhibition of phosphate-induced apoptosis in resting zone chondrocytes by thrombin peptide 508.

    PubMed

    Zhong, Ming; Carney, Darrell H; Ryaby, James T; Schwartz, Zvi; Boyan, Barbara D

    2009-01-01

    Growth plate chondrocytes are susceptible to apoptosis. Terminally differentiated chondrocytes are deleted via apoptosis, which primes the growth plate to vascular invasion and subsequent bone formation. Whether less differentiated resting zone chondrocytes are subject to the same mechanism that governs the apoptotic pathway of more differentiated growth zone chondrocytes is not known. In our current study, we demonstrated that inorganic phosphate, a key inducer of growth plate chondrocyte apoptosis, also causes apoptosis in resting zone chondrocytes, via a pathway similar to the one in growth zone chondrocytes. Our results demonstrated that the conditions that cause growth plate chondrocyte apoptosis lie in the external environment, instead of the differences in differentiation state.

  15. Chondrocyte-specific ablation of Osterix leads to impaired endochondral ossification

    SciTech Connect

    Oh, Jung-Hoon; Park, Seung-Yoon; Crombrugghe, Benoit de; Kim, Jung-Eun

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Conditional ablation of Osterix (Osx) in chondrocytes leads to skeletal defects. Black-Right-Pointing-Pointer Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes. Black-Right-Pointing-Pointer Osx has an autonomous function in chondrocytes during endochondral ossification. -- Abstract: Osterix (Osx) is an essential transcription factor required for osteoblast differentiation during both intramembranous and endochondral ossification. Endochondral ossification, a process in which bone formation initiates from a cartilage intermediate, is crucial for skeletal development and growth. Osx is expressed in differentiating chondrocytes as well as osteoblasts during mouse development, but its role in chondrocytes has not been well studied. Here, the in vivo function of Osx in chondrocytes was examined in a chondrocyte-specific Osx conditional knockout model using Col2a1-Cre. Chondrocyte-specific Osx deficiency resulted in a weak and bent skeleton which was evident in newborn by radiographic analysis and skeletal preparation. To further understand the skeletal deformity of the chondrocyte-specific Osx conditional knockout, histological analysis was performed on developing long bones during embryogenesis. Hypertrophic chondrocytes were expanded, the formation of bone trabeculae and marrow cavities was remarkably delayed, and subsequent skeletal growth was reduced. The expression of several chondrocyte differentiation markers was reduced, indicating the impairment of chondrocyte differentiation and endochondral ossification in the chondrocyte-specific Osx conditional knockout. Taken together, Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes, suggesting an autonomous function of Osx in chondrocytes during endochondral ossification.

  16. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation.

    PubMed

    Kobayashi, Tatsuya; Lu, Jun; Cobb, Bradley S; Rodda, Stephen J; McMahon, Andrew P; Schipani, Ernestina; Merkenschlager, Matthias; Kronenberg, Henry M

    2008-02-12

    Small noncoding RNAs, microRNAs (miRNAs), bind to messenger RNAs through base pairing to suppress gene expression. Despite accumulating evidence that miRNAs play critical roles in various biological processes across diverse organisms, their roles in mammalian skeletal development have not been demonstrated. Here, we show that Dicer, an essential component for biogenesis of miRNAs, is essential for normal skeletal development. Dicer-null growth plates show a progressive reduction in the proliferating pool of chondrocytes, leading to severe skeletal growth defects and premature death of mice. The reduction of proliferating chondrocytes in Dicer-null growth plates is caused by two distinct mechanisms: decreased chondrocyte proliferation and accelerated differentiation into postmitotic hypertrophic chondrocytes. These defects appear to be caused by mechanisms downstream or independent of the Ihh-PTHrP signaling pathway, a pivotal signaling system that regulates chondrocyte proliferation and differentiation. Microarray analysis of Dicer-null chondrocytes showed limited expression changes in miRNA-target genes, suggesting that, in the majority of cases, chondrocytic miRNAs do not directly regulate target RNA abundance. Our results demonstrate the critical role of the Dicer-dependent pathway in the regulation of chondrocyte proliferation and differentiation during skeletal development.

  17. Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Trovato, Francesca Maria; Weinberg, Annelie Martina; Al-Wasiyah, Mohammad K.; Alqahtani, Mohammed H.; Mobasheri, Ali

    2015-01-01

    Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA) cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA. PMID:26334269

  18. New polymer-based phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yasushi; Iwazaki, Hideaki; Ida, Taiichiro; Nishi, Taiji; Tanikawa, Yukari; Nitta, Naotaka

    2014-03-01

    We will report newly developed polymer-based phantom for photoacoustic (PA) imaging systems. Phantoms are important for performance evaluation and calibration of new modalities; however, there is no established method for making phantoms with no long-term change. We have developed skin mimicking phantoms simulating both optical and acoustic properties (i.e. optical scattering and absorption coefficients, and sound velocity). Furthermore, the phantoms are able to give accurate simulation of blood vessels by Inkjet-printing. Newly developed phantoms are consisted of castor oil included acrylic block copolymer and we can fabricate 0.8mm or less thick sheets and pile them using their self-adhesiveness.

  19. 5-Aza-2'-deoxycytidine acts as a modulator of chondrocyte hypertrophy and maturation in chick caudal region chondrocytes in culture

    PubMed Central

    2016-01-01

    This study was carried out to explore the effect of DNA hypomethylation on chondrocytes phenotype, in particular the effect on chondrocyte hypertrophy, maturation, and apoptosis. Chondrocytes derived from caudal region of day 17 embryonic chick sterna were pretreated with hypomethylating drug 5-aza-2'-deoxycytidine for 48 hours and then maintained in the normal culture medium for up to 14 days. Histological studies showed distinct morphological changes occurred in the pretreated cultures when compared to the control cultures. The pretreated chondrocytes after 7 days in culture became bigger in size and acquired more flattened fibroblastic phenotype as well as a loss of cartilage specific extracellular matrix. Scanning electron microscopy at day 7 showed chondrocytes to have increased in cell volume and at day 14 in culture the extracellular matrix of the pretreated cultures showed regular fibrillar structure heavily embedded with matrix vesicles, which is the characteristic feature of chondrocyte hypertrophy. Transmission electron microscopic studies indicated the terminal fate of the hypertrophic cells in culture. The pretreated chondrocytes grown for 14 days in culture showed two types of cells: dark cells which had condense chromatin in dark patches and dark cytoplasm. The other light chondrocytes appeared to be heavily loaded with endoplasmic reticulum indicative of very active protein and secretory activity; their cytoplasm had large vacuoles and disintegrating cytoplasm. The biosynthetic profile showed that the pretreated cultures were actively synthesizing and secreting type X collagen and alkaline phosphatase as a major biosynthetic product. PMID:27382512

  20. Polymer-based tubular microbots: role of composition and preparation.

    PubMed

    Gao, Wei; Sattayasamitsathit, Sirilak; Uygun, Aysegul; Pei, Allen; Ponedal, Adam; Wang, Joseph

    2012-04-07

    The influence of the composition and electropolymerization conditions upon the propulsion of new template-prepared polymer-based bilayer microtubular microbots is described. The effects of different electropolymerized outer layers, including polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and of various inner catalytic metal surfaces (Ag, Pt, Au, Ni-Pt alloy), upon the movement of such bilayer microtubes are evaluated and compared. Electropolymerization conditions, such as the monomer concentration and medium (e.g. surfactant, electrolyte), have a profound effect upon the morphology and locomotion of the resulting microtubes. The most efficient propulsion is observed using PEDOT/Pt microbots that offer a record-breaking speed of over 1400 body lengths s(-1) at physiological temperature, which is the fastest relative speed reported to date for all artificial micro/nanomotors. An inner Pt-Ni alloy surface is shown useful for combining magnetic control and catalytic fuel decomposition within one layer, thus greatly simplifying the preparation of magnetically-guided microbots. Polymer-based microbots with an inner gold layer offer efficient biocatalytic propulsion in low peroxide level in connection to an immobilized catalase enzyme. Metallic Au/Pt bilayer microbots can also be prepared electrochemically to offer high speed propulsion towards potential biomedical applications through functionalization of the outer gold surface. Such rational template preparation and systematic optimization of highly efficient microbots hold considerable promise for diverse practical applications.

  1. Crystallization-driven assembly of conjugated-polymer-based nanostructures

    SciTech Connect

    Hayward, Ryan C.

    2016-10-15

    The goal of this project has been to improve our ability to simultaneously control the organization, and therefore the opto-electronic properties, of conjugated-polymer based materials across three different length-scales: 1) the molecular scale, in the sense of controlling growth and functionalization of highly crystalline semiconducting organic materials capable of efficient charge transport, 2) the nanoscale, in terms of positioning n- and p-type materials with domain sizes comparable to exciton diffusion lengths (~ 10 nm) to facilitate charge separation, and 3) the colloidal scale, such that well-defined crystalline nanoscale building blocks can be hierarchically organized into device layers. As described in more detail below, the project was successful in generating powerful new approaches to, and improved fundamental understanding of, processing and self-assembly of organic and hybrid semiconducting materials across all three length-scales. Although the goals of the project were formulated with primarily photovoltaic architectures in mind, the outcomes of the project have significant implications for a variety of conjugated-polymer-based devices including field-effect-transistors for sensors and logic devices, as well as potentially thermoelectrics and battery electrode materials. The project has resulted in 10 peer-reviewed publications to date [1-10], with several additional manuscripts currently in preparation.

  2. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    PubMed

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease.

  3. Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model

    PubMed Central

    Boakye, Lorraine A; Ross, Keir A; Pinski, John M; Smyth, Niall A; Haleem, Amgad M; Hannon, Charles P; Fortier, Lisa A; Kennedy, John G

    2015-01-01

    AIM: To explore the effect of platelet-rich plasma on protein expression patterns of transforming growth factor-beta1 (TGF-β1) in cartilage following autologous osteochondral transplantation (AOT) in a rabbit knee cartilage defect model. METHODS: Twelve New Zealand white rabbits received bilateral AOT. In each rabbit, one knee was randomized to receive an autologous platelet rich plasma (PRP) injection and the contralateral knee received saline injection. Rabbits were euthanized at 3, 6 and 12 wk post-operatively. Articular cartilage sections were stained with TGF-β1 antibody. Histological regions of interest (ROI) (left, right and center of the autologous grafts interfaces) were evaluated using MetaMorph. Percentage of chondrocytes positive for TGF-β1 was then assessed. RESULTS: Percentage of chondrocytes positive for TGF-β1 was higher in PRP treated knees for selected ROIs (left; P = 0.03, center; P = 0.05) compared to control and was also higher in the PRP group at each post-operative time point (P = 6.6 × 10-4, 3.1 × 10-4 and 7.3 × 10-3 for 3, 6 and 12 wk, respectively). TGF-β1 expression was higher in chondrocytes of PRP-treated knees (36% ± 29% vs 15% ± 18%) (P = 1.8 × 10-6) overall for each post-operative time point and ROI. CONCLUSION: Articular cartilage of rabbits treated with AOT and PRP exhibit increased TGF-β1 expression compared to those treated with AOT and saline. Our findings suggest that adjunctive PRP may increase TGF-β1 expression, which may play a role in the chondrogenic effect of PRP in vivo. PMID:26716092

  4. Response of zonal chondrocytes to extracellular matrix-hydrogels.

    PubMed

    Hwang, Nathaniel S; Varghese, Shyni; Lee, H Janice; Theprungsirikul, Parnduangjai; Canver, Adam; Sharma, Blanka; Elisseeff, Jennifer

    2007-09-04

    We investigated the biological response of chondrocytes isolated from different zones of articular cartilage and their cellular behaviors in poly (ethylene glycol)-based (PEG) hydrogels containing exogenous type I collagen, hyaluronic acid (HA), or chondroitin sulfate (CS). The cellular morphology was strongly dependent on the extracellular matrix component of hydrogels. Additionally, the exogenous extracellular microenvironment affected matrix production and cartilage specific gene expression of chondrocytes from different zones. CS-based hydrogels showed the strongest response in terms of gene expression and matrix accumulation for both superficial and deep zone chondrocytes, but HA and type I collagen-based hydrogels demonstrated zonal-dependent cellular responses.

  5. RESPONSE OF ZONAL CHONDROCYTES TO EXTRACELLULAR MATRIX-HYDROGELS

    PubMed Central

    Hwang, Nathaniel S.; Varghese, Shyni; Lee, H. Janice; Theprungsirikul, Parnduangjai; Canver, Adam; Sharma, Blanka; Elisseeff, Jennifer

    2009-01-01

    We investigated the biological response of chondrocytes isolated from different zones of articular cartilage and their cellular behaviors in poly (ethylene glycol)-based (PEG) hydrogels containing exogenous type I collagen, hyaluronic acid (HA), or chondroitin sulfate (CS). The cellular morphology was strongly dependent on the extracellular matrix component of hydrogels. Additionally, the exogenous extracellular microenvironment affected matrix production and cartilage specific gene expression of chondrocytes from different zones. CS-based hydrogels showed the strongest response in terms of gene expression and matrix accumulation for both superficial and deep zone chondrocytes, but HA and type I collagen-based hydrogels demonstrated zonal-dependent cellular responses. PMID:17692846

  6. Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat

    PubMed Central

    Garcia, John; McCarthy, Helen S.; Roberts, Sally; Richardson, James B.

    2016-01-01

    Autologous chondrocyte implantation (ACI) is a cell-based therapy that has been used clinically for over 20 years to treat cartilage injuries more efficiently in order to negate or delay the need for joint replacement surgery. In this time, very little has changed in the ACI procedure, but now many centres are considering or using alternative cell sources for cartilage repair, in particular mesenchymal stem cells (MSCs). In this study, we have tested the chondrogenic potential of donor-matched MSCs derived from bone marrow (BM), infrapatellar fat pad (FP), and subcutaneous fat (SCF), compared to chondrocytes. We have confirmed that there is a chondrogenic potency hierarchy ranging across these cell types, with the most potent being chondrocytes, followed by FP-MSCs, BM-MSCs, and lastly SCF-MSCs. We have also examined gene expression and surface marker profiles in a predictive model to identify cells with enhanced chondrogenic potential. In doing so, we have shown that Sox-9, Alk-1, and Coll X expressions, as well as immunopositivity for CD49c and CD39, have predictive value for all of the cell types tested in indicating chondrogenic potency. The findings from this study have significant clinical implications for the refinement and development of novel cell-based cartilage repair strategies. PMID:27781068

  7. Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading

    PubMed Central

    LeBlanc, Kimberly T.; Walcott, Marie E.; Gaur, Tripti; O’Connell, Shannon L.; Basil, Kirti; Tadiri, Christina P.; Mason-Savas, April; Silva, Jason A.; van Wijnen, Andre J.; Stein, Janet L.; Stein, Gary S; Ayers, David C.; Lian, Jane B.; Fanning, Paul J.

    2015-01-01

    Objective Runx1, the hematopoietic lineage determining transcription factor, is present in perichondrium and chondrocytes. Here we addressed Runx1 functions, by examining expression in cartilage during mouse and human osteoarthritis (OA) progression and in response to mechanical loading. Methods Spared and diseased compartments in knees of OA patients and in mice with surgical destabilization of the medial meniscus were examined for changes in expression of Runx1 mRNA (Q-PCR) and protein (immunoblot, immunohistochemistry). Runx1 levels were quantified in response to static mechanical compression of bovine articular cartilage. Runx1 function was assessed by cell proliferation (Ki67, PCNA) and cell type phenotypic markers. Results Runx1 is enriched in superficial zone (SZ) chondrocytes of normal bovine, mouse, and human tissues. Increasing loading conditions in bovine cartilage revealed a positive correlation with a significant elevation of Runx1. Runx1 becomes highly expressed at the periphery of mouse OA lesions and in human OA chondrocyte ‘clones’ where Runx1 co-localizes with Vcam1, the mesenchymal stem cell (MSC) marker and lubricin (Prg4), a cartilage chondroprotective protein. These OA induced cells represent a proliferative cell population, Runx1 depletion in MPCs decreases cell growth, supporting Runx1 contribution to cell expansion. Conclusion The highest Runx1 levels in SZC of normal cartilage suggest a function that supports the unique phenotype of articular chondrocytes, reflected by upregulation under conditions of compression. We propose Runx1 co-expression with Vcam1 and lubricin in murine cell clusters and human ‘clones’ of OA cartilage, participate in a cooperative mechanism for a compensatory anabolic function. PMID:25078095

  8. A Qualitative Model of the Differentiation Network in Chondrocyte Maturation: A Holistic View of Chondrocyte Hypertrophy

    PubMed Central

    Kerkhofs, Johan; Leijten, Jeroen; Bolander, Johanna; Luyten, Frank P.; Post, Janine N.; Geris, Liesbet

    2016-01-01

    Differentiation of chondrocytes towards hypertrophy is a natural process whose control is essential in endochondral bone formation. It is additionally thought to play a role in several pathophysiological processes, with osteoarthritis being a prominent example. We perform a dynamic analysis of a qualitative mathematical model of the regulatory network that directs this phenotypic switch to investigate the influence of the individual factors holistically. To estimate the stability of a SOX9 positive state (associated with resting/proliferation chondrocytes) versus a RUNX2 positive one (associated with hypertrophy) we employ two measures. The robustness of the state in canalisation (size of the attractor basin) is assessed by a Monte Carlo analysis and the sensitivity to perturbations is assessed by a perturbational analysis of the attractor. Through qualitative predictions, these measures allow for an in silico screening of the effect of the modelled factors on chondrocyte maintenance and hypertrophy. We show how discrepancies between experimental data and the model’s results can be resolved by evaluating the dynamic plausibility of alternative network topologies. The findings are further supported by a literature study of proposed therapeutic targets in the case of osteoarthritis. PMID:27579819

  9. An easily fabricated high performance ionic polymer based sensor network

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Wang, Yanjie; Hu, Xiaopin; Sun, Xiaofei; Chang, Longfei; Lu, Pin

    2016-08-01

    Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

  10. Lipid- and Polymer-Based Nanostructures for Cancer Theranostics

    PubMed Central

    Luk, Brian T.; Fang, Ronnie H.; Zhang, Liangfang

    2012-01-01

    The relatively new field of nanotheranostics combines the advantages of in vivo diagnosis with the ability to administer treatment through a single nano-sized carrier, offering new opportunities for cancer diagnosis and therapy. Nanotheranostics has facilitated the development of nanomedicine through direct visualization of drug blood circulation and biodistribution. From a clinical perspective, nanotheranostics allows therapies to be administered and monitored in real time, thus decreasing the potential of under- or over-dosing and allowing for more personalized treatment regimens. Herein, we review recent development of nanotheranostics using lipid- and polymer-based formulations, with a particular focus on their applications in cancer research. Recent advances in nanotechnology aimed to combine therapeutic molecules with imaging agents for magnetic resonance imaging, radionuclide imaging, or fluorescence imaging are discussed. PMID:23382770

  11. Polymer-based nanocarriers for vaginal drug delivery.

    PubMed

    das Neves, José; Nunes, Rute; Machado, Alexandra; Sarmento, Bruno

    2015-09-15

    The vaginal delivery of various drugs is well described and its relevance established in current medical practice. Alongside recent advances and achievements in the fields of pharmaceutical nanotechnology and nanomedicine, there is an increasing interest in the potential use of different nanocarriers for the delivery of old and new pharmacologically active molecules with either therapeutic or prophylactic purposes. Nanosystems of polymeric nature in particular have been investigated over the last years and their interactions with mucosal fluids and tissues, as well as genital tract biodistribution upon vaginal administration, are now better understood. While different applications have been envisioned, most of the current research is focusing in the development of nano-formulations with the potential to inhibit the vaginal transmission of HIV upon sexual intercourse. The present work focuses its discussion on the potential and perils of polymer-based nanocarriers for the vaginal administration of different pharmacologically active molecules.

  12. Polymer-based tubular microbots: role of composition and preparation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Sattayasamitsathit, Sirilak; Uygun, Aysegul; Pei, Allen; Ponedal, Adam; Wang, Joseph

    2012-03-01

    The influence of the composition and electropolymerization conditions upon the propulsion of new template-prepared polymer-based bilayer microtubular microbots is described. The effects of different electropolymerized outer layers, including polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and of various inner catalytic metal surfaces (Ag, Pt, Au, Ni-Pt alloy), upon the movement of such bilayer microtubes are evaluated and compared. Electropolymerization conditions, such as the monomer concentration and medium (e.g. surfactant, electrolyte), have a profound effect upon the morphology and locomotion of the resulting microtubes. The most efficient propulsion is observed using PEDOT/Pt microbots that offer a record-breaking speed of over 1400 body lengths s-1 at physiological temperature, which is the fastest relative speed reported to date for all artificial micro/nanomotors. An inner Pt-Ni alloy surface is shown useful for combining magnetic control and catalytic fuel decomposition within one layer, thus greatly simplifying the preparation of magnetically-guided microbots. Polymer-based microbots with an inner gold layer offer efficient biocatalytic propulsion in low peroxide level in connection to an immobilized catalase enzyme. Metallic Au/Pt bilayer microbots can also be prepared electrochemically to offer high speed propulsion towards potential biomedical applications through functionalization of the outer gold surface. Such rational template preparation and systematic optimization of highly efficient microbots hold considerable promise for diverse practical applications.The influence of the composition and electropolymerization conditions upon the propulsion of new template-prepared polymer-based bilayer microtubular microbots is described. The effects of different electropolymerized outer layers, including polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and of various inner catalytic metal

  13. Traveling wave ultrasonic motor using polymer-based vibrator

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-01-01

    With the characteristics of low density, low elastic modulus, and low mechanical loss, poly(phenylene sulfide) (PPS) is a promising material for fabricating lightweight ultrasonic motors (USMs). For the first time, we used PPS to fabricate an annular elastomer with teeth and glued a piece of piezoelectric-ceramic annular disk to the bottom of the elastomer to form a vibrator. To explore for a material suitable for the rotor surface coming in contact with the PPS-based vibrator, several disk-shaped rotors made of different materials were fabricated to form traveling wave USMs. The polymer-based USM rotates successfully as the conventional metal-based USMs. The experimental results show that the USM with the aluminum rotor has the largest torque, which indicates that aluminum is the most suitable for the rotor surface among the tested materials.

  14. Catabolic effects of muramyl dipeptide on rabbit chondrocytes

    SciTech Connect

    Ikebe, T.; Iribe, H.; Hirata, M.; Yanaga, F.; Koga, T. )

    1990-12-01

    Muramyl dipeptide, an essential structure for the diverse biologic activities of bacterial cell wall peptidoglycan, inhibited the synthesis of glycosaminoglycan/proteoglycan in cultured rabbit costal chondrocytes in a dose-dependent manner. Muramyl dipeptide, as well as lipopolysaccharide and interleukin-1 alpha, also enhanced the release of 35S-sulfate-prelabeled glycosaminoglycan/proteoglycan from the cell layer, which seems to reflect, at least partially, the increasing degradation of glycosaminoglycan/proteoglycan. Five synthetic analogs of muramyl dipeptide known to be adjuvant active or adjuvant inactive were tested for their potential to inhibit synthesis of glycosaminoglycan/proteoglycan and to enhance the release of glycosaminoglycan/proteoglycan in chondrocytes. The structural dependence of these synthetic analogs on chondrocytes was found to parallel that of immunoadjuvant activity. These results suggest that muramyl dipeptide is a potent mediator of catabolism in chondrocytes.

  15. Haploinsufficiency of osterix in chondrocytes impairs skeletal growth in mice.

    PubMed

    Cheng, Shaohong; Xing, Weirong; Zhou, Xin; Mohan, Subburaman

    2013-10-01

    Osterix (Osx) is essential for both intramembranous or endochondral bone formation. Osteoblast-specific ablation of Osx using Col1α1-Cre resulted in osteopenia, because of impaired osteoblast differentiation in adult mice. Since Osx is also known to be expressed in chondrocytes, we evaluated the role of Osx expressed in chondrocytes by examining the skeletal phenotype of mice with conditional disruption of Osx in Col2α1-expressing chondrocytes. Surprisingly, Cre-positive mice that were homozygous for Osx floxed alleles died after birth. Alcian blue and alizarin red staining revealed that the lengths of skeleton, femur, and vertebrae were reduced by 21, 26, and 14% (P < 0.01), respectively, in the knockout (KO) compared with wild-type mice. To determine if haploid insufficiency of Osx in chondrocytes influenced postnatal skeletal growth, we compared skeletal phenotype of floxed heterozygous mice that were Cre-positive or Cre-negative. Body length was reduced by 8% (P < 0.001), and areal BMD of total body, femur, and tibia was reduced by 5, 7, and 8% (P < 0.05), respectively, in mice with conditional disruption of one allele of Osx in chondrocytes. Micro-CT showed reduced cortical volumetric bone mineral density and trabecular bone volume to total volume in the femurs of Osx(flox/+);col2α1-Cre mice. Histological analysis revealed that the impairment of longitudinal growth was associated with disrupted growth plates in the Osx(flox/+);col2α1-Cre mice. Primary chondrocytes isolated from KO embryos showed reduced expression of chondral ossification markers but elevated expression of chondrogenesis markers. Our findings indicate that Osx expressed in chondrocytes regulates bone growth in part by regulating chondrocyte hypertrophy.

  16. Membrane channel gene expression in human costal and articular chondrocytes

    PubMed Central

    Asmar, A.; Barrett-Jolley, R.; Werner, A.; Kelly, R.; Stacey, M.

    2016-01-01

    ABSTRACT Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  17. Telomerase Activity in Articular Chondrocytes Is Lost after Puberty

    PubMed Central

    Wilson, Brooke; Novakofski, Kira D.; Donocoff, Rachel Sacher; Liang, Yan-Xiang Amber

    2014-01-01

    Objective: Telomere length and telomerase activity are important indicators of cellular senescence and replicative ability. Loss of telomerase is associated with ageing and the development of osteoarthritis. Implantation of telomerase-positive cells, chondrocytes, or stem cells expressing a normal chondrocyte phenotype is desired for cartilage repair procedures. The objective of this study was to identify at what age chondrocytes and at what passage bone marrow–derived mesenchymal stem cells (MSCs) become senescent based on telomerase activity. The effect of osteogenic protein–1 (OP-1) or interleukin-1α (IL-1α) treatment on telomerase activity in chondrocytes was also measured to determine the response to anabolic or catabolic stimuli. Methods: Articular cartilage was collected from horses (n = 12) aged 1 month to 18 years. Chondrocytes from prepubescent horses (<15 months) were treated with OP-1 or IL-1α. Bone marrow aspirate from adult horses was collected and cultured for up to 10 days to isolate MSCs. Telomerase activity was measured using the TeloTAGGG Telomerase PCR ELISA kit. Results: Chondrocytes from prepubescent horses were positive for telomerase activity. Treatment with IL-1α resulted in a decrease in chondrocyte telomerase activity; however, treatment with OP-1 did not change telomerase activity. One MSC culture sample was positive for telomerase activity on day 2; all samples were negative for telomerase activity on day 10. Conclusions: These results suggest that chondrocytes from prepubescent donors are potentially more suitable for cartilage repair procedures and that telomerase activity is diminished by anabolic and catabolic cytokine stimulation. If MSCs are utilized in cartilage repair, minimal passaging should be performed prior to implantation. PMID:26069700

  18. Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation

    SciTech Connect

    Dombrecht, E.J.; De Tollenaere, C.B.; Aerts, K.; Cos, P.; Schuerwegh, A.J.; Bridts, C.H.; Van Offel, J.F.; Ebo, D.G.; Stevens, W.J. . E-mail: immuno@ua.ac.be; De Clerck, L.S.

    2006-09-22

    The objective of this study was to evaluate the effect of bisphosphonates (BPs) and simvastatin on chondrocyte lipid peroxidation. For this purpose, a flow cytometrical method using C11-BODIPY{sup 581/591} was developed to detect hydroperoxide-induced lipid peroxidation in chondrocytes. Tertiary butylhydroperoxide (t-BHP) induced a time and concentration dependent increase in chondrocyte lipid peroxidation. Addition of a Fe{sup 2+}/EDTA complex to t-BHP or hydrogen peroxide (H{sub 2}O{sub 2}) clearly enhanced lipid peroxidation. The lipophilic simvastatin demonstrated a small inhibition in the chondrocyte lipid peroxidation. None of three tested BPs (clodronate, pamidronate, and risedronate) had an effect on chondrocyte lipid peroxidation induced by t-BHP. However, when Fe{sup 2+}/EDTA complex was added to t-BHP or H{sub 2}O{sub 2}, BPs inhibited the lipid peroxidation process varying from 25% to 58%. This study demonstrates that BPs have antioxidant properties as iron chelators, thereby inhibiting the chondrocyte lipid peroxidation. These findings add evidence to the therapeutic potential of bisphosphonates and statins in rheumatoid arthritis.

  19. CCN1 Regulates Chondrocyte Maturation and Cartilage Development.

    PubMed

    Zhang, Yongchun; Sheu, Tzong-jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2016-03-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis.

  20. CCN1 Regulates Chondrocyte Maturation and Cartilage Development

    PubMed Central

    Zhang, Yongchun; Sheu, Tzong-jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O’Keefe, Regis J

    2016-01-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis. PMID:26363286

  1. Effect of autophagy induced by dexamethasone on senescence in chondrocytes.

    PubMed

    Xue, Enxing; Zhang, Yu; Song, Bing; Xiao, Jun; Shi, Zhanjun

    2016-10-01

    The aim of the current study was to explore the effects of dexamethasone (DXM) on autophagy and senescence in chondrocytes. Collagen II and aggrecan were examined in normal chondrocytes isolated from Sprague‑Dawley rats. Following stimulation with DXM, LysoTracker Red staining, monodansylcadaverine (MDC) staining, green fluorescent protein‑red fluorescent protein‑light chain 3 (LC3) and western blotting were used to detect autophagy levels in the chondrocytes. Mechanistic target of rapamycin (mTOR) pathway‑associated molecules were investigated by western blotting. Cell senescence was analyzed by senescence‑associated (SA)‑β‑galactosidase (β‑gal) staining. A dose‑dependent increase in the number of autophagic vacuoles was observed in the DXM‑treated chondrocytes, as demonstrated by LysoTracker Red and MDC staining. A dose‑dependent increase in autophagosome formation was observed in the DXM‑treated chondrocytes. Expression of LC3‑II and beclin‑1 was increased by DXM, in particular in the cells treated with DXM for 4 days. However, P62 expression was reduced as a result of treatment. SA‑β‑gal staining indicated that DXM increased cell senescence. Notably, DXM‑induced cell senescence was exacerbated by the autophagic inhibitor 3‑MA. Autophagy induced by DXM protected chondrocytes from senescence, and it is suggested that the mTOR pathway may be involved in the activation of DXM‑induced autophagy.

  2. Effect of autophagy induced by dexamethasone on senescence in chondrocytes

    PubMed Central

    Xue, Enxing; Zhang, Yu; Song, Bing; Xiao, Jun; Shi, Zhanjun

    2016-01-01

    The aim of the current study was to explore the effects of dexamethasone (DXM) on autophagy and senescence in chondrocytes. Collagen II and aggrecan were examined in normal chondrocytes isolated from Sprague-Dawley rats. Following stimulation with DXM, LysoTracker Red staining, monodansylcadaverine (MDC) staining, green fluorescent protein-red fluorescent protein-light chain 3 (LC3) and western blotting were used to detect autophagy levels in the chondrocytes. Mechanistic target of rapamycin (mTOR) pathway-associated molecules were investigated by western blotting. Cell senescence was analyzed by senescence-associated (SA)-β-galactosidase (β-gal) staining. A dose-dependent increase in the number of autophagic vacuoles was observed in the DXM-treated chondrocytes, as demonstrated by LysoTracker Red and MDC staining. A dose-dependent increase in autophagosome formation was observed in the DXM-treated chondrocytes. Expression of LC3-II and beclin-1 was increased by DXM, in particular in the cells treated with DXM for 4 days. However, P62 expression was reduced as a result of treatment. SA-β-gal staining indicated that DXM increased cell senescence. Notably, DXM-induced cell senescence was exacerbated by the autophagic inhibitor 3-MA. Autophagy induced by DXM protected chondrocytes from senescence, and it is suggested that the mTOR pathway may be involved in the activation of DXM-induced autophagy. PMID:27572674

  3. Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation

    SciTech Connect

    Kim, Mi-Kyoung; Lee, Ha Young; Kwak, Jong-Young; Park, Joo-In; Yun, Jeanho; Bae, Yoe-Sik . E-mail: yoesik@donga.ac.kr

    2006-06-23

    Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P{sub 2}, S1P{sub 3}, S1P{sub 4}, but not S1P{sub 1}. When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P{sub 1}- and S1P{sub 4}-selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinase is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G{sub i} protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process.

  4. ATF3 deficiency in chondrocytes alleviates osteoarthritis development.

    PubMed

    Iezaki, Takashi; Ozaki, Kakeru; Fukasawa, Kazuya; Inoue, Makoto; Kitajima, Shigetaka; Muneta, Takeshi; Takeda, Shu; Fujita, Hiroyuki; Onishi, Yuki; Horie, Tetsuhiro; Yoneda, Yukio; Takarada, Takeshi; Hinoi, Eiichi

    2016-08-01

    Activating transcription factor 3 (Atf3) has been implicated in the pathogenesis of various diseases, including cancer and inflammation, as well as in the regulation of cell proliferation and differentiation. However, the involvement of Atf3 in developmental skeletogenesis and joint disease has not been well studied to date. Here, we show that Atf3 is a critical mediator of osteoarthritis (OA) development through its expression in chondrocytes. ATF3 expression was markedly up-regulated in the OA cartilage of both mice and humans. Conditional deletion of Atf3 in chondrocytes did not result in skeletal abnormalities or affect the chondrogenesis, but alleviated the development of OA generated by surgically inducing knee joint instability in mice. Inflammatory cytokines significantly up-regulated Atf3 expression through the nuclear factor-kB (NF-kB) pathway, while cytokine-induced interleukin-6 (Il6) expression was repressed, in ATF3-deleted murine and human chondrocytes. Mechanistically, Atf3 deficiency decreased cytokine-induced Il6 transcription in chondrocytes through repressing NF-kB signalling by the attenuation of the phosphorylation status of IkB and p65. These findings suggest that Atf3 is implicated in the pathogenesis of OA through modulation of inflammatory cytokine expression in chondrocytes, and the feed-forward loop of inflammatory cytokines/NF-kB/Atf3 in chondrocytes may be a novel therapeutic target for the treatment for OA. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. [Autologous fat grafting and rhinoplasty].

    PubMed

    Nguyen, P S; Baptista, C; Casanova, D; Bardot, J; Magalon, G

    2014-12-01

    Revision rhinoplasty can be very challenging especially in cases of thin skin. Autologous fat graft is utilized in numerous applications in plastic surgery; however, its use relative to the nasal region remains uncommon. Adipose tissue, by virtue of its volumetric qualities and its action on skin trophicity, can be considered to be a gold standard implant. From 2006 until 2012, we have treated patients by lipofilling in order to correct sequelae of rhinoplasty. The mean quantity of adipose tissue injected was 2.1cm(3) depending on the importance of the deformity and the area of injection: irregularity of the nasal dorsum, visible lateral osteotomies, saddle nose. Following the course of our practice, we conceived micro-cannulas that allow a much greater accuracy in the placement of the graft and enable to perform interventions under local anesthesia. These non-traumatic micro-cannulas do not cause post-operative ecchymosis and swelling which shorten the recovery time for the patient. On patients who have undergone multiple operations, lipofilling can be a simple and reliable alternative to correct imperfections that may take place after a rhinoplasty.

  6. Autogenous cultured growth plate chondrocyte transplantation in the treatment of physeal injury in rabbits

    PubMed Central

    Tomaszewski, R.; Bohosiewicz, J.; Gap, A.; Bursig, H.; Wysocka, A.

    2014-01-01

    Objectives The aim of this experimental study on New Zealand’s white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics. Methods An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group. Results Histological examinations showed that the grafted right tibia presented the regular shape of the plate growth with hypertrophic maturation, chondrocyte columniation and endochondral calcification. Radiological study shows that the mean tibial deformity at the left angle was 20.29° (6.25 to 33) and 7.21° (5 to 10) in the right angle. Conclusion This study has demonstrated that grafting of autogenous cultured growth plate cells into a defect of the medial aspect of the proximal tibial physis can prevent bone bridge formation, growth arrest and the development of varus deformity. Cite this article: Bone Joint Res 2014;3:310–16 PMID:25376625

  7. The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes.

    PubMed

    Zignego, Donald L; Jutila, Aaron A; Gelbke, Martin K; Gannon, Daniel M; June, Ronald K

    2014-06-27

    Cartilage and chondrocytes experience loading that causes alterations in chondrocyte biological activity. In vivo chondrocytes are surrounded by a pericellular matrix with a stiffness of ~25-200kPa. Understanding the mechanical loading environment of the chondrocyte is of substantial interest for understanding chondrocyte mechanotransduction. The first objective of this study was to analyze the spatial variability of applied mechanical deformations in physiologically stiff agarose on cellular and sub-cellular length scales. Fluorescent microspheres were embedded in physiologically stiff agarose hydrogels. Microsphere positions were measured via confocal microscopy and used to calculate displacement and strain fields as a function of spatial position. The second objective was to assess the feasibility of encapsulating primary human chondrocytes in physiologically stiff agarose. The third objective was to determine if primary human chondrocytes could deform in high-stiffness agarose gels. Primary human chondrocyte viability was assessed using live-dead imaging following 24 and 72h in tissue culture. Chondrocyte shape was measured before and after application of 10% compression. These data indicate that (1) displacement and strain precision are ~1% and 6.5% respectively, (2) high-stiffness agarose gels can maintain primary human chondrocyte viability of >95%, and (3) compression of chondrocytes in 4.5% agarose can induce shape changes indicative of cellular compression. Overall, these results demonstrate the feasibility of using high-concentration agarose for applying in vitro compression to chondrocytes as a model for understanding how chondrocytes respond to in vivo loading.

  8. The chondrocytic journey in endochondral bone growth and skeletal dysplasia.

    PubMed

    Yeung Tsang, Kwok; Wa Tsang, Shun; Chan, Danny; Cheah, Kathryn S E

    2014-03-01

    The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.

  9. Chondrocytic Atf4 regulates osteoblast differentiation and function via Ihh

    PubMed Central

    Wang, Weiguang; Lian, Na; Ma, Yun; Li, Lingzhen; Gallant, Richard C.; Elefteriou, Florent; Yang, Xiangli

    2012-01-01

    Atf4 is a leucine zipper-containing transcription factor that activates osteocalcin (Ocn) in osteoblasts and indian hedgehog (Ihh) in chondrocytes. The relative contribution of Atf4 in chondrocytes and osteoblasts to the regulation of skeletal development and bone formation is poorly understood. Investigations of the Atf4–/–;Col2a1-Atf4 mouse model, in which Atf4 is selectively overexpressed in chondrocytes in an Atf4-null background, demonstrate that chondrocyte-derived Atf4 regulates osteogenesis during development and bone remodeling postnatally. Atf4 overexpression in chondrocytes of the Atf4–/–;Col2a1-Atf4 double mutants corrects the reduction in stature and limb in Atf4–/– embryos and rectifies the decrease in Ihh expression, Hh signaling, proliferation and accelerated hypertrophy that characterize the Atf4–/– developing growth plate cartilages. Unexpectedly, this genetic manipulation also restores the expression of osteoblastic marker genes, namely Ocn and bone sialoprotein, in Atf4–/– developing bones. In Atf4–/–;Col2a1-Atf4 adult mice, all the defective bone parameters found in Atf4–/– mice, including bone volume, trabecular number and thickness, and bone formation rate, are rescued. In addition, the conditioned media of ex vivo cultures from wild-type or Atf4–/–;Col2a1-Atf4, but not Atf4–/– cartilage, corrects the differentiation defects of Atf4–/– bone marrow stromal cells and Ihh-blocking antibody eliminates this effect. Together, these data indicate that Atf4 in chondrocytes is required for normal Ihh expression and for its paracrine effect on osteoblast differentiation. Therefore, the cell-autonomous role of Atf4 in chondrocytes dominates the role of Atf4 in osteoblasts during development for the control of early osteogenesis and skeletal growth. PMID:22190639

  10. Electroencephalogram measurement using polymer-based dry microneedle electrode

    NASA Astrophysics Data System (ADS)

    Arai, Miyako; Nishinaka, Yuya; Miki, Norihisa

    2015-06-01

    In this paper, we report a successful electroencephalogram (EEG) measurement using polymer-based dry microneedle electrodes. The electrodes consist of needle-shaped substrates of SU-8, a silver film, and a nanoporous parylene protective film. Differently from conventional wet electrodes, microneedle electrodes do not require skin preparation and a conductive gel. SU-8 is superior as a structural material to poly(dimethylsiloxane) (PDMS; Dow Corning Toray Sylgard 184) in terms of hardness, which was used in our previous work, and facilitates the penetration of needles through the stratum corneum. SU-8 microneedles can be successfully inserted into the skin without breaking and could maintain a sufficiently low skin-electrode contact impedance for EEG measurement. The electrodes successfully measured EEG from the frontal pole, and the quality of acquired signals was verified to be as high as those obtained using commercially available wet electrodes without any skin preparation or a conductive gel. The electrodes are readily applicable to record brain activities for a long period with little stress involved in skin preparation to the users.

  11. Polymer-based chips for surface plasmon resonance sensors

    NASA Astrophysics Data System (ADS)

    Obreja, Paula; Cristea, Dana; Kusko, Mihai; Dinescu, Adrian

    2008-06-01

    This paper presents a design and low-cost techniques for polymer-based chips for surface plasmon resonance (SPR) sensors. To obtain a polymer chip with a prism, microchannels and a chamber at microscale dimensions, replication techniques in polymers with controlled refractive index have been developed. Photoresist, polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA) and epoxy resin were used. Silicon dioxide/silicon-based molds have been obtained by anisotropic etching of silicon, and glass prisms were used as masters for replication. The photoresist molds were obtained by optical lithography and were used to obtain the microchannels and the chamber. A liquid prepolymer (PDMS, Sylgard 184) with curing agent at a ratio of 10:1 was used, and a special technique was developed in order to fabricate the components of the structure at the same time. For the deposition and direct patterning of the metallic layers onto the polymer surface, different methods were experimented with, including sputtering. The materials and techniques used to achieve SPR sensors are presented, and the possibilities and limitations of the technology are discussed.

  12. Magnetic field sensor using a polymer-based vibrator

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1-570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T-1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  13. Protective effect of Capparis spinosa on chondrocytes.

    PubMed

    Panico, A M; Cardile, V; Garufi, F; Puglia, C; Bonina, F; Ronsisvalle, G

    2005-09-30

    The aim of the present study was to evaluate the in vitro chondroprotective effects of the lyophilised methanolic extract from flowering buds of Capparis Spinosa L (LECS). This plant, common to the Mediterranean basin, has been used by the traditional medicine for its diuretic and antihypertensive effects and also in certain pathological conditions related to uncontrolled lipid peroxidation. The extract contains many constituents, in particular some flavonoids (kaempferol and quercetin derivatives) and hydrocinammic acids with several known biological effects such as the anti-inflammatory and the antioxidant ones. In this study, we assayed the effect of LECS on human chondrocytes cultures stimulated by proinflammatory cytokine interleukin-1beta (IL-1beta) and we determined the production of key molecules released during chronic inflammatory events (nitric oxide, glycosaminoglycans, prostaglandins and reactive oxygen species). We observed that LECS was able to counteract the harmful effects induced by IL-1beta. This protection appeared to be greater than that elicited by indomethacin, which is usually employed in joint diseases. Since LECS possess a chondroprotective effect, it might be used in the management of cartilage damage during the inflammatory processes.

  14. Customized biomaterials to augment chondrocyte gene therapy.

    PubMed

    Aguilar, Izath Nizeet; Trippel, Stephen; Shi, Shuiliang; Bonassar, Lawrence J

    2017-02-07

    A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration. Here we report the development of a new material engineered to have a high affinity for a therapeutic gene product. We focus on insulin-like growth factor-I (IGF-I) for its highly anabolic effects on many tissues such as spinal cord, heart, brain and cartilage. One of the ways that tissues store IGF-I is through a group of insulin like growth factor binding proteins (IGFBPs), such as IGFBP-5. We grafted the IGF-I binding peptide sequence from IGFBP-5 onto alginate in order to retain the endogenous IGF-I produced by transfected chondrocytes. This novel material bound IGF-I and released the growth factor for at least 30days in culture. We found that this binding enhanced the biosynthesis of transfected cells up to 19-fold. These data demonstrate the coordinated engineering of cell behavior and material chemistry to greatly enhance extracellular matrix synthesis and tissue assembly, and can serve as a template for the enhanced performance of other therapeutic proteins.

  15. Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair.

    PubMed

    Hinton, R J; Jing, Y; Jing, J; Feng, J Q

    2017-01-01

    The formation of the mandibular condylar cartilage (MCC) and its subchondral bone is an important but understudied topic in dental research. The current concept regarding endochondral bone formation postulates that most hypertrophic chondrocytes undergo programmed cell death prior to bone formation. Under this paradigm, the MCC and its underlying bone are thought to result from 2 closely linked but separate processes: chondrogenesis and osteogenesis. However, recent investigations using cell lineage tracing techniques have demonstrated that many, perhaps the majority, of bone cells are derived via direct transformation from chondrocytes. In this review, the authors will briefly discuss the history of this idea and describe recent studies that clearly demonstrate that the direct transformation of chondrocytes into bone cells is common in both long bone and mandibular condyle development and during bone fracture repair. The authors will also provide new evidence of a distinct difference in ossification orientation in the condylar ramus (1 ossification center) versus long bone ossification formation (2 ossification centers). Based on our recent findings and those of other laboratories, we propose a new model that contrasts the mode of bone formation in much of the mandibular ramus (chondrocyte-derived) with intramembranous bone formation of the mandibular body (non-chondrocyte-derived).

  16. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation

    PubMed Central

    Li, Jianmei

    2016-01-01

    Chondrocytes communicate with each other mainly via diffusible signals rather than direct cell-to-cell contact. The chondrogenic differentiation of mesenchymal stem cells (MSCs) is well regulated by the interactions of varieties of growth factors, cytokines, and signaling molecules. A number of critical signaling molecules have been identified to regulate the differentiation of chondrocyte from mesenchymal progenitor cells to their terminal maturation of hypertrophic chondrocytes, including bone morphogenetic proteins (BMPs), SRY-related high-mobility group-box gene 9 (Sox9), parathyroid hormone-related peptide (PTHrP), Indian hedgehog (Ihh), fibroblast growth factor receptor 3 (FGFR3), and β-catenin. Except for these molecules, other factors such as adenosine, O2 tension, and reactive oxygen species (ROS) also have a vital role in cartilage formation and chondrocyte maturation. Here, we outlined the complex transcriptional network and the function of key factors in this network that determine and regulate the genetic program of chondrogenesis and chondrocyte differentiation. PMID:28074096

  17. The influence of scaffold material on chondrocytes under inflammatory conditions.

    PubMed

    Kwon, Heenam; Sun, Lin; Cairns, Dana M; Rainbow, Roshni S; Preda, Rucsanda C; Kaplan, David L; Zeng, Li

    2013-05-01

    Cartilage tissue engineering aims to repair damaged cartilage tissue in arthritic joints. As arthritic joints have significantly higher levels of pro-inflammatory cytokines (such as IL-1β and TNFα that cause cartilage destruction, it is critical to engineer stable cartilage in an inflammatory environment. Biomaterial scaffolds constitute an important component of the microenvironment for chondrocytes in engineered cartilage. However, it remains unclear how the scaffold material influences the response of chondrocytes seeded in these scaffolds under inflammatory stimuli. Here we have compared the responses of articular chondrocytes seeded within three different polymeric scaffolding materials (silk, collagen and polylactic acid (PLA)) to IL-1β and TNFα. These scaffolds have different physical characteristics and yielded significant differences in the expression of genes associated with cartilage matrix production and degradation, cell adhesion and cell death. The silk and collagen scaffolds released pro-inflammatory cytokines faster and had higher uptake water abilities than PLA scaffolds. Correspondingly, chondrocytes cultured in silk and collagen scaffolds maintained higher levels of cartilage matrix than those in PLA, suggesting that these biophysical properties of scaffolds may regulate gene expression and the response to inflammatory stimuli in chondrocytes. Based on this study we conclude that selecting the proper scaffold material will aid in the engineering of more stable cartilage tissues for cartilage repair, and that silk and collagen are better scaffolds in terms of supporting the stability of three-dimensional cartilage under inflammatory conditions.

  18. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    PubMed

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair.

  19. Pituitary abscess after autologous bone marrow transplantation.

    PubMed

    Leff, R S; Martino, R L; Pollock, W J; Knight, W A

    1989-05-01

    The first case of pituitary abscess arising in a patient during recovery from autologous bone marrow transplantation is reported. A 31-year-old man with a 9 month history of T-cell lymphoma died suddenly more than 60 days after successful treatment with high-dose cyclophosphamide, total body irradiation, and autologous bone marrow infusion. Autopsy revealed a pituitary abscess associated with clinically silent sphenoid sinusitis. Unique aspects of this case are presented and clinical and pathologic features of pituitary abscess are reviewed. Although rare, pituitary abscess may complicate recovery from bone marrow transplantation.

  20. Expression Pattern and Role of Chondrocyte Clusters in Osteoarthritic Human Knee Cartilage

    PubMed Central

    Hoshiyama, Yoshiaki; Otsuki, Shuhei; Oda, Shuhei; Kurokawa, Yoshitaka; Nakajima, Mikio; Jotoku, Tsuyoshi; Tamura, Ryuichi; Okamoto, Yoshinori; Lotz, Martin K.; Neo, Masashi

    2015-01-01

    The purpose of this study was to investigate the site-specific expression pattern and the role of chondrocyte clusters in human OA knee. Cartilage explants were obtained from 45 varus knees of medial and lateral femoral condyle undergoing total knee replacement surgery. Cartilage degeneration, number of chondrocytes, and the cell arrangement were evaluated by live/dead assay and immunohistochemical analyses with antibodies of STRO-1, FGF2, and Ki-67. Chondrocytes from medial and lateral femoral condyle were cultured to compare the potential of cell proliferation and production of cartilaginous nodules. Finally, cartilage tissue from medial femoral condyle, which included cartilage cleft with chondrocyte clusters, was observed the histological alternation. As the results, chondrocyte density adjacent to severe cartilage degeneration was highest, whereas chondrocytes in lateral femoral condyle displayed low density with single type of cells. Over 80% of these chondrocyte clusters were survived, expressing STRO-1, FGF2, and Ki-67. Furthermore, chondrocyte clusters proliferated faster and produced more cartilaginous nodules than single type of chondrocytes. Cartilage clefts involving numerous chondrocyte clusters were filled with extracellular matrix during organ culture. In conclusion, chondrocyte clusters adjacent to severe cartilage degeneration have shown completely specific characteristics with progenitor and proliferative potential. Regulating chondrocyte clusters may offer new approaches to cartilage repair and OA therapy in the future. PMID:25691232

  1. Dlx5 is a positive regulator of chondrocyte differentiation during endochondral ossification.

    PubMed

    Ferrari, Deborah; Kosher, Robert A

    2002-12-15

    The process of endochondral ossification in which the bones of the limb are formed after generation of cartilage models is dependent on a precisely regulated program of chondrocyte maturation. Here, we show that the homeobox-containing gene Dlx5 is expressed at the onset of chondrocyte maturation during the conversion of immature proliferating chondrocytes into postmitotic hypertrophying chondrocytes, a critical step in the maturation process. Moreover, retroviral misexpression of Dlx5 during differentiation of the skeletal elements of the chick limb in vivo results in the formation of severely shortened skeletal elements that contain excessive numbers of hypertrophying chondrocytes which extend into ectopic regions, including sites normally occupied by immature chondrocytes. The expansion in the extent of hypertrophic maturation detectable histologically is accompanied by expanded and upregulated domains of expression of molecular markers of chondrocyte maturation, particularly type X collagen and osteopontin, and by expansion of mineralized cartilage matrix, which is characteristic of terminal hypertrophic differentiation. Furthermore, Dlx5 misexpression markedly reduces chondrocyte proliferation concomitant with promoting hypertrophic maturation. Taken together, these results indicate that Dlx5 is a positive regulator of chondrocyte maturation and suggest that it regulates the process at least in part by promoting conversion of immature proliferating chondrocytes into hypertrophying chondrocytes. Retroviral misexpression of Dlx5 also enhances formation of periosteal bone, which is derived from the Dlx5-expressing perichondrium that surrounds the diaphyses of the cartilage models. This suggests that Dlx5 may be involved in regulating osteoblast differentiation, as well as chondrocyte maturation, during endochondral ossification.

  2. Epigenetic Regulation of Chondrocyte Catabolism and Anabolism in Osteoarthritis.

    PubMed

    Kim, Hyeonkyeong; Kang, Donghyun; Cho, Yongsik; Kim, Jin-Hong

    2015-08-01

    Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.

  3. Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate

    PubMed Central

    1984-01-01

    Chondrocytes produce large pericellular coats in vitro that can be visualized by the exclusion of particles, e.g., fixed erythrocytes, and that are removed by treatment with Streptomyces hyaluronidase, which is specific for hyaluronate. In this study, we examined the kinetics of formation of these coats and the relationship of hyaluronate and proteoglycan to coat structure. Chondrocytes were isolated from chick tibia cartilage by collagenase-trypsin digestion and were characterized by their morphology and by their synthesis of both type II collagen and high molecular weight proteoglycans. The degree of spreading of the chondrocytes and the size of the coats were quantitated at various times subsequent to seeding by tracing phase-contrast photomicrographs of the cultures. After seeding, the chondrocytes attached themselves to the tissue culture dish and exhibited coats within 4 h. The coats reached a maximum size after 3-4 d and subsequently decreased over the next 2-3 d. Subcultured chondrocytes produced a large coat only if passaged before 4 d. Both primary and first passage cells, with or without coats, produced type II collagen but not type I collagen as determined by enzyme-linked immunosorbent assay. Treatment with Streptomyces hyaluronidase (1.0 mU/ml, 15 min), which completely removed the coat, released 58% of the chondroitin sulfate but only 9% of the proteins associated with the cell surface. The proteins released by hyaluronidase were not digestible by bacterial collagenase. Monensin and cycloheximide (0.01-10 microM, 48 h) caused a dose-dependent decrease in coat size that was linearly correlated to synthesis of cell surface hyaluronate (r = 0.98) but not chondroitin sulfate (r = 0.2). We conclude that the coat surrounding chondrocytes is dependent on hyaluronate for its structure and that hyaluronate retains a large proportion of the proteoglycan in the coat. PMID:6501414

  4. Chondrocytes Directly Transform into Bone Cells in Mandibular Condyle Growth

    PubMed Central

    Jing, Y.; Zhou, X.; Han, X.; Jing, J.; von der Mark, K.; Wang, J.; de Crombrugghe, B.; Hinton, R.J.; Feng, J.Q.

    2015-01-01

    For decades, it has been widely accepted that hypertrophic chondrocytes undergo apoptosis prior to endochondral bone formation. However, very recent studies in long bone suggest that chondrocytes can directly transform into bone cells. Our initial in vivo characterization of condylar hypertrophic chondrocytes revealed modest numbers of apoptotic cells but high levels of antiapoptotic Bcl-2 expression, some dividing cells, and clear alkaline phosphatase activity (early bone marker). Ex vivo culture of newborn condylar cartilage on a chick chorioallantoic membrane showed that after 5 d the cells on the periphery of the explants had begun to express Col1 (bone marker). The cartilage-specific cell lineage–tracing approach in triple mice containing Rosa 26tdTomato (tracing marker), 2.3 Col1GFP (bone cell marker), and aggrecan CreERT2 (onetime tamoxifen induced) or Col10-Cre (activated from E14.5 throughout adult stage) demonstrated the direct transformation of chondrocytes into bone cells in vivo. This transformation was initiated at the inferior portion of the condylar cartilage, in contrast to the initial ossification site in long bone, which is in the center. Quantitative data from the Col10-Cre compound mice showed that hypertrophic chondrocytes contributed to ~80% of bone cells in subchondral bone, ~70% in a somewhat more inferior region, and ~40% in the most inferior part of the condylar neck (n = 4, P < 0.01 for differences among regions). This multipronged approach clearly demonstrates that a majority of chondrocytes in the fibrocartilaginous condylar cartilage, similar to hyaline cartilage in long bones, directly transform into bone cells during endochondral bone formation. Moreover, ossification is initiated from the inferior portion of mandibular condylar cartilage with expansion in one direction. PMID:26341973

  5. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.

    PubMed

    Zhou, Xin; von der Mark, Klaus; Henry, Stephen; Norton, William; Adams, Henry; de Crombrugghe, Benoit

    2014-12-01

    One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.

  6. Cord Blood Banking Standards: Autologous Versus Altruistic.

    PubMed

    Armitage, Sue

    2015-01-01

    Cord blood (CB) is either donated to public CB banks for use by any patient worldwide for whom it is a match or stored in a private bank for potential autologous or family use. It is a unique cell product that has potential for treating life-threatening diseases. The majority of CB products used today are for hematopoietic stem cell transplantation and are accessed from public banks. CB is still evolving as a hematopoietic stem cell source, developing as a source for cellular immunotherapy products, such as natural killer, dendritic, and T-cells, and fast emerging as a non-hematopoietic stem cell source in the field of regenerative medicine. This review explores the regulations, standards, and accreditation schemes that are currently available nationally and internationally for public and private CB banking. Currently, most of private banking is under regulated as compared to public banking. Regulations and standards were initially developed to address the public arena. Early responses from the medical field regarding private CB banking was that at the present time, because of insufficient scientific data to support autologous banking and given the difficulty of making an accurate estimate of the need for autologous transplantation, private storage of CB as "biological insurance" should be discouraged (1, 2, 3). To ensure success and the true realization of the full potential of CB, whether for autologous or allogeneic use, it is essential that each and every product provided for current and future treatments meets high-quality, international standards.

  7. Autologous blood products in rotator cuff repair.

    PubMed

    Mei-Dan, Omer; Carmont, Michael R

    2012-01-01

    We review the management of rotator cuff tears, the mechanism of action of autologous blood products, principally platelet-rich plasma, and the current evidence for effective use of platelet-rich plasma, particularly in relation to the shoulder and chronic rotator cuff tears, for biological augmentation of rotator cuff repair.

  8. Autologous Diced Cartilage in Nasal Septoplasty

    PubMed Central

    Sersar, Sameh Ibrahim; Yassin, Ibrahim; Eldin Aly, Mohammed Saad

    2016-01-01

    Diced rib cartilage is an acceptable option in severe nasal deformities. We present our preliminary experience in KAMC in nasal septoplasties using the autologous diced costal cartilage. This is a retrospective study of the 22 cases who needed the autologous diced costal cartilage in our centre in 4 years. All our patients needed autologous diced rib cartilages. Twelve were wrapped with temporalis fascia, eight needed rectus fascia and perichondrium was used in only 2 cases. The naso-frontal angle for the whole series decreased by a mean of 4.41° (p=0.008) for the group using the rectus fascia diced cartilage graft. From the aesthetic point of view, all cases were satisfied except 3 (13.6%); two in the group of diced cartilage temporalis fascia; group 1. From the functional breathing view, only 1 case was not satisfied. He was in group 1. Autologous rib cartilage was shown to be a good graft in nasal septoplasty especially if wrapped with rectus fascia. PMID:27853694

  9. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    NASA Astrophysics Data System (ADS)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  10. Responsive polymer-based colloids for drug delivery and bioconversion

    NASA Astrophysics Data System (ADS)

    Kudina, Olena

    Responsive polymer-based colloids (RPBC) are the colloidal structures containing responsive polymeric component which is able to adapt its physico-chemical properties to the environment by undergoing chemical and/or conformational changes. The goal of the dissertation is to develop and characterize several groups of RPBC with different morphological complexity and explore their potential in drug delivery and bioconversion. The role of RPBC morphology for these specific applications is discussed in details. Three groups of RPBC were fabricated: i. polymeric micelles; ii. mixed polymeric micelles; iii. hybrid polymer-inorganic particles. All fabricated RPBCs contain polymeric component in their structure. The dissertation investigates how the changes of the responsive polymeric component properties are reflected in morphologies of RPBC. The first group of RPBC, polymeric micelles, was formed by the self-assembly of amphiphilic invertible polymers (AIPs) synthesized in our group. AIPs self-assemble into invertible micellar assemblies (IMAs) in solvents of different polarity. In this work, IMAs ability to invert the structure as a response to the change in solvent polarity was demonstrated using 1H NMR spectroscopy and SANS. It was shown that the IMAs incorporate hydrophobic cargo either in the core or in the shell, depending on the chemical structure of cargo molecules. Following in vitro study demonstrates that loaded with drug (curcumin) IMAs are cytotoxic to osteosarcoma cells. Mixed polymeric micelles represent another, more complex, RPBC morphologies studied in the dissertation. Mixed micelles were fabricated from AIPs and amphiphilic oligomers synthesized from pyromellitic dianhydride, polyethylene glycol methyl ethers, and alkanols/cholesterol. The combination of selected AIP and oligomers based on cholesterol results in mixed micelles with an increased drug-loading capacity (from 10% w/w loaded curcumin in single component IMAs to 26%w/w in mixed micelles

  11. Construction of a functional silk-based biomaterial complex with immortalized chondrocytes in vivo.

    PubMed

    Ni, Yusu; Jiang, Yi; Wen, Jianchuan; Shao, Zhenzhong; Chen, Xin; Sun, Shan; Yu, Huiqian; Li, Wen

    2014-04-01

    To explore the feasibility of constructing a functional biomaterial complex with regenerated silk fibroin membrane and immortalized chondrocytes in vivo. Rat auricular chondrocytes (RACs) were transfected with the lentivirus vector pGC-FU-hTERT-3FLAG or pGC-FU-GFP-3FLAG, encoding the human telomerase reverse transcriptase (hTERT) or GFP gene. The effects of regenerated silk fibroin film on the adhesion, growth of immortalized chondrocytes and expression of collagen II in vitro were analyzed with immunofluorescent histochemistry. Immortalized RACs were transformed. Induction by nutrient medium promoted higher expression levels of collagen II in transformed chondrocytes. The regenerated silk fibroin film was not cytotoxic to immortalized chondrocytes and had no adverse influence on their adhesion. Collagen II expression was good in the immortalized chondrocytes in vivo. The construction of a silk-based biomaterial complex with immortalized chondrocytes may provide a feasible kind of functional biomaterial for the repair of cartilage defects in clinical applications.

  12. Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis

    PubMed Central

    Charlier, Edith; Relic, Biserka; Deroyer, Céline; Malaise, Olivier; Neuville, Sophie; Collée, Julie; Malaise, Michel G.; De Seny, Dominique

    2016-01-01

    Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression. PMID:27999417

  13. Effects of concanavalin A on chondrocyte hypertrophy and matrix calcification.

    PubMed

    Yan, W; Pan, H; Ishida, H; Nakashima, K; Suzuki, F; Nishimura, M; Jikko, A; Oda, R; Kato, Y

    1997-03-21

    Resting chondrocytes do not usually undergo differentiation to the hypertrophic stage and calcification. However, incubating these cells with concanavalin A resulted in 10-100-fold increases in alkaline phosphatase activity, binding of 1,25(OH)2-vitamin D3, type X collagen synthesis, 45Ca incorporation into insoluble material, and calcium content. On the other hand, other lectins tested (including wheat germ agglutinin, lentil lectin, pea lectin, phytohemagglutinin-L, and phytohemagglutinin-E) marginally affected alkaline phosphatase activity, although they activate lymphocytes. Methylmannoside reversed the effect of concanavalin A on alkaline phosphatase within 48 h. Concanavalin A did not increase alkaline phosphatase activity in articular chondrocyte cultures. In resting chondrocyte cultures, succinyl concanavalin A was as potent as concanavalin A in increasing alkaline phosphatase activity, the incorporation of [35S]sulfate, D-[3H]glucosamine, and [3H]serine into proteoglycans, and the incorporation of [3H]serine into protein, although concanavalin A, but not succinyl concanavalin A, induced a rapid change in the shape of the cells from flat to spherical. These findings suggest that concanavalin A induces a switch from the resting, to the growth-plate stage, and that this action of concanavalin A is not secondary to changes in the cytoskeleton. Chondrocytes exposed to concanavalin A may be useful as a novel model of endochondral bone formation.

  14. Confocal microscopy indentation system for studying in situ chondrocyte mechanics.

    PubMed

    Han, Sang-Kuy; Colarusso, Pina; Herzog, Walter

    2009-10-01

    Chondrocytes synthesize extracellular matrix molecules, thus they are essential for the development, adaptation and maintenance of articular cartilage. Furthermore, it is well accepted that the biosynthetic activity of chondrocytes is influenced by the mechanical environment. Therefore, their response to mechanical stimuli has been studied extensively. Much of the knowledge in this area of research has been derived from testing of isolated cells, cartilage explants, and fixed cartilage specimens: systems that differ in important aspects from chondrocytes embedded in articular cartilage and observed during loading conditions. In this study, current model systems have been improved by working with the intact cartilage in real time. An indentation system was designed on a confocal microscope that allows for simultaneous loading and observation of chondrocytes in their native environment. Cell mechanics were then measured under precisely controlled loading conditions. The indentation system is based on a light transmissible cylindrical glass indentor of 0.17 mm thickness and 1.64 mm diameter that is aligned along the focal axis of the microscope and allows for real time observation of live cells in their native environment. The system can be used to study cell deformation and biological responses, such as calcium sparks, while applying prescribed loads on the cartilage surface. It can also provide novel information on the relationship between cell loading and cartilage adaptive/degenerative processes in the intact tissue.

  15. Loading of Articular Cartilage Compromises Chondrocyte Respiratory Function

    PubMed Central

    Coleman, Mitchell C.; Ramakrishnan, Prem S.; Brouillette, Marc J.; Martin, James A.

    2015-01-01

    Objective Determine whether repeatedly overloading healthy cartilage disrupts mitochondrial function in a manner similar to that associated with osteoarthritis pathogenesis. Methods We exposed normal articular cartilage on bovine osteochondral explants to 1 day or 7 consecutive days of cyclic axial compression (0.25 or 1.0 MPa, 0.5 Hz, 3 hours) and evaluated effects on chondrocyte viability, ATP concentration, reactive oxygen species (ROS) production, indicators of oxidative stress, respiration, and mitochondrial membrane potential. Results Neither 0.25 nor 1.0 MPa cyclic compression caused extensive chondrocyte death, macroscopic tissue damage, or overt changes in stress-strain behavior. After one day of loading, differences in respiratory activities between the 0.25 and 1.0 MPa groups were minimal; after 7 loading days, however, respiratory activity and ATP levels were suppressed in the 1.0 MPa group relative to the 0.25 MPa group, an effect prevented with pretreatment with 10 mM N-acetylcysteine. These changes were accompanied by increased proton leakage and decreases in mitochondrial membrane potential as well as by increased ROS formation indicated by dihydroethidium staining and glutathione oxidation. Conclusion Repeated overloading leads to chondrocyte oxidant-dependent mitochondrial dysfunction. This mitochondrial dysfunction may contribute to destabilization of cartilage during various stages of OA in distinct ways by disrupting chondrocyte anabolic responses to mechanical stimuli. PMID:26473613

  16. Effect of thiram on avian growth plate chondrocytes in culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thiram (tetramethyl thiuram disulfide) is a general use pesticide. It causes tibial dyschondroplasia, a cartilage defect in poultry leading to growth plate deformation and lameness. The mechanism of its action on chondrocytes is not understood. Since proteins play significant role in development an...

  17. Cartilage homeoprotein 1, a homeoprotein selectively expressed in chondrocytes.

    PubMed

    Zhao, G Q; Zhou, X; Eberspaecher, H; Solursh, M; de Crombrugghe, B

    1993-09-15

    We identified a rat cDNA that encodes cartilage homeoprotein 1 (Cart-1). The deduced amino acid sequence of Cart-1 contains a paired-type homeodomain. Northern blot hybridization and RNase protection assay revealed that Cart-1 RNA was present at high levels in a well-differentiated rat chondrosarcoma tumor and in a cell line derived from this tumor. Cart-1 RNA was detected in primary mouse and rat chondrocytes but not in various fibroblasts including mouse 10T1/2 cells, NIH 3T3 cells, BALB 3T3 cells, and rat skin fibroblasts. It was also undetectable in mouse C2 myoblasts, S194 myeloma cells, and embryonic stem cells. Cart-1 RNA was present at a very low level in tested but was not detected in other soft tissues of 8-week-old rats. In situ hybridization of rat embryos between 14.5 and 16.5 days post coitum revealed relatively high levels of Cart-1 RNA in condensed prechondrocytic mesenchymal cells and in early chondrocytes of cartilage primordia. The levels of Cart-1 RNA were lower in mature chondrocytes. No hybridization was observed in brain, spinal cord, heart, spleen, gastrointestinal tract, liver, and muscle. We speculate that Cart-1 has a role in chondrocyte differentiation.

  18. Cartilage homeoprotein 1, a homeoprotein selectively expressed in chondrocytes.

    PubMed Central

    Zhao, G Q; Zhou, X; Eberspaecher, H; Solursh, M; de Crombrugghe, B

    1993-01-01

    We identified a rat cDNA that encodes cartilage homeoprotein 1 (Cart-1). The deduced amino acid sequence of Cart-1 contains a paired-type homeodomain. Northern blot hybridization and RNase protection assay revealed that Cart-1 RNA was present at high levels in a well-differentiated rat chondrosarcoma tumor and in a cell line derived from this tumor. Cart-1 RNA was detected in primary mouse and rat chondrocytes but not in various fibroblasts including mouse 10T1/2 cells, NIH 3T3 cells, BALB 3T3 cells, and rat skin fibroblasts. It was also undetectable in mouse C2 myoblasts, S194 myeloma cells, and embryonic stem cells. Cart-1 RNA was present at a very low level in tested but was not detected in other soft tissues of 8-week-old rats. In situ hybridization of rat embryos between 14.5 and 16.5 days post coitum revealed relatively high levels of Cart-1 RNA in condensed prechondrocytic mesenchymal cells and in early chondrocytes of cartilage primordia. The levels of Cart-1 RNA were lower in mature chondrocytes. No hybridization was observed in brain, spinal cord, heart, spleen, gastrointestinal tract, liver, and muscle. We speculate that Cart-1 has a role in chondrocyte differentiation. Images Fig. 1 Fig. 2 Fig. 3 PMID:7690966

  19. Influence of cell printing on biological characters of chondrocytes

    PubMed Central

    Qu, Miao; Gao, Xiaoyan; Hou, Yikang; Shen, Congcong; Xu, Yourong; Zhu, Ming; Wang, Hengjian; Xu, Haisong; Chai, Gang; Zhang, Yan

    2015-01-01

    Objective: To establish a two-dimensional biological printing technique of chondrocytes and compare the difference of related biological characters between printed chondrocytes and unprinted cells so as to control the cell transfer process and keep cell viability after printing. Methods: Primary chondrocytes were obtained from human mature and fetal cartilage tissues and then were regularly sub-cultured to harvest cells at passage 2 (P2), which were adjusted to the single cell suspension at a density of 1×106/mL. The experiment was divided into 2 groups: experimental group P2 chondrocytes were transferred by rapid prototype biological printer (driving voltage value 50 V, interval in x-axis 300 μm, interval in y-axis 1500 μm). Afterwards Live/Dead viability Kit and flow cytometry were respectively adopted to detect cell viability; CCK-8 Kit was adopted to detect cell proliferation viability; immunocytochemistry, immunofluorescence and RT-PCR was employed to identify related markers of chondrocytes; control group steps were the same as the printing group except that cell suspension received no printing. Results: Fluorescence microscopy and flow cytometry analyses showed that there was no significant difference between experimental group and control group in terms of cell viability. After 7-day in vitro culture, control group exhibited higher O.D values than experimental group from 2nd day to 7th day but there was no distinct difference between these two groups (P>0.05). Inverted microscope observation demonstrated that the morphology of these two groups had no significant difference either. Similarly, Immunocytochemistry, immunofluorescence and RT-PCR assays also showed that there was no significant difference in the protein and gene expression of type II collagen and aggrecan between these two groups (P>0.05). Conclusion Cell printing has no distinctly negative effect on cell vitality, proliferation and phenotype of chondrocytes. Biological printing technique may

  20. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rahul

    Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The

  1. Maturational differences in superficial and deep zone articular chondrocytes.

    PubMed

    Hidaka, Chisa; Cheng, Christina; Alexandre, Deborah; Bhargava, Madhu; Torzilli, Peter A

    2006-01-01

    To examine whether differences in chondrocytes from skeletally immature versus adult individuals are important in cartilage healing, repair, or tissue engineering, superficial zone chondrocytes (SZC, from within 100 microm of the articular surface) and deep zone chondrocytes (DZC, from 30%-45% of the deepest un-mineralized part of articular cartilage) were harvested from immature (1-4 months) and young adult (18-36 months) steers and compared. Cell size, matrix gene expression and protein levels, integrin levels, and chemotactic ability were measured in cells maintained in micromass culture for up to 7 days. Regardless of age, SZC were smaller, had a lower type II to type I collagen gene expression ratio, and higher gene expression of SZ proteins than their DZC counterparts. Regardless of zone, chondrocytes from immature steers had higher levels of Sox 9 and type II collagen gene expression. Over 7 days in culture, the SZC of immature steers had the highest rate of proliferation. Phenotypically, the SZC of immature and adult steers were more stable than their respective DZC. Cell surface alpha5 and alpha2 integrin subunit levels were higher in the SZC of immature than of adult steers, whereas beta1 integrin subunit levels were similar. Both immature and adult SZC were capable of chemotaxis in response to fetal bovine serum or basic fibroblast growth factor. Our data indicate that articular chondrocytes vary in the different zones of cartilage and with the age of the donor. These differences may be important for cartilage growth, tissue engineering, and/or repair.

  2. Efficient, Low-Cost Nucleofection of Passaged Chondrocytes

    PubMed Central

    Parreno, Justin; Delve, Elizabeth; Andrejevic, Katarina; Paez-Parent, Sabrina; Wu, Po-han; Kandel, Rita

    2016-01-01

    Nucleofection of chondrocytes has been shown to be an adequate method of transfection. Using Amaxa’s nucleofection system, transfection efficiencies up to 89% were achievable for vector (pmaxGFP) and 98% for siRNA (siGLO) into passaged chondrocytes. However, such methods rely on costly commercial kits with proprietary reagents limiting its use in basic science labs and in clinical translation. Bovine-passaged chondrocytes were plated in serum reduced media conditionsand then nucleofected using various in laboratory-produced buffers. Cell attachment, confluency, viability, and transfection efficiency was assessed following nucleofection. For each parameter the buffers were scored and a final rank for each buffer was determined. Buffer denoted as 1M resulted in no significant difference for cell attachment, confluency, and viability as compared to non-nucleofected controls. Nucleofection in 1M buffer, in the absence of DNA vectors, resulted in increased col2, ki67, ccnd1 mRNA levels, and decreased col1 mRNA levels at 4 days of culture. Flow cytometry revealed that the transfection efficiency of 1M buffer was comparable to that obtained using the Amaxa commercial kit. siRNA designed against lamin A/C resulted in an average reduction of lamin A and C proteins to 19% and 8% of control levels, respectively. This study identifies a cost-effective, efficient method of nonviral nucleofection of bovine-passaged chondrocytes using known buffer formulations. Human-passaged chondrocytes could also be successfully nucleofected in 1M buffer. Thus this method should facilitate cost-efficient gene targeting of cells used for articular cartilage repair in a research setting. PMID:26958320

  3. Efficient, Low-Cost Nucleofection of Passaged Chondrocytes.

    PubMed

    Parreno, Justin; Delve, Elizabeth; Andrejevic, Katarina; Paez-Parent, Sabrina; Wu, Po-Han; Kandel, Rita

    2016-01-01

    Nucleofection of chondrocytes has been shown to be an adequate method of transfection. Using Amaxa's nucleofection system, transfection efficiencies up to 89% were achievable for vector (pmaxGFP) and 98% for siRNA (siGLO) into passaged chondrocytes. However, such methods rely on costly commercial kits with proprietary reagents limiting its use in basic science labs and in clinical translation. Bovine-passaged chondrocytes were plated in serum reduced media conditionsand then nucleofected using various in laboratory-produced buffers. Cell attachment, confluency, viability, and transfection efficiency was assessed following nucleofection. For each parameter the buffers were scored and a final rank for each buffer was determined. Buffer denoted as 1M resulted in no significant difference for cell attachment, confluency, and viability as compared to non-nucleofected controls. Nucleofection in 1M buffer, in the absence of DNA vectors, resulted in increased col2, ki67, ccnd1 mRNA levels, and decreased col1 mRNA levels at 4 days of culture. Flow cytometry revealed that the transfection efficiency of 1M buffer was comparable to that obtained using the Amaxa commercial kit. siRNA designed against lamin A/C resulted in an average reduction of lamin A and C proteins to 19% and 8% of control levels, respectively. This study identifies a cost-effective, efficient method of nonviral nucleofection of bovine-passaged chondrocytes using known buffer formulations. Human-passaged chondrocytes could also be successfully nucleofected in 1M buffer. Thus this method should facilitate cost-efficient gene targeting of cells used for articular cartilage repair in a research setting.

  4. Editorial Commentary: Chondrocytes Trump Ligaments! Partial Release of the Medial Collateral Ligament During Knee Arthroscopy Protects Chondrocytes.

    PubMed

    Leland, J Martin

    2016-10-01

    With knee arthroscopy being the most common orthopaedic procedure performed in the United States, it is crucial to be able to access the entire knee without iatrogenic injury. Frequently orthopaedic surgeons encounter tight medial compartments, creating difficulty in accessing the posterior horn of the medial meniscus without damaging the articular cartilage. Partial release of the medial collateral ligament during knee arthroscopy protects chondrocytes.

  5. Autologous antibodies that bind neuroblastoma cells.

    PubMed

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies.

  6. Autologous split peroneus longus lateral ankle stabilization.

    PubMed

    Budny, Adam M; Schuberth, John M

    2012-01-01

    Lateral ankle instability is a common clinical entity, and a variety of surgical procedures are available for stabilization after conservative management fails. Herein the authors reviewed outcomes after performing autologous split peroneus longus lateral ankle stabilization, using a previously described surgical technique to anatomically recreate the anterior talofibular and calcaneofibular ligaments. Twenty-five consecutive patients from 2 surgeons' practices underwent reconstruction between March 2007 and January 2011 with a minimum follow-up of 12 (range 12 to 51) months (mean 29.5 months). Follow-up interviews demonstrated 92.0% good or excellent outcomes with only 8.0% rating the outcome as fair and none as poor; 92.0% had no recurrent sprains or difficulty going up or down hills; 88.0% related no difficulty with uneven ground. The authors conclude that the autologous split peroneus longus lateral ankle stabilization results in a stable ankle with a low rate of complications and high patient satisfaction.

  7. Cryptococcal meningitis post autologous stem cell transplantation.

    PubMed

    Chaaban, S; Wheat, L J; Assi, M

    2014-06-01

    Disseminated Cryptococcus disease occurs in patients with defective T-cell immunity. Cryptococcal meningitis following autologous stem cell transplant (SCT) has been described previously in only 1 patient, 4 months post SCT and while off antifungal prophylaxis. We present a unique case of Cryptococcus meningitis pre-engraftment after autologous SCT, while the patient was receiving fluconazole prophylaxis. A 41-year-old man with non-Hodgkin's lymphoma underwent autologous SCT. Post-transplant prophylaxis consisted of fluconazole 400 mg daily, levofloxacin 500 mg daily, and acyclovir 800 mg twice daily. On day 9 post transplant, he developed fever and headache. Peripheral white blood cell count (WBC) was 700/μL. Magnetic resonance imaging of the brain showed lesions consistent with meningoencephalitis. Cerebrospinal fluid (CSF) analysis revealed a WBC of 39 with 77% lymphocytes, protein 63, glucose 38, CSF pressure 20.5 cmH2 O, and a positive cryptococcal antigen. CSF culture confirmed Cryptococcus neoformans. The patient was treated with liposomal amphotericin B 5 mg/kg intravenously daily, and flucytosine 37.5 mg/kg orally every 6 h. He was switched to fluconazole 400 mg daily after 3 weeks of amphotericin therapy, with sterilization of the CSF with negative CSFCryptococcus antigen and negative CSF culture. Review of the literature revealed 9 cases of cryptococcal disease in recipients of SCT. Median time of onset was 64 days post transplant. Only 3 meningitis cases were described; 2 of them after allogeneic SCT. Fungal prophylaxis with fluconazole post autologous SCT is recommended at least through engraftment, and for up to 100 days in high-risk patients. A high index of suspicion is needed to diagnose and treat opportunistic infections, especially in the face of immunosuppression and despite adequate prophylaxis. Infection is usually fatal without treatment, thus prompt diagnosis and therapy might be life saving.

  8. Pyoderma gangrenosum following autologous breast reconstruction.

    PubMed

    Singh, Prateush; Tuffaha, Sami H; Robbins, Sanford H; Bonawitz, Steven C

    2017-02-01

    Pyoderma gangrenosum (PG) is an uncommon disorder characterized by the development of painful cutaneous ulceration, commonly precipitated by dermal injury at surgical sites. It is a diagnostic challenge as it manifests as necrotizing wounds which are commonly misdiagnosed as postoperative wound infection or ischemia. We discuss the clinical features and histopathological findings that allow for rapid identification of PG following autologous breast reconstruction and suggest an algorithm to aid diagnosis.

  9. Pyoderma gangrenosum following autologous breast reconstruction

    PubMed Central

    Tuffaha, Sami H.; Robbins, Sanford H.; Bonawitz, Steven C.

    2017-01-01

    Pyoderma gangrenosum (PG) is an uncommon disorder characterized by the development of painful cutaneous ulceration, commonly precipitated by dermal injury at surgical sites. It is a diagnostic challenge as it manifests as necrotizing wounds which are commonly misdiagnosed as postoperative wound infection or ischemia. We discuss the clinical features and histopathological findings that allow for rapid identification of PG following autologous breast reconstruction and suggest an algorithm to aid diagnosis. PMID:28210559

  10. Autologous platelet-labeling in thrombocytopenia

    SciTech Connect

    Sinzinger, H.; Virgolini, I.; Vinazzer, H. )

    1990-11-01

    Field studies performed with peripheral platelets obtained from 6 male volunteers aged 23 to 29 years revealed an extraordinary dependence of labeling efficiency on incubation time and platelet concentration after {sup 111}In-oxine platelet labeling. Since the monitoring of in vivo-platelet function in patients with thrombocytopenia may cause problems due to insufficient labeling results and homologous platelets may show a different in vivo behaviour to autologous ones, we have searched for the minimal amount of platelets necessary to allow appropriate labeling and imaging in patients with thrombocytopenia. In 15 patients with untreated thrombocytopenia aged 14 to 79 years demonstrating a mean peripheral platelet count of 2.509 +/- 1.45 x 10(4) cells/microliters autologous {sup 111}In-oxine platelet labeling was performed. The results indicate that approximately 1 x 10(8) (concentrated) platelets/ml are necessary to obtain an adequate labeling efficiency and recovery. This platelet concentration can be easily achieved by drawing one more Monovette of whole blood per each 5 x 10(4) platelets/microliter peripheral platelet count less than 2 x 10(5)/microliter. It is concluded, that calculation of the required number of platelets in advance, variation of the blood volume drawn and the volume of incubation buffer allow informative, qualitative and quantitative results using autologous platelets. The method presented effectively circumvents the requirement of homologous platelets for radiolabeling in thrombocytopenia.

  11. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    SciTech Connect

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  12. A Review of Thermal Spray Metallization of Polymer-Based Structures

    NASA Astrophysics Data System (ADS)

    Gonzalez, R.; Ashrafizadeh, H.; Lopera, A.; Mertiny, P.; McDonald, A.

    2016-06-01

    A literature review on the thermal spray deposition of metals onto polymer-based structures is presented. The deposition of metals onto polymer-based structures has been developed to enhance the thermal and electrical properties of the resulting metal-polymer material system. First, the description of the thermal spray metallization processes and technologies for polymer-based materials are outlined. Then, polymer surface preparation methods and the deposition of metal bond-coats are explored. Moreover, the thermal spray process parameters that affect the properties of metal deposits on polymers are described, followed by studies on the temperature distribution within the polymer substrate during the thermal spray process. The objective of this review is devoted to testing and potential applications of thermal-sprayed metal coatings deposited onto polymer-based substrates. This review aims to summarize the state-of-the-art contributions to research on the thermal spray metallization of polymer-based materials, which has gained recent attention for potential and novel applications.

  13. A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage.

    PubMed

    Wolf, F; Haug, M; Farhadi, J; Candrian, C; Martin, I; Barbero, A

    2008-02-05

    For the generation of cell-based therapeutic products, it would be preferable to avoid the use of animal-derived components. Our study thus aimed at investigating the possibility to replace foetal bovine serum (FBS) with autologous serum (AS) for the engineering of cartilage grafts using expanded human nasal chondrocytes (HNC). HNC isolated from 7 donors were expanded in medium containing 10% FBS or AS at different concentrations (2%, 5% and 10%) and cultured in pellets using serum-free medium or in Hyaff(R)-11 meshes using medium containing FBS or AS. Tissue forming capacity was assessed histologically (Safranin O), immunohistochemically (type II collagen) and biochemically (glycosaminoglycans -GAG- and DNA). Differences among experimental groups were assessed by Mann Whitney tests. HNC expanded under the different serum conditions proliferated at comparable rates and generated cartilaginous pellets with similar histological appearance and amounts of GAG. Tissues generated by HNC from different donors cultured in Hyaff(R)-11 had variable quality, but the accumulated GAG amounts were comparable among the different serum conditions. Staining intensity for collagen type II was consistent with GAG deposition. Among the different serum conditions tested, the use of 2% AS resulted in the lowest variability in the GAG contents of generated tissues. In conclusion, a low percentage of AS can replace FBS both during the expansion and differentiation of HNC and reduce the variability in the quality of the resulting engineered cartilage tissues.

  14. Dystrophic calcifications after autologous fat injection on face.

    PubMed

    Kim, Dai Hyun; Jang, Hee Won; Kim, Hee Joo; Son, Sang Wook

    2014-06-01

    Autologous fat injection is widely used procedure for various functional and aesthetic purposes. However, it could result in many immediate or delayed complications including dystrophic calcifications. Almost all of the case reports about dystrophic calcification after autologous fat injection were result from the iatrogenic tissue trauma of breast augmentation. This is a report of a 30-year-old patient who developed pathologically proven multiple dystrophic calcifications on the face after autologous fat injection.

  15. Harpagoside suppresses IL-6 expression in primary human osteoarthritis chondrocytes.

    PubMed

    Haseeb, Abdul; Ansari, Mohammad Yunus; Haqqi, Tariq M

    2017-02-01

    There is growing evidence in support of the involvement of inflammatory response in the pathogenesis of osteoarthritis (OA). Harpagoside, one of the bioactive components of Harpagophytum procumbens (Hp), has been shown to possess anti-inflammatory properties. Here we used an in vitro model of inflammation in OA to investigate the potential of harpagoside to suppress the production of inflammatory cytokines/chemokines such as IL-6 and matrix degrading proteases. We further investigated the likely targets of harpagoside in primary human OA chondrocytes. OA chondrocytes were pre-treated with harpagoside before stimulation with IL-1β. mRNA expression profile of 92 cytokines/chemokines was determined using TaqMan Human Chemokine PCR Array. Expression levels of selected mRNAs were confirmed using TaqMan assays. Protein levels of IL-6 and MMP-13 were assayed by ELISA and immunoblotting. Total protein levels and phosphorylation of signaling proteins were determined by immunoblotting. Cellular localization of IL-6 and c-Fos was performed by immunofluorescence and confocal microscopy. DNA binding activity of c-FOS/AP-1 was determined by ELISA. Harpagoside significantly altered the global chemokine expression profile in IL-1β-stimulated OA chondrocytes. Expression of IL-6 was highly induced by IL-1β, which was significantly inhibited by pre-treatment of OA chondrocytes with harpagoside. Harpagoside did not inhibit the IL-1β-induced activation of NF-κB and C/EBPβ transcription factors but suppressed the IL-1β-triggered induction, phosphorylation, and DNA binding activity of c-FOS, one of the main components of AP-1 transcription factors. Further, harpagoside significantly inhibited the expression of MMP-13 in OA chondrocytes under pathological conditions. siRNA-mediated knockdown of IL-6 resulted in suppressed expression and secretion of MMP-13 directly linking the role of IL-6 with MMP-13 expression. Taken together, the present study suggests that harpagoside exerts a

  16. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio

    PubMed Central

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  17. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio

    NASA Astrophysics Data System (ADS)

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-09-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on.

  18. Autologous Growth Factor Injections in Chronic Tendinopathy

    PubMed Central

    Sandrey, Michelle A.

    2014-01-01

    Reference: de Vos RJ, van Veldhoven PLJ, Moen MH, Weir A, Tol JL. Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull. 2010;95:63–77. Clinical Question: The authors of this systematic review evaluated the literature to critically consider the effects of growth factors delivered through autologous whole-blood and platelet-rich–plasma (PRP) injections in managing wrist-flexor and -extensor tendinopathies, plantar fasciopathy, and patellar tendinopathy. The primary question was, according to the published literature, is there sufficient evidence to support the use of growth factors delivered through autologous whole-blood and PRP injections for chronic tendinopathy? Data Sources: The authors performed a comprehensive, systematic literature search in October 2009 using PubMed, MEDLINE, EMBASE, CINAHL, and the Cochrane library without time limits. The following key words were used in different combinations: tendinopathy, tendinosis, tendinitis, tendons, tennis elbow, plantar fasciitis, platelet rich plasma, platelet transfusion, and autologous blood or injection. The search was limited to human studies in English. All bibliographies from the initial literature search were also viewed to identify additional relevant studies. Study Selection: Studies were eligible based on the following criteria: (1) Articles were suitable (inclusion criteria) if the participants had been clinically diagnosed as having chronic tendinopathy; (2) the design had to be a prospective clinical study, randomized controlled trial, nonrandomized clinical trial, or prospective case series; (3) a well-described intervention in the form of a growth factor injection with either PRP or autologous whole blood was used; and (4) the outcome was reported in terms of pain or function (or both). Data Extraction: All titles and abstracts were assessed by 2 researchers, and all relevant articles were obtained. Two researchers independently read the full text of

  19. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading.

    PubMed

    Chao, Pen-Hsiu Grace; West, Alan C; Hung, Clark T

    2006-10-01

    While chondrocytes in articular cartilage experience dynamic stimuli from joint loading activities, few studies have examined the effects of dynamic osmotic loading on their signaling and biosynthetic activities. We hypothesize that dynamic osmotic loading modulates chondrocyte signaling and gene expression differently than static osmotic loading. With the use of a novel microfluidic device developed in our laboratory, dynamic hypotonic loading (-200 mosM) was applied up to 0.1 Hz and chondrocyte calcium signaling, cytoskeleton organization, and gene expression responses were examined. Chondrocytes exhibited decreasing volume and calcium responses with increasing loading frequency. Phalloidin staining showed osmotic loading-induced changes to the actin cytoskeleton in chondrocytes. Real-time PCR analysis revealed a stimulatory effect of dynamic osmotic loading compared with static osmotic loading. These studies illustrate the utility of the microfluidic device in cell signaling investigations, and their potential role in helping to elucidate mechanisms that mediate chondrocyte mechanotransduction to dynamic stimuli.

  20. 13cRA regulates the differentiation of antler chondrocytes through targeting Runx3.

    PubMed

    Zhang, Hong-Liang; Cao, Hang; Yang, Zhan-Qing; Geng, Shuang; Wang, Kai; Yu, Hai-Fan; Guo, Bin; Yue, Zhan-Peng

    2017-03-01

    Although 13cRA is involved in the regulation of cellular proliferation and differentiation, its physiological roles in chondrocyte proliferation and differentiation still remain unknown. Here, we showed that 13cRA could induce the proliferation of sika deer antler chondrocytes and expression of Ccnd3 and Cdk6. Administration of 13cRA to antler chondrocytes resulted in an obvious increase in the expression of chondrocyte marker Col II and hypertrophic chondrocyte marker Col X. Silencing of Crabp2 expression by specific siRNA could prevent the 13cRA-induced up-regulation of Col X, whereas overexpression of Crabp2 showed the opposite effects. Further study found that Crabp2 mediated the regulation of 13cRA on the expression of Runx3 which was highly expressed in the antler cartilage and inhibited the differentiation of antler chondrocytes. Moreover, attenuation of Runx3 expression greatly raised 13cRA-induced chondrocyte differentiation. Simultaneously, 13cRA could stimulate the expression of Cyp26a1 and Cyp26b1 in the antler chondrocytes. Inhibition of Cyp26a1 and/or Cyp26b1 reinforced the effects of 13cRA on the expression of Col X and Runx3, while overexpression of Cyp26b1 rendered the antler chondrocytes hyposensitive to 13cRA. Collectively, 13cRA may play an important role in the differentiation of antler chondrocytes through targeting Runx3. Crabp2 enhances the effects of 13cRA on chondrocyte differentiation, while Cyp26a1 and Cyp26b1 weaken the sensitivity of antler chondrocytes to 13cRA.

  1. Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes

    PubMed Central

    Djouad, Farida; Delorme, Bruno; Maurice, Marielle; Bony, Claire; Apparailly, Florence; Louis-Plence, Pascale; Canovas, François; Charbord, Pierre; Noël, Danièle; Jorgensen, Christian

    2007-01-01

    Chondrogenesis is a process involving stem-cell differentiation through the coordinated effects of growth/differentiation factors and extracellular matrix (ECM) components. Recently, mesenchymal stem cells (MSCs) were found within the cartilage, which constitutes a specific niche composed of ECM proteins with unique features. Therefore, we hypothesized that the induction of MSC differentiation towards chondrocytes might be induced and/or influenced by molecules from the microenvironment. Using microarray analysis, we previously identified genes that are regulated during MSC differentiation towards chondrocytes. In this study, we wanted to precisely assess the differential expression of genes associated with the microenvironment using a large-scale real-time PCR assay, according to the simultaneous detection of up to 384 mRNAs in one sample. Chondrogenesis of bone-marrow-derived human MSCs was induced by culture in micropellet for various periods of time. Total RNA was extracted and submitted to quantitative RT-PCR. We identified molecules already known to be involved in attachment and cell migration, including syndecans, glypicans, gelsolin, decorin, fibronectin, and type II, IX and XI collagens. Importantly, we detected the expression of molecules that were not previously associated with MSCs or chondrocytes, namely metalloproteases (MMP-7 and MMP-28), molecules of the connective tissue growth factor (CTGF); cef10/cyr61 and nov (CCN) family (CCN3 and CCN4), chemokines and their receptors chemokine CXC motif ligand (CXCL1), Fms-related tyrosine kinase 3 ligand (FlT3L), chemokine CC motif receptor (CCR3 and CCR4), molecules with A Disintegrin And Metalloproteinase domain (ADAM8, ADAM9, ADAM19, ADAM23, A Disintegrin And Metalloproteinase with thrombospondin type 1 motif ADAMTS-4 and ADAMTS-5), cadherins (4 and 13) and integrins (α4, α7 and β5). Our data suggest that crosstalk between ECM components of the microenvironment and MSCs within the cartilage is

  2. The effects of fixed electrical charge on chondrocyte behavior.

    PubMed

    Dadsetan, Mahrokh; Pumberger, Matthias; Casper, Michelle E; Shogren, Kristin; Giuliani, Melissa; Ruesink, Terry; Hefferan, Theresa E; Currier, Bradford L; Yaszemski, Michael J

    2011-05-01

    In this study we have compared the effects of negative and positive fixed charges on chondrocyte behavior in vitro. Electrical charges have been incorporated into oligo(poly(ethylene glycol) fumarate) (OPF) using small charged monomers such as sodium methacrylate (SMA) and (2-(methacryloyloxy) ethyl)-trimethyl ammonium chloride (MAETAC) to produce negatively and positively charged hydrogels, respectively. The physical and electrical properties of the hydrogels were characterized by measuring and calculating the swelling ratio and zeta potential, respectively. Our results revealed that the properties of these OPF modified hydrogels varied according to the concentration of charged monomers. Zeta potential measurements demonstrated that the electrical properties of the OPF hydrogel surfaces changed on incorporation of SMA and MAETAC and that these changes in electrical properties were dose-dependent. Attenuated total reflectance Fourier transform infrared spectroscopy was used to determine the hydrogel surface composition. To assess the effects of surface properties on chondrocyte behavior primary chondrocytes isolated from rabbit ears were seeded as a monolayer on top of the hydrogels. We demonstrated that the cells remained viable over 7 days and began to proliferate while seeded on top of the hydrogels. Collagen type II staining was positive in all samples, however, the staining intensity was higher on negatively charged hydrogels. Similarly, glycosaminoglycan production was significantly higher on negatively charged hydrogels compared with a neutral hydrogel. Reverse transcriptase polymerase chain reaction showed up-regulation of collagen type II and down-regulation of collagen type I on the negatively charged hydrogels. These findings indicate that charge plays an important role in establishing an appropriate environment for chondrocytes and, hence, in the engineering of cartilage. Thus, further investigations into charged hydrogels for cartilage tissue

  3. MicroRNA-33 suppresses CCL2 expression in chondrocytes

    PubMed Central

    Wei, Meng; Xie, Qingyun; Zhu, Jun; Wang, Tao; Zhang, Fan; Cheng, Yue; Guo, Dongyang; Wang, Ying; Mo, Liweng; Wang, Shuai

    2016-01-01

    CCL2-mediated macrophage infiltration in articular tissues plays a pivotal role in the development of the osteoarthritis (OA). miRNAs regulate the onset and progression of diseases via controlling the expression of a series of genes. How the CCL2 gene was regulated by miRNAs was still not fully elucidated. In the present study, we demonstrated that the binding sites of miR-33 in the 3′UTR of CCL2 gene were conserved in human, mouse and rat species. By performing gain- or loss-of-function studies, we verified that miR-33 suppressed CCL2 expression in the mRNA and protein levels. We also found that miR-33 suppressed the CCL2 levels in the supernatant of cultured primary mouse chondrocytes. With reporter gene assay, we demonstrated that miR-33 targeted at AAUGCA in the 3′UTR of CCL2 gene. In transwell migration assays, we demonstrated that the conditional medium (CM) from miR-33 deficient chondrocytes potentiated the monocyte chemotaxis in a CCL2 dependent manner. Finally, we demonstrated that the level of miR-33 was decreased, whereas the CCL2 level was increased in the articular cartilage from the OA patients compared with the control group. In summary, we identified miR-33 as a novel suppressor of CCL2 in chondrocytes. The miR-33/CCL2 axis in chondrocytes regulates monocyte chemotaxis, providing a potential mechanism of macrophage infiltration in OA. PMID:27129293

  4. Human articular chondrocytes express functional leukotriene B4 receptors

    PubMed Central

    Hansen, Ann Kristin; Indrevik, Jill-Tove; Figenschau, Yngve; Martinez-Zubiaurre, Inigo; Sveinbjörnsson, Baldur

    2015-01-01

    Leukotriene B4 (LTB4) is a potent chemoattractant associated with the development of osteoarthritis (OA), while its receptors BLT1 and BLT2 have been found in synovium and subchondral bone. In this study, we have investigated whether these receptors are also expressed by human cartilage cells and their potential effects on cartilage cells. The expression of LTB4 receptors in native tissue and cultured cells was assessed by immunohistochemistry, immunocytochemistry, polymerase chain reaction (PCR) and electron microscopy. The functional significance of the LTB4 receptor expression was studied by Western blotting, using phospho-specific antibodies in the presence or absence of receptor antagonists. In further studies, the secretion of pro-inflammatory cytokines, growth factors and metalloproteinases by LTB4-stimulated chondrocytes was measured by multiplex protein assays. The effects of LTB4 in cartilage signature gene expression in cultured cells were assessed by quantitative PCR, whereas the LTB4-promoted matrix synthesis was determined using 3D pellet cultures. Both receptors were present in cultured chondrocytes, as was confirmed by immunolabelling and PCR. The relative quantification by PCR demonstrated a higher expression of the receptors in cells from healthy joints compared with OA cases. The stimulation of cultured chondrocytes with LTB4 resulted in a phosphorylation of downstream transcription factor Erk 1/2, which was reduced after blocking BLT1 signalling. No alteration in the secretion of cytokine and metalloproteinases was recorded after challenging cultured cells with LTB4; likewise, cartilage matrix gene expression and 3D tissue synthesis were unaffected. Chondrocytes express BLT1 and BLT2 receptors, and LTB4 activates the downstream Erk 1/2 pathway by engaging the high-affinity receptor BLT1. However, any putative role in cartilage biology could not be revealed, and remains to be clarified. PMID:25677035

  5. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  6. Fate of Meckel's cartilage chondrocytes in ocular culture

    SciTech Connect

    Richman, J.M.; Diewert, V.M.

    1988-09-01

    Modulation of the chondrocyte phenotype was observed in an organ culture system using Meckel's cartilage. First branchial arch cartilage was dissected from fetal rats of 16- and 17-day gestation. Perichondrium was mechanically removed, cartilage was split at the rostral process, and each half was grafted into the anterior chamber of an adult rat eye. The observed pattern of development in nonirradiated specimens was the following: hypertrophy of the rostral process and endochondral-type ossification, fibrous atrophy in the midsection, and mineralization of the malleus and incus. A change in matrix composition of the implanted cartilage was demonstrated with immunofluorescence staining for cartilage-specific proteoglycan (CSPG). After 15 days of culture, CSPG was found in the auricular process but not in the midsection or rostral process. In order to mark the implanted cells and follow their fate, cartilage was labeled in vitro with (3H)thymidine (3H)TdR). Immediately after labeling 20% of the chondrocytes contained (3H)TdR. After culturing for 5 days, 20% of the chondrocytes were still labeled and 10% of the osteogenic cells also contained radioactive label. The labeling index decreased in both cell types with increased duration of culture. Multinucleated clast-type cells did not contain label. Additional cartilages not labeled with (3H)TdR were exposed to between 20000 and 6000 rad of gamma irradiation before ocular implantation. Irradiated cartilage did not hypertrophy or form bone but a fibrous region developed in the midsection. Cells of the host animal were not induced to form bone around the irradiated cartilage. Our studies suggest that fully differentiated chondrocytes of Meckel's cartilage have the capacity to become osteocytes, osteoblasts, and fibroblasts.

  7. Structural differences in epiphyseal and physeal hypertrophic chondrocytes

    PubMed Central

    Shapiro, Frederic; Flynn, Evelyn

    2015-01-01

    We have observed that epiphyseal and physeal hypertrophic chondrocytes in BALB/c mice show considerable differences of light microscopic and ultrastructural appearance, even when the cells are at the same stage of differentiation. In addition, cell structure maintenance improved with tissue preparation controlled for osmolarity and for membrane stabilization using 0.5% ruthenium hexammine trichloride (RHT) for both light microscopy (LM) and electron microscopy (EM) or 0.5% lanthanum nitrate for LM. Physeal hypertrophic chondrocytes showed a gradual increase in size closer to the metaphysis and a change in shape as cells elongated along the long axis. The nucleus remained central, with uniformly dispersed chromatin, and the rough endoplasmic reticulum (RER) was randomly dispersed throughout cytoplasm with little to no presence against the cell membrane. Even the lowermost cells showed thin elongated or dilated cisternae of RER and intact cell membranes. Epiphyseal chondrocytes remained circular to oval with no elongation. Nucleus and RER were positioned as a complete transcellular central nucleocytoplasmic column or as an incomplete bud with RER of the column/bud always continuous with RER peripherally against the intact cell membrane. RER was densely packed with parallel cisternae with adjacent cytoplasm empty of organelles but often filled with circular deposits of moderately electron-dense material consistent with fat. Optimal technique for LM involved fixation using glutaraldehyde (GA) 1.3%, paraformaldehyde (PFA) 1% and RHT 0.5% (mOsm 606) embedded in JB-4 plastic and stained with 0.5% toluidine blue. Optimal technique for EM used fixation with GA 1.3%, PFA 1%, RHT 0.5% and cacodylate buffer 0.03 M (mOsm 511) and post-fixation including 1% osmium tetroxide. These observations lead to the possibility that the same basic cell, the hypertrophic chondrocyte, has differing functional mechanisms at different regions of the developing bone. PMID:25987982

  8. The Role of the Membrane Potential in Chondrocyte Volume Regulation

    PubMed Central

    Lewis, Rebecca; Asplin, Katie E; Bruce, Gareth; Dart, Caroline; Mobasheri, Ali; Barrett-Jolley, Richard

    2011-01-01

    Many cell types have significant negative resting membrane potentials (RMPs) resulting from the activity of potassium-selective and chloride-selective ion channels. In excitable cells, such as neurones, rapid changes in membrane permeability underlie the generation of action potentials. Chondrocytes have less negative RMPs and the role of the RMP is not clear. Here we examine the basis of the chondrocyte RMP and possible physiological benefits. We demonstrate that maintenance of the chondrocyte RMP involves gadolinium-sensitive cation channels. Pharmacological inhibition of these channels causes the RMP to become more negative (100 µM gadolinium: ΔVm = −30 ± 4 mV). Analysis of the gadolinium-sensitive conductance reveals a high permeability to calcium ions (PCa/PNa ≈80) with little selectivity between monovalent ions; similar to that reported elsewhere for TRPV5. Detection of TRPV5 by PCR and immunohistochemistry and the sensitivity of the RMP to the TRPV5 inhibitor econazole (ΔVm = −18 ± 3 mV) suggests that the RMP may be, in part, controlled by TRPV5. We investigated the physiological advantage of the relatively positive RMP using a mathematical model in which membrane stretch activates potassium channels allowing potassium efflux to oppose osmotic water uptake. At very negative RMP potassium efflux is negligible, but at more positive RMP it is sufficient to limit volume increase. In support of our model, cells clamped at −80 mV and challenged with a reduced osmotic potential swelled approximately twice as much as cells at +10 mV. The positive RMP may be a protective adaptation that allows chondrocytes to respond to the dramatic osmotic changes, with minimal changes in cell volume. J. Cell. Physiol. 226: 2979–2986, 2011. © 2011 Wiley-Liss, Inc. PMID:21328349

  9. The effects of simulated microgravity on cultured chicken embryonic chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, X. B.; Yang, S. Z.; Li, S. G.; Jiang, P. D.; Lin, Z. H.

    2003-10-01

    Using the cultured chicken embryonic chondrocytes as a model, the effects of simulated microgravity on the microtubular system of the cellular skeleton, extracellular matrix, alkaline phosphatase activity, intracellular free calcium concentration and mitochondrial ATP synthase activity with its oligomycin inhibition rate were studied with a clinostat. The microtubular content was measured by a flow cytometer. The decrease of microtubular content showed the impairment of the cellular skeleton system. Observation on the extracellualr matrix by the scanning electron microscopy showed that it decreased significantly after rotating, and the fibers in the extracellular matrix were more tiny and disorderly than that of the control group. It can be concluded that the simulated microgravity can affect the secreting and assembly of the extracellular matrix. In contrast to the control, there was a time course decrease in alkaline phosphatase activity of chondrocytes, a marker of matrix mineralization. Meanwhile a significant drop in the intracellular calcium concentration happened at the beginning of rotation. These results indicate that simulated microgravity can suppress matrix calcification of cultured chondrocytes, and intracellular free calcium may be involved in the regulation of matrix calcification as the second signal transmitter. No significant changes happened in the mitochondrial ATP synthase activity and its oligomycin inhibition rate. Perhaps the energy metabolism wasn't affected by the simulated microgravity. The possible mechanisms about them were discussed.

  10. Cellular response of chondrocytes to magnesium alloys for orthopedic applications

    PubMed Central

    LIAO, YI; XU, QINGLI; ZHANG, JIAN; NIU, JIALING; YUAN, GUANGYIN; JIANG, YAO; HE, YAOHUA; WANG, XINLING

    2015-01-01

    In the present study, the effects of Mg-Nd-Zn-Zr (JDBM), brushite (CaHPO4·2H2O)-coated JDBM (C-JDBM), AZ31, WE43, pure magnesium (Mg) and Ti alloy (TC4) on rabbit chondrocytes were investigated in vitro. Adhesion experiments revealed the satisfactory morphology of chondrocytes on the surface of all samples. An indirect cytotoxicity test using MTT assay revealed that C-JDBM and TC4 exhibited results similar to those of the negative control, better than those obtained with JDBM, AZ31, WE43 and pure Mg (p<0.05). There were no statistically significant differences observed between the JDBM, AZ31, WE43 and pure Mg group (p>0.05). The results of indirect cell cytotoxicity and proliferation assays, as well as those of apoptosis assay, glycosaminoglycan (GAG) quantification, assessment of collagen II (Col II) levels and RT-qPCR revealed a similar a trend as was observed with MTT assay. These findings suggested that the JDBM alloy was highly biocompatible with chondrocytes in vitro, yielding results similar to those of AZ31, WE43 and pure Mg. Furthermore, CaHPO4·2H2O coating significantly improved the biocompatibility of this alloy. PMID:25975216

  11. Engineering cartilage tissue by pellet coculture of chondrocytes and mesenchymal stromal cells.

    PubMed

    Wu, Ling; Post, Janine N; Karperien, Marcel

    2015-01-01

    Coculture of chondrocytes and mesenchymal stromal cells (MSCs) in pellets has been shown to be beneficial in engineering cartilage tissue in vitro. In these cultures trophic effects of MSCs increase the proliferation and matrix deposition of chondrocytes. Thus, large cartilage constructs can be made with a relatively small number of chondrocytes. In this chapter, we describe the methods for making coculture pellets of MSCs and chondrocytes. We also provide detailed protocols for analyzing coculture pellets with cell tracking, proliferation assays, species specific polymerase chain reactions (PCR), short tandem repeats analysis, and histological examination.

  12. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress

    PubMed Central

    LIN, PINGDONG; WENG, XIAPING; LIU, FAYUAN; MA, YUHUAN; CHEN, HOUHUANG; SHAO, XIANG; ZHENG, WENWEI; LIU, XIANXIANG; YE, HONGZHI; LI, XIHAI

    2015-01-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type II collagen. The ER stress-mediated apoptosis of tunicamycin (TM)-stimulated chondrocytes was detected using 4-phenylbutyric acid (4-PBA). We found that 4-PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4′,6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM-induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X-box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), caspase-9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase-9, caspase-3

  13. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress.

    PubMed

    Lin, Pingdong; Weng, Xiaping; Liu, Fayuan; Ma, Yuhuan; Chen, Houhuang; Shao, Xiang; Zheng, Wenwei; Liu, Xianxiang; Ye, Hongzhi; Li, Xihai

    2015-12-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type Ⅱ collagen. The ER stress-mediated apoptosis of tunicamycin (TM)‑stimulated chondrocytes was detected using 4-phenylbutyric acid (4‑PBA). We found that 4‑PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM‑induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X‑box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP‑homologous protein (Chop), caspase‑9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase

  14. Topography-Guided Proliferation: Distinct Surface Microtopography Increases Proliferation of Chondrocytes In Vitro.

    PubMed

    Joergensen, Natasja Leth; Le, Dang Quang Svend; Andersen, Ole Zoffmann; Foss, Morten; Danielsen, Carl Christian; Foldager, Casper Bindzus; Lind, Martin; Lysdahl, Helle

    2015-11-01

    Chondrocyte-based cartilage repair techniques require control of articular chondrocyte expansion ex vivo. Articular chondrocytes have limited availability, and prolonged culturing to obtain a cell number sufficient for clinical use often results in phenotypic alterations and increased costs. In this study, we applied a screening library consisting of micrometer-sized topographical features, termed biosurface structure array (BSSA), to identify specific topographical microstructures affecting the proliferation of human chondrocytes in passage 1 (P1) or 2 (P2). The BSSA library comprised 10 patterns and 16 combinations of pillar size (X) and interpillar gap size (Y). Specific microstructures significantly increased the chondrocytes' proliferative responsiveness in term of patterns, X and Y for P2 compared with P1. The P1 and P2 chondrocytes responded independently to similar patterns after 4 days of culturing, whereas only chondrocytes at P2 responded to specific microstructures with Y = 1 μm and X = 2, 4 μm by a 2.3- and 4.4-fold increased proliferation, respectively. In conclusion, these findings indicate that specific surface topographies promote chondrocyte proliferation and may, indeed, be a tool to control the behavior of chondrocytes in vitro.

  15. Phenotypic diversity of neoplastic chondrocytes and extracellular matrix gene expression in cartilaginous neoplasms.

    PubMed Central

    Aigner, T.; Dertinger, S.; Vornehm, S. I.; Dudhia, J.; von der Mark, K.; Kirchner, T.

    1997-01-01

    Chondrocyte differentiation is characterized by distinct cellular phenotypes, which can be identified by specific extracellular matrix gene expression profiles. By applying in situ analysis on the mRNA and protein level in a series of benign and malignant human chondrogenic neoplasms, we were able to identify for the first time different phenotypes of neoplastic chondrocytes in vivo: 1) mature chondrocytes, which synthesized the characteristic cartilaginous extracellular tumor matrix, 2) cells resembling hypertrophic chondrocytes of the fetal growth plate, 3) cells resembling so-called dedifferentiated chondrocytes, and 4) well differentiated chondrocytic cells, which expressed type I collagen, indicating the presence of post-hypertrophic differentiated neoplastic chondrocytes. Chondrocytes exhibiting a range of phenotypes were found to be present in the same neoplasm. The different observed phenotypes, including the dedifferentiated phenotype, were in contrast to the anaplastic cells of high-grade chondrosarcomas. Comparison of expression data with tumor morphology revealed a relationship between the cellular phenotypes, the tumor matrix composition, and the matrix and cell morphology within the neoplasms. The distinctly different phenotypes of neoplastic chondrocytes are the basis of the characteristic high biochemical and morphological heterogeneity of chondroid neoplasms and shed light on their biological and clinical behavior. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9176404

  16. Inflammatory synovial fluid microenvironment drives primary human chondrocytes to actively take part in inflammatory joint diseases.

    PubMed

    Röhner, Eric; Matziolis, Georg; Perka, Carsten; Füchtmeier, Bernd; Gaber, Timo; Burmester, Gerd-Rüdiger; Buttgereit, Frank; Hoff, Paula

    2012-06-01

    The role of human chondrocytes in the pathogenesis of cartilage degradation in rheumatic joint diseases has presently gained increasing interest. An active chondrocyte participation in local inflammation may play a role in the initiation and progression of inflammatory joint diseases and in a disruption of cartilage repair mechanisms resulting in cartilage degradation. In the present study, we hypothesized that inflammatory synovial fluid triggers human chondrocytes to actively take part in inflammatory processes in rheumatic joint diseases. Primary human chondrocytes were incubated in synovial fluids gained from patients with rheumatoid arthritis, psoriasis arthritis and reactive arthritis. The detection of vital cell numbers was determined by using Casy Cell Counter System. Apoptosis was measured by Annexin-V and 7AAD staining. Cytokine and chemokine secretion was determined by a multiplex suspension array. Detection of vital cells showed a highly significant decrease in chondrocyte numbers. Flow cytometry demonstrated a significant increase in apoptotic chondrocytes after the incubation. An active secretion of cytokines such as MCP-1 and MIF by chondrocytes was observed. The inflammatory synovial fluid microenvironment mediates apoptosis and cell death of chondrocytes. Moreover, in terms of cytokine secretion, it also induces an active participation of chondrocytes in ongoing inflammation.

  17. Autologous stem cell transplantation for systemic sclerosis.

    PubMed

    Farge, Dominique; Nash, Richard; Laar, Jacob M

    2008-12-01

    Systemic sclerosis (SSc) is a generalised autoimmune disease, of yet unknown origin, with two major clinical subsets: the limited (lcSSc) and the diffuse cutaneous (dcSSc) forms, which can be distinguished by the extent of skin involvement, the autoantibody profile and the pattern of organ involvement. With an incidence of 1/10(5), SSc affects around 250,000 people in Europe and is responsible for significant morbidity with a 5-year mortality rate of at least 30% of all patients. In patients with rapidly progressive dcSSc, the 5-year mortality is estimated to be 40-50%. Hematopoietic stem cell transplantation (HSCT), mostly autologous but also allogeneic in some specific cases, has been employed worldwide since 1996 as a new therapeutic strategy in patients with a poor prognosis. In 2007, 150 HSCT procedures have been reported in the EBMT data base. We review herein both the short and the long-term reports from the various European and North American phase I-II studies, which have shown that autologous HSCT in selected patients with severe dcSSc results in sustained improvement of skin thickening and stabilisation of organ function up to seven years after transplantation. Based on these promising results, ongoing phase III trials have been designed in parallel, both in Europe (ASTIS) and in North America (SCOTT) aiming to analyse the respective benefits from autologous HSCT respectively without or with high dose irradiation. This review reports the current data concerning the effects of HSCT on survival, skin, and major organ function in patients with severe dcSSc.

  18. Detection of accessory spleens with indium 111-labeled autologous platelets

    SciTech Connect

    Davis, H.H., II; Varki, A.; Heaton, W.A.; Siegel, B.A.

    1980-01-01

    In two patients with recurrent immune thrombocytopenia, accessory splenic tissue was demonstrated by radionuclide imaging following administration of indium 111-labeled autologous platelets. In one of these patients, no accessory splenic tissue was seen on images obtained with technetium 99m sulfur colloid. This new technique provides a simple means for demonstrating accessory spleens and simultaneously evaluating the life-span of autologous platelets.

  19. Platelets promote cartilage repair and chondrocyte proliferation via ADP in a rodent model of osteoarthritis.

    PubMed

    Zhou, Qi; Xu, Chunhua; Cheng, Xingyao; Liu, Yangyang; Yue, Ming; Hu, Mengjiao; Luo, Dongjiao; Niu, Yuxi; Ouyang, Hongwei; Ji, Jiansong; Hu, Hu

    2016-01-01

    Osteoarthritis (OA) is the most common age-related degenerative joint disease and platelet-rich plasma (PRP) has been shown to be beneficial in OA. Therefore, in this study, we aimed to investigate the effects of platelets on chondrocytes and the underlying mechanisms. Anabolic and catabolic activity and the proliferation rate of chondrocytes were evaluated after co-culture with platelets. Chondrocyte gene expression was measured by real-time PCR. Chondrocyte protein expression and phosphorylation were measured by western blot. Chondrocytes treated with or without platelets were transplanted into a rat model of OA induced by intra-articular injection of monosodium iodoacetate and the repair of articular cartilage was evaluated macroscopically and histologically. Platelets significantly promoted the proliferation of chondrocytes, while mildly influencing anabolic and catabolic activity. Chondrocytes co-cultured with platelets showed significantly increased production of bone morphogenetic protein 7 (BMP7). The autocrine/paracrine effect of BMP7 was responsible for the increased proliferation of chondrocytes, via the ERK/CDK1/cyclin B1 signaling pathway. Transplantation of platelet-treated chondrocytes showed better cartilage repair in the OA model. Platelet-derived ADP was identified as the major mediator to promote the production of BMP7 and the proliferation of chondrocytes, through the ADP receptor P2Y1. Finally, direct injection of α,β-methyleneadenosine-5'-diphosphate into OA joints also enhanced cartilage repair. This study has identified that platelet-derived ADP, but not ATP, is the key mediator for platelet-promoted chondrocyte proliferation and cartilage repair in osteoarthritis. This finding may provide a key explanation for the therapeutic effect of platelets in OA and help shaping a strategy to improve OA therapy.

  20. Detection methods for autologous blood doping.

    PubMed

    Segura, J; Monfort, N; Ventura, R

    2012-11-01

    The use of blood doping is forbidden by the World Anti-Doping Agency. Several practices, such as blood transfusions are used to increase oxygen delivery to muscles and all of them are highly pursued. In this regard, the development of accurate methodologies for detecting these prohibited practices is one of the current aims of the anti-doping control laboratories. Flow cytometry methods are able to detect allogeneic blood transfusions but there is no official methodology available to detect autologous blood transfusions. This paper reviews protocols, including the Athlete Biological Passport, that use indirect markers to detect misuse of blood transfusions, especially autologous blood transfusions. The methods of total haemoglobin mass measurements and the detection of metabolites of blood bags plasticizers in urine are reviewed. The latter seems to be an important step forward because it is a fast screening method and it is based on urine, a fluid widely available for doping control. Other innovative approaches to blood transfusion detection are also mentioned. A combination of the reported methodologies and the implementation of the Athlete Biological Passport is becoming a promising approach.

  1. Autologous versus allogeneic transfusion: patients' perceptions and experiences

    PubMed Central

    Graham, I D; Fergusson, D; Dokainish, H; Biggs, J; McAuley, L; Laupacis, A

    1999-01-01

    BACKGROUND: Preoperative autologous donation is one way to decrease a patient's exposure to allogeneic blood transfusion. This study was designed to determine patients' perceptions about the autologous blood donation process and their experiences with transfusion. METHODS: To assess patient perception, a questionnaire was administered a few days before surgery to patients undergoing elective cardiac and orthopedic surgery in a Canadian teaching hospital. All patients attending the preoperative autologous donation clinic during a 10-month period were eligible. A convenience sample of patients undergoing the same types of surgery who had not predonated blood were selected from preadmission clinics. Patient charts were reviewed retrospectively to assess actual transfusion practice in all cases. RESULTS: A total of 80 patients underwent cardiac surgery (40 autologous donors, 40 nondonors) and 73 underwent orthopedic surgery (38 autologous donors, 35 nondonors). Of the autologous donors, 75 (96%) attended all scheduled donation appointments, 73 (93%) said that they were "very likely" or "likely" to predonate again, and 75 (96%) said that they would recommend autologous donation to others. There was little difference in preoperative symptoms between the autologous donors and the nondonors, although the former were more likely than the latter to report that their overall health had remained the same during the month before surgery (30 [75%] v. 21 [52%] for the cardiac surgery patients and 30 [79%] v. 18 [51%] for the orthopedic surgery patients). When the autologous donors were asked what they felt their chances would have been of receiving at least one allogeneic blood transfusion had they not predonated, the median response was 80%. When they were asked what their chances were after predonating their own blood, the median response was 0%. The autologous donors were significantly less likely to receive allogeneic blood transfusions (6 [15%] for cardiac surgery and 3 [8

  2. AP-1 family members act with Sox9 to promote chondrocyte hypertrophy.

    PubMed

    He, Xinjun; Ohba, Shinsuke; Hojo, Hironori; McMahon, Andrew P

    2016-08-15

    An analysis of Sox9 binding profiles in developing chondrocytes identified marked enrichment of an AP-1-like motif. Here, we have explored the functional interplay between Sox9 and AP-1 in mammalian chondrocyte development. Among AP-1 family members, Jun and Fosl2 were highly expressed within prehypertrophic and early hypertrophic chondrocytes. Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) showed a striking overlap in Jun- and Sox9-bound regions throughout the chondrocyte genome, reflecting direct binding of each factor to the same enhancers and a potential for protein-protein interactions within AP-1- and Sox9-containing complexes. In vitro reporter analysis indicated that direct co-binding of Sox9 and AP-1 at target motifs promoted gene activity. By contrast, where only one factor can engage its DNA target, the presence of the other factor suppresses target activation consistent with protein-protein interactions attenuating transcription. Analysis of prehypertrophic chondrocyte removal of Sox9 confirmed the requirement of Sox9 for hypertrophic chondrocyte development, and in vitro and ex vivo analyses showed that AP-1 promotes chondrocyte hypertrophy. Sox9 and Jun co-bound and co-activated a Col10a1 enhancer in Sox9 and AP-1 motif-dependent manners consistent with their combined action promoting hypertrophic gene expression. Together, the data support a model in which AP-1 family members contribute to Sox9 action in the transition of chondrocytes to the hypertrophic program.

  3. ADAM17 controls endochondral ossification by regulating terminal differentiation of chondrocytes.

    PubMed

    Hall, Katherine C; Hill, Daniel; Otero, Miguel; Plumb, Darren A; Froemel, Dara; Dragomir, Cecilia L; Maretzky, Thorsten; Boskey, Adele; Crawford, Howard C; Selleri, Licia; Goldring, Mary B; Blobel, Carl P

    2013-08-01

    Endochondral ossification is a highly regulated process that relies on properly orchestrated cell-cell interactions in the developing growth plate. This study is focused on understanding the role of a crucial regulator of cell-cell interactions, the membrane-anchored metalloproteinase ADAM17, in endochondral ossification. ADAM17 releases growth factors, cytokines, and other membrane proteins from cells and is essential for epidermal growth factor receptor (EGFR) signaling and for processing tumor necrosis factor alpha. Here, we report that mice lacking ADAM17 in chondrocytes (A17ΔCh) have a significantly expanded zone of hypertrophic chondrocytes in the growth plate and retarded growth of long bones. This abnormality is caused by an accumulation of the most terminally differentiated type of chondrocytes that produces a calcified matrix. Inactivation of ADAM17 in osteoclasts or endothelial cells does not affect the zone of hypertrophic chondrocytes, suggesting that the main role of ADAM17 in the growth plate is in chondrocytes. This notion is further supported by in vitro experiments showing enhanced hypertrophic differentiation of primary chondrocytes lacking Adam17. The enlarged zone of hypertrophic chondrocytes in A17ΔCh mice resembles that described in mice with mutant EGFR signaling or lack of its ligand transforming growth factor α (TGFα), suggesting that ADAM17 regulates terminal differentiation of chondrocytes during endochondral ossification by activating the TGFα/EGFR signaling axis.

  4. Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription

    PubMed Central

    Wang, Weiguang; Lian, Na; Li, Lingzhen; Moss, Heather E.; Wang, Weixi; Perrien, Daniel S.; Elefteriou, Florent; Yang, Xiangli

    2009-01-01

    Activating transcription factor 4 (Atf4) is a leucine-zipper-containing protein of the cAMP response element-binding protein (CREB) family. Ablation of Atf4 (Atf4−/−) in mice leads to severe skeletal defects, including delayed ossification and low bone mass, short stature and short limbs. Atf4 is expressed in proliferative and prehypertrophic growth plate chondrocytes, suggesting an autonomous function of Atf4 in chondrocytes during endochondral ossification. In Atf4−/− growth plate, the typical columnar structure of proliferative chondrocytes is disturbed. The proliferative zone is shortened, whereas the hypertrophic zone is transiently expanded. The expression of Indian hedgehog (Ihh) is markedly decreased, whereas the expression of other chondrocyte marker genes, such as type II collagen (Col2a1), PTH/PTHrP receptor (Pth1r) and type X collagen (Col10a1), is normal. Furthermore, forced expression of Atf4 in chondrocytes induces endogenous Ihh mRNA, and Atf4 directly binds to the Ihh promoter and activates its transcription. Supporting these findings, reactivation of Hh signaling pharmacologically in mouse limb explants corrects the Atf4−/− chondrocyte proliferation and short limb phenotypes. This study thus identifies Atf4 as a novel transcriptional activator of Ihh in chondrocytes that paces longitudinal bone growth by controlling growth plate chondrocyte proliferation and differentiation. PMID:19906842

  5. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes

    PubMed Central

    Rocio Servin-Vences, M; Moroni, Mirko; Lewin, Gary R; Poole, Kate

    2017-01-01

    The joints of mammals are lined with cartilage, comprised of individual chondrocytes embedded in a specialized extracellular matrix. Chondrocytes experience a complex mechanical environment and respond to changing mechanical loads in order to maintain cartilage homeostasis. It has been proposed that mechanically gated ion channels are of functional importance in chondrocyte mechanotransduction; however, direct evidence of mechanical current activation in these cells has been lacking. We have used high-speed pressure clamp and elastomeric pillar arrays to apply distinct mechanical stimuli to primary murine chondrocytes, stretch of the membrane and deflection of cell-substrate contacts points, respectively. Both TRPV4 and PIEZO1 channels contribute to currents activated by stimuli applied at cell-substrate contacts but only PIEZO1 mediates stretch-activated currents. These data demonstrate that there are separate, but overlapping, mechanoelectrical transduction pathways in chondrocytes. DOI: http://dx.doi.org/10.7554/eLife.21074.001 PMID:28135189

  6. Maintaining the Phenotype Stability of Chondrocytes Derived from MSCs by C-Type Natriuretic Peptide

    PubMed Central

    Shi, Quan; Qian, Zhiyong; Liu, Donghua; Sun, Jie; Xu, Juan; Guo, Ximin

    2017-01-01

    Mesenchymal stem cells (MSCs) play a critical role in cartilage tissue engineering. However, MSCs-derived chondrocytes or cartilage tissues are not stable and easily lose the cellular and cartilage phenotype during long-term culture in vitro or implantation in vivo. As a result, chondrocytes phenotypic instability can contribute to accelerated ossification. Thus, it is a big challenge to maintain their correct phenotype for engineering hyaline cartilage. As one member of the natriuretic peptide family, C-type natriuretic peptide (CNP) is found to correlate with the development of the cartilage, affect the chondrocytes proliferation and differentiation. Besides, based on its biological effects on protection of extracellular matrix of cartilage and inhibition of mineralization, we hypothesize that CNP may contribute to the stability of chondrocyte phenotype of MSCs-derived chondrocytes. PMID:28337152

  7. IFT88 influences chondrocyte actin organization and biomechanics

    PubMed Central

    Wang, Z.; Wann, A.K.T.; Thompson, C.L.; Hassen, A.; Wang, W.; Knight, M.M.

    2016-01-01

    Summary Objectives Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. Methods The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88orpk). Confocal microscopy was used to quantify F-actin and myosin IIB organisation. Viscoelastic cell and actin cortex mechanics were determined using micropipette aspiration with actin dynamics visualised in live cells transfected with LifeACT-GFP. Results IFT88orpk cells exhibited a significant increase in acto-myosin stress fibre organisation relative to wild-type (WT) cells in monolayer and an altered response to cytochalasin D. Rounded IFT88orpk cells cultured in suspension exhibited reduced cortical actin expression with reduced cellular equilibrium modulus. Micropipette aspiration resulted in reduced membrane bleb formation in IFT88orpk cells. Following membrane blebbing, IFT88orpk cells exhibited slower reformation of the actin cortex. IFT88orpk cells showed increased actin deformability and reduced cortical tension confirming that IFT regulates actin cortex mechanics. The reduced cortical tension is also consistent with the reduced bleb formation. Conclusions This study demonstrates for the first time that the ciliary protein IFT88 regulates fundamental actin organisation and the stiffness of the actin cortex leading to alterations in cell deformation, mechanical properties and blebbing in an IFT88 chondrocyte cell line. This adds to the growing understanding of the role of primary cilia and IFT in regulating cartilage biology. PMID:26493329

  8. Induction of cartilage integration by a chondrocyte/collagen-scaffold implant

    PubMed Central

    Pabbruwe, Moreica B.; Esfandiari, Ehsanollah; Kafienah, Wael; Tarlton, John F.; Hollander, Anthony P.

    2009-01-01

    The integration of implanted cartilage is a major challenge for the success of tissue engineering protocols. We hypothesize that in order for effective cartilage integration to take place, matrix-free chondrocytes must be induced to migrate between the two tissue surfaces. A chondrocyte/collagen-scaffold implant system was developed as a method of delivering dividing cells at the interface between two cartilage surfaces. Chondrocytes were isolated from bovine nasal septum and seeded onto both surfaces of a collagen membrane to create the chondrocyte/collagen-scaffold implant. A model of two cartilage discs and the chondrocyte/collagen-scaffold sandwiched in between was used to effect integration in vitro. The resulting tissue was analysed histologically and biomechanically. The cartilage–implant–cartilage sandwich appeared macroscopically as one continuous piece of tissue at the end of 40 day cultures. Histological analysis showed tissue continuum across the cartilage–scaffold interface. The integration was dependent on both cells and scaffold. Fluorescent labeling of implanted chondrocytes demonstrated that these cells invade the surrounding mature tissue and drive a remodelling of the extracellular matrix. Using cell-free scaffolds we also demonstrated that some chondrocytes migrated from the natural cartilage into the collagen scaffold. Quantification of integration levels using a histomorphometric repair index showed that the chondrocyte/collagen-scaffold implant achieved the highest repair index compared to controls, reflected functionally through increased tensile strength. In conclusion, cartilage integration can be achieved using a chondrocyte/collagen-scaffold implant that permits controlled delivery of chondrocytes to both host and graft mature cartilage tissues. This approach has the potential to be used therapeutically for implantation of engineered tissue. PMID:19539365

  9. Induction of cartilage integration by a chondrocyte/collagen-scaffold implant.

    PubMed

    Pabbruwe, Moreica B; Esfandiari, Ehsanollah; Kafienah, Wael; Tarlton, John F; Hollander, Anthony P

    2009-09-01

    The integration of implanted cartilage is a major challenge for the success of tissue engineering protocols. We hypothesize that in order for effective cartilage integration to take place, matrix-free chondrocytes must be induced to migrate between the two tissue surfaces. A chondrocyte/collagen-scaffold implant system was developed as a method of delivering dividing cells at the interface between two cartilage surfaces. Chondrocytes were isolated from bovine nasal septum and seeded onto both surfaces of a collagen membrane to create the chondrocyte/collagen-scaffold implant. A model of two cartilage discs and the chondrocyte/collagen-scaffold sandwiched in between was used to effect integration in vitro. The resulting tissue was analysed histologically and biomechanically. The cartilage-implant-cartilage sandwich appeared macroscopically as one continuous piece of tissue at the end of 40 day cultures. Histological analysis showed tissue continuum across the cartilage-scaffold interface. The integration was dependent on both cells and scaffold. Fluorescent labeling of implanted chondrocytes demonstrated that these cells invade the surrounding mature tissue and drive a remodelling of the extracellular matrix. Using cell-free scaffolds we also demonstrated that some chondrocytes migrated from the natural cartilage into the collagen scaffold. Quantification of integration levels using a histomorphometric repair index showed that the chondrocyte/collagen-scaffold implant achieved the highest repair index compared to controls, reflected functionally through increased tensile strength. In conclusion, cartilage integration can be achieved using a chondrocyte/collagen-scaffold implant that permits controlled delivery of chondrocytes to both host and graft mature cartilage tissues. This approach has the potential to be used therapeutically for implantation of engineered tissue.

  10. Salvianolic acid B regulates gene expression and promotes cell viability in chondrocytes.

    PubMed

    Yang, Xiaohong; Liu, Shaojie; Li, Siming; Wang, Pengzhen; Zhu, Weicong; Liang, Peihong; Tan, Jianrong; Cui, Shuliang

    2017-02-28

    Articular chondrocytes reside in lacunae distributed in cartilage responsible for the remodelling of the tissue with limited ability of damage repairing. The in vitro expanded chondrocytes enhanced by factors/agents to obtain large numbers of cells with strengthened phenotype are essential for successful repair of cartilage lesions by clinical cell implantation therapies. Because the salvianolic acid B (Sal B), a major hydrophilic therapeutic agent isolated from Salvia miltiorrhiza, has been widely used to treat diseases and able to stimulate activity of cells, this study examines the effects of Sal B on passaged chondrocytes. Chondrocytes were treated with various concentrations of Sal B in monolayer culture, their morphological properties and changes, and mitochondrial membrane potential were analysed using microscopic analyses, including cellular biochemical staining and confocal laser scanning microscopy. The proteins were quantified by BCA and Western blotting, and the transcription of genes was detected by qRT-PCR. The passaged chondrocytes treated with Sal B showed strengthened cellular synthesis and stabilized mitochondrial membrane potential with upregulated expression of the marker genes for chondrocyte phenotype, Col2-α1, Acan and Sox9, the key Wnt signalling molecule β-catenin and paracrine cytokine Cytl-1. The treatments using CYTL-1 protein significantly increased expression of Col2-α1 and Acan with no effect on Sox9, indicating the paracrine cytokine acts on chondrocytes independent of SOX9. Sal B has ultimately promoted cell growth and enhanced chondrocyte phenotype. The chondrocytes treated with pharmaceutical agent and cytokine in the formulated medium for generating large number of differentiated chondrocytes would facilitate the cell-based therapies for cartilage repair.

  11. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation

    PubMed Central

    Karolak, Matthew R.; Yang, Xiangli; Elefteriou, Florent

    2015-01-01

    Aberrant fibroblast growth factor receptor 3 (FGFR3) signaling disrupts chondrocyte proliferation and growth plate size and architecture, leading to various chondrodysplasias or bone overgrowth. These observations suggest that the duration, intensity and cellular context of FGFR signaling during growth plate chondrocyte maturation require tight, regulated control for proper bone elongation. However, the machinery fine-tuning FGFR signaling in chondrocytes is incompletely defined. We report here that neurofibromin, a Ras-GAP encoded by Nf1, has an overlapping expression pattern with FGFR1 and FGFR3 in prehypertrophic chondrocytes, and with FGFR1 in hypertrophic chondrocytes during endochondral ossification. Based on previous evidence that neurofibromin inhibits Ras-ERK signaling in chondrocytes and phenotypic analogies between mice with constitutive FGFR1 activation and Nf1 deficiency in Col2a1-positive chondrocytes, we asked whether neurofibromin is required to control FGFR1-Ras-ERK signaling in maturing chondrocytes in vivo. Genetic Nf1 ablation in Fgfr1-deficient chondrocytes reactivated Ras-ERK1/2 signaling in hypertrophic chondrocytes and reversed the expansion of the hypertrophic zone observed in mice lacking Fgfr1 in Col2a1-positive chondrocytes. Histomorphometric and gene expression analyses suggested that neurofibromin, by inhibiting Rankl expression, attenuates pro-osteoclastogenic FGFR1 signaling in hypertrophic chondrocytes. We also provide evidence suggesting that neurofibromin in prehypertrophic chondrocytes, downstream of FGFRs and via an indirect mechanism, is required for normal extension and organization of proliferative columns. Collectively, this study indicates that FGFR signaling provides an important input into the Ras-Raf-MEK-ERK1/2 signaling axis in chondrocytes, and that this input is differentially regulated during chondrocyte maturation by a complex intracellular machinery, of which neurofibromin is a critical component. PMID:25616962

  12. Expression of type I collagen and tenascin C is regulated by actin polymerization through MRTF in dedifferentiated chondrocytes.

    PubMed

    Parreno, Justin; Raju, Sneha; Niaki, Mortah Nabavi; Andrejevic, Katarina; Jiang, Amy; Delve, Elizabeth; Kandel, Rita

    2014-10-16

    This study examined actin regulation of fibroblast matrix genes in dedifferentiated chondrocytes. We demonstrated that dedifferentiated chondrocytes exhibit increased actin polymerization, nuclear localization of myocardin related transcription factor (MRTF), increased type I collagen (col1) and tenascin C (Tnc) gene expression, and decreased Sox9 gene expression. Induction of actin depolymerization by latrunculin treatment or cell rounding, reduced MRTF nuclear localization, repressed col1 and Tnc expression, and increased Sox9 gene expression in dedifferentiated chondrocytes. Treatment of passaged chondrocytes with MRTF inhibitor repressed col1 and Tnc expression, but did not affect Sox9 expression. Our results show that actin polymerization regulates fibroblast matrix gene expression through MRTF in passaged chondrocytes.

  13. [Role of the type 3 sodium-dependent phosphate transporter in the calcification of growth plate chondrocytes].

    PubMed

    Sugita, Atsushi; Hayashibara, Tetsuyuki; Yoneda, Toshiyuki

    2006-10-01

    Phosphate is a second most abundant mineral next to calcium. The facts that hypophosphatemia is associated with the retardation of skeletal development and phosphate levels increase during endochondral ossification suggest that phosphate plays a role in cartilage differentiation. The type 3 sodium-dependent phosphate transporter (NPT3) expressed in growth plate chondrocytes transports extracellular phosphates into the cells. These phosphates are utilized for ATP synthesis, which in turn promotes apoptosis of growth plate chondrocytes through activation of the caspase signal pathways. Subsequently, matrix vesicles released from apoptotic chondrocytes accelerate calcification of chondrocytes. Our results suggest that phosphate plays a critical role in terminal differentiation of chondrocytes.

  14. Carbon nanotubes on polymer-based pressure micro-sensor for manometric catheters

    NASA Astrophysics Data System (ADS)

    Teng, M. F.; Hariz, A.; Hsu, H. Y.; Omari, T.

    2008-12-01

    In this paper we investigate the fabrication process of a novel polymer based pressure micro-sensor for use in manometric measurements in medical diagnostics. Review and analysis of polymer materials properties and polymer based sensors has been carried out and has been reported by us elsewhere [1]. The interest in developing a novel polymer based flexible pressure micro-sensor was motivated by the numerous problems inherent in the currently available manometric catheters used in the hospitals. The most critical issue regarding existing catheters was the running and maintenance costs [2]. Thus expensive operation costs lead to reuse of the catheters, which increase the risk for disease transmission. The novel flexible polymer based pressure micro-sensor was build using SU-8, which is a special kind of negative photoresist. Single-walled carbon nanotubes (SWCNTs) and aluminum are used as the sensing material and contacting electrodes respectively. The pressure sensor diaphragm was first patterned on top of an oxidized silicon wafer using SU-8, followed by aluminum deposition to define the electrodes. The carbon nanotube is then deposited using dielectrophoresis (DEP) process. Once the carbon nanotubes are aligned in between these electrodes, the remaining of the sensor structure is formed using SU-8. Patterning of SU-8 and release from the substrate make the device ready for further testing of sensing ability. This research not only investigates the use of polymeric materials to build pressure sensors, but also explores the feasibility of full utilization of polymeric materials to replace conventional silicon materials in micro-sensors fabrication for use in medical environments. The completed sensor is expected to form an integral part of a large versatile sensing system. For example, the biocompatible artificial skin, is predicted to be capable of sensing force, pressure, temperature, and humidity, and may be used in such applications as medical and robotic system.

  15. Encapsulation of the HDACi Ex527 into Liposomes and Polymer-Based Particles.

    PubMed

    Hennig, Dorle; Imhof, Diana

    2017-01-01

    Incorporation of drugs into particles can improve their therapeutic effectiveness. Solubility, half-life time, targeting, and the release of the drug can be modified by the encapsulation into a particle. Histone deacetylase inhibitors have a great potential to be used as therapeutics for many different diseases. In this chapter, we describe the inclusion of the low molar mass HDACi Ex527 into polymer-based particles and liposomes.

  16. Bio-Inspired Dynamically Tunable Polymer-Based Filters for Multi-Spectral Infrared Imaging

    DTIC Science & Technology

    2010-05-01

    learned from UCSB’s analyses of the molecular mechanisms driving dynamically tunable reflectance in cephalopod skin to the development of a high-gain...Spectral, IR, polymer, tunable, cephalopod Daniel E. Morse University of California - Santa Barbara Office of Research The Regents of the University of...tunable reflectance in cephalopod skin to the development of a high-gain, dynamically tunable, polymer-based IR filter. Based on a revolutionary but simple

  17. Polymer-based separations: Synthesis and application of polymers for ionic and molecular recognition

    SciTech Connect

    Alexandratos, S.D.

    1992-01-01

    Polymer-based separations have utilized resins such as sulfonic, acrylic, and iminodiacetic acid resins and the XAD series. Selective polymeric reagents for reaction with a targeted metal ion were synthesized as polymers with two different types of functional groups, each operating on the ions through a different mechanism. There are 3 classes of DMBPs (dual mechanism bifunctional polymers). Research during this period dealing with metal ion recognition focused on two of these classes (reduction of metal ions to metal; selective complexation).

  18. An overview of the pharmacokinetics of polymer-based nanoassemblies and nanoparticles.

    PubMed

    Zhao, Qing-He; Qiu, Li-Yan

    2013-10-01

    Advancements in the design and synthesis of polymer-based nanoassemblies and nanoparticles, combined with achievements in nanotechnology and medicine, have resulted in remarkable applications of polymer nanosystems in the areas of nanomedicine and pharmaceutical sciences. However, a complete understanding of the absorption, distribution, metabolism, and elimination (ADME) processes of such polymer nanosystems in living systems has not been achieved. The influences of the pharmacokinetic parameters of polymer nanomaterials on the ADME processes are reviewed in this article, with discussions of the absorption and transportation of polymer nanoparticles across biological barriers, the factors affecting the bodily distribution of polymer nanocarriers, the transformation of polymer nanomaterials in vivo, the elimination pathway of polymer nanoparticles from biological systems, and perspectives of future pharmacokinetics and safety investigations of polymer-based nanoassemblies. A full and better understanding of the pharmacokinetic parameters of polymer-based nanomaterials is of vital importance in developing polymer nanosystems with optimal pharmacokinetics and biological safety for applications in nanomedicine and the pharmaceutical industry.

  19. PTHrP regulates chondrocyte maturation in condylar cartilage.

    PubMed

    Rabie, A B M; Tang, G H; Xiong, H; Hägg, U

    2003-08-01

    PTHrP is a key factor regulating the pace of endochondral ossification during skeletal development. Mandibular advancement solicits a cascade of molecular responses in condylar cartilage. However, the pace of cellular maturation and its effects on condylar growth are still unknown. The purpose of this study was to evaluate the pattern of expression of PTHrP and correlate it to cellular dynamics of chondrocytes in condylar cartilage during natural growth and mandibular advancement. We fitted 35-day-old Sprague-Dawley rats with functional appliances. Experimental animals with matched controls were labeled with bromodeoxyuridine 3 days before their death, so that mesenchymal cell differentiation could be traced. Mandibular advancement increased the number of differentiated chondroblasts and subsequently increased the cartilage volume. Higher levels of PTHrP expression in experimental animals coincided with the slowing of chondrocyte hypertrophy. Thus, mandibular advancement promoted mesenchymal cell differentiation and triggered PTHrP expression, which retarded their further maturation to allow for more growth.

  20. Study of cryopreservation of articular chondrocytes using the Taguchi method.

    PubMed

    Lyu, Shaw-Ruey; Wu, Wei Te; Hou, Chien Chih; Hsieh, Wen-Hsin

    2010-04-01

    This study evaluates the effect of control factors on cryopreservation of articular cartilage chondrocytes using the Taguchi method. Freeze-thaw experiments based on the L(8)(2(7)) two-level orthogonal array of the Taguchi method are conducted, and ANOVA (analysis of variables) is adopted to determine the statistically significant control factors that affect the viability of the cell. Results show that the type of cryoprotectant, freezing rate, thawing rate, and concentration of cryoprotectant (listed in the order of influence) are the statistically significant control factors that affect the post-thaw viability. The end temperature and durations of the first and second stages of freezing do not affect the post-thaw viability. Within the ranges of the control factors studied in this work, the optimal test condition is found to be a freezing rate of 0.61+/-0.03 degrees C/min, a thawing rate of 126.84+/-5.57 degrees C/min, Me(2)SO cryoprotectant, and a cryoprotectant concentration of 10% (v/v) for maximum cell viability. In addition, this study also explores the effect of cryopreservation on the expression of type II collagen using immunocytochemical staining and digital image processing. The results show that the ability of cryopreserved chondrocytes to express type II collagen is reduced within the first five days of monolayer culture.

  1. Autologous anti-metatype immune response in rabbits.

    PubMed

    Voss, E W; Moore, J K; Weidner-McGufficke, K M; Denzin, L K; Bedzyk, W D; Voss, V H

    1992-02-01

    Rabbits hyperimmunized with fluorescyl-conjugated KLH exhibited bound ligand associated with a high affinity circulating IgG anti-fluorescein population. After cessation of immunogen administration the liganded complexes were eventually spontaneously cleared from the circulation. Individual rabbits synthesized autologous anti-metatype antibodies specific for ligand-antibody complexes. Autologous anti-metatype antibodies reacted optimally with autologous liganded anti-fluorescein antibodies. However, cross reactivity was noted with allogenic rabbit liganded antibodies from three affinity-purified pools. An autologous anti-metatype response, reminiscent of autoanti-idiotype responses, has important implications concerning in vivo clearance of antigen-antibody complexes and may serve as a model to study immune complex diseases.

  2. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel.

    PubMed

    García-López, J; Garciadiego-Cázares, D; Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; Solís-Arrieta, L; García-Carvajal, Z; Sánchez-Betancourt, J I; Ibarra, C; Luna-Bárcenas, G; Velasquillo, C

    2015-12-01

    Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated.

  3. Regulation of Articular Chondrocyte Proliferation and Differentiation by Indian Hedgehog and Parathyroid Hormone-related Protein

    PubMed Central

    Chen, Xuesong; Macica, Carolyn; Nasiri, Ali; Broadus, Arthur E.

    2008-01-01

    Objective The chondrocytes of the epiphyseal growth zone are regulated by the Indian hedgehog (Ihh)-parathyroid hormone-related protein (PTHrP) axis. In weight-bearing joints, this growth zone comes to be subdivided by the secondary ossification center into distinct articular and growth cartilage structures. Here, we explored the cells of origin, localization, regulation of expression, and putative functions of Ihh and PTHrP in articular cartilage in the mouse. Methods We assessed Ihh and PTHrP expression in an allelic PTHrP-lacZ knockin mouse and several versions of PTHrP-null mice. Selected joints were unloaded surgically to examine load-induction of PTHrP and Ihh. Results The embryonic growth zone appears to serve as the source of PTHrP-expressing proliferative chondrocytes that populate both the forming articular cartilage and growth plate structures. In articular cartilage, these cells take the form of articular chondrocytes in the mid-zone. In PTHrP-knockout mice, mineralizing chondrocytes encroach upon developing articular cartilage but appear to be prevented from mineralizing the joint space by Ihh-driven surface chondrocyte proliferation. In growing and adult mice, PTHrP expression in articular chondrocytes is load-induced, and unloading is associated with rapid changes in PTHrP expression and articular chondrocyte differentiation. Conclusion We conclude that the PTHrP-Ihh axis participates in the maintenance of articular cartilage. Dysregulation of this system might contribute to the pathogenesis of arthritis. PMID:19035497

  4. Crucial Role of Elovl6 in Chondrocyte Growth and Differentiation during Growth Plate Development in Mice

    PubMed Central

    Kikuchi, Manami; Matsuzaka, Takashi; Ishii, Kiyoaki; Nakagawa, Yoshimi; Takayanagi, Misa; Yamada, Nobuhiro; Shimano, Hitoshi

    2016-01-01

    ELOVL family member 6, elongation of very long chain fatty acids (Elovl6) is a microsomal enzyme, which regulates the elongation of C12-16 saturated and monounsaturated fatty acids. Elovl6 has been shown to be associated with various pathophysiologies including insulin resistance, atherosclerosis, and non-alcoholic steatohepatitis. To investigate a potential role of Elovl6 during bone development, we here examined a skeletal phenotype of Elovl6 knockout (Elovl6-/-) mice. The Elovl6-/- skeleton was smaller than that of controls, but exhibited no obvious patterning defects. Histological analysis revealed a reduced length of proliferating and an elongated length of hypertrophic chondrocyte layer, and decreased trabecular bone in Elovl6-/- mice compared with controls. These results were presumably due to a modest decrease in chondrocyte proliferation and accelerated differentiation of cells of the chondrocyte lineage. Consistent with the increased length of the hypertrophic chondrocyte layer in Elovl6-/- mice, Collagen10α1 was identified as one of the most affected genes by ablation of Elovl6 in chondrocytes. Furthermore, this elevated expression of Collagen10α1 of Elovl6-null chondrocytes was likely associated with increased levels of Foxa2/a3 and Mef2c mRNA expression. Relative increases in protein levels of nuclear Foxa2 and cytoplasmic histone deacethylase 4/5/7 were also observed in Elovl6 knockdown cells of the chondrocyte lineage. Collectively, our data suggest that Elovl6 plays a critical role for proper development of embryonic growth plate. PMID:27467521

  5. IL-36α: a novel cytokine involved in the catabolic and inflammatory response in chondrocytes

    PubMed Central

    Conde, Javier; Scotece, Morena; Abella, Vanessa; Lois, Ana; López, Verónica; García-Caballero, Tomás; Pino, Jesús; Gómez-Reino, Juan Jesús; Gómez, Rodolfo; Lago, Francisca; Gualillo, Oreste

    2015-01-01

    Recent studies confer to IL-36α pro-inflammatory properties. However, little is known about the expression and function of IL-36α in cartilage. This study sought to analyze the expression of IL-36α in healthy and OA cartilage. Next, we determined the effects of recombinant IL-36α on catabolism and inflammation in chondrocytes. For completeness, part of the signaling pathway elicited by IL-36α was also explored. IL-36α expression was evaluated by immunohistochemistry and RT-qPCR. Expression of MMP-13, NOS2 and COX-2 was also determined in OA articular chondrocytes treated with recombinant IL-36α. IκB-α and P-p38 was explored by western blot. We observed a low constitutive expression of IL-36α in healthy human chondrocytes. However, OA chondrocytes likely expressed more IL-36α than healthy chondrocytes. In addition, immune cells infiltrated into the joint and PBMCs express higher levels of IL-36α in comparison to chondrocytes. OA chondrocytes, treated with IL-36α, showed significant increase in the expression of MMP-13, NOS2 and COX-2. Finally, IL-36α stimulated cells showed NFκB and p38 MAPK activated pathways. IL-36α acts as a pro-inflammatory cytokine at cartilage level, by increasing the expression of markers of inflammation and cartilage catabolism. Like other members of IL-1 family, IL-36α acts through the activation of NFκB and p38 MAPK pathway. PMID:26560022

  6. Cartilage engineering using chondrocyte cell sheets and its application in reconstruction of microtia.

    PubMed

    Zhou, Libin; Ding, Ruiying; Li, Baowei; Han, Haolun; Wang, Hongnan; Wang, Gang; Xu, Bingxin; Zhai, Suoqiang; Wu, Wei

    2015-01-01

    The imperfections of scaffold materials have hindered the clinical application of cartilage tissue engineering. The recently developed cell-sheet technique is adopted to engineer tissues without scaffold materials, thus is considered being potentially able to overcome the problems concerning the scaffold imperfections. This study constructed monolayer and bilayer chondrocyte cell sheets and harvested the sheets with cell scraper instead of temperature-responsive culture dishes. The properties of the cultured chondrocyte cell sheets and the feasibility of cartilage engineering using the chondrocyte cell sheets was further investigated via in vitro and in vivo study. Primary extracellular matrix (ECM) formation and type II collagen expression was detected in the cell sheets during in vitro culture. After implanted into nude mice for 8 weeks, mature cartilage discs were harvested. The morphology of newly formed cartilage was similar in the constructs originated from monolayer and bilayer chondrocyte cell sheet. The chondrocytes were located within evenly distributed ovoid lacunae. Robust ECM formation and intense expression of type II collagen was observed surrounding the evenly distributed chondrocytes in the neocartilages. Biochemical analysis showed that the DNA contents of the neocartilages were higher than native human costal cartilage; while the contents of the main component of ECM, glycosaminoglycan and hydroxyproline, were similar to native human costal cartilage. In conclusion, the chondrocyte cell sheet constructed using the simple and low-cost technique is basically the same with the cell sheet cultured and harvested in temperature-responsive culture dishes, and can be used for cartilage tissue engineering.

  7. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation.

    PubMed

    Khang, Dongwoo; Park, Grace E; Webster, Thomas J

    2008-07-01

    Simultaneous incorporation of intrinsic nanosurface roughness and external electrical stimulation may maximize the regeneration of articular cartilage tissue more than on nanosmooth, electrically nonstimulated biomaterials. Here, we report enhanced functions of chondrocytes (cartilage synthesizing cells) on electrically and nonelectrically stimulated highly dispersed carbon nanotubes (CNT) in polycarbonate urethane (PCU) compared to, respectively, stimulated pure PCU. Specifically, compared to conventional longitudinal (or vertical) electrical stimulation of chondrocytes on conducting surfaces which require high voltage, we developed a lateral electrical stimulation across CNT/PCU composite films of low voltage that enhanced chondrocyte functions. Chondrocyte adhesion and long-term cell densities (up to 2 days) were enhanced (more than 50%) on CNT/PCU composites compared to PCU alone without electrical stimulation. This study further explained why by measuring greater amounts of initial fibronectin adsorption (a key protein that mediates chondrocyte adhesion) on CNT/PCU composites which were more hydrophilic (than pure PCU) due to greater nanometer roughness. Importantly, the same trend was observed and was even significantly enhanced when chondrocytes were subjected to electrical stimulation (more than 200%) compared to nonstimulated CNT/PCU. For this reason, this study provided direct evidence of the positive role that conductive CNT/PCU films can play in promoting functions of chondrocytes for cartilage regeneration.

  8. Encapsulation of chondrocytes in high-stiffness agarose microenvironments for in vitro modeling of osteoarthritis mechanotransduction.

    PubMed

    Jutila, Aaron A; Zignego, Donald L; Schell, William J; June, Ronald K

    2015-05-01

    In articular cartilage, chondrocytes reside within a gel-like pericellular matrix (PCM). This matrix provides a mechanical link through which joint loads are transmitted to chondrocytes. The stiffness of the PCM decreases in the most common degenerative joint disease, osteoarthritis. To develop a system for modeling the stiffness of both the healthy and osteoarthritic PCM, we determined the concentration-stiffness relationships for agarose. We extended these results to encapsulate chondrocytes in agarose of physiological stiffness. Finally, we assessed the relevance of stiffness for chondrocyte mechanotransduction by examining the biological response to mechanical loading for cells encapsulated in low- and high-stiffness gels. We achieved agarose equilibrium stiffness values as large as 51.3 kPa. At 4.0% agarose, we found equilibrium moduli of 34.3 ± 1.65 kPa, and at 4.5% agarose, we found equilibrium moduli of 35.7 ± 0.95 kPa. Cyclical tests found complex moduli of ~100-300 kPa. Viability was >96% for all studies. We observed distinct metabolomic responses in >500 functional small molecules describing changes in cell physiology, between primary human chondrocytes encapsulated in 2.0 and 4.5% agarose indicating that the gel stiffness affects cellular mechanotransduction. These data demonstrate both the feasibility of modeling the chondrocyte pericellular matrix stiffness and the importance of the physiological pericellular stiffness for understanding chondrocyte mechanotransduction.

  9. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products.

    PubMed

    Cecil, Denise L; Johnson, Kristen; Rediske, John; Lotz, Martin; Schmidt, Ann Marie; Terkeltaub, Robert

    2005-12-15

    The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.

  10. Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes.

    PubMed

    Cecil, Denise L; Terkeltaub, Robert

    2008-06-15

    In osteoarthritis (OA), low-grade joint inflammation promotes altered chondrocyte differentiation and cartilage catabolism. S100/calgranulins share conserved calcium-binding EF-hand domains, associate noncovalently as homodimers and heterodimers, and are secreted and bind receptor for advanced glycation end products (RAGE). Chondrocyte RAGE expression and S100A11 release are stimulated by IL-1beta in vitro and increase in OA cartilage in situ. Exogenous S100A11 stimulates chondrocyte hypertrophic differentiation. Moreover, S100A11 is covalently cross-linked by transamidation catalyzed by transglutaminase 2 (TG2), itself an inflammation-regulated and redox stress-inducible mediator of chondrocyte hypertrophic differentiation. In this study, we researched mouse femoral head articular cartilage explants and knee chondrocytes, and a soluble recombinant double point mutant (K3R/Q102N) of S100A11 TG2 transamidation substrate sites. Both TG2 and RAGE knockout cartilage explants retained IL-1beta responsiveness. The K3R/Q102N mutant of S100A11 retained the capacity to bind to RAGE and chondrocytes but lost the capacity to signal via the p38 MAPK pathway or induce chondrocyte hypertrophy and glycosaminoglycans release. S100A11 failed to induce hypertrophy, glycosaminoglycan release, and appearance of the aggrecanase neoepitope NITEGE in both RAGE and TG2 knockout cartilages. We conclude that transamidation by TG2 transforms S100A11 into a covalently bonded homodimer that acquires the capacity to signal through the p38 MAPK pathway, accelerate chondrocyte hypertrophy and matrix catabolism, and thereby couple inflammation with chondrocyte activation to potentially promote OA progression.

  11. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    SciTech Connect

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua; Li, Zubing

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Different PTH administration exerts different effects on condylar chondrocyte. Black-Right-Pointing-Pointer Intermittent PTH administration suppresses condylar chondrocyte proliferation. Black-Right-Pointing-Pointer Continuous PTH administration maintains condylar chondrocyte proliferating. Black-Right-Pointing-Pointer Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular

  12. Generation of Immortalized Equine Chondrocytes With Inducible Sox9 Expression Allows Control of Hypertrophic Differentiation.

    PubMed

    Gurusinghe, Saliya; Hilbert, Bryan; Trope, Gareth; Wang, Lexin; Bandara, Nadeeka; Strappe, Padraig

    2016-10-27

    Immortalization of chondrocytes enables long term in vitro culture; however, the chondrogenic capacity of transformed cells varies, thus highlighting the need to develop a proliferative and tuneable chondrocyte cell line where hypertrophic differentiation can be controlled. In this study the SV40 large T antigen and human telomerase reverse transcriptase were employed to immortalize pooled equine chondrocytes through lentiviral vector mediated transduction either singly or on combination. Transformed chondrocytes proliferated stably over multiple passages, but resulted in significantly lower expression of chondrocyte specific collagen II mRNA (P < 0.0001) and up regulation of the hypertrophic marker collagen X (P < 0.0001) in three dimensional cultures. A Col2a1 promoter driven GFP reporter was constructed for real time monitoring of chondrogenic differentiation and a significant increase in promoter activation was observed in cultures treated with the growth factor TGFβ-3 (P < 0.05). To recapitulate the native articular chondrocyte phenotype we further transduced large T antigen immortalized chondrocytes with lentiviral vectors allowing either constitutive or doxycycline inducible expression of Sox9. In 3D cultures, the Sox9 over-expressing chondrocytes secreted significantly higher levels of extracellular matrix polysaccharide glycosaminoglycan (P < 0.05), while up-regulating collagen II and Aggrecan mRNA (P < 0.05) in both expression systems with a similar patterns observed with imunohistochemical staining. High levels of collagen X mRNA and protein were maintained with constitutive sox9 reflecting hypetrophic differentiation but significantly lower expression could be achieved with inducible Sox9. In conclusion, immortalization of equine chondrocytes results in stable proliferation but a reduction of chondrogenic potential whilst modulation of sox9 expression enabled control of hypertrophic characteristics. J. Cell. Biochem. 9999: 1

  13. Alpha B-Crystallin Protects Rat Articular Chondrocytes against Casein Kinase II Inhibition-Induced Apoptosis

    PubMed Central

    Rho, Jee Hyun; Lee, Sang Yeob; Yoo, Seung Hee; Kim, Hye Young; Chung, Won Tae; Yoo, Young Hyun

    2016-01-01

    Although alpha (α)B-crystallin is expressed in articular chondrocytes, little is known about its role in these cells. Protein kinase casein kinase 2 (CK2) inhibition induces articular chondrocyte death. The present study examines whether αB-crystallin exerts anti-apoptotic activity in articular chondrocytes. Primary rat articular chondrocytes were isolated from knee joint slices. Cells were treated with CK2 inhibitors with or without αB-crystallin siRNA. To examine whether the silencing of αB-crystallin sensitizes rat articular chondrocytes to CK2 inhibition-induced apoptosis, we assessed apoptosis by performing viability assays, mitochondrial membrane potential measurements, flow cytometry, nuclear morphology observations, and western blot analysis. To investigate the mechanism by which αB-crystallin modulates the extent of CK2 inhibition-mediated chondrocyte death, we utilized confocal microscopy to observe the subcellular location of αB-crystallin and its phosphorylated forms and performed a co-immunoprecipitation assay to observe the interaction between αB-crystallin and CK2. Immunochemistry was employed to examine αB-crystallin expression in cartilage obtained from rats with experimentally induced osteoarthritis (OA). Our results demonstrated that silencing of αB-crystallin sensitized rat articular chondrocytes to CK2 inhibitor-induced apoptosis. Furthermore, CK2 inhibition modulated the expression and subcellular localization of αB-crystallin and its phosphorylated forms and dissociated αB-crystallin from CK2. The population of rat articular chondrocytes expressing αB-crystallin and its phosphorylated forms was reduced in an experimentally induced rat model of OA. In summary, αB-crystallin protects rat articular chondrocytes against CK2 inhibition-induced apoptosis. αB-crystallin may represent a suitable target for pharmacological interventions to prevent OA. PMID:27851782

  14. Benzamil sensitive ion channels contribute to volume regulation in canine chondrocytes

    PubMed Central

    Lewis, R; Feetham, CH; Gentles, L; Penny, J; Tregilgas, L; Tohami, W; Mobasheri, A; Barrett-Jolley, R

    2013-01-01

    Background and Purpose Chondrocytes exist within cartilage and serve to maintain the extracellular matrix. It has been postulated that osteoarthritic (OA) chondrocytes lose the ability to regulate their volume, affecting extracellular matrix production. In previous studies, we identified expression of epithelial sodium channels (ENaC) in human chondrocytes, but their function remained unknown. Although ENaC typically has Na+ transport roles, it is also involved in the cell volume regulation of rat hepatocytes. ENaC is a member of the degenerin (Deg) family, and ENaC/Deg-like channels have a low conductance and high sensitivity to benzamil. In this study, we investigated whether canine chondrocytes express functional ENaC/Deg-like ion channels and, if so, what their function may be. Experimental Approach Canine chondrocytes were harvested from dogs killed for unassociated welfare reasons. We used immunohistochemistry and patch-clamp electrophysiology to investigate ENaC expression and video microscopy to analyse the effects of pharmacological inhibition of ENaC/Deg on cell volume regulation. Key Results Immunofluorescence showed that canine chondrocytes expressed ENaC protein. Single-channel recordings demonstrated expression of a benzamil-sensitive Na+ conductance (9 pS), and whole-cell experiments show this to be approximately 1.5 nS per cell with high selectivity for Na+. Benzamil hyperpolarized chondrocytes by approximately 8 mV with a pD2 8.4. Chondrocyte regulatory volume decrease (RVI) was inhibited by benzamil (pD2 7.5) but persisted when extracellular Na+ ions were replaced by Li+. Conclusion and Implications Our data suggest that benzamil inhibits RVI by reducing the influx of Na+ ions through ENaC/Deg-like ion channels and present ENaC/Deg as a possible target for pharmacological modulation of chondrocyte volume. PMID:22928819

  15. Regulation of PTHrP expression by cyclic mechanical strain in postnatal growth plate chondrocytes.

    PubMed

    Xu, Tao; Yang, Kaixiang; You, Hongbo; Chen, Anmin; Wang, Jiang; Xu, Kai; Gong, Chen; Shao, Jingfan; Ma, Zhongxi; Guo, Fengjing; Qi, Jun

    2013-10-01

    Mechanical loading has been widely considered to be a crucial regulatory factor for growth plate development, but the exact mechanisms of this regulation are still not completely understood. In the growth plate, parathyroid hormone-related protein (PTHrP) regulates chondrocyte differentiation and longitudinal growth. Cyclic mechanical strain has been demonstrated to influence growth plate chondrocyte differentiation and metabolism, whereas the relationship between cyclic mechanical strain and PTHrP expression is not clear. The objective of this study was to investigate whether short-term cyclic tensile strain regulates PTHrP expression in postnatal growth plate chondrocytes in vitro and to explore whether the organization of cytoskeletal F-actin microfilaments is involved in this process. To this end, we obtained growth plate chondrocytes from 2-week-old Sprague-Dawley rats and sorted prehypertrophic and hypertrophic chondrocytes using immunomagnetic beads coated with anti-CD200 antibody. The sorted chondrocytes were subjected to cyclic tensile strain of varying magnitude and duration at a frequency of 0.5 Hz. We found that cyclic strain regulates PTHrP expression in a magnitude- and time-dependent manner. Incubation of chondrocytes with cytochalasin D, an actin microfilament-disrupting reagent, blocked the induction of PTHrP expression in response to strain. The results suggest that short-term cyclic tensile strain induces PTHrP expression in postnatal growth plate prehypertrophic and hypertrophic chondrocytes and that PTHrP expression by these chondrocytes may subsequently affect growth plate development. The results also support the idea that the organization of cytoskeletal F-actin microfilaments plays an important role in mechanotransduction.

  16. Parathyroid hormone 1-34 reduces dexamethasone-induced terminal differentiation in human articular chondrocytes.

    PubMed

    Chang, Ling-Hua; Wu, Shun-Cheng; Chen, Chung-Hwan; Wang, Gwo-Jaw; Chang, Je-Ken; Ho, Mei-Ling

    2016-08-10

    Intra-articular injection of dexamethasone (Dex) is occasionally used to relieve pain and inflammation in osteoarthritis (OA) patients. Dex induces terminal differentiation of chondrogenic mesenchymal stem cells in vitro and causes impaired longitudinal skeletal growth in vivo. Parathyroid hormone 1-34 (PTH 1-34) has been shown to reverse terminal differentiation of osteoarthritic articular chondrocytes. We hypothesized that Dex induces terminal differentiation of articular chondrocytes and that this effect can be mitigated by PTH 1-34 treatment. We tested the effect of Dex on terminal differentiation in human articular chondrocytes and further tested if PTH 1-34 reverses the effects. We found that Dex treatment downregulated chondrogenic-induced expressions of SOX-9, collagen type IIa1 (Col2a1), and aggrecan and reduced synthesis of cartilaginous matrix (Col2a1 and sulfated glycosaminoglycan) synthesis. Dex treatment upregulated chondrocyte hypertrophic markers of collagen type X and alkaline phosphatase at mRNA and protein levels, and it increased the cell size of articular chondrocytes and induced cell death. These results indicated that Dex induces terminal differentiation of articular chondrocytes. To test whether PTH 1-34 treatment reverses Dex-induced terminal differentiation of articular chondrocytes, PTH 1-34 was co-administered with Dex. Results showed that PTH 1-34 treatment reversed both changes of chondrogenic and hypertrophic markers in chondrocytes induced by Dex. PTH 1-34 also decreased Dex-induced cell death. PTH 1-34 treatment reduces Dex-induced terminal differentiation and apoptosis of articular chondrocytes, and PTH 1-34 treatment may protect articular cartilage from further damage when received Dex administration.

  17. Hyaline cartilage tissue is formed through the co-culture of passaged human chondrocytes and primary bovine chondrocytes.

    PubMed

    Taylor, Drew W; Ahmed, Nazish; Hayes, Anthony J; Ferguson, Peter; Gross, Allan E; Caterson, Bruce; Kandel, Rita A

    2012-08-01

    To circumvent the problem of a sufficient number of cells for cartilage engineering, the authors previously developed a two-stage culture system to redifferentiate monolayer culture-expanded dedifferentiated human articular chondrocytes by co-culture with primary bovine chondrocytes (bP0). The aim of this study was to analyze the composition of the cartilage tissue formed in stage 1 and compare it with bP0 grown alone to determine the optimal length of the co-culture stage of the system. Biochemical data show that extracellular matrix accumulation was evident after 2 weeks of co-culture, which was 1 week behind the bP0 control culture. By 3 to 4 weeks, the amounts of accumulated proteoglycans and collagens were comparable. Expression of chondrogenic genes, Sox 9, aggrecan, and collagen type II, was also at similar levels by week 3 of culture. Immunohistochemical staining of both co-culture and control tissues showed accumulation of type II collagen, aggrecan, biglycan, decorin, and chondroitin sulfate in appropriate zonal distributions. These data indicate that co-cultured cells form cartilaginous tissue that starts to resemble that formed by bP0 after 3 weeks, suggesting that the optimal time to terminate the co-culture stage, isolate the now redifferentiated cells, and start stage 2 is just after 3 weeks.

  18. Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes

    SciTech Connect

    Hoshiba, Takashi; Yamada, Tomoe; Lu, Hongxu; Kawazoe, Naoki; Tateishi, Tetsuya; Chen, Guoping

    2008-10-03

    Cartilaginous gene expression decreased when chondrocytes were expanded on cell-culture plates. Understanding the dedifferentiation mechanism may provide valuable insight into cartilage tissue engineering. Here, we demonstrated the relationship between the nuclear shape and gene expression during in vitro expansion culture of chondrocytes. Specifically, the projected nuclear area increased and cartilaginous gene expressions decreased during in vitro expansion culture. When the nuclear deformation was recovered by cytochalasin D treatment, aggrecan expression was up-regulated and type I collagen (Col1a2) expression was down-regulated. These results suggest that nuclear deformation may be one of the mechanisms for chondrocyte dedifferentiation during in vitro expansion culture.

  19. Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture.

    PubMed

    Parreno, Justin; Nabavi Niaki, Mortah; Andrejevic, Katarina; Jiang, Amy; Wu, Po-Han; Kandel, Rita A

    2017-02-01

    Tubulin and actin exist as monomeric units that polymerize to form either microtubules or filamentous actin. As the polymerization status (monomeric/polymeric ratio) of tubulin and/or actin have been shown to be important in regulating gene expression and phenotype in non-chondrocyte cells, the objective of this study was to examine the role of cytoskeletal polymerization on the chondrocyte phenotype. We hypothesized that actin and/or tubulin polymerization status modulates the chondrocyte phenotype during monolayer culture as well as in 3D culture during redifferentiation. To test this hypothesis, articular chondrocytes were grown and passaged in 2D monolayer culture. Cell phenotype was investigated by assessing cell morphology (area and circularity), actin/tubulin content, organization and polymerization status, as well as by determination of proliferation, fibroblast and cartilage matrix gene expression with passage number. Bovine chondrocytes became larger, more elongated, and had significantly (P < 0.05) increased gene expression of proliferation-associated molecules (cyclin D1 and ki67), as well as significantly (P < 0.05) decreased cartilage matrix (type II collagen and aggrecan) and increased fibroblast-like matrix, type I collagen (COL1), gene expression by passage 2 (P2). Although tubulin polymerization status was not significantly (P > 0.05) modulated, actin polymerization was increased in bovine P2 cells. Actin depolymerization, but not tubulin depolymerization, promoted the chondrocyte phenotype by inducing cell rounding, increasing aggrecan and reducing COL1 expression. Knockdown of actin depolymerization factor, cofilin, in these cells induced further P2 cell actin polymerization and increased COL1 gene expression. To confirm that actin status regulated COL1 gene expression in human P2 chondrocytes, human P2 chondrocytes were exposed to cytochalasin D. Cytochalasin D decreased COL1 gene expression in human passaged chondrocytes. Furthermore

  20. Interaction of electromagnetic fields with chondrocytes in gel culture. Final report, February-August 1989

    SciTech Connect

    Grodzinsky, A.J.; Gluzband, Y.A.; Buschmann, M.D.

    1990-02-01

    The research accomplished during this project period focused on control experiments designed to establish whether cartilage cells from normal cartilage will continue to synthesize and accumulate normal extracellular matrix in agarose gel culture. This information is essential to properly design experiments to qualify changes in chondrocyte biosynthesis due to applied electromagnetic fields. The results suggest that both normal chondrocytes and swarm rat chondrosarcoma cells in agarose culture can continue to synthesize matrix macromolecules at a rate similar to or slightly higher than that in normal cartilage; also, that chondrocytes in agarose can successfully mediate assembly and accumulation of normal, mechanically functional extracellular matrix.

  1. Treatment of growth arrest by transfer of cultured chondrocytes into physeal defects.

    PubMed

    Lee, E H; Chen, F; Chan, J; Bose, K

    1998-01-01

    Chondrocytes were cultured from cartilage harvested from the iliac apophysis and knee joints of New Zealand White (NZW) rabbits. An experimental model for growth arrest was created by excising the medial half of the proximal growth plate of the tibia of 6-week-old NZW rabbits. The cultured chondrocytes were embedded in agarose and transferred into the growth-plate defect after excision of the physis. Transfer also was performed after excision of the bony bridge in established growth arrest. In both cases, growth arrest with angular deformation of the tibia was prevented. Histologic studies confirmed the viability of the chondrocytes in the new host physis.

  2. Autologous fat grafting: use of closed syringe microcannula system for enhanced autologous structural grafting

    PubMed Central

    Alexander, Robert W; Harrell, David B

    2013-01-01

    Objectives Provide background for use of acquiring autologous adipose tissue as a tissue graft and source of adult progenitor cells for use in cosmetic plastic surgery. Discuss the background and mechanisms of action of closed syringe vacuum lipoaspiration, with emphasis on accessing adipose-derived mesenchymal/stromal cells and the stromal vascular fraction (SVF) for use in aesthetic, structural reconstruction and regenerative applications. Explain a proven protocol for acquiring high-quality autologous fat grafts (AFG) with use of disposable, microcannula systems. Design Explain the components and advantage of use of the patented super luer-lock and microcannulas system for use with the closed-syringe system. A sequential explanation of equipment selection for minimally traumatic lipoaspiration in small volumes is presented, including use of blunt injection cannulas to reduce risk of embolism. Results Thousands of AFG have proven safe and efficacious for lipoaspiration techniques for large and small structural fat grafting procedures. The importance and advantages of gentle harvesting of the adipose tissue complex has become very clear in the past 5 years. The closed-syringe system offers a minimally invasive, gentle system with which to mobilize subdermal fat tissues in a suspension form. Resulting total nuclear counting of undifferentiated cells of the adipose-derived -SVF suggests that the yield achieved is better than use of always-on, constant mechanical pump applied vacuum systems. Conclusion Use of a closed-syringe lipoaspiration system featuring disposable microcannulas offers a safe and effective means of harvesting small volumes of nonmanipulated adipose tissues and its accompanying progenitor cells within the SVF. Closed syringes and microcannulas are available as safe, sterile, disposable, compact systems for acquiring high-quality AFG. Presented is a detailed, step-by-step, proven protocol for performing quality autologous structural adipose

  3. Evaluation of autologous bone marrow in wound healing in animal model: a possible application of autologous stem cells.

    PubMed

    Akela, Ashok; Nandi, Samit Kumar; Banerjee, Dibyajyoti; Das, Partha; Roy, Subhasis; Joardar, Siddhartha Narayan; Mandal, Mohan; Das, Pradip Kumar; Pradhan, Nisith Ranjan

    2012-10-01

    A study was conducted to evaluate the potential of autologous bone marrow-derived cells in comparison with buffy coat of autologous blood for rapid cutaneous wound healing in rabbit model. Three square full-thickness skin excisional wounds were created in 15 selected experimental animals (rabbit) divided randomly into three groups. The wound was treated with autologous bone marrow cells in plasma (group 1), buffy coat of blood in plasma (group 2) and autologous plasma as control (group 3). Wounds were observed for 30 days for granulation tissue formation, biochemical, histomorphological and histochemical evaluation. In this study, granulation tissue appeared significantly lesser in wounds of group 3 animals followed by group 2 and 1 animals. Neovascularisation, granulation tissue formation, denser, thicker and better arranged collagen fibres, reticulin fibres and elastin fibres formation was more in group 1 as compared with other groups. It was concluded that the application of bone marrow-derived nucleated cells into the wound margins resulted in early and significantly faster rate of complete healing as compared with buffy coat of autologous blood and autologous plasma (control). This approach may be beneficial in various surface wounds that heal at a slower rate and recommended for healing of various complicated wound in future.

  4. Autologous cord blood transplantation for metastatic neuroblastoma.

    PubMed

    Ning, Botao; Cheuk, Daniel Ka-Leung; Chiang, Alan Kwok-Shing; Lee, Pamela Pui-Wah; Ha, Shau-Yin; Chan, Godfrey Chi-Fung

    2016-03-01

    Auto-SCT is a common approach for metastatic neuroblastoma with the intention to rescue hematopoiesis after megadose chemotherapy. PBSC or BM is the usual stem cell source for auto-SCT. Auto-CBT for neuroblastoma has very rarely been performed. Currently, case reports are available for two patients only. We performed 13 auto-SCTs for high-risk neuroblastoma from 2007 to 2013, including four cases of metastatic neuroblastoma aged 11-64 months treated with auto-CBT. All four patients had partial or CR to upfront treatments before auto-CBT. Nucleated cell dose and CD34+ cell dose infused were 2.8-8.7 × 10(7) /kg and 0.36-3.9 × 10(5) /kg, respectively. Post-thawed viability was 57-76%. Neutrophil engraftment (>0.5 × 10(9) /L) occurred at 15-33 days, while platelet engraftment occurred at 31-43 days (>20 × 10(9) /L) and 33-65 days (>50 × 10(9) /L) post-transplant, respectively. There was no severe acute or chronic complication. Three patients survived for 1.9-7.7 yr without evidence of recurrence. One patient relapsed at 16 months post-transplant and died of progressive disease. Cord blood may be a feasible alternative stem cell source for auto-SCT in patients with stage 4 neuroblastoma, and outcomes may be improved compared to autologous PBSC or BM transplants.

  5. Clinical outcomes following osteochondral autologous transplantation (OATS).

    PubMed

    Lahav, Amit; Burks, Robert T; Greis, Patrick E; Chapman, Andrew W; Ford, Gregory M; Fink, Barbara P

    2006-07-01

    This study evaluated the clinical outcome in 21 patients (22 knees) undergoing osteochondral autologous transplantation (OATS) in the knee over a 5-year period. Sixteen knees in 15 patients were available for follow-up at an average of 40 months after the procedure. The clinical outcome was analyzed using the IKDC and Knee and Osteoarthritis Outcome Score (KOOS) evaluation forms, a subjective questionnaire, and a clinical examination. At final follow-up, the average KOOS result for pain was 80.6 (range: 56-94), symptoms 53.6 (range: 25-71), function of activities of daily living 93.4 (range: 79-100), function of sports and recreational activities 65.3 (range: 20-100), and quality of life 51.0 (range: 6-88). The average IKDC score was 68.2. On our subjective questionnaire, the average preoperative grade given was 3.1 (range: 1-7) with an improvement at the most recent follow-up to a grade of 8.0 (range: 5-10) (P < .00001). Thirteen (86%) patients reported that they would have the surgery again if they had to make the decision a second time. Age did not correlate with subjective results on the IKDC evaluation (P = .7048) or score difference on our questionnaire (P = .9175). This procedure provides an option for articular resurfacing of the femoral condyles for focal areas of chondral defects with promising results regarding subjective improvement.

  6. Adhesive strength of autologous fibrin glue.

    PubMed

    Yoshida, H; Hirozane, K; Kamiya, A

    2000-03-01

    To establish an easy and rapid method for measuring the adhesive strength of fibrin glue and to clarify the factor(s) most affecting the strength, a study was made on the effect of the concentration of plasma components on the strength of cryoprecipitate (Cryo) prepared from a subject's own autologous plasma to be used as fibrin glue. The adhesive strength of the Cryo was measured with various supporting materials instead of animal skin using a tester of tension and compression. The results were as follows: (1) the strength of Cryo applied to ground flat glass (4 cm2) was significantly greater than that applied to clear glass, clear plastic, or smooth and flat wood chips; (2) the adhesive strength of Cryo depended on the concentration of thrombin with the optimal concentration being 50 units/ml; (3) the concentration of CaCl2 did not affect the adhesive strength of Cryo; (4) the adhesive reaction was dependent on the temperature and the adhesive strength more quickly reached a steady state at 37 degrees C than at lower temperature; (5) the adhesive strength was correlated well with the total concentration of fibrinogen and fibronectin. These results indicate that the adhesive strength of Cryo can be easily and quickly evaluated using a tester and ground glass with thrombin at 50 units/ml, and that the adhesive strength of Cryo can be predicted from the total concentration of fibrinogen and fibronectin.

  7. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13

    SciTech Connect

    Sakurai, Atsuo; Okahashi, Nobuo; Maruyama, Fumito; Ooshima, Takashi; Hamada, Shigeyuki; Nakagawa, Ichiro

    2008-08-29

    Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assay revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis.

  8. Cells of the synovium in rheumatoid arthritis. Chondrocytes.

    PubMed

    Otero, Miguel; Goldring, Mary B

    2007-01-01

    Rheumatoid arthritis (RA) is one of the inflammatory joint diseases in a heterogeneous group of disorders that share features of destruction of the extracellular matrices of articular cartilage and bone. The underlying disturbance in immune regulation that is responsible for the localized joint pathology results in the release of inflammatory mediators in the synovial fluid and synovium that directly and indirectly influence cartilage homeostasis. Analysis of the breakdown products of the matrix components of joint cartilage in body fluids and quantitative imaging techniques have been used to assess the effects of the inflammatory joint disease on the local remodeling of joint structures. The role of the chondrocyte itself in cartilage destruction in the human rheumatoid joint has been difficult to address but has been inferred from studies in vitro and in animal models. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the disruption of the integrity of the cartilage matrix in RA.

  9. Allogeneic versus autologous blood transfusion and survival after radical prostatectomy

    PubMed Central

    Chalfin, Heather J.; Frank, Steven M.; Feng, Zhaoyong; Trock, Bruce J.; Drake, Charles G.; Partin, Alan W.; Humphreys, Elizabeth; Ness, Paul M.; Jeong, Byong C.; Lee, Seung B.; Han, Misop

    2016-01-01

    BACKGROUND Potential adverse effects of blood transfusion (BT) remain controversial, especially for clinical outcomes after curative cancer surgery. Some postulate that immune modulation after allogeneic BT predisposes to recurrence and death, but autologous superiority is not established. This study assessed whether BT is associated with long-term prostate cancer recurrence and survival a large single-institutional radical prostatectomy (RP) database. STUDY DESIGN AND METHODS Between 1994 and 2012, a total of 11,680 patients had RP with available outcome and transfusion data. A total of 7443 (64%) had complete covariate data. Clinical variables associated with biochemical recurrence-free survival (BRFS), cancer-specific survival (CSS), and overall survival (OS) were identified with Cox proportional hazards models for three groups: no BT (reference, 27.7%, n = 2061), autologous BT only (68.8%, n = 5124), and any allogeneic BT (with or without autologous, 3.5%, n = 258). RESULTS Median (range) follow-up was 6 (1–18) years. Kaplan-Meier analysis showed significantly decreased OS (but not BRFS or PCSS) in the allogeneic group versus autologous and no BT groups (p = 0.006). With univariate analysis, any allogeneic BT had a hazard ratio (HR) of 2.29 (range, 1.52–3.46; p < 0.0001) for OS, whereas autologous BT was not significant (HR, 1.04 [range, 0.82–1.32], p = 0.752). In multivariable models, neither autologous nor allogeneic BT was independently associated with BRFS, CSS, or OS, and a dose response was not observed for allogeneic units and BRFS. CONCLUSION Although allogeneic but not autologous BT was associated with decreased long-term OS, after adjustment for confounding clinical variables, BT was not independently associated with OS, BRFS, or CSS regardless of transfusion type. Notably, no association was observed between allogeneic BT and cancer recurrence. Observed differences in OS may reflect confounding. PMID:24601996

  10. Intraoperative hemodilution and autologous platelet rich plasma collection: two techniques for collecting fresh autologous blood.

    PubMed

    Triulzi, D J; Ness, P M

    1995-03-01

    Intraoperative hemodilution (IH) and autologous platelet rich plasma (APRP) collection are two techniques used to obtain autologous blood in the operating room. They have been used to reduce allogeneic blood exposure in patients undergoing both cardiac and non-cardiac surgery. Both components have the advantage of providing fresh blood not subject to the storage lesion. Whole blood (IH) or platelet rich plasma is removed from the patient as anesthesia is induced and replaced with acellular fluid. The blood is transfused back after bypass or major bleeding has ceased. Although used commonly, the data supporting the use of either technique are controversial. Methodologic problems which have confounded studies evaluating their utility include: poorly defined transfusion criteria, concommitant use of other blood conservation techniques (i.e. cell salvage, pharmacologic agents, hypothermia, controlled hypotension) and changing transfusion practices with greater tolerance of normovolemic anemia. Randomized controlled studies with well defined up to date transfusion criteria are needed to identify patients likely to benefit from these techniques.

  11. Irradiated human chondrocytes expressing bone morphogenetic protein 2 promote healing of osteoporotic bone fracture in rats.

    PubMed

    Yi, Youngsuk; Choi, Kyoung Baek; Lim, Chae-Lyul; Hyun, Jong-Pil; Lee, Hyeon-Youl; Lee, Kun Bok; Yun, Lillian; Ayverdi, Asli; Hwang, Sally; Yip, Vivian; Noh, Moon Jong; Lee, Kwan Hee

    2009-10-01

    Bone morphogenetic protein 2 (BMP2) was selected as a transgene to regenerate osteoporotic bone defects after several BMPs were tested using a bone formation study in nude mice. Human chondrocytes were transduced with a BMP2-containing retroviral vector, and single clones were selected. The cells were characterized over numerous passages for growth and BMP2 expression. The single clones were irradiated and tested for viability. BMP2 expression lasted for 3 weeks before dying off completely after approximately 1 month. Irradiated and non-irradiated transduced chondrocytes successfully healed fractures in osteoporotic rats induced by ovariectomy. The osteoinducing effect of irradiated cells was better than that of their non-irradiated counterparts or a chondrocytes-only control. This study showed that delivering BMP2 from the transduced and irradiated chondrocytes could be an effective and safe method of repairing osteoporotic bone fractures.

  12. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration.

    PubMed

    Koike, Masato; Nojiri, Hidetoshi; Ozawa, Yusuke; Watanabe, Kenji; Muramatsu, Yuta; Kaneko, Haruka; Morikawa, Daichi; Kobayashi, Keiji; Saita, Yoshitomo; Sasho, Takahisa; Shirasawa, Takuji; Yokote, Koutaro; Kaneko, Kazuo; Shimizu, Takahiko

    2015-06-25

    Mechanical stress and aging are major risk factors of cartilage degeneration. Human studies have previously reported that oxidative damage increased, while SOD2 protein was reciprocally downregulated in osteoarthritic degenerated cartilage. However, it remains unclear whether mitochondrial superoxide imbalance in chondrocytes causes cartilage degeneration. We herein demonstrate that mechanical loading promoted mitochondrial superoxide generation and selective Sod2 downregulation in chondrocytes in vivo and that mitochondrial superoxide inducer also downregulated Sod2 expression in chondrocytes in vitro. A genetically manipulated model revealed that Sod2 deficiency in chondrocytes also resulted in mitochondrial superoxide overproduction and dysfunction, thus leading to cartilage degeneration. Intra-articular injection of a permeable antioxidant effectively suppressed the mechanical loading-induced mitochondrial superoxide generation and cartilage degeneration in mice. Our findings demonstrate that mitochondrial superoxide plays a pivotal role in the development and progression of osteoarthritis, and the mitochondrial superoxide balance may therefore be a promising target for the treatment of cartilage degeneration.

  13. Chondrocyte Morphology in Stiff and Soft Agarose Gels and the Influence of Fetal Calf Serum.

    PubMed

    Karim, Asima; Hall, Andrew C

    2017-05-01

    Changes to chondrocyte volume/morphology may have deleterious effects on extracellular matrix (ECM) metabolism potentially leading to cartilage deterioration and osteoarthritis (OA). The factors controlling chondrocyte properties are poorly understood, however, pericellular matrix (PCM) weakening may be involved. We have studied the density, volume, morphology, and clustering of cultured bovine articular chondrocytes within stiff (2% w/v) and soft (0.2% w/v) three-dimensional agarose gels. Gels with encapsulated chondrocytes were cultured in Dulbecco's Modified Eagle's Medium (DMEM; fetal calf serum (FCS) 1-10%;380 mOsm) for up to 7 days. Chondrocytes were fluorescently labeled after 1, 3, and 7 days with 5-chloromethylfluorescein-diacetate (CMFDA) and propidium iodide (PI) or 1,5-bis{[2-(di-methylamino)ethyl]amino}-4,8-dihydroxyanthracene-9,10-dione (DRAQ5) to identify cytoplasmic space or DNA and imaged by confocal laser scanning microscopy (CLSM). Chondrocyte density, volume, morphology, and clustering were quantified using Volocity™ software. In stiff gels after 7 d with 10% FCS, chondrocyte density remained unaffected and morphology was relatively normal with occasional cytoplasmic processes. However, in soft gels by day 1, chondrocyte volume increased (P = 0.0058) and by day 7, density increased (P = 0.0080), along with the percentage of chondrocytes of abnormal morphology (P < 0.0001) and enhanced clustering (P < 0.05), compared to stiff gels. FCS exacerbated changes to density (P < 0.01), abnormal morphology (P < 0.001) and clustering (P < 0.01) compared to lower concentrations at the same gel strength. Reduced gel stiffness and/or increased FCS concentrations promoted chondrocyte proliferation and clustering, increased cell volume, and stimulated abnormal morphology, producing similar changes to those occurring in OA. The increased penetration of factors in FCS into soft gels may be important in the development of

  14. Giant magnetoelectric effect at low frequencies in polymer-based thin film composites

    SciTech Connect

    Kulkarni, A.; Meurisch, K.; Strunskus, T.; Faupel, F.; Teliban, I.; Jahns, R.; Knöchel, R.; Piorra, A.

    2014-01-13

    A polymer-based magnetoelectric 2-2 composite was fabricated in a thin film approach by direct spin coating of polyvinylidenefluoride-co-trifluoroethylene onto a Metglas substrate without the usage of an adhesive for the mechanical coupling between the piezoelectric and magnetostrictive materials. For a prototype single-sided clamped cantilever, a magnetoelectric coefficient as high as 850 V cm{sup −1} Oe{sup −1} is observed at its fundamental bending mode resonance frequency at 27.8 Hz and a detection limit of 10 pTHz{sup −1/2} at its second bending mode resonance frequency at 169.5 Hz.

  15. Electroencephalogram measurement from the hairy part of the scalp using polymer-based dry microneedle electrodes.

    PubMed

    Arai, M; Kudo, Y; Miki, N

    2015-01-01

    This paper reports a successful electroencephalogram (EEG) measurement from the hairy part of the scalp using a polymer-based dry microneedle electrode. The electrode consists of 25 pillars, each of which has a sharp microneedle on the top. Hairs are collected into the gaps of the pillars and the microneedles can reach the scalp surface. Since the microneedles can penetrate through the stratum corneum, no conductive gel is necessary to acquire high quality EEG. We experimentally investigated the pillar diameters in EEG measurement from the occipital region with hairs. The fabricated electrodes successfully measured EEG without any skin preparation or conductive gel.

  16. Polymer-based Photonic Crystal Cavity Sensor for Optical Detection in the Visible Wavelength Region.

    PubMed

    Maeno, Kenichi; Aki, Shoma; Sueyoshi, Kenji; Hisamoto, Hideaki; Endo, Tatsuro

    2016-01-01

    In this study, a polymer-based two-dimensional photonic crystal (PhC) cavity for visible-light-based optical-sensing applications was designed and fabricated for the first time. The PhC cavity configuration was designed to operate at 650 nm, and fabricated with a polymer (resist) on a silicon substrate using electron-beam lithography. For investigating sensing applications based on shifting of condition exhibiting a photonic bandgap (PBG), the polymer monolayer deposition (layer-by-layer method) was monitored as the light-intensity change at the cavity position. Consequently, the monolayer-level detection of polyions was achieved.

  17. Cysteine-Mediated Redox Regulation of Cell Signaling in Chondrocytes Stimulated With Fibronectin Fragments

    PubMed Central

    Wood, Scott T.; Long, David L.; Reisz, Julie A.; Yammani, Raghunatha R.; Burke, Elizabeth A.; Klomsiri, Chananat; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Objective Oxidative posttranslational modifications of intracellular proteins can potentially regulate signaling pathways relevant to cartilage destruction in arthritis. In this study, oxidation of cysteine residues to form sulfenic acid (S-sulfenylation) was examined in osteo-arthritic (OA) chondrocytes and investigated in normal chondrocytes as a mechanism by which fragments of fibronectin (FN-f) stimulate chondrocyte catabolic signaling. Methods Chondrocytes isolated from OA and normal human articular cartilage were analyzed using analogs of dimedone that specifically and irreversibly react with protein S-sulfenylated cysteines. Global S-sulfenylation was measured in cell lysates with and without FN-f stimulation by immunoblotting and in fixed cells by confocal microscopy. S-sulfenylation in specific proteins was identified by mass spectroscopy and confirmed by immunoblotting. Src activity was measured in live cells using a fluorescence resonance energy transfer biosensor. Results Proteins in chondrocytes isolated from OA cartilage were found to have elevated basal levels of S-sulfenylation relative to those of chondrocytes from normal cartilage. Treatment of normal chondrocytes with FN-f induced increased levels of S-sulfenylation in multiple proteins, including the tyrosine kinase Src. FN-f treatment also increased the levels of Src activity. Pretreatment with dimedone to alter S-sulfenylation function or with Src kinase inhibitors inhibited FN-f–induced production of matrix metalloproteinase 13. Conclusion These results demonstrate for the first time the presence of oxidative posttranslational modification of proteins in human articular chondrocytes by S-sulfenylation. Due to the ability to regulate the activity of a number of cell signaling pathways, including catabolic mediators induced by fibronectin fragments, S-sulfenylation may contribute to cartilage destruction in OA and warrants further investigation. PMID:26314228

  18. Stimulation by concanavalin A of cartilage-matrix proteoglycan synthesis in chondrocyte cultures

    SciTech Connect

    Yan, W.Q.; Nakashima, K.; Iwamoto, M.; Kato, Y. )

    1990-06-15

    The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of (35S)sulfate and (3H)glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on (35S)sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on (35S)sulfate incorporation into small proteoglycans and (3H)glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on (35S)sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased (3H)thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.

  19. Filamin B Regulates Chondrocyte Proliferation and Differentiation through Cdk1 Signaling

    PubMed Central

    Lian, Gewei; Zhang, Jingping; Hecht, Jonathan L.; Sheen, Volney L.

    2014-01-01

    Humans who harbor loss of function mutations in the actin-associated filamin B (FLNB) gene develop spondylocarpotarsal syndrome (SCT), a disorder characterized by dwarfism (delayed bone formation) and premature fusion of the vertebral, carpal and tarsal bones (premature differentiation). To better understand the cellular and molecular mechanisms governing these seemingly divergent processes, we generated and characterized FlnB knockdown ATDC5 cell lines. We found that FlnB knockdown led to reduced proliferation and enhanced differentiation in chondrocytes. Within the shortened growth plate of postnatal FlnB−/− mice long bone, we observed a similarly progressive decline in the number of rapidly proliferating chondrocytes and premature differentiation characterized by an enlarged prehypertrophic zone, a widened Col2a1+/Col10a1+ overlapping region, but relatively reduced hypertrophic zone length. The reduced chondrocyte proliferation and premature differentiation were, in part, attributable to enhanced G2/M phase progression, where fewer FlnB deficient ATDC5 chondrocytes resided in the G2/M phase of the cell cycle. FlnB loss reduced Cdk1 phosphorylation (an inhibitor of G2/M phase progression) and Cdk1 inhibition in chondrocytes mimicked the null FlnB, premature differentiation phenotype, through a β1-integrin receptor- Pi3k/Akt (a key regulator of chondrocyte differentiation) mediated pathway. In this context, the early prehypertrophic differentiation provides an explanation for the premature differentiation seen in this disorder, whereas the progressive decline in proliferating chondrocytes would ultimately lead to reduced chondrocyte production and shortened bone length. These findings begin to define a role for filamin proteins in directing both cell proliferation and differentiation through indirect regulation of cell cycle associated proteins. PMID:24551245

  20. Cryopreservation Effect on Proliferative and Chondrogenic Potential of Human Chondrocytes Isolated from Superficial and Deep Cartilage

    PubMed Central

    Muiños-López, Emma; Rendal-Vázquez, Mª Esther; Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; Díaz-Prado, Silvia; Blanco, Francisco J

    2012-01-01

    Objectives: To compare the proliferative and chondrogenic potential of fresh and frozen chondrocytes isolated from superficial and deep articular cartilage biopsies. Materials and Methodology: The study included 12 samples of fresh and frozen healthy human knee articular cartilage. Cell proliferation was tested at 3, 6 and 9 days. Studies of mRNA quantification, protein expression and immunofluorescence for proliferation and chondrogenic markers were performed. Results: Stimulation of fresh and frozen chondrocytes from both superficial and deep cartilage with fetal bovine serum produced an increase in the proliferative capacity compared to the non-stimulated control group. In the stimulated fresh cells group, the proliferative capacity of cells from the deep biopsy was greater than that from cells from the superficial biopsy (0.046 vs 0.028, respectively, p<0.05). There was also a significant difference between the proliferative capacity of superficial zone fresh (0.028) and frozen (0.051) chondrocytes (p<0.05). CCND1 mRNA and protein expression levels, and immunopositivity for Ki67 revealed a higher proliferative capacity for fresh articular chondrocytes from deep cartilage. Regarding the chondrogenic potential, stimulated fresh cells showed higher SOX9 and Col II expression in chondrocytes from deep than from superficial zone (p<0.05, T student test). Conclusions: The highest rate of cell proliferation and chondrogenic potential of fresh chondrocytes was found in cells obtained from deep cartilage biopsies, whereas there were no statistically significant differences in proliferative and chondrogenic capacity between biopsy origins with frozen chondrocytes. These results indicate that both origin and cryopreservation affect the proliferative and chondrogenic potential of chondrocytes. PMID:22523526

  1. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes.

    PubMed

    Bougault, Carole; Aubert-Foucher, Elisabeth; Paumier, Anne; Perrier-Groult, Emeline; Huot, Ludovic; Hot, David; Duterque-Coquillaud, Martine; Mallein-Gerin, Frédéric

    2012-01-01

    Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond

  2. Crosstalk between FLS and chondrocytes is regulated by HIF-2α-mediated cytokines in arthritis.

    PubMed

    Huh, Yun Hyun; Lee, Gyuseok; Song, Won-Hyun; Koh, Jeong-Tae; Ryu, Je-Hwang

    2015-12-04

    Rheumatoid arthritis (RA) and osteoarthritis (OA), two common types of arthritis, affect the joints mainly by targeting the synovium and cartilage. Increasing evidence indicates that a significant network connects synovitis and cartilage destruction during the progression of arthritis. We recently demonstrated that hypoxia-inducible factor (HIF)-2α causes RA and OA by regulating the expression of catabolic factors in fibroblast-like synoviocytes (FLS) or chondrocytes. To address the reciprocal influences of HIF-2α on FLS and chondrocytes, we applied an in vitro co-culture system using a transwell apparatus. When co-cultured with HIF-2α-overexpressing chondrocytes, FLS exhibited increased expression of matrix metalloproteinases and inflammatory mediators, similar to the effects induced by tumor-necrosis factor (TNF)-α treatment of FLS. Moreover, chondrocytes co-cultured with HIF-2α-overexpressing FLS exhibited upregulation of Mmp3 and Mmp13, which is similar to the effects induced by interleukin (IL)-6 treatment of chondrocytes. We confirmed these differential HIF-2α-induced effects via distinct secretory mediators using Il6-knockout cells and a TNF-α-blocking antibody. The FLS-co-culture-induced gene expression changes in chondrocytes were significantly abrogated by IL-6 deficiency, whereas TNF-α neutralization blocked the alterations in gene expression associated with co-culture of FLS with chondrocytes. Our results further suggested that the observed changes might reflect the HIF-2α-induced upregulation of specific receptors for TNF-α (in FLS) and IL-6 (in chondrocytes). This study broadens our understanding of the possible regulatory mechanisms underlying the crosstalk between the synovium and cartilage in the presence of HIF-2α, and may suggest potential new anti-arthritis therapies.

  3. The involvement and possible mechanism of NR4A1 in chondrocyte apoptosis during osteoarthritis

    PubMed Central

    Shi, Xinge; Ye, Hui; Yao, Xuedong; Gao, Yanzheng

    2017-01-01

    Osteoarthritis (OA) is a joint disease caused by the breakdown of joint cartilage and underlying bone, and places great burdens to daily life of patients. Nuclear orphan receptor nuclear receptor subfamily 4, group A, member 1 (NR4A1) is vital for cell apoptosis, but little is known about its role in OA. This study aims to reveal the expression and function of NR4A1 during OA chondrocyte apoptosis. NR4A1 expression by qRT-PCR and western blot, and chondrocyte apoptosis by TUNEL assay were detected in normal and OA joint cartilage. NR4A1 was located in cartilage sections by immunohistofluorescence. Chondrocytes from normal joint cartilage were cultured in vitro for interleukin 6 (IL6) or tumor necrosis factor (TNF) treatment and si-NR4A1 transfection, after which the possible mechanism involving NR4A1 was analyzed. Results showed that NR4A1 expression and chondrocyte apoptosis were significantly elevated in OA cartilage (P < 0.05 and P < 0.01). NR4A1 was located in nuclei of normal cartilage chondrocytes, but was translocated to mitochondria and co-located with B-cell lymphoma 2 in OA chondrocytes. NR4A1 expression in cultured chondrocytes could be promoted by both IL6 and TNF treatment. si-NR4A1 partly reduced TNF-induced cell apoptosis. Inhibiting p38 by SB203580 could decrease TNF-induced NR4A1 to some extent, while inhibiting JNK could not. So NR4A1 is likely to facilitate OA chondrocyte apoptosis, which is associated with p38 MAPK and mitochondrial apoptosis pathway. This study provides a potential therapeutic target for OA treatment and offers information for regulatory mechanisms in OA. PMID:28337303

  4. Role of insulin-transferrin-selenium in auricular chondrocyte proliferation and engineered cartilage formation in vitro.

    PubMed

    Liu, Xia; Liu, Jinchun; Kang, Ning; Yan, Li; Wang, Qian; Fu, Xin; Zhang, Yuanyuan; Xiao, Ran; Cao, Yilin

    2014-01-21

    The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS) on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%), or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X) and glycosaminoglycan (GAG) expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype)/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS) in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan) and hypertrophy (i.e., lower mRNA expression of Col X and MMP13). In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  5. Autologous hematopoietic stem cell transplantation for systemic sclerosis.

    PubMed

    Milanetti, Francesca; Bucha, Jurate; Testori, Alessandro; Burt, Richard K

    2011-03-01

    Systemic sclerosis is a rare disorder manifesting as skin and internal organ fibrosis, a diffuse vasculopathy, inflammation, and features of autoimmunity. Patients with diffuse cutaneous disease or internal organ involvement have a poor prognosis with high mortality. To date no therapy has been shown to reverse the natural course of the disease. Immune suppressive drugs are commonly utilized to treat patients, but randomized trials have generally failed to demonstrate any long-term benefit. In phase I/II trials, autologous hematopoietic stem cell transplantation (HSCT) has demonstrated impressive reversal of skin fibrosis, improved functionality and quality of life, and stabilization of internal organ function, but initial studies were complicated by significant treatment-related mortality. Treatment-related mortality was reduced by better pre-transplant evaluation to exclude patients with compromised cardiac function and by treating patients earlier in disease, allowing selected patients the option of autologous HSCT treatment. There are currently three ongoing randomized trials of autologous HSCT for systemic sclerosis: ASSIST (American Systemic Sclerosis Immune Suppression versus Transplant), SCOT (scleroderma cyclophosphamide versus Transplant), and ASTIS (Autologous Stem cell Transplantation International Scleroderma). The results from these trials should clarify the role of autologous HSCT in the currently limited therapeutic arsenal of severe systemic sclerosis.

  6. Cryopreservation of Autologous Blood (Red Blood Cells, Platelets and Plasma)

    NASA Astrophysics Data System (ADS)

    Ebine, Kunio

    Prevention of post-transfusion hepatitis is still a problem in cardiovascular surgery. We initiated the cryopreservation of autologous blood for the transfusion in elective cardiovascular surgery since 1981. This study includes 152 surgical cases in which autologous frozen, allogeneic frozen, and/or allogeneic non-frozen blood were used. In the 152 surgical cases, there were 69 cases in which autologous blood only (Group I) was used; 12 cases with autologous and allogeneic frozen blood (Group II); 46 cases with autologous and allgeneic frozen plus allogeneic non-frozen blood (Group III); and 25 cases with allogeneic frozen plus allogeneic non-frozen blood (Group IV). No hepatitis developed in Groups I (0%) and II (0%), but there was positive hepatitis in Groups III (4.3%) and IV (8.0%) . In 357 cases of those who underwent surgery with allogeneic non-frozen whole blood during the same period, the incidence rate of hepatitis was 13.7% (49/357). Patients awaiting elective surgery can store their own blood in the frozen state. Patients who undergo surgery with the cryoautotransfusion will not produce any infections or immunologic reactions as opposed to those who undergo surgery with the allogeneic non-frozen blood.

  7. Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.

    PubMed

    Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E

    2010-01-01

    Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.

  8. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.

    PubMed

    Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J

    2012-05-01

    Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.

  9. Efficiency of Human Epiphyseal Chondrocytes with Differential Replication Numbers for Cellular Therapy Products

    PubMed Central

    Nasu, Michiyo; Takayama, Shinichiro

    2016-01-01

    The cell-based therapy for cartilage or bone requires a large number of cells; serial passages of chondrocytes are, therefore, needed. However, fates of expanded chondrocytes from extra fingers remain unclarified. The chondrocytes from human epiphyses morphologically changed from small polygonal cells to bipolar elongated spindle cells and to large polygonal cells with degeneration at early passages. Gene of type II collagen was expressed in the cells only at a primary culture (Passage 0) and Passage 1 (P1) cells. The nodules by implantation of P0 to P8 cells were composed of cartilage and perichondrium. The cartilage consisted of chondrocytes with round nuclei and type II collagen-positive matrix, and the perichondrium consisted of spindle cells with type I collage-positive matrix. The cartilage and perichondrium developed to bone with marrow cavity through enchondral ossification. Chondrogenesis and osteogenesis by epiphyseal chondrocytes depended on replication number in culture. It is noteworthy to take population doubling level in correlation with pharmaceutical efficacy into consideration when we use chondrocytes for cell-based therapies. PMID:27999805

  10. Chitosan Enriched Three-Dimensional Matrix Reduces Inflammatory and Catabolic Mediators Production by Human Chondrocytes

    PubMed Central

    Oprenyeszk, Frederic; Sanchez, Christelle; Dubuc, Jean-Emile; Maquet, Véronique; Henrist, Catherine; Compère, Philippe; Henrotin, Yves

    2015-01-01

    This in vitro study investigated the metabolism of human osteoarthritic (OA) chondrocytes encapsulated in a spherical matrix enriched of chitosan. Human OA chondrocytes were encapsulated and cultured for 28 days either in chitosan-alginate beads or in alginate beads. The beads were formed by slowly passing dropwise either the chitosan 0.6%–alginate 1.2% or the alginate 1.2% solution through a syringe into a 102 mM CaCl2 solution. Beads were analyzed histologically after 28 days. Interleukin (IL)-6 and -8, prostaglandin (PG) E2, matrix metalloproteinases (MMPs), hyaluronan and aggrecan were quantified directly in the culture supernatant by specific ELISA and nitric oxide (NO) by using a colorimetric method based on the Griess reaction. Hematoxylin and eosin staining showed that chitosan was homogeneously distributed through the matrix and was in direct contact with chondrocytes. The production of IL-6, IL-8 and MMP-3 by chondrocytes significantly decreased in chitosan-alginate beads compared to alginate beads. PGE2 and NO decreased also significantly but only during the first three days of culture. Hyaluronan and aggrecan production tended to increase in chitosan-alginate beads after 28 days of culture. Chitosan-alginate beads reduced the production of inflammatory and catabolic mediators by OA chondrocytes and tended to stimulate the synthesis of cartilage matrix components. These particular effects indicate that chitosan-alginate beads are an interesting scaffold for chondrocytes encapsulation before transplantation to repair cartilage defects. PMID:26020773

  11. Passaged Adult Chondrocytes Can Form Engineered Cartilage with Functional Mechanical Properties: A Canine Model

    PubMed Central

    Ng, Kenneth W.; Lima, Eric G.; Bian, Liming; O'Conor, Christopher J.; Jayabalan, Prakash S.; Stoker, Aaron M.; Kuroki, Keiichi; Cook, Cristi R.; Ateshian, Gerard A.; Cook, James L.

    2010-01-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-β3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects. PMID:19845465

  12. In vitro isolation and cultivation of human chondrocytes for osteoarthritis renovation.

    PubMed

    Xu, Jiaming; Zhang, Changqing

    2014-08-01

    The purpose of this study was to evaluate the repair effects of chondrocytes that were cultured in vitro on osteoarthritis (OA). Chondrocytes were isolated from fetal rabbits and cultured in Biosilon microcarriers. Sixty rabbits were randomly divided into three groups equally (blank group, model group, treatment group). The rabbit knee OA model was established by inducing papain. Rabbits in the treatment group were injected with the chondrocytes that were cultured in vitro. Hematoxylin-eosin (HE) staining and gross morphologic observation were conducted. Expression level of cytokines such as IL-1bβ, IL-6, and TNF-α in cartilage synovial cells was also analyzed by an ELISA assay. The cultured chondrocyte was validated by a positive stain of type II collagen and vimentin by immunofluorescence. Compared to the model group, the articular cartilage of the rabbit knee in the treatment group showed a normal color, smooth surface, and none of malacia and coloboma. HE staining indicated that the articular surface of the treatment group tended to be smooth and flat; the matrix stained tinge and the cartilage destruction and fiber hyperplasia of the synovia were lightened. The expression levels of IL-1bβ, IL-6, and TNF-α also declined in the treatment group. OA symptoms were improved by treating with chondrocytes. In summary, the animal experiment in the present study indicated that chondrocyte injection played an active effect on renovation of OA.

  13. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells.

    PubMed

    Hubka, Kelsea M; Dahlin, Rebecca L; Meretoja, Ville V; Kasper, F Kurtis; Mikos, Antonios G

    2014-12-01

    Articular cartilage exhibits an inherently low rate of regeneration. Consequently, damage to articular cartilage often requires surgical intervention. However, existing treatments generally result in the formation of fibrocartilage tissue, which is inferior to native articular cartilage. As a result, cartilage engineering strategies seek to repair or replace damaged cartilage with an engineered tissue that restores full functionality to the impaired joint. These strategies often involve the use of chondrocytes, yet in vitro expansion and culture can lead to undesirable changes in chondrocyte phenotype. This review focuses on the use of articular chondrocytes and mesenchymal stem cells (MSCs) in either monoculture or coculture for the enhancement of chondrogenesis. Coculture strategies increasingly outperform their monoculture counterparts with regard to chondrogenesis and present unique opportunities to attain chondrocyte phenotype stability in vitro. Methods to prevent chondrocyte dedifferentiation and promote chondrocyte redifferentiation as well as to promote the chondrogenic differentiation of MSCs while preventing MSC hypertrophy are discussed.

  14. Impact of Sterilization Method on Protein Aggregation and Particle Formation in Polymer-Based Syringes.

    PubMed

    Kiminami, Hideaki; Krueger, Aaron B; Abe, Yoshihiko; Yoshino, Keisuke; Carpenter, John F

    2017-04-01

    The effects of sterilization methods on the storage stability of erythropoietin (EPO) in polymer-based syringes were assessed by quantifying protein oxidation, aggregation, and particle formation. Micro-particle counting and size exclusion chromatography coupled with a multi-angle light scattering detector demonstrated much lower levels of protein particles and aggregates for EPO stored for 12 weeks in steam-sterilized than in radiation (Rad)-sterilized syringes. Intermediate levels of damage were observed for EPO stored in ethylene oxide-sterilized syringes. HPLC analysis documented that the Rad-sterilized syringes caused increased oxidation of the protein during storage. In contrast, in the steam- and ethylene oxide-sterilized syringes EPO oxidation did not change. Analysis with electron spin resonance revealed that only Rad-sterilized syringes formed radicals in the syringe body, which persisted over the 12-week storage period. These results demonstrated that Rad-sterilization generated radicals in the syringes which in turn caused increased EPO oxidation, particle formation, and protein aggregation. Therefore, steam sterilization was shown to be a preferable sterilization method for the polymer-based syringe system when using biopharmaceutical drugs highly sensitive to oxidation, and particle formation and aggregation.

  15. Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina

    2007-03-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  16. Performance of a Polymer-Based Sensor Package at Extreme Temperature

    NASA Astrophysics Data System (ADS)

    Lahokallio, Sanna; Hoikkanen, Maija; Marttila, Tuomas; Vuorinen, Jyrki; Kiilunen, Janne; Frisk, Laura

    2016-02-01

    There is an increasing need for inexpensive packaging structures for demanding industrial electronics applications. This paper studies the usability of a polymer-based sensor package at very high temperatures. Resistance-based temperature sensors were attached with polymer-based electrically conductive adhesives (ECAs) onto flexible polyimide (PI) printed circuit boards (PCB). The materials used in the structure were not specifically designed for high temperature use. However, they were all commercial materials, easily available and typically reliable under normal use conditions of consumer electronics. The samples were aged at 240°C and electrically monitored during the test. Electrically, the sensor samples were observed to fail after 100 h of aging. However, material characterisation revealed that the materials started to degrade much earlier. The adhesive layer in the PI PCB and the ECA materials started to degrade after just 30 h of aging at 240°C, and mechanically the materials were observed to become brittle, making them prone to cracking and delamination. The results showed that such a polymer package is usable at 240°C for relatively short exposure times, but under longer exposure times the mechanical reliability of the package deteriorates and this needs to be taken into account.

  17. An Internship Program for Deaf and Hard of Hearing Students in Polymer-Based Nanocomposites

    SciTech Connect

    Cebe,P.; Cherdack, D.; Guertin, R.; Haas, T.; S. Ince, B.; Valluzzi, R.

    2006-01-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  18. Cartilage Defect Treatments: With or without Cells? Mesenchymal Stem Cells or Chondrocytes? Traditional or Matrix-Assisted? A Systematic Review and Meta-Analyses

    PubMed Central

    Deng, Zhantao; Jin, Jiewen; Zhao, Jianning; Xu, Haidong

    2016-01-01

    Articular cartilage defects have been addressed by using multiple strategies. In the last two decades, promising new strategies by using assorted scaffolds and cell sources to induce tissue regeneration have emerged, such as autologous chondrocyte implantation (ACI) and mesenchymal stem cell implantation (MSCI). However, it is still controversial in the clinical strategies when to choose these treatments. Thus, we conducted a systematic review and meta-analyses to compare the efficacy and safety of different cartilage treatments. In our study, 17 studies were selected to compare different treatments for cartilage defects. The results of meta-analyses indicated that cell-based cartilage treatments showed significant better efficacy than cell-free treatments did (OR: 4.27, 95% CI: 2.19–8.34; WMD: 10.11, 95% CI: 2.69–16.53). Another result indicated that MACT had significant better efficacy than traditional ACI did (OR: 0.49, 95% CI: 0.30–0.82). Besides, the incidence of graft hypertrophy of MACT was slightly lower than that of traditional ACI (OR: 2.43, 95% CI: 1.00–5.94). Current data showed that the cell-based treatments and MACT are better options for cartilage treatments, but more well-designed comparative studies are still needed to enhance our understanding of different treatments for cartilage defects. PMID:26839570

  19. Quantitative analysis of voltage-gated potassium currents from primary equine (Equus caballus) and elephant (Loxodonta africana) articular chondrocytes.

    PubMed

    Mobasheri, A; Gent, T C; Womack, M D; Carter, S D; Clegg, P D; Barrett-Jolley, R

    2005-07-01

    In this comparative study, we have established in vitro models of equine and elephant articular chondrocytes, examined their basic morphology, and characterized the biophysical properties of their primary voltage-gated potassium channel (Kv) currents. Using whole cell patch-clamp electrophysiological recording from first-expansion and first-passage cells, we measured a maximum Kv conductance of 0.15 +/- 0.04 pS/pF (n = 10) in equine chondrocytes, whereas that in elephant chondrocytes was significantly larger (0.8 +/- 0.4 pS/pF, n = 4, P chondrocytes (V = -22 +/- 6 mV, k = 11.8 +/- 3 mV, n = 4) were not significantly different from those of horse chondrocytes (V = -12.5 +/- 4.3 mV, k = 12 +/- 2, n = 10). This suggests that there would be slightly more resting Kv activation in elephant chondrocytes than in their equine counterparts. Kinetic analysis revealed that both horse and elephant chondrocyte Kv currents had similar activation and inactivation parameters. Pharmacological investigation of equine chondrocyte Kv currents showed them to be powerfully inhibited by the potassium channel blockers tetraethylammonium and 4-aminopyridine but not by dendrotoxin-I. Immunohistochemical studies using polyclonal antibodies to Kv1.1-Kv1.5 provided evidence for expression of Kv1.4 in equine chondrocytes. This is the first electrophysiological study of equine or elephant chondrocytes. The data support the notion that voltage-gated potassium channels play an important role in regulating the membrane potential of articular chondrocytes and will prove useful in future modeling of electromechanotransduction of fully differentiated articular chondrocytes in these and other species.

  20. Improving diagnosis of appendicitis. Early autologous leukocyte scanning.

    PubMed

    DeLaney, A R; Raviola, C A; Weber, P N; McDonald, P T; Navarro, D A; Jasko, I

    1989-10-01

    A prospective nonrandomized study investigating the accuracy and utility of autologous leukocyte scanning in the diagnosis of apendicitis was performed. One hundred patients in whom the clinical diagnosis of appendicitis was uncertain underwent indium 111 oxyquinoline labelling of autologous leukocytes and underwent scanning 2 hours following reinjection. Of 32 patients with proved appendicitis, three scans revealed normal results (false-negative rate, 0.09). Of 68 patients without appendicitis, three scans had positive results (false-positive rate, 0.03; sensitivity, 0.91; specificity, 0.97; predictive value of positive scan, 0.94; predictive value of negative scan, 0.96; and overall accuracy, 0.95). Scan results altered clinical decisions in 19 patients. In 13 cases, the scan produced images consistent with diagnoses other than appendicitis, expediting appropriate management. Early-imaging111 In oxyquinoline autologous leukocyte scanning is a practical and highly accurate adjunct for diagnosing appendicitis.

  1. Compression regulates gene expression of chondrocytes through HDAC4 nuclear relocation via PP2A-dependent HDAC4 dephosphorylation.

    PubMed

    Chen, Chongwei; Wei, Xiaochun; Wang, Shaowei; Jiao, Qiang; Zhang, Yang; Du, Guoqing; Wang, Xiaohu; Wei, Fangyuan; Zhang, Jianzhong; Wei, Lei

    2016-07-01

    Biomechanics plays a critical role in the modulation of chondrocyte function. The mechanisms by which mechanical loading is transduced into intracellular signals that regulate chondrocyte gene expression remain largely unknown. Histone deacetylase 4 (HDAC4) is specifically expressed in chondrocytes. Mice lacking HDAC4 display chondrocyte hypertrophy, ectopic and premature ossification, and die early during the perinatal period. HDAC4 has a remarkable ability to translocate between the cell's cytoplasm and nucleus. It has been established that subcellular relocation of HDAC4 plays a critical role in chondrocyte differentiation and proliferation. However, it remains unclear whether subcellular relocation of HDAC4 in chondrocytes can be induced by mechanical loading. In this study, we first report that compressive loading induces HDAC4 relocation from the cytoplasm to the nucleus of chondrocytes via stimulation of Ser/Thr-phosphoprotein phosphatases 2A (PP2A) activity, which results in dephosphorylation of HDAC4. Dephosphorylated HDAC4 relocates to the nucleus to achieve transcriptional repression of Runx2 and regulates chondrocyte gene expression in response to compression. Our results elucidate the mechanism by which mechanical compression regulates chondrocyte gene expression through HDAC4 relocation from the cell's cytoplasm to the nucleus via PP2A-dependent HDAC4 dephosphorylation.

  2. Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration.

    PubMed

    Trickey, Wendy R; Baaijens, Frank P T; Laursen, Tod A; Alexopoulos, Leonidas G; Guilak, Farshid

    2006-01-01

    Chondrocytes in articular cartilage are regularly subjected to compression and recovery due to dynamic loading of the joint. Previous studies have investigated the elastic and viscoelastic properties of chondrocytes using micropipette aspiration techniques, but in order to calculate cell properties, these studies have generally assumed that cells are incompressible with a Poisson's ratio of 0.5. The goal of this study was to measure the Poisson's ratio and recovery properties of the chondrocyte by combining theoretical modeling with experimental measures of complete cellular aspiration and release from a micropipette. Chondrocytes isolated from non-osteoarthritic and osteoarthritic cartilage were fully aspirated into a micropipette and allowed to reach mechanical equilibrium. Cells were then extruded from the micropipette and cell volume and morphology were measured throughout the experiment. This experimental procedure was simulated with finite element analysis, modeling the chondrocyte as either a compressible two-mode viscoelastic solid, or as a biphasic viscoelastic material. By fitting the experimental data to the theoretically predicted cell response, the Poisson's ratio and the viscoelastic recovery properties of the cell were determined. The Poisson's ratio of chondrocytes was found to be 0.38 for non-osteoarthritic cartilage and 0.36 for osteoarthritic chondrocytes (no significant difference). Osteoarthritic chondrocytes showed an increased recovery time following full aspiration. In contrast to previous assumptions, these findings suggest that chondrocytes are compressible, consistent with previous studies showing cell volume changes with compression of the extracellular matrix.

  3. Necrobiotic xanthogranuloma successfully treated with autologous stem cell transplantation.

    PubMed

    Goede, Jeroen S; Misselwitz, Benjamin; Taverna, Christian; Schanz, Urs; Dispenzieri, Angela; Hummel, Yvonne; Trüeb, Ralph M; Fehr, Jörg

    2007-04-01

    Paraproteinemia can be complicated by necrobiotic xanthogranuloma. Therapeutic options for this progressive disease are limited, and there is no agreement on a single best strategy. We report the case of a patient with a massive periorbital infiltration narrowing the palpebral fissure and blinding the patient. Conventional myeloma therapy had only limited benefit in our patient. However, he was successfully treated with high-dose chemotherapy followed by autologous stem cell transplantation, rendering the patient free of symptoms. This is the first report of autologous stem cell transplantation in a patient with necrobiotic xanthogranuloma.

  4. Activation of Indian Hedgehog Promotes Chondrocyte Hypertrophy and Upregulation of MMP-13 in Human Osteoarthritic Cartilage

    PubMed Central

    Wei, Fangyuan; Zhou, Jingming; Wei, Xiaochun; Zhang, Juntao; Fleming, Braden C.; Terek, Richard; Pei, Ming; Chen, Qian; Liu, Tao; Wei, Lei

    2012-01-01

    Objective The objectives of this study were to 1) determine the correlation between osteoarthritis (OA) and Ihh expression, and 2) establish the effects of Ihh on expression of markers of chondrocyte hypertrophy and MMP-13 in human OA cartilage. Design OA cartilage and synovial fluid samples were obtained during total knee arthroplasty. Normal cartilage samples were obtained from intra-articular tumor resections, and normal synovial fluid samples were obtained from healthy volunteers and the contralateral uninjured knee of patients undergoing anterior cruciate ligament reconstruction. OA was graded using the Mankin score. Expression of Ihh in synovial fluid was determined by western blot. Ihh, type X collagen and MMP-13 mRNA were determined by real time PCR. Protein expression of type X collagen and MMP-13 in cartilage samples were analyzed with immunohistochemistry. Chondrocyte size was measured using image analysis. Results Ihh expression was increased 2.6 fold in OA cartilage and 37% in OA synovial fluid when compared to normal control samples. Increased expression of Ihh was associated with the severity of OA and expression of markers of chondrocyte hypertrophy: type X collagen and MMP-13, and chondocyte size. Chondrocytes were more spherical with increasing severity of OA. There was a significant correlation between Mankin score and cell size (r2= 0.80) and Ihh intensity (r2 = 0.89). Exogenous Ihh induced a 6.8 fold increase of type X collagen and 2.8 fold increase of MMP-13 mRNA expression in cultured chondrocytes. Conversely, knockdown of Ihh by siRNA and Hh inhibitor Cyclopamine had the opposite effect. Conclusions Ihh expression correlates with OA progression and changes in chondrocyte morphology and gene expression consistent with chondrocyte hypertrophy and cartilage degradation seen in OA cartilage. Thus, Ihh may be a potential therapeutic target to prevent OA progression. PMID:22469853

  5. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.

    PubMed

    Wu, John Z; Herzog, Walter

    2006-01-01

    Experimental evidence indicates that the biosynthetic activity of chondrocytes is associated with the mechanical environment. For example, excessive, repetitive loading has been found to induce cell death, morphological and cellular damage, as seen in degenerative joint disease, while cyclic, physiological-like loading has been found to trigger a partial recovery of morphological and ultrastructural aspects in osteoarthritic human articular chondrocytes. Mechanical stimuli are believed to influence the biosynthetic activity via the deformation of cells. However, the in situ deformation of chondrocytes for cyclic loading conditions has not been investigated experimentally or theoretically. The purpose of the present study was to simulate the mechanical response of chondrocytes to cyclic loading in unconfined compression tests using a finite element model. The material properties of chondrocytes and extracellular matrix were considered to be biphasic. The time-histories of the shape and volume variations of chondrocytes at three locations (i.e., surface, center, and bottom) within the cartilage were predicted for static and cyclic loading conditions at two frequencies (0.02 and 0.1 Hz) and two amplitudes (0.1 and 0.2 MPa). Our results show that cells at different depths within the cartilage deform differently during cyclic loading, and that the depth dependence of cell deformation is influenced by the amplitude of the cyclic loading. Cell deformations under cyclic loading of 0.02 Hz were found to be similar to those at 0.1 Hz. We conclude from the simulation results that, in homogeneous cartilage layers, cell deformations are location-dependent, and further are affected by load magnitude. In physiological conditions, the mechanical environment of cells are even more complex due to the anisotropy, depth-dependent inhomogeneity, and tension-compression non-linearity of the cartilage matrix. Therefore, it is feasible to speculate that biosynthetic responses of

  6. Molecular regulation of articular chondrocyte function and its significance in osteoarthritis.

    PubMed

    Schroeppel, J P; Crist, J D; Anderson, H C; Wang, J

    2011-03-01

    Osteoarthritis (OA) is the most common form of joint disease. Histopathologically, OA is characterized by a progressive loss of articular cartilage, osteophyte formation, thickening of subchondral bone, and subchondral cyst formation. All current therapies are aimed at symptomatic control and have limited impacts on impeding or reversing the histopathologic progression to advanced OA. Previous studies have shown that overexpression of matrix-degrading proteinases and proinflammatory cytokines is associated with osteoarthritic cartilage degradation. However, clinical trials applying an inhibitor of proteinases or proinflammatory cytokines have been unsuccessful. A more sophisticated understanding of the regulatory mechanisms that control the function of articular chondrocytes is paramount to developing effective treatments. Since multiple catabolic factors and pathological chondrocyte hypertrophy are involved in the development of OA, it is important to identify which upstream factors regulate the expression of catabolic molecules and/or chondrocyte hypertrophy in articular cartilage. This review summarizes the current studies on the molecular regulation, with a main focus on transcriptional regulation, of the function of adult articular chondrocytes and its significance in the pathogenesis and treatment of OA. Recent studies have discovered that transcription factor Nfat1 may play an important role in maintaining the physiological function of adult articular chondrocytes. Nfat1-deficient mice exhibit normal skeletal development but display most of the features of human OA as adults, including chondrocyte hypertrophy with overexpression of specific matrix-degrading proteinases and proinflammatory cytokines in adult articular cartilage. ß-catenin transcriptional signaling in articular chondrocytes may also be involved in the pathogenesis of OA. Activation of ß-catenin leads to OA-like phenotypes with overexpression of specific matrix-degrading proteinases in

  7. Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Quan, Ying-yao; Wang, Xiao-ping; Chen, Tong-sheng

    2016-05-01

    Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA).

  8. Differential regulation of COL2A1 expression in developing and mature chondrocytes.

    PubMed

    Seghatoleslami, M R; Lichtler, A C; Upholt, W B; Kosher, R A; Clark, S H; Mack, K; Rowe, D W

    1995-12-01

    To investigate the regulation of type II collagen gene expression in cells undergoing chondrogenic differentiation, we have employed a 5-kbp genomic fragment of the human type II collagen gene which contains 1.8kbp of upstream sequences, the transcription start site, the first exon and 3 kbp of intronic sequences, fused to either lac Z or chloramphenicol acetyl transferase-reporter gene. Transient expression studies revealed a parallel increase in transgene activity and endogenous type II collagen mRNA levels during the onset of the cartilage differentiation of limb mesenchymal cells in high-density micromass cultures. At later periods in culture, however, the transgene activity declines, although steady-state levels of type II collagen mRNA are reported to continue to increase (Kosher et al.: J. Cell. Biol. 102: 1151-1156, 1986; Kravis and Upholt. Dev. Biol. 108: 164-172, 1985). In addition, the activity of the transgene is seven-fold higher at the onset of chondrogenic differentiation in micromass cultures that in well differentiated sternal chondrocytes, although similar levels of type II collagen transcripts are found in these cells. Furthermore, deletions of intronic segments resulted in greater drop in activity of the constructs in differentiating chondrocytes in micromass cultures than in mature sternal chondrocytes. The expression of the construct in transgenic mice is higher at the onset of chondrogenic differentiation and in newly differentiated chondrocytes than in more mature differentiated chondrocytes. Based on these observations, it appears that the mechanisms involved in the regulation of the type II collagen gene at the onset of chondrocyte differentiation are different from those resulting in the maintenance of its expression in fully differentiated chondrocytes.

  9. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS.

    PubMed

    Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2014-09-01

    This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h. Cell viability was evaluated by CCK-8. Annexin V/PI double staining and Hoechst 33258 staining were used to determine the fashion of SNP-induced chondrocytes death. Mitochondrial membrane potential (ΔΨm) was measured by using flow cytometry (FCM) with TMRM and Rhodamine 123 staining. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were confirmed by FCM analysis with DCFH-DA and DAF-FM DA staining. Cytoskeleton proteins of chondrocytes co-stained with Actin-Trakcer Green and Tubulin-Trakcer Red were validated by confocal microscopy. SNP induced time- and dose-dependent chondrocytes apoptosis with decline of ΔΨm, activation of caspases as well as cytoskeletal remodeling. SNP induced a significant induction of both ROS and NO. RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP-induced NO production. Pretreatment with NO scavengers did not significantly prevent SNP-induced apoptosis and cytoskeletal remodeling. SNP induces NO-independent ROS production which dominates rabbit articular chondrocyte apoptosis, and RV protects chondrocytes against SNP-induced apoptosis via scavenging ROS instead of NO.

  10. Effects of PTHrP on chondrocytes of sika deer antler.

    PubMed

    Guo, Bin; Wang, Shou-Tang; Duan, Cui-Cui; Li, Dang-Dang; Tian, Xue-Chao; Wang, Qu-Yuan; Yue, Zhan-Peng

    2013-11-01

    Parathyroid-hormone-related peptide (PTHrP) is an important regulator of chondrocyte differentiation in growth plates but little is known about its role in deer antler cartilage. The aim of the present study was to use the deer antler as a model to determine the possible role of PTHrP in regulating chondrocyte differentiation of deer antler. PTHrP and its receptor PTH1R mRNA were highly expressed in the perichondrium and cartilage of sika deer antler, as shown by in situ hybridization. Chondrocytes of deer antler were identified by toluidine blue staining of glycosaminoglycan and immunocytochemical staining of type II collagen (Col II). Treatment with PTHrP (1-34) reduced the expression of prehypertrophic chondrocyte marker Col IX and hypertrophic chondrocyte marker Col X. In order to confirm the mechanism of action of PTHrP, we initially examined the expression of cyclin D1, Bcl-2 and runt-related transcription factor 2 (Runx2) in sika deer antler by in situ hybridization and found that cyclin D1, Runx2 and Bcl-2 mRNA were also expressed in antler chondrocytes. Exogenous PTHrP induced the expression of cyclin D1 and Bcl-2 mRNA by various signalling pathways, whereas it inhibited Runx2 expression through PKA, p38MAPK, MEK and PI3K signalling pathways. Thus, PTHrP might promote the proliferation of antler chondrocytes and prevent their differentiation; it might furthermore influence the growth and development of sika deer antler.

  11. The inorganic pyrophosphate transporter ANK preserves the differentiated phenotype of articular chondrocyte.

    PubMed

    Cailotto, Frederic; Sebillaud, Sylvie; Netter, Patrick; Jouzeau, Jean-Yves; Bianchi, Arnaud

    2010-04-02

    The differentiated phenotype of chondrocyte is lost in pathological situations and after interleukin (IL)-1beta challenge. Wnt proteins and the inorganic pyrophosphate (PP(i)) transporter Ank regulate the differentiation process in many cell types. We investigated the possible contribution of Ank and/or PP(i) to the maintenance of the differentiated chondrocyte phenotype with special care to Wnt signaling. Primary articular chondrocytes lost their phenotype upon IL-1beta challenge, with cessation of type II collagen and Sox-9 expression. Ank expression and PP(i) transport were strongly reduced by IL-1beta, whereas Wnt-5a was the only Wnt protein increased. Transient overexpression of Ank counteracted most of IL-1beta effects on Type II collagen, Sox-9, and Wnt-5a expression. When resting chondrocytes were transfected with a siRNA against Ank, this reproduced the phenotype induced by IL-1beta. In both cases, no markers for hypertrophic chondrocytes were detected. The conditioned supernatant from chondrocytes knocked-down for Ank contained Wnt-5a, which activated Tcf/Lef reporter plasmids and promoted translocation of beta-catenin into the nucleus without activating the c-Jun N-terminal kinase (JNK) pathway. Supplementation with PP(i) compensated for most effects of Ank deficiency on Type II collagen, Sox-9, and Wnt-5 expression, both in IL-1beta and Ank knock-down conditions. Phenotype changes induced by IL-1beta were also supported by activation of the JNK pathway, but this latter was not sensitive to PP(i) supplementation. Altogether our data demonstrate that the transport of PP(i) by ANK contributed to the maintenance of the differentiated phenotype of chondrocyte by controlling the canonical Wnt pathway in a Wnt-5a-dependent manner.

  12. Hydrogen Permeability of a Polymer Based Composite Tank Material Under Tetra-Axial Strain

    NASA Technical Reports Server (NTRS)

    Stokes, Eric H.

    2003-01-01

    In order to increase the performance of future expendable and reusable launch vehicles and reduce per-pound payload launch costs, weight reductions have been sought in vehicle components. Historically, the cryogenic propellant tanks for launch vehicles have been constructed from metal. These are some of the largest structural components in the vehicle and contribute significantly to the vehicles total dry weight. A successful replacement material will be conformable, have a high strength to weight ratio, and have a low gas-permeability to the cryogens being stored, i.e., oxygen and hydrogen. Polymer-based composites are likely candidates to fill this role. Polymer and polymer-based composites in general are known to have acceptable gas permeation properties in their as-cured state.1 The use of polymer-based composites for this application has been proposed for some time.2 Some successes have been reported with oxygen3, but other than the DC-XA experience, those with hydrogen have been limited. The primary reason for this has been the small molecular diameter of hydrogen, the lower temperatures of the liquid, and that the composite materials examined to date have all been susceptible to microcrack formation in response to the thermal-mechanical cycles experienced in the use-environment. There have been numerous accounts of composite materials with reported acceptable resistance to the formation of microcracks when exposed to various mechanical and/or thermal cycles. However, virtually all of these studies have employed uniaxial loads and there has been no discussion or empirical evidence pertaining to how these loads relate to the biaxial state of stress in the material in its use environment. Furthermore, many of these studies have suffered from a lack of instrument sensitivity in detecting hydrogen permeability, no standards, insufficient documentation of test conditions, testing of cycled materials in their unload state, and/or false assumptions about the nature

  13. The life cycle of chondrocytes in the developing skeleton.

    PubMed

    Shum, Lillian; Nuckolls, Glen

    2002-01-01

    Cartilage serves multiple functions in the developing embryo and in postnatal life. Genetic mutations affecting cartilage development are relatively common and lead to skeletal malformations, dysfunction or increased susceptibility to disease or injury. Characterization of these mutations and investigation of the molecular pathways in which these genes function have contributed to an understanding of the mechanisms regulating skeletal patterning, chondrogenesis, endochondral ossification and joint formation. Extracellular growth and differentiation factors including bone morphogenetic proteins, fibroblast growth factors, parathyroid hormone-related peptide, extracellular matrix components, and members of the hedgehog and Wnt families provide important signals for the regulation of cell proliferation, differentiation and apoptosis. Transduction of these signals within the developing mesenchymal cells and chondrocytes results in changes in gene expression mediated by transcription factors including Smads, Msx2, Sox9, signal transducer and activator of transcription (STAT), and core-binding factor alpha 1. Further investigation of the interactions of these signaling pathways will contribute to an understanding of cartilage growth and development, and will allow for the development of strategies for the early detection, prevention and treatment of diseases and disorders affecting the skeleton.

  14. Biocompatibility of polysebacic anhydride microparticles with chondrocytes in engineered cartilage

    PubMed Central

    Ponnurangam, Sathish; O'Connell, Grace D.; Hung, Clark T.; Somasundaran, Ponisseril

    2015-01-01

    One of main challenges in developing clinically relevant engineered cartilage is overcoming limited nutrient diffusion due to progressive elaboration of extracellular matrix at the periphery of the construct. Macro-channels have been used to decrease the nutrient path-length; however, the channels become occluded with matrix within weeks in culture, reducing nutrient diffusion. Alternatively, microparticles can be imbedded throughout the scaffold to provide localized nutrient delivery. In this study, we evaluated biocompatibility of polysebacic anhydride (PSA) polymers and the effectiveness of PSA-based microparticles for short-term delivery of nutrients in engineered cartilage. PSA-based microparticles were biocompatible with juvenile bovine chondrocytes for concentrations up to 2mg/mL; however, cytotoxicity was observed at 20mg/mL. Cytotoxicity at high concentrations is likely due to intracellular accumulation of PSA degradation products and resulting lipotoxicity. Cytotoxicity of PSA was partially reversed in the presence of bovine serum albumin. In conclusion, the findings from this study demonstrate concentration-dependent biocompatibility of PSA-based microparticles and potential application as a nutrient delivery vehicle that can be imbedded in scaffolds for tissue engineering. PMID:26398146

  15. Review on Medusa:a polymer-based sustained release technology for protein and peptide drugs.

    PubMed

    Chan, Y-P; Meyrueix, R; Kravtzoff, R; Nicolas, F; Lundstrom, K

    2007-07-01

    The polymer-based Medusa system (Flamel Technologies) has been designed for slow release of therapeutic proteins and peptides. The Medusa II consists of a poly L-glutamate backbone grafted with hydrophobic alpha-tocopherol molecules, creating a colloidal suspension of nanoparticles (10 - 50 nm) in water. The sustained drug release is based on reversible drug interactions with hydrophobic nanodomains within the nanoparticles. In vivo, it is suggested that the therapeutic protein is displaced by endogenous proteins present in physiological fluids, leading to a slow drug release. The peak concentration is dramatically decreased and the protein release substantially extended. The Medusa technology has been applied to subcutaneous injection for several therapeutic proteins, such as IL-2 and IFN-alpha(2b), in animal models (rats, dogs, monkeys) and clinical trials in renal cancer (IL-2) and hepatitis C (IFN-alpha(2b)) patients.

  16. Viologens as charge carriers in a polymer-based battery anode.

    PubMed

    Sen, Sujat; Saraidaridis, James; Kim, Sung Yeol; Palmore, G Tayhas R

    2013-08-28

    Viologens, either as anions in solution or as pendant substituents to pyrrole, were incorporated as dopants to electrodeposited films of polypyrrole. The resulting polymer films exhibited redox activity at -0.5 V vs Ag/AgCl. The film consisting of polypyrrole with pendant viologens exhibited the best charge-discharge behavior with a maximum capacity of 55 mAh/g at a discharge current of 0.25 mA/cm(2). An anode consisting of polypyrrole (pPy) doped with viologen (V) was coupled to a cathode consisting of pPy doped with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to yield a polymer-based battery with a cell electromotive force (emf) of 1.0 V, maximum capacity of 16 mAh/g, and energy density of 15 Wh/kg.

  17. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    NASA Astrophysics Data System (ADS)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  18. Impact of scaling to the resistive switching effect in organic polymer - based structures

    NASA Astrophysics Data System (ADS)

    Kotova, M. S.; Dronov, M. A.; Rzhevskiy, A. V.; Amitonov, S. V.; Dubinina, T. V.; Pushkarev, V. E.; Ryabova, L. I.; Khokhlov, D. R.

    2016-12-01

    The resistive switching effect has been studied in a set of organic polymer - based structures of a different composition and size scale from macro to micro. It is shown that scaling down reduces both the threshold switching voltage Vth and the respective effective electric field Eth. Furthermore, introduction of metal micro particles into a macro scale polymer matrix provides the same effect. Therefore the metal particle incorporation may be regarded as an alternative method of effective scaling, depending on an application. Switching speed of less than 15 ns, threshold voltage Vth (2 - 25) V, 105 cycle endurance, no significant moisture dependence and high retention time 3.5 months for scaled down samples aswell as for metal doped macro samples have been demonstrated. These characteristics are suitable for constructing memory devices. The switching effect mechanisms are discussed.

  19. Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis.

    PubMed

    Zhang, Jingli; Zhang, Mingxi; Tang, Kangjian; Verpoort, Francis; Sun, Taolei

    2014-01-15

    The introduction of stimuli-responsive polymers into the study of organic catalysis leads to the generation of a new kind of polymer-based stimuli-responsive recyclable catalytic system. Owing to their reversible switching properties in response to external stimuli, these systems are capable of improving the mass transports of reactants/products in aqueous solution, modulating the chemical reaction rates, and switching the catalytic process on and off. Furthermore, their stimuli-responsive properties facilitate the separation and recovery of the active catalysts from the reaction mixtures. As a fascinating approach of the controllable catalysis, these stimuli-responsive catalytic systems including thermoresponsive, pH-responsive, chemo-mechano-chemical, ionic strength-responsive, and dual-responsive, are reviewed in terms of their nanoreactors and mechanisms.

  20. The design of efficient surface-plasmon-enhanced ultra-thin polymer-based solar cells

    NASA Astrophysics Data System (ADS)

    Williamson, Adam; McClean, Éadaoin; Leipold, David; Zerulla, Dominic; Runge, Erich

    2011-08-01

    Polymer based solar cells are particularly attractive because of their mechanical flexibility and potential for low-cost fabrication. Although significant progress has been made, their efficiency is reduced strongly due to recombination processes that scale with the thickness of the active layer. A theoretical study of periodic plasmonic solar cell enhancement is presented, including a design for demonstrating high efficiency while using a significantly reduced active layer thicknesses. This is achieved through the superposition of toothgrating structures of multiple periodicities along a silver reflecting layer. Through finite-difference time-domain calculations, it was possible to optimize the overall spectral response of the cell yielding surface plasmon resonances at predetermined wavelengths. The improved solar cell design results in a system with increased absorption, allowing for the desired reduction in active layer thickness while also enhancing the performance of the cell over a wide wavelength range.

  1. Conducting Polymer-Based Nanohybrid Transducers: A Potential Route to High Sensitivity and Selectivity Sensors

    PubMed Central

    Park, Seon Joo; Kwon, Oh Seok; Lee, Ji Eun; Jang, Jyongsik; Yoon, Hyeonseok

    2014-01-01

    The development of novel sensing materials provides good opportunities to realize previously unachievable sensor performance. In this review, conducting polymer-based nanohybrids are highlighted as innovative transducers for high-performance chemical and biological sensing devices. Synthetic strategies of the nanohybrids are categorized into four groups: (1) impregnation, followed by reduction; (2) concurrent redox reactions; (3) electrochemical deposition; (4) seeding approach. Nanocale hybridization of conducting polymers with inorganic components can lead to improved sorption, catalytic reaction and/or transport behavior of the material systems. The nanohybrids have thus been used to detect nerve agents, toxic gases, volatile organic compounds, glucose, dopamine, and DNA. Given further advances in nanohybrids synthesis, it is expected that sensor technology will also evolve, especially in terms of sensitivity and selectivity. PMID:24561406

  2. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles.

    PubMed

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-13

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  3. Improved magnetodielectric coefficient on polymer based composites through enhanced indirect magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Martins, P.; Silva, D.; P. Silva, M.; Lanceros-Mendez, S.

    2016-09-01

    Flexible particulate composites with general formula [xCoFe2O4]/[(1 - x) (Polyvinylidene fluoride)] were prepared for x = 0, 3, 11, and 20 wt. %. The dielectric constant, dielectric loss, and saturation magnetization of the composites increase with the increasing CoFe2O4 content, being 13, 0.13, and 13 emu g-1, respectively, for x = 20. The change in the dielectric response (magnetodielectric effect (%)) is the highest among all the reported polymer-based composites for the x = 20 sample (4.2%), and on the contrary, the highest value of the magnetodielectric coefficient (γ) is higher on the x = 3 sample (0.015 emu-2 g2). Such features have large application potential in areas such as filters, magnetic field sensors and actuators, among others.

  4. Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach.

    PubMed

    González, Jorge Werdin; Yeguerman, Cristhian; Marcovecchio, Diego; Delrieux, Claudio; Ferrero, Adriana; Band, Beatriz Fernández

    2016-08-01

    The German cockroach, Blattella germanica (L.), is a serious household and public health pest worldwide. The aim of the present study was to evaluate the sublethal activity of polymer-based essential oils (EOs) nanoparticles (NPs) on adults of B. germanica. The LC50 and LC25 for contact toxicity were determined. To evaluate the repellency of EOs and NPs at LC25, a software was specially created in order to track multiple insects on just-recorded videos, and generate statistics using the obtained information. The effects of EOs and NPs at LC25 and LC50 on the nutritional physiology were also evaluated. The results showed that NPs exerted sublethal effects on the German cockroach, since these products enhance the repellent effects of the EOs and negatively affected the nutritional indices and the feeding deterrence index.

  5. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE PAGES

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; ...

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  6. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    SciTech Connect

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  7. A 3D Polymer Based Printed Two-Dimensional Laser Scanner

    NASA Astrophysics Data System (ADS)

    Oyman, H. A.; Gokdel, Y. D.; Ferhanoglu, O.; Yalcinkaya, A. D.

    2016-10-01

    A two-dimensional (2D) polymer based scanning mirror with magnetic actuation is developed for imaging applications. Proposed device consists of a circular suspension holding a rectangular mirror and can generate a 2D scan pattern. Three dimensional (3D) printing technology which is used for implementation of the device, offers added flexibility in controlling the cross-sectional profile as well as the stress distribution compared to the traditional planar process technologies. The mirror device is developed to meet a portable, miniaturized confocal microscope application in mind, delivering 4.5 and 4.8 degrees of optical scan angles at 111 and 267 Hz, respectively. As a result of this mechanical performance, the resulting microscope incorporating the mirror is estimated to accomplish a field of view (FOV) of 350 µm × 350 µm.

  8. Shape-Controlled Fabrication of the Polymer-Based Micromotor Based on the Polydimethylsiloxane Template.

    PubMed

    Su, Miaoda; Liu, Mei; Liu, Limei; Sun, Yunyu; Li, Mingtong; Wang, Dalei; Zhang, Hui; Dong, Bin

    2015-11-03

    We report the utilization of the polydimethylsiloxane template to construct polymer-based autonomous micromotors with various structures. Solid or hollow micromotors, which consist of polycaprolactone and platinum nanoparticles, can be obtained with controllable sizes and shapes. The resulting micromotor can not only be self-propelled in solution based on the bubble propulsion mechanism in the presence of the hydrogen peroxide fuel, but also exhibit structure-dependent motion behavior. In addition, the micromotors can exhibit various functions, ranging from fluorescence, magnetic control to cargo transportation. Since the current method can be extended to a variety of organic and inorganic materials, we thus believe it may have great potential in the fabrication of different functional micromotors for diverse applications.

  9. Lack of autologous tissue transmission of eosinophilic plaques in cats.

    PubMed

    Moriello, K A; Kunkle, G; Miller, L M; Crowley, A

    1990-07-01

    Autologous tissue transmission of spontaneously developing feline eosinophilic plaques was attempted in 5 cats. Macerated tissue from the plaque was vigorously rubbed onto 2 scarified skin sites in each cat. The inoculated areas were observed daily for 30 days. During that time, no clinical or histologic evidence of transmission was found.

  10. Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration

    PubMed Central

    Andreas, Kristin; Häupl, Thomas; Lübke, Carsten; Ringe, Jochen; Morawietz, Lars; Wachtel, Anja; Sittinger, Michael; Kaps, Christian

    2009-01-01

    Introduction Rheumatoid arthritis (RA) leads to progressive destruction of articular cartilage. This study aimed to disclose major mechanisms of antirheumatic drug action on human chondrocytes and to reveal marker and pharmacological target genes that are involved in cartilage dysfunction and regeneration. Methods An interactive in vitro cultivation system composed of human chondrocyte alginate cultures and conditioned supernatant of SV40 T-antigen immortalised human synovial fibroblasts was used. Chondrocyte alginate cultures were stimulated with supernatant of RA synovial fibroblasts, of healthy donor synovial fibroblasts, and of RA synovial fibroblasts that have been antirheumatically treated with disease-modifying antirheumatic drugs (DMARDs) (azathioprine, gold sodium thiomalate, chloroquine phosphate, and methotrexate), nonsteroidal anti-inflammatory drugs (NSAIDs) (piroxicam and diclofenac), or steroidal anti-inflammatory drugs (SAIDs) (methylprednisolone and prednisolone). Chondrocyte gene expression profile was analysed using microarrays. Real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were performed for validation of microarray data. Results Genome-wide expression analysis revealed 110 RA-related genes in human chondrocytes: expression of catabolic mediators (inflammation, cytokines/chemokines, and matrix degradation) was induced, and expression of anabolic mediators (matrix synthesis and proliferation/differentiation) was repressed. Potential marker genes to define and influence cartilage/chondrocyte integrity and regeneration were determined and include already established genes (COX-2, CXCR-4, IL-1RN, IL-6/8, MMP-10/12, and TLR-2) and novel genes (ADORA2A, BCL2-A1, CTGF, CXCR-7, CYR-61, HSD11B-1, IL-23A, MARCKS, MXRA-5, NDUFA4L2, NR4A3, SMS, STS, TNFAIP-2, and TXNIP). Antirheumatic treatment with SAIDs showed complete and strong reversion of RA-related gene expression in human chondrocytes, whereas

  11. Semiconductor polymer-based rf MEMS and its applications to microwave systems

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Jose, K. A.; Vinoy, K. J.; Varadan, Vasundara V.

    2000-06-01

    During the past decade, several new fabrication techniques have evolved which helped popularize micro-electromechanical systems (MEMS), and numerous novel devices have been reported in diverse areas of engineering and science. One such area is microwave and millimeter wave systems. MEMS technology for microwave applications should solve many intriguing problems of high frequency technology for wireless communications. The recent and dramatic developments of personal communication devices forced the market to acquire miniaturized efficient devices, which is possible only by the development of RF MEMS. Semiconductor- polymer based sensor use silicon use silicon or compound semiconductors as inorganic parts with sensitive polymers as insulating, semiconducting or conductive materials. Organic thin film transistor has also been fabricated using this concept. These devices may allow control circuitry to be integrated with 2D or 3D MEMS. Interdigital type RF-MEMS can be designed and fabricated with Interdigital Electrodes (IDE) deposited on either polymer or an inorganic material such as Barium Strontium Titanate (BST). In the case of polymer-based device, we study the capacitance change and calibrate it for desired sensing application. In the inorganic case, we make use of the change in dielectric properties of BST as a function of DC bias. IDE will act like a RF filter and oscillator just like the comb-type RF MEMS devices. These polymeric based devices can be integrated with organic thin film transistors. RF switches, tuners and filters are some of the initial applications of RF MEMS although many others are still under development. In this paper we present the design and development of few devices such as phase shifters, switches and IDT capacitors. It is observed that, dielectric constant of BST thin film changes by more than 50 percent with an applied bias voltage of 25 V dc, which could therefore be easily implemented in RF switch.

  12. Polymer-based paclitaxel-eluting coronary stents. Clinical results in de novo lesions.

    PubMed

    Chieffo, Alaide; Colombo, Antonio

    2004-03-01

    Drug-eluting stents (DES) represent one of the fastest-growing fields in interventional cardiology today. Paclitaxel (Taxol) is a potent antiproliferative agent that shifts the microtubule equilibrium toward assembly, favoring the formation of abnormally stable microtubules with blockage of the cell cycle in G2/M phases. A series of clinical trials (TAXUS I through VI) have been designed to test the safety and the efficacy of polymer- based paclitaxel-eluting stents (Taxus, Boston Scientific, Natick, MA, USA) at the dosage 1 microg/mm(2) in a variety of clinical settings. Except for TAXUS III and TAXUS V-ISR, in the TAXUS program de novo lesions have been evaluated. Two different release kinetics were evaluated: slow-release (SR) and moderate- release (MR) formulation. Very encouraging preliminary results also come from the "real world" data on Taxus SR stent collected in the "Web-based taxus Intercontinental obServational Data TransitiOnal registry prograM" (the WISDOM Registry) and in the "Real Life Polymer-Based Paclitaxel Registry" (the Real Life PBPaclitaxel Registry). The remarkable positive results obtained from the randomized trials offer the interventional cardiologist another effective option (besides the Cypher stent, Cordis a J & J, Warren, NJ, USA) to treat patients with a DES. This fact may certainly drive the competition and, ultimately, lower the cost. The final answer will probably come from the ongoing registries and prospective trials versus coronary artery bypass grafting (CABG), which will reveal the real impact of this new technology on everyday practice.

  13. Detection of autologous blood transfusions in athletes: a historical perspective.

    PubMed

    Mørkeberg, Jakob

    2012-07-01

    Autologous blood transfusions (ABTs) has been used by athletes for approximately 4 decades to enhance their performance. Although the method was prohibited by the International Olympic Committee in the mid 1980s, no direct detection method has yet been developed and implemented by the World Anti-Doping Agency (WADA). Several indirect methods have been proposed with the majority relying on changes in erythropoiesis-sensitive blood markers. Compared with the first methods developed in 1987, the sensitivity of subsequent tests has not improved the detection of blood doping. Nevertheless, the use of sophisticated statistical algorithms has assured a higher level of specificity in subsequent detection models, which is a crucial aspect of antidoping testing particularly to avoid "false positives." Today, the testing markers with the best sensitivity/specificity ratio are the Hbmr model (an algorithm based on the total amount of circulating hemoglobin level [hemoglobin level mass] and percentage of reticulocytes, 4.51·ln(Hbmass)-√%ret) and the OFF-hr model (algorithm based on hemoglobin level concentration and percentage of reticulocytes, Hb(g/L)-60·√%ret). Only the OFF-hr model is currently approved by WADA. Recently, alternative indirect strategies for detecting blood doping have been proposed. One method is based upon a transfusion-induced immune-response resulting in specific changes in gene expression related to leukocytes such as T lymphocytes. Another method relies on detecting increased plasticizer metabolite levels in the urine caused by the leakage of plasticizers from the blood bags used during the blood storage. These methods need further development and validation across different types of transfusion regimes before they can be implemented. In addition, several research projects have been funded by WADA in recent years and are now under development including "Detection of Autologous Blood Transfusions Using Activated Red Blood Cells (the red blood cells

  14. Regeneration of Tissues and Organs Using Autologous Cells

    SciTech Connect

    Anthony Atala

    2010-04-28

    The Joint Commission for Health Care Organizations recently declared the shortage of transplantable organs and tissues a public health crisis. As such, there is about one death every 30 seconds due to organ failure. Complications and rejection are still significant albeit underappreciated problems. It is often overlooked that organ transplantation results in the patient being placed on an immune suppression regimen that will ultimate shorten their life span. Patients facing reconstruction often find that surgery is difficult or impossible due to the shortage of healthy autologous tissue. In many cases, autografting is a compromise between the condition and the cure that can result in substantial diminution of quality of life. The national cost of caring for persons who might benefit from engineered tissues or organs has reached $600 billion annually. Autologous tissue technologies have been developed as an alternative to transplantation or reconstructive surgery. Autologous tissues derived from the patient's own cells are capable of correcting numerous pathologies and injuries. The use of autologous cells eliminates the risks of rejection and immunological reactions, drastically reduces the time that patients must wait for lifesaving surgery, and negates the need for autologous tissue harvest, thereby eliminating the associated morbidities. In fact, the use of autologous tissues to create functional organs is one of the most important and groundbreaking steps ever taken in medicine. Although the basic premise of creating tissues in the laboratory has progressed dramatically, only a limited number of tissue developments have reached the patients to date. This is due, in part, to the several major technological challenges that require solutions. To that end, we have been in pursuit of more efficient ways to expand cells in vitro, methods to improve vascular support so that relevant volumes of engineered tissues can be grown, and constructs that can mimic the native

  15. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation

    PubMed Central

    Yan, Bo; Zhang, Zhongmin; Jin, Dadi; Cai, Chen; Jia, Chunhong; Liu, Wen; Wang, Ting; Li, Shengfa; Zhang, Haiyan; Huang, Bin; Lai, Pinglin; Wang, Hua; Liu, Anling; Zeng, Chun; Cai, Daozhang; Jiang, Yu; Bai, Xiaochun

    2016-01-01

    Precise coordination of cell growth, proliferation and differentiation is essential for the development of multicellular organisms. Here, we report that although the mechanistic target of rapamycin complex 1 (mTORC1) activity is required for chondrocyte growth and proliferation, its inactivation is essential for chondrocyte differentiation. Hyperactivation of mTORC1 via TSC1 gene deletion in chondrocytes causes uncoupling of the normal proliferation and differentiation programme within the growth plate, resulting in uncontrolled cell proliferation, and blockage of differentiation and chondrodysplasia in mice. Rapamycin promotes chondrocyte differentiation and restores these defects in mutant mice. Mechanistically, mTORC1 downstream kinase S6K1 interacts with and phosphorylates Gli2, and releases Gli2 from SuFu binding, resulting in nuclear translocation of Gli2 and transcription of parathyroid hormone-related peptide (PTHrP), a key regulator of bone development. Our findings demonstrate that dynamically controlled mTORC1 activity is crucial to coordinate chondrocyte proliferation and differentiation partially through regulating Gli2/PTHrP during endochondral bone development. PMID:27039827

  16. Normal proliferation and differentiation of Hoxc-8 transgenic chondrocytes in vitro

    PubMed Central

    Cormier, Stephania A; Mello, Maria Alice; Kappen, Claudia

    2003-01-01

    Background Hox genes encode transcription factors that are involved in pattern formation in the skeleton, and recent evidence suggests that they also play a role in the regulation of endochondral ossification. To analyze the role of Hoxc-8 in this process in more detail, we applied in vitro culture systems, using high density cultures of primary chondrocytes from neonatal mouse ribs. Results Cultured cells were characterized on the basis of morphology (light microscopy) and production of cartilage-specific extracellular matrix (sulfated proteoglycans and type II Collagen). Hypertrophy was demonstrated by increase in cell size, alkaline phosphatase activity and type X Collagen immunohistochemistry. Proliferation was assessed by BrdU uptake and flow cytometry. Unexpectedly, chondrocytes from Hoxc-8 transgenic mice, which exhibit delayed cartilage maturation in vivo [1], were able to proliferate and differentiate normally in our culture systems. This was the case even though freshly isolated Hoxc-8 transgenic chondrocytes exhibited significant molecular differences as measured by real-time quantitative PCR. Conclusions The results demonstrate that primary rib chondrocytes behave similar to published reports for chondrocytes from other sources, validating in vitro approaches for studies of Hox genes in the regulation of endochondral ossification. Our analysis of cartilage-producing cells from Hoxc-8 transgenic mice provides evidence that the cellular phenotype induced by Hoxc-8 overexpression in vivo is reversible in vitro. PMID:12713673

  17. Adenylate cyclase of human articular chondrocytes. Responsiveness to prostaglandins and other hormones.

    PubMed Central

    Houston, J P; McGuire, M K; Meats, J E; Ebsworth, N M; Russell, R G; Crawford, A; Mac Neil, S

    1982-01-01

    Adenylate cyclase [ATP pyrophosphate lyase (cyclizing), EC 4.6.1.1] was shown to be present in cultured human articular chondrocytes. Optimal conditions of incubation time, protein and substrate concentrations and pH were determined in whole cell lysates. Maximal activity occurred at pH 8.5 with no decrease in activity up to pH 10.0. Adenylate cyclase activity of particulate membrane preparations was enhanced by the addition of crude cytosol preparations. The prostaglandins E1, E2, F1 alpha, F2 alpha, D2, B1, B2, A1 and A2, as well as adrenaline and isoprenaline, stimulated adenylate cyclase derived from either adult or foetal chondrocytes. No significant stimulation was observed in the presence of human calcitonin or glucagon. Bovine parathyroid hormone always significantly stimulated the adenylate cyclase derived from foetal chondrocytes, but not from adult chondrocytes. Preincubation of the chondrocytes in culture with indomethacin and with or without supernatant medium from cultured mononuclear cells increased the responsiveness of the adenylate cyclase to prostaglandin E1. PMID:7159397

  18. Low Oxygen Tension During Incubation Periods of Chondrocyte Expansion Is Sufficient to Enhance Postexpansion Chondrogenesis

    PubMed Central

    Ginley, Nell M.; Caplan, Arnold I.; Niyibizi, Christopher; Dennis, James E.

    2010-01-01

    To determine whether low oxygen (O2) tension during expansion affects the matrix density, as well as quantity, of cartilage formed, and to determine whether application of low O2 tension during incubation periods alone is sufficient to modulate chondrogenic expression, rabbit chondrocytes expanded at either 21% O2 or 5% O2 were analyzed for glycosaminoglycan (GAG) and DNA content, total collagen, and gene expression during expansion and postexpansion aggregate cultures. When cultured as aggregates at 21% O2, chondrocytes expanded at 5% O2 produced cartilage aggregates that contained more total GAG, GAG per wet weight, GAG per DNA, and total collagen than chondrocytes expanded at 21% O2. Less of an effect on GAG and collagen content was observed when aggregate culture was performed at 5% O2. Real-time polymerase chain reaction analysis of COL2A1 expression showed upregulated levels of type IIA (an early marker) and IIB (a late marker) during expansion and elevated levels of type IIB during aggregate culture in chondrocytes expanded in low O2. The application of low O2 tension during incubation periods of chondrocyte expansion enhances the ultimate cartilage matrix density and quantity, and this enhancement can be achieved through the use of an O2 control incubator. PMID:19958052

  19. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes.

    PubMed

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N

    2015-08-14

    Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  20. Effect of bone marrow-derived stem cells on chondrocytes from patients with osteoarthritis.

    PubMed

    Zhang, Qiangzhi; Chen, Yong; Wang, Qiang; Fang, Chaoyong; Sun, Yu; Yuan, Tao; Wang, Yuebei; Bao, Rongni; Zhao, Ningjian

    2016-02-01

    Increasing numbers of individuals are suffering from osteoarthritis every year, and the directed intra-articular injection of bone marrow stem cells has provided a promising treatment strategy for osteoarthritis. Although a number of studies have demonstrated that intra-articular injection of bone marrow stem cells produced desirable results, the mechanism underlying this effect has not been elucidated. In the current study, the effect of bone marrow stem cells on chondrocytes from patients with osteoarthritis was observed in a co-culture system. Human chondrocytes were obtained from patients with osteoarthritis who underwent surgical procedures and bone marrow stem cells were obtained from bone marrow aspirates, and then the chondrocytes were then cultured alone or cocultured with bone marrow stem cells in 0.4-µm Transwell inserts. The differentiation and biological activity of chondrocytes in the culture system were measured, and the inflammatory factors and OA-associated markers were also measured. The results indicated that coculture with human bone marrow stem cells increases cell proliferation of chondrocytes and inhibits inflammatory activity in osteoarthritis.

  1. Communication between paired chondrocytes in the superficial zone of articular cartilage

    PubMed Central

    Chi, Simon S; Rattner, Jerome B; Matyas, John R

    2004-01-01

    The regeneration and repair of cartilage damaged by injury or disease, a major goal of orthopaedic science, depends on understanding the structure and function of both the extracellular matrix and the chondrocytes. In this study, we explored the in situ organization and potential interactions between chondrocytes in the superficial zone of adult rabbit articular cartilage. Some chondrocytes in this zone were observed close together and appeared to be paired whereas others were solitary. The shared surfaces of a chondrocyte pair were separated by a narrow plate of extracellular matrix, into which extended small cytoplasmic projections from both cells. Furthermore, the spatial distribution of major cellular landmarks, such as the nucleus and centrosome as well as some intracellular proteins such as connexin-43, tended to be mirrored about this matrix plate. Fluorescence recovery after photobleaching revealed the fluorescent dye calcein–AM dye can pass between paired cells, and that the passage of this dye can be inhibited by the gap junction blocker octanol. These results illustrate that rapid cellular communication is possible between cells in the superficial layer of adult articular cartilage, which challenges the current thinking that these chondrocytes function in isolation. PMID:15575885

  2. MODULATION OF CHONDROCYTE BEHAVIOR THROUGH TAILORING FUNCTIONAL SYNTHETIC SACCHARIDE-PEPTIDE HYDROGELS

    PubMed Central

    Chawla, Kanika; Yu, Ting-bin; Stutts, Lisa; Yen, Max; Guan, Zhibin

    2012-01-01

    Tailoring three-dimensional (3D) biomaterial environments to provide specific cues in order to modulate function of encapsulated cells could potentially eliminate the need for addition of exogenous cues in cartilage tissue engineering. We recently developed saccharide-peptide copolymer hydrogels for cell culture and tissue engineering applications. In this study, we aim to tailor our saccharide-peptide hydrogel for encapsulating and culturing chondrocytes in 3D and examine the effects of changing single amino acid moieties differing in hydrophobicity/hydrophilicity (valine (V), cysteine (C), tyrosine (Y)) on modulation of chondrocyte function. Encapsulated chondrocytes remained viable over 21 days in vitro. Glycosaminoglycan and collagen content was significantly higher in Y-functionalized hydrogels compared to V-functionalized hydrogels. Extensive matrix accumulation and concomitant increase in mechanical properties was evident over time, particularly with the presence of Y amino acid. After 21 days in vitro, Y-functionalized hydrogels attained a modulus of 193±46 kPa, compared to 44±21 kPa for V-functionalized hydrogels. Remarkably, mechanical and biochemical properties of chondrocyte-laden hydrogels were modulated by change in a single amino acid moiety. This unique property, combined with the versatility and biocompatibility, makes our saccharide-peptide hydrogels promising candidates for further investigation of combinatorial effects of multiple functional groups on controlling chondrocyte and other cellular function and behavior. PMID:22672831

  3. Effects of purified alginate sponge on the regeneration of chondrocytes: in vitro and in vivo.

    PubMed

    Song, Jeong Eun; Kim, A Ram; Lee, Cheon Jung; Tripathy, Nirmalya; Yoon, Kun Ho; Lee, Dongwon; Khang, Gilson

    2015-01-01

    Regeneration science has been studied using tissue engineering techniques due to the self-renewal difficulties of damaged or degenerated cartilage. A scaffold with biodegradability and biocompatibility features plays a key role in developing cartilage tissue similar to human biological materials. Herein, we have fabricated three-dimensional sponge using purified alginate for the regeneration of chondrocytes cells and formation of cartilage. We demonstrated that the alginate purification can effectively minimize inflammatory reaction through reducing the content of mannuronic acid causing immune rejection. Cartilage regeneration research was performed using three-dimensional non-purified and purified alginate sponges synthesized by modified Korbutt method. In vitro cell viability and specific gene expression in the cartilage cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and reverse transcriptase-polymerase chain reaction (RT-PCR) after seeding chondrocytes on the as-fabricated sponges. Specific extracellular matrix (ECM) of chondrocytes, sGAG, and the content of collagen were also measured. Histological staining was carried out after purified alginate sponge seeded with chondrocytes and was implanted in subcutaneous nude mouse followed by extraction. Compared to the non-purified ones, the purified alginate sponges showed positive effects on maintaining affinities and phenotype of chondrocytes. From these results, it can be suggested that the purified alginate sponges provide a promising platform for cartilage regeneration.

  4. Del1 Knockout Mice Developed More Severe Osteoarthritis Associated with Increased Susceptibility of Chondrocytes to Apoptosis

    PubMed Central

    Wang, Zhen; Tran, Misha C.; Bhatia, Namrata J.; Hsing, Alexander W.; Chen, Carol; LaRussa, Marie F.; Fattakhov, Ernst; Rashidi, Vania; Jang, Kyu Yun; Choo, Kevin J.; Nie, Xingju; Mathy, Jonathan A.; Longaker, Michael T.; Dauskardt, Reinhold H.; Helms, Jill A.; Yang, George P.

    2016-01-01

    Objective We identified significant expression of the matricellular protein, DEL1, in hypertrophic and mature cartilage during development. We hypothesized that this tissue-specific expression indicated a biological role for DEL1 in cartilage biology. Methods Del1 KO and WT mice had cartilage thickness evaluated by histomorphometry. Additional mice underwent medial meniscectomy to induce osteoarthritis, and were assayed at 1 week for apoptosis by TUNEL staining and at 8 weeks for histology and OA scoring. In vitro proliferation and apoptosis assays were performed on primary chondrocytes. Results Deletion of the Del1 gene led to decreased amounts of cartilage in the ears and knee joints in mice with otherwise normal skeletal morphology. Destabilization of the knee led to more severe OA compared to controls. In vitro, DEL1 blocked apoptosis in chondrocytes. Conclusion Osteoarthritis is among the most prevalent diseases worldwide and increasing in incidence as our population ages. Initiation begins with an injury resulting in the release of inflammatory mediators. Excessive production of inflammatory mediators results in apoptosis of chondrocytes. Because of the limited ability of chondrocytes to regenerate, articular cartilage deteriorates leading to the clinical symptoms including severe pain and decreased mobility. No treatments effectively block the progression of OA. We propose that direct modulation of chondrocyte apoptosis is a key variable in the etiology of OA, and therapies aimed at preventing this important step represent a new class of regenerative medicine targets. PMID:27505251

  5. Combining Targeted Metabolomic Data with a Model of Glucose Metabolism: Toward Progress in Chondrocyte Mechanotransduction

    PubMed Central

    Salinas, Daniel; Carlson, Ross P.; McCutchen, Carley N.

    2017-01-01

    Osteoarthritis is a debilitating disease likely involving altered metabolism of the chondrocytes in articular cartilage. Chondrocytes can respond metabolically to mechanical loads via cellular mechanotransduction, and metabolic changes are significant because they produce the precursors to the tissue matrix necessary for cartilage health. However, a comprehensive understanding of how energy metabolism changes with loading remains elusive. To improve our understanding of chondrocyte mechanotransduction, we developed a computational model to calculate the rate of reactions (i.e. flux) across multiple components of central energy metabolism based on experimental data. We calculated average reaction flux profiles of central metabolism for SW1353 human chondrocytes subjected to dynamic compression for 30 minutes. The profiles were obtained solving a bounded variable linear least squares problem, representing the stoichiometry of human central energy metabolism. Compression synchronized chondrocyte energy metabolism. These data are consistent with dynamic compression inducing early time changes in central energy metabolism geared towards more active protein synthesis. Furthermore, this analysis demonstrates the utility of combining targeted metabolomic data with a computational model to enable rapid analysis of cellular energy utilization. PMID:28056047

  6. Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes

    PubMed Central

    Ruan, Merry ZC; Cerullo, Vincenzo; Cela, Racel; Clarke, Chris; Lundgren-Akerlund, Evy; Barry, Michael A; Lee, Brendan HL

    2016-01-01

    Osteoarthritis (OA) is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs). Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab). We show that a10mab-conjugated HDV (a10mabHDV)-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4) into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting. PMID:27626040

  7. Mefloquine inhibits chondrocytic proliferation by arresting cell cycle in G2/M phase.

    PubMed

    Li, Qiong; Chen, Zeng-Gan; Xia, Qing; Lin, Jian-Ping; Yan, Zuo-Qin; Yao, Zheng-Jun; Dong, Jian

    2015-01-01

    Mefloquine (MQ), an analog of chloroquine, exhibits a promising cytotoxic activity against carcinoma cell lines and for the treatment of glioblastoma patients. The present study demonstrates the effect of mefloquine on proliferation and cell cycle in chondrocytes. MTT assay and propidium iodide staining were used for the analysis of proliferation and cell cycle distribution, respectively. Western blot analysis was used to examine the expression levels of cyclin B1/cdc2, cdc25c, p21WAF1/CIP1 and p53. The results revealed that mefloquine inhibited the proliferation of chondrocytes and caused cell cycle arrests in the G2/M phase. The proliferation of chondrocytes was reduced to 27% at 40 μM concentration of mefloquine after 48 h. The population of chondrocytes in G2/M phase was found to be 15.7 and 48.4%, respectively at 10 and 40 μM concentration of mefloquine at 48 h following treatment. The expression of the cell cycle regulatory proteins including, cyclin B1/cdc2 and cdc25c was inhibited. On the other hand, mefloquine treatment promoted the expression of p21WAF1/CIP1 and p53 at 40 μM concentration after 48 h. Therefore, mefloquine inhibits proliferation and induces cell cycle arrest in chondrocytes.

  8. Effect of alginate culture and mechanical stimulation on cartilaginous matrix synthesis of rat dedifferentiated chondrocytes.

    PubMed

    Wang, Yun; de Isla, Natalia; Huselstein, Céline; Wang, Binghua; Netter, Patrick; Stoltz, Jean-François; Muller, Sylvaine

    2008-01-01

    To investigate whether the application of alginate culture and mechanical stimulation will improve the synthesis of cartilaginous matrix in dedifferentiated chondrocytes, rat chondrocytes underwent dedifferentiation upon serial monolayer culture up to passage 6, and then were encapsulated in 2% alginate gel and subject to static culture. After 28 days culture in static, the beads were exposed to 48 h of mechanical stimulation with continuous agitation. The sGAG content in alginate bead was measured by alcian blue staining. The expression of collagen protein was detected using immunofluorescence. After 28 days culture in alginate bead, the dedifferentiated chondrocytes remained round in shape and re-synthesized the chondrocyte-specific matrix. Compared with static culture, mechanical stimulation induced statistically increases in the production of glycosaminoglycan (p< or =0.01), as well as in the synthesis of collagen type II protein (p< or =0.05). On the contrary, no positive expression of collagen type I protein was observed at the end of culture. Our results demonstrated that both of alginate culture and mechanical stimulation help to restore chondrocyte phenotype and promotes the synthesis of cartilaginous matrix.

  9. Time-varying magnetic fields: effects of orientation on chondrocyte proliferation.

    PubMed

    Elliott, J P; Smith, R L; Block, C A

    1988-01-01

    The purpose of this study was to determine the effect of orientation of pulsed electromagnetic fields (PEMFs) on cellular proliferation and extracellular matrix synthesis. Bovine articular chondrocytes were cultured in PEMFs (repetitive pulse at 72 Hz) generated using Helmholtz coils oriented either parallel (horizontal) or perpendicular (vertical) to the plane of cell adhesion. Dissipation of signal energy in the form of heat increased the temperature of the PEMF coils by 2 degrees C and the tissue culture medium by 1 degree C. Therefore, control coils, which emitted no PEMFs, were heated to the temperature of PEMF coils by circulating water. Chondrocytes were cultured in 16-mm-well culture plates, and the data for individual wells were pooled as triplicates. Although not observed by microscopic examination of individual wells, positionally dependent electric field effects may be minimized by this approach. PEMFs generated by coils oriented vertically significantly decreased chondrocyte proliferation. The effect was dependent on the concentration of serum in the culture media. At 3% serum concentration, the total cell number attained after 10 days of culture was reduced by 50% in stimulated cultures when compared with controls. At 5% serum concentration, there was no effect. PEMFs applied by coils oriented horizontally did not alter proliferation of articular chondrocytes. PEMFs had no effect on synthesis of extracellular matrix by chondrocytes plated at high density, irrespective of orientation.

  10. Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds.

    PubMed

    Puhakka, P H; Ylärinne, J H; Lammi, M J; Saarakkala, S; Tiitu, V; Kröger, H; Virén, T; Jurvelin, J S; Töyräs, J

    2014-11-07

    Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT.

  11. Mechanical and chemical characteristics of an autologous glue.

    PubMed

    De Somer, Filip; Delanghe, Joris; Somers, Pamela; Debrouwere, Maarten; Van Nooten, Guido

    2008-09-15

    The study evaluates the mechanical and chemical characteristics of autologous surgical glue made by mixing ultrafiltered plasma with glutaraldehyde (GTA). Human albumin 200 g/L mixed with different concentrations of GTA (25, 50, 75, or 100 g/L) was used as a single protein set-up for testing tensile strength, elasticity, and rate of crosslinking. Subsequently, ultrafiltered canine or human plasma to obtain autologous glue replaced human albumin. BioGlue, a surgical glue, and Tissucol Duo, a fibrin sealant, were used as controls. Tensile strength of human albumin 200 g/L mixed with 75 g/L GTA is 825 +/- 109 N versus 672 +/- 167 N for BioGlue. Ultrafiltered canine plasma showed a maximum tensile strength of 634 +/- 137 N when mixed with GTA 75 g/L. For human plasma, the maximum tensile strength of 436 +/- 69 N was reached after mixing with GTA 25 g/L. Autologous glue had a higher elasticity of 144 +/- 66 N versus 322 +/- 104 N for BioGlue at maximum load. Autologous glues for vascular repair can be easily prepared out of the patient's plasma. The optimal characteristics, compared to BioGlue, are obtained for ultrafiltered canine and human plasma by mixing with a GTA concentration of 50-75 g/L and 25-50 g/L, respectively. The autologous glue will exert less tensile strength than BioGlue but has a better compliance. In case where no plasma can obtained from the patient, mixing human albumin 200 g/L with GTA 75 g/L can be an alternative to BioGlue.

  12. Phenotypic changes in proliferation, differentiation, and migration of chondrocytes: 3D in vitro models for joint wound healing.

    PubMed

    Tsai, Yu-Hui; Chen, Chun-Wei; Lai, Wen-Fu T; Tang, Ja-Reng; Deng, Win-Ping; Yeh, Shauh-Der; Chung, Andrew; Zuo, Chun S; Bowley, John F

    2010-03-01

    We aim to establish a 3D model of cartilage wound healing, and explore the involvement of chondrocytes in its repair. To characterize chondrocyte involvement in wound healing, an in vitro 3D model composed of chondrocyte mixing with either type II/I collagen or type I collagen matrix was established. The "defects" measuring 5 mm in diameter were made on each collagen matrix-chondrocyte construct to mimic in vivo cartilage defects. The effects of basic fibroblast growth factor (bFGF) on chondrocytes migration and differentiation were studied. The migration and Glucosaminoglycan (GAG) synthesis of chondrocytes in the defect areas were observed by microscopy after Alcian-blue staining. In the presence of bFGF, GAG expression increased significantly when chondrocytes were cultured in type II/I collagen matrix compared to type I collagen matrix. However, mild GAG accumulation was also found when cells were cultured in either type I or type II/I collagens without bFGF. In a 3D model of cartilage wound healing, bFGF promote chondrocyte proliferation, migration and differentiation in the presence of type II/I collagen matrix, and showed potential to regulate wound healing. These wound healing models may provide feasible methods to explore various drugs prior to human trials.

  13. Conditional Deletion of the Phd2 Gene in Articular Chondrocytes Accelerates Differentiation and Reduces Articular Cartilage Thickness

    PubMed Central

    Cheng, Shaohong; Pourteymoor, Sheila; Alarcon, Catrina; Mohan, Subburaman

    2017-01-01

    Based on our findings that PHD2 is a negative regulator of chondrocyte differentiation and that hypoxia signaling is implicated in the pathogenesis of osteoarthritis, we investigated the consequence of disruption of the Phd2 gene in chondrocytes on the articular cartilage phenotype in mice. Immunohistochemistry detected high expression of PHD2 in the superficial zone (SZ), while PHD3 and HIF-1α (target of PHD2) are mainly expressed in the middle-deep zone (MDZ). Conditional deletion of the Phd2 gene (cKO) in chondrocytes accelerated the transition of progenitors to hypertrophic (differentiating) chondrocytes as revealed by reduced SZ thickness, and increased MDZ thickness, as well as increased chondrocyte hypertrophy. Immunohistochemistry further revealed decreased levels of progenitor markers but increased levels of hypertrophy markers in the articular cartilage of the cKO mice. Treatment of primary articular chondrocytes, in vitro, with IOX2, a specific inhibitor of PHD2, promoted articular chondrocyte differentiation. Knockdown of Hif-1α expression in primary articular chondrocytes using lentiviral vectors containing Hif-1α shRNA resulted in reduced expression levels of Vegf, Glut1, Pgk1, and Col10 compared to control shRNA. We conclude that Phd2 is a key regulator of articular cartilage development that acts by inhibiting the differentiation of articular cartilage progenitors via modulating HIF-1α signaling. PMID:28349987

  14. ICAM-1 expression on chondrocytes in rheumatoid arthritis: induction by synovial cytokines

    PubMed Central

    Sharma, H.; Pigott, R.

    1992-01-01

    The intercellular adhesion molecule-1 (ICAM-1) was found by immunostaining chondrocytes in cartilage from three patients with rheumatoid arthritis. Expression of ICAM-1 was restricted to chondrocytes in areas of erodedcartilage adjacent to the invading synovial tissue. Toluidine blue staining of these areas demonstrated severe depletion of the cartilage extracellular matrix. In areas of undamaged cartilage there was no ICAM-1 expression. Since ICAM-1 is not constitutively expressed on normal human articular cartilage, but could be induced in vitro by exogenous IL-1α, TNFα and IFNγ or by co-culturing cartilage with inflammatory rheumatoid synovium, we conclude that the induction of ICAM-1 on rheumatoid chondrocytes results from the synergistic action of a variety of cytokines produced by the inflammatory cells of the invading pannus. PMID:18475445

  15. Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3

    PubMed Central

    Yahara, Yasuhito; Takemori, Hiroshi; Okada, Minoru; Kosai, Azuma; Yamashita, Akihiro; Kobayashi, Tomohito; Fujita, Kaori; Itoh, Yumi; Nakamura, Masahiro; Fuchino, Hiroyuki; Kawahara, Nobuo; Fukui, Naoshi; Watanabe, Akira; Kimura, Tomoatsu; Tsumaki, Noriyuki

    2016-01-01

    Osteoarthritis is a common debilitating joint disorder. Risk factors for osteoarthritis include age, which is associated with thinning of articular cartilage. Here we generate chondrocyte-specific salt-inducible kinase 3 (Sik3) conditional knockout mice that are resistant to osteoarthritis with thickened articular cartilage owing to a larger chondrocyte population. We also identify an edible Pteridium aquilinum compound, pterosin B, as a Sik3 pathway inhibitor. We show that either Sik3 deletion or intraarticular injection of mice with pterosin B inhibits chondrocyte hypertrophy and protects cartilage from osteoarthritis. Collectively, our results suggest Sik3 regulates the homeostasis of articular cartilage and is a target for the treatment of osteoarthritis, with pterosin B as a candidate therapeutic. PMID:27009967

  16. In vitro assays of chondrocyte functions: the influence of drugs and hormones.

    PubMed

    Bassleer, C; Henrotin, Y; Franchimont, P

    1990-01-01

    Human articular chondrocytes may be cultured in three dimensions, according to a method already validated. This model allows us to study the repair processes of the cartilage, by measuring the proliferative activity of chondrocytes and the synthesis of two major constituents of matrix: proteoglycans and type II collagen. Some substances are characterised by stimulatory effect on DNA synthesis and no effect or a defective effect on matrix components: this is the case for Epidermal Growth Factor. Others are able to stimulate (hGH) or to depress (acetyl salicylic acid) both chondrocyte proliferation and matrix components synthesis. Finally, some substances called "chondroprotective", such as the glycosaminoglycan-peptide complex, GP-C (Rumalon) stimulate either the proliferative response or the synthesis of proteoglycans and type II collagen, according to the dose.

  17. Ski inhibits TGF-β/phospho-Smad3 signaling and accelerates hypertrophic differentiation in chondrocytes.

    PubMed

    Kim, Kyung-Ok; Sampson, Erik R; Maynard, Robert D; O'Keefe, Regis J; Chen, Di; Drissi, Hicham; Rosier, Randy N; Hilton, Matthew J; Zuscik, Michael J

    2012-06-01

    Since transforming growing factor-β (TGF-β)/Smad signaling inhibits chondrocyte maturation, endogenous negative regulators of TGF-β signaling are likely also important regulators of the chondrocyte differentiation process. One such negative regulator, Ski, is an oncoprotein that is known to inhibit TGF-β/Smad3 signaling via its interaction with phospho-Smad3 and recruitment of histone deacetylases (HDACs) to the DNA binding complex. Based on this, we hypothesized that Ski inhibits TGF-β signaling and accelerates maturation in chondrocytes via recruitment of HDACs to transcriptional complexes containing Smads. We tested this hypothesis in chick upper sternal chondrocytes (USCs), where gain and loss of Ski expression experiments were performed. Over-expression of Ski not only reversed the inhibitory effect of TGF-β on the expression of hypertrophic marker genes such as type X collagen (colX) and osteocalcin, it induced these genes basally as well. Conversely, knockdown of Ski by RNA interference led to a reduction of colX and osteocalcin expression under basal conditions. Furthermore, Ski blocked TGF-β induction of cyclinD1 and caused a basal up-regulation of Runx2, consistent with the observed acceleration of hypertrophy. Regarding mechanism, not only does Ski associate with phospho-Smad2 and 3, but its association with phospho-Smad3 is required for recruitment of HDAC4 and 5. Implicating this recruitment of HDACs in the phenotypic effects of Ski in chondrocytes, the HDAC inhibitor SAHA reversed the up-regulation of colX and osteocalcin in Ski over-expressing cells. These results suggest that inhibition of TGF-β signaling by Ski, which involves its association with phospho-Smad3 and recruitment of HDAC4 and 5, leads to accelerated chondrocyte differentiation.

  18. Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate.

    PubMed

    Shapiro, Irving M; Adams, Christopher S; Freeman, Theresa; Srinivas, Vickram

    2005-12-01

    The goal of this review is to examine the fate of the hypertrophic chondrocyte in the epiphyseal growth plate and consider the impact of the cartilage microenvironment on cell survival and apoptosis. Early investigations pointed to a direct role of the hypertrophic chondrocyte in osteogenesis. The terminally differentiated cells were considered to undergo a dramatic change in shape, size, and phenotype, and assume the characteristics of an osteoblast. While some studies have supported the notion of transdifferentiation, much of the evidence in favor of reprogramming epiphyseal chondrocytes is circumstantial and based on microscopic evaluation of cells that are present at the chondro-osseous junction. Although these investigations provided a novel perspective on endochondral bone formation, they were flawed by the failure to consider the importance of stem cells in osseous tissue formation. Subsequent studies indicated that many, if not all, of the cells of the cartilage plate die through the induction of apoptosis. With respect to agents that mediate apoptosis, at the chondro-osseous junction, solubilization of mineral and hydrolysis of organic matrix constituents by septoclasts generates high local concentrations of ions, peptides, and glycans, and secreted matrix metalloproteins. Individually, and in combination, a number of these agents serve as potent chondrocyte apoptogens. We present a new concept: hypertrophic cells die through the induction of autophagy. In the cartilage microenvironment, combinations of local factors cause chondrocytes to express an initial survival phenotype and oxidize their own structural macromolecules to generate ATP. While delaying death, autophagy leads to a state in which cells are further sensitized to changes in the local microenvironment. One such change is similar to ischemia reperfusion injury, a condition that leads to tissue damage and cell death. In the growth cartilage, an immediate effect of this type of injury is

  19. [Stimulation of maturing and terminal differentiation by concanavalin A in rabbit permanent chondrocyte cultures].

    PubMed

    Yan, W Q; Yang, T S; Hou, L Z; Susuki, F; Kato, Y

    1994-12-01

    The effect of concanavalin A (Con A) on maturing and terminal differentiation in permanent chondrocyte cultures were examined. Chondrocytes isolated from permanent cartilage were seeded at low density and grown in MEM medium containing 10% fetal bovine serum, 50 micrograms/ml of ascorbic acid and antibiotics, at 37 degrees C under 50% CO2 in air. At 0.3% of low serum concentration, addition of Con A to the culture medium increased by 3- to 4-fold the incorporation of [35S] sulfate into large chondroitin sulfate proteoglycan that characteristically found in cartilage. Chemical analysis showed a 4-fold increase in the accumulation of macromolecular containing hexuronic acid in Con A-maintained cultures. The effect of Con A on [35S]sulfate incorporation into proteoglycan was greater than that of various growth factor or hormones. Brief exposure of the permanent chondrocytes to Con A (5 micrograms/ml) for 24 hours and subsequent incubation in its absence for 5-10 days resulted in 10- to 100-fold increase in alkaline phosphatase and binding of 1.25 (OH)2 vitamin D3 to cells. Treatment with Con A also resulted in 10- to 20-fold increase in calcium content and 45Ca incorporation into insoluble material. Methyl-D-mannopyranoside reversed the effect of Con A on [35S]sulfate incorporation into proteoglycan and alkaline phosphatase activity. Since other lectins, such as wheat germ agglutinin, lentil lectin, phytohemagglutinin, Ulex europeasu agglutinin and garden pea lectin had been tested to have little effect on [35S]sulfate incorporation into proteoglycans and induction of alkaline phosphatase activity, the Con A action on chondrocytes seems specific. These results indicate that Con A is a potent modulator of differentiation of chondrocytes, which induces the onset on a maturing and a terminal differentiation in chondrocytes, leading to extensive calcification of the extracellular matrix.

  20. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry.

    PubMed

    Oseni, Adelola O; Butler, Peter E; Seifalian, Alexander M

    2015-11-01

    Despite extensive research into cartilage tissue engineering (CTE), there is still no scaffold ideal for clinical applications. Various synthetic and natural polymers have been investigated in vitro and in vivo, but none have reached widespread clinical use. The authors investigate the potential of POSS-PCU, a synthetic nanocomposite polymer, for use in CTE. POSS-PCU is modified with silsesquioxane nanostructures that improve its biological and physical properties. The ability of POSS-PCU to support the growth of ovine nasoseptal chondrocytes was evaluated against a polymer widely used in CTE, polycaprolactone (PCL). Scaffolds with varied concentrations of the POSS molecule were also synthesized to investigate their effect on chondrocyte growth. Chondrocytes were seeded onto scaffold disks (PCU negative control; POSS-PCU 2%, 4%, 6%, 8%; PCL). Cytocompatibilty was evaluated using cell viability, total DNA, collagen and GAG assays. Chondrocytes cultured on POSS-PCU (2% POSS) scaffolds had significantly higher viability than PCL scaffolds (p < 0.001). Total DNA, collagen and sGAG protein were also greater on POSS-PCU scaffolds compared with PCL (p > 0.05). POSS-PCU (6% and 8% POSS) had improved viability and proliferation over an 18 day culture period compared with 2% and 4% POSS-PCU (p < 0.0001). Increasing the percentage of POSS in the scaffolds increased the size of the pores found in the scaffolds (p < 0.05). POSS-PCU has excellent potential for use in CTE. It supports the growth of chondrocytes in vitro and the POSS modification significantly enhances the growth and proliferation of nasoseptal chondrocytes compared with traditional scaffolds such as PCL.

  1. Initiation of Chondrocyte Self-Assembly Requires an Intact Cytoskeletal Network

    PubMed Central

    Lee, Jennifer K.; Hu, Jerry C.Y.

    2016-01-01

    Self-assembly and self-organization have recently emerged as robust scaffold-free tissue engineering methodologies that can be used to generate various tissues, including cartilage, vessel, and liver. Self-assembly, in particular, is a scaffold-free platform for tissue engineering that does not require the input of exogenous energy to the system. Although self-assembly can generate functional tissues, most notably neocartilage, the mechanisms of self-assembly remain unclear. To study the self-assembling process, we used articular chondrocytes as a model to identify parameters that can affect this process. Specifically, the roles of cell–cell and cell–matrix adhesion molecules, surface-bound collagen, and the actin cytoskeletal network were investigated. Using time-lapse imaging, we analyzed the early stages of chondrocyte self-assembly. Within hours, chondrocytes rapidly coalesced into cell clusters before compacting to form tight cellular structures. Chondrocyte self-assembly was found to depend primarily on integrin function and secondarily on cadherin function. In addition, actin or myosin II inhibitors prevented chondrocyte self-assembly, suggesting that cell adhesion alone is not sufficient, but rather the active contractile actin cytoskeleton is essential for proper chondrocyte self-assembly and the formation of neocartilage. Better understanding of the self-assembly mechanisms allows for the rational modulation of this process toward generating neocartilages with improved properties. These findings are germane to understanding self-assembly, an emerging platform for tissue engineering of a plethora of tissues, especially as these neotissues are poised for translation. PMID:26729374

  2. Viability of human chondrocytes in an ex vivo model in relation to temperature and cartilage depth.

    PubMed

    Drobnic, M; Mars, T; Alibegović, A; Bole, V; Balazic, J; Grubic, Z; Brecelj, J

    2005-01-01

    Chondrocytes in human articular cartilage remain viable post-mortem. It has however not been established yet how the storage temperature affects their survival, which is essential information when post-mortem cartilage is used for toxicologic studies. Our aim was to construct a simple model of explanted knee cartilage and to test the influences of time and temperature on the viability of chondrocytes in the ex vivo conditions. Osteochondral cylinders were procured from the cadaveric femoral condyles. The cylinders were embedded in water-tight rubber tubes, which formed separate chondral and osteal compartments. Tubes were filled with normal saline, without additives, to keep chondrocytes under close-to-normal conditions. The samples were divided into two groups stored at 4 degrees C and 35 degrees C, respectively. Three samples of each of these two groups were analysed at the time of removal, and then three and nine days later. Images of Live-Dead staining were scanned by a confocal laser microscope. Count of viable chondrocytes in four regions, from surface to bone, was obtained using image analysis software. The regression model revealed that the number of viable chondrocytes decreased every day by 19% and that an increase in temperature by 1 degree C decreased their viability by 5.8%. The temperature effect fell by 0.2 percentage points for every 100 microm from the surface to the bone. Herein we demonstrate that chondrocytes remain viable in the ex vivo model of human knee cartilage long enough to be able to serve as a model for toxicologic studies. Their viability is, however, significantly influenced by time and temperature.

  3. Integrin-β1 regulates chondrocyte proliferation and apoptosis through the upregulation of GIT1 expression.

    PubMed

    Zhang, Long-Qiang; Zhao, Guang-Zong; Xu, Xiao-Yan; Fang, Jun; Chen, Jing-Ming; Li, Ji-Wen; Gao, Xue-Jian; Hao, Li-Juan; Chen, Yun-Zhen

    2015-04-01

    Chondrocytes play a critical role in the repair process of osteoarthritis, which is also known as degenerative arthritis. Integrins, as the key family of cell surface receptors, are responsible for the regulation of chondrocyte proliferation, differentiation, survival and apoptosis through the recruitment and activation of downstream adaptor proteins. Moreover, G-protein-coupled receptor kinase interacting protein-1 (GIT1) exerts its effects on cell proliferation and migration through interaction with various cytokines. It has been previously suggested that GIT1 acts as a vital protein downstream of the integrin-mediated pathway. In the present study, we investigated the effects of integrin-β1 on cell proliferation and apoptosis, as well as the underlying mechanisms in chondrocytes in vitro. Following transfection with a vector expressing integrin-β1, our results revealed that the overexpression of integrin-β1 enhanced GIT1 expression, whereas the knockdown of integrin-β1 by siRNA suppressed GIT1 expression. However, no significant effect was observed on integrin-β1 expression following the enforced overexpression of GIT1, which suggests that GIT1 is localized downstream of integrin-β1. In other words, integrin-β1 regulates the expression of GIT1. Furthermore, this study demonstrated that integrin-β1 and GIT1 increased the expression levels of aggrecan and type II collagen, thus promoting chondrocyte proliferation; however, they inhibited chondrocyte apoptosis. Taken together, our data demonstrate that integrin-β1 plays a vital role in chondrocyte proliferation, differentiation and apoptosis. GIT1 exerts effects similar to those of integrin-β1 and is a downstream target of integrin-β1.

  4. Evaluation of thermoreversible polymers containing fibroblast growth factor 9 (FGF-9) for chondrocyte culture

    SciTech Connect

    Au, Angela; Ha, Jinny; Polotsky, Anna; Krzyminski, Karol J.; Gutowska, Anna; Hungerford, Davis S.; Frondoza, Carmelita G.

    2004-05-01

    We have evaluated a biomaterial to serve as a scaffold for the propagation and amplification of chondrocytes that promotes the original cellular phenotype of these cells. The goal of the present study was to investigate the use of thermally reversible polymer gels poly(NiPAAm-co-AAc), as a biocompatible supporting scaffold for the propagation of chondrocytic cells. The polymer gels at temperatures above its lower critical solution temperature (LCST) while liquefying at temperatures below its LCST of 34.5 C. Hence, the polymer, in its gelled form, has the ability to hold cells in situ, forming a matrix similar to the natural cellular environment or the extracellular matrix that comprises cartilage. We tested the hypothesis that the polymer gel promotes cell viability and function. Human osteoblast-like cells, nasal chondrocytes, and articular chondrocytes (1x105/150 ?l) were re-suspended in enriched DMEM media and were plated onto control (without gel) and gel containing 24-well plates. The plates were re-incubated at 37 C, 5% CO2 for the time-point of interest. Additional media was added to the plates and exchanged as needed. Following cell culture, cells were retrieved, enumerated, and cell viability was determined. Other aliquots of the cells were stained for morphological analysis while expression of chondrocyte markers including collagen type II and aggrecan were determined using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). The polymer gel was not cytotoxic as the cell number retrieved from three-dimensional culture gel was found to be one to two times higher than that retrieved from monolayer culture. Chondrocytes propagated in the thermo-reversible polymers expressed enhanced or maintained expression of collagen type II and aggrecan. Collagen type I expression was decreased or unaltered. The N-isopropylacrylamide and acrylic acid copolymer gel has potential use as a cell culture substrate and as a cell delivery vehicle.

  5. Human breast adipose‑derived stem cells: characterization and differentiation into mammary gland‑like epithelial cells promoted by autologous activated platelet‑rich plasma.

    PubMed

    Cui, Shi-En; Li, Hong-Mian; Liu, Da-Lie; Nan, Hua; Xu, Kun-Ming; Zhao, Pei-Ran; Liang, Shuang-Wu

    2014-08-01

    Human adipose‑derived stem cells (ASCs) isolated from various body sites have been widely investigated in basic and clinical studies. However, ASCs derived from human breast tissue (hbASCs) have not been extensively investigated. In order to expand our understanding of hbASCs and examine their potential applications in stem cell research and cell‑based therapy, hbASCs were isolated from discarded surgical fat tissue following reduction mammoplasty and a comprehensive characterization of these hbASCs was performed, including analysis of their cellular morphology, growth features, cell surface protein markers and multilineage differentiation capacity. These hbASCs expressed cluster of differentiation (CD)44, CD49d, CD90 and CD105, but did not express CD31 and CD34. Subsequently, the hbASCs were differentiated into adipocytes, osteocytes and chondrocytes in vitro. In order to examine the potential applications of hbASCs in breast reconstruction, an approach to promote in vitro differentiation of hbASCs into mammary gland‑like epithelial cells (MGECs) was developed using activated autologous platelet‑rich plasma (PRP). A proliferation phase and a subsequent morphological conversion phase were observed during this differentiation process. PRP significantly promoted the growth of hbASCs in the proliferation phase and increased the eventual conversion rate of hbASCs into MGECs. Thus, to the best of our knowledge, the present study provided the first comprehensive characterization of hbASCs and validated their multipotency. Furthermore, it was revealed that activated autologous PRP was able to enhance the differentiation efficiency of hbASCs into MGECs. The present study and other studies of hbASCs may aid the development of improved breast reconstruction strategies.

  6. Proliferation of rabbit chondrocyte and inhibition of IL-1β-induced apoptosis through MEK/ERK signaling by statins.

    PubMed

    Zhou, Bin; Chen, Deheng; Xu, Huazi; Zhang, Xiaolei

    2017-02-01

    Chondrocyte plays a critical role in endochondral ossification and cartilage repair by maintaining the cartilaginous matrix. Statins have been widely used to lower the cholesterol level in patients with cardiovascular disorders. Previous research has demonstrated potential role of statins in chondrocyte proliferation. This study addresses the proliferation-regulatory effect of lovastatin in rabbit chondrocytes as well as the underlying signaling mechanisms, thereby exploring its potential application in chondrocyte-related disorders, such as cartilage damage and osteoarthritis. Rabbit chondrocytes were treated with lovastatin at multiple concentrations, and the proliferation rate was measured by CCK-8 test. The results showed significant increase in chondrocyte proliferation under lovastatin treatment. Using real-time quantitative PCR, it was observed that the expression levels of COL2A1, SOX-9, Caspase-3, and MMP-3 genes were significantly changed by lovastatin treatment. Western blotting analysis showed that the abundance of COL2A1, SOX-9, MEK1/2, p-MEK1/2, ERK1/2, p-ERK1/2, Caspase-3, and MMP-3 proteins was also significantly influenced by lovastatin treatment. Interleukine-1 beta (IL-1β) is involved in the progression of osteoarthritis (OA) by inducing articular cartilage and chondrocyte aging and senescence. In this study, we observed that lovastatin treatment inhibited IL-1β-induced chondrocyte apoptosis, while the combined treatment of lovastatin and U0126 evidently offset the apoptosis-inhibiting effect of lovastatin in chondrocyte proliferation. The expressional level and protein abundance of COL2A1, SOX-9, MEK1/2, p-MEK1/2, ERK1/2, p-ERK1/2, caspase-3, and MMP-3 genes showed significant alterations under the combined treatment. Together, our results suggested that lovastatin significantly promoted proliferation and inhibited the IL-1β-induced apoptosis in rabbit chondrocytes, which was mediated by the MEK/ERK signaling.

  7. The Effects of Simulated Micro-gravity on Cultured Chicken Embryonic Chondrocytes

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, X.; Yang, S.; Li, S.; Peidong, J.; Lin, Z.

    T he effects of simulated microgravity on the microtubular system, extracellular matrix, alkaline phosphatase activity, intracellular free calcium concentration, mitochondrial ATP synthase activity and oligomycin inhibition rate of cultured chicken embryonic chondrocytes were studied with a clinostat. The microtubular content decreased. The extracellualr matrix decreased significantly after rotating, and the fibers in the extracellular matrix were more tiny and disorderly. There was a time course decrease in alkaline phosphatase activity of chondrocytes, a marker of matrix mineralization. Meanwhile a significant drop in the intracellular calcium concentration happened at the beginning of rotation. No significant changes happened in the mitochondrial ATP synthase activity and oligomycin inhibition rate. The possible mechanisms about them were discussed.

  8. Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture

    PubMed Central

    DURRANT, L. A.; ARCHER, C. W.; BENJAMIN, M.; RALPHS, J. R.

    1999-01-01

    Articular cartilage undergoes cycles of compressive loading during joint movement, leading to its cyclical deformation and recovery. This loading is essential for chondrocytes to perform their normal function of maintenance of the extracellular matrix. Various lines of evidence suggest the involvement of the cytoskeleton in load sensing and response. The purpose of the present study is to describe the 3-dimensional (3D) architecture of the cytoskeleton of chondrocytes within their extracellular matrix, and to examine cytoskeletal responses to experimentally varied mechanical conditions. Uniformly sized explants of articular cartilage were dissected from adult rat femoral heads. Some were immediately frozen, cryosectioned and labelled for filamentous actin using phalloidin, and for the focal contact component vinculin or for vimentin by indirect immunofluorescence. Sections were examined by confocal microscopy and 3D modelling. Actin occurred in all chondrocytes, appearing as bright foci at the cell surface linked to an irregular network beneath the surface. Cell surface foci colocalised with vinculin, suggesting the presence of focal contacts between the chondrocyte and its pericellular matrix. Vimentin label occurred mainly in cells of the deep zone. It had a complex intracellular distribution, with linked networks of fibres surrounding the nucleus and beneath the plasma membrane. When cartilage explants were placed into organ culture, where in the absence of further treatments cartilage imbibes fluid from the culture medium and swells, cytoskeletal changes were observed. After 1 h in culture the vimentin cytoskeleton was disassembled, leading to diffuse labelling of cells. After a further hour in culture filamentous vimentin label reappeared in deep zone chondrocytes, and then over the next 48 h became more widespread in cells of the explants. Actin distribution was unaffected by culture. Further experiments were performed to test the effects of load on the

  9. Microcontact printing of BMP-2 and its effect on human chondrocytes behavior

    NASA Astrophysics Data System (ADS)

    Pan, Chang-Jiang; Nie, Yu-Dong

    2010-01-01

    The present study is to investigate human chondrocytes behavior on microcontact printed bone morphogenetic protein-2 (BMP-2) lines on polystyrene (PS) surface. It was found that the cells aligned with BMP lines and expressed type II and VI collagen. The chondrocytes in vitro cultured on BMP lines were elongated, which resulted in altered cell morphology. Taking all these results into consideration, BMP-2 lines enhance cell adhesion, restrict spreading, and increase type II and VI collagen expression. The results represented in this study may be an approach to the problem of engineering reparative cartilage in vitro.

  10. Defective autologous mixed lymphocyte reactivity in multiple sclerosis.

    PubMed Central

    Hirsch, R L

    1986-01-01

    T cells from patients with multiple sclerosis (MS) and normal controls were assessed for their ability to respond in the autologous mixed lymphocyte reaction (AMLR). Cells from stable MS patients demonstrated a significant defect in their proliferative response to non-T cells in comparison to normal controls. Despite the defective AMLR response, T cells from MS patients reacted as well as T cells from normal controls to allogeneic stimuli. Furthermore, MS non-T-cells were fully capable of stimulating allogeneic MLR responses by normal and MS T cells. Since the T4+ cell is the major subpopulation which proliferates in the AMLR, these studies suggest a functional defect in a subpopulation of T4+ cells in MS patients. Since the AMLR may represent an important mechanism by which immune responses are regulated, a defect in the ability of MS T cells to respond to autologous cells could account for several of the autoimmune features of the disease. PMID:2942317

  11. Autologous Bone Graft in Foot and Ankle Surgery.

    PubMed

    Miller, Christopher P; Chiodo, Christopher P

    2016-12-01

    Bone graft is a common adjunct procedure in orthopedic surgery used for fusions, fracture repair, and the reconstruction of skeletal defects in the foot and ankle. Autologous graft, or autograft, involves the transport of bone from a donor site to another location in the same patient. It is considered by many to be the gold standard of bone grafting, as it is provides all biologic factors required for functional graft. Further, autograft is 100% histocompatible with no risk of disease transmission.

  12. Antibodies: Immunoconjugates and autologous cellular therapy in acute lymphoblastic leukemia.

    PubMed

    Advani, Anjali

    2015-01-01

    Using a case study of a 57-year-old man with relapsed/refractory precursor-B (pre-B) acute lymphoblastic leukemia (ALL), this review discusses treatment with immunoconjugates and autologous therapy in acute ALL. Three therapies--blinatumomab, inotuzumab, and CAR T cells--are considered here, each with advantages in specific clinical situations. These therapies represent some of the exciting advances that have been made in the treatment of ALL over the last several years.

  13. Autologous Fat Transfer in a Patient with Lupus Erythematosus Profundus

    PubMed Central

    Yoon, Jimi; Kim, Hwa Mi; Kim, Tae-Heung; Kim, Chung-Won; Sun, Young-Woo; Yoon, Tae-Jin

    2012-01-01

    Lupus erythematosus profundus, a form of chronic cutaneous lupus erythematosus, is a rare inflammatory disease involving in the lower dermis and subcutaneous tissues. It primarily affects the head, proximal upper arms, trunk, thighs, and presents as firm nodules, 1 to 3 cm in diameter. The overlying skin often becomes attached to the subcutaneous nodules and is drawn inward to produce deep, saucerized depressions. We present a rare case of lupus erythematosus profundus treated with autologous fat transfer. PMID:23139658

  14. [History of autologous blood transfusion in neurosurgical operations].

    PubMed

    Nagai, M

    1998-12-01

    The first report on predeposit autologous blood transfusion was made in 1921 by F.C. Grant, neurosurgeon in the University Hospital of Pennsylvania. The patient was a 42-year-old man with cerebellar tumor, having a rare blood type for which no donor had been listed up. 500 ml of autologous blood was obtained, kept in 0.2% sodium citrate solution in a refrigerator and retransfused following a suboccipital exploration. Clinically, no reaction was noted and there was a favorable postoperative course, and 'autotransfusion' was evaluated as a life-saving procedure. In 1925, L.E. Davis and H. Cushing reported the first case of intraoperative autotransfusion (intraoperative blood salvage). The patient was a 42-year-old man with left occipital meningioma which, due to massive bleeding, could not be removed even by two-stage operations. In a 3rd stage operation, they could remove the tumor of 120 g totally by the aid of intraoperative replacement using 600 ml autologous blood collected with a home-made suction apparatus. No adverse side-effect was noted. This procedure was performed for 23 cases and it revealed beneficial effects except in one case. In ten of the cases, the procedure was estimated as a life-saving treatment. At the present time, the appropriate use of the patients' blood for transfusion therapy is recommended due to a shortage of donors. The use of autologous blood could play a key role, not only in saving the homologous blood supply, but also in avoiding complications encountered in conventional transfusion treatments. The methods of 'Autotransfusion' originated from operations in the neurosurgical area. On that account, it is desirable that neurosurgeons should be concerned with this subject even now.

  15. Development of molecularly imprinted polymer-based field effect transistor for sugar chain sensing

    NASA Astrophysics Data System (ADS)

    Nishitani, Shoichi; Kajisa, Taira; Sakata, Toshiya

    2017-04-01

    In this study, we developed a molecularly imprinted polymer-based field-effect transistor (MIP-gate FET) for selectively detecting sugar chains in aqueous media, focusing on 3‧-sialyllactose (3SLac) and 6‧-sialyllactose (6SLac). The FET biosensor enables the detection of small molecules as long as they have intrinsic charges. Additionally, the MIP gels include the template for the target molecule, which is selectively trapped without requiring enzyme-target molecule reaction. The MIP gels were synthesized on the gate surface of the FET device, including phenylboronic acid (PBA), which enables binding to sugar chains. Firstly, the 3SLac-MIP-gate FET quantitatively detected 3SLac at µM levels. This is because the FET device recognized the change in molecular charges on the basis of PBA-3SLac binding in the MIP gel. Moreover, 3SLac was selectively detected using the 3SLac- and 6SLac-MIP-gate FETs to some extent, where the detecting signal from the competent was suppressed by 40% at maximum. Therefore, a platform based on the MIP-coupled FET biosensor is suitable for a selective biosensing system in an enzyme-free manner, which can be applied widely in medical fields. However, we need to further improve the selectivity of MIP-gate FETs to discriminate more clearly between similar structures of sugar chains such as 3SLac and 6SLac.

  16. Polymer-based Drug Delivery Systems Applied to Insects Repellents Devices: A Review.

    PubMed

    Barradas, Thaís Nogueira; Senna, Juliana Perdiz; Ricci, Eduardo; Mansur, Claudia Regina Elias

    2016-01-01

    Insects-borne diseases constitute a public health concern. Since there is no vaccine or curative treatment for many of these diseases, individual protection is the main approach to prevent them. Nowadays, the search for replacing synthetic molecules for insect repellents from natural sources, such as essential oils, is increasing. However, most of them present low efficiency compared to synthetic repellents. Therefore, decreasing skin permeation of synthetic repellents or yet, increasing effectiveness of natural repellents are challenges that must be overcome during the development of novel insect repellent formulations. In this context, polymer-based formulations allow entrapping active ingredients and provide release control. Encapsulation into polymeric micro/nanocapsules, cyclodextrins, polymeric micelles or hydrogels constitutes an approach to modify physicochemical properties of encapsulated molecules. Such techniques, applied in topical formulations, fabrics modification for personal protection, or food packaging have proved to be more effective in increasing repellency time and also in reducing drug dermal absorption, improving safety profiles of these products. In this work, the main synthetic and natural insect repellents are described as well as their polymeric carrier systems and their potential applications.

  17. Polymer-Based Therapeutics: Nanoassemblies and Nanoparticles for Management of Atherosclerosis

    PubMed Central

    Lewis, Daniel R.; Kamisoglu, Kubra; York, Adam; Moghe, Prabhas V.

    2012-01-01

    Coronary arterial disease, one of the leading causes of adult mortality, is triggered by atherosclerosis. A disease with complex etiology, atherosclerosis results from the progressive long-term combination of atherogenesis, the accumulation of modified lipoproteins within blood vessel walls, along with vascular and systemic inflammatory processes. The management of atherosclerosis is challenged by the localized flare-up of several multipronged signaling interactions between activated monocytes, atherogenic macrophages and inflamed or dysfunctional endothelial cells. A new generation of approaches is now emerging founded on multifocal, targeted therapies that seek to reverse or ameliorate the athero-inflammatory cascade within the vascular intima. This article reviews the various classes and primary examples of bioactive configurations of nanoscale assemblies. Of specific interest are polymer-based or polymer-lipid micellar assemblies designed as multimodal receptor-targeted blockers or drug carriers whose activity can be tuned by variations in polymer hydrophobicity, charge, and architecture. Also reviewed are emerging reports on multifunctional nanoassemblies and nanoparticles for improved circulation and enhanced targeting to athero-inflammatory lesions and atherosclerotic plaques. PMID:21523920

  18. Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces

    PubMed Central

    He, Zhiwei; Vågenes, Elisabeth T.; Delabahan, Chrisrosemarie; He, Jianying; Zhang, Zhiliang

    2017-01-01

    Ice adhesion is mainly dictated by surface properties, and water wettability is frequently correlated with ice adhesion strength. However, these established correlations are limited to high ice adhesion and become invalid when the ice adhesion strength is low. Here we carried out an experimental study to explore the relationships between low ice adhesion strength and room temperature surface properties. A variety of room temperature properties of 22 polymer-based hydrophilic and hydrophobic samples consisting of both low and high ice adhesion surfaces were analysed. The properties investigated include water adhesion force, water wettability, roughness, elastic modulus and hardness. Our results show that low ice adhesion strength does not correlate well with water contact angle and its variants, surface roughness and hardness. Low elastic modulus does not guarantee low ice adhesion, however, surfaces with low ice adhesion always show low elastic modulus. Low ice adhesion (below 60 kPa) of tested surfaces may be determinative of small water adhesion force (from 180 to 270 μN). Therefore, measurement of water adhesion force may provide an effective strategy for screening anti-icing or icephobic surfaces, and surfaces within specific values of water adhesion force will possibly lead to a low ice adhesion. PMID:28169370

  19. A nonlinear viscoelastic approach to durability predictions for polymer based composite structures

    NASA Technical Reports Server (NTRS)

    Brinson, Hal F.

    1991-01-01

    Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.

  20. Opportunities and challenges for the development of polymer-based biomaterials and medical devices

    PubMed Central

    Yin, Jinghua

    2016-01-01

    Biomaterials and medical devices are broadly used in the diagnosis, treatment, repair, replacement or enhancing functions of human tissues or organs. Although the living conditions of human beings have been steadily improved in most parts of the world, the incidence of major human’s diseases is still rapidly growing mainly because of the growth and aging of population. The compound annual growth rate of biomaterials and medical devices is projected to maintain around 10% in the next 10 years; and the global market sale of biomaterials and medical devices is estimated to reach $400 billion in 2020. In particular, the annual consumption of polymeric biomaterials is tremendous, more than 8000 kilotons. The compound annual growth rate of polymeric biomaterials and medical devices will be up to 15–30%. As a result, it is critical to address some widespread concerns that are associated with the biosafety of the polymer-based biomaterials and medical devices. Our group has been actively worked in this direction for the past two decades. In this review, some key research results will be highlighted. PMID:27047681

  1. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets.

    PubMed

    Yuan, Chao; Duan, Bin; Li, Lan; Xie, Bin; Huang, Mengyu; Luo, Xiaobing

    2015-06-17

    Hexagonal boron nitride (hBN) platelets are widely used as the reinforcing fillers for enhancing the thermal conductivity of polymer-based composites. Since hBN platelets have high aspect ratio and show a highly anisotropic thermal property, the thermal conductivity of the hBNs-filled composites should be strongly associated with the platelets' orientation. However, the orientation effect has been explored less frequently due to the technical difficulties in precontrol of the platelets' orientation in the polymer matrix. In this paper, we report the use of magnetic fields to assemble the platelets into various microstructures and to study the thermal conductivities of the designed composites. The experimental results showed that thermal conductivities are dramatically different among these composites. For instance, the thermal conductivities of the composites with platelets oriented parallel and perpendicular to the heat flux direction are respectively 44.5% higher and 37.9% lower than that of unaligned composites at the volume fraction of 9.14%. The results were also analyzed by a theoretical model. The model suggests that the orientation of the hBN platelets is the main reason for the variance in the thermal conductivity.

  2. Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces.

    PubMed

    He, Zhiwei; Vågenes, Elisabeth T; Delabahan, Chrisrosemarie; He, Jianying; Zhang, Zhiliang

    2017-02-07

    Ice adhesion is mainly dictated by surface properties, and water wettability is frequently correlated with ice adhesion strength. However, these established correlations are limited to high ice adhesion and become invalid when the ice adhesion strength is low. Here we carried out an experimental study to explore the relationships between low ice adhesion strength and room temperature surface properties. A variety of room temperature properties of 22 polymer-based hydrophilic and hydrophobic samples consisting of both low and high ice adhesion surfaces were analysed. The properties investigated include water adhesion force, water wettability, roughness, elastic modulus and hardness. Our results show that low ice adhesion strength does not correlate well with water contact angle and its variants, surface roughness and hardness. Low elastic modulus does not guarantee low ice adhesion, however, surfaces with low ice adhesion always show low elastic modulus. Low ice adhesion (below 60 kPa) of tested surfaces may be determinative of small water adhesion force (from 180 to 270 μN). Therefore, measurement of water adhesion force may provide an effective strategy for screening anti-icing or icephobic surfaces, and surfaces within specific values of water adhesion force will possibly lead to a low ice adhesion.

  3. Polymer-based mesh as supports for multi-layered 3D cell culture and assays.

    PubMed

    Simon, Karen A; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron D; Ngo, Philip M; Whitesides, George M

    2014-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system-Cells-in-Gels-in-Mesh (CiGiM)-that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells-layer-by-layer-within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis-(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format.

  4. Heating of polymer-based filters in sub-mm space optics

    NASA Astrophysics Data System (ADS)

    Baccichet, Nicola; Savini, Giorgio

    2014-08-01

    The heating of polymer-based filters for experiment working in mm and FIR bands will be described in this paper. This effect was assessed by doing a comparison between a computer model and data available in literature. Firstly, a theoretical study of the physical quantities relevant to the filters materials such as Polypropylene and Polytetrafluoroethylene was performed. These were then used to create a multi-physics computer model that takes into account thermal and radiative heating of large optical elements such as filters and lenses, the geometry of which was suggested by the large format array instruments designed for future post-Planck CMB space missions. Overall, it was found that all the filters reached a different equilibrium temperature depending on the model considered, with time constant values between 1000 and 1300 s. The maximum deviation from the initial condition was measured between 0.09 K and 1.3 K in the worst cases and the amplitude and phase caused by the period of the heat source were also measured.

  5. Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer

    PubMed Central

    Wang, Yichao; Li, Puwang; Truong-Dinh Tran, Thao; Zhang, Juan; Kong, Lingxue

    2016-01-01

    The evolution of polymer based nanoparticles as a drug delivery carrier via pharmaceutical nano/microencapsulation has greatly promoted the development of nano- and micro-medicine in the past few decades. Poly(lactide-co-glycolide) (PLGA) and chitosan, which are biodegradable and biocompatible polymers, have been approved by both the Food & Drug Administration (FDA) and European Medicine Agency (EMA), making them ideal biomaterials that can be advanced from laboratory development to clinical oral and parental administrations. PLGA and chitosan encapsulated nanoparticles (NPs) have successfully been developed as new oral drug delivery systems with demonstrated high efficacy. This review aims to provide a comprehensive overview of the fabrication of PLGA and chitosan particulate systems using nano/microencapsulation methods, the current progress and the future outlooks of the nanoparticulate drug delivery systems. Especially, we focus on the formulations and nano/micro-encapsulation techniques using top-down techniques. It also addresses how the different phases including the organic and aqueous ones in the emulsion system interact with each other and subsequently influence the properties of the drug delivery system. Besides, surface modification strategies which can effectively engineer intrinsic physicochemical properties are summarised. Finally, future perspectives and potential directions of PLGA and chitosan nano/microencapsulated drug systems are outlined. PMID:28344283

  6. A New Strategy to Prepare Polymer-based Shape Memory Elastomers.

    PubMed

    Song, Shijie; Feng, Jiachun; Wu, Peiyi

    2011-10-04

    A new strategy that utilizes the microphase separation of block copolymer and phase transition of small molecules for preparing polymer-based shape memory elastomer has been proposed. According to this strategy, a novel kind of shape memory elastomer comprising styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and paraffin has been prepared. Because paraffins are midblock-selective molecules for SEBS, they will preferentially enter and swell EB blocks supporting paraffins as an excellent switch phase for shape memory effect. Microstructures of SEBS/paraffin composites have been characterized by transmission electron microscopy, polarized light microscopy, and differential scanning calorimetry. The composites demonstrate various phase morphologies with regard to different paraffin loading. It has been found that under low paraffin loading, all the paraffins precisely embed in and swell EB-rich domains. While under higher loading, part of the paraffins become free and a larger-scaled phase separation has been observed. However, within wide paraffin loadings, all composites show good shape fixing, shape recovery performances, and improved tensile properties. Compared to the reported methods for shape memory elastomers preparation, this method not only simplifies the fabrication procedure from raw materials to processing but also offers a controllable approach for the optimization of shape memory properties as well as balancing the rigidity and softness of the material.

  7. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex.

    PubMed

    Tan, Hongliang; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2013-12-15

    The meta-organic coordination polymers have been emerged as fascinating nanomaterials because of their tunable nature. In this work, we employed lanthanide coordination polymer self-assembled from adenosine monophosphate (AMP) and europium ion (Eu(3+)) as receptor reagent and citrate (Cit) as ancillary ligand to construct a fluorescent sensor for the detection of tetracycline (Tc) in milk. The co-coordination of Cit and Tc with Eu(3+) on the surface of the coordination polymer AMP/Eu leads to the formation of ternary complex which emitted strong fluorescence due to the removal of coordinated water molecules and an intramolecular energy transfer from Tc to Eu(3+). The fluorescent intensity of Eu(3+) displayed a good linear response to Tc concentrations in the range of 0.1-20 μM with a detection limit of 60 nM. This method was successfully applied to determine the levels of Tc in milk, which is the first application of coordination polymer as a fluorescent sensor in real sample. Compared with other Eu(3+)-based fluorescent methods for Tc detection, the presented method allows simple, direct analysis of Tc without requiring special reaction media or complicated prepreparation processes. This straightforward strategy could be extended to the preparation of other lanthanide coordination polymer-based fluorescent probes for applications in biosensing, imaging, drug delivery, and so on.

  8. Rational tailoring of substrate and inhibitor affinity via ATRP polymer-based protein engineering.

    PubMed

    Murata, Hironobu; Cummings, Chad S; Koepsel, Richard R; Russell, Alan J

    2014-07-14

    Atom transfer radical polymerization (ATRP)-based protein engineering of chymotrypsin with a cationic polymer was used to tune the substrate specificity and inhibitor binding. Poly(quaternary ammonium) was grown from the surface of the enzyme using ATRP after covalent attachment of a protein reactive, water-soluble ATRP-initiator. This "grafting from" conjugation approach generated a high density of cationic ammonium ions around the biocatalytic core. Modification increased the surface area of the protein over 40-fold, and the density of modification on the protein surface was approximately one chain per 4 nm(2). After modification, bioactivity was increased at low pH relative to the activity of the native enzyme. In addition, the affinity of the enzyme for a peptide substrate was increased over a wide pH range. The massively cationic chymotrypsin, which included up to 2000 additional positive charges per molecule of enzyme, was also more stable at extremes of temperature and pH. Most interestingly, we were able to rationally control the binding of two oppositely charged polypeptide protease inhibitors, aprotinin and the Bowman-Birk trypsin-chymotrypsin inhibitor from Glycine max, to the cationic derivative of chymotrypsin. This study expands upon our efforts to use polymer-based protein engineering to predictably engineer enzyme properties without the need for molecular biology.

  9. Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances.

    PubMed

    Wang, Zhaohui; Carlsson, Daniel O; Tammela, Petter; Hua, Kai; Zhang, Peng; Nyholm, Leif; Strømme, Maria

    2015-07-28

    We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g(-1)) and volumetric (122 F cm(-3)) capacitances at high current densities (300 mA cm(-2) ≈ 33 A g(-1)) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm(-2). By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm(-3) and 3 W cm(-3) respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states.

  10. Photochemical arrays formed by spatial compartmentalization of colloidal nanoparticles in a polymer-based hydrogel

    SciTech Connect

    Firestone, M. A.; Rajh, T.; Makarova, O. V.; Seifert, S.; Tiede, D. M.; Thurnauer, M. C.

    2000-01-13

    The development of practical strategies for the assembly of semiconductor and metal colloid nanoparticles into ordered architectures is an area of considerable current interest, since it offers an opportunity for exploiting the optical and electronic properties of these colloids for device development. Prior research has explored creating such organized nanoparticle assemblies by Langmuir-Blodgett techniques or controlled solvent evaporation on suitable substrates. These approaches suffer from several limitations, however, most notably the generation of relatively simple structures and the lack of structural tailorability, preventing full exploitation of these materials. More recently, directed assembly using chemisorption of streptavidin-biotin or thiol-derivatized gold nanoparticles onto substrates has been described. Alternative approaches to achieving two-dimensional confinement of nanoparticles that do not involve substrate-supported materials, but rather organize the nanoparticles into mesoscopically-ordered soft condensed matter, may offer the advantage of enhanced processability and may permit construction of nanocomposite structures based on functional nanoparticles embedded in a processable, polymer-based matrix. This work describes the development of an alternative strategy for constructing 2-D arrays of functional metal and semiconductor nanoparticles. The approach involves directing the organization of nanocrystals into a processable (i.e., by externally applied magnetic and electric fields) polymer-grafted lipid-based complex fluid. By altering the surface chemistry of the nanoparticles, they can be selectively placed into defined regions encapsulating matrix.

  11. Polymer-based disposable microneedle array with insertion assisted by vibrating motion.

    PubMed

    Lee, F-W; Hung, W-H; Ma, C-W; Yang, Y-J

    2016-01-01

    This work presents a disposable polymer-based microneedle array that carries out insertions by mimicking the vibrating motion of a mosquito's proboscis. The proposed device, which comprises a 10:1 high-aspect-ratio parylene microneedle array and a chamber structure, was monolithically realized using a novel fabrication process. The vibrating motion of the microneedles was generated using a piezoelectric actuator. This device can be potentially applied to extract and collect blood by puncturing the dermis layer of human skin. The fabricated device is advantageous because of its biocompatibility, simple fabrication process, and low associated costs. Additionally, the graph of the measured extraction flow rate versus the pressure drop that is presented shows an agreement with the results predicted by analytical models. A 40% reduction of insertion force was demonstrated when the microneedle insertion was assisted by actuator-induced vibratory motions. Buckling analyses for estimating the maximum loads that the microneedle can sustain before failure occurs were also evaluated. Finally, the relationship between the insertion force and the vibration frequency was demonstrated in this study.

  12. Polymer-Based Mesh as Supports for Multi-layered 3D Cell Culture and Assays

    PubMed Central

    Simon, Karen A.; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron; Ngo, Phil M.; Whitesides, George M.

    2013-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system – Cells-in-Gels-in-Mesh (CiGiM) – that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells—layer-by-layer—within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis—(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format. PMID:24095253

  13. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  14. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels

    PubMed Central

    Rajan, Robin; Matsumura, Kazuaki

    2017-01-01

    Protein aggregation is a process by which misfolded proteins polymerizes into aggregates and forms fibrous structures with a β-sheet conformation, known as amyloids. It is an undesired outcome, as it not only causes numerous neurodegenerative diseases, but is also a major deterrent in the development of protein biopharmaceuticals. Here, we report a rational design for the synthesis of novel zwitterionic polymer-based core-shell nanogels via controlled radical polymerization. Nanogels with different sizes and functionalities in the core and shell were prepared. The nanogels exhibit remarkable efficiency in the protection of lysozyme against aggregation. Addition of nanogels suppresses the formation of toxic fibrils and also enables lysozyme to retain its enzymatic activity. Increasing the molecular weight and degree of hydrophobicity markedly increases its overall efficiency. Investigation of higher order structures revealed that lysozyme when heated without any additive loses its secondary structure and transforms into a random coil conformation. In contrast, presence of nanogels facilitates the retention of higher order structures by acting as molecular chaperones, thereby reducing molecular collisions. The present study is the first to show that it is possible to design zwitterionic nanogels using appropriate polymerization techniques that will protect proteins under conditions of extreme stress and inhibit aggregation. PMID:28374820

  15. Development of a polymer-based easy-to-fabricate micro-free-flow electrophoresis device

    NASA Astrophysics Data System (ADS)

    Akagi, Takanori; Kubota, Ryosuke; Kobayashi, Masashi; Ichiki, Takanori

    2015-06-01

    Since 1990s, micro-free-flow electrophoresis (µFFE) devices have been developed to allow for smaller sample volume and reagent consumption. To solve several technical problems involving the generation of electrolysis gas on the electrodes, most of the µFFE devices reported in the past were fabricated using elaborate micromachining process on silicon or glass substrates. However, high-cost micromachining processes were required and these were not suitable for mass production. In this paper, we report a polymer-based easy-to-fabricate µFFE device using a poly(methyl methacrylate-co-styrene), P(MMA-co-S), substrate and tetra-PEG gel for preventing the invasion of electrolysis gas into the separation chamber. In the separation experiment using a mixture of rhodamine B and sulforhodamine B, the resolution increased linearly with the increase of the applied voltages up to 50 V, whereas a deviation from the linear relation was observed above 50 V, which is possibly the Joule heating. These results indicate that this device could be applicable to separation of biological samples.

  16. Polymer-based disposable microneedle array with insertion assisted by vibrating motion

    PubMed Central

    Lee, F.-W.; Hung, W.-H.; Ma, C.-W.; Yang, Y.-J.

    2016-01-01

    This work presents a disposable polymer-based microneedle array that carries out insertions by mimicking the vibrating motion of a mosquito's proboscis. The proposed device, which comprises a 10:1 high-aspect-ratio parylene microneedle array and a chamber structure, was monolithically realized using a novel fabrication process. The vibrating motion of the microneedles was generated using a piezoelectric actuator. This device can be potentially applied to extract and collect blood by puncturing the dermis layer of human skin. The fabricated device is advantageous because of its biocompatibility, simple fabrication process, and low associated costs. Additionally, the graph of the measured extraction flow rate versus the pressure drop that is presented shows an agreement with the results predicted by analytical models. A 40% reduction of insertion force was demonstrated when the microneedle insertion was assisted by actuator-induced vibratory motions. Buckling analyses for estimating the maximum loads that the microneedle can sustain before failure occurs were also evaluated. Finally, the relationship between the insertion force and the vibration frequency was demonstrated in this study. PMID:26858811

  17. Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces

    NASA Astrophysics Data System (ADS)

    He, Zhiwei; Vågenes, Elisabeth T.; Delabahan, Chrisrosemarie; He, Jianying; Zhang, Zhiliang

    2017-02-01

    Ice adhesion is mainly dictated by surface properties, and water wettability is frequently correlated with ice adhesion strength. However, these established correlations are limited to high ice adhesion and become invalid when the ice adhesion strength is low. Here we carried out an experimental study to explore the relationships between low ice adhesion strength and room temperature surface properties. A variety of room temperature properties of 22 polymer-based hydrophilic and hydrophobic samples consisting of both low and high ice adhesion surfaces were analysed. The properties investigated include water adhesion force, water wettability, roughness, elastic modulus and hardness. Our results show that low ice adhesion strength does not correlate well with water contact angle and its variants, surface roughness and hardness. Low elastic modulus does not guarantee low ice adhesion, however, surfaces with low ice adhesion always show low elastic modulus. Low ice adhesion (below 60 kPa) of tested surfaces may be determinative of small water adhesion force (from 180 to 270 μN). Therefore, measurement of water adhesion force may provide an effective strategy for screening anti-icing or icephobic surfaces, and surfaces within specific values of water adhesion force will possibly lead to a low ice adhesion.

  18. Formation of sensitive/active phases in metal and polymer-based structural materials

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi

    2002-11-01

    This paper describes new concepts the author has proposed and demonstrated to realize metal and polymer based sensitive and/or active structural material systems suitable for smart structures. Most of the developments have been done by simple and innovative methods without using sophisticated and expensive sensors and actuators. The following topics are mainly examined: (1) embedding optical fiber in aluminum matrix to use as sensors; (2) forming optical interference and loss type strain sensors in epoxy matrix simply by embedding and breaking notched optical fiber in it; (3) forming a multifunctional sensor in aluminum matrix for temperature and strain monitoring by embedding an oxidized nickel fiber; (4) fabricating multifunctional composites by using conventional structural materials - i) an active laminate of CFRP/aluminum of which unidirectional actuation is realized by electrical resistance heating of carbon fiber in the CFRP layer and its curvature change can be monitored using optical fiber multiply fractured in the CFRP layer, and ii) a multifunctional aluminum-matrix composite where oxidized titanium fiber is embedded for sensing temperature and strain, generation of heat for actuation.

  19. A nonlinear viscoelastic approach to durability predictions for polymer based composite structures

    NASA Technical Reports Server (NTRS)

    Brinson, Hal F.; Hiel, C. C.

    1990-01-01

    Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.

  20. Monolithical integration of polymer-based microfluidic structures on application-specific integrated circuits

    NASA Astrophysics Data System (ADS)

    Chemnitz, Steffen; Schafer, Heiko; Schumacher, Stephanie; Koziy, Volodymyr; Fischer, Alexander; Meixner, Alfred J.; Ehrhardt, Dietmar; Bohm, Markus

    2003-04-01

    In this paper, a concept for a monolithically integrated chemical lab on microchip is presented. It contains an ASIC (Application Specific Integrated Circuit), an interface to the polymer based microfluidic layer and a Pyrex glass cap. The top metal layer of the ASIC is etched off and replaced by a double layer metallization, more suitable to microfluidic and electrophoresis systems. The metallization consists of an approximately 50 nm gold layer and a 10 nm chromium layer, acting as adhesion promoter. A necessary prerequisite is a planarized ASIC topography. SU-8 is used to serve as microfluidic structure because of its excellent aspect ratio. This polymer layer contains reservoirs, channels, mixers and electrokinetic micro pumps. The typical channel cross section is 10μm"10μm. First experimental results on a microfluidic pump, consisting of pairs of interdigitated electrodes on the bottom of the channel and without any moving parts show a flow of up to 50μm per second for low AC-voltages in the range of 5 V for aqueous fluids. The microfluidic system is irreversibly sealed with a 150μm thick Pyrex glass plate bonded to the SU-8-layer, supported by oxygen plasma. Due to capillary forces and surfaces properties of the walls the system is self-priming. The technologies for the fabrication of the microfluidic system and the preparation of the interface between the lab layer and the ASIC are presented.

  1. [Therapeutic intensification and autologous stem cell transplantation in autoimmune diseases].

    PubMed

    Marjanovic, Z; Gerber, I; Toledano, C; Hen-Solal, J; Damade, R; de Saint-Cyr, I; Sarrot-Reynauld, F; Ilié, D; Daneshpouy, M; Mounier, N; Ruivard, M; Tyndall, C; Vidal, E; Quere, I; Durand, J-M; Constans, J; Farge, D

    2005-02-26

    THE PATHOPHYSIOLOGY of most autoimmune diseases is often poorly understood. EXPERIMENTAL CONSIDERATIONS and clinical experience suggest that high doses immunoablation followed by stem cell transplantation is a therapeutic option to consider for certain severe autoimmune disorders. THE CONCEPT OF RESTORING NORMAL IMMUNE REACTIVITY must in part br true since current results of 466 transplants (445 autologous, 21 allogeneic) patients suffering from various autoimmune diseases show a beneficial outcome in approximately 2/3 of the patients. TO IMPROVE THE EFFICACY AND SAFETY OF SUCH AN AGGRESSIVE PROCEDURE in patients with potentially affected vital organs by the underlying autoimmune disease, it is especially important to follow international consensus guidelines and to centrally collect clinical data for in depth analysis in the EBMT International Stem Cell Project for Autoimmune Disease in Basel, Switzerland. PHASE III STUDIES ARE RUNNING FOR SYSTEMIC SCLEROSIS (Astis, Autologous Stem cell Transplantation International Rheumatoid Arthritis Trial) started in 2003. A STUDY PROJECT IS PLANNED FOR MULTIPLE SCLEROSIS (Astims, Autologous Stem cell Transplantation International Multiple Sclerosis).

  2. The effects of autologous platelet gel on wound healing.

    PubMed

    Henderson, Jenifer L; Cupp, Craig L; Ross, E Victor; Shick, Paul C; Keefe, Michael A; Wester, Derin C; Hannon, Timothy; McConnell, Devin

    2003-08-01

    Laser resurfacing techniques have become a popular means of achieving rejuvenation of damaged skin. Interest is great in attempting to speed re-epithelialization and healing so that patients can return to their normal activities as quickly as possible. Previous studies have demonstrated that wounds heal more quickly when they are covered and kept moist than when they are left open to the air. Until now, no study has been conducted to investigate whether the healing process of a superficial skin burn might be accelerated by the use of an autologous platelet gel as a biologic dressing. Our study of five pigs showed that autologous platelet gel can influence wound healing by stimulating an intense inflammatory process that leads to highly significant increases in the production of extracellular matrices and granulation tissue. The platelet gel accelerated vascular ingrowth, increased fibroblastic proliferation, and accelerated collagen production. However, the gel did not appear to accelerate re-epithelialization. The aggressive production of granulation tissue and the acceleration of collagen production might mean that autologous platelet gel will have a future role in the treatment of burns because the highly vascularized bed it helps create should promote the success of skin grafting in patients with deep partial-thickness and full-thickness burns.

  3. Alignment of the Fibrin Network Within an Autologous Plasma Clot.

    PubMed

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2016-01-01

    Autologous plasma clots with longitudinally aligned fibrin fibers could serve as a scaffold for longitudinal axonal regrowth in cases of traumatic peripheral nerve injuries. Three different techniques for assembling longitudinally oriented fibrin fibers during the fibrin polymerization process were investigated as follows: fiber alignment was induced by the application of either a magnetic field or-as a novel approach-electric field or by the induction of orientated flow. Fiber alignment was characterized by scanning electron microscopy analysis followed by image processing using fast Fourier transformation (FFT). Besides FFT output images, area xmin to xmax, as well as full width at half maximum (FWHM) of the FFT graph plot peaks, was calculated to determine the relative degree of fiber alignment. In addition, fluorescently labeled human fibrinogen and mesenchymal stem cells (MSCs) were used to visualize fibrin and cell orientation in aligned and nonaligned plasma clots. Varying degrees of fiber alignment were achieved by the three different methods, with the electric field application producing the highest degree of fiber alignment. The embedded MSCs showed a longitudinal orientation in the electric field-aligned plasma clots. The key feature of this study is the ability to produce autologous plasma clots with aligned fibrin fibers using physical techniques. This orientated internal structure of an autologous biomaterial is promising for distinct therapeutic applications, such as a guiding structure for cell migration and growth dynamics.

  4. Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction

    PubMed Central

    Bhumiratana, Sarindr; Bernhard, Jonathan C.; Alfi, David M.; Yeager, Keith; Eton, Ryan E.; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M.; Lopez, Mandi J.; Eisig, Sidney B.; Vunjak-Novakovic, Gordana

    2016-01-01

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  5. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    PubMed Central

    2011-01-01

    Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities. PMID:21785738

  6. Delayed Cranioplasty: Outcomes Using Frozen Autologous Bone Flaps

    PubMed Central

    Hng, Daniel; Bhaskar, Ivan; Khan, Mumtaz; Budgeon, Charley; Damodaran, Omprakash; Knuckey, Neville; Lee, Gabriel

    2014-01-01

    Reconstruction of skull defects following decompressive craniectomy is associated with a high rate of complications. Implantation of autologous cryopreserved bone has been associated with infection rates of up to 33%, resulting in considerable patient morbidity. Predisposing factors for infection and other complications are poorly understood. Patients undergoing cranioplasty between 1999 and 2009 were identified from a prospectively maintained database. Records and imaging were reviewed retrospectively. Demographics, the initial craniectomy and subsequent cranioplasty surgeries, complications, and outcomes were recorded. A total of 187 patients underwent delayed cranioplasty using autologous bone flaps cryopreserved at –30°C following decompressive craniectomy. Indications for craniectomy were trauma (77.0%), stroke (16.0%), subarachnoid hemorrhage (2.67%), tumor (2.14%), and infection (2.14%). There were 64 complications overall (34.2%), the most common being infection (11.2%) and bone resorption (5.35%). After multivariate analysis, intraoperative cerebrospinal fluid (CSF) leak was significantly associated with infection, whereas longer duration of surgery and unilateral site were associated with resorption. Cranioplasty using frozen autologous bone is associated with a high rate of infective complications. Intraoperative CSF leak is a potentially modifiable risk factor. Meticulous dissection during cranioplasty surgery to minimize the chance of breaching the dural or pseudodural plane may reduce the chance of bone flap. PMID:26269726

  7. ESET histone methyltransferase is essential to hypertrophic differentiation of growth plate chondrocytes and formation of epiphyseal plates.

    PubMed

    Yang, Liu; Lawson, Kevin A; Teteak, Colin J; Zou, Junhui; Hacquebord, Jacques; Patterson, David; Ghatan, Andrew C; Mei, Qi; Zielinska-Kwiatkowska, Anna; Bain, Steven D; Fernandes, Russell J; Chansky, Howard A

    2013-08-01

    The ESET (also called SETDB1) protein contains an N-terminal tudor domain that mediates protein-protein interactions and a C-terminal SET domain that catalyzes methylation of histone H3 at lysine 9. We report here that ESET protein is transiently upregulated in prehypertrophic chondrocytes in newborn mice. To investigate the in vivo effects of ESET on chondrocyte differentiation, we generated conditional knockout mice to specifically eliminate the catalytic SET domain of ESET protein only in mesenchymal cells. Such deletion of the ESET gene caused acceleration of chondrocyte hypertrophy in both embryos and young animals, depleting chondrocytes that are otherwise available to form epiphyseal plates for endochondral bone growth. ESET-deficient mice are thus characterized by defective long bone growth and trabecular bone formation. To understand the underlying mechanism for ESET regulation of chondrocytes, we carried out co-expression experiments and found that ESET associates with histone deacetylase 4 to bind and inhibit the activity of Runx2, a hypertrophy-promoting transcription factor. Repression of Runx2-mediated gene transactivation by ESET is dependent on its H3-K9 methyltransferase activity as well as its associated histone deacetylase activity. In addition, knockout of ESET is associated with repression of Indian hedgehog gene in pre- and early hypertrophic chondrocytes. Together, these results provide clear evidence that ESET controls hypertrophic differentiation of growth plate chondrocytes and endochondral ossification during embryogenesis and postnatal development.

  8. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering.

    PubMed

    He, Xiaomin; Feng, Bei; Huang, Chuanpei; Wang, Hao; Ge, Yang; Hu, Renjie; Yin, Meng; Xu, Zhiwei; Wang, Wei; Fu, Wei; Zheng, Jinghao

    2015-01-01

    Electrospinning has recently received considerable attention, showing notable potential as a novel method of scaffold fabrication for cartilage engineering. The aim of this study was to use a coculture strategy of chondrocytes combined with electrospun gelatin/polycaprolactone (GT/PCL) membranes, instead of pure chondrocytes, to evaluate the formation of cartilaginous tissue. We prepared the GT/PCL membranes, seeded bone marrow stromal cell (BMSC)/chondrocyte cocultures (75% BMSCs and 25% chondrocytes) in a sandwich model in vitro, and then implanted the constructs subcutaneously into nude mice for 12 weeks. Gross observation, histological and immunohistological evaluation, glycosaminoglycan analyses, Young's modulus measurement, and immunofluorescence staining were performed postimplantation. We found that the coculture group formed mature cartilage-like tissue, with no statistically significant difference from the chondrocyte group, and labeled BMSCs could differentiate into chondrocyte-like cells under the chondrogenic niche of chondrocytes. This entire strategy indicates that GT/PCL membranes are also a suitable scaffold for stem cell-based cartilage engineering and may provide a potentially clinically feasible approach for cartilage repairs.

  9. Zfp521 Is a Target Gene and Key Effector of Parathyroid Hormone-Related Peptide Signaling in Growth Plate Chondrocytes

    PubMed Central

    Correa, Diego; Hesse, Eric; Seriwatanachai, Dutmanee; Kiviranta, Riku; Saito, Hiroaki; Yamana, Kei; Neff, Lynn; Atfi, Azeddine; Coillard, Lucie; Sitara, Despina; Maeda, Yukiko; Warming, Soren; Jenkins, Nancy A.; Copeland, Neal G.; Horne, William C.; Lanske, Beate; Baron, Roland

    2010-01-01

    Summary In the growth plate, the interplay between Parathyroid Hormone-Related Peptide (PTHrP) and Indian Hedgehog (Ihh) signaling tightly regulates chondrocyte proliferation and differentiation during longitudinal bone growth. We found that PTHrP increases the expression of Zfp521, a zinc finger transcriptional co-regulator, in pre-hypertrophic chondrocytes. Mice with chondrocyte-targeted deletion of Zfp521 resembled PTHrP-/- and chondrocyte-specific PTHR1-/- mice, with decreased chondrocyte proliferation, early hypertrophic transition and reduced growth plate thickness. Deleting Zfp521 increased expression of Runx2 and Runx2 target genes, and decreased cyclin D1 and Bcl-2 expression while increasing caspase-3 activation and apoptosis. Zfp521 associated with Runx2 in chondrocytes, antagonizing its activity via an HDAC4-dependent mechanism. PTHrP failed to up-regulate cyclin D1 and to antagonize Runx2, Ihh and Collagen X expression when Zfp521 was absent. Thus, Zfp521 is an important PTHrP target gene that regulates growth plate chondrocyte proliferation and differentiation. PMID:20951345

  10. Studies on the role of Dlx5 in regulation of chondrocyte differentiation during endochondral ossification in the developing mouse limb.

    PubMed

    Chin, Hsian-Jean; Fisher, Melanie C; Li, Yingcui; Ferrari, Deborah; Wang, Chi-Kuang Leo; Lichtler, Alexander C; Dealy, Caroline N; Kosher, Robert A

    2007-08-01

    The homeodomain transcription factor Dlx5 has been implicated in the regulation of chondrocyte and osteoblast differentiation during endochondral ossification in the developing limb. In a gain-of-function approach to directly investigate the role of Dlx5 in chondrocyte maturation, we have used cartilage-specific Col2a1-Dlx5 promoter/enhancer constructs to target overexpression of Dlx5 to the differentiating cartilage models of the limbs of transgenic mice. Targeted overexpression of Dlx5 in cartilage rudiments results in the formation of shortened skeletal elements containing excessive numbers of hypertrophic chondrocytes and expanded domains of expression of Ihh and type X collagen, molecular markers of hypertrophic maturation. This suggests that hypertrophic differentiation is enhanced in response to Dlx5 misexpression. Skeletal elements overexpressing Dlx5 also exhibit a marked reduction in the zone of proliferation, indicating that overexpression of Dlx5 reduces chondrocyte proliferation concomitant with promoting hypertrophic maturation. Taken together these results indicate that Dlx5 is a positive regulator of chondrocyte maturation during endochondral ossification, and suggest that it regulates the process at least in part by promoting the conversion of immature proliferating chondrocytes into hypertrophying chondrocytes; a critical step in the maturation process.

  11. Cost minimization analysis of preoperative erythropoietin vs autologous and allogeneic blood donation in total joint arthroplasty.

    PubMed

    Green, William Scott; Toy, Pearl; Bozic, Kevin J

    2010-01-01

    Autologous blood donation and erythropoietin (EPO) have been shown to be effective in reducing allogeneic blood transfusion, but the cost-effectiveness of these interventions remains unclear. A cost minimization analysis was performed, comparing the total costs of allogeneic blood transfusion strategy and autologous and allogeneic blood transfusion strategy for 161 primary total hip arthroplasty (THA) and 195 total knee arthroplasty (TKA) patients. An EPO cost minimization model was constructed using a previously published algorithm for blood management after total joint arthroplasty. The least costly strategy was autologous blood donation in combination with allogeneic blood for THA and TKA patients at $856 and $892 per patient, respectively. The most costly strategy was allogeneic only at $1769 and $1352 per THA and TKA patient, respectively. The EPO strategy model predicted costs similar to the autologous and allogeneic. A strategy that combines autologous blood donation with EPO for patients who cannot donate autologous blood may provide the greatest cost savings and minimize allogeneic blood transfusion.

  12. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

    PubMed

    Peng, Sydney; Yang, Shu-Rui; Ko, Chao-Yin; Peng, Yu-Shiang; Chu, I-Ming

    2013-11-01

    Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering.

  13. Biphasic regulation of chondrocytes by Rela through induction of anti-apoptotic and catabolic target genes

    PubMed Central

    Kobayashi, Hiroshi; Chang, Song Ho; Mori, Daisuke; Itoh, Shozo; Hirata, Makoto; Hosaka, Yoko; Taniguchi, Yuki; Okada, Keita; Mori, Yoshifumi; Yano, Fumiko; Chung, Ung-il; Akiyama, Haruhiko; Kawaguchi, Hiroshi; Tanaka, Sakae; Saito, Taku

    2016-01-01

    In vitro studies have shown that Rela/p65, a key subunit mediating NF-κB signalling, is involved in chondrogenic differentiation, cell survival and catabolic enzyme production. Here, we analyse in vivo functions of Rela in embryonic limbs and adult articular cartilage, and find that Rela protects chondrocytes from apoptosis through induction of anti-apoptotic genes including Pik3r1. During skeletal development, homozygous knockout of Rela leads to impaired growth through enhanced chondrocyte apoptosis, whereas heterozygous knockout of Rela does not alter growth. In articular cartilage, homozygous knockout of Rela at 7 weeks leads to marked acceleration of osteoarthritis through enhanced chondrocyte apoptosis, whereas heterozygous knockout of Rela results in suppression of osteoarthritis development through inhibition of catabolic gene expression. Haploinsufficiency or a low dose of an IKK inhibitor suppresses catabolic gene expression, but does not alter anti-apoptotic gene expression. The biphasic regulation of chondrocytes by Rela contributes to understanding the pathophysiology of osteoarthritis. PMID:27830706

  14. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation

    PubMed Central

    Yang, Liu; Tsang, Kwok Yeung; Tang, Hoi Ching; Chan, Danny; Cheah, Kathryn S. E.

    2014-01-01

    According to current dogma, chondrocytes and osteoblasts are considered independent lineages derived from a common osteochondroprogenitor. In endochondral bone formation, chondrocytes undergo a series of differentiation steps to form the growth plate, and it generally is accepted that death is the ultimate fate of terminally differentiated hypertrophic chondrocytes (HCs). Osteoblasts, accompanying vascular invasion, lay down endochondral bone to replace cartilage. However, whether an HC can become an osteoblast and contribute to the full osteogenic lineage has been the subject of a century-long debate. Here we use a cell-specific tamoxifen-inducible genetic recombination approach to track the fate of murine HCs and show that they can survive the cartilage-to-bone transition and become osteogenic cells in fetal and postnatal endochondral bones and persist into adulthood. This discovery of a chondrocyte-to-osteoblast lineage continuum revises concepts of the ontogeny of osteoblasts, with implications for the control of bone homeostasis and the interpretation of the underlying pathological bases of bone disorders. PMID:25092332

  15. Smpd3 Expression in both Chondrocytes and Osteoblasts Is Required for Normal Endochondral Bone Development

    PubMed Central

    Li, Jingjing; Manickam, Garthiga; Ray, Seemun; Oh, Chun-do; Yasuda, Hideyo; Moffatt, Pierre

    2016-01-01

    Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has been identified to be a key regulator of skeletal development. A homozygous loss-of-function mutation called fragilitas ossium (fro) in the Smpd3 gene causes poor bone and cartilage mineralization resulting in severe congenital skeletal deformities. Here we show that Smpd3 expression in ATDC5 chondrogenic cells is downregulated by parathyroid hormone-related peptide through transcription factor SOX9. Furthermore, we show that transgenic expression of Smpd3 in the chondrocytes of fro/fro mice corrects the cartilage but not the bone abnormalities. Additionally, we report the generation of Smpd3flox/flox mice for the tissue-specific inactivation of Smpd3 using the Cre-loxP system. We found that the skeletal phenotype in Smpd3flox/flox; Osx-Cre mice, in which the Smpd3 gene is ablated in both late-stage chondrocytes and osteoblasts, closely mimics the skeletal phenotype in fro/fro mice. On the other hand, Smpd3flox/flox; Col2a1-Cre mice, in which the Smpd3 gene is knocked out in chondrocytes only, recapitulate the fro/fro mouse cartilage phenotype. This work demonstrates that Smpd3 expression in both chondrocytes and osteoblasts is required for normal endochondral bone development. PMID:27325675

  16. FGF upregulates osteopontin in epiphyseal growth plate chondrocytes: implications for endochondral ossification.

    PubMed

    Weizmann, S; Tong, A; Reich, A; Genina, O; Yayon, A; Monsonego-Ornan, E

    2005-12-01

    Fibroblast growth factor receptor 3 (FGFR3) signaling pathways are essential for normal longitudinal bone growth. Mutations in this receptor lead to various human growth disorders, including Achondroplasia, disproportionately short-limbed dwarfism, characterized by narrowing of the hypertrophic region of the epiphyseal growth plates. Here we find that FGF9, a preferred ligand for FGFR3 rapidly induces the upregulation and secretion of the matrix resident phosphoprotein, osteopontin (OPN) in cultured chicken chondrocytes. This effect was observed as early as two hours post stimulation and at FGF9 concentrations as low as 1.25 ng/ml at both mRNA and protein levels. OPN expression is known to be associated with chondrocyte and osteoblast differentiation and osteoclast activation. Unexpectedly, FGF9 induced OPN was accompanied by inhibition of differentiation and increased proliferation of the treated chondrocytes. Moreover, FGF9 stimulated OPN expression irrespective of the differentiation stage of the cells or culture conditions. In situ hybridization analysis of epiphyseal growth plates from chicken or mice homozygous for the Achondroplasia, G369C/mFGFR3 mutation demonstrated co-localization of OPN expression and osteoclast activity, as evidenced by tartarate resistant acid phosphatase positive cells in the osteochondral junction. We propose that FGF signaling directly activates OPN expression independent of chondrocytes differentiation. This may enhance the recruitment and activation of osteoclasts, and increase in cartilage resorption and remodeling in the chondro-osseus border.

  17. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation

    PubMed Central

    Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  18. Millimeter wave treatment inhibits the mitochondrion-dependent apoptosis pathway in chondrocytes.

    PubMed

    Wu, Guangwen; Sferra, Thomas; Chen, Xuzheng; Chen, Youqin; Wu, Mingxia; Xu, Huifeng; Peng, Jun; Liu, Xianxiang

    2011-01-01

    Millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz that causes multiple biological effects, both locally and globally. MW has been widely used in clinical medicine. Although our previous work demonstrated that MW is capable of inhibiting sodium nitroprussiate (SNP)-induced apoptosis in chondrocytes, the precise mechanism of the anti-apoptotic activity remains to be elucidated. The purpose of this study was to investigate the effects of MW in SNP-induced apoptotic chondrocytes. Sprague Dawley rat chondrocytes were isolated and cultured, and the cells were counted. Cell viability was evaluated using MTT assay. Cells were then treated with SNP and MW, and flow cytometry was used to detect apoptosis. Our results showed that MW treatment inhibited a SNP-induced mitochondrion-dependent pathway of apoptosis. MW treatment inhibited the loss of plasma membrane asymmetry (externalization of phosphatidylserine), collapse of mitochondrial membrane potential, and activation of caspase-9 and caspase-3. Taken together, the results indicate that MW inhibits the mitochondrion-dependent pathway of apoptosis in chondrocytes and this may, in part, explain its clinical effect in the treatment of osteoarthritis.

  19. Changes in Morphology, Gene Expression and Protein Content in Chondrocytes Cultured on a Random Positioning Machine

    PubMed Central

    Aleshcheva, Ganna; Sahana, Jayashree; Ma, Xiao; Hauslage, Jens; Hemmersbach, Ruth; Egli, Marcel; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2013-01-01

    Tissue engineering of chondrocytes on a Random Positioning Machine (RPM) is a new strategy for cartilage regeneration. Using a three-dimensional RPM, a device designed to simulate microgravity on Earth, we investigated the early effects of RPM exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of RPM exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis (TGF-β1, osteopontin); and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours of RPM exposure disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours on the RPM, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced during RPM culture for 24 h. Taking these results together, we suggest that chondrocytes exposed to the RPM seem to change their extracellular matrix production behaviour while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates. PMID:24244418

  20. In vitro studies on clonal growth of chondrocytes in thanatophoric dysplasia

    SciTech Connect

    Brenner, R.E.; Bartmann, P.; Terinde, R.

    1996-05-17

    Thanatophoric dysplasia (TD) is characterized by a disorganized growth plate with markedly reduced proliferative and hypertrophic cartilage zones. Therefore, we studied in vitro the proliferation rates of articular chondrocytes from five TD patients and age-matched controls in response to bFGF, IGF-I, IGF-II, and TGF-{beta}1. In human fetal controls bFGF was the most potent growth factor. Clonal growth of articular chondrocytes in response to bFGF was reduced in two of five TD patients and slightly below the range of controls in a third case. Stimulation of chondrocyte proliferation by IGF I and II was reduced in the patient whose response to bFGF was most markedly impaired. The effect of TGF-{beta}1 ranged from normal to slightly elevated values in TD fetuses. These results indicate heterogeneity of the underlying defects in TD. Low proliferative responses of chondrocytes to bFGF and IGF-I/II are likely to play a key role in the pathogenesis of some cases. In two of five patients studied, the mechanisms of bFGF and IGF-signal transduction are candidates for the primary molecular defect. 22 refs., 6 tabs.

  1. Andrographolide enhances proliferation and prevents dedifferentiation of rabbit articular chondrocytes: an in vitro study.

    PubMed

    Luo, Li-Ke; Wei, Qing-Jun; Liu, Lei; Zheng, Li; Zhao, Jin-Min

    2015-01-01

    As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO) was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P < 0.05). DNA content and glycosaminoglycan (GAG) /DNA were, respectively, improved in ANDRO groups comparing to the control (P < 0.05). ANDRO could promote expression of aggrecan, collagen II, and Sox9 genes while downregulating expression of collagen I gene (P < 0.05). Furthermore, hypertrophy that may result in chondrocyte ossification could not be detected in all groups (P > 0.05). The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.

  2. Bioorthogonal Copper Free Click Chemistry for Labeling and Tracking of Chondrocytes In Vivo.

    PubMed

    Yoon, Hwa In; Yhee, Ji Young; Na, Jin Hee; Lee, Sangmin; Lee, Hyukjin; Kang, Sun-Woong; Chang, Hyeyoun; Ryu, Ju Hee; Lee, Seulki; Kwon, Ick Chan; Cho, Yong Woo; Kim, Kwangmeyung

    2016-04-20

    Establishment of an appropriate cell labeling and tracking method is essential for the development of cell-based therapeutic strategies. Here, we are introducing a new method for cell labeling and tracking by combining metabolic gylcoengineering and bioorthogonal copper-free Click chemistry. First, chondrocytes were treated with tetraacetylated N-azidoacetyl-D-mannosamine (Ac4ManNAz) to generate unnatural azide groups (-N3) on the surface of the cells. Subsequently, the unnatural azide groups on the cell surface were specifically conjugated with near-infrared fluorescent (NIRF) dye-tagged dibenzyl cyclooctyne (DBCO-650) through bioorthogonal copper-free Click chemistry. Importantly, DBCO-650-labeled chondrocytes presented strong NIRF signals with relatively low cytotoxicity and the amounts of azide groups and DBCO-650 could be easily controlled by feeding different amounts of Ac4ManNAz and DBCO-650 to the cell culture system. For the in vivo cell tracking, DBCO-650-labeled chondrocytes (1 × 10(6) cells) seeded on the 3D scaffold were subcutaneously implanted into mice and the transplanted DBCO-650-labeled chondrocytes could be effectively tracked in the prolonged time period of 4 weeks using NIRF imaging technology. Furthermore, this new cell labeling and tracking technology had minimal effect on cartilage formation in vivo.

  3. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration

    PubMed Central

    Akkiraju, Hemanth; Nohe, Anja

    2016-01-01

    Articular cartilage (AC) covers the diarthrodial joints and is responsible for the mechanical distribution of loads across the joints. The majority of its structure and function is controlled by chondrocytes that regulate Extracellular Matrix (ECM) turnover and maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like Osteoarthritis (OA). OA is characterized by cartilage degradation, osteophyte formation and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are an example of these enzymes that degrade the ECM. Signaling cascades involved in limb patterning and cartilage repair play a role in OA progression. However, the regulation of these remains to be elucidated. Further the role of stem cells and mature chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize Mesenchymal Stem Cell (MSC) infusion for cartilage repair may lead to new therapeutics in the long term. However, many questions are unanswered such as the efficacy of MSCs usage in therapy. This review focuses on the role of chondrocytes in cartilage formation and the progression of OA. Moreover, it summarizes possible alternative therapeutic approaches using MSC infusion for cartilage restoration. PMID:27347486

  4. Acetylation reduces SOX9 nuclear entry and ACAN gene transactivation in human chondrocytes.

    PubMed

    Bar Oz, Michal; Kumar, Ashok; Elayyan, Jinan; Reich, Eli; Binyamin, Milana; Kandel, Leonid; Liebergall, Meir; Steinmeyer, Juergen; Lefebvre, Veronique; Dvir-Ginzberg, Mona

    2016-06-01

    Changes in the content of aggrecan, an essential proteoglycan of articular cartilage, have been implicated in the pathophysiology of osteoarthritis (OA), a prevalent age-related, degenerative joint disease. Here, we examined the effect of SOX9 acetylation on ACAN transactivation in the context of osteoarthritis. Primary chondrocytes freshly isolated from degenerated OA cartilage displayed lower levels of ACAN mRNA and higher levels of acetylated SOX9 compared with cells from intact regions of OA cartilage. Degenerated OA cartilage presented chondrocyte clusters bearing diffused immunostaining for SOX9 compared with intact cartilage regions. Primary human chondrocytes freshly isolated from OA knee joints were cultured in monolayer or in three-dimensional alginate microbeads (3D). SOX9 was hypo-acetylated in 3D cultures and displayed enhanced binding to a -10 kb ACAN enhancer, a result consistent with higher ACAN mRNA levels than in monolayer cultures. It also co-immunoprecipitated with SIRT1, a major deacetylase responsible for SOX9 deacetylation. Finally, immunofluorescence assays revealed increased nuclear localization of SOX9 in primary chondrocytes treated with the NAD SIRT1 cofactor, than in cells treated with a SIRT1 inhibitor. Inhibition of importin β by importazole maintained SOX9 in the cytoplasm, even in the presence of NAD. Based on these data, we conclude that deacetylation promotes SOX9 nuclear translocation and hence its ability to activate ACAN.

  5. Persistent expression of Twist1 in chondrocytes causes growth plate abnormalities and dwarfism in mice.

    PubMed

    Guzzo, Rosa M; Andreeva, Viktoria; Spicer, Douglas B; Drissi, M Hicham

    2011-01-01

    Evidence from various in vitro gain and loss of function studies indicate that the bHLH transcription factor Twist1 negatively regulates chondrocyte differentiation; however limited information regarding Twist1 function in postnatal cartilage development and maintenance is available. Twist1 expression within the postnatal growth plate is restricted to immature, proliferating chondrocytes, and is significantly decreased or absent in hypertrophic chondrocytes. In order to examine the effect of maintaining the expression of Twist1 at later stages of chondocyte differentiation, we used type II collagen Cre (Col2-Cre) mice to activate a Cre-inducible Twist1 transgene specifically in chondrocytes (Col2-Twist1). At two weeks, postnatal growth was inhibited in Col2-Twist1 mice, as evidenced by limb shortening. Histological examination revealed abnormal growth plate structure, characterized by poor columnar organization of proliferating cartilaginous cells, decreased cellularity, and expansion of the hypertrophic zone. Moreover, structural defects within the growth plates of Col2-Twist1 transgenic mice included abnormal vascular invasion and focal regions of bony formation. Quantitative analysis of endochondral bone formation via micro-computed topography revealed impaired trabecular bone formation in the hindlimbs of Col2-Twist1 transgenic mice at various timepoints of postnatal development. Taken together, these findings indicate that regulated Twist1 expression contributes to growth plate organization and endochondral ossification to modulate postnatal longitudinal bone growth.

  6. Effects of electromagnetic field frequencies on chondrocytes in 3D cell-printed composite constructs.

    PubMed

    Yi, Hee-Gyeong; Kang, Kyung Shin; Hong, Jung Min; Jang, Jinah; Park, Moon Nyeo; Jeong, Young Hun; Cho, Dong-Woo

    2016-07-01

    In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016.

  7. Diosgenin inhibits IL-1β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes

    PubMed Central

    Wang, Leisheng; Ma, Tian; Zheng, Yanpin; Lv, Shiqiao; Li, Yu; Liu, Shaoxian

    2015-01-01

    It is well known that the inflammatory cytokines play important roles in osteoarthritis (OA). Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species and possesses diverse biological activities including anti-inflammatory properties. However, the role of diosgenin in inflammatory responses in OA chondrocytes is still unclear. Therefore, in this study, we investigated the anti-inflammatory properties of diosgenin in human OA chondrocytes. We found that diosgenin inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) induced by interleukin-1-beta (IL-1β). Diosgenin significantly inhibited the IL-1β-stimulated expression of metalloproteinase-3 (MMP-3), MMP-13, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes. In addition, diosgenin suppressed the degradation of IκB-α in IL-1β-induced human OA chondrocytes. Taken together, this study showed that diosgenin can effectively inhibit the IL-1β-induced expression of inflammatory mediators, suggesting that diosgenin may be a potential agent in the treatment of OA. PMID:26191174

  8. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes.

    PubMed

    Collins, John A; Wood, Scott T; Nelson, Kimberly J; Rowe, Meredith A; Carlson, Cathy S; Chubinskaya, Susan; Poole, Leslie B; Furdui, Cristina M; Loeser, Richard F

    2016-03-25

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1-3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observedin situin human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism.

  9. AG-041R, a gastrin/CCK-B antagonist, stimulates chondrocyte proliferation and metabolism in vitro.

    PubMed

    Ochi, M; Kawasaki, K; Kataoka, H; Uchio, Y; Nishi, H

    2001-05-25

    A newly synthesized compound, AG-041R, 3R-1-(2,2Diethoxyethyl)-3-((4methylphenyl) amino-carbonylmethyl)-3-((4methylphenyl)ureido-indoline-2-one), is a cholecyctokinin-B/gastrin receptor antagonist, but unexpectedly magnified cartilage formation in vivo. Indeed, AG-041R is a potentially effective reagent for the repair of articular cartilage defects. To clarify its effects on chondrocytes, we studied the proliferation, matrix formation, and gene expression of rabbit primary chondrocytes cultured in type I collagen gel composites with AG-041R. Both proliferation and glycosaminoglycan synthesis were stimulated with 1 microM AG-041R, but suppressed with 10 microM. The ratio of the amounts of two chondroitin sulfate isomers, chondroitin-6-sulfate to chondroitin-4-sulfate (an indicator of cartilage maturation), increased with 1 microM but decreased with 10 microM AG-041R. Gene expression analysis showed there was no change in the relative expression levels of chondrocyte markers, Type II collagen and Aggrecan, and osteoblast and adipocyte markers, Type I collagen and PPARgamma, respectively. These findings suggest that adequate concentrations of AG-041R stimulate proliferation of chondrocytes in the matrix, without changing their differentiated characteristics.

  10. Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine.

    PubMed

    Aleshcheva, Ganna; Sahana, Jayashree; Ma, Xiao; Hauslage, Jens; Hemmersbach, Ruth; Egli, Marcel; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2013-01-01

    Tissue engineering of chondrocytes on a Random Positioning Machine (RPM) is a new strategy for cartilage regeneration. Using a three-dimensional RPM, a device designed to simulate microgravity on Earth, we investigated the early effects of RPM exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of RPM exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis (TGF-β1, osteopontin); and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours of RPM exposure disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours on the RPM, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced during RPM culture for 24 h. Taking these results together, we suggest that chondrocytes exposed to the RPM seem to change their extracellular matrix production behaviour while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  11. Hypoxic induction of UCP3 in the growth plate: UCP3 suppresses chondrocyte autophagy.

    PubMed

    Watanabe, Hitoshi; Bohensky, Jolene; Freeman, Theresa; Srinivas, Vickram; Shapiro, Irving M

    2008-08-01

    The overall goal of the investigation was to examine the role of uncoupling proteins (UCPs) in regulating late stage events in the chondrocyte maturation pathway. We showed for the first time that epiphyseal chondrocytes expressed UCP3. In hypoxia, UCP3 mediated regulation of the mitochondrial transmembrane potential (DeltaPsi(m)) was dependent on HIF-1alpha. We also showed for the first time that UCP3 regulated the induction of autophagy. Thus, suppression of UCP3 enhanced the expression of the autophagic phenotype, even in serum-replete media. Predictably, the mature autophagic chondrocytes were susceptible to an apoptogen challenge. Susceptibility was probably associated with a lowered expression of the anti-apoptotic proteins Bcl2 and BCL(xL) and a raised baseline expression of cytochrome c in the cytosol. These changes would serve to promote sensitivity to apoptogens. We conclude that in concert with HIF-1alpha, UCP3 regulates the activity of the mitochondrion by modulating the transmembrane potential. In addition, it inhibits induction of the autophagic response. When this occurs, it suppresses sensitivity to agents that promote chondrocyte deletion from the growth plate.

  12. MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes.

    PubMed

    Parreno, Justin; Raju, Sneha; Wu, Po-Han; Kandel, Rita A

    2016-10-14

    Chondrocyte culture as a monolayer for cell number expansion results in dedifferentiation whereby expanded cells acquire contractile features and increased actin polymerization status. This study determined whether the actin polymerization based signaling pathway, myocardin-related transcription factor-a (MRTF-A) is involved in regulating this contractile phenotype. Serial passaging of chondrocytes in monolayer culture to passage 2 resulted in increased gene and protein expression of the contractile molecules alpha-smooth muscle actin, transgelin and vinculin compared to non-passaged, primary cells. This resulted in a functional change as passaged 2, but not primary, chondrocytes were capable of contracting type I collagen gels in a stress-relaxed contraction assay. These changes were associated with increased actin polymerization and MRTF-A nuclear localization. The involvement of actin was demonstrated by latrunculin B depolymerization of actin which reversed these changes. Alternatively cytochalasin D which activates MRTF-A increased gene and protein expression of α-smooth muscle actin, transgelin and vinculin, whereas CCG1423 which deactivates MRTF-A decreased these molecules. The involvement of MRTF-A signaling was confirmed by gene silencing of MRTF or its co-factor serum response factor. Knockdown experiments revealed downregulation of α-smooth muscle actin and transgelin gene and protein expression, and inhibition of gel contraction. These findings demonstrate that passaged chondrocytes acquire a contractile phenotype and that this change is modulated by the actin-MRTF-A-serum response factor signaling pathway.

  13. Chondrocyte BMP2 signaling plays an essential role in bone fracture healing.

    PubMed

    Mi, Meng; Jin, Hongting; Wang, Baoli; Yukata, Kiminori; Sheu, Tzong-Jen; Ke, Qiao Han; Tong, Peijian; Im, Hee-Jeong; Xiao, Guozhi; Chen, Di

    2013-01-10

    The specific role of endogenous Bmp2 gene in chondrocytes and in osteoblasts in fracture healing was investigated by generation and analysis of chondrocyte- and osteoblast-specific Bmp2 conditional knockout (cKO) mice. The unilateral open transverse tibial fractures were created in these Bmp2 cKO mice. Bone fracture callus samples were collected and analyzed by X-ray, micro-CT, histology analyses, biomechanical testing and gene expression assays. The results demonstrated that the lack of Bmp2 expression in chondrocytes leads to a prolonged cartilage callus formation and a delayed osteogenesis initiation and progression into mineralization phase with lower biomechanical properties. In contrast, when the Bmp2 gene was deleted in osteoblasts, the mice showed no significant difference in the fracture healing process compared to control mice. These findings suggest that endogenous BMP2 expression in chondrocytes may play an essential role in cartilage callus maturation at an early stage of fracture healing. Our studies may provide important information for clinical application of BMP2.

  14. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    SciTech Connect

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-16

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  15. NF-{kappa}B regulates Lef1 gene expression in chondrocytes

    SciTech Connect

    Yun, Kangsun; Choi, Yoo Duk; Nam, Jong Hee; Park, Zeeyoung; Im, Sin-Hyeog . E-mail: imsh@gist.ac.kr

    2007-06-08

    The relation of Wnt/{beta}-catenin signaling to osteoarthritis progression has been revealed with little information on the underlying molecular mechanism. In this study we found overexpression of Lef1 in cartilage tissue of osteoarthritic patients and elucidated molecular mechanism of NF-{kappa}B-mediated Lef1 gene regulation in chondrocytes. Treatment of IL-1{beta} augmented Lef1 upregulation and nuclear translocation of NF-{kappa}B in chondrocytes. Under IL-1{beta} signaling, treatment of NF-{kappa}B nuclear translocation inhibitor SN-50 reduced Lef1 expression. A conserved NF-{kappa}B-binding site between mouse and human was selected through bioinformatic analysis and mapped at the 14 kb upstream of Lef1 transcription initiation site. NF-{kappa}B binding to the site was confirmed by chromatin immunoprecipitation assay. Lef1 expression was synergistically upregulated by interactions of NF-{kappa}B with Lef1/{beta}-catenin in chondrocytes. Our results suggest a pivotal role of NF-{kappa}B in Lef1 expression in arthritic chondrocytes or cartilage degeneration.

  16. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function.

    PubMed

    Schwarz, Silke; Elsaesser, Alexander F; Koerber, Ludwig; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Bermueller, Christian; Dürselen, Lutz; Ignatius, Anita; Breiter, Roman; Rotter, Nicole

    2015-12-01

    One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region.

  17. The Properties of Chondrocyte Membrane Reservoirs and Their Role in Impact-Induced Cell Death

    PubMed Central

    Moo, Eng Kuan; Amrein, Matthias; Epstein, Marcelo; Duvall, Mike; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda; Herzog, Walter

    2013-01-01

    Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3–4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3–4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates. PMID:24094400

  18. Human chondrocyte cultures as models of cartilage-specific gene regulation.

    PubMed

    Otero, Miguel; Favero, Marta; Dragomir, Cecilia; Hachem, Karim El; Hashimoto, Ko; Plumb, Darren A; Goldring, Mary B

    2012-01-01

    The human adult articular chondrocyte is a unique cell type that has reached a fully differentiated state as an end point of development. Within the cartilage matrix, chondrocytes are normally quiescent and maintain the matrix constituents in a low-turnover state of equilibrium. Isolated chondrocytes in culture have provided useful models to study cellular responses to alterations in the environment such as those occurring in different forms of arthritis. However, expansion of primary chondrocytes in monolayer culture results in the loss of phenotype, particularly if high cell density is not maintained. This chapter describes strategies for maintaining or restoring differentiated phenotype by culture in suspension, gels, or scaffolds. Techniques for assessing phenotype involving primarily the analysis of synthesis of cartilage-specific matrix proteins as well as the corresponding mRNAs are also described. Approaches for studying gene regulation, including transfection of promoter-driven reporter genes with expression vectors for transcriptional and signaling regulators, chromatin immunoprecipitation, and DNA methylation are also described.

  19. Profilin 1 is required for abscission during late cytokinesis of chondrocytes

    PubMed Central

    Böttcher, Ralph T; Wiesner, Sebastian; Braun, Attila; Wimmer, Reiner; Berna, Alejandro; Elad, Nadav; Medalia, Ohad; Pfeifer, Alexander; Aszódi, Attila; Costell, Mercedes; Fässler, Reinhard

    2009-01-01

    Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondrodysplasia caused by disorganization of the growth plate and defective chondrocyte cytokinesis, indicated by the appearance of binucleated cells. Surprisingly, Col2pfn1 chondrocytes assemble and contract actomyosin rings normally during cell division; however, they display defects during late cytokinesis as they frequently fail to complete abscission due to their inability to develop strong traction forces. This reduced force generation results from an impaired formation of lamellipodia, focal adhesions and stress fibres, which in part could be linked to an impaired mDia1-mediated actin filament elongation. Neither an actin nor a poly-proline binding-deficient profilin 1 is able to rescue the defects. Taken together, our results demonstrate that profilin 1 is not required for actomyosin ring formation in dividing chondrocytes but necessary to generate sufficient force for abscission during late cytokinesis. PMID:19262563

  20. Mesenchymal stem cells display different gene expression profiles compared to hyaline and elastic chondrocytes

    PubMed Central

    Zhai, Li-Jie; Zhao, Ke-Qing; Wang, Zhi-Qiang; Feng, Ya; Xing, Shuang-Chun

    2011-01-01

    Cartilage has a poor intrinsic repair capacity, requiring surgical intervention to effect biological repair. Tissue engineering technologies or regenerative medicine strategies are currently being employed to address cartilage repair. Mesenchymal stem cells (MSCs) are considered to be an excellent cell source for this application. However, the different gene expression profiles between the MSCs and differentiated cartilage remain unclear. In this report, we first examined the gene expression profiles between the MSCs, hyaline and elastic chondrocytes, and then identify candidate genes, which may be important in the process of MSC differentiation into hyaline and elastic cartilage. Several hundred differentially expressed genes were screened initially by microarray, including 417 simultaneously up-regulated genes in both hyaline and elastic chondrocytes, with 313 down-regulated genes. Several genes were identified that were up-regulated in hyaline chondrocytes while down-regulated in elastic chondrocytes. Both RT-PCR and western blot analysis were consistent with those results obtained by microarray analysis. Chondromodulinl (Chm1) was found to be highly expressed in MSCs differentiating to hyaline and elastic cartilage. Both collagen type II, alpha 1 (Col2a1) and cartilage homeo protein 1 (Cart1) were also highly upregulated and may be important early differentiation of MSCs to hyaline cartilage. PMID:21394289

  1. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes.

    PubMed

    Sacchetti, Cristiano; Liu-Bryan, Ru; Magrini, Andrea; Rosato, Nicola; Bottini, Nunzio; Bottini, Massimo

    2014-12-23

    Osteoarthritis (OA) is a common and debilitating degenerative disease of articular joints for which no disease-modifying medical therapy is currently available. Inefficient delivery of pharmacologic agents into cartilage-resident chondrocytes after systemic administration has been a limitation to the development of anti-OA medications. Direct intra-articular injection enables delivery of high concentrations of agents in close proximity to chondrocytes; however, the efficacy of this approach is limited by the fast clearance of small molecules and biomacromolecules after injection into the synovial cavity. Coupling of pharmacologic agents with drug delivery systems able to enhance their residence time and cartilage penetration can enhance the effectiveness of intra-articularly injected anti-OA medications. Herein we describe an efficient intra-articular delivery nanosystem based on single-walled carbon nanotubes (SWCNTs) modified with polyethylene glycol (PEG) chains (PEG-SWCNTs). We show that PEG-SWCNTs are capable to persist in the joint cavity for a prolonged time, enter the cartilage matrix, and deliver gene inhibitors into chondrocytes of both healthy and OA mice. PEG-SWCNT nanoparticles did not elicit systemic or local side effects. Our data suggest that PEG-SWCNTs represent a biocompatible and effective nanocarrier for intra-articular delivery of agents to chondrocytes.

  2. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes

    PubMed Central

    Gago-Fuentes, Raquel; Bechberger, John F.; Varela-Eirin, Marta; Varela-Vazquez, Adrian; Acea, Benigno; Fonseca, Eduardo

    2016-01-01

    Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis. PMID:27682878

  3. Impact of storage solution formulation during refrigerated storage upon chondrocyte viability and cartilage matrix.

    PubMed

    Wright, Gregory J; Brockbank, Kelvin G M; Rahn, Eliza; Halwani, Dina O; Chen, Zhen; Yao, Hai

    2014-01-01

    Various preservation solutions have been evaluated for longer hypothermic cartilage storage for tissue transplantation; however, the results are mixed. This research was carried out to determine whether phosphate-buffered saline (PBS) or organ preservation solutions would preserve both the extracellular matrix and chondrocytes of articular cartilage better than culture medium during refrigerated storage in the time frame that cartilage is stored for clinical use. Porcine cartilage plugs were stored, without the underlying bone, in culture medium with and without fetal bovine serum (FBS), PBS, Belzer's and Unisol solutions for 1 month at 4°C. Metabolic activity was tested using a resazurin reduction method, and matrix permeability was evaluated by measuring electrical conductivity. Storage in culture medium with 10% FBS was shown to provide good cartilage metabolic function for 7 days, decreasing to about 36% after 1 month of storage. There was no significant difference between samples stored in culture medium with and without FBS after 1 month of storage (p = 0.5005). Refrigerated storage of cartilage in PBS and two different solutions (Belzer's and Unisol) designed for optimal refrigerated tissue and organ storage results in loss of chondrocyte function and retention of matrix permeability. In contrast, the opposite, namely significantly better retention of chondrocyte function and loss of matrix permeability, was observed with culture medium. Future research should be focused on combining retention of chondrocyte function and matrix permeability by storage solution formulation.

  4. Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An In Vitro Study

    PubMed Central

    Luo, Li-ke; Wei, Qing-jun; Liu, Lei; Zheng, Li; Zhao, Jin-min

    2015-01-01

    As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO) was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P < 0.05). DNA content and glycosaminoglycan (GAG) /DNA were, respectively, improved in ANDRO groups comparing to the control (P < 0.05). ANDRO could promote expression of aggrecan, collagen II, and Sox9 genes while downregulating expression of collagen I gene (P < 0.05). Furthermore, hypertrophy that may result in chondrocyte ossification could not be detected in all groups (P > 0.05). The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis. PMID:25802548

  5. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2016-01-01

    Abstract This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs) and homogenized extracellular matrix (ECM) in the form of adipose stromal vascular fraction (SVF), along with hyaluronic acid (HA) and platelet-rich plasma (PRP) activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA) patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI) data, functional rating index, range of motion (ROM), and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees. PMID:27588219

  6. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits

    PubMed Central

    Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.

    2017-01-01

    Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739

  7. Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis

    PubMed Central

    Nasi, Sonia; Ea, Hang-Korng; Lioté, Frédéric; So, Alexander; Busso, Nathalie

    2016-01-01

    Objectives Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Methods Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. Results In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. Conclusions STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA. PMID:27391970

  8. Aquaporin 1 contributes to chondrocyte apoptosis in a rat model of osteoarthritis.

    PubMed

    Gao, Hangfei; Gui, Jiancao; Wang, Liming; Xu, Yan; Jiang, Yiqiu; Xiong, Mingyue; Cui, Yongguang

    2016-12-01

    Aquaporins (AQPs) have been found to be associated with a number of diseases. However, the role of AQP‑1 in the pathogenesis of osteoarthritis remains unclear. We previously found that AQP‑1 expression was upregulated in osteoarthritic cartilage and strongly correlated with caspase‑3 expression and activity. The aim of this study was to further investigate the association of AQP‑1 expression with chondrocyte apoptosis in a rat model of osteoarthritis, using RNA interference to knock down AQP‑1. For this purspose, 72 male Sprague‑Dawley rats were randomly assigned to 3 groups as follows: the control group not treated surgically (n=24), the sham‑operated group (n=24), and the osteoarthritis group (n=24). Osteoarthritis was induced by amputating the anterior cruciate ligament and medial collateral ligament and partially excising the medial meniscus. Chondrocytes from the rats with osteoarthritis were isolated and cultured. shRNAs were used to knock down AQP‑1 expression in the cultured chondrocytes. The expression of AQP‑1 and caspase‑3 was determined by reverse transcription-quantitative polymerase chain reaction. Caspase‑3 activity was measured using a caspase‑3 colorimetric assay. The rats in our model of osteoarthritis exhibited severe cartilage damage. The knockdown of AQP‑1 decreased caspase‑3 expression and activity in the cultured chondrocytes. In addition, the expression of AQP‑1 positively correlated with caspase‑3 expression and activity. Thus, the findings of our study, suggest that AQP‑1 promotes caspase‑3 activation and thereby contributes to chondrocyte apoptosis and to the development of osteoarthritis.

  9. Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone.

    PubMed

    Wang, Yongji; Zhu, Jinge; DeLuca, Hector F

    2014-03-01

    Bone is clearly a target of vitamin D and as expected, the vitamin D receptor (VDR) is expressed in osteoblasts. However, the presence of VDR in other cells such as osteocytes, osteoclasts, chondroclasts, and chondrocytes is uncertain. Because of difficulties in obtaining sections of undecalcified adult bone, identification of the site of VDR expression in adult bone tissue has been problematic. In addition, the antibodies to VDR used in previous studies lacked specificity, a property crucial for unambiguous conclusions. In the present study, VDR in the various cells from neonatal and adult mouse bone tissues was identified by a highly specific and sensitive immunohistochemistry method following bone decalcification with EGTA. For accurate evaluation of weak immunosignals, samples from Demay VDR knockout mice were used as negative control. Molecular markers were used to identify cell types. Our results showed that EGTA-decalcification of bone tissue had no detectable effect on the immunoreactivity of VDR. VDR was found in osteoblasts and hypertrophic chondrocytes but not in the multinucleated osteoclasts, chondroclasts, and bone marrow stromal cells. Of interest is the finding that immature osteoblasts contain large amounts of VDR, whereas the levels are low or undetectable in mature osteoblasts including bone lining cells and osteocytes. Proliferating chondrocytes appear devoid of VDR, although low levels were found in the hypertrophic chondrocytes. These data demonstrate that osteoblasts and chondrocytes are major targets of 1α,25-dihydroxyvitamin D, but osteoclasts and chondroclasts are minor targets or not at all. A high level of VDR was found in the immature osteoblasts located in the cancellous bone, indicating that they are major targets of 1α,25-dihydroxyvitamin D. Thus, the immature osteoblasts are perhaps responsible for the vitamin D hormone signaling resulting in calcium mobilization and in osteogenesis.

  10. Biotechnological Chondroitin a Novel Glycosamminoglycan With Remarkable Biological Function on Human Primary Chondrocytes

    PubMed Central

    Stellavato, Antonietta; Tirino, Virginia; de Novellis, Francesca; Della Vecchia, Antonella; Cinquegrani, Fabio; De Rosa, Mario; Papaccio, Gianpaolo

    2016-01-01

    ABSTRACT Cartilage tissue engineering, with in vitro expansion of autologus chondrocytes, is a promising technique for tissue regeneration and is a new potential strategy to prevent and/or treat cartilage damage (e.g., osteoarthritis). The aim of this study was (i) to investigate and compare the effects of new biotechnological chondroitin (BC) and a commercial extractive chondroitin sulfate (CS) on human chondrocytes in vitro culture; (ii) to evaluate the anti‐inflammatory effects of the innovative BC compared to extractive CS. A chondrogenic cell population was isolated from human nasoseptal cartilage and in vitro cultures were studied through time‐lapse video microscopy (TLVM), immunohistochemical staining and cytometry. In order to investigate the effect of BC and CS on phenotype maintainance, chondrogenic gene expression of aggrecan (AGN), of the transcriptor factor SOX9, of the types I and II collagen (COL1A1 and COL1A2), were quantified through transcriptional and protein evaluation at increasing cultivation time and passages. In addition to resemble the osteoarthritis‐like in vitro model, chondrocytes were treated with IL‐1β and the anti‐inflammatory activity of BC and CS was assessed using cytokines quantification by multiplex array. BC significantly enhances cell proliferation also preserving chondrocyte phenotype increasing type II collagen expression up to 10 days of treatment and reduces inflammatory response in IL‐1β treated chondrocytes respect to CS treated cells. Our results, taken together, suggest that this new BC is of foremost importance in translational medicine because it can be applied in novel scaffolds and pharmaceutical preparations aiming at cartilage pathology treatments such as the osteoarthritis. J. Cell. Biochem. 117: 2158–2169, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:27018169

  11. The Extract of Fructus Psoraleae Promotes Viability and Cartilaginous Formation of Rat Chondrocytes In Vitro

    PubMed Central

    Xu, Kang; Qiu, Xuefeng; Zhao, Wen; Wang, Dong

    2016-01-01

    This study aimed to investigate the extract components of FP on rat chondrocyte function and cartilaginous formation in vitro. Petroleum ether extract (P-e) of FP extract components was selected to treat Sprague-Dawley rat chondrocytes. Cell viability was tested with different concentrations (0.1, 1, 10, and 100 μg/mL) of P-e treatment. Concentrations of 0.1 and 1 μg/mL P-e conditioned culture mediums were used for treating chondrocytes in experiments. Cell proliferation was measured via DNA incorporation assay. Type II collagen, aggrecan, and Sox-9 genes expression levels were measured with RT-PCR. Additionally, cartilaginous formation was analyzed with type II collagen immunofluorescence, H&E, and alcian blue staining. Concentrations of 0.1 and 1 μg/mL P-e showed low cytotoxicity and demonstrated stimulatory effects on chondrocyte proliferation in early stages. Following 6 days of P-e culture, aggrecan and Sox-9 gene expression levels of the 1 μg/mL P-e group were upregulated by 1.82- (p < 0.05) and 2.06-fold (p < 0.05), respectively, versus controls. Moreover, 1 μg/mL P-e significantly stimulated cell aggregation and type II collagen deposits after 1 week of treatment. Noteworthy, tight cartilaginous structures formed in the 10-day 1 μg/mL P-e conditioned culture. These findings suggest that P-e has the potential to treat cartilage degeneration induced by chondrocyte failure. PMID:27994628

  12. LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes.

    PubMed

    Elayyan, Jinan; Lee, Eun-Jin; Gabay, Odile; Smith, Christopher A; Qiq, Omar; Reich, Eli; Mobasheri, Ali; Henrotin, Yves; Kimber, Susan J; Dvir-Ginzberg, Mona

    2017-04-07

    Reduced SIRT1 activity and levels during osteoarthritis (OA), promotes gradual loss of cartilage. Loss of cartilage matrix is accompanied by an increase in matrix metalloproteinase (MMP) 13, partially because of enhanced LEF1 transcriptional activity. In this study, we assessed the role of SIRT1 in LEF1-mediated MMP13 gene expression in human OA