Science.gov

Sample records for polymer-calcium phosphate nanocomposites

  1. Light-curable polymer/calcium phosphate nanocomposite glue for bone defect treatment.

    PubMed

    Schneider, Oliver D; Stepuk, Alexander; Mohn, Dirk; Luechinger, Norman A; Feldman, Kirill; Stark, Wendelin J

    2010-07-01

    Light-curable, methacrylate-based resins are clinically used for complex defect repair in dentistry (Heliobond). The present study investigates how such easy-to-apply polymers may be used on a much broader range of applications, particularly for gluing wet bone. We investigate the significantly improved adhesion of the polymer to wet bone surfaces in a close to in vivo setup using freshly cut cow hip bone as a model. The use of a reactive filler (20 wt.% amorphous, glassy calcium phosphate nanoparticles, a-CaP) allows for combination of the properties of the polymer (strength; light-curing) and the reactive filler (recrystallization of amorphous CaP to hydroxyapatite within minutes). This filler alone has been earlier suggested for use as an injectable bone cement since it reacts under in vivo conditions within 10-15 min. Our study transfers this reactivity into a composite, thus using the reactive CaP phase to establish an improved adhesion of the composite to wet bone surfaces. Additional in vitro bioactivity tests, compressive and tensile strength suggest use of such light-curable nanocomposites for complex-shaped load-bearing implant materials and fracture repair.

  2. Synthesis and characterization of carbonated hydroxyapatite and bioinspired polymer-calcium phosphate nanocomposites

    SciTech Connect

    Yusufoglu, Yusuf

    2009-01-01

    Nature offers many exciting ideas and inspiration for the development of new materials and processes. The toughness of spider silk, the strength and lightweight of bone, and the adhesion abilities of the gecko's feet are some of the many examples of highperformance natural materials, which have attracted the interest of scientist to duplicate their properties in man-made materials. Materials found in nature combine many inspiring properties such as miniaturization, sophistication, hierarchical organization, hybridization, and adaptability. In all biological systems, whether very basic or highly complex, nature provides a multiplicity of materials, architectures, systems and functions. Generally, the architectural configurations and material characteristics are the important features that have been duplicated from nature for building synthetic structural composites.

  3. Novel rechargeable calcium phosphate dental nanocomposite

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Antonucci, Joseph M.; Chen, Jihua; Xu, Hockin H. K.

    2016-01-01

    Objectives Calcium phosphate (CaP) composites with Ca and P ion release can remineralize tooth lesions and inhibit caries. But the ion release lasts only a few months. The objectives of this study were to develop rechargeable CaP dental composite for the first time, and investigate the Ca and P recharge and re-release of composites with nanoparticles of amorphous calcium phosphate (NACP) to achieve long-term inhibition of caries. Methods Three NACP nanocomposites were fabricated with resin matrix of: (1) bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) at 1:1 mass ratio (referred to as BT group); (2) pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at 1:1 ratio (PE group); (3) BisGMA, TEGDMA, and Bis[2-(methacryloyloxy)ethyl] phosphate (BisMEP) at 2:1:1 ratio (BTM group). Each resin was filled with 20% NACP and 50% glass particles, and the composite was photo-cured. Specimens were tested for flexural strength and elastic modulus, Ca and P ion release, and Ca and P ion recharge and re-release. Results NACP nanocomposites had strengths 3-fold of, and elastic moduli similar to, commercial resin-modified glass ionomer controls. CaP ion recharge capability was the greatest for PE group, followed by BTM group, with BT group being the lowest (p < 0.05). For each recharge cycle, CaP re-release reached similarly high levels, showing that CaP re-release did not decrease with more recharge cycles. After six recharge/re-release cycles, NACP nanocomposites without further recharge had continuous CaP ion release for 42 d. Significance Novel rechargeable CaP composites achieved long-term and sustained Ca and P ion release. Rechargeable NACP nanocomposite is promising for caries-inhibiting restorations, and the Ca and P ion recharge and re-release method has wide applicability to dental composites, adhesives, cements and sealants to achieve long-term caries-inhibition. PMID:26743970

  4. Remineralization of Demineralized Enamel via Calcium Phosphate Nanocomposite

    PubMed Central

    Weir, M.D.; Chow, L.C.; Xu, H.H.K.

    2012-01-01

    Secondary caries remains the main problem limiting the longevity of composite restorations. The objective of this study was to investigate the remineralization of demineralized human enamel in vitro via a nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP). NACP were synthesized by a spray-drying technique and incorporated into a dental resin. First, caries-like subsurface enamel lesions were created via an acidic solution. Then, NACP nanocomposite or a commercial fluoride-releasing control composite was placed on the demineralized enamel, along with control enamel without a composite. These specimens were then treated with a cyclic demineralization/remineralization regimen for 30 days. Quantitative microradiography showed typical enamel subsurface demineralization before cyclic demineralization/remineralization treatment, and significant remineralization in enamel under the NACP nanocomposite after the demineralization/remineralization treatment. The NACP nanocomposite had the highest enamel remineralization (mean ± SD; n = 6) of 21.8 ± 3.7%, significantly higher than the 5.7 ± 6.9% for fluoride-releasing composite (p < 0.05). The enamel group without composite had further demineralization of −26.1 ± 16.2%. In conclusion, a novel NACP nanocomposite was effective in remineralizing enamel lesions in vitro. Its enamel remineralization was 4-fold that of a fluoride-releasing composite control. Combined with the good mechanical and acid-neutralization properties reported earlier, the new NACP nanocomposite is promising for remineralization of demineralized tooth structures. PMID:22933607

  5. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition

    PubMed Central

    Xu, Hockin H. K.; Moreau, Jennifer L.; Sun, Limin; Chow, Laurence C.

    2011-01-01

    Objectives The main challenges facing composite restorations are secondary caries and bulk fracture. The objectives of this study were to synthesize novel nanoparticles of amorphous calcium phosphate (NACP), develop NACP nanocomposite with calcium (Ca) and phosphate (PO4) ion release to combat caries, and investigate the effects of NACP filler level and glass co-filler reinforcement on composite properties. Methods NACP (diameter = 116 nm) were synthesized via a spray-drying technique for the first time. Since the local plaque pH in the oral cavity can decrease to 5 or 4, photo-activated composites were tested with immersion in solutions of pH 7, 5.5, and 4. Composite mechanical properties as well as Ca and PO4 ion release were measured vs. pH and filler level. Results Increasing the NACP filler level increased the ion release. At 28 d and pH 4, the Ca release was (4.66 ± 0.05) mmol/L at 20% NACP, much higher than (0.33 ± 0.08) at 10% NACP (p < 0.05). Decreasing the pH increased the ion release. At 20% NACP, the PO4 release at 28 d was (1.84 ± 0.12) mmol/L at pH 4, higher than (0.59 ± 0.08) at pH 5.5, and (0.12 ± 0.01) at pH 7 (p < 0.05). However, pH had little effect on composite mechanical properties. Flexural strength at 15% NACP was (96 ± 13) MPa at pH 4, similar to (89 ± 13) MPa at pH 5.5, and (89 ± 19) MPa at pH 7 (p > 0.1). The new NACP nanocomposites had strengths that were 2-fold those of previous calcium phosphate composites and resin-modified glass ionomer control. Significance NACP composites were developed for the first time. Their strengths matched or exceeded a commercial composite with little ion release, and were 2-fold those of previous Ca-PO4 composites. The nanocomposite was “smart” as it greatly increased the ion release at a cariogenic pH 4, when these ions would be most needed to inhibit caries. Hence, the new NACP composite may be promising for stress-bearing and caries-inhibiting restorations. PMID:21514655

  6. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition.

    PubMed

    Xu, Hockin H K; Moreau, Jennifer L; Sun, Limin; Chow, Laurence C

    2011-08-01

    The main challenges facing composite restorations are secondary caries and bulk fracture. The objectives of this study were to synthesize novel nanoparticles of amorphous calcium phosphate (NACP), develop NACP nanocomposite with calcium (Ca) and phosphate (PO(4)) ion release to combat caries, and investigate the effects of NACP filler level and glass co-filler reinforcement on composite properties. NACP (diameter=116 nm) were synthesized via a spray-drying technique for the first time. Since the local plaque pH in the oral cavity can decrease to 5 or 4, photo-activated composites were tested with immersion in solutions of pH 7, 5.5, and 4. Composite mechanical properties as well as Ca and PO(4) ion release were measured vs. pH and filler level. Increasing the NACP filler level increased the ion release. At 28 d and pH 4, the Ca release was (4.66±0.05)mmol/L at 20% NACP, much higher than (0.33±0.08) at 10% NACP (p<0.05). Decreasing the pH increased the ion release. At 20% NACP, the PO(4) release at 28 d was (1.84±0.12)mmol/L at pH 4, higher than (0.59±0.08) at pH 5.5, and (0.12±0.01) at pH 7 (p<0.05). However, pH had little effect on composite mechanical properties. Flexural strength at 15% NACP was (96±13)MPa at pH 4, similar to (89±13)MPa at pH 5.5, and (89±19)MPa at pH 7 (p>0.1). The new NACP nanocomposites had strengths that were 2-fold those of previous calcium phosphate composites and resin-modified glass ionomer control. NACP composites were developed for the first time. Their strengths matched or exceeded a commercial composite with little ion release, and were 2-fold those of previous Ca-PO(4) composites. The nanocomposite was "smart" as it greatly increased the ion release at a cariogenic pH 4, when these ions would be most needed to inhibit caries. Hence, the new NACP composite may be promising for stress-bearing and caries-inhibiting restorations. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry.

    PubMed

    Choi, A H; Ben-Nissan, B; Matinlinna, J P; Conway, R C

    2013-10-01

    The purpose of coatings on implants is to achieve some or all of the improvements in biocompatibility, bioactivity, and increased protection from the release of harmful or unnecessary metal ions. During the last decade, there has been substantially increased interest in nanomaterials in biomedical science and dentistry. Nanocomposites can be described as a combination of two or more nanomaterials. By this approach, it is possible to manipulate mechanical properties, such as strength and modulus of the composites, to become closer to those of natural bone. This is feasible with the help of secondary substitution phases. Currently, the most common composite materials used for clinical applications are those selected from a handful of available and well-characterized biocompatible ceramics and natural and synthetic polymers. This approach is currently being explored in the development of a new generation of nanocomposite coatings with a wider range of oral and dental applications to promote osseointegration. The aim of this review is to give a brief introduction into the new advances in calcium phosphate nanocoatings and their composites, with a range of materials such as bioglass, carbon nanotubes, silica, ceramic oxide, and other nanoparticles being investigated or used in dentistry.

  8. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Kraigsley, Alison M.; Lin, Nancy J.; Lin-Gibson, Sheng; Zhou, Xuedong

    2012-01-01

    Objectives Previous studies have developed calcium phosphate and fluoride releasing composites. Other studies have incorporated chlorhexidine (CHX) particles into dental composites. However, CHX has not been incorporated in calcium phosphate and fluoride composites. The objectives of this study were to develop nanocomposites containing amorphous calcium phosphate (ACP) or calcium fluoride (CaF2) nanoparticles and CHX particles, and investigate S. mutans biofilm formation and lactic acid production for the first time. Methods Chlorhexidine was frozen via liquid nitrogen and ground to obtain a particle size of 0.62 µm. Four nanocomposites were fabricated with fillers of: Nano ACP; nano ACP+10% CHX; nano CaF2; nano CaF2+10% CHX. Three commercial materials were tested as controls: A resin-modified glass ionomer, and two composites. S. mutans live/dead assay, colony-forming unit (CFU) counts, biofilm metabolic activity, and lactic acid were measured. Results Adding CHX fillers to ACP and CaF2 nanocomposites greatly increased their antimicrobial capability. ACP and CaF2 nanocomposites with CHX that were inoculated with S. mutans had a growth medium pH > 6.5 after 3 d, while the control commercial composites had a cariogenic pH of 4.2. Nanocomposites with CHX reduced the biofilm metabolic activity by 10–20 folds and reduced the acid production, compared to the controls. CFU on nanocomposites with CHX were three orders of magnitude less than that on commercial composite. Mechanical properties of nanocomposites with CHX matched a commercial composite without fluoride. Significance The novel calcium phosphate and fluoride nanocomposites could be rendered antibacterial with CHX to greatly reduce biofilm formation, acid production, CFU and metabolic activity. The antimicrobial and remineralizing nanocomposites with good mechanical properties may be promising for a wide range of tooth restorations with anti-caries capabilities. PMID:22317794

  9. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Xu, Sarah M.; Zhou, Xuedong

    2012-01-01

    A dental composite containing amorphous calcium phosphate nanoparticles (NACP) was developed that released calcium (Ca) and phosphate (PO4) ions and possessed acid-neutralization capability. There has been little study on incorporation of antibacterial agents into calcium phosphate composites. The objective of this study was to investigate the effect of silver nanoparticle (NAg) mass fraction in NACP nanocomposite on mechanical properties and dental plaque microcosm biofilm for the first time. NACP nanoparticles of 116 nm were synthesized via a spray-drying technique. NAg nanoparticles were synthesized using Ag 2-ethylhexanoate and 2-(tert-butylamino)ethyl methacrylate, yielding NAg of particle size of 2.7 nm that were well-dispersed in the resin. Five NACP nanocomposites were fabricated with NAg mass fractions of 0, 0.028, 0.042, 0.088, and 0.175%, respectively. Mechanical properties of NACP nanocomposites containing 0–0.042% of NAg matched those of a commercial composite without antibacterial activity. Live/dead assay of dental plaque microcosm biofilms showed complete coverage with live bacteria on commercial composite. However, there were increasingly more dead bacteria with higher NAg content in the NACP nanocomposite. Colony-forming unit (CFU) counts for total microorganisms, total Streptococci, and mutans Streptococci for NACP nanocomposite with 0.042% NAg were about 1/4 those of commercial composite. Lactic acid production on NACP nanocomposite with 0.042% NAg was 1/3 that on commercial composite. In conclusion, novel NACP–NAg nanocomposites were developed which possessed good mechanical properties and potent antibacterial properties, with substantially reduced biofilm viability and lactic acid production. Hence, the NACP–NAg nanocomposites are promising for dental restorations with remineralizing and antibacterial capabilities. PMID:22566464

  10. Role of Slow-Release Nanocomposite Fertilizers on Nitrogen and Phosphate Availability in Soil

    NASA Astrophysics Data System (ADS)

    Giroto, Amanda S.; Guimarães, Gelton G. F.; Foschini, Milene; Ribeiro, Caue

    2017-04-01

    Developing efficient crop fertilization practices has become more and more important due to the ever-increasing global demand for food production. One approach to improving the efficiency of phosphate and urea fertilization is to improve their interaction through nanocomposites that are able to control the release of urea and P in the soil. Nanocomposites were produced from urea (Ur) or extruded thermoplastic starch/urea (TPSUr) blends as a matrix in which hydroxyapatite particles (Hap) were dispersed at ratios 50% and 20% Hap. Release tests and two incubation experiments were conducted in order to evaluate the role played by nanocomposites in controlling the availability of nitrogen and phosphate in the soil. Tests revealed an interaction between the fertilizer components and the morphological changes in the nanocomposites. TPSUr nanocomposites provided a controlled release of urea and increased the release of phosphorus from Hap in citric acid solution. The TPSUr nanocomposites also had lower NH3 volatilization compared to a control. The interaction resulting from dispersion of Hap within a urea matrix reduced the phosphorus adsorption and provided higher sustained P availability after 4 weeks of incubation in the soil.

  11. Role of Slow-Release Nanocomposite Fertilizers on Nitrogen and Phosphate Availability in Soil.

    PubMed

    Giroto, Amanda S; Guimarães, Gelton G F; Foschini, Milene; Ribeiro, Caue

    2017-04-13

    Developing efficient crop fertilization practices has become more and more important due to the ever-increasing global demand for food production. One approach to improving the efficiency of phosphate and urea fertilization is to improve their interaction through nanocomposites that are able to control the release of urea and P in the soil. Nanocomposites were produced from urea (Ur) or extruded thermoplastic starch/urea (TPSUr) blends as a matrix in which hydroxyapatite particles (Hap) were dispersed at ratios 50% and 20% Hap. Release tests and two incubation experiments were conducted in order to evaluate the role played by nanocomposites in controlling the availability of nitrogen and phosphate in the soil. Tests revealed an interaction between the fertilizer components and the morphological changes in the nanocomposites. TPSUr nanocomposites provided a controlled release of urea and increased the release of phosphorus from Hap in citric acid solution. The TPSUr nanocomposites also had lower NH3 volatilization compared to a control. The interaction resulting from dispersion of Hap within a urea matrix reduced the phosphorus adsorption and provided higher sustained P availability after 4 weeks of incubation in the soil.

  12. Role of Slow-Release Nanocomposite Fertilizers on Nitrogen and Phosphate Availability in Soil

    PubMed Central

    Giroto, Amanda S.; Guimarães, Gelton G. F.; Foschini, Milene; Ribeiro, Caue

    2017-01-01

    Developing efficient crop fertilization practices has become more and more important due to the ever-increasing global demand for food production. One approach to improving the efficiency of phosphate and urea fertilization is to improve their interaction through nanocomposites that are able to control the release of urea and P in the soil. Nanocomposites were produced from urea (Ur) or extruded thermoplastic starch/urea (TPSUr) blends as a matrix in which hydroxyapatite particles (Hap) were dispersed at ratios 50% and 20% Hap. Release tests and two incubation experiments were conducted in order to evaluate the role played by nanocomposites in controlling the availability of nitrogen and phosphate in the soil. Tests revealed an interaction between the fertilizer components and the morphological changes in the nanocomposites. TPSUr nanocomposites provided a controlled release of urea and increased the release of phosphorus from Hap in citric acid solution. The TPSUr nanocomposites also had lower NH3 volatilization compared to a control. The interaction resulting from dispersion of Hap within a urea matrix reduced the phosphorus adsorption and provided higher sustained P availability after 4 weeks of incubation in the soil. PMID:28406141

  13. Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.

    PubMed

    Khan, Asif Ali; Baig, Umair; Khalid, Mohd

    2011-02-28

    In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature.

  14. Synthesis, characterization and antibacterial activity of cellulose acetate-tin (IV) phosphate nanocomposite.

    PubMed

    Rathore, Bhim Singh; Sharma, Gaurav; Pathania, Deepak; Gupta, Vinod Kumar

    2014-03-15

    Cellulose acetate-tin (IV) phosphate nanocomposite (CA/TPNC) was prepared using simple method at 0-1 pH. The nanocomposite ion exchanger was characterized using some techniques such as Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA/DTA/DSC). The nanocomposite material was explored for different properties such as ion exchange capacity, pH titration, elution behavior, thermal stability, and distribution coefficient. The ion exchange capacity of CA/TPNC was found higher compared to their inorganic counterpart. The distribution coefficient studies of nanocomposite ion exchanger were investigated for different metal ions. On the basis of distribution coefficient studies CA/TPNC material was found more selective for Cd(2+) and Mg(2+). CA/TPNC ion exchange was explored for antibacterial activities against E. coli bacteria.

  15. Anticancer activity of drug-loaded calcium phosphate nanocomposites against human osteosarcoma.

    PubMed

    Son, Kyoung Dan; Kim, Young-Jin

    2017-01-01

    Calcium phosphate (CaP) based nanoparticles are considered to be ideal drug carriers for delivery of anticancer drugs because of their excellent biocompatibility and pH responsiveness. However, CaP nanoparticles have the problems of limited drug load capacity, initial burst release, and short-term release. Thus, we prepared the CaP nanocomposites containing anticancer drug such as caffeic acid (CA-NP), chlorogenic acid (CG-NP), or cisplatin (CP-NP) in the presence of alginate as a polymer template to control the release rate of drugs. The drug-loaded CaP nanocomposites exhibited spherical shape with a size of under 100 nm and the size of nanocomposites was hardly affected by the addition of drug. UV-visible spectroscopic analysis confirmed the insertion of drug into the CaP nanocomposites. These nanocomposites showed an initial burst release of drug, followed by a prolonged release, in which the release profile of drugs was depended on the solution pH. In addition, the drug-loaded CaP nanocomposites revealed anticancer activity on human osteosarcoma in a manner dependent on concentration of drugs and time. The drug-loaded CaP nanocomposites can contribute to the development of a new generation of controlled drug release carriers for chemotherapy of cancers.

  16. Effects of organic acids of different molecular size on phosphate removal by HZO-201 nanocomposite.

    PubMed

    Lin, Bin; Hua, Ming; Zhang, Yanyang; Zhang, Weiming; Lv, Lu; Pan, Bingcai

    2017-01-01

    Various organic acids in wastewater effluent could significantly influence the performance of phosphate adsorbent. This study focused on the effects of organic acids of different-molecular-size on phosphate adsorption by a novel nanocomposite HZO-201. Three organic acids (gallic acid (GA), tannic acid (TA) and humic acid (HA)) with distinct molecular size (HA > TA > GA) were chosen for this purpose. Both isotherm and kinetic tests of phosphate adsorption were conducted in the single-phosphate and binary system, and a series of microscopic techniques (i.e., XPS, FT-IR and SEM-EDX) and N2 adsorption-desorption test were employed to explore the underlying mechanism. It was found that GA could greatly weaken phosphate adsorption capability of HZO-201 by directly competing for ammonium group on the nanocomposite, TA exhibited significant inhibition on phosphate adsorption rate mainly through pore constriction/blockage, while HA posed negligible impact on phosphate adsorption because of the size exclusion effect. It was also observed that although GA, TA and HA showed substantial influence on bulky HZO due to complexation, their impact on the nano-HZO loaded inside HZO-201 was little. The covalently bounded ammonium group and the networking pore structure of HZO-201 may play important roles in it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.

    PubMed

    Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming

    2015-03-02

    In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH.

  18. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model

    PubMed Central

    Melo, Mary Anne S.; Weir, Michael D.; Rodrigues, Lidiany K.A.; Xu, Hockin H.K.

    2013-01-01

    Objectives Secondary caries at the restoration margins remains the main reason for failure. Although calcium phosphate (CaP) composites are promising for caries inhibition, there has been no report of CaP composite to inhibit caries in situ. The objectives of this study were to investigate the caries-inhibition effect of nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) in a human in situ model for the first time, and to determine colony-forming units (CFU) and Ca and P ion concentrations of biofilms on the composite restorations. Methods NACP with a mean particle size of 116 nm were synthesized via a spray-drying technique. Two composites were fabricated: NACP nanocomposite, and control composite filled with glass particles. Twenty-five volunteers wore palatal devices containing bovine enamel slabs with cavities restored with NACP or control composite. After 14 days, the adherent biofilms were collected for analyses. Transverse microradiography determined the enamel mineral profiles at the margins, and the enamel mineral loss ! Z was measured. Results NACP nanocomposite released Ca and P ions and the release significantly increased at cariogenic low pH (p < 0.05). Biofilms on NACP nanocomposite contained higher Ca (p = 0.007) and P ions (p = 0.005) than those of control (n = 25). There was no significant difference in biofilm CFU between the two composites (p > 0.1). Microradiographs showed typical subsurface lesions in enamel next to control composite, but much less lesion around NACP nanocomposite. Enamel mineral loss ! Z (mean ± sd; n = 25) around NACP nanocomposite was 13.8 ± 9.3 μm, much less than 33.5 ± 19.0 μm of the control (p = 0.001). Significance Novel NACP nanocomposite substantially reduced caries formation in a human in situ model for the first time. Enamel mineral loss at the margins around NACP nanocomposite was less than half of the mineral loss around control composite. Therefore, the Ca and P ion-releasing NACP

  19. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model.

    PubMed

    Melo, Mary Anne S; Weir, Michael D; Rodrigues, Lidiany K A; Xu, Hockin H K

    2013-02-01

    Secondary caries at the restoration margins remains the main reason for failure. Although calcium phosphate (CaP) composites are promising for caries inhibition, there has been no report of CaP composite to inhibit caries in situ. The objectives of this study were to investigate the caries-inhibition effect of nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) in a human in situ model for the first time, and to determine colony-forming units (CFU) and Ca and P ion concentrations of biofilms on the composite restorations. NACP with a mean particle size of 116 nm were synthesized via a spray-drying technique. Two composites were fabricated: NACP nanocomposite, and control composite filled with glass particles. Twenty-five volunteers wore palatal devices containing bovine enamel slabs with cavities restored with NACP or control composite. After 14 days, the adherent biofilms were collected for analyses. Transverse microradiography determined the enamel mineral profiles at the margins, and the enamel mineral loss ΔZ was measured. NACP nanocomposite released Ca and P ions and the release significantly increased at cariogenic low pH (p<0.05). Biofilms on NACP nanocomposite contained higher Ca (p=0.007) and P ions (p=0.005) than those of control (n=25). There was no significant difference in biofilm CFU between the two composites (p>0.1). Microradiographs showed typical subsurface lesions in enamel next to control composite, but much less lesion around NACP nanocomposite. Enamel mineral loss ΔZ (mean±sd; n=25) around NACP nanocomposite was 13.8±9.3 μm, much less than 33.5±19.0 μm of the control (p=0.001). Novel NACP nanocomposite substantially reduced caries formation in a human in situ model for the first time. Enamel mineral loss at the margins around NACP nanocomposite was less than half of the mineral loss around control composite. Therefore, the Ca and P ion-releasing NACP nanocomposite is promising for caries-inhibiting restorations

  20. Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers

    SciTech Connect

    Enlow, Drew Lenzen

    2006-01-01

    In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of ~40 nm, and agglomerates of these particles (on the order of 0.5 μm) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough to retain its integrity even below polymer critical micelle concentration and/or temperature. Calcium phosphate-polymer gel nanocomposites were also prepared. Gel samples appeared as a single phase network of agglomerated spherical micelles, and had a final calcium phosphate concentration of up to 15 wt%. Analysis with x-ray diffraction and NMR indicated a disordered brushite phase with the phosphate groups linking inorganic phase to the polymer.

  1. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Wu, Eric; Xu, Sarah M.; Zhou, Xuedong; Xu, Hockin H. K.

    2012-01-01

    Objectives Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) Impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. Methods The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Results Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (p<0.05). Total microorganisms, total streptococci, and mutans streptococci CFU counts (mean±sd; n=6) on composite control was 6-fold those on NACP+17.5% QADM nanocomposite. Composite control had long strings of cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO4 or antibacterial activity. Significance A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical

  2. Polyethyleneimine-iron phosphate nanocomposite as a promising adsorbent for the isolation of DNA.

    PubMed

    Hu, Lin-Lin; Hu, Bo; Shen, Li-Ming; Zhang, Dan-Dan; Chen, Xu-Wei; Wang, Jian-Hua

    2015-01-01

    A polyethyleneimine (PEI)-iron phosphate (FePO4) nanocomposite is prepared by immobilization of PEI onto the surface of FePO4 nanoparticles via electrostatic interaction. The obtained PEI-FePO4 nanocomposites are spherical with a size centered in ca. 100 nm. They provide a novel adsorbent for the solid-phase extraction of DNA from complex sample matrices. At pH 4, 50 μg mL(-1) of DNA (salmon sperm DNA sodium salt) in 1.0 mL aqueous solution are quantitatively adsorbed (100%) by 2mg of the PEI-FePO4 nanocomposites, and meanwhile the coexisting albumin at a same concentration level is not retained, demonstrating the favorable selectivity of the nanocomposites to DNA against proteins. The adsorption behaviors of DNA onto the PEI-FePO4 nanocomposites fit Langmuir model, corresponding to an adsorption capacity of 61.88 mg g(-1). The adsorbed DNA could be readily recovered by using a 0.04 mol L(-1) Britton-Robinson (BR) buffer at pH 10, resulting in a recovery of 85%. The nanocomposites have been further used for the isolation of DNA from a series of real sample matrices, including synthetic λ-DNA sample, human whole blood and Escherichia coli cell lysate. The extraction efficiency and the purity of the recovered DNA are at least comparable to those achieved by using the reported sorbent materials or commercial kits. In addition, the DNAs isolated from human whole blood and E. coli cell lysate are of high quality, which have been further demonstrated by using them as templates for successful PCR amplifications. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Micropatterning of nanocomposite polymer scaffolds using sacrificial phosphate glass fibers for tendon tissue engineering applications.

    PubMed

    Alshomer, Feras; Chaves, Camilo; Serra, Tiziano; Ahmed, Ifty; Kalaskar, Deepak M

    2017-01-20

    This study presents a simple and reproducible method of micropatterning the novel nanocomposite polymer (POSS-PCU) using a sacrificial phosphate glass fiber template for tendon tissue engineering applications. The diameters of the patterned scaffolds produced were dependent on the diameter of the glass fibers (15 μm) used. Scaffolds were tested for their physical properties and reproducibility using various microscopy techniques. For the first time, we show that POSS-PCU supports growth of human tenocytes cells. Furthermore, we show that cellular alignment, their biological function and expression of various tendon related proteins such as scleraxis, collagen I and III, tenascin-C are significantly elevated on the micropatterned polymer surfaces compared to flat samples. This study demonstrated a simple, reproducible method of micropatterning POSS-PCU nanocomposite polymer for novel tendon repair applications, which when provided with physical cues could help mimic the microenvironment of tenocytes cells.

  4. Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles.

    PubMed

    Nejadnik, M Reza; Yang, Xia; Bongio, Matilde; Alghamdi, Hamdan S; van den Beucken, Jeroen J J P; Huysmans, Marie C; Jansen, John A; Hilborn, Jöns; Ossipov, Dmitri; Leeuwenburgh, Sander C G

    2014-08-01

    Non-covalent interactions are often regarded as insufficient to construct macroscopic materials of substantial integrity and cohesion. However, the low binding energy of such reversible interactions can be compensated by increasing their number to work in concert to create strong materials. Here we present the successful development of an injectable, cohesive nanocomposite hydrogel based on reversible bonds between calcium phosphate nanoparticles and bisphosphonate-functionalized hyaluronic acid. These nanocomposites display a capacity for self-healing as well as adhesiveness to mineral surfaces such as enamel and hydroxyapatite. Most importantly, these non-covalently cross-linked composites are surprisingly robust yet biodegradable upon extensive in vitro and in vivo testing and show bone interactive capacity evidenced by bone ingrowth into material remnants. The herein presented method provides a new methodology for constructing nanoscale composites for biomedical applications, which owe their integrity to reversible bonds.

  5. n-Alkylamine-assisted preparation of a high surface area vanadyl phosphate/tetraethylorthosilicate nanocomposite

    SciTech Connect

    Ferreira, João Paulo L.; Zampronio, Elaine C.; Oliveira, Herenilton P.

    2013-02-15

    Graphical abstract: CuK{sub α} X-ray diffraction patterns of the VP, VPOc, VPOcT, VPOcT200 and VPOcT500. Highlights: ► TEOS and octylamine incorporation into the VP was achieved by expanding the lamellar. ► The specific surface area increased from 15 m{sup 2} g{sup −1} in VP to 237 m{sup 2} g{sup −1} in VPOcT. ► The VPOcT exhibited thermal resistance up to 200 °C in air. ► Upon thermal treatment up to 500 °C, the surface area increased to 838 m{sup 2} g{sup −1}. -- Abstract: We have developed a vanadyl phosphate/tetraethylorthosilicate (VPO/TEOS) nanocomposite comprised of silicate chains interleaved with VPO layers, prepared by using an n-alkylamines such as octylamine as the structure directing agent. The nanocomposites were synthesized by reacting amine-intercalated vanadyl phosphate with tetraethylorthosilicate via the soft chemistry approach. The synthetic procedure encompassed the exfoliation of the layered vanadyl phosphate as well as the reorganization of this exfoliated solid into a mesostructured lamellar phase with the same V–P–O connectivity as in the original matrix. TEOS incorporation into the vanadyl phosphate was achieved by expanding the lamellar structure with n-alkylamine (Δd = 13 Å with n-octylamine). The specific surface area increased from 15 m{sup 2} g{sup −1} in the vanadyl phosphate matrix to 237 m{sup 2} g{sup −1} in VPOcT, and the isotherm curves revealed the characteristic hysteresis of mesoporous materials. Upon thermal treatment up to 500 °C, the surface area increased to 837 m{sup 2} g{sup −1}, which is suitable for catalytic purposes.

  6. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Kraigsley, Alison M.; Lin, Nancy J.; Lin-Gibson, Sheng; Zhou, Xuedong

    2012-01-01

    Objectives Calcium and phosphate ion-releasing resin composites are promising for remineralization. However, there has been no report on incorporating antibacterial agents to these composites. The objective of this study was to develop antibacterial and mechanically-strong nanocomposites incorporating a quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP). Methods The QADM, bis(2-methacryloyloxyethyl) dimethylammonium bromide (ionic dimethacrylate-1), was synthesized from 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate. Ng was synthesized by dissolving Ag 2-ethylhexanoate salt in 2-(tertbutylamino)ethyl methacrylate. Mechanical properties were measured in three-point flexure with bars of 2×2×25 mm (n = 6). Composite disks (diameter = 9 mm, thickness = 2 mm) were inoculated with Streptococcus mutans. The metabolic activity and lactic acid production of biofilms were measured (n = 6). Two commercial composites were used as controls. Results Flexural strength and elastic modulus of NACP+QADM, NACP+NAg, and NACP+QADM+NAg matched those of commercial composites with no antibacterial property (p > 0.1). The NACP+QADM+NAg composite decreased the titer counts of adherent S. mutans biofilms by an order of magnitude, compared to the commercial composites (p < 0.05). The metabolic activity and lactic acid production of biofilms on NACP+QADM+NAg composite were much less than those on commercial composites (p < 0.05). Combining QADM and NAg rendered the nanocomposite more strongly antibacterial than either agent alone (p < 0.05). Significance QADM and NAg were incorporated into calcium phosphate composite for the first time. NACP+QADM+NAg was strongly-antibacterial and greatly reduced the titer counts, metabolic activity, and acid production of S. mutans biofilms, while possessing mechanical properties similar to commercial composites. These nanocomposites are promising to have

  7. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery.

    PubMed

    Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang

    2015-09-23

    Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters.

  8. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability

    NASA Astrophysics Data System (ADS)

    Yang, Jingzhou; Hu, Xiaozhi; Huang, Juntong; Chen, Kai; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Sun, Xudong

    2016-02-01

    Permeable porous nanomaterials have extensive applications in engineering fields. Here, we report a novel system of porous calcium aluminate/phosphate (CaAl-CaP) nanocomposites fabricated by pore generator free processing. The CaAl rich samples have close micropores and are not permeable. Interestingly, the CaP rich composites have a unique three-dimensional nanosieve structure with interconnected nanopores and exhibit excellent liquid permeability and adsorbability. The pore size has a narrow distribution of 200-500 nm. The CaAl nanoplatelets in the CaP rich composite have a thickness of 202 nm, a diameter of 1600 nm and an aspect ratio of 8. The porosity is from 19% to 40%. The bending strength and compressive strength are 40.3 MPa and 195 MPa, respectively. The CaP rich nanocomposite is highly permeable so that a water droplet can completely penetrate in 10 seconds (1 mm thick disk). The blue dye can be desorbed in 45 min by ultrasonic vibration. Given the nanosieve porous structure, good permeability/adsorbability and high mechanical properties, the CaP rich nanocomposite has big potential in applications for chemical engineering, biomedical engineering and energy/environmental engineering.

  9. Pharmacological evaluation of poly(3-methylthiophene) and its titanium(IV)phosphate nanocomposite: DNA interaction, molecular docking, and cytotoxic activity.

    PubMed

    Baig, Umair; Gondal, M A; Alam, Md Fazle; Wani, Waseem A; Younus, Hina

    2016-11-01

    Cancer and pathogenic microbial diseases have terribly affected human health over a longer period of time. In response to the increasing casualties due to cancer and microbial diseases, unique poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were prepared via in-situ oxidative chemical polymerization in this work. The poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were well characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. DNA binding studies by UV-Visible and fluorescence spectroscopic investigations indicated strong binding affinities of poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite; leading to structural damage of DNA. Poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed stronger interactions with DNA as compared to poly(3-methylthiophene) and from dye displacement assay it was confirmed that mode of binding of both the formulations was intercalative. The antimicrobial screening revealed that polymer and its composite displayed stronger antibacterial effects than ampicillin against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhimurium. Besides, the poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed dose dependent effects towards estrogen receptor positive breast cancer (MCF-7) and estrogen receptor negative breast cancer (MDA-MB-231) cell lines; with poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showing better activities against both cell lines. In all in-vitro biological investigations, poly(3-methylthiophene)-titanium(IV)phosphate composite showed superior properties to that of the pure poly(3-methylthiophene), which encouraged us to suggest its potential as future therapeutic gear in drug delivery and other allied fields.

  10. Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer.

    PubMed

    Abo Markeb, Ahmad; Alonso, Amanda; Dorado, Antonio David; Sánchez, Antoni; Font, Xavier

    2016-08-01

    A novel nanocomposite (NC) based on magnetite nanoparticles (Fe3O4-NPs) immobilized on the surface of a cationic exchange polymer, C100, using a modification of the co-precipitation method was developed to obtain magnetic NCs for phosphate removal and recovery from water. High-resolution transmission electron microscopy-energy-dispersive spectroscopy, scanning electron microscopy , X-ray diffraction, and inductively coupled plasma optical emission spectrometry were used to characterize the NCs. Continuous adsorption process by the so-called breakthrough curves was used to determine the adsorption capacity of the Fe3O4-based NC. The adsorption capacity conditions were studied under different conditions (pH, phosphate concentration, and concentration of nanoparticles). The optimum concentration of iron in the NC for phosphate removal was 23.59 mgFe/gNC. The sorption isotherms of this material were performed at pH 5 and 7. Taking into account the real application of this novel material in real water, the experiments were performed at pH 7, achieving an adsorption capacity higher than 4.9 mgPO4-P/gNC. Moreover, Freundlich, Langmuir, and a combination of them fit the experimental data and were used for interpreting the influence of pH on the sorption and the adsorption mechanism for this novel material. Furthermore, regeneration and reusability of the NC were tested, obtaining 97.5% recovery of phosphate for the first cycle, and at least seven cycles of adsorption-desorption were carried out with more than 40% of recovery. Thus, this work described a novel magnetic nanoadsorbent with properties for phosphate recovery in wastewater.

  11. Novel multifunctional titania-silica-lanthanum phosphate nanocomposite coatings through an all aqueous sol-gel process.

    PubMed

    Smitha, Venu Sreekala; Jyothi, Chembolli Kunhatta; Peer, Mohamed A; Pillai, Saju; Warrier, Krishna Gopakumar

    2013-04-07

    A novel nanocomposite coating containing titania, silica and lanthanum phosphate prepared through an all aqueous sol-gel route exhibits excellent self-cleaning ability arising from the synergistic effect of the constituents in the nanocomposite. A highly stable titania-silica-lanthanum phosphate nanocomposite sol having particle size in the range of 30-50 nm has been synthesized starting from a titanyl sulphate precursor, which was further used for the development of photocatalytically active composite coatings on glass. The coatings prepared by the dip coating technique as well as the nanocomposite powders are heat treated and characterized further for their morphology and multifunctionality. The nanocomposite containing 1.5 wt% LaPO4 has shown a surface area as high as 138 m(2) g(-1) and a methylene blue degradation efficiency of 94% in two hours of UV exposure. The composite coating has shown very good homogeneity evidenced by transparency as high as 99.5% and low wetting behaviour. The present novel approach for energy conserving, aqueous derived, self-cleaning coatings may be suitable for large scale industrial applications.

  12. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite

    PubMed Central

    Zhang, Ke; Cheng, Lei; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin HK

    2016-01-01

    Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3–18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P < 0.05); further increasing the CL to 18 decreased the antibacterial potency. The NACP nanocomposite with a CL of 16 exhibited biofilm metabolic activity and acid production that were 10-fold lesser than those of the control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3–18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit

  13. Effect of processing parameters on the microstructure and mechanical behavior of silica-calcium phosphate nanocomposite.

    PubMed

    Liu, Xueran; Ei-Ghannam, Ahmed

    2010-07-01

    Silica-calcium phosphate nanocomposite (SCPC) is a bioactive ceramic characterized by superior bone regenerative capacity and resorbability when compared to traditional bioactive ceramics. The aim of the present study is to evaluate the effect of processing parameters on the microstructure and mechanical properties of SCPC. Cylinders were prepared by pressing the ceramic powder at 200, 300 or 400 MPa and sintering at 900, 1000 or 1100 degrees C for 3 h, respectively. XRD results indicate that the crystalline structure of the material is made of beta-NaCaPO(4) and alpha-cristobalite solid solutions. The increase in sintering temperature results in an increase in the grain size and the formation of a melting phase that coats the grains. TEM analyses reveal that the melting phase is amorphous and rich in silicon. The mechanical properties of SCPC cylinders are dependent on the content of the melting phase and the microstructure of the material. The ranges of compressive strength and modulus of elasticity of the SCPC are 62-204 MPa and 6-14 GPa, respectively, which are comparable to those of cortical bone. The results suggest that the interaction between crystalline and amorphous phases modulated the mechanical behavior of SCPC. It is possible to engineer the mechanical properties of SCPC by controlling the processing parameters to synthesize various fixation devices for orthopedic and cranio-maxillofacial applications.

  14. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways.

    PubMed

    Lee, Sang-Im; Lee, Eui-Suk; El-Fiqi, Ahmed; Lee, So-Youn; Eun-Cheol Kim; Kim, Hae-Won

    2016-05-01

    Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes. In comparison to pure CPCs, nanocomposite cements exhibit a significantly improved proliferation of HDPSCs, and the improvement is more significant as the BGN content increases. The nanocomposite cements substantially enhance the adhesion of cells, and significantly up-regulate odontogenic differentiation, including alkaline phosphatase (ALP) activity and the expressions of odontogenic genes (sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin). Furthermore, the use of nanocomposite cements result in stimulation of angiogenic gene expression (VEGF, FGF-2, VEGFRs, PECAM-1, and VE-cadherin) and protein production (VEGF, VEGFR-1). The angiogenic stimulation by the HDPSCs significantly affects the endothelial cell behaviors, that is, the endothelial cell migration and the tubular network formation are substantially improved when treated with HDPSC-conditioned medium, particularly with the help of nanocomposite cements. The integrin and VEGF signaling pathways are reasoned for the stimulation of the odontogenesis and angiogenesis of cells, where the nanocomposite cements up-regulate the integrin subsets α1, α2, α3, and β1, and activate the integrin downstream signal pathways, such as p-FAK, p-Akt, p-paxillin, JNK, EK, and NF-κB, as well as other nuclear transcriptional factors, including CREB, STAT-3, and ELK-1. The current results indicate that the new formulation of the nanocomposite self-setting cements might provide some

  15. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.

    PubMed

    Pina, Sandra; Oliveira, Joaquim M; Reis, Rui L

    2015-02-18

    Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.

  16. Preparation of nanocomposite of polyaniline and gamma-zirconium phosphate ({gamma}-ZrP) by power ultrasonic irradiation

    SciTech Connect

    Wang Junzhong; Hu Yuan; Tang Yong; Chen Zuyao

    2003-07-14

    The high-intensity ultrasound was applied to the preparation of nanocomposite of polyaniline (PANI) and gamma-zirconium phosphate ({gamma}-ZrP) by intercalation of aniline into {gamma}-ZrP. The intercalation rate was enhanced greatly and the interlayer distance of aniline-intercalated {gamma}-ZrP was determined to be 16.0 A. The intercalated aniline polymerized at low pH during the sonication by initiator (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and nanocomposite of exfoliation of {gamma}-ZrP in PANI bulk was obtained. The intercalated or exfoliated compounds were characterized by XRD, FTIR, TEM, UV-Vis spectrum, and TG-DTA.

  17. Calcium phosphate-quercetin nanocomposite (CPQN): A multi-functional nanoparticle having pH indicating, highly fluorescent and anti-oxidant properties.

    PubMed

    Patra, Mousumi; Mukherjee, Riya; Banik, Milon; Dutta, Debanjan; Begum, Naznin Ara; Basu, Tarakdas

    2017-03-14

    Calcium phosphate quercetin nanocomposite (CPQN) i.e., quercetin entrapped in calcium phosphate nanoparticle was synthesized by a precipitation method at 80°C, taking ammonium hydrogen phosphate, calcium nitrate and quercetin as precursors and sodium citrate as stabilizer. The nanocomposite suspension had different color at different pH values, a property that could render the nanoparticle a pH indicator. Besides color, the particles also had different size, shape, stability and quercetin content with change of pH. In addition, the CPQN was highly fluorescent having two sharp emission peaks at 460 and 497nm, when excited at 370nm; by this property it behaved as an effective fluorophore to label biological cell. Moreover, the nanocomposite had potential anti-oxidant property, for which mortality of mouse neuroblastoma cell N2A, by H2O2-induced oxidative stress, was found to be lowered by the pre-treatment of the cells with CPQN.

  18. Fabrication of Calcium Phosphate-Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer Drugs for Biomedical Applications.

    PubMed

    Zhang, Hongbo; Qu, Xiangmeng; Chen, Hong; Kong, Haixin; Ding, Ruihua; Chen, Dong; Zhang, Xu; Pei, Hao; Santos, Hélder A; Hai, Mingtan; Weitz, David A

    2017-09-22

    DNA origami is designed by folding DNA strands at the nanoscale with arbitrary control. Due to its inherent biological nature, DNA origami is used in drug delivery for enhancement of synergism and multidrug resistance inhibition, cancer diagnosis, and many other biomedical applications, where it shows great potential. However, the inherent instability and low payload capacity of DNA origami restrict its biomedical applications. Here, this paper reports the fabrication of an advanced biocompatible nano-in-nanocomposite, which protects DNA origami from degradation and facilities drug loading. The DNA origami, gold nanorods, and molecular targeted drugs are co-incorporated into pH responsive calcium phosphate [Ca3 (PO4 )2 ] nanoparticles. Subsequently, a thin layer of phospholipid is coated onto the Ca3 (PO4 )2 nanoparticle to offer better biocompatibility. The fabricated nanocomposite shows high drug loading capacity, good biocompatibility, and a photothermal and pH-responsive payload release profile and it fully protects DNA origami from degradation. The codelivery of DNA origami with cancer drugs synergistically induces cancer cell apoptosis, reduces the multidrug resistance, and enhances the targeted killing efficiency toward human epidermal growth factor receptor 2 positive cells. This nanocomposite is foreseen to open new horizons for a variety of clinical and biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biomedical nanocomposites of poly(lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants.

    PubMed

    Lee, Hae-Hyoung; Sang Shin, Ueon; Lee, Jae-Ho; Kim, Hae-Won

    2011-08-01

    Degradable polymer-based materials are attractive in orthopedics and dentistry as an alternative to metallic implants for use as bone fixatives. Herein, a degradable polymer poly(lactic acid) (PLA) was combined with novel hybrid nanopowder of carbon nanotubes (CNTs)-calcium phosphate (CP) for this application. In particular, CNTs-CP hybrid nanopowders (0.1 and 0.25% CNTs) were prepared from the solution of ionically modified CNTs (mCNTs), which was specifically synthesized to be well-dispersed and thus to effectively adsorb onto the CP nanoparticles. The mCNTs-CP hybrid nanopowders were then mixed with PLA (up to 50%) to produce mCNTs-CP-PLA nanocomposites. The mechanical tensile strength of the nanocomposites was significantly improved by the addition of mCNTs-CP hybrid nanopowders. Moreover, nanocomposites containing low concentration of mCNTs (0.1%) showed significantly stimulated biological responses including cell proliferation and osteoblastic differentiation in terms of gene and protein expressions. Based on this study, the addition of novel mCNT-CP hybrid nanopowders to PLA biopolymer may be considered a new material choice for developing hard tissue implants.

  20. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Qingrui; Teng, Jie; Zou, Guodong; Peng, Qiuming; Du, Qing; Jiao, Tifeng; Xiang, Jianyong

    2016-03-01

    Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater applications, respectively. Such efficient sequestration is ascribed to the formation of a unique nano-ferric oxide morphology. The ultrafine nano-Fe2O3 particles can intercalate into the interior layers of MXene, widening the layer distance, and stimulating the available overlapping activated layers; while the efficient phosphate removal can be achieved by the strong complexation onto the embedded magnetic nano-Fe3O4 with a unique sandwich-structure as well as the stimulated Ti-O terminal within MXene. Apart from the fact that this approach suggests a complementary means for environmental remediation, it opens a new trajectory to achieve the functionalization of MXene.Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater

  1. Nanocomposites

    DTIC Science & Technology

    2013-09-10

    Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS nanocomposite, polymer, rheology , tensile modulus Michael E. Mackay, PhD University of Delaware...published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that acknowledge ARO support from the start of the project to...the date of this printing. List the papers, including journal references, in the following categories: Received Paper TOTAL: (b) Papers published

  2. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles.

    PubMed

    Pourdanesh, Fereydoun; Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Allaveisie, Azra

    2014-07-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca3(PO4)2) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The influence of the compounding process and testing conditions on the compressive mechanical properties of poly(D,L-lactide-co-glycolide)/α-tricalcium phosphate nanocomposites.

    PubMed

    Wilberforce, Samuel I J; Finlayson, Chris E; Best, Serena M; Cameron, Ruth E

    2011-10-01

    The enhanced biological and degradation properties of bioresorbable polymer matrix nanocomposites intended for use in orthopaedic applications have been demonstrated recently. However, at the moment there are only limited reports addressing their mechanical properties under physiological conditions, which is of central importance to the successful design of these nanocomposites. Here, we show that at room temperature in dry conditions, the incorporation of α-tricalcium phosphate nanoparticles into a matrix of poly(D,L-lactide-co-glycolide) increases the compressive strength and modulus. The values at room temperature obtained for nanocomposites compounded by a modified solvent evaporation method via attrition milling in acetone were similar to those from samples compounded by twin screw extrusion. The values for nanocomposites tested at 37 °C in phosphate buffered saline solution were significantly lower than those tested at room temperature in dry conditions, and lower still after two weeks of degradation in PBS at 37 °C. These effects can be related to hydration, degradation and interface effects in the nanocomposites.

  4. Effect of biphasic calcium phosphate nanocomposite on healing of surgically created alveolar bone defects in beagle dogs

    NASA Astrophysics Data System (ADS)

    Wang, Lanlei; Guan, Aizhong; Shi, Han; Chen, Yangxi; Liao, Yunmao

    2009-09-01

    The aim of the present study was to investigate the effect of porous biphasic calcium phosphate nanocomposite (nanoBCP) scaffolds bioceramic. Alveolar bone defects were surgically created bilaterally at the buccal aspects of the upper second premolar in fourteen beagle dogs. After root conditioning with ethylenediaminetetraacetate (EDTA), nanoBCP was randomly filled in the defects and nothing was put into the contralaterals as controls. Dogs were killed at the 12th weeks. Histological observations were processed through a light microscopy. The results revealed that a great amount of functional periodontal fissures formed in the defects in the nanoBCP groups while minimal bone took shape in the controls. In this study, nanoBCP has proved to work well as a biocompatible and osteoconductive scaffold material to promote periodontal regeneration effectively.

  5. Near-IR Photoluminescence of Pr/Cu/Sn Tridoped Phosphate Glass: Nonplasmonic Material System Versus Plasmonic Nanocomposite

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.; Sendova, Mariana

    2015-04-01

    An optical spectroscopy study of Pr2O3, CuO, and SnO tridoped barium phosphate glass prepared by the melt-quenching technique has been carried out, emphasizing near-infrared (IR) emission properties. The material is studied in its nonplasmonic state (as synthesized) and plasmonic form (heat-treated), aiming to elucidate the effects of Cu nanoparticles. The data indicate that Cu+ ions and Sn centers are stabilized in the melt-quenched glass. Broad ultraviolet excitations of both species can lead to near-IR emission of Pr3+ ions via energy transfer. The plasmonic nanocomposite is produced upon heat treatment as Sn2+ reduces Cu+ to Cu0 atoms, ultimately precipitating as Cu nanoparticles sustaining the surface plasmon resonance. Consequently, depletion of primarily Cu+ modified the ultraviolet excitation properties for the sensitized near-IR Pr3+ emission. Further, suppression of the Pr3+ emission from near-IR emitting states 1D2 and 1G4 was observed in the Cu nanocomposite in accord with a "plasmonic diluent" role of the nanoparticles.

  6. Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries

    SciTech Connect

    Liu, Yanyi; Liu, Dawei; Zhang, Qifeng; Yu, Danmei; Liu, Jun; Cao, Guozhong

    2011-02-01

    This paper reports sol-gel derived nanostructured LiFePO4/carbon nanocomposite film cathodes exhibiting enhanced electrochemical properties and cyclic stabilities. LiFePO4/carbon films were obtained by spreading sol on Pt coated Si wafer followed by ambient drying overnight and annealing/pyrolysis at elevated temperature in nitrogen. Uniform and crack-free LiFePO4/carbon nanocomposite films were readily obtained and showed olivine phase as determined by means of X-Ray Diffractometry. The electrochemical characterization revealed that, at a current density of 200 mA/g (1.2 C), the nanocomposite film cathodes demonstrated an initial lithium-ion intercalation capacity of 312 mAh/g, and 218 mAh/g after 20 cycles, exceeding the theoretical storage capacity of conventional LiFePO4 electrode. Such enhanced Li-ion intercalation performance could be attributed to the nanocomposite structure with fine crystallite size below 20 nm as well as the poor crystallinity which provides a partially open structure allowing easy mass transport and volume change associated with Li-ion intercalation. Moreover the surface defect introduced by carbon nanocoating could also effectively facilitate the charge transfer and phase transitions.

  7. Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl₂ as electrolyte.

    PubMed

    Jung, Kyung-Won; Jeong, Tae-Un; Hwang, Min-Jin; Kim, Kipal; Ahn, Kyu-Hong

    2015-12-01

    In this work, the textural properties and phosphate adsorption capability of modified-biochar containing Mg-Al assembled nanocomposites prepared by an effective electro-assisted modification method with MgCl2 as an electrolyte have been determined. Structure and chemical analyses of the modified-biochar showed that nano-sized stonelike or flowerlike Mg-Al assembled composites, MgO, spinel MgAl2O4, AlOOH, and Al2O3, were densely grown and uniformly dispersed on the biochar surface. The adsorption isotherm and kinetics data suggested that the biochar/Mg-Al assembled nanocomposites have an energetically heterogeneous surface and that phosphate adsorption could be controlled by multiple processes. The maximum phosphate adsorption capacity was as high as 887 mg g(-1), as fitted by the Langmuir-Freundlich model, and is the highest value ever reported. It was concluded that this novel electro-assisted modification is a very attractive method and the biochar/Mg-Al assembled nanocomposites provide an excellent adsorbent that can effectively remove phosphate from aqueous solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Porous hydroxyapatite-TiO2 nanocomposites from natural phosphates and their decolorization properties. Photoactive hydroxyapatite-TiO2 nanopowders

    NASA Astrophysics Data System (ADS)

    Bouyarmane, H.; Saoiabi, S.; El Hanbali, I.; El Karbane, M.; Rami, A.; Masse, S.; Laghzizil, A.; Coradin, T.

    2015-07-01

    Titanium dioxide-hydroxyapatite nanopowders were prepared by the simultaneous gelation of a titanium alkoxide and precipitation of a redisolved natural phosphate mineral. Evolution of the crystallinity, porous features and surface reactivity of these powders as a function of Ti content and heating was studied. Optimal conditions were found for the preparation of a low-cost nanocomposite powder that was as effective as pure titania for the decolorization of methylene blue solutions.

  9. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application.

    PubMed

    Kalita, Himani; Pal, Pallabi; Dhara, Santanu; Pathak, Amita

    2017-02-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness=262.4MPa; elastic modulus=5800MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Parameters optimization for the fabrication of phosphate glass/hydroxyapatite nanocomposite scaffold

    NASA Astrophysics Data System (ADS)

    Govindan, R.; Girija, E. K.

    2015-06-01

    Three-dimensional, highly porous, bioactive and biodegradable phosphate glass and nanohydroxyapatite (n-HA) composite scaffolds was fabricated by the polymer foam replication technique. Polyurethane foam (PU) and polyvinyl alcohol (PVA) were used as template and binder, respectively. Optimization of composition and sintering temperature is carried out for tissue engineering scaffold fabrication.

  11. Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging.

    PubMed

    Choi, Andy H; Ben-Nissan, Besim

    2015-07-01

    A number of materials have been applied as implant coatings and as tissue regeneration materials. Calcium phosphate holds a special consideration, due to its chemical similarity to human bone and, most importantly, its dissolution characteristics, which allow for bone growth and regeneration. The applications of molecular and nanoscale-based biological materials have been and will continue to play an ever increasing role in enhancing and improving the osseointegration of dental and orthopedic implants. More recently, extensive research efforts have been focused on the development and applications of fluorescent nanoparticles and nanocoatings for in vivo imaging and diagnostics as well as devising methods of adding luminescent or fluorescent capabilities to enhance the in vivo functionality of calcium phosphate-based biomedical materials.

  12. Rationally designed porous polystyrene encapsulated zirconium phosphate nanocomposite for highly efficient fluoride uptake in waters

    NASA Astrophysics Data System (ADS)

    Zhang, Qingrui; Du, Qing; Jiao, Tifeng; Zhang, Zhaoxiang; Wang, Sufeng; Sun, Qina; Gao, Faming

    2013-08-01

    Fluoride pollution in waters has engulfed worldwide regions and an excess of fluoride intake always causes skeletal fluorosis. Herein, a novel hybrid nanomaterial ZrP-MPN was fabricated for fluoride retention by encapsulating nano-ZrP onto macroporous polystyrene materials modified with quaternary ammonium groups. The as-obtained materials exhibited favorable removal of fluoride ions from aqueous solution in presence of common anions (SO42-/NO3-/Cl-) at high contents. Moreover outstanding sorption properties were also detected by involving series of commercial adsorbents (AA/magnetite/GFH/manganese sands) as references. Such satisfactory performances might be ascribed to the structural design of nanocomposite. (1) the CH2N+(CH3)3Cl groups enhances sorption diffusion and preconcentration in sorbent phase theoretically based on Donnan membrane principle; (2) the embedded ZrP nanoparticles also devotes to the efficient adsorption capacities due to its size-dependent specific properties. Additionally, the exhausted ZrP-MPN could be regenerated readily by alkaline solution. Thus, ZrP-MPN was a promising material for fluoride retention in waters.

  13. Rationally designed porous polystyrene encapsulated zirconium phosphate nanocomposite for highly efficient fluoride uptake in waters

    PubMed Central

    Zhang, Qingrui; Du, Qing; Jiao, Tifeng; Zhang, Zhaoxiang; Wang, Sufeng; Sun, Qina; Gao, Faming

    2013-01-01

    Fluoride pollution in waters has engulfed worldwide regions and an excess of fluoride intake always causes skeletal fluorosis. Herein, a novel hybrid nanomaterial ZrP-MPN was fabricated for fluoride retention by encapsulating nano-ZrP onto macroporous polystyrene materials modified with quaternary ammonium groups. The as-obtained materials exhibited favorable removal of fluoride ions from aqueous solution in presence of common anions (SO42−/NO3−/Cl−) at high contents. Moreover outstanding sorption properties were also detected by involving series of commercial adsorbents (AA/magnetite/GFH/manganese sands) as references. Such satisfactory performances might be ascribed to the structural design of nanocomposite. (1) the CH2N+(CH3)3Cl groups enhances sorption diffusion and preconcentration in sorbent phase theoretically based on Donnan membrane principle; (2) the embedded ZrP nanoparticles also devotes to the efficient adsorption capacities due to its size-dependent specific properties. Additionally, the exhausted ZrP-MPN could be regenerated readily by alkaline solution. Thus, ZrP-MPN was a promising material for fluoride retention in waters. PMID:23989688

  14. Preparation of luminescent layered zirconium phosphate nanocomposites by the layer-by-layer technique

    NASA Astrophysics Data System (ADS)

    Jiang, Qun; Liu, Meitang; Ma, Hongwen; Wang, Tianlei; Kuai, Yuqing

    2016-12-01

    In the present work, photoactive cation N, N‧-Dimenthyl-9, 9'-bisacridinium nitrate (BNMA) was assembled with exfoliated layered α-zirconium phosphate (α-ZrP) via an electrostatic layer-by-layer (LBL) assembly method. As a result, the luminescent films which were well-aligned and periodical had been successfully fabricated. Surprisingly, the lifetimes of (BNMA/ZrP)n were found to be prolonged by 16-fold for the first time, due to the isolation effect of inorganic nanosheets and hydrogen ion migration between the interlayers. Therefore, it is testified that α-ZrP can be used as the laminate and has remarkable influences on enhancing the lifetimes of chromophores. We expect that this new discovered effect can enable α-ZrP a kind of new potential material to develop novel light-emitting materials and optical devices.

  15. Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate

    NASA Astrophysics Data System (ADS)

    Jiang, Hualin; Chen, Pinghua; Luo, Shenglian; Tu, Xinman; Cao, Qun; Shu, Meng

    2013-11-01

    A novel nanocomposite with a BET surface area of 212.9 m2/g was synthesized from chitosan and Fe3O4/ZrO2 using an inexpensive protocol at mild condition. The Fe3O4/ZrO2/chitosan composite has the ability to adsorb both nitrate and phosphate. The maximum adsorption amount of nitrate and phosphate is 89.3 mg/g and 26.5 mg P/g, respectively. The adsorption process fits well to the pseudo-first-order kinetic rate model, and the mechanism involves simultaneous adsorption and intra-particle diffusion. The experimental results suggest that the composite is a promising adsorbent for treating water that is contaminated with nutrients.

  16. Nanocomposites with Ca and PO4 release: Effects of reinforcement, dicalcium phosphate particle size and silanization

    PubMed Central

    Xu, Hockin H. K.; Weir, Michael D.; Sun, Limin

    2009-01-01

    Objectives Nano-particles of dicalcium phosphate anhydrous (DCPA) were synthesized in our laboratory for the first time and incorporated into a dental resin. Our goal was to develop a mechanically strong dental composite that has Ca and PO4 ion release to combat tooth caries, and to investigate the effects of whisker reinforcement, DCPA particle size and silanization. Methods DCPA nano-particles and two larger DCPA particles were used with nano-silica-fused whiskers as fillers in a resin matrix. Composite mechanical properties were measured via three-point flexure, and the release of Ca and PO4 ions were measured vs. time. Results Using DCPA nano-particles with a diameter of 112 nm, the composite at a DCPA:whisker mass ratio of 1:1 had a flexural strength (mean ± sd; n = 5) of (112 ± 17) MPa, not significantly different from (112 ± 14) MPa of a commercial non-releasing composite; both were higher than (29 ± 7) MPa for the composite at DCPA:whisker of 1:0 (p < 0.05). The composite with DCPA particle size of 112 nm released Ca to a concentration of 0.85 mmol/L and PO4 of 3.48 mmol/L, higher than Ca of 0.67 mmol/L and PO4 of 1.11 mmol/L using DCPA with 12 μm particle size (p < 0.05). Silanization of DCPA increased the composite strength at DCPA:whisker of 1:0 compared to that without silanization, but decreased the Ca and PO4 release (p < 0.05). Increasing the DCPA particle surface area increased the Ca and PO4 release. Significance Decreasing the DCPA particle size increased the Ca and PO4 release; whisker reinforcement increased the composite strength by 2 to 3 fold. The nano DCPA-whisker composites, with high strength and Ca and PO4 release, may provide the needed, unique combination of stress-bearing and caries-inhibiting capabilities. PMID:17339048

  17. Linear low-density polyethylene and zirconium phosphate nanocomposites: evidence from thermal, thermo-mechanical, morphological and low-field nuclear magnetic resonance techniques.

    PubMed

    Mendes, Luis C; Silva, Daniela F; Lino, Adan S

    2012-12-01

    Lamellar alpha-zirconium phosphate was synthesized by direct precipitation and also directly expanded with octadecylamine, through alcoholic solution. To produce a nanocomposite, it was incorporated in linear low-density polyethylene in the molten state, using a counterrotating twin-screw extruder set at 170-190 degrees C and 100 rpm. The differential scanning calorimetry analysis revealed a decrease in the polyolefin melting temperature and crystallinity degree. The higher onset temperature of the zirconium phosphate modified with octadecylamine and linear low density polyethylene composite indicated an increasing of thermal stability and it suggests that some polyethylene chains entered into the filler's spacing. Dynamic-mechanical analysis evidenced an increase in both moduli (storage and loss). Wide-angle X-ray diffraction showed additional peaks--diffraction angles appeared in the region beneath 12 degrees--which were attributed to partial intercalation of polyethylene chains between filler interlamellar spacing. By hydrogen low-field nuclear magnetic resonance, the two low intensity relaxation time peaks shifted to higher values, strongly suggesting interaction between the octadecylamine and polymer matrix into the filler galleries. From these results, it may be postulated that a partially intercalated and/or exfoliated nanostructure in the zirconium phosphate modified with octadecylamine and linear low density polyethylene composite was achieved.

  18. A facile one-step solvothermal synthesis of bismuth phosphate-graphene nanocomposites with enhanced photocatalytic activity.

    PubMed

    Wang, Chao; Zhang, Gehong; Zhang, Chao; Wu, Miaomiao; Yan, Ming; Fan, Weiqiang; Shi, Weidong

    2014-12-01

    A facile one-step solvothermal approach was developed to synthesize BiPO4-graphene (BP-RGO) nanocomposites using ethylene glycol/water as the solvent and reducing agent. During the solvothermal reaction, both the effective reduction of graphene oxide (GO) and the growth of rod-shaped BiPO4 as well as its deposition on graphene occurred simultaneously. The as-obtained BP-2%RGO nanocomposite showed the highest photocatalytic activity toward the photodegradation of methyl orange (MO), which was about 2.0 and 1.5 times as high as that of pure BiPO4 and physical mixture of BiPO4 and graphene, respectively. The enhanced photocatalytic activity of BP-2%RGO nanocomposite is attributed to a larger surface area, much increased adsorption capacity, and more effective charge transportations and separations arisen from the introduction of graphene along with the intimate interfacial contact between BiPO4 and graphene. This work highlights the significant effect of solvothermal method and introduction of graphene on the photoactivity of graphene-based nanocomposites. It is expected that this method could aid to fabricate more efficient graphene-based photocatalysts with improved interfacial contact and photocatalytic performance for environmental remediation.

  19. Bioresorbable Ca-phosphate-polymer/metal and Fe-Ag nanocomposites for macro-porous scaffolds with tunable degradation and drug release

    NASA Astrophysics Data System (ADS)

    Gotman, I.; Swain, S. K.; Sharipova, A.; Gutmanas, E. Y.

    2016-11-01

    Bioresorbable implants are increasingly gaining popularity as an attractive alternative to traditional permanent bone healing devices. The advantage of bioresorbable implantable devices is that they slowly degrade over time and disappear once their "mission" is accomplished. Thus, no foreign material is left behind that can cause adverse effects on the host, such as long term local or systemic immune response and stress-shielding related bone atrophy. Resorbable materials considered for surgical implant applications include degradable polymers, Ca phosphate ceramics (CaP) and corrodible metals. Degradable polymers, such as polycaprolactone and lactic acid are weak, lack osteoconductivity and degrade to acidic products that can cause late inflammation. Resorbable CaP ceramics (e.g., β-TCP) are attractive materials for bone regeneration bear close resemblance to the bone mineral, however they are intrinsically brittle and thus unsuitable for use in load-bearing sites. Moreover, introducing high porosity required to encourage better cellular ingrowth into bone regeneration scaffolds is detrimental to the mechanical strength of the material. In present work we review and discuss our results on development of strong bioresorbable Ca-phosphate-polymer/metal nanonocomposites and highly porous scaffolds from them. By introduction of nanoscale ductile polymer or metal phase into CaP ceramic an attempt was made to mimic structure of natural bone, where nanocrystallites of CaP ceramic are bonded by thin collagen layers. Recent results on development of high strength scaffolds from Fe-Ag nanocomposites are also reported. High energy milling of powders followed by cold sintering—high pressure consolidation at ambient temperature in combination with modified porogen leaching method was employed for processing. The developed nanocomposites and scaffolds exhibited high mechanical strength coupled with measurable ductility, gradual lost weight and strength during immersion in

  20. Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model.

    PubMed

    Heinemann, S; Heinemann, C; Wenisch, S; Alt, V; Worch, H; Hanke, T

    2013-01-01

    A human co-culture model of osteoblasts and osteoclasts, derived from bone marrow stromal cells and monocytes respectively, was used to characterize the influence of biomaterial modification on the bioactivity and ultimately the ratio of bone-forming to bone-resorbing cells cultivated directly on the surface. Nanocomposites of silica and collagen have been shown to function as skeletal structures in nature and were reproduced in vitro by using a sol-gel approach. The resulting xerogels exhibit a number of features that make it a valuable system for the development of innovative materials for bone substitution applications. In the present study, the incorporation of different calcium phosphate phases in silica/collagen-based gels was demonstrated to enhance the bioactivity of these samples. This ability of the biomaterial to precipitate calcium phosphate on the surface when incubated in simulated body fluids or cell culture medium is generally considered to an advantageous property for bone substitution materials. By co-cultivating human osteoblasts and osteoclasts up to 42 days on the xerogels, we demonstrate that the long-term ratio of these cell types depends on the level of bioactivity of the substrate samples. Biphasic silica/collagen xerogels exhibited comparably low bioactivity but encouraged proliferation of osteoblasts in comparison to osteoclast formation. A balanced ratio of both cell types was detected for moderately bioactive triphasic xerogels with 5% calcium phosphate. However, enhancing the bioactivity of the xerogel samples by increasing the calcium phosphate phase percentage to 20% resulted in a diminished number of osteoblasts in favor of osteoclast formation. Quantitative evaluation was carried out by biochemical methods (calcium, DNA, ALP, TRAP 5b) as well as RT-PCR (ALP, BSP II, OC, RANKL, TRAP, CALCR, VTNR, CTSK), and was supported by confocal laser scanning microscopy (cell nuclei, actin, CD68, TRAP) as well as scanning electron microscopy.

  1. Bio-inspired dicalcium phosphate anhydrate/poly(lactic acid) nanocomposite fibrous scaffolds for hard tissue regeneration: in situ synthesis and electrospinning.

    PubMed

    Chae, Taesik; Yang, Heejae; Ko, Frank; Troczynski, Tom

    2014-02-01

    The fundamental building blocks of hierarchically structured bone tissue are mineralized collagen fibrils with calcium phosphate nanocrystals that are biologically "engineered" through biomineralization. In this study, we demonstrate an original invention of dicalcium phosphate anhydrate (DCPA)/poly(lactic acid) (PLA) composite nanofibers, which mimics the mineralized collagen fibrils via biomimetic in situ synthesis and electrospinning for hard tissue regenerative medicines. The interaction of the Ca(2+) ions and the carbonyl groups in the PLA provides nucleation sites for DCPA during the in situ synthesis process. This resulted in the improved dispersion of DCPA nanocrystallites in the intrananoporous PLA nanofibers through electrospinning, compared to the severely agglomerated clusters of DCPA nanoparticles fabricated by conventional mechanical blending/electrospinning methods. The addition of poly(ethylene glycol), as a copolymer source, generated more stable and efficient electrospun jets and aided in the electrospinability of the PLA nanofibers incorporating the nanocrystallites. It is expected that the uniformly distributed DCPA nanocrystallites and its unique nanocomposite fibrous topography will enhance the biological performance and the structural stability of the scaffolds used for hard tissue reconstruction and regeneration.

  2. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Xing, Mingchao; Fang, Wenkan; Wu, Deyi

    2016-03-01

    A self-assembled magnetite core/zirconia shell (Fe3O4@ZrO2) nanoparticle material was fabricated by the one-step co-precipitation method to capture phosphate from water. Fe3O4@ZrO2 with different Fe/Zr molar ratios were obtained and characterized by XRD, TEM, BET surface area and magnetization. It was shown that, with the decreasing of Fe/Zr molar ratio, magnetization decreased whereas surface area and adsorption capacity of phosphate increased. Fe3O4@ZrO2 with the ratio of higher than 4:1 had satisfactory magnetization property (>23.65 emu/g), enabling rapid magnetic separation from water and recycle of the spent adsorbent. The Langmuir adsorption capacity of Fe3O4@ZrO2 reached 27.93-69.44 mg/g, and the adsorption was fast (90% of phosphate removal within 20 min). The adsorption decreases with increasing pH, and higher ionic strength caused slight increase in adsorption at pH > about 5.5. The presence of chloride, nitrate and sulfate anions did not bring about significant changes in adsorption. As a result, Fe3O4@ZrO2 performed well to remove phosphate from real wastewater. These results were interpreted by the ligand exchange mechanism, i.e., the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. Results suggested that phosphate reacted mainly with surface hydroxyl groups but diffusion into interior of zirconia phase also contributed to adsorption. The adsorbed phosphate could be desorbed with a NaOH treatment and the regenerated Fe3O4@ZrO2 could be repeatedly used.

  3. Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application.

    PubMed

    Panahi, Fatemeh; Rabiee, Sayed Mahmood; Shidpour, Reza

    2017-11-01

    In recent years, cement composites based on calcium silicate have been more generally considered for medical applications. Calcium silicate Cement are among the categories that are used in dental root canal treatment. The aim of this study is to make new calcium silicate cement with dicalcium phosphate and chitosan additives to preserve and strengthen desirable properties of this type of cements. In this study, composite dental cement based on calcium silicate was prepared. Then effect of adding biodegradable and biocompatible polymer such as chitosan on setting properties and its structure were studied. In this study, a combination of calcium silicate, dicalcium phosphate (DCP) and bismuth oxide (Bi2O3) as powder phase and 2% solution of the chitosan dissolved in 1% acetic acid solution as liquid phase, was used. As well as control sample was obtained by mixing the powder with distilled water as the liquid phase. Based on the obtained results, setting time of composite cement was changed from 51 to 67 minutes by adding chitosan polymer. Presence of chitosan also reduced the compressive strength a little. The bioactivity of the cement were studied in a solution of simulated body fluid (SBF) for 14 days. The samples were analyzed by SEM to identify the microstructure and by XRD to determine crystal structure. The composition of cement before incubation in SBF was included early phases (phase calcium silicate and calcium phosphate) that after 14 days of immersion in SBF, they were converted to layer-shaped hydroxy apatite and the presence of chitosan had not any influence on the final phase of hydroxy apatite. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electrochemical immunosensor based on bismuth nanocomposite film and cadmium ions functionalized titanium phosphates for the detection of anthrax protective antigen toxin.

    PubMed

    Sharma, Mukesh K; Narayanan, J; Upadhyay, Sanjay; Goel, Ajay K

    2015-12-15

    Bacillus anthracis is a bioterrorism agent classified by the Centers for Disease Control and Prevention (CDC). Herein, a novel electrochemical immunosensor for the sensitive, specific and easy detection of anthrax protective antigen (PA) toxin in picogram concentration was developed. The immunosensor consists of (i) a Nafion-multiwall carbon nanotubes-bismuth nanocomposite film modified glassy carbon electrodes (BiNPs/Nafion-MWCNTs/GCE) as a sensing platform and (ii) titanium phosphate nanoparticles-cadmium ion-mouse anti-PA antibodies (TiP-Cd(2+)-MαPA antibodies) as signal amplification tags. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), thermogravimmetric analysis (TGA), Fourier transform-infra red spectroscopy (FT-IR), zeta-potential analysis, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to characterize the synthesized TiP nanoparticles and modified electrode surfaces. The immunosensing performance of BiNPs/Nafion-MWCNTs/GCE was evaluated based on sandwich immunoassay protocol. A square wave voltammetry (SWV) scan from -1.2 to -0.3 V in HAc-NaAc buffer solution (pH 4.6) without stripping process was performed to record the electrochemical responses at -0.75 V corresponding to high content of Cd(2+) ions loaded in TiP nanoparticles for the measurement of PA toxin. Under optimal conditions, the currents increased with increasing PA toxin concentrations in spiked human serum samples and showed a linear range from 0.1 ng/ml to 100 ng/ml. The limit of detection of developed immunosensor was found to be 50 pg/ml at S/N=3. The total time of analysis was 35 min.

  5. Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB.

    PubMed

    He, Linghao; Zhang, Shuai; Ji, Hongfei; Wang, Minghua; Peng, Donglai; Yan, Fufeng; Fang, Shaoming; Zhang, Hongzhong; Jia, Chunxiao; Zhang, Zhihong

    2016-05-15

    We synthesized novel Co3(PO4)2-based nanocomposites with 3D porous architectures via self-assembly; here, bovine serum albumin (BSA) and aptamer were used as organic phases to produce Co3(PO4)2@BSA and Co3(PO4)2@Apt nanocomposites, respectively. The formation mechanism of Co3(PO4)2-based nanocomposites was described based on characterizations of their physio-chemical performance, and the developed nanocomposites were applied as scaffold materials to construct a novel electrochemical aptasensor and detect platelet-derived growth factor-BB (PDGF-BB). The PDGF-BB targeting aptamer must be immobilized onto the Co3(PO4)2@BSA-modified electrode to detect PDGF-BB, whereas Co3(PO4)2@Apt-based aptasensor may be directly used to determine the target protein. Electrochemical impedance spectroscopy results showed that the developed Co3(PO4)2@BSA- and Co3(PO4)2@Apt-based aptasensors present highly sensitive detection ability toward PDGF-BB. Due to the special nanoflower structure, the Co3(PO4)2@BSA-based aptasensor features a detection limit of 3.7 pg mL(-1); while the limit of detection of the Co3(PO4)2@Apt-based aptasensor is 61.5 pg mL(-1), which is the possible bioactivity loss of the aptamer in Co3(PO4)2@Apt nanocomposite. The two detection limits obtained are still much lower than or comparable with those of previously reported aptasensors. The Co3(PO4)2@BSA- and Co3(PO4)2@Apt-based aptasensors showed high selectivity, stability, and applicability for detecting the desired protein. This finding indicates that the Co3(PO4)2-based nanocomposites could be used as an electrochemical biosensor for various detection procedures in the biomedical field.

  6. Polyolefin nanocomposites

    DOEpatents

    Chaiko, David J.

    2007-01-02

    The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.

  7. Synthesis of eucalyptus/tea tree oil absorbed biphasic calcium phosphate-PVDF polymer nanocomposite films: a surface active antimicrobial system for biomedical application.

    PubMed

    Bagchi, Biswajoy; Banerjee, Somtirtha; Kool, Arpan; Thakur, Pradip; Bhandary, Suman; Hoque, Nur Amin; Das, Sukhen

    2016-06-22

    A biocompatible poly(vinylidene) difluoride (PVDF) based film has been prepared by in situ precipitation of calcium phosphate precursors. Such films were surface absorbed with two essential oils namely eucalyptus and tea tree oil. Physico-chemical characterization of the composite film revealed excellent stability of the film with 10% loading of oils in the PVDF matrix. XRD, FTIR and FESEM measurements confirmed the presence of hydroxyapatite and octacalcium phosphate in the PVDF matrix which showed predominantly β phase. Strong bactericidal activity was observed with very low minimum bactericidal concentration (MBC) values on both E. coli and S. aureus. The composite films also resisted biofilm formation as observed by FESEM. The release of essential oils from the film showed an initial burst followed by a very slow release over a period of 24 hours. Antibacterial action of the film was found to be primarily due to the action of essential oils which resulted in leakage of vital fluids from the microorganisms. Both necrotic and apoptotic morphologies were observed in bacterial cells. Biocompatibility studies with the composite films showed negligible cytotoxicity to mouse mesenchymal and myoblast cells at MBC concentration.

  8. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  9. Magnetic nanocomposites.

    PubMed

    Behrens, Silke; Appel, Ingo

    2016-06-01

    Magnetic nanocomposites are multi-component materials, typically containing nanosized magnetic materials to trigger the response to an external stimulus (i.e., an external static or alternating magnetic field). Up to now, the search for novel nanocomposites has lead to the combination of a plethora of different materials (e.g., gels, liquid crystals, renewable polymers, silica, carbon or metal organic frameworks) with various types of magnetic particles, offering exciting perspectives not only for fundamental investigations but also for application in various fields, including medical therapy and diagnosis, separations, actuation, or catalysis. In this review, we have selected a few of the most recent examples to highlight general concepts and advances in the preparation of magnetic nanocomposites and recent advances in the synthesis of magnetic nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation.

    PubMed

    Mousavi, Mitra; Habibi-Yangjeh, Aziz; Abitorabi, Masoud

    2016-10-15

    In the present study, g-C3N4/Fe3O4/Ag3PO4/AgCl nanocomposites endowed with efficient photocatalytic activity under visible-light irradiation have been successfully prepared by a facile ultrasonic-irradiation method. The prepared samples were characterized by XRD, EDX, AAS, SEM, TEM, UV-vis DRS, FT-IR, TG, PL, and VSM techniques. Rhodamine B, methyl orange, fuchsine, and phenol were selected as pollutants to evaluate photocatalytic activity of the as-prepared samples. Among the samples, the g-C3N4/Fe3O4/Ag3PO4/AgCl (30%) nanocomposite displayed the highest photocatalytic activity. It was found that activity of this nanocomposite in degradation of rhodamine B is nearly 22, 6, and 7.5-times higher than those of the g-C3N4, g-C3N4/Fe3O4/Ag3PO4 (20%), and g-C3N4/Fe3O4/AgCl (30%) samples, respectively. The significant amount of saturation magnetization (8.78emug(-1)) for this nanocomposite indicated that the photocatalyst can be easily separated from the treated solution using a magnetic field. According to the trapping experiments, it was found that holes are main active species, driving the degradation reaction. This work suggests that the quaternary nanocomposite is promising photocatalyst for degradation of organic pollutants under visible-light illumination.

  11. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    PubMed

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  12. Synthesis and characterization of polyurethane/SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyan; Zhu, Yanchao; Zhao, Xu; Wang, Zichen; An, Dongmin; Ma, Yuejia; Guan, Shuang; Du, Yanyan; Zhou, Bing

    2011-03-01

    In order to achieve good dispersion of nano-SiO2 and increase the interactions between nano-SiO2 and PU matrix, nano-SiO2 was firstly modified with poly(propylene glycol) phosphate ester (PPG-P) which was a new polymeric surfactant synthesized through the esterification of poly(propylene glycol) (PPG) and polyphosphoric acid (PPA). Then a series of polyurethane (PU)/SiO2 nanocomposites were prepared via in situ polymerization. The surface modification of nano-SiO2, the microstructure and the properties of nanocomposites were investigated by FTIR, SEM, XRD and TGA. It was found that good dispersion of nano-SiO2 achieved in PU/SiO2 nanocomposite after the modification with PPG-P. The segmented structures of PU were not interfered by the presence of nano-SiO2 in these nanocomposites.

  13. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates

    PubMed Central

    Tsiourvas, D.; Arkas, M.; Diplas, S.; Mastrogianni, E.

    2010-01-01

    This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid. PMID:21069559

  14. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties.

    PubMed

    Malagurski, Ivana; Levic, Steva; Nesic, Aleksandra; Mitric, Miodrag; Pavlovic, Vladimir; Dimitrijevic-Brankovic, Suzana

    2017-11-01

    New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bioinspired Collagen-Apatite Nanocomposites for Bone Regeneration.

    PubMed

    Liu, Shuai; Sun, Yue; Fu, Yu; Chang, Datong; Fu, Cuicui; Wang, Gaonan; Liu, Yan; Tay, Franklin R; Zhou, Yanheng

    2016-08-01

    Natural bone has a complex hierarchical nanostructure composed of well-organized collagen fibrils embedded with apatite crystallites. Bone tissue engineering requires scaffolds with structural properties and functionality similar to the natural bone. Inspired by bone, a collagen-apatite (Col-Ap) nanocomposite was fabricated with bonelike subfibrillar nanostructures using a modified bottom-up biomimetic approach and has a potential role in the healing of large bone defects in unresolved apical periodontitis. The bone regeneration potential of the Col-Ap nanocomposite was investigated by comparing it with inorganic beta-tricalcium phosphate and organic pure collagen using a critical-sized rodent mandibular defect model. Micro-computed tomographic imaging and histologic staining were used to evaluate new bone formation in vivo. When compared with the beta-tricalcium phosphate and collagen scaffolds, the Col-Ap nanocomposite scaffold exhibited superior regeneration properties characterized by profuse deposition of new bony structures and vascularization at the defect center. Immunohistochemistry showed that the transcription factor osterix and vascular endothelial growth factor receptor 1 were highly expressed in the Col-Ap group. The results indicate that the Col-Ap nanocomposite activates more bone-forming cells and stimulates more vascular tissue ingrowth. Furthermore, the Col-Ap nanocomposite induces extracellular matrix secretion and mineralization of rat bone marrow stem cells. The increased expression of transforming growth factor beta 1 may contribute to the formation of a mineralized extracellular matrix. The present study lays the foundation for the development of Col-Ap nanocomposite-based bone grafts for future clinical applications in bone regeneration of large periapical lesions after apical curettage or apicoectomy. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Ultrahard carbon nanocomposite films

    SciTech Connect

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  17. Epoxy and Silicone Optical Nanocomposites Filled with Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tao, Peng

    Polymer nanocomposites, as a technologically important class of materials, exhibit diverse functional properties, and are used for applications ranging from structural and biomedical to electronic and optical. The properties of polymer nanocomposites are determined, in part, by the chemical composition of the polymer matrix and the nanofillers. Their properties are also sensitive to the geometry and size of the nanofillers, and to spatial distribution of the fillers. Control of the nanoparticle size and dispersion within a given polymer provides opportunities to tailor and optimize the properties of nanocomposites for specific application. For optical applications such as encapsulation of light emitting diodes (LEDs), polymer nanocomposites filled with homogeneously dispersed nanoparticles would endow the polymer encapsulant with new functionality without sacrificing optical transparency. To this end, this thesis focuses on developing a simple and versatile approach towards the fabrication of epoxy and silicone transparent nanocomposites using matrix compatible chain-grafted nanoparticles as fillers, and studying the optical properties of the nanocomposites. The surface chemistry and grafted polymer chain design have been shown to play an important role in determining the dispersion state of the grafted nanoparticles and hence the final optical properties of the nanocomposites. To prepare transparent epoxy nanocomposites, poly (glycidyl methacrylate) (PGMA) chains were grafted onto the optical nanoparticle surfaces via a combined phosphate ligand exchange process and azide-alkyne "click" chemistry. The dispersion behavior of PGMA-grafted nanoparticles within the epoxy matrix was investigated by systematically varying the grafting density and grafted chain length. It was found that within the small molecular weight epoxy resins, the dispersion states are more sensitive to the grafting density than the molecular weight of grafted chains. With high grafting densities

  18. Nanocomposite thermite ink

    DOEpatents

    Tappan, Alexander S.; Cesarano, III, Joseph; Stuecker, John N.

    2011-11-01

    A nanocomposite thermite ink for use in inkjet, screen, and gravure printing. Embodiments of this invention do not require separation of the fuel and oxidizer constituents prior to application of the ink to the printed substrate.

  19. Solvothermal synthesis of strontium phosphate chloride nanowire

    NASA Astrophysics Data System (ADS)

    Lam, W. M.; Wong, C. T.; Li, Z. Y.; Luk, K. D. K.; Chan, W. K.; Yang, C.; Chiu, K. Y.; Xu, B.; Lu, W. W.

    2007-08-01

    Strontium phosphate chloride nanowire was synthesized via a solvothermal treatment of strontium tri-polyphosphate and Collin salt in 1,4-dioxane at 150 °C. The effects of 1,4-dioxane concentration on particle morphology, crystallinity and phase purity were investigated in this study. The specimen morphology was analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When the concentration of 1,4-dioxane was below 10%, micron-sized whisker was the dominant form. At 20-25% concentration of 1,4-dioxane, strontium phosphate chloride single-crystalline nanowire was 31±12 nm in diameter and 1.43±0.6 μm in length with an aspect ratio of 52.28±29.41. X-ray diffraction (XRD) pattern of this nanowire matched with that of strontium phosphate chloride (JCPDS #083-0973). When 1,4-dioxane concentration exceeded 25%, nanorod aggregate was the dominant form instead of nanowire. At 20-25% 1,4-dioxane concentration suitable strontium concentration combine with high chemical potential environment favors the formation of nanowires. By adding 1,4-dioxane impure phase such as β-strontium hydrogen phosphate, nanorod formation was suppressed. This method provides an efficient way to synthesize high aspect ratio strontium phosphate chloride nanowire. It has potential bioactive nanocomposite, high mechanical performance bioactive bone cement filler and fluorescent material applications.

  20. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  1. Hierarchical multifunctional nanocomposites

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2014-03-01

    Nanocomposites; including nano-materials such as nano-particles, nanoclays, nanofibers, nanotubes, and nanosheets; are of significant importance in the rapidly developing field of nanotechnology. Due to the nanometer size of these inclusions, their physicochemical characteristics differ significantly from those of micron size and bulk materials. The field of nanocomposites involves the study of multiphase materials where at least one of the constituent phases has one dimension less than 100 nm. This is the range where the phenomena associated with the atomic and molecular interaction strongly influence the macroscopic properties of materials. Since the building blocks of nanocomposites are at nanoscale, they have an enormous surface area with numerous interfaces between the two intermix phases. The special properties of the nano-composite arise from the interaction of its phases at the interface and/or interphase regions. By contrast, in a conventional composite based on micrometer sized filler such as carbon fibers, the interfaces between the filler and matrix constitutes have a much smaller surface-to-volume fraction of the bulk materials, and hence influence the properties of the host structure to a much smaller extent. The optimum amount of nanomaterials in the nanocomposites depends on the filler size, shape, homogeneity of particles distribution, and the interfacial bonding properties between the fillers and matrix. The promise of nanocomposites lies in their multifunctionality, i.e., the possibility of realizing unique combination of properties unachievable with traditional materials. The challenges in reaching this promise are tremendous. They include control over the distribution in size and dispersion of the nanosize constituents, and tailoring and understanding the role of interfaces between structurally or chemically dissimilar phases on bulk properties. While the properties of the matrix can be improved by the inclusions of nanomaterials, the

  2. Engineering Flame Retardant Biodegradable Nanocomposites

    NASA Astrophysics Data System (ADS)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  3. Piezoresistance in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Rizvi, Reza

    Piezoresistivity in conductive polymer nanocomposites occurs because of the disturbance of particle networks in the polymer matrix. The piezoresistance effect becomes more prominent if the matrix material is compliant making these materials attractive for applications that require flexible force and displacement sensors such as e-textiles and biomechanical measurement devices. However, the exact mechanisms of piezoresistivity including the relationship between the matrix polymer, conductive particle, internal structure and the composite's piezoresistance need to be better understood before it can be applied for such applications. The objective of this thesis is to report on the development of conductive polymer nanocomposites for use as flexible sensors and electrodes. Electrically conductive and piezoresistive nanocomposites were fabricated by a scalable melt compounding process. Particular attention was given to elucidating the role of matrix and filler materials, plastic deformation and porosity on the electrical conduction and piezoresistance. These effects were parametrically investigated through characterizing the morphology, electrical properties, rheological properties, and piezoresistivity of the polymer nanocomposites. The electrical and rheological behavior of the nanocomposites was modeled by the percolation-power law. Furthermore, a model was developed to describe the piezoresistance behavior during plastic deformation in relation to the stress and filler concentration.

  4. Thermoelectric Transport in Nanocomposites

    PubMed Central

    Liu, Bin; Hu, Jizhu; Zhou, Jun; Yang, Ronggui

    2017-01-01

    Thermoelectric materials which can convert energies directly between heat and electricity are used for solid state cooling and power generation. There is a big challenge to improve the efficiency of energy conversion which can be characterized by the figure of merit (ZT). In the past two decades, the introduction of nanostructures into bulk materials was believed to possibly enhance ZT. Nanocomposites is one kind of nanostructured material system which includes nanoconstituents in a matrix material or is a mixture of different nanoconstituents. Recently, nanocomposites have been theoretically proposed and experimentally synthesized to be high efficiency thermoelectric materials by reducing the lattice thermal conductivity due to phonon-interface scattering and enhancing the electronic performance due to manipulation of electron scattering and band structures. In this review, we summarize the latest progress in both theoretical and experimental works in the field of nanocomposite thermoelectric materials. In particular, we present various models of both phonon transport and electron transport in various nanocomposites established in the last few years. The phonon-interface scattering, low-energy electrical carrier filtering effect, and miniband formation, etc., in nanocomposites are discussed. PMID:28772777

  5. Thermoelectric Transport in Nanocomposites.

    PubMed

    Liu, Bin; Hu, Jizhu; Zhou, Jun; Yang, Ronggui

    2017-04-15

    Thermoelectric materials which can convert energies directly between heat and electricity are used for solid state cooling and power generation. There is a big challenge to improve the efficiency of energy conversion which can be characterized by the figure of merit (ZT). In the past two decades, the introduction of nanostructures into bulk materials was believed to possibly enhance ZT. Nanocomposites is one kind of nanostructured material system which includes nanoconstituents in a matrix material or is a mixture of different nanoconstituents. Recently, nanocomposites have been theoretically proposed and experimentally synthesized to be high efficiency thermoelectric materials by reducing the lattice thermal conductivity due to phonon-interface scattering and enhancing the electronic performance due to manipulation of electron scattering and band structures. In this review, we summarize the latest progress in both theoretical and experimental works in the field of nanocomposite thermoelectric materials. In particular, we present various models of both phonon transport and electron transport in various nanocomposites established in the last few years. The phonon-interface scattering, low-energy electrical carrier filtering effect, and miniband formation, etc., in nanocomposites are discussed.

  6. Strong Nanocomposites with Ca, PO4, and F Release for Caries Inhibition

    PubMed Central

    Xu, H.H.K.; Weir, M.D.; Sun, L.; Moreau, J.L.; Takagi, S.; Chow, L.C.; Antonucci, J.M.

    2010-01-01

    This article reviews recent studies on: (1) the synthesis of novel calcium phosphate and calcium fluoride nanoparticles and their incorporation into dental resins to develop nanocomposites; (2) the effects of key microstructural parameters on Ca, PO4, and F ion release from nanocomposites, including the effects of nanofiller volume fraction, particle size, and silanization; and (3) mechanical properties of nanocomposites, including water-aging effects, flexural strength, fracture toughness, and three-body wear. This article demonstrates that a major advantage of using the new nanoparticles is that high levels of Ca, PO4, and F release can be achieved at low filler levels in the resin, because of the high surface areas of the nanoparticles. This leaves room in the resin for substantial reinforcement fillers. The combination of releasing nanofillers with stable and strong reinforcing fillers is promising to yield a nanocomposite with both stress-bearing and caries-inhibiting capabilities, a combination not yet available in current materials. PMID:19948941

  7. Regulation of serum phosphate

    PubMed Central

    Lederer, Eleanor

    2014-01-01

    The regulation of serum phosphate, an acknowledged risk factor for chronic kidney disease and cardiovascular mortality, is poorly understood. The discovery of fibroblast growth factor 23 (FGF23) as a key regulator of renal phosphate handling and activation of vitamin D has revolutionized our comprehension of phosphate homeostasis. Through as yet undetermined mechanisms, circulating and dietary phosphate appear to have a direct effect on FGF23 release by bone cells that, in turn, causes renal phosphate excretion and decreases intestinal phosphate absorption through a decrease in vitamin D production. Thus, the two major phosphaturic hormones, PTH and FGF23, have opposing effects on vitamin D production, placing vitamin D at the nexus of phosphate homeostasis. While our understanding of phosphate homeostasis has advanced, the factors determining regulation of serum phosphate level remain enigmatic. Diet, time of day, season, gender, age and genetics have all been identified as significant contributors to serum phosphate level. The effects of these factors on serum phosphate have major implications for what is understood as ‘normal’ and for studies of phosphate homeostasis and metabolism. Moreover, other hormonal mediators such as dopamine, insulin-like growth factor, and angiotensin II also affect renal handling of phosphate. How the major hormone effects on phosphate handling are regulated and how the effect of these other factors are integrated to yield the measurable serum phosphate are only now beginning to be studied. PMID:24973411

  8. UV curable polyester polyol acrylate/bentonite nanocomposites: synthesis, characterization, and drug release.

    PubMed

    Thatiparti, Thimma Reddy; Tammishetti, Shekharam; Nivasu, Muram V

    2010-01-01

    Polyesterpolyolacrylate/bentonite nanocomposites, capable of in situ photo polymerization, were synthesized and characterized. The organically modified bentonite clay was prepared by an ion exchange process, in which sodium ions were replaced by alkyl ammonium ions. Organo modification of bentonite was confirmed from X-ray diffraction and fourier transform-infrared data. Microstructures were characterized by XRD data and transmission electron microscopy (TEM). Both XRD data and TEM images of polyester polyol acrylate/organo modified bentonite nanocomposites indicated that most of silicate layers were intercalated into the acrylate matrix. The resulting nanocomposites were characterized by gel content, water equilibrium swell, tensile strength, and in vitro degradation. The results showed that water equilibrium swell and in vitro degradation of these nanocomposites decreased with increase in the clay content. The tensile strength of these nanocomposites also increased with increase in the clay content. Release of two model drugs namely sulfamethoxazole and diclofenac sodium (DS) from these nanocomposites was studied in phosphate buffer saline pH = 7.4 at 37 degrees C. The drug release studies showed that sulfamethoxazole released slower than DS from polyester polyol acrylate nanocomposites. Therefore, these materials may be useful for mucoadhesive drug carriers and other biomedical applications. (c) 2009 Wiley Periodicals, Inc.

  9. Buckling resistant graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Rafiee, M. A.; Rafiee, J.; Yu, Z.-Z.; Koratkar, N.

    2009-11-01

    An experimental study on buckling of graphene/epoxy nanocomposite beam structures is presented. Significant increase (up to 52%) in critical buckling load is observed with addition of only 0.1% weight fraction of graphene platelets into the epoxy matrix. Based on the classical Euler-buckling model, the buckling load is predicted to increase by ˜32%. The over 50% increase in buckling load observed in our testing suggests a significant enhancement in load transfer effectiveness between the matrix and the graphene platelets under compressive load. Such nanocomposites with high buckling stability show potential as lightweight and buckling-resistant structural elements in aeronautical and space applications.

  10. Fire retardant polyetherimide nanocomposites

    SciTech Connect

    Lee, J.; Takekoshi, T.; Giannelis, E.P.

    1997-09-01

    Polyetherimide-layered silicates nanocomposites with increased char yield and fire retardancy are described. The use of nanocomposites is a new, environmentally-benign approach to improve fire resistance of polymers. An increase in the aromaticity yields high char residues that normally correlate with higher oxygen index and lower flammability. The often high cost of these materials and the specialized processing techniques required, however, have limited the use of these polymers to certain specialized applications. The effectiveness of fire retardant fillers is also limited since the large amounts required make processing difficult and might inadvertently affect mechanical properties.

  11. Phosphate Uptake by Phosphate-Starved Euglena

    PubMed Central

    BLUM, J. J.

    1966-01-01

    Phosphate-deprived Euglena acquire the ability to rapidly in-corporate added phosphate and, also, synthesize an induced acid phosphatase localized in the pellicle. The phosphate uptake system is saturated at low concentrations of phosphate and is inhibited by dinitrophenol, by low temperature, by K+, Li+, and Na+ ions, and competitively by arsenate. The orthophosphate incorporated into the cell is rapidly converted into organic forms but enough remains unesterified to suggest that the uptake is an active transport process. The data do not rule out the possibility that the induced phosphatase is involved in the transport process. PMID:5924104

  12. Phosphate homeostasis and disorders.

    PubMed

    Manghat, P; Sodi, R; Swaminathan, R

    2014-11-01

    Recent studies of inherited disorders of phosphate metabolism have shed new light on the understanding of phosphate metabolism. Phosphate has important functions in the body and several mechanisms have evolved to regulate phosphate balance including vitamin D, parathyroid hormone and phosphatonins such as fibroblast growth factor-23 (FGF23). Disorders of phosphate homeostasis leading to hypo- and hyperphosphataemia are common and have clinical and biochemical consequences. Notably, recent studies have linked hyperphosphataemia with an increased risk of cardiovascular disease. This review outlines the recent advances in the understanding of phosphate homeostasis and describes the causes, investigation and management of hypo- and hyperphosphataemia.

  13. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  14. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  15. Polyimide/carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2003-01-01

    The goal of this product is to design and characterize well-defined conductive nanocomposite materials. The materials will be composed of a polymer matrix composed of rigid-backbone polyimides, and will be filled with modified or unmodified multi-walled carbon nanotubes (MWNTs). The ultimate design of this project is to create composite materials with optical clarity and a high conductivity.

  16. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  17. Nanocomposites for Enhanced Structural Integrity

    DTIC Science & Technology

    2007-09-11

    developing methods to optimally functionalize these nanoreinforcements. A coupling agent methacryloxy propyl trimethoxy silane (MPS) was found to be...102 Nanocomposites for Enhanced Structural Integrity AFOSR bn0)2-1-0414 H. Thomas Hahn Mechanical & Aerospace Engineering Department University of...nanocomposite. A coupling agent methacryloxy propyl trimethoxy silane (MPS) was found to be effective for the SiC nanocomposite. As for the graphite

  18. Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide

    PubMed Central

    Luo, Xin; Wang, Xiurong; Bao, Shaopan; Liu, Xiawei; Zhang, Weicheng; Fang, Tao

    2016-01-01

    In this account, a one-step green hydrothermal method for zirconium-loaded reduced graphene oxide (RGO-Zr) adsorbent was developed in pure water. It is based on the formation of initially strong-coupling RGO-Zr nanocomposites followed by in situ reduction of GO to RGO during the hydrothermal treatment. The phosphate adsorption performance of the as-prepared nanocomposites was investigated in aqueous environment under various conditions. The characterization results of RGO-Zr nanocomposites showed that ZrO2 was successfully integrated onto the RGO sheets in amorphous. The data from equilibrium phosphate adsorption on RGO-Zr revealed that the adsorption kinetics followed a pseudo-second-order kinetic model, where the adsorption isotherm fitted the Langmuir isotherm model with a maximum adsorption capacity of 27.71 mg P/g at pH 5 and 298 K. The improved phosphate adsorption on RGO-Zr was caused by the dispersion of ZrO2 on the RGO surface. Furthermore, the phosphate adsorption was found insensitive to the increase in pH while it was sensitive to the increase in temperature. The coexisting anions of SO42−, F−, Cl−, NO3− and CO32− affected the phosphate adsorption in a different way. Results suggest that the present RGO-Zr adsorbent has the potential for controlling phosphorus pollution in water. PMID:27974747

  19. Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Wang, Xiurong; Bao, Shaopan; Liu, Xiawei; Zhang, Weicheng; Fang, Tao

    2016-12-01

    In this account, a one-step green hydrothermal method for zirconium-loaded reduced graphene oxide (RGO-Zr) adsorbent was developed in pure water. It is based on the formation of initially strong-coupling RGO-Zr nanocomposites followed by in situ reduction of GO to RGO during the hydrothermal treatment. The phosphate adsorption performance of the as-prepared nanocomposites was investigated in aqueous environment under various conditions. The characterization results of RGO-Zr nanocomposites showed that ZrO2 was successfully integrated onto the RGO sheets in amorphous. The data from equilibrium phosphate adsorption on RGO-Zr revealed that the adsorption kinetics followed a pseudo-second-order kinetic model, where the adsorption isotherm fitted the Langmuir isotherm model with a maximum adsorption capacity of 27.71 mg P/g at pH 5 and 298 K. The improved phosphate adsorption on RGO-Zr was caused by the dispersion of ZrO2 on the RGO surface. Furthermore, the phosphate adsorption was found insensitive to the increase in pH while it was sensitive to the increase in temperature. The coexisting anions of SO42‑, F‑, Cl‑, NO3‑ and CO32‑ affected the phosphate adsorption in a different way. Results suggest that the present RGO-Zr adsorbent has the potential for controlling phosphorus pollution in water.

  20. Why nature chose phosphates.

    PubMed

    Westheimer, F H

    1987-03-06

    Phosphate esters and anhydrides dominate the living world but are seldom used as intermediates by organic chemists. Phosphoric acid is specially adapted for its role in nucleic acids because it can link two nucleotides and still ionize; the resulting negative charge serves both to stabilize the diesters against hydrolysis and to retain the molecules within a lipid membrane. A similar explanation for stability and retention also holds for phosphates that are intermediary metabolites and for phosphates that serve as energy sources. Phosphates with multiple negative charges can react by way of the monomeric metaphosphate ion PO3- as an intermediate. No other residue appears to fulfill the multiple roles of phosphate in biochemistry. Stable, negatively charged phosphates react under catalysis by enzymes; organic chemists, who can only rarely use enzymatic catalysis for their reactions, need more highly reactive intermediates than phosphates.

  1. Fabrication of graphene oxide-modified chitosan for controlled release of dexamethasone phosphate

    NASA Astrophysics Data System (ADS)

    Sun, Huanghui; Zhang, Lingfan; Xia, Wei; Chen, Linxiao; Xu, Zhizhen; Zhang, Wenqing

    2016-07-01

    Functionalized graphene oxide with its unique physical and chemical properties is widely applied in biomaterials, especially in drug carrier materials. In the past few years, a number of different drugs have been loaded on functionalized graphene oxide via π-π stacking and hydrophobic interactions. The present report described a new approach, dexamethasone phosphate successfully loaded onto graphene oxide-chitosan nanocomposites as drug carrier materials by covalent bonding of phosphate ester linkage. Compared with the graphene oxide-chitosan nanocomposites that dexamethasone phosphate was loaded on via simple physical attachment, covalently linked composites as drug carrier materials were more biocompatible which effectively reduced the burst release of drug, and controlled the release of drug in different pH conditions.

  2. Structure-property relationship in core-shell rubber toughened epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Gam, Ki Tak

    The structure-property relationships of epoxy nanocomposites with inorganic layer-structure nanofillers have been studied to obtain the fundamental understanding of the role of nanofillers and the physics of polymer nanocomposites in this dissertation. Several polymer nanocomposite systems with modified montmorillonite (MMT) or alpha-zirconium phosphate (ZrP) nanofillers were prepared with epoxy matrices of different ductility and properties. The successful nanofiller's exfoliations were confirmed with X-ray diffraction and transmission electronic microscopy (TEM). Dynamic mechanical analysis (DMA) on the prepared epoxy nanocomposites revealed the significant increase in rubbery plateau moduli of the epoxy nanocomposite systems above Tg, as high as 4.5 times, and tensile test results showed improved modulus by the nanofiller addition, while the fracture toughness was not affected or slightly decreased by nanofillers. The brittle epoxy nanocomposite systems were toughened with core shell rubber (CSR) particles and showed remarkable increase in fracture toughness (KIC) value up to 270%. The CSR toughening is more effective at ductile matrices, and TEM observation indicates that major toughening mechanisms induced by the CSR addition involve a large scale CSR cavitation, followed by massive shear deformation of the matrix.

  3. Early tissue response to citric acid-based micro- and nanocomposites

    PubMed Central

    Chung, Eun Ji; Qiu, Hongjin; Kodali, Pradeep; Yang, Scott; Sprague, Stuart M.; Hwong, James; Koh, Jason; Ameer, Guillermo A.

    2010-01-01

    Composites based on calcium phosphates and biodegradable polymers are desirable for orthopaedic applications due to their potential to mimic bone. Herein, we describe the fabrication, characterization, and in vivo response of novel citric acid-based microcomposites and nanocomposites. Poly(1,8-octanediol-co-citrate) (POC) was mixed with increasing amounts of HA nanoparticles or microparticles (up to 60 wt%), and the morphology and mechanical properties of the resulting composites were assessed. To investigate tissue response, nanocomposites, microcomposites, POC, and poly(L-lactide) (PLL) were implanted in osteochondral defects in rabbits and harvested at 6 weeks for histological evaluation. SEM confirmed increased surface roughness of microcomposites relative to nanocomposites. The mechanical properties of both types of composites increased with increasing amounts of HA (8–328 MPa), although nanocomposites with 60 wt.% HA displayed the highest strength and stiffness. Based on tissue-implant interfacial assessments, all implants integrated well with the surrounding bone and cartilage with no evidence of inflammation. Both nanocomposites and microcomposites supported bone remodeling; however, nanocomposites induced more trabecular bone formation at the tissue-implant interface. The mechanical properties of citric acid-based composites are within the range of human trabecular bone (1–1524 MPa, 211±78 MPa mean modulus) and tissue response was dependent on the size and content of HA, providing new perspectives of design and fabrication criteria for orthopaedic devices such as interference screws and fixation pins. PMID:20949482

  4. [Multifunctional nanocomposite materials

    SciTech Connect

    Not Available

    1993-01-01

    These novel nanocomposites are microporous nanometal intercalated clays which have been prepared by a polyol process at 200C and a novel microwave-hydrothermal process using ethylene glycol. These novel nanocomposites have been found to be useful in the conversion of coal to asphaltenes. A crystalline tin (IV) arsenate hydroxide hydrate has been made and its lithium selective ion exchange properties have been measured. This exchanger has shown high lithium selectivity. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure have also been studied. Several pillared clays have also been synthesized and their Mg[sup 2+], Li[sup +] and UO[sub 2][sup 2+] selectivity has been measured. The pillared clays appear to show some Li selectivity.

  5. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2015-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  6. Multifunctional reactive nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Stamatis, Demitrios

    Many multifunctional nanocomposite materials have been developed for use in propellants, explosives, pyrotechnics, and reactive structures. These materials exhibit high reaction rates due to their developed reaction interfacial area. Two applications addressed in this work include nanocomposite powders prepared by arrested reactive milling (ARM) for burn rate modifiers and reactive structures. In burn rate modifiers, addition of reactive nanocomposite powders to aluminized propellants increases the burn rate of aluminum and thus the overall reaction rate of an energetic formulation. Replacing only a small fraction of aluminum by 8Al·MoO3 and 2B·Ti nanocomposite powders enhances the reaction rate with little change to the thermodynamic performance of the formulation; both the rate of pressure rise and maximum pressure measured in the constant volume explosion test increase. For reactive structures, nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by ARM and consolidated using a uniaxial die. Consolidated samples had densities greater than 90% of theoretical maximum density while maintaining their high reactivity. Pellets prepared using 8Al·MoO3 powders were ignited by a CO2 laser. Ignition delays increased at lower laser powers and greater pellet densities. A simplified numerical model describing heating and thermal initiation of the reactive pellets predicted adequately the observed effects of both laser power and pellet density on the measured ignition delays. To investigate the reaction mechanisms in nanocomposite thermites, two types of nanocomposite reactive materials with the same bulk compositions 8Al·MoO3 were prepared by different methods. One of the materials was manufactured by ARM and the other, so called metastable interstitial composite (MIC), by mixing of nano-scaled individual powders. Clear differences in the low-temperature redox reactions, welldetectable by differential scanning calorimetry

  7. Nanocomposite Polymer Electrolytes

    DTIC Science & Technology

    2000-11-30

    charge on the intercalation of poly(ethylene oxide) (PEO) was investigated using a series of reduced-charge montmorillonites and smectites with...Capacities of Reduced-Charge Nanocomposites were prepared by solution or melt inter- Montmorillonites calation. PEOs with molecular weights (MWs), 7500 (Poly... Montmorillonite High-charge montmorillonite SAz-1, middle-charge mont- by Molecular Simulations. Masters Thesis, Cornell Univerisity, Ithaca, morillonites HD

  8. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  9. Multilayer graphene rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  10. Phosphate, inositol and polyphosphates.

    PubMed

    Livermore, Thomas M; Azevedo, Cristina; Kolozsvari, Bernadett; Wilson, Miranda S C; Saiardi, Adolfo

    2016-02-01

    Eukaryotic cells have ubiquitously utilized the myo-inositol backbone to generate a diverse array of signalling molecules. This is achieved by arranging phosphate groups around the six-carbon inositol ring. There is virtually no biological process that does not take advantage of the uniquely variable architecture of phosphorylated inositol. In inositol biology, phosphates are able to form three distinct covalent bonds: phosphoester, phosphodiester and phosphoanhydride bonds, with each providing different properties. The phosphoester bond links phosphate groups to the inositol ring, the variable arrangement of which forms the basis of the signalling capacity of the inositol phosphates. Phosphate groups can also form the structural bridge between myo-inositol and diacylglycerol through the phosphodiester bond. The resulting lipid-bound inositol phosphates, or phosphoinositides, further expand the signalling potential of this family of molecules. Finally, inositol is also notable for its ability to host more phosphates than it has carbons. These unusual organic molecules are commonly referred to as the inositol pyrophosphates (PP-IPs), due to the presence of high-energy phosphoanhydride bonds (pyro- or diphospho-). PP-IPs themselves constitute a varied family of molecules with one or more pyrophosphate moiety/ies located around the inositol. Considering the relationship between phosphate and inositol, it is no surprise that members of the inositol phosphate family also regulate cellular phosphate homoeostasis. Notably, the PP-IPs play a fundamental role in controlling the metabolism of the ancient polymeric form of phosphate, inorganic polyphosphate (polyP). Here we explore the intimate links between phosphate, inositol phosphates and polyP, speculating on the evolution of these relationships. © 2016 Authors; published by Portland Press Limited.

  11. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  12. Mechanical Principles of Biological Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ji, Baohua; Gao, Huajian

    2010-08-01

    Biological nanocomposites, such as bone, tooth, shell, and wood, exhibit exceptional mechanical properties. Much recent effort has been directed at exploring the basic mechanical principles behind the microstructures of these natural materials to provide guidelines for the development of novel man-made nanocomposites. This article reviews some of the recent studies on mechanical properties of biological nanocomposites, including their stiffness, strength, toughness, interface properties, and elastic stability. The discussion is focused on the mechanical principles of biological nanocomposites, including the generic nanostructure of hard-mineral crystals embedded in a soft protein matrix, the flaw-tolerant design of the hard phase, the role of the soft matrix, the hybrid interface between protein and mineral, and the structural hierarchy. The review concludes with some discussion of and outlook on the development of biomimicking synthetic materials guided by the principles found in biological nanocomposites.

  13. Phosphate taxis in Pseudomonas aeruginosa.

    PubMed

    Kato, J; Ito, A; Nikata, T; Ohtake, H

    1992-08-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.

  14. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  15. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  16. Synthesis, characterization, biocompatibility of hydroxyapatite-natural polymers nanocomposites for dentistry applications.

    PubMed

    Chung, Jin-Hwan; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub; Vaezmomeni, Seyede Ziba; Samiei, Mohammad; Aghazadeh, Marzyeh; Davaran, Soodabeh; Mahkam, Mehrdad; Asadi, Ghale; Akbarzadeh, Abolfazl

    2016-01-01

    Hydroxyapatite (HA), the main mineral component of bones and teeth, was synthesized by using the reaction between calcium nitrate tetrahydrate Ca(NO3)2∙4H2O and diammonium hydrogen phosphate (NH4)2HPO4 (DAHP) with a chemical precipitation method. The objective of this study is to utilize novel inorganic-organic nanocomposites for biomedical applications. HA is an inorganic component (75% w) and chitosan, alginate and albumin (Egg white) are organic components of nanocomposites (25% w). Nanocomposites were prepared in deionized water solutions, at room temperature, using a mechanical and magnetic stirrer for 48 h. The microstructure and morphology of sintered n-HAP were tested at different preheating temperature and laser sintering speed with scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR).

  17. An introduction to polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Armstrong, Gordon

    2015-11-01

    This review presents an overview of the formulation, characterization and range of applications for polymer nanocomposites. After explaining how material properties at the nanometre scale can vary compared to those observed at longer length scales, typical methods used to formulate and characterize nanocomposites at laboratory and industrial scale will be described. The range of mechanical, electrical and thermal properties obtainable from nanocomposite materials, with examples of current commercial applications, will be outlined. Formulation and characterization of nanoparticle, nanotube and graphene composites will be discussed by reference to nanoclay-based composites, as the latter are presently of most technological relevance. Three brief case studies are presented to demonstrate how structure/property relationships may be controlled in a variety of polymer nanocomposite systems to achieve required performance in a given application. The review will conclude by discussing potential obstacles to commercial uptake of polymer nanocomposites, such as inconsistent protocols to characterize nanocomposites, cost/performance balances, raw material availability, and emerging legislation, and will conclude by discussing the outlook for future development and commercial uptake of polymer nanocomposites.

  18. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  19. Polyethylene cellulose nanofibrils nanocomposites.

    PubMed

    Maia, Thiago Henrique Silveira; Larocca, Nelson Marcos; Beatrice, Cesar Augusto Gonçalves; de Menezes, Aparecido Júnior; de Freitas Siqueira, Gilberto; Pessan, Luiz Antonio; Dufresne, Alain; França, Marcos Pini; de Almeida Lucas, Alessandra

    2017-10-01

    This paper investigates the use of an aqueous dispersion of polyethylene copolymer with a relatively high content of acrylic acid as a compatibilizer and as an alternative medium to obtain polyethylene CNF nanocomposites. The CNF content was varied from 1 to 90wt% and the appearance, optical, thermal, mechanical and rheological properties, as well the morphology of the films were evaluated. The PE/CNF films are transparent up to 20wt% of NFC indicating a good dispersion of CNF, but a poor distribution, with PE-rich and CNF-rich regions observed by SEM. Improved mechanical properties were achieved, with a 100% and 15,900% increase in the Young's modulus with 1wt% and 90wt% NFC, respectively. The rheological behavior indicated good melt processability. According to these results, aqueous polyolefin dispersions seem to be a promising, easy and relatively fast route for obtaining cellulose/polyolefins nanocomposites with low to high contents of cellulose nanofibrils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Origami and Kirigami Nanocomposites.

    PubMed

    Xu, Lizhi; Shyu, Terry C; Kotov, Nicholas A

    2017-08-22

    The arts of origami and kirigami inspired numerous examples of macroscale hierarchical structures with high degree of reconfigurability and multiple functionalities. Extension of kirigami and origami patterning to micro-, meso-, and nanoscales enabled production of nanocomposites with unusual combination of properties, transitioning these art forms to the toolbox of materials design. Various subtractive and additive fabrication techniques applicable to nanocomposites and out-of-plane deformation of patterns enable a technological framework to negotiate often contradictory structural requirements for materials properties. Additionally, the long-searched possibility of patterned composites/parts with highly predictable set of properties/functions emerged. In this review, we discuss foldable/stretchable composites with designed mechanical properties, as exemplified by the negative Poisson's ratio, as well as optical and electrical properties, as exemplified by the sheet conductance, photovoltage generation, and light diffraction. Reconfiguration achieved by extrinsic forces and/or intrinsic stresses enables a wide spectrum of technological applications including miniaturized biomedical tools, soft robotics, adaptive optics, and energy systems, extending the limits of both materials engineering concepts and technological innovation.

  1. PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

    SciTech Connect

    Hay, M.; King, W.

    2011-04-04

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  2. Recent advances in biodegradable nanocomposites.

    PubMed

    Pandey, Jitendra K; Kumar, A Pratheep; Misra, Manjusri; Mohanty, Amar K; Drzal, Lawrence T; Singh, Raj Pal

    2005-04-01

    There is growing interest in developing bio-based products and innovative process technologies that can reduce the dependence on fossil fuel and move to a sustainable materials basis. Biodegradable bio-based nanocomposites are the next generation of materials for the future. Renewable resource-based biodegradable polymers including cellulosic plastic (plastic made from wood), corn-derived plastics, and polyhydroxyalkanoates (plastics made from bacterial sources) are some of the potential biopolymers which, in combination with nanoclay reinforcement, can produce nanocomposites for a variety of applications. Nanocomposites of this category are expected to possess improved strength and stiffness with little sacrifice of toughness, reduced gas/water vapor permeability, a lower coefficient of thermal expansion, and an increased heat deflection temperature, opening an opportunity for the use of new, high performance, lightweight green nanocomposite materials to replace conventional petroleum-based composites. The present review addresses this green material, including its technical difficulties and their solutions.

  3. Inorganic-Organic Nanocomposite Assembly Using Collagen as Template and Sodium Tripolyphosphate as A Biomimetic Analog of Matrix Phosphoprotein

    PubMed Central

    Dai, Lin; Qi, Yi-Pin; Niu, Li-Na; Liu, Yan; Pucci, Cesar R.; Looney, Stephen W.; Ling, Jun-Qi; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Nanocomposites created with polycarboxylic acid alone as a stabilization agent for prenucleation clusters-derived amorphous calcium phosphate exhibit non-periodic apatite deposition. In the present study, we report the use of inorganic polyphosphate as a biomimetic analog of matrix phosphoprotein for directing polyacrylic acid-stabilized amorphous nanoprecursor phases to assemble into periodic apatite-collagen nanocomposites. The sorption and desorption characteristics of sodium tripolyphosphate to type I collagen was examined. Periodic nanocomposite assembly with collagen as a template was demonstrated with TEM and SEM using a Portland cement-based resin composite and a phosphate-containing simulated body fluid. Apatite was detected within the collagen at 24 hours and became more distinct at 48 hours, with prenucleation clusters attaching to the collagen fibril surface during the initial infiltration stage. Apatite-collagen nanocomposites at 72 hours were heavily mineralized with periodically-arranged intrafibrillar apatite platelets. Defect-containing nanocomposites caused by desorption of TPP from collagen fibrils were observed in regions lacking the inorganic phase. PMID:21857797

  4. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.

    PubMed

    Lou, Tao; Wang, Xuejun; Song, Guojun; Gu, Zheng; Yang, Zhen

    2014-08-01

    Polymer and ceramic composite scaffolds play a crucial role in bone tissue engineering. In an attempt to mimic the architecture of natural extracellular matrix (ECM), poly(l-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) nanocomposite scaffolds with a hierarchical pore structure were fabricated by combining thermal induced phase separation and salt leaching techniques. The nanocomposite scaffold consisted of a nanofibrous PLLA matrix with a highly interconnected, high porosity (>93%) hierarchical pore structure with pore diameters ranging from 500nm to 300μm and a homogeneously distributed β-TCP nanoparticle phase. The nanofibrous PLLA matrix had a fiber diameter of 70-300nm. The nanocomposite scaffolds possess three levels of hierarchical structure: (1) porosity; (2) nanofibrous PLLA struts comprising the pore walls; and (3) β-TCP nanoparticle phase. The β-TCP nanoparticle phase improved the mechanical properties and bioactivity of the PLLA matrix. The nanocomposite scaffolds supported MG-63 osteoblast proliferation, penetration, and ECM deposition, indicating the potential of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Preparation and characterization of calcium sulfate-biomimetic apatite nanocomposites for controlled release of antibiotics.

    PubMed

    Hesaraki, Saeed; Moztarzadeh, Fatollah; Nemati, Roghayeh; Nezafati, Nader

    2009-11-01

    In the present study, release properties of antibiotic-loaded cement-type nanocomposites of biomimetic apatite and calcium sulfate were studied. Nanocrystalline component of the nanocomposite was synthesized by soaking a mixture of calcium phosphate reactants in tris-buffered simulated body fluid (SBF). The release patterns of cephalexin and gentamicin from both pure calcium sulfate and nanocomposite cements into SBF were collected up to 144 h and fitted by Higuchi and Weibull equations. The effect of loaded antibiotics on physical properties of the cements was also evaluated. Fast release behavior of both antibiotics was obtained from calcium sulfate matrix, in which 80-85% of the loaded antibiotics were liberated during the first 10 h of elution. In contrast, an administered elution was acquired from nanonocomposite materials so that the release was controlled, in all cases, by a combined mechanism; major mechanism was drug diffusion through the matrix and the minor was matrix dissolution. The results showed that the initial setting time and injectability of cements were increased from 7 min and 71% for pure calcium sulfate cement (powder-to-liquid ratio = 2.5 g/mL) to 33 min and 95% for the nanocomposite cement containing 60 wt % apatite, respectively. The compressive strength of nanocomposite was about 0.9 MPa, nearly four times lower than that of pure calcium sulfate. In addition, the use of cephalexin monohydrate did not influence the setting time and compressive strength of the cements, whereas (adding) gentamicin sulfate significantly improved these properties.

  6. Investigating the Properties and Hydrolysis Ability of Poly-Lactic Acid/Chitosan Nanocomposites Using Polycaprolactone.

    PubMed

    Trang, Nguyen Thi Thu; Chinhl, Nguyen Thuy; Thanh, Dinh Thi Mai; Hang, To Thi Xuan; Giang, Nguyen Vu; Hoang, Thai; Quan, Pham Minh; Giang, Le Duc; Thai, Nguyen Viet; Lawrence, Geoffrey

    2015-12-01

    Poly-lactic acid (PLA) has been widely applied in the medical field (in biomedicines such as medical capsules, surgical sutures and suture wounds) owing to its high biodegradability, good biocompatibility and ability to be dissolved in common solvents. Chitosan (CS) is an abundant polysaccharide and a cationic polyelectrolyte present in nature. In this study, the combination of PLA and CS has been used to form PLA/CS nanocomposites having the advantages of both the original components. To enhance the dispersibility and compatibility between PLA and CS in the PLA/CS nanocomposites, polycaprolactone (PCL) is added as a compatibilizer. The Fourier Transform Infrared spectroscopies prove the existence of the interactions of PCL with PLA and CS. A more regular dispersion of CS of 200-400 nm particle size, is observed in the PLA matrix of the PLA/CS nanocomposites containing PCL, through the Field Emission Scanning Electron Microscopy images. The appearance of one glass transition temperature (T(g)) value of PLA/CS/PCL nanocomposites occuring between the T(g) values of PLA and CS in DSC diagrams confirms the improvement in the compatibility between PLA and CS, due to the presence of PCL. The TGA result shows that PCL plays an important role in enhancing the thermal stability of PLA/CS/PCL nanocomposites. The hydrolysis of PLA/CS/PCL nanocomposites in alkaline and phosphate buffer solutions was investigated. The obtained results show that the PLA/CS/PCL nanocomposites have slower hydrolysis ability than the PLA/CS composites.

  7. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    SciTech Connect

    Garaje, Sunil N.; Apte, Sanjay K.; Kumar, Ganpathy; Panmand, Rajendra P.; Naik, Sonali D.; Mahajan, Satish M.; Chand, Ramesh; Kale, Bharat B.

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2% ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.

  8. Magnetoelectric polymer nanocomposite for flexible electronics

    SciTech Connect

    Alnassar, M. Alfadhel, A.; Ivanov, Yu. P.; Kosel, J.

    2015-05-07

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  9. Effect of Nanofiller Characteristics on Nanocomposite Properties

    NASA Technical Reports Server (NTRS)

    Working, Dennis C.; Lillehei, Peter T.; Lowther, Sharon E.; Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Wise, Kristopher E.; Park, Cheol

    2016-01-01

    This report surveys the effect of nanofiller characteristics on nanocomposites fabricated with two polyimide matrices. Mechanical and electrical properties were determined. Microscopy results showed that matrix chemistry, nanofiller characteristics and processing conditions had significant impact on nanocomposite quality.

  10. Acute phosphate nephropathy.

    PubMed

    Monfared, Ali; Habibzadeh, Seyed Mahmoud; Mesbah, Seyed Alireza

    2014-05-01

    We present acute phosphate nephropathy in a 28-year-old man, which was developed after a car accident due to rhabdomyolysis. Treatment of acute kidney injury was done with administration of sodium bicarbonate.

  11. Phosphate Mines, Jordan

    NASA Image and Video Library

    2008-04-21

    Jordan leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. This image was acquired by NASA Terra satellite on September 17, 2005.

  12. Metal-phosphate binders

    DOEpatents

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  13. How Nano Are Nanocomposites

    SciTech Connect

    Schaefer, Dale W.; Justice, Ryan S.

    2010-10-22

    Composite materials loaded with nanometer-sized reinforcing fillers are widely believed to have the potential to push polymer mechanical properties to extreme values. Realization of anticipated properties, however, has proven elusive. The analysis presented here traces this shortfall to the large-scale morphology of the filler as determined by small-angle X-ray scattering, light scattering, and electron imaging. We examine elastomeric, thermoplastic, and thermoset composites loaded with a variety of nanoscale reinforcing fillers such as precipitated silica, carbon nanotubes (single and multiwalled), and layered silicates. The conclusion is that large-scale disorder is ubiquitous in nanocomposites regardless of the level of dispersion, leading to substantial reduction of mechanical properties (modulus) compared to predictions based on idealized filler morphology.

  14. Superhydrophobic cellulose nanocomposites.

    PubMed

    Gonçalves, Gil; Marques, Paula A A P; Trindade, Tito; Neto, Carlos Pascoal; Gandini, Alessandro

    2008-08-01

    Superhydrophobic cellulose nanocomposites were prepared using a multi-step nanoengineering process. The combination of different techniques made it possible to construct novel features at the ensuing surface, characterized by both an increase in its roughness induced by amorphous silica particles and a reduction in its energy insured by perfluoro moieties, giving rise to water contact angles approaching 150 degrees . The modification calls upon an aqueous LbL system followed by siloxane hydrolysis, both conducted at room temperature in air. Each modification was followed by scanning electron microscopy (SEM) and atomic force microscope (AFM). These original cellulose-silica-silane composite materials open the way to further valorisations of a ubiquitous renewable resource in applications such as water repellence and self-cleaning.

  15. Phosphate control in dialysis

    PubMed Central

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-01-01

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients. PMID:24133374

  16. Phosphate control in dialysis.

    PubMed

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-10-04

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease-mineral and bone disorder (CKD-MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive-convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200-300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients.

  17. Nanocomposites of POC and quantum dots

    NASA Astrophysics Data System (ADS)

    Borriello, C.; Concilio, S.; Minarini, C.; Iannelli, P.; Di Luccio, T.

    2012-07-01

    New luminescent polymer nanocomposites were synthesized combining carbazole/oxadiazole copolymer (POC) and CdSe/ZnS quantum dots (QDs) surface passivated by ionic liquids. Ionic liquid ligands improve the photostability of QDs and their compatibility with polymer allowing the deposition of homogeneous nanocomposites films. The nanocomposites were characterized by UV and photoluminescence spectroscopy.

  18. Effect of yttrium phosphate on irradiation of methyl vinyl silicone rubber

    NASA Astrophysics Data System (ADS)

    Ma, Depeng; Wu, Lianfeng; Feng, Shengyu; Lu, Haifeng; Zhao, Shigui

    2017-07-01

    Nanoscale Yttrium phosphate (YPO4) particles was prepared by hydrothermal method, and was used as anti-radiation additive for methyl vinyl silicone rubber (MVQ rubber). The mechanical properties and crosslink density of YPO4/MVQ rubber nanocomposites before and after irradiated by γ-rays were determined. The irradiation protection mechanism of YPO4 was discussed using the fluorescence spectra. The results showed that YPO4 could improve the irradiation-resistant properties of silicone rubber.

  19. Sodium phosphate-derived calcium phosphate cements

    SciTech Connect

    Sugama, T.; Carciello, N.R. )

    1995-01-01

    Calcium phosphate cements (CPC) were synthesized by the acid-base reaction between sodium phosphate, NaH[sub 2]PO[sub 4] or -(-NaPO[sub 3]-)-[sub n], as the acid solution, and calcium aluminate cements (CAC) as the base reactant at 25 C. The extent of reactivity of -(-NaPO[sub 3]-)-[sub n] with CAC was much higher than that of NaH[sub 2]PO[sub 4], thereby resulting in a compressive strength of > 20 MPa. Sodium calcium orthophosphate (SCOP) salts as amorphous reaction products were responsible for the development of this strength. When this CPC specimen as exposed in an autoclave, in-situ amorphous [r arrow] crystal conversions, such as SCOP [r arrow] hydroxyapatite (HOAp), and Al[sub 2]O[sub 3] [center dot] xH[sub 2]O [r arrow] [gamma]-AlOOH, occurred at [approx] 100 C, while the rate of reaction of the residual CAC with the phosphate reactant was increasingly accelerated by hydrothermal catalysis. Based upon this information, the authors prepared lightweight CPC specimens by hydrothermally treating a low-density cement slurry (1.28 g/cc) consisting of CAC powder, -(-NaPO[sub 3]-)-[sub n] solution, and mullite-hollow microspheres. The characteristics of the autoclaved lightweight specimens were a compressive strength of > 9.0 MPa, water permeability of [approx] 5.0 [times] 10[sup [minus]3] milli darcy, and a low rate of alkali carbonation. The reasons for such a low carbonation rate reflected the presence of a minimum amount of residual CAC, in conjunction with the presence of HOAp and [gamma]-AlOOH phases that are unsusceptible to wet carbonation.

  20. Synthesis and properties of unagglomerated nanocomposite particles for nanomedical applications

    NASA Astrophysics Data System (ADS)

    Rouse, Sarah M.

    2005-11-01

    Methods have been developed to prepare stable, unagglomerated active-medical-agent nanoparticles in a range of sizes, based on reverse-micelle microemulsion techniques. The process used to prepare monodisperse, spherical nanocomposite particles is based on methods originally outlined in detail by Adair et al. and Li et al. The "Molecular Dot" (MD) nanoparticles incorporate a variety of medically-active substances, such as organic fluorophores and therapeutic drugs, internally distributed in silica, titania, calcium phosphate, or calcium phospho-silicate matrices. The synthesis techniques have also been modified to produce nanoparticles containing combinations of fluorophores and medicinal agents, in order to monitor drug release and location. The specific biomedical application for the nanocomposite particles dictates the selection of core and shell-matrix materials. For example, the protective shell-matrices of the silica and titania MDs shield the active-medical agents from damage due to changes in pH, temperature, and other environmental effects. Conversely, the calcium phosphate and calcium phospho-silicate shell-matrix nanoparticles can potentially be engineered to dissolve in physiological environments. The method used to remove residual precursor materials while maintaining a well-dispersed assembly of nanoparticles is critical to the use of nanocolloids in medical applications. The dispersion approach is based on protection-dispersion theory tailored to accommodate the high surface areas and reactivity of sub-50 nm particles in aqueous or water/ethanol mixtures. Dispersion of the nanocomposite particles is further enhanced with the use of size-exclusion high performance liquid chromatography (HPLC) to simultaneously wash and disperse the nanocomposite particle suspensions. The state of dispersion of the nanosuspensions is evaluated using the average agglomeration number (AAN) approach in conjunction with other characterization techniques. The formulation of

  1. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT-PZT-PC and Cu-PZT-PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu-PZT-PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT-PZT-PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu-PZT-PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT-PZT-PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  2. Experimental analysis of graphene nanocomposite on Kevlar

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.

    2017-08-01

    Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.

  3. Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor

    PubMed Central

    Duan, Bin; Wang, Min

    2010-01-01

    Integrating an advanced manufacturing technique, nanocomposite material and controlled delivery of growth factor to form multifunctional tissue engineering scaffolds was investigated in this study. Based on calcium phosphate (Ca–P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposite microspheres, three-dimensional Ca–P/PHBV nanocomposite scaffolds with customized architecture, controlled porosity and totally interconnected porous structure were successfully fabricated using selective laser sintering (SLS), one of the rapid prototyping technologies. The cytocompatibility of sintered Ca–P/PHBV nanocomposite scaffolds, as well as PHBV polymer scaffolds, was studied. For surface modification of nanocomposite scaffolds, gelatin was firstly physically entrapped onto the scaffold surface and heparin was subsequently immobilized on entrapped gelatin. The surface-modification improved the wettability of scaffolds and provided specific binding site between conjugated heparin and the growth factor recombinant human bone morphogenetic protein-2 (rhBMP-2). The surface-modified Ca–P/PHBV nanocomposite scaffolds loaded with rhBMP-2 significantly enhanced the alkaline phosphatase activity and osteogenic differentiation markers in gene expression of C3H10T1/2 mesenchymal stem cells. Together with osteoconductive nanocomposite material and controlled growth factor delivery strategies, the use of SLS technique to form complex scaffolds will provide a promising route towards individualized bone tissue regeneration. PMID:20504805

  4. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor.

    PubMed

    Duan, Bin; Wang, Min

    2010-10-06

    Integrating an advanced manufacturing technique, nanocomposite material and controlled delivery of growth factor to form multifunctional tissue engineering scaffolds was investigated in this study. Based on calcium phosphate (Ca-P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposite microspheres, three-dimensional Ca-P/PHBV nanocomposite scaffolds with customized architecture, controlled porosity and totally interconnected porous structure were successfully fabricated using selective laser sintering (SLS), one of the rapid prototyping technologies. The cytocompatibility of sintered Ca-P/PHBV nanocomposite scaffolds, as well as PHBV polymer scaffolds, was studied. For surface modification of nanocomposite scaffolds, gelatin was firstly physically entrapped onto the scaffold surface and heparin was subsequently immobilized on entrapped gelatin. The surface-modification improved the wettability of scaffolds and provided specific binding site between conjugated heparin and the growth factor recombinant human bone morphogenetic protein-2 (rhBMP-2). The surface-modified Ca-P/PHBV nanocomposite scaffolds loaded with rhBMP-2 significantly enhanced the alkaline phosphatase activity and osteogenic differentiation markers in gene expression of C3H10T1/2 mesenchymal stem cells. Together with osteoconductive nanocomposite material and controlled growth factor delivery strategies, the use of SLS technique to form complex scaffolds will provide a promising route towards individualized bone tissue regeneration.

  5. Nanocomposite materials for radiation detection

    NASA Astrophysics Data System (ADS)

    Sahi, Sunil

    2013-03-01

    Colloidal quantum dots (CdTe, CdSe, and ZnO) have attracted tremendous interest in wide range of application from biological imaging, biosensing, solar cells to optoelectronic devices. However very few published reports on the radiation detection based on colloidal quantum dots. Quantum dots based nanocomposite materials could be a promising material for radiation detection because of their short luminescence life time and high quantum efficiencies as a consequence of quantum size confinement. However stopping power of most quantum dots is low and their scintillation luminescence is very weak. The combination of high stopping power of inorganic scintillator (CeF3LaF3: Ce, YAG:Ce) and high efficiency of quantum dot could potentially lead to a new class of scintillator. We have studied the nanocomposite of inorganic scintillator and quantum dot based on energy transfer principle and investigate the scintillation properties of nanocomposite scintillator.

  6. Nanocomposite Sensors for Food Packaging

    NASA Astrophysics Data System (ADS)

    Avella, Maurizio; Errico, Maria Emanuela; Gentile, Gennaro; Volpe, Maria Grazia

    Nowadays nanotechnologies applied to the food packaging sector find always more applications due to a wide range of benefits that they can offer, such as improved barrier properties, improved mechanical performance, antimicrobial properties and so on. Recently many researches are addressed to the set up of new food packaging materials, in which polymer nanocomposites incorporate nanosensors, developing the so-called "smart" packaging. Some examples of nanocomposite sensors specifically realised for the food packaging industry are reported. The second part of this work deals with the preparation and characterisation of two new polymer-based nanocomposite systems that can be used as food packaging materials. Particularly the results concerning the following systems are illustrated: isotactic polypropylene (iPP) filled with CaCO3 nanoparticles and polycaprolactone (PCL) filled with SiO2 nanoparticles.

  7. Improved Manganese Phosphate Coatings

    DTIC Science & Technology

    1975-04-01

    Conversion coatings 3 . Phosphating bath 20 AGrjC onln odd*. ta It .. c..soMV midP 1J.,alft. by block noc.mb) Work was conducted to determine the mechanism by...34 TABULAR DATA Table I Analyses of Solution and Coating for Phosphating Baths 4 of Di-ferlng Compositions 11 Atomic Absorption...manganese and iron phosphate coating: k * a. Mn(H 2PO4) 2 Nn-P0 4 + H3PO0 k2 k) b. 3MnHPO4 - Mn3 (P04) 2 + H3i’O4 k4 k5 c. Fe(H 2PO4) 2 -01 FeHPO4

  8. Codeine dihydrogen phosphate hemihydrate.

    PubMed

    Langes, Christoph; Gelbrich, Thomas; Griesser, Ulrich J; Kahlenberg, Volker

    2009-08-01

    The cation of the title structure [systematic name: (5alpha,6alpha)-6-hydroxy-7,8-didehydro-4,5-epoxy-3-methoxy-17-methylmorphinanium dihydrogen phosphate hemihydrate], C18H22NO3+.H2PO4-.0.5H2O, has a T-shaped conformation. The dihydrogen phosphate anions are linked by O-H...O hydrogen bonds to give an extended ribbon chain. The codeine cations are linked together by O-H...O hydrogen bonds into a zigzag chain. There are also N-H...O bonds between the two types of hydrogen-bonded units. Additionally, they are connected to one another via O...H-O-H...O bridging water molecules. The asymmetric unit contains two codeine hydrogen cations, two dihydrogen phosphate anions and one water molecule. This study shows that the water molecules are firmly bound within a complex three-dimensional hydrogen-bonded framework.

  9. Phosphate Mines, Jordan

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium).

    The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  10. Stretchable piezoelectric nanocomposite generator.

    PubMed

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-01-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  11. Stretchable piezoelectric nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  12. Aerogel nanocomposite materials

    SciTech Connect

    Hunt, A.J.; Ayers, M.; Cao, W.

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  13. Graphene/Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Macosko, Chris

    2010-03-01

    Graphite has attracted large attention as a reinforcement for polymers due to its ability to modify electrical conductivity, mechanical and gas barrier properties of host polymers and its potentially lower cost than carbon nanotubes. If graphite can be exfoliated into atomically thin graphene sheets, it is possible to achieve the highest property enhancements at the lowest loading. However, small spacing and strong van der Waals forces between graphene layers make exfoliation of graphite via conventional composite manufacturing strategies challenging. Recently, two different approaches to obtain exfoliated graphite prior to blending were reported: thermal treatment (Schniepp et al., JACS 2006) and chemical modification (Stankovich et al., J Mat Chem 2006). Both start from graphite oxide. We will describe and evaluate these exfoliation approaches and the methods used to produce graphene reinforced thermoplastics, particularly polyester, polycarbonate and polyurethane nanocomposites. Three different dispersion methods - melt blending, solution mixing and in-situ polymerization -- are compared. Characterization of dispersion quality is illustrated with TEM, rheology and in electrical conductivity, tensile modulus and gas barrier property improvement.

  14. Based Adaptive Nanocomposite Coatings

    NASA Astrophysics Data System (ADS)

    Ramazani, M.; Ashrafizadeh, F.; Mozaffarinia, R.

    2014-08-01

    A promising Ni(Al)-Cr2O3-Ag-CNT-WS2 self-lubricating wear-resistant coating was deposited via atmospheric plasma spray of Ni(Al), nano Cr2O3, nano silver and nano WS2 powders, and CNTs. Feedstock powders with various compositions prepared by spray drying were plasma sprayed onto carbon steel substrates. The tribological properties of coatings were tested by a high temperature tribometer in a dry environment from room temperature to 400 °C, and in a natural humid environment at room temperature. It was found that all nanocomposite coatings have better frictional behavior compared with pure Ni(Al) and Ni(Al)-Cr2O3 coatings; the specimen containing aproximately 7 vol.% Ag, CNT, and WS2 had the best frictional performance. The average room temperature friction coefficient of this coating was 0.36 in humid atmosphere, 0.32 in dry atmosphere, and about 0.3 at high temperature.

  15. Polariton dispersion in nanocomposite materials

    SciTech Connect

    Wilson, K. S. Joseph Revathy, V.

    2015-06-24

    The several optical properties of crystals are modified due to nonlinearity associated with high intensity of the incident radiation. In the present work, the linear and nonlinear optical characterization of the nanocomposite materials are also discussed in detail. We explore the possibilities of nonlinear effects in the optical parameters in nanocomposite materials. New modes on the polaritonic gap where the propagation of electromagnetic wave is forbidden, are obtained due to nonlinearity. The presence of gap mode shows the propagation of electromagnetic radiation which may be exploited in optical communications.

  16. Biobased and biodegradable polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  17. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release.

    PubMed

    Kim, Hae-Won; Knowles, Jonathan C; Kim, Hyoun-Ee

    2005-08-01

    Gelatin-hydroxyapatite (HA) nanocomposite porous scaffolds were fabricated biomimetically, and their feasibility as a drug-delivery carrier for tissue-regeneration and wound-healing treatments was addressed. The composite sols were prepared by the precipitation of HA up to 30 wt % within a gelatin solution with the use of calcium and phosphate precursors, and the porous scaffold was obtained by casting the sols and further freeze drying. The obtained bodies were crosslinked with carbodiimide derivatives to retain chemical and thermal integrity. The apatite precipitates were observed to be a poorly crystallized carbonate-substituted HA. The nanocomposite scaffolds had porosities of approximately 89-92% and exhibited a bimodal pore distribution, that is, the macropores (approximately 300-500 microm) of the framework structure, and micropores (approximately 0.5-1 microm) formed on the framework surface. Transmission electron microscopy (TEM) observation revealed the precipitation of highly elongated HA nanocrystals on the gelatin network. The well-developed porous structure and organized nanocomposite configurations were in marked contrast to the directly mixed gelatin-HA powder conventional composites. For drug-release tests, tetracycline, an antibiotic drug, was entrapped within the scaffold, and the drug-release profile was examined with processing parameters, such as HA amount in gelatin, crosslinking degree, and initial drug addition. The drug entrapment decreased with increasing HA amount, but increased with increasing crosslinking degree and initial drug addition. The crosslinking of the gelatin was the prerequisite to sustaining and controlling the drug releases. Compared to pure gelatin, the gelatin-HA nanocomposites had lower drug releases, because of their lower water uptake and degradation. All the nanocomposite scaffolds released drugs in proportion to the initial drug addition, suggesting their capacity to deliver drugs in a controlled manner. Based on

  18. Fundamentals of phosphate transfer.

    PubMed

    Kirby, Anthony J; Nome, Faruk

    2015-07-21

    Historically, the chemistry of phosphate transfer-a class of reactions fundamental to the chemistry of Life-has been discussed almost exclusively in terms of the nucleophile and the leaving group. Reactivity always depends significantly on both factors; but recent results for reactions of phosphate triesters have shown that it can also depend strongly on the nature of the nonleaving or "spectator" groups. The extreme stabilities of fully ionised mono- and dialkyl phosphate esters can be seen as extensions of the same effect, with one or two triester OR groups replaced by O(-). Our chosen lead reaction is hydrolysis-phosphate transfer to water: because water is the medium in which biological chemistry takes place; because the half-life of a system in water is an accepted basic index of stability; and because the typical mechanisms of hydrolysis, with solvent H2O providing specific molecules to act as nucleophiles and as general acids or bases, are models for reactions involving better nucleophiles and stronger general species catalysts. Not least those available in enzyme active sites. Alkyl monoester dianions compete with alkyl diester monoanions for the slowest estimated rates of spontaneous hydrolysis. High stability at physiological pH is a vital factor in the biological roles of organic phosphates, but a significant limitation for experimental investigations. Almost all kinetic measurements of phosphate transfer reactions involving mono- and diesters have been followed by UV-visible spectroscopy using activated systems, conveniently compounds with good leaving groups. (A "good leaving group" OR* is electron-withdrawing, and can be displaced to generate an anion R*O(-) in water near pH 7.) Reactivities at normal temperatures of P-O-alkyl derivatives-better models for typical biological substrates-have typically had to be estimated: by extended extrapolation from linear free energy relationships, or from rate measurements at high temperatures. Calculation is free

  19. Poly (γ-glutamic acid)/beta-TCP nanocomposites via in situ copolymerization: Preparation and characterization.

    PubMed

    Shu, Xiu-Lin; Shi, Qing-Shan; Feng, Jin; Yang, Yun-Hua; Zhou, Gang; Li, Wen-Ru

    2016-07-01

    A series biodegradable poly (γ-glutamic acid)/beta-tricalcium phosphate (γ-PGA/TCP) nanocomposites were prepared which were composed of poly-γ-glutamic acid polymerized in situ with β-tricalcium phosphate and physiochemically characterized as bone graft substitutes. The particle size via dynamic light scattering, the direct morphological characterization via transmission electron microscopy and field emission scanning electron microscope, which showed that γ-PGA and β-TCP were combined compactly at 80℃, and the γ-PGA/TCP nanocomposites had homogenous and nano-sized grains with narrow particle size distributions. The water uptake and retention abilities, in vitro degradation properties, cytotoxicity in the simulated medium, and protein release of these novel γ-PGA/TCP composites were investigated. Cell proliferation in composites was nearly twice than β-TCP when checked in vitro using MC3T3 cell line. We also envision the potential use of γ-PGA/TCP systems in bone growth factor or orthopedic drug delivery applications in future bone tissue engineering applications. These observations suggest that the γ-PGA/TCP are novel nanocomposites with great potential for application in the field of bone tissue engineering.

  20. Domestic phosphate deposits

    USGS Publications Warehouse

    McKelvey, V.E.; Cathcart, J.B.; Altschuler, Z.S.; Swanson, R.W.; Lutz, Katherine

    1953-01-01

    Most of the worlds phosphate deposits can be grouped into six types: 1) igneous apatite deposits; 2) marine phosphorites; 3) residual phosphorites; 4) river pebble deposits; 5) phosphatized rock; and 6) guano. The igneous apatites and marine phosphorites form deposits measurable in millions or billions of tons; the residual deposits are measurable in thousands or millions; and the other types generally only in thousands of tons. Igneous apatite deposits have been mined on a small scale in New York, New Jersey, and Virginia. Marine phosphorites have been mined in Montana, Idaho, Utah, Wyoming, Arkansas, Tennessee, North Carolina, South Carolina, Georgia, and Florida. Residual phosphorites have been mined in Tennessee, Pennsylvania, and Florida. River pebble has been produced in South Carolina and Florida; phosphatized rock in Tennessee and Florida; and guano in New Mexico and Texas. Present production is limited almost entirely to Florida, Tennessee, Montana, Idaho, and Wyoming. Incomplete but recently partly revised estimates indicate the presence of about 5 billion tons of phosphate deposits in the United States that is minable under present economic conditions. Deposits too lean in quality or thickness to compete with those in the western and southeastern fields probably contain tens of billions of tons.

  1. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    PubMed

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF).

  2. Chitosan - Locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac.

    PubMed

    Jana, Sougata; Sen, Kalyan Kumar

    2017-09-01

    In this study, aceclofenac-loaded IPN nanocomposites were developed based on natural polysaccharides namely chitosan (CS) and locust bean gum (LBG) using glutaraldehyde as cross-linker. Infrared spectroscopy analysis confirmed the formation of composite materials and ensured the chemical compatibility between drug and polymers. The effect of component polymers on the drug entrapment efficiency (DEE) and particle size of the composites was examined. Increasing LBG content actually decreased the DEE from 72% to 40% and produced larger particles of 372-485nm dimensions. However, an opposite trend was noted as the concentration of CS was increased. Out of these composites, the maximum drug entrapment efficiency of 78.92% and smallest composites of 318nm-size was obtained at LBG: CS mass ratio of 1:5. However, CS: LBG (1:5) provided the slowest drug release profiles in phosphate buffer solution (pH 6.8) up to 8h. The drug release data corroborated well with the swelling properties of the nanocomposites. The composite systems efficiently suppressed the burst release of drug in acidic medium (pH 1.2). The drug delivery from the nanocomposites occurred via anomalous transport mechanism in vitro. Overall, this novel chitosan- and LBG-based nanocomposites system could minimize the gastrointestinal side effects of the drug by providing medication in a slow sustained fashion. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. High performance thermoelectric nanocomposite device

    DOEpatents

    Yang, Jihui [Lakeshore, CA; Snyder, Dexter D [Birmingham, MI

    2011-10-25

    A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

  4. Nanocomposites for electromagnetic radiation protection

    SciTech Connect

    Petrunin, V. F.

    2016-12-15

    Specific features that characterize nanoparticles and which are due to their small size and allow one to enhance the interaction between the electromagnetic radiation and nanostructured materials and to develop the effective protection of man and equipment against harmful uncontrolled radiation are reported. Examples of the development of nanocomposite radar absorbing materials that can be used for protection of man and equipment are presented.

  5. How Nano are Nanocomposites (Preprint)

    DTIC Science & Technology

    2007-02-01

    morphology of the filler as determined by small-angle x-ray scattering, light scattering and electron imaging. We examine elastomeric ...examine elastomeric , thermoplastic and thermoset composites loaded with a variety of nanoscale reinforcing fillers such as precipitated silica, carbon...percent. Introductory paragraphs similar to the above can be found in hundreds of nanocomposite papers. With the exception of reinforced elastomers

  6. Percolation Threshold in Polycarbonate Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2014-03-01

    Nanocomposites have unique mechanical, electrical, magnetic, optical and thermal properties. Many methods could be applied to prepare polymer-inorganic nanocomposites, such as sol-gel processing, in-situ polymerization, particle in-situ formation, blending, and radiation synthesis. The analytical composite models that have been put forth include Voigt and Reuss bounds, Polymer nanocomposites offer the possibility of substantial improvements in material properties such as shear and bulk modulus, yield strength, toughness, film scratch resistance, optical properties, electrical conductivity, gas and solvent transport, with only very small amounts of nanoparticles Experimental results are compared against composite models of Hashin and Shtrikman bounds, Halpin-Tsai model, Cox model, and various Mori and Tanaka models. Examples of numerical modeling are molecular dynamics modeling and finite element modeling of reduced modulus and hardness that takes into account the modulus of the components and the effect of the interface between the hard filler and relatively soft polymer, polycarbonate. Higher nanoparticle concentration results in poor dispersion and adhesion to polymer matrix which results in lower modulus and hardness and departure from the existing composite models. As the level of silica increases beyond a threshold level, aggregates form which results in weakening of the structure. Polymer silica interface is found to be weak as silica is non-interacting promoting interfacial slip at silica-matrix junctions. Our experimental results compare favorably with those of nanocomposites of polyesters where the effect of nanoclay on composite hardness and modulus depended on dispersion of nanoclay in polyester.

  7. Microcellular nanocomposite injection molding process

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt

    2003-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...

  8. Evaluation of Manganese Phosphate Coatings.

    DTIC Science & Technology

    1984-02-01

    84003 _____________ 4 . TTLE and -bitle)5. TYPE OF REPORT & PERIOD COVERED EVALUATION OF MANGANESE PHOSPHATE COATINGS Final 6. PERFORMING ORG. REPORT...rosion resistance of the Endurion phosphate was significantly superior to the 4 . basic manganese phosphate . Endurion phosphate with a Supplementary...OF CONTENTS Page STATEMENT OF THE PROBLEM 1 BACKGROUND 1 APPROACH TO THE PROBLEM 3 RESULTS 4 CONCLUSIONS 7 TABLES I. Falex Wear Life Test Procedure 8

  9. Preferable uptake of phosphate by hydrous zirconium oxide nanoparticles embedded in quaternary-ammonium Chinese reed.

    PubMed

    Shang, Yanan; Xu, Xing; Qi, Shuto; Zhao, Yanxia; Ren, Zhongfei; Gao, Baoyu

    2017-02-12

    Phosphate capture from aqueous was conducted using hydrous zirconium oxide (HZO) embedded in quaternary-ammonium Chinese reed (CR-N(+)-HZO), and the characteristics of adsorbent was determined. HZO was dispersed as nanoparticles or nano-clusters on the external or inside the networking pores of CR-N(+)-HZO. The surface of CR-N(+)-HZO was heterogeneous with multiple adsorption sites, HZO nanocomposite and N(+)(CH2CH3)3Cl(-), which both contributed to the adsorption process. The phosphate uptake by CR-N(+)-HZO was optimal at pH 3.0 and phosphate uptake by HZO nanocomposite was greatly inhibited at alkaline pH. Kinetics studies suggested that both the intra-particle mass-transfer and external resistances were likely to be the rate controlling steps. The Qmax (maximum adsorption capacity) of phosphate uptake by CR-N(+)-HZO and CR-N(+) (30°C) calculated based on Langmuir model was about 59.2mg(P)/g(CR-N(+)-HZO) and 30.4mg(P)/g(CR-N(+)). A high usage efficiency of Zr in CR-N(+)-HZO was observed with calculated molar ratio of P/Zr to be 3.07.

  10. Synthesis and characterization of wool keratin/hydroxyapatite nanocomposite.

    PubMed

    Li, Jiashen; Liu, Xuan; Zhang, Jing; Zhang, Yu; Han, Yanxia; Hu, Junyan; Li, Yi

    2012-05-01

    Taking the inspiration from the biomineral, the wool keratin was selected to modulate the assembly of nanosized hydroxyapatite (HA) crystals via a coprecipitation method. A series of keratin/HA nanocomposite with different ratios were synthesized by adjusting the concentrations of keratin solutions and calcium phosphate and their final components were detected by thermogravimetric analysis (TGA). The transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirmed that keratin in the composite decreased the crystallinity of HA. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to examine the chemical and surface structure of the composites. In vitro biocompatibility results revealed that cells showed better viability on keratin/HA composites which have a ratio of organics and inorganics similar to that of natural bones.

  11. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    PubMed Central

    Saska, S.; Barud, H. S.; Gaspar, A. M. M.; Marchetto, R.; Ribeiro, S. J. L.; Messaddeq, Y.

    2011-01-01

    The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA), similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration. PMID:21961004

  12. Graphene oxide/MnO2 nanocomposite as destructive adsorbent of nerve-agent simulants in aqueous media

    NASA Astrophysics Data System (ADS)

    Šťastný, Martin; Tolasz, Jakub; Štengl, Václav; Henych, Jiří; Žižka, David

    2017-08-01

    Graphene oxide/MnO2 nanocomposite was prepared by thermal hydrolysis of potassium permanganate (KMnO4) and 2-chloroacetamide aqueous solutions with graphene oxide (GO) suspension. The synthesized samples were characterized by specific surface area (BET) and porosity determination (BJH), X-ray Diffraction (XRD) and high-resolution electron microscopes (HRSEM, HRTEM). These nanocomposites were used in an experimental evaluation of their adsorption activity with nerve agent simulants dimethyl methyl phosphonate (DMMP) and triethyl phosphate (TEP) in aqueous media. The nanocomposites exhibited enhanced adsorptive degradation ability compared to pure manganese oxide (MnO2) and GO. The GO amount in the nanocomposites affected their degradation activity substantially. The best adsorption efficiency was observed for samples with moderate GO amount. Three methods were used to observe the mechanism of the nerve-agent simulants deactivation: Gas chromatography with mass spectrometry (GC-MS), High-Performance Liquid Chromatography (HPLC) and in situ Infrared spectroscopy (FTIR). It was shown that the hydrolysis on the surface of prepared nanocomposites yields volatile primary alcohols (methanol and ethanol) as the main hydrolysis products.

  13. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop

    2015-04-01

    Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.

  14. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  15. Improved Chemical Protective Gloves Using Elastomeric Nanocomposites

    DTIC Science & Technology

    2002-11-14

    available with 25-30 mil thick butyl rubber gloves. Neoprene nanocomposites were developed in Phase 1 and will be combined with Neoprene substrate in...protection currently available with 25-30 mil thick butyl rubber gloves. Neoprene nanocomposites were developed in Phase 1 and will be combined with... nanocomposite coated substrates or multilayer structures can have better flame resistance than butyl rubber as measured by vertical flame testing

  16. Polymer-phyllosilicate nanocomposites and their preparation

    DOEpatents

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  17. Calcium Phosphates and Human Beings

    NASA Astrophysics Data System (ADS)

    Dorozhkin, Sergey V.

    2006-05-01

    This article describes the general importance of calcium phosphates for human beings. The basic information on the structure and chemical properties of the biologically relevant calcium phosphates is summarized. Basic facts on the natural occurrence and the industrial use of natural calcium phosphates are discussed. Fundamental details on the presence of calcium phosphates in major calcified tissues (bones and teeth) of humans and mammals, as well as on biomaterials made of calcium phosphates are discussed. The article will be of value for chemistry teachers for expansion of their general background and point the students' attention to the rapidly growing topic of bone-substituting biomaterials.

  18. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...

  19. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No. 7782-0975...

  20. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  1. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  2. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  3. Tuning properties of columnar nanocomposite oxides

    NASA Astrophysics Data System (ADS)

    Liao, Zhaoliang; Gao, Peng; Stadler, Shane; Jin, Rongying; Pan, Xiaoqing; Plummer, E. W.; Zhang, Jiandi

    2013-07-01

    One major challenge for engineering functional nanocomposites is how to tune the geometry structure and control the chemical composition. We demonstrate here that columnar nanocomposite films can be grown by using alternate deposition of La2/3Sr1/3MnO3 and V2O3 on LaAlO3 (111). A solid state reaction, rather than simple spinodal decomposition, dictates the nanocomposite structure, chemical composition, and functionality. By controlling the deposition time ratio of the two compounds, the physical properties of the composite films can be tuned, thus providing a flexible way to tailor nanocomposites for advanced functionality.

  4. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  5. Biomediated continuous release phosphate fertilizer

    SciTech Connect

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  6. Renal phosphate handling: Physiology

    PubMed Central

    Prasad, Narayan; Bhadauria, Dharmendra

    2013-01-01

    Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23) and klotho coreceptor are the key regulators of phosphorus balance in body. PMID:23961477

  7. Colloidal QDs-polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  8. [Multifunctional nanocomposite materials]. Progress report

    SciTech Connect

    Not Available

    1993-04-01

    These novel nanocomposites are microporous nanometal intercalated clays which have been prepared by a polyol process at 200C and a novel microwave-hydrothermal process using ethylene glycol. These novel nanocomposites have been found to be useful in the conversion of coal to asphaltenes. A crystalline tin (IV) arsenate hydroxide hydrate has been made and its lithium selective ion exchange properties have been measured. This exchanger has shown high lithium selectivity. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure have also been studied. Several pillared clays have also been synthesized and their Mg{sup 2+}, Li{sup +} and UO{sub 2}{sup 2+} selectivity has been measured. The pillared clays appear to show some Li selectivity.

  9. Properties of nanocomposite PP fibres

    NASA Astrophysics Data System (ADS)

    Smole, Majda S.; Stakne, Kristina; Svetec, Diana G.; Kleinschek, Karin S.; Ribitsch, Volker

    2005-06-01

    PP-based nanocomposite fibres were prepared by direct polymer melt intercalation. With the intention to determine the size and dispersion of nanoparticles in the polymer matrix, fibres were plasma etched and SEM observations were performed. The influence of nanofiller content and coupling agent on electrokinetic properties was studied. PP monofilament fibres exhibit hydrophobe character with negative zeta potential value. The zeta potential value of co-polymer PP fibre decreases with increasing PPAA content and the isoelectric point IEP of co-polymer samples shifts towards acid region. Addition of modified montmorillonite due to the particles electropositive character, affects the reduction of zeta potential value and a slight shift of IEP towards neutral region is observed. Nano-particles content influences electrokinetic fibres properties, i.e. ZP value is changed, however IE point is not significantly changed by different concentrations of nanofiller. In addition to, mechanical properties of nanocomposite fibres were determined.

  10. Multiscale modeling of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sheidaei, Azadeh

    In recent years, polymer nano-composites (PNCs) have increasingly gained more attention due to their improved mechanical, barrier, thermal, optical, electrical and biodegradable properties in comparison with the conventional micro-composites or pristine polymer. With a modest addition of nanoparticles (usually less than 5wt. %), PNCs offer a wide range of improvements in moduli, strength, heat resistance, biodegradability, as well as decrease in gas permeability and flammability. Although PNCs offer enormous opportunities to design novel material systems, development of an effective numerical modeling approach to predict their properties based on their complex multi-phase and multiscale structure is still at an early stage. Developing a computational framework to predict the mechanical properties of PNC is the focus of this dissertation. A computational framework has been developed to predict mechanical properties of polymer nano-composites. In chapter 1, a microstructure inspired material model has been developed based on statistical technique and this technique has been used to reconstruct the microstructure of Halloysite nanotube (HNT) polypropylene composite. This technique also has been used to reconstruct exfoliated Graphene nanoplatelet (xGnP) polymer composite. The model was able to successfully predict the material behavior obtained from experiment. Chapter 2 is the summary of the experimental work to support the numerical work. First, different processing techniques to make the polymer nanocomposites have been reviewed. Among them, melt extrusion followed by injection molding was used to manufacture high density polyethylene (HDPE)---xGnP nanocomposties. Scanning electron microscopy (SEM) also was performed to determine particle size and distribution and to examine fracture surfaces. Particle size was measured from these images and has been used for calculating the probability density function for GNPs in chapter 1. A series of nanoindentation tests have

  11. Enhanced Phosphate Removal by Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene Networks.

    PubMed

    Zhang, Yanyang; Pan, Bingcai; Shan, Chao; Gao, Xiang

    2016-02-02

    A new nanocomposite adsorbent La-201 of extremely high capacity and specific affinity toward phosphate was fabricated and well characterized, where hydrated La(III) oxide (HLO) nanoclusters were immobilized inside the networking pores of the polystyrene anion exchanger D-201. La-201 exhibited enhanced phosphate adsorption in the presence of competing anions (chloride, sulfate, nitrate, bicarbonate, and silicate) at greater levels (up to molar ratio of 20), with working capacity 2-4 times higher than a commercial Fe(III) oxide-based nanocomposite HFO-201 in batch runs. Column adsorption runs by using La-201 could effectively treat ∼6500 bed volumes (BV) of a synthetic feeding solution before breakthrough occurred (from 2.5 mg P/L in influent to <0.5 mg P/L in effluent), approximately 11 times higher magnitude than that of HFO-201. The exhausted La-201 could be regenerated with NaOH-NaCl binary solution at 60 °C for repeated use without any significant capacity loss. The underlying mechanism for the specific sorption of phosphate by La-201 was revealed with the aid of STEM-EDS, XPS, XRD, and SSNMR analysis, and the formation of LaPO4·xH2O is verified to be the dominant pathway for selective phosphate adsorption by the immobilized nano-HLO. The results indicated that La-201 was very promising in highly efficient removal of phosphate from contaminated waters.

  12. Apoferritin-Templated Yttrium Phosphate Nanoparticle Conjugates for Radioimmunotherapy of Cancers

    SciTech Connect

    Wu, Hong; Wang, Jun; Wang, Zheming; Fisher, Darrell R.; Lin, Yuehe

    2008-05-01

    We report a templated-synthetic approach based on apoferritin to prepare radionuclide nanoparticle (NP) conjugates. Non-radioactive yttrium (89Y) was used as model target and surrogate for radioyttrium (90Y) to prepare the nanoparticle conjugate. The center cavity and multiple channel structure of apoferritin offer a fast and facile method to precipitate yttrium phosphate by diffusing yttrium and phosphate ions into the cavity of apofrritin, resulting a core-shell nanocomposite. The yttrium phosphate/apoferritin nanoparticle was functionalized with biotin for further application. The synthesized nanoparticle was characterized by transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). We found that the resulting nanoparticles were uniform in size, with a diameter of around 8 nm. We tested the pre-targeting capability of the biotin-modified yttrium phosphate/apoferritin nanoparticle (yttrium phosphate/apoferritin nanoparticle) conjugate with streptavidin-modified magnetic beads and with aid of biotin-modified fluorecein isothiocyanate (FITC) tracer. This work shows that an yttrium phosphate NP conjugate provides a fast, simple and efficient method to prepare radioactive yttrium conjugate for applications in radioimmunotherapy of cancer.

  13. Probabilistic Simulation for Nanocomposite Characterization

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    A unique probabilistic theory is described to predict the properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths properties of a mononanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions.

  14. Silicone nanocomposite coatings for fabrics

    NASA Technical Reports Server (NTRS)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  15. Composite and Nanocomposite Metal Foams

    PubMed Central

    Duarte, Isabel; Ferreira, José M. F.

    2016-01-01

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams. PMID:28787880

  16. Composite and Nanocomposite Metal Foams.

    PubMed

    Duarte, Isabel; Ferreira, José M F

    2016-01-28

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams.

  17. Evaluation of Nanocomposites for Shielding Electromagnetic Interference

    DTIC Science & Technology

    2011-09-01

    level of defense against EMI, existing composites require a supplementary application of conductive materials during the manufacturing process...high specific strength, low weight, and high conductivity yielding near limitless applications of this technology. They possess improved mechanical...properly design and develop nanocomposite structures. One area considered for nanocomposite application is spaceborne systems. Space vehicles are

  18. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  19. Nanocrystal-polymer nanocomposite electrochromic device

    SciTech Connect

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  20. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  1. Biopolymer nanocomposite films reinforced with nanocellulose whiskers

    Treesearch

    Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...

  2. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  3. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  4. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  5. Description of Extrudate Swell for Polymer Nanocomposites

    PubMed Central

    Wang, Kejian

    2010-01-01

    Extrudate swell is often observed to be weakened in nanocomposites compared to the pure polymer matrix. A theory quantifying this would be significant either for optimum processing or for understanding their viscoelasticity. A unified extrudate swell correlation with material properties and capillary parameters was suggested for polymer melt and their nanocomposites when considering the reservoir entry effect. More importantly, it was the first to find that the composite swell ratio can be the matrix swell ratio multiplied by the concentration shift factor, which is similar to the dynamic moduli expression for composites. The factor is a function of the shear field (stress or shear rate), filler content, filler internal structure and the surface state as well as the matrix properties. Several sets of swell data for nanocomposites were chosen from publications to test the new theories. The proposed quantitative model displayed good fit for the five kinds of nanocomposites, which verified the rationality of the swell theory for nanocomposites.

  6. Advances in rubber/halloysite nanotubes nanocomposites.

    PubMed

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  7. Dynamic Strength Ceramic Nanocomposites Under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.; Skripnyak, Vladimir A.

    2015-06-01

    Multi-scale computer simulation approach has been applied to research of strength of nanocomposites under dynamic loading. The influence of mesoscopic substructures on the dynamic strength of ceramic and hybrid nanocomposites, which can be formed using additive manufacturing were numerically investigated. At weak shock wave loadings the shear strength and the spall strength of ceramic and hybrid nanocomposites depends not only phase concentration and porosity, but size parameters of skeleton substructures. The influence of skeleton parameter on the shear strength and the spall strength of ceramic nanocomposites with the same concentration of phases decreases with increasing amplitude of the shock pulse of microsecond duration above the double amplitude of the Hugoniot elastic limit of nanocomposites. This research carried out in 2014 -2015 was supported by grant from The Tomsk State University Academic D.I. Mendeleev Fund Program and also Ministry of Sciences and Education of Russian Federation (State task 2014/223, project 1943, Agreement 14.132.

  8. Tailored Nanocomposites of Polypropylene with Layered Silicates

    SciTech Connect

    Xu, L.; Nakajima, H; Manias, E; Krishnamoorti, R

    2009-01-01

    The melt rheological properties of layered silicate nanocomposites with maleic anhydride (MA) functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the MA functionalized PP based nanocomposites exhibit solid-like linear viscoelastic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized PP based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interactions in MA functionalized nanocomposites. Further, the transient shear stress of the MA functionalized nanocomposites in start-up of steady shear is a function of the shear strain alone, and the steady shear response is consistent with that of non-Brownian systems. The weak dependence of the steady first normal stress difference on the steady shear stress suggests that the polymer chain mediated silicate network contributes to such unique flow behavior.

  9. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue.

    PubMed

    Shahbazi, S; Moztarzadeh, F; Sadeghi, G Mir Mohamad; Jafari, Y

    2016-12-01

    A novel poly propylene fumarate (PPF)-based glue which is reinforced by nanobioactive glass (NBG) particles and promoted by hydroxyethyl methacrylate (HEMA) as crosslinker agent, was developed and investigated for bone-to-bone bonding applications. In-vitro bioactivity, biodegradability, biocompatibility, and bone adhesion were tested and the results have verified that it can be used as bone glue. In an in-vitro condition, the prepared nanocomposite (PPF/HEMA/NBG) showed improved adhesion to wet bone surfaces. The combined tension and shear resistance between two wet bone surfaces was measured, and its maximum value was 9±59MPa. To investigate the bioactivity and biodegradability of the nanocomposite, it has been immersed in simulated body fluid (SBF). After 14days exposure to SBF, a hydroxyapatite (HA) layer formed on the surface of the composite confirms the bioactivity of this material. In the XRD pattern of the nanocomposite surface, the HA characteristic diffraction peak at θ=26 and 31.8 were observed. Also, by monitoring the weight change after 8weeks immersion in SBF, the mass loss was about 16.46wt%. It has been confirmed that this nanocomposite is a biodegradable material. Also, bioactivity and biodegradability of nanocomposite have been proved by SEM images. It has been showed that by using NBG particles and HEMA precursor, mechanical properties increased significantly. The ultimate tensile strength (UTS) of nanocomposite which contains 20% NBG and the ratio of 70/30wt% PPF/HEMA (PHB.732) was approximately 62MPa, while the UTS in the pure PPF/HEMA was about 32MPa. High cell viability in this nanocomposite (MTT assays, 85-95%) can be attributed to the NBG nature which contains calcium phosphate and is similar to physiological environment. Furthermore, it possesses biomineralization and biodegradation which significantly affected by impregnation of hydrophilic HEMA in the PPF-based polymeric matrix. The results indicated that the new synthesized

  10. EDITORIAL: Optics of nanocomposite materials Optics of nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Malgosia; Tomita, Yasuo

    2009-02-01

    This special issue aims to consolidate and capture the breadth of current research at the forefront of photonic nanocomposite materials. The selection of articles from multi-component, hybrid polymer-liquid crystal materials to nanocrystalline materials reflects different strands of research pursued in that area. Both review and research papers, covering basic and applied research topics, are presented. Photonic nanocomposite materials are generally constructed by embedding an optically functional nanosized guest material (e.g. nanoparticles, nanocrystals and molecules) into an optically transparent host matrix such as organics (e.g. (photo)polymers, polymer blends, liquid crystals) or inorganic solids (e.g. glasses and ceramics). The addition of the guest material to the host matrix can yield significant improvement and modification in their mechanical, thermal, transport and optical properties over bulk materials. As a result, high-performance photonic functionalities, with environmentally stable optical characteristics, can be achieved. In addition, nanocomposite materials can be tailor-made via the control of their linear optical properties, such as the refractive index and absorption as well as their laser, electro-optic, and nonlinear optical properties. For example, the incorporation of liquid crystalline droplets in polymers gives electrically controllable light scattering characteristics, ideally suited for display and optical switching applications. Dispersing inorganic or organic nanoparticles in optical materials leads to a strong response to incident light. Indeed, ferroelectric nanoparticles in cholesteric liquid crystals enhance the electro-optic response of the mixture. In photopolymers, nanoparticles make the formation of a high-contrast holographic grating possible, which should prove useful for applications such as optical elements and data storage. Moreover, nanoparticles dispersed in photopolymer can be assembled by light, providing the

  11. Effect of dimethylaminohexadecyl methacrylate mass fraction on fracture toughness and antibacterial properties of CaP nanocomposite

    PubMed Central

    Wu, Junling; Zhou, Han; Weir, Michael D.; Melo, Mary Anne S.; Levine, Eric D.; Xu, Hockin H. K.

    2015-01-01

    Objectives Biofilm acids contribute to secondary caries which is a reason for restoration failure. Previous studies synthesized nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM). The objectives of this study were to develop DMAHMD-NACP nanocomposite for double benefits of antibacterial and remineralization capabilities, and investigate the DMAHMD mass fraction effects on fracture toughness and biofilm response of NACP nanocomposite for the first time. Methods DMAHDM was incorporated into NACP nanocomposite at mass fractions of 0% (control), 0.75%, 1.5%, 2.25% and 3%. A single edge V-notched beam method was used to measure fracture toughness Kic. A dental plaque microcosm biofilm model using human saliva as inoculum was used to measure the antibacterial properties of composites. Results Kic was about 1 MPa·m1/2 for all composite (mean ± sd; n = 6). Adding DMAHDM from 0% to 3% did not affect Kic (p > 0.1). Lactic acid production by biofilms on composite containing 3% DMAHDM was reduced to less than 1% of that on composite control. Metabolic activity of adherent biofilms on composite containing 3% DMAHDM was reduced to 4% of that on composite control. Biofilm colony-forming unit (CFU) counts were reduced by three orders of magnitude on NACP nanocomposite containing 3% DMAHDM. Conclusions DMAHDM-NACP nanocomposite had good fracture resistance, strong antibacterial potency, and NACP for remineralization (shown in previous studies). The DMAHDM-NACP nanocomposite may be promising for caries-inhibiting dental restorations, and the method of using double agents (DMAHDM and NACP) may have a wide applicability to other dental materials including bonding agents and cements. PMID:26404407

  12. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  13. MAGNETIC IMAGING OF NANOCOMPOSITE MAGNETS

    SciTech Connect

    VOLKOV,V.V.ZHU,Y.

    2003-08-03

    Understanding the structure and magnetic behavior is crucial for optimization of nanocomposite magnets with high magnetic energy products. Many contributing factors such as phase composition, grain size distribution and specific domain configurations reflect a fine balance of magnetic energies at nanometer scale. For instance, magnetocrystalline anisotropy of grains and their orientations, degree of exchange coupling of magnetically soft and hard phases and specific energy of domain walls in a material. Modern microscopy, including Lorentz microscopy, is powerful tool for visualization and microstructure studies of nanocomposite magnets. However, direct interpretation of magnetically sensitive Fresnel/Foucault images for nanomagnets is usually problematic, if not impossible, because of the complex image contrast due to small grain size and sophisticated domain structure. Recently we developed an imaging technique based on Lorentz phase microscopy [l-4], which allows bypassing many of these problems and get quantitative information through magnetic flux mapping at nanometer scale resolution with a magnetically calibrated TEM [5]. This is our first report on application of this technique to nanocomposite magnets. In the present study we examine a nanocomposite magnet of nominal composition Nd{sub 2}Fe{sub 14+{delta}}B{sub 1.45} (14+{delta}=23.3, i.e. ''hard'' Nd{sub 2}Fe{sub 14}B-phase and 47.8 wt% of ''soft'' {alpha}-Fe phase ({delta}=9.3)), produced by Magnequench International, Inc. Conventional TEM/HREM study (Fig. 1-2) suggests that material has a bimodal grain-size distribution with maximum at d{sub max}=25 nm for Nd{sub 2}Fe{sub 14}B phase and d{sub max} = 15 nm for {alpha}-Fe phase (Fig.1c, Fig.2) in agreement with synchrotron X-ray studies (d{sub max}=23.5 nm for Nd{sub 2}Fe{sub 14}B [6]). Lattice parameters for Nd{sub 2}Fe{sub 14}B phase are a=8.80 and c=12.2 {angstrom}, as derived from SAED ring patterns (Fig.1a), again in good agreement with X-ray data

  14. Effective Optical Properties of Plasmonic Nanocomposites

    PubMed Central

    Etrich, Christoph; Fahr, Stephan; Hedayati, Mehdi Keshavarz; Faupel, Franz; Elbahri, Mady; Rockstuhl, Carsten

    2014-01-01

    Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements. PMID:28788484

  15. Templated, layered manganese phosphate

    DOEpatents

    Thoma, Steven G.; Bonhomme, Francois R.

    2004-08-17

    A new crystalline maganese phosphate composition having an empirical formula: O). The compound was determined to crystallize in the trigonal space group P-3c1 with a=8.8706(4) .ANG., c=26.1580(2) .ANG., and V (volume)=1783 .ANG..sup.3. The structure consists of sheets of corner sharing Mn(II)O.sub.4 and PO.sub.4 tetrahedra with layers of (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N and water molecules in-between. The pronated (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N molecules provide charge balancing for the inorganic sheets. A network of hydrogen bonds between water molecules and the inorganic sheets holds the structure together.

  16. Light weight phosphate cements

    DOEpatents

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  17. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, Fe... ferric chloride or ferric citrate. (b) The ingredient meets the specifications of the Food Chemicals...

  18. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  19. Probabilistic Simulation for Nanocomposite Fracture

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A unique probabilistic theory is described to predict the uniaxial strengths and fracture properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths and fracture of a nanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions from low probability to high.

  20. Phosphate nutrition: improving low-phosphate tolerance in crops.

    PubMed

    López-Arredondo, Damar Lizbeth; Leyva-González, Marco Antonio; González-Morales, Sandra Isabel; López-Bucio, José; Herrera-Estrella, Luis

    2014-01-01

    Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.

  1. Crystallization of calcium phosphate in polyacrylamide hydrogels containing phosphate ions

    NASA Astrophysics Data System (ADS)

    Yokoi, Taishi; Kawashita, Masakazu; Kikuta, Koichi; Ohtsuki, Chikara

    2010-08-01

    Calcium phosphate crystals were formed in polyacrylamide (PAAm) hydrogels containing phosphate ions by diffusion of calcium ions from calcium nitrate (Ca(NO 3) 2) solutions covering the gels. Changes in crystalline phases and crystal morphology of calcium phosphate, and in ion concentrations of the Ca(NO 3) 2 solutions were investigated as a function of reaction time. Single or two coexisting crystalline phases of calcium phosphate, hydroxyapatite (HAp), HAp/dicalcium phosphate dihydrate (DCPD) or octacalcium phosphate (OCP)/DCPD were formed in the gels. HAp crystals are formed near the surface of the gels. The dense HAp layer and HAp/DCPD layer prevented diffusion of calcium ions from the Ca(NO 3) 2 solution, thus formation of calcium phosphate in the gel phase was inhibited. Formation of DCPD was observed to follow the formation of OCP or HAp. The size of the OCP crystals gradually increased with reaction time, while changes in size of HAp crystals were not observed. The reaction time required for DCPD formation depended on the degree of supersaturation with respect to DCPD in the systems. DCPD formed within 1 day under high supersaturation conditions, whereas it formed at 10 days in low supersaturation conditions.

  2. The Utility of Nanocomposites in Fire Retardancy

    PubMed Central

    Wang, Linjiang; He, Xuejun; Wilkie, Charles A.

    2010-01-01

    Nanocomposites have been shown to significantly reduce the peak heat release rate, as measured by cone calorimetry, for many polymers but they typically have no effect on the oxygen index or the UL-94 classification. In this review, we will cover what is known about the processes by which nanocomposite formation may bring this about. Montmorillonite will be the focus in this paper but attention will also be devoted to other materials, including carbon nanotubes and layered double hydroxides. A second section will be devoted to combinations of nanocomposite formation with conventional (and unconventional) fire retardants. The paper will conclude with a section attempting to forecast the future. PMID:28883342

  3. Cobalt - poly(amido amine) superparamagnetic nanocomposites.

    PubMed

    Atwater, James E; Akse, James R; Holtsnider, John T

    2008-06-30

    Metallic cobalt-dendrimer nanocomposites were prepared using generation 5 Poly(amido amine) dendrimers with primary amino termini. Cobalt loading of ~38 atoms per dendrimer was determined by atomic absorption spectrophotometry. Magnetic properties of the cobalt-dendrimer nanocomposites were investigated across the temperature range from 2-300 K by SQUID magnetometry. Magnetization as a function of temperature and applied field strength was studied in zero field cooled samples. Magnetization-demagnetization curves (hysteresis loops) were also acquired at temperatures between 10 - 300 K. These results clearly indicate superparamagnetism for the nanocomposites with a characteristic blocking temperature of ~50 K.

  4. Cobalt - poly(amido amine) superparamagnetic nanocomposites

    PubMed Central

    Atwater, James E.; Akse, James R.; Holtsnider, John T.

    2010-01-01

    Metallic cobalt-dendrimer nanocomposites were prepared using generation 5 Poly(amido amine) dendrimers with primary amino termini. Cobalt loading of ~38 atoms per dendrimer was determined by atomic absorption spectrophotometry. Magnetic properties of the cobalt-dendrimer nanocomposites were investigated across the temperature range from 2–300 K by SQUID magnetometry. Magnetization as a function of temperature and applied field strength was studied in zero field cooled samples. Magnetization-demagnetization curves (hysteresis loops) were also acquired at temperatures between 10 – 300 K. These results clearly indicate superparamagnetism for the nanocomposites with a characteristic blocking temperature of ~50 K. PMID:20352068

  5. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics.

    PubMed

    Saunders, Scott A

    2009-01-01

    First described in 1959 by physicist Richard P Feynman, who saw it as an unavoidable development in the progress of science, nanotechnology has been part of mainstream scientific theory with potential medical and dental applications since the early 1990s. Nanoparticles, nanospheres, nanorods, nanotubes, nanofibers, dendrimers and other nanostructures have been studied for various applications to biologic tissues and systems. While many layers of nanotechnologic capability have been envisioned for oral health in the last decade (eg, oral hygiene maintenance, local anesthesia, even whole-tooth replacement), few of these applications have been developed. Part 1 of a three-part series reviews the current clinical utility of nanotechnology's most tangible contribution to dentistry to date: the restoration of tooth structure with nanocomposites. Characterized by filler-particle sizes of ≤100 nm, these materials can offer esthetic and strength advantages over conventional microfilled and hybrid resin-based composite (RBC) systems, primarily in terms of smoothness, polishability and precision of shade characterization, plus flexural strength and microhardness similar to those of the better-performing posterior RBCs. Available comparative data for nanocomposites and organically-modified ceramic (Ormocer(®)) restoratives are also reviewed. Finally, plausible "next-phase" trends in current nanorestorative research are judiciously examined, including 1) calcium-, phosphate-, and fluoride-ion-releasing nanocomposites for anticaries applications and 2) restorative systems based on biomimetic emulation of the nanomolecular assembly processes inherent in dental enamel formation using nanorods, nanospheres, and recombinant amelogenins.

  6. Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants

    PubMed Central

    Nithya, Rajendran; Meenakshi Sundaram, Nachiappan

    2015-01-01

    Introduction In recent years there has been a steep increase in the number of orthopedic patients for many reasons. One major reason is osteomyelitis, caused by pyrogenic bacteria, with progressive infection of the bone or bone marrow and surrounding tissues. So antibiotics must be introduced during bone implantation to avoid prolonged infection. Aim The objective of the study reported here was to prepare a composite film of nanocrystalline hydroxyapatite (HAp) and polycaprolactone (PCL) polymer loaded with ciprofloxacin, a frequently used antibiotic agent for bone infections. Methods Nanocrystalline HAp was synthesized by precipitation method using the precursor obtained from eggshell. The nanocomposite film (HAp-PCL-ciprofloxacin) was prepared by solvent evaporation. Drug-release and biodegradation studies were undertaken by immersing the composite film in phosphate-buffered saline solution, while a cytotoxicity test was performed using the fibroblast cell line NIH-3T3 and osteoblast cell line MG-63. Results The pure PCL film had quite a low dissolution rate after an initial sharp weight loss, whereas the ciprofloxacin-loaded HAp-PCL nanocomposite film had a large weight loss due to its fast drug release. The composite film had higher water absorption than the pure PCL, and increasing the concentration of the HAp increased the water absorption. The in vitro cell-line study showed a good biocompatibility and bioactivity of the developed nanocomposite film. Conclusion The prepared film will act as a sustainable bone implant in addition to controlled drug delivery. PMID:26491313

  7. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics

    PubMed Central

    Saunders, Scott A

    2009-01-01

    First described in 1959 by physicist Richard P Feynman, who saw it as an unavoidable development in the progress of science, nanotechnology has been part of mainstream scientific theory with potential medical and dental applications since the early 1990s. Nanoparticles, nanospheres, nanorods, nanotubes, nanofibers, dendrimers and other nanostructures have been studied for various applications to biologic tissues and systems. While many layers of nanotechnologic capability have been envisioned for oral health in the last decade (eg, oral hygiene maintenance, local anesthesia, even whole-tooth replacement), few of these applications have been developed. Part 1 of a three-part series reviews the current clinical utility of nanotechnology’s most tangible contribution to dentistry to date: the restoration of tooth structure with nanocomposites. Characterized by filler-particle sizes of ≤100 nm, these materials can offer esthetic and strength advantages over conventional microfilled and hybrid resin-based composite (RBC) systems, primarily in terms of smoothness, polishability and precision of shade characterization, plus flexural strength and microhardness similar to those of the better-performing posterior RBCs. Available comparative data for nanocomposites and organically-modified ceramic (Ormocer®) restoratives are also reviewed. Finally, plausible “next-phase” trends in current nanorestorative research are judiciously examined, including 1) calcium-, phosphate-, and fluoride-ion-releasing nanocomposites for anticaries applications and 2) restorative systems based on biomimetic emulation of the nanomolecular assembly processes inherent in dental enamel formation using nanorods, nanospheres, and recombinant amelogenins. PMID:23674905

  8. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates.

    PubMed

    Kerativitayanan, Punyavee; Gaharwar, Akhilesh K

    2015-10-01

    Poly(glycerol sebacate) (PGS) has been proposed for tissue engineering applications owing to its tough elastomeric mechanical properties, biocompatibility and controllable degradation. However, PGS shows limited bioactivity and thus constraining its utilization for musculoskeletal tissue engineering. To address this issue, we developed bioactive, highly elastomeric, and mechanically stiff nanocomposites by covalently reinforcing PGS network with two-dimensional (2D) nanosilicates. Nanosilicates are ultrathin nanomaterials and can induce osteogenic differentiation of human stem cells in the absence of any osteogenic factors such as dexamethasone or bone morphogenetic proteins-2 (BMP2). The addition of nanosilicate to PGS matrix significantly enhances the mechanical stiffness without affecting the elastomeric properties. Moreover, nanocomposites with higher amount of nanosilicates have higher in vitro stability as determined by degradation kinetics. The increase in mechanical stiffness and in vitro stability is mainly attributed to enhanced interactions between nanosilicates and PGS. We evaluated the in vitro bioactivity of nanocomposite using preosteoblast cells. The addition of nanosilicates significantly enhances the cell adhesion, support cell proliferation, upregulate alkaline phosphates and mineralized matrix production. Overall, the combination of high mechanically stiffness and elastomericity, tailorable degradation profile, and the ability to promote osteogenic differentiation of PGS-nanosilicate can be used for regeneration of bone.

  9. Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle

    NASA Astrophysics Data System (ADS)

    Aliofkhazraei, M.; Rouhaghdam, A. Sabour

    2012-01-01

    Plasma electrolytic oxidation (PEO) was applied on the surface of commercially pure titanium substrates in a mixed aluminate-phosphate electrolyte in the presence of silicon nitride nanoparticles as suspension in the electrolyte in order to fabricate nanocomposite coatings. Pulsed current was applied based on variable duty cycle in order to synthesize functionally gradient coatings (FGC). Different rates of variable duty cycle (3, 1.5 and 1%/min), applied current densities (0.06-0.14 A/cm2) and concentrations of nanoparticles in the electrolyte (2, 4, 6, 8 and 10 g l-1) were investigated. The nanopowder and coated samples were analyzed by atomic force microscope, scanning electron microscope and transmission electron microscope. The influence of different rates of variable duty cycle (or treatment times) on the growth rate of nanocomposite coatings and their microhardness values was investigated. The experimental results revealed that the content of Si3N4 nanoparticulates in the layer increases with the increase of its concentration in the plasma electrolysis bath. Nanocomposite coatings fabricated with lower rate of variable duty cycle have higher microhardness with smoother microhardness profile.

  10. Synthesis and characterization of Mn2+ doped CdOZn3(PO4)2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Naga Bhaskararao, Y.; Satyavathi, K.; Subba Rao, M.; Cole, Sandhya

    2017-02-01

    Undoped and Mn2+ doped CdOZn3(PO4)2 nanocomposites are fruitfully synthesized by chemical precipitation process at room temperature. The morphology, structure and spectroscopic properties of the prepared samples are characterized by X-ray diffraction (XRD), optical absorption, Scanning electron microscope (SEM) with EDS, Fourier transform infrared (FT-IR) spectroscopy, Photolumiscence (PL) and Electron Paramagnetic Resonance (EPR). XRD data confirms the cubic phase of CdO and monoclinic phase of Zn3(PO4)2. Strain and dislocation density are also calculated from XRD studies. Optical absorption spectrum of Mn2+ doped CdOZn3(PO4)2 nanocomposite shows different spin-forbidden DMSO-d6 bands which are the characteristics of octahedral site symmetry related to Mn2+. The crystal field parameter Dq and inter electronic repulsion parameters (B and C) are deliberate using optical absorption data. Surface morphology of sample is firm by Using Scanning electron microscopy (SEM) and the distribution of Zn, Cd, phosphate and oxygen species in the prepared sample is identified by EDS. PL studies recognize the white light emission. The 'g' value of the nanocomposite material synthesized is lesser than (negative shift) the free electron value (2.0023), which gives ionic nature to the bonding and confirms the presence of Mn2+ in distorted octahedral site symmetry.

  11. Synthesis of nanocomposite 2-methyl-4-chlorophenoxyacetic acid with layered double hydroxide: physicochemical characterization and controlled release properties

    NASA Astrophysics Data System (ADS)

    Sarijo, Siti Halimah; Ghazali, Sheikh Ahmad Izaddin Sheikh Mohd; Hussein, Mohd Zobir; Sidek, Norizzah Jaafar

    2013-01-01

    A new organic-inorganic hybrid nanocomposite Zn-Al-MCPA-layered double hydroxide (ZAM) was prepared by intercalation of 2-methyl-4-chlorophenoxyacetic acid (MCPA) into Zn-Al-layered double hydroxide (ZAL) at various concentration of MCPA ranging from 0.1 to 0.7 M. The pH of the synthesis was kept constant at 7.5. Well-ordered hybrid nanocomposite was obtained with 0.4 M MCPA with an expansion of basal spacing from 8.9 Å in the ZAL to 19.7 Å in the resulting nanocomposite. The FTIR spectra of the nanocomposite show resemblance peaks of the MCPA and Zn-Al-layered double hydroxide indicating the inclusion of MCPA into the layered double hydroxide. The average particle size of ZAL and ZAM in this study was 115 and 128 nm, respectively. Percentage loading of MCPA was found to be 45.0 % (w/w), calculated based on the percentage of carbon in the sample. The release of MCPA into various aqueous solution was found to be dependent to the anion in the aqueous solution in the order of phosphate > sulfate > chloride with the percentage release of 80, 44, and 8 %, respectively. This study shows that Zn-Al-layered double hydroxide can be used as a host carrier for herbicide, MCPA, with controlled release capability.

  12. Nanocomposites with embedded structures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zichao

    Lithium-ion batteries (LIBs) have been widely employed in portable electronics and are rapidly expanding into emerging markets such as hybrid and electric vehicles and potentially electric grid storage. These new opportunities create new challenges for LIBs and further improvement of specific energy, cycling performance and rate capability are required. A major strategy in performance enhancement for the electrode materials involves the creation of carbon composites to provide mechanical buffering of active material and to improve electrical conductivity. In the current work, a platform is developed for creating functional hybrid materials by copolymerization of organic molecules and inorganic compounds followed by thermal pyrolysis, and the approach yields nanostructured composites in which nanoparticles are uniformly embedded in a porous, partially graphitic carbon matrix. Depending upon the chemistry of the starting materials, nanocomposites with embedded structures created using the approach are attractive as anode or cathode materials for next-generation rechargeable lithium battery systems. The platform is very versatile and through ex situ conversion or utilization of multiple precursors, can be applied to various classes of materials including metal oxides (single or mixed), metals, metal sulfides, alloys, metalloids, phosphates, etc. The approach also lends itself to the development of scalable processes for production of nanostructured battery materials. Mechanistic analysis was performed and reveals that the performance enhancement of the embedded nanocomposite configuration is mainly brought about by the mechanical buffering effect offered by the carbon matrix. The active material loading was shown to be an important factor in the design of the composites as electrode materials. In addition to the polymerization-based approach, other in situ methods such as one based on spray pyrolysis are also explored and demonstrate the versatility of the in situ

  13. Electroactive functional hybrid layered nanocomposites

    SciTech Connect

    Destri, Giovanni Li; Torrisi, Vanna; Marletta, Giovanni

    2012-07-11

    Two methodologies to build new nanostructured hybrid layered nanocomposites are presented. The first one involves the preparation of hybrid metal/polymer nanolayers (NLs) by combining two monolayer preparation techniques: Horizontal Precipitation Langmuir Blodgett method (HP-ML), for copolymer monolayers and sputter deposition technique, for Au NLs deposition. The second methodology is aimed to prepare regular arrays of nanopores, with diameter ranging between 40-100 nm, in ultra-thin films of electroactive polymers, to obtain embedded regular arrays of nanopores filled by a further electroactive organic component. The produced hybrid MLs have been characterized by means of X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Grazing Incidence X-ray Diffraction (GI-XRD). In the first case, current-voltage (I-V) measurements demonstrate that the multilayers exhibit a bipolar conduction behaviour (electrons and holes carriers), with a peculiar transition in the nature of the majority carriers (from holes to electrons) above a threshold number of bilayers. In the second case, it is found that the degree of pore filling, as well as the polymer crystallinity can be easily modulated, prompting the tuning of the photoresponse of the nanocomposites.

  14. Optimization and characterization of bioactive glass nanofibers and nanocomposites

    NASA Astrophysics Data System (ADS)

    Scarber, Reginna E.

    of the composite foams was observed and calcium phosphate presence was quantified. The incorporation of bioglass into the polymer matrix improved the strength (modulus - 21.47 MPa) and biocompatibility of the polyglyconate foam. Keywords: Bioactive glass, Electrospinning, Solvent Casting/Particulate Leaching Method, Nanocomposites

  15. A Multimodal Nanocomposite for Biomedical Imaging

    PubMed Central

    Wu, Aiguo; Paunesku, Tatjana; Zhang, Zhuoli; Vogt, Stefan; Lai, Barry; Maser, Jörg; Yaghmai, Vahid; Li, Debiao; Omary, Reed A.; Woloschak, Gayle E.

    2013-01-01

    A multimodal nanocomposite was designed, synthesized with super-paramagnetic core (CoFe2O4), noble metal corona (Au), and semiconductor shell (TiO2). The sizes of core, core-corona, and core-corona-shell particles were determined by TEM. This multimodal nanocrystal showed promise as a contrast agent for two of the most widely used biomedical imaging techniques: magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Finally, these nanocomposites were coated with a peptide SN-50. This led to their ready uptake by the cultured cells and targeted the nanocomposites to the pores of nuclear membrane. Inside cells, this nanocomposite retained its integrity as shown by X-ray fluorescence microscopy (XFM). Inside cells imaged by XFM we found the complex elemental signature of nanoconjugates (Ti-Co-Fe-Au) always co-registered in the 2D elemental map of the cell. PMID:24817775

  16. Polymer matrix nanocomposites for automotive structural components

    DOE PAGES

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this paper, we critically evaluate the state of the art in the field andmore » propose a possible path that may help to overcome these barriers. Finally, only once we achieve a deeper understanding of the structure–properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.« less

  17. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  18. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  19. Polymer matrix nanocomposites for automotive structural components.

    PubMed

    Naskar, Amit K; Keum, Jong K; Boeman, Raymond G

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  20. Polymer matrix nanocomposites for automotive structural components

    SciTech Connect

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this paper, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Finally, only once we achieve a deeper understanding of the structure–properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  1. Graphene oxide nanocomposites and their electrorheology

    SciTech Connect

    Zhang, Wen Ling; Liu, Ying Dan; Choi, Hyoung Jin

    2013-12-15

    Graphical abstract: - Highlights: • GO-based PANI, NCOPA and PS nanocomposites are prepared. • The nanocomposites are adopted as novel electrorheological (ER) candidates. • Their critical ER characteristics and dielectric performance are analyzed. • Typical ER behavior widens applications of GO-based nanocomposites. - Abstract: Graphene oxide (GO), a novel one-atom carbon system, has become one of the most interesting materials recently due to its unique physical and chemical properties in addition to graphene. This article briefly reviews a recent progress of the fabrication of GO-based polyaniline, ionic N-substituted copolyaniline and polystyrene nanocomposites. The critical electrorheological characteristics such as flow response and yield stress from rheological measurement, relaxation time and achievable polarizability from dielectric analysis are also analyzed.

  2. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    PubMed

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption.

  3. Polymer matrix nanocomposites for automotive structural components

    NASA Astrophysics Data System (ADS)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  4. A Multimodal Nanocomposite for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Wu, A.; Paunesku, T.; Zhang, Z.; Vogt, S.; Lai, B.; Maser, J.; Yaghmai, V.; Li, D.; Omary, R. A.; Woloschak, G. E.

    2011-09-01

    A multimodal nanocomposite was designed, synthesized with super-paramagnetic core (CoFe2O4), noble metal corona (Au), and semiconductor shell (TiO2). The sizes of core, core-corona, and core-corona-shell particles were determined by TEM. This multimodal nanocrystal showed promise as a contrast agent for two of the most widely used biomedical imaging techniques: magnetic resonance imaging (MRI) and x-ray computed tomography (CT). Finally, these nanocomposites were coated with a peptide SN-50. This led to their ready uptake by the cultured cells and targeted the nanocomposites to the pores of nuclear membrane. Inside cells, this nanocomposite retained its integrity as shown by x-ray fluorescence microscopy (XFM). Inside cells imaged by XFM we found the complex elemental signature of nanoconjugates (Ti-Co-Fe-Au) always co-registered in the 2D elemental map of the cell.

  5. Polymer and ceramic nanocomposites for aerospace applications

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-09-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  6. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  7. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida

    2013-01-01

    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours. PMID:24255593

  8. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate-zinc aluminum-layered double-hydroxide nanocomposites.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida

    2013-01-01

    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.

  9. A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement.

    PubMed

    Burguera, E F; Guitián, F; Chow, L C

    2004-11-01

    The development of a calcium phosphate cement, comprising tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD), that hardens in 14 min with water as the liquid or 6 min with a 0.25 mol/L sodium phosphate solution as the liquid, without using hydroxyapatite (HA) seeds as setting accelerator, is reported. It was postulated that reduction in porosity would increase cement strength. Thus, the effects of applied pressure during the initial stages of the cement setting reaction on cement strength and porosity were studied. The cement powder comprised an equimolar mixture of TTCP and DCPD (median particle sizes 17 and 1.7 microm, respectively). Compressive strengths (CS) of samples prepared with distilled water were 47.6 +/- 2.4 MPa, 50.7 +/- 4.2 MPa, and 52.9 +/- 4.7 MPa at applied pressures of 5 MPa, 15 MPa, and 25 MPa, respectively. When phosphate solution was used, the CS values obtained were 41.5 +/- 2.3 MPa, 37.9 +/- 1.7 MPa, and 38.1 +/- 2.3 MPa at the same pressure levels. Statistical analysis of the results showed that pressure produced an improvement in CS when water was used as liquid but not when the phosphate solution was used. Compared to previously reported TTCP-DCPD cements, the greater CS values and shorter setting times together with a simplified formulation should make the present TTCP-DCPD cement a useful material as a bone substitute for clinical applications.

  10. Biodegradable Polyester/Layered Silicate Nanocomposites

    DTIC Science & Technology

    2003-01-01

    compatible with the polymer [5-9]. In this paper we report the synthesis and properties of both PLA and PHB nanocomposites with different nanoclays...hydroxy polyester, polylactide (PLA) and fl-hydroxy polyester, polyhydroxybutyrate ( PHB ) with layered silicates have been successfully prepared by melt...extrusion of PLA and PHB with organically modified montmorillonite (MMT) and fluoromica. The mechanical properties of the nanocomposites are improved

  11. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  12. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics

    DTIC Science & Technology

    2012-06-01

    CdTe and ZnO single-phase thin films , nanocomposite films ...for the CdTe -ZnO thin film system under these conditions. c. Optical Absorption The films produced in the present study consistently exhibited...optical absorbance spectra collected from CdTe -ZnO multilayer nanocomposite thin films . The effect of CdTe layer thickness used per deposition cycle

  13. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  14. Calcium Phosphate Nanoparticle Adjuvant

    PubMed Central

    He, Qing; Mitchell, Alaina R.; Johnson, Stacy L.; Wagner-Bartak, Claus; Morcol, Tulin; Bell, Steve J. D.

    2000-01-01

    Vaccination to protect against human infectious diseases may be enhanced by using adjuvants that can selectively stimulate immunoregulatory responses. In a murine model, a novel nanoparticulate adjuvant composed of calcium phosphate (CAP) was compared with the commonly used aluminum (alum) adjuvants for its ability to induce immunity to herpes simplex virus type 2 (HSV-2) and Epstein-Barr virus (EBV) infections. Results indicated that CAP was more potent as an adjuvant than alum, elicited little or no inflammation at the site of administration, induced high titers of immunoglobulin G2a (IgG2a) antibody and neutralizing antibody, and facilitated a high percentage of protection against HSV-2 infection. Additional benefits of CAP include (i) an insignificant IgE response, which is an important advantage over injection of alum compounds, and (ii) the fact that CAP is a natural constituent of the human body. Thus, CAP is very well tolerated and absorbed. These studies were performed with animal models. By virtue of the potency of this CAP adjuvant and the relative absence of side effects, we believe that this new CAP formulation has great potential for use as an adjuvant in humans. PMID:11063495

  15. Piperaquine phosphate: reproduction studies.

    PubMed

    Longo, Monica; Pace, Silvia; Messina, Monica; Ferraris, Laura; Brughera, Marco; Ubben, David; Mazuè, Guy

    2012-12-01

    In embryofetal studies in rat and rabbit Piperaquine phosphate (PQP) was not teratogenic at the maximal tolerated dose, even in presence of fetal exposure. In peri- post-natal study in rat, PQP did not interfere with the course of delivery at the dose of 5 mg/kg/day (treatment Gestation Day(GD)6-Lactation Day(LD)21) as well as up to the dose of 20 mg/kg/day (treatment GD6-17 and LD1-21). PQP at the dose of 80 mg/kg, induced prolonged gestation, dystocic delivery and increase perinatal mortality both with interruption of treatment (GD6 to GD17 and LD1-21) and with continuous dosing (GD19-LD21). PQP did not interfere with lactation and pup growth and development, in presence of clear exposure during suckling period, irrespective of the dose and treatment schedules. It was not possible to identify the mechanism leading to the delivery delay. In a comparative study using other antimalarials, only Mefloquine gave similar findings to PQP. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Synthesis of new antibacterial quaternary ammonium monomer for incorporation into CaP nanocomposite

    PubMed Central

    Zhou, Chenchen; Weir, Michael D.; Zhang, Ke; Deng, Dongmei; Cheng, Lei; Xu, Hockin H. K.

    2013-01-01

    Objectives Composites are the principal material for tooth cavity restorations due to their esthetics and direct-filling capabilities. However, composites accumulate biofilms in vivo, and secondary caries due to biofilm acids is the main cause of restoration failure. The objectives of this study were to: (1) synthesize new antibacterial monomers; and (2) develop nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and antibacterial monomer. Methods Two new antibacterial monomers were synthesized: dimethylaminohexane methacrylate (DMAHM) with a carbon chain length of 6, and dimethylaminododecyl methacrylate (DMADDM) with a chain length of 12. A spray-drying technique was used to make NACP. DMADDM was incorporated into NACP nanocomposite at mass fractions of 0%, 0.75%, 1.5%, 2.25% and 3%. A flexural test was used to measure composite strength and elastic modulus. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure viability, metabolic activity, and lactic acid production of biofilms on composites. Results The new DMAHM was more potent than a previous quaternary ammonium dimethacrylate (QADM). DMADDM was much more strongly antibacterial than DMAHM. The new DMADDM-NACP nanocomposite had strength similar to that of composite control (p > 0.1). At 3% DMADDM in the composite, the metabolic activity of adherent biofilms was reduced to 5% of that on composite control. Lactic acid production by biofilms on composite containing 3% DMADDM was reduced to only 1% of that on composite control. Biofilm colony-forming unit (CFU) counts on composite with 3% DMADDM were reduced by 2-3 orders of magnitude. Significance New antibacterial monomers were synthesized, and the carbon chain length had a strong effect on antibacterial efficacy. The new DMADDM-NACP nanocomposite possessed potent anti-biofilm activity without compromising load-bearing properties, and is promising for antibacterial and remineralizing dental

  17. Random lasing in a nanocomposite medium

    SciTech Connect

    Smetanin, Sergei N; Basiev, Tasoltan T

    2013-01-31

    The characteristics of a random laser based on a nanocomposite medium consisting of a transparent dielectric and scattering doped nanocrystals are calculated. It is proposed to use ytterbium laser media with a high concentration of active ions as nanocrystals and to use gases, liquids, or solid dielectrics with a refractive index lower than that of nanocrystals as dielectric matrices for nanocrystals. Based on the concept of nonresonant distributed feedback due to the Rayleigh scattering, an expression is obtained for the minimum length of a nanocomposite laser medium at which the random lasing threshold is overcome. Expressions are found for the critical (maximum) and the optimal size of nanocrystals, as well as for the optimal relative refractive index of nanocomposites that corresponds not only to the maximum gain but also to the minimum of the medium threshold length at the optimal size of nanocrystals. It is shown that the optimal relative refractive index of a nanocomposite increases with increasing pump level, but is independent of the other nanocomposite parameters. (nanocomposites)

  18. Recent advances in phosphate biosensors.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-07-01

    A number of biosensors have been developed for phosphate analysis particularly, concerning its negative impact within the environmental and biological systems. Enzymatic biosensors comprising either a single or multiple enzymatic system have been extensively used for the direct and indirect analysis of phosphate ions. Furthermore, some non-enzymatic biosensors, such as affinity-based biosensors, provide an alternative analytical approach with a higher selectivity. This article reviews the recent advances in the field of biosensor developed for phosphate estimation in clinical and environmental samples, concerning the techniques involved, and the sensitivity toward phosphate ions. The biosensors have been classified and discussed on the basis of the number of enzymes used to develop the analytical system, and a comparative analysis has been performed.

  19. Toxicological review of inorganic phosphates.

    PubMed

    Weiner, M L; Salminen, W F; Larson, P R; Barter, R A; Kranetz, J L; Simon, G S

    2001-08-01

    Inorganic phosphate salts are widely used as food ingredients and in a variety of commercial applications. The United States Food and Drug Administration (FDA) considers inorganic phosphates "Generally Recognized As Safe" (GRAS) (FDA, 1973a, 1979) [FDA: Food and Drug Administration 1973a. GRAS (Generally Recognized as Safe) food ingredients-phosphates. NTIS PB-221-224, FDA, Food and Drug Administration, 1979. Phosphates; Proposed Affirmation of and Deletion From GRAS Status as Direct and Human Food Ingredients. Federal Register 44 (244). 74845-74857, 18 December (1979)] and the European Union (EU) allows inorganic phosphates to be added directly to food (EU Directive 95/2/EC as amended by 98/72/EC). In this review, data on the acute, subchronic and chronic toxicity, genotoxicity, teratogenicity and reproductive toxicity from the published literature and from unpublished studies by the manufacturers are reviewed. Based on the toxicity data and similar chemistry, the inorganic phosphates can be separated into four major classes, consisting of monovalent salts, divalent salts, ammonium salts and aluminum salts. The proposed classification scheme supports the use of toxicity data from one compound to assess the toxicity of another compound in the same class. However, in the case of eye and skin irritation, the proposed classification scheme cannot be used because a wide range of responses exists within each class. Therefore, the eye and skin hazards associated with an individual inorganic phosphate should be assessed on a chemical-by-chemical basis. A large amount of toxicity data exists for all four classes of inorganic phosphates. The large and comprehensive database allows an accurate assessment of the toxicity of each class of inorganic phosphate. Overall, all four classes of inorganic phosphates exhibit low oral, inhalation and dermal toxicities. Based on these data, humans are unlikely to experience adverse effects when the daily phosphorus consumption remains

  20. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Phosphated flour. 137.175 Section 137.175 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and...

  1. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Phosphated flour. 137.175 Section 137.175 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and...

  2. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Phosphated flour. 137.175 Section 137.175 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and...

  3. Nanocomposites: The End of Compromise

    NASA Astrophysics Data System (ADS)

    van Damme, H.

    Increase the Young's modulus of a glassy resin by a factor of ten without making it heavier, for a new ski design, for example? Triple the rupture strength of an elastomer? Improve the thermal behaviour of an object made from a thermoplastic polymer by 100 degrees, to make a car dashboard, for example, or a part for the engine? Double the fire resistance time for the sheath around an electricity cable? Reduce the oxygen permeability of a film by a factor of ten, to make long conservation food packaging? All these things have been made possible by incorporating a few percent of inorganic nanoparticles in a polymer matrix. Figures 14.1 and 14.2 illustrate two such nanocomposites: the first was obtained by incorporating lamellar clay particles, and the second by incorporating fibrous nanoparticles, in fact, carbon nanotubes.

  4. MULTISCALE MODELING OF POLYMER NANOCOMPOSITES

    SciTech Connect

    Maiti, A

    2007-07-16

    Polymer Nanocomposites are an important class of nanomaterials with potential applications including but not limited to structural and cushion materials, electromagnetic and heat shields, conducting plastics, sensors, and catalysts for various chemical and bio processes. Success in most such applications hinges on molecular-level control of structure and assembly, and a deep understanding of how the overall morphology of various components and the interfaces between them affect the composite properties at the macroscale. The length and time-scales associated with such assemblies are prohibitively large for a full atomistic modeling. Instead we adopt a multiscale methodology in which atomic-level interactions between different components of a composite are incorporated into a coarse-grained simulation of the mesoscale morphology, which is then represented on a numerical grid and the macroscopic properties computed using a finite-elements method.

  5. Shape-Morphing Nanocomposite Origami

    PubMed Central

    2015-01-01

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications. PMID:24689908

  6. Characterization of Hybrid Epoxy Nanocomposites

    PubMed Central

    Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna

    2012-01-01

    This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained.

  7. Nanocomposite multilayer optically variable coatings

    NASA Astrophysics Data System (ADS)

    Lu, Junxia; Lai, Zhenquan; Wei, Jiandong; Zhang, Huilin; Deng, Zhongsheng; Zhang, Qinyuan; Wang, Jue

    2000-11-01

    The optically variable coatings can prevent counterfeiting of value documents. The cost of these coatings deposited by physical technology is very high. The sol-gel technology has the feature of a relatively lower cost and can be used to produce thin films with low refractive. We studied the optically variable coatings by the nano-composite technology (i.e., compound method of sol-gel technology and physical technology). The degree of color shift of some film structures with the viewing angle, including PET (substrate)/Cr/SiO2/Al and PET(sub.)/Cr/resin/Al etc., was calculated according to the color perception of human eyes. And the coatings produced were measured with the spectrometer.

  8. Graphite nanoreinforcements in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  9. Synthesis, structure and properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zeng, Changchun

    Over the last decade, the concept of utilizing nanoparticles to enhance polymer performance has drawn a great deal of research interest. Significant property enhancement can be achieved with a small amount of addition of nanoparticles. Spherical, platelet or tube/fiber like particles have all been used in the fabrication of nanocomposites. In this study, we chose platelet like clay particles to study the particle dispersion and properties of polymer nanocomposites and polymer nanocomposite foams. Free radical polymerization of methylmethacrylate (MMA) and styrene (St) in the presence of clay nanoparticles were studied in detail. The effect of interactions between the monomer, the initiator and clay surface modification was studied. By careful surface modification of clay surface and choice of initiator, clay particles can be dispersed uniformly at the nanometer scale (exfoliation). Exfoliation was achieved for PS nanocomposites with a clay concentration as high as 20 wt%. For PMMA, although fully exfoliated nanocomposite was only observed for clay concentration of 5 wt%, substantial exfoliation was observed in the 20 wt% nanocomposite. Nanocomposites were also prepared by extrusion compounding, with or without the aid of CO2. The effect of processing conditions on the degree of clay dispersion was studied. The relationships between clay dispersion, surfactant thermal stability and the resulting thermal properties, e.g., thermal stability, dimension stability, fire resistance were investigated. Novel polymer clay nanocomposite foams were prepared using carbon dioxide as the foaming agent. The role of clay on the foaming process was thoroughly investigated. It was found that clay serves as an efficient nucleation agent. Nucleation efficiency increases as the degree of clay dispersion improves. The exfoliated clay provides the highest nucleation efficiency. Nucleation efficiency can be further improved by tuning the interaction between polymer, CO2 and the surface

  10. Thermoset polymer-layered silicic acid nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions

  11. Synthesis of cryptocrystalline magnesite/bentonite clay composite and its application for removal of phosphate from municipal wastewaters.

    PubMed

    Masindi, V; Gitari, W M; Pindihama, K G

    2016-01-01

    In the present study, nanocomposite of cryptocrystalline magnesite-bentonite clay was used as a novel technology for removal of phosphates from municipal effluents. Vibratory ball miller was used for fabrication of the composite. Removal of phosphate from an aqueous solution was achieved using batch experimental procedures. The parameters optimized include time, dosage, concentration and pH. An optimization experiment revealed that 30 mins of shaking time, 1 g of composite, 100 mg L(-1) of phosphate, 1: 100 S/L ratios, 250 rpm, pH 10 and room temperature are the optimum conditions for removal of phosphate. Adsorption data fitted well to the Langmuir adsorption isotherm than Freundlich adsorption isotherms, thus confirming monolayer adsorption. Adsorption kinetics data fitted well to pseudo second-order kinetics than first-order kinetics, thus suggesting chemisorption. This comparative study showed better adsorption of the composite as compared to conventional methods of phosphate removal. The results suggest that the fabricated composite has the potential for remediation of phosphate-contaminated waters.

  12. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Treesearch

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  13. Viscoelasticity of Epoxy nano-composites

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2013-03-01

    Nanocomposites have been modeled in a multiscale covering from molecular scale (e.g., molecular dynamics, Monte Carlo), microscale (e.g., Brownian dynamics, dissipative particle dynamics, lattice Boltzmann, time-dependent Ginzburg-Landau method, dynamic density functional theory method) to mesoscale and macroscale (e.g., micromechanics, equivalent-continuum and self-similar approaches, finite element method) The presence of layered silicates in nonaqueous polymers changes the viscoelastic behavior of the unfilled matrix from liquid-like to solid-like because of the formation of a three-dimensional percolating network of exfoliated or intercalated stacks. This gel-like behavior is a direct consequence of the highly anisotropic nature of the nanoclays which prevents their free rotation and the dissipation of stress. Particle to particle interactions is the dominant mechanism in fumed silica nanocomposites whereas particle to polymer interaction is the dominant one in colloidal silica nanocomposites at identical filler concentrations. These interactions are balanced in each nanocomposite systems by the silica surface treatments (chain grafting, silane modification) and the molecular weight of the matrix. Two different types of nanocomposite structures exist namely, intercalated nanocomposites where the polymer chains are sandwiched between silicate layers and exfoliated nanocomposites where the layers can be considered individually but remain more or less dispersed in the polymer matrix. Yield stress from Carreau-Yasuda model has been correlated to exfoliation. Also, equilibrium modulus and zero shear rate viscosity has been used to analyze percolation threshold and sol-gel transition. Nano clays organically functionalized were mixed with Epoxy in a high shear mixer.

  14. Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility.

    PubMed

    Swain, S K; Gotman, I; Unger, R; Gutmanas, E Y

    2017-09-01

    In this paper, the processing and properties of iron-toughened bioresorbable β-tricalcium phosphate (β-TCP) nanocomposites are reported. β-TCP is chemically similar to bone mineral and thus a good candidate material for bioresorbable bone healing devices; however intrinsic brittleness and low bending strength make it unsuitable for use in load-bearing sites. Near fully dense β-TCP-matrix nanocomposites containing 30vol% Fe, with and without addition of silver, were produced employing high energy attrition milling of powders followed by high pressure consolidation/cold sintering at 2.5GPa. In order to increase pure iron's corrosion rate, 10 to 30vol% silver were added to the metal phase. The degradation behavior of the developed composite materials was studied by immersion in Ringer's and saline solutions for up to 1month. The mechanical properties, before and after immersion, were tested in compression and bending. All the compositions exhibited high mechanical strength, the strength in bending being several fold higher than that of polymer toughened β-TCP-30PLA nanocomposites prepared by the similar procedure of attrition milling and cold sintering, and of pure high-temperature sintered β-TCP. Partial substitution of iron with silver led to an increase in both strength and ductility. Furthermore, the galvanic action of silver particles dispersed in the iron phase significantly accelerated in vitro degradation of β-TCP-30(Fe-Ag) nanocomposites. After 1month immersion, the composites retained about 50% of their initial bending strength. In cell culture experiments, β-TCP-27Fe3Ag nanocomposites exhibited no signs of cytotoxicity towards human osteoblasts suggesting that they can be used as an implant material. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Thiosulfate Reduces Calcium Phosphate Nephrolithiasis

    PubMed Central

    Asplin, John R.; Donahue, Susan E.; Lindeman, Christina; Michalenka, Anne; Strutz, Kelly Laplante; Bushinsky, David A.

    2009-01-01

    An uncontrolled trial reported that sodium thiosulfate reduces formation of calcium kidney stones in humans, but this has not been established in a controlled human study or animal model. Using the genetic hypercalciuric rat, an animal model of calcium phosphate stone formation, we studied the effect of sodium thiosulfate on urine chemistries and stone formation. We fed genetic hypercalciuric rats normal food with or without sodium thiosulfate for 18 wk and measured urine chemistries, supersaturation, and the upper limit of metastability of urine. Eleven of 12 untreated rats formed stones compared with only three of 12 thiosulfate-treated rats (P < 0.002). Urine calcium and phosphorus were higher and urine citrate and volume were lower in the thiosulfate-treated rats, changes that would increase calcium phosphate supersaturation. Thiosulfate treatment lowered urine pH, which would lower calcium phosphate supersaturation. Overall, there were no statistically significant differences in calcium phosphate supersaturation or upper limit of metastability between thiosulfate-treated and control rats. In vitro, thiosulfate only minimally affected ionized calcium, suggesting a mechanism of action other than calcium chelation. In summary, sodium thiosulfate reduces calcium phosphate stone formation in the genetic hypercalciuric rat. Controlled trials testing the efficacy and safety of sodium thiosulfate for recurrent kidney stones in humans are needed. PMID:19369406

  16. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Processing and characterization of unidirectional thermoplastic nanocomposites

    NASA Astrophysics Data System (ADS)

    Narasimhan, Kameshwaran

    The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading

  18. Polymer-organoclay nanocomposites by melt processing

    NASA Astrophysics Data System (ADS)

    Cui, Lili

    2009-12-01

    Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefin-organoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the

  19. Nanocomposites coated with xyloglucan for drug delivery: In vitro studies.

    PubMed

    Ribeiro, C; Arizaga, G G C; Wypych, F; Sierakowski, M-R

    2009-02-09

    Enalaprilate (Enal), an active pharmaceutical component, was intercalated into a layered double hydroxide (Mg/Al-LDH) by an ion exchange reaction. The use of a layered double hydroxide (LDH) to release active drugs is limited by the low pH of the stomach (pH approximately 1.2), in whose condition it is readily dissolved. To overcome this limitation, xyloglucan (XG) extracted from Hymenaea courbaril (jatobá) seeds, Brazilian species, was used to protect the LDH and allow the drug to pass through the gastrointestinal tract. All the materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, elemental analyses, transmission electronic microscopy, thermal analyses, and a kinetic study of the in vitro release was monitored by ultraviolet spectroscopy. The resulting hybrid system containing HDL-Enal-XG(3) slowly released the Enal. In an 8-h of test, the system protected 40% (w/v) of the drug. The kinetic profile showed that the drug release was a co-effect behavior, involving dissolution of inorganic material and ion exchange between the intercalated anions in the lamella and those of phosphate in the buffer solution. The nanocomposite coated protection with XG was therefore efficient in obtaining a slow release of Enal.

  20. A new biocompatible nanocomposite as a promising constituent of sunscreens.

    PubMed

    Amin, Rehab M; Elfeky, Souad A; Verwanger, Thomas; Krammer, Barbara

    2016-06-01

    Skin naturally uses antioxidants to protect itself from the damaging effects of sunlight. If this is not sufficient, other measures have to be taken. Like this, hydroxyapatite has the potential to be applied as an active constituent of sunscreens since calcium phosphate absorbs in the ultraviolet region (UV). The objective of the present work was to synthesize a hydroxyapatite-ascorbic acid nanocomposite (HAp/AA-NC) as a new biocompatible constituent of sunscreens and to test its efficiency with skin cell models. The synthesized HAp/AA-NC was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, absorption spectrophotometry and X-ray diffraction analysis. The protective effect of the construct was tested with respect to viability and intracellular reactive oxygen species (ROS) generation of primary human dermal fibroblasts (SKIN) and human epidermal keratinocytes (HaCaT). Both cell lines were irradiated with UV light, λmax=254 nm with a fluence of 25 mJ cm(-2) to mimic the effect of UV radiation of sunlight on the skin. Results showed that HAp/AA-NC had a stimulating effect on the cell viability of both, HaCaT and SKIN cells, relative to the irradiated control. Intracellular ROS significantly decreased in UV irradiated cells when treated with HAp/AA-NC. We conclude that the synthesized HAp/AA-NC have been validated in vitro as a skin protector against the harmful effect of UV-induced ROS. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites

    PubMed Central

    Lee, Jong Ho; Shin, Yong Cheol; Lee, Sang-Min; Jin, Oh Seong; Kang, Seok Hee; Hong, Suck Won; Jeong, Chang-Mo; Huh, Jung Bo; Han, Dong-Wook

    2015-01-01

    Recently, graphene-based nanomaterials, in the form of two dimensional substrates or three dimensional foams, have attracted considerable attention as bioactive scaffolds to promote the differentiation of various stem cells towards specific lineages. On the other hand, the potential advantages of using graphene-based hybrid composites directly as factors inducing cellular differentiation as well as tissue regeneration are unclear. This study examined whether nanocomposites of reduced graphene oxide (rGO) and hydroxyapatite (HAp) (rGO/HAp NCs) could enhance the osteogenesis of MC3T3-E1 preosteoblasts and promote new bone formation. When combined with HAp, rGO synergistically promoted the spontaneous osteodifferentiation of MC3T3-E1 cells without hindering their proliferation. This enhanced osteogenesis was corroborated from determination of alkaline phosphatase activity as early stage markers of osteodifferentiation and mineralization of calcium and phosphate as late stage markers. Immunoblot analysis showed that rGO/HAp NCs increase the expression levels of osteopontin and osteocalcin significantly. Furthermore, rGO/HAp grafts were found to significantly enhance new bone formation in full-thickness calvarial defects without inflammatory responses. These results suggest that rGO/HAp NCs can be exploited to craft a range of strategies for the development of novel dental and orthopedic bone grafts to accelerate bone regeneration because these graphene-based composite materials have potentials to stimulate osteogenesis. PMID:26685901

  2. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites.

    PubMed

    Lee, Jong Ho; Shin, Yong Cheol; Lee, Sang-Min; Jin, Oh Seong; Kang, Seok Hee; Hong, Suck Won; Jeong, Chang-Mo; Huh, Jung Bo; Han, Dong-Wook

    2015-12-21

    Recently, graphene-based nanomaterials, in the form of two dimensional substrates or three dimensional foams, have attracted considerable attention as bioactive scaffolds to promote the differentiation of various stem cells towards specific lineages. On the other hand, the potential advantages of using graphene-based hybrid composites directly as factors inducing cellular differentiation as well as tissue regeneration are unclear. This study examined whether nanocomposites of reduced graphene oxide (rGO) and hydroxyapatite (HAp) (rGO/HAp NCs) could enhance the osteogenesis of MC3T3-E1 preosteoblasts and promote new bone formation. When combined with HAp, rGO synergistically promoted the spontaneous osteodifferentiation of MC3T3-E1 cells without hindering their proliferation. This enhanced osteogenesis was corroborated from determination of alkaline phosphatase activity as early stage markers of osteodifferentiation and mineralization of calcium and phosphate as late stage markers. Immunoblot analysis showed that rGO/HAp NCs increase the expression levels of osteopontin and osteocalcin significantly. Furthermore, rGO/HAp grafts were found to significantly enhance new bone formation in full-thickness calvarial defects without inflammatory responses. These results suggest that rGO/HAp NCs can be exploited to craft a range of strategies for the development of novel dental and orthopedic bone grafts to accelerate bone regeneration because these graphene-based composite materials have potentials to stimulate osteogenesis.

  3. Adsorption of DNA onto Polypyrrole-Silica Nanocomposites

    PubMed

    Saoudi; Jammul; Chehimi; McCarthy; Armes

    1997-08-01

    DNA adsorption onto polypyrrole (PPy) powder, a colloidal silica sol, and three polypyrrole-silica nanocomposite particles (untreated and amine- or carboxylic acid-functionalized) was investigated at neutral pH using sodium phosphate buffer. The extent of DNA adsorption was found to be 32 and 22 mg/g for the aminated silica sol and aminated PPy-silica particles respectively, and 6.5 mg/g for the carboxylated particles. DNA adsorption onto the unfunctionalized PPy-silica particles occurs to a lesser extent, whereas no adsorption was detected for the colloidal silica sol. Our results suggest that DNA adsorption is mainly governed by electrostatic and hydrophobic interactions. DNA is adsorbed onto polypyrrole chloride bulk powder and also onto the aminated PPy-silica particles, which both have cationic binding sites. The silica sol and the unfunctionalized PPy-silica particles both possess a net negative surface charge at this pH, which probably accounts for the zero or very low adsorbed amounts of DNA on these substrates. DNA adsorption onto the carboxylated PPy-silica particles may be enhanced by hydrogen bonding relative to the unfunctionalized polypyrrole-silica particles.

  4. Fire retardant effects of polymer nanocomposites.

    PubMed

    Hull, T Richard; Stec, Anna A; Nazare, Shonali

    2009-07-01

    Among the many and varied applications of nanotechnology, the dispersion of nanoscopic fillers to form polymer nanocomposites with improved fire behaviour illustrates the potential and diversity of nanoscience. Different polymers decompose in different ways and fire retardants act to inhibit the decomposition or flaming combustion processes. Polymer nanocomposites form barriers between the fuel and air, reducing the rate of burning, but beyond that there is little consistency in their effects. It is shown that the decomposition products of polypropylene are changed by the presence of nanoclay, although there is only a small influence on the mass loss rate. The rheological properties of molten polymer nanocomposites are radically different from those of virgin polymers, and these will profoundly affect the heat transfer through the material, resulting in a shorter time to ignition and lower peak in the heat release rate, typical of polymer nanocomposites. The dispersion of nanofillers within polymers is generally measured in the cold polymer, but since this does not reflect the condition at the time of ignition, it is proposed that temperature ramped rheological measurements are more appropriate indicators of dispersion. The influence of polymer nanocomposite formation on the yields of toxic products from fire is studied using the ISO 19700 steady state tube furnace, and it is found that under early stages of burning more carbon monoxide and organoirritants are formed, but under the more toxic under-ventilated conditions, less toxic products are formed.

  5. Synthesis of plasmonic nanocomposites for diverse applications.

    PubMed

    Avasthi, D K; Mishra, Y K; Singhal, R; Kabiraj, D; Mohapatra, S; Mohanta, B; Gohil, Nivedita K; Singh, N

    2010-04-01

    We report the synthesis of gold and silver nanostructures embedded in different dielectric matrices by atom beam co-sputtering, a novel technique. We have synthesized gold-silicon core shell nanostructures and Au-ZnO nanocomposite with tunable surface plasmon resonance (SPR) by atom beam co-sputtering and subsequent annealing. The Au-ZnO nanocomposite shows significant enhancement in intensity of Raman modes of fullerene molecules and therefore can help in surface enhanced Raman spectroscopy investigation of organic molecules. The synthesized Ag-polymer nanocomposite thin films show excellent features of broad SPR absorption extending upto IR region and a narrow transmission of light in UV region approximately 320 nm which could be of technological interest in solar absorbers and UV light filters respectively. The Ag-silica nanocomposite thin films show their utility in glucose sensing. The gold-silica nanocomposite thin films exhibit their possible use in detection of human ovarian cancer cells in a preliminary study. The shift in SPR peak of Au nanoparticles (NPs) present at the surface of silica synthesized by thermal evaporation and annealing, after attachment of biological molecules like proteins has been studied.

  6. Molecular mechanisms of failure in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Gersappe, Dilip

    2003-03-01

    With the emergence of synthetic methods that can produce nanometer sized fillers, resulting in an enormous increase of surface area, polymers reinforced with nanoscale particles should offer the possibility of vastly improved properties. However, experimental evidence suggests that the paradigms that have been used for conventional filled composites cannot account for the behavior of nanocomposites. We examine the role that spherical nanofillers play on the rheology and the strength of the nanocomposite by using Molecular Dynamics simulations. We find that the enhancement of properties in nanocomposites is a result of the equivalence of time scales for motion for the polymer and the filler. We show that the mobility of the nanofiller, rather than its surface area, is key to the performance of the nanocomposite and that this mobility is a complex function of the size of the filler, the attraction between the polymer and the filler, and the thermodynamic state of the matrix. Our results show similarities between the toughening mechanisms in polymer nanocomposites and those postulated for naturally occurring biological materials which also contain nanoscaled assemblies, such as spider silk and abalone adhesive.

  7. Properties of polypropylene nanocomposites containing silver nanoparticles.

    PubMed

    Jang, Myung Wook; Kim, Ju-Young; Ihn, Kyo Jin

    2007-11-01

    Silver/polypropylene (PP) nanocomposites containing silver nanoparticles smaller than 10 nm were prepared using a new synthetic method. AgNO3 crystals were dissolved into hydrophilic domain of polyoxyethylene maleate-based surfactant (PEOM), which gives self-assembly nano-structures. The AgNO3 in the nano-domains of PEOM was reduced by NaBH4 to form nanoparticles. The colloidal solutions with silver nanoparticles were diluted with ethanol and were mixed with PP pellets. Silver nanocomposites were prepared by extrusion compounding process after drying the pellets. Contents of silver nanoparticles dispersed within PP resin were changed from 100 to 1000 ppm. Formation of silver nanoparticles within PP was confirmed by UV-Vis spectroscopy and TEM. Size and distribution of dispersed silver nanoparticles were also measured by TEM. Silver/PP nanocomposites films showed not only improved thermal stability but also increased mechanical properties compared to neat PP film. Tensile properties of PP nanocomposites were largely improved compared with neat PP resin, and elongation increased also by 175% for the nanocomposites containing 1000 ppm silver nanoparticles.

  8. Polylactide nanocomposites for packaging materials: A review

    NASA Astrophysics Data System (ADS)

    Widiastuti, Indah

    2016-02-01

    This review aims at highlighting on an attempt for improving the properties of polylactide (PLA) as packaging material by application of nanocomposite technology. PLA is attracting considerable interest because of more eco-friendliness from its origin as contrast to the petrochemical-based polymers and its biodegradability. Despite possessing good mechanical and optical properties, deterioration of the material properties in PLA materials during their service time could occur after prolonged exposure to humidity and high temperature condition. Limited gas barrier is another drawback of PLA material that should be overcome to satisfy the requirement for packaging application. To further extend the range of mechanical and thermal properties achievable, several attempts have been made in modifying the material such as blending with other polymers, use of plasticizing material and development of PLA nanocomposites. Nanocomposite is a fairly new type of composite that has emerged in which the reinforcing filler has nanometer scale dimensions (at least one dimension of the filler is less than 100 nm). In this review, the critical properties of PLA as packaging materials and its degradation mechanism are presented. This paper discusses the current effort and key research challenges in the development of nanocomposites based on biodegradable polymer matrices and nano-fillers. The PLA layered silicate nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modification, frequently exhibits remarkable improvements of mechanical strength, gas barrier and thermal stability.

  9. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    SciTech Connect

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani

    2015-09-25

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  10. Detergent phosphate bans and eutrophication

    SciTech Connect

    Lee, G.F.; Jones, R.A.

    1986-04-01

    The Vollenweider-OECD eutrophication model has been expanded to approximately 400 lakes. It is possible to make a quantitative prediction of the effects of a detergent phosphate ban and thereby to ascertain the potential benefits of such a ban. In order to assess the effect of a detergent phosphate ban on water quality it is necessary to know the percentage of phosphorus in the domestic waste water that enters the water body, either directly or indirectly, and the percentage of the total phosphorus load that is derived from domestic wastewater. Although detergent phosphate bans generally will not result in an overall improvement to water quality, there may be some situations in which eutrophication-related water quality would be improved by a ban. 8 references, 1 figure, 1 table.

  11. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells.

    PubMed

    Karadas, Ozge; Yucel, Deniz; Kenar, Halime; Torun Kose, Gamze; Hasirci, Vasif

    2014-07-01

    The aim of this research was to investigate the osteogenic differentiation potential of non-invasively obtained human stem cells on collagen nanocomposite scaffolds with in situ-grown calcium phosphate crystals. The foams had 70% porosity and pore sizes varying in the range 50-200 µm. The elastic modulus and compressive strength of the calcium phosphate containing collagen scaffolds were determined to be 234.5 kPa and 127.1 kPa, respectively, prior to in vitro studies. Mesenchymal stem cells (MSCs) obtained from Wharton's jelly and menstrual blood were seeded on the collagen scaffolds and proliferation and osteogenic differentiation capacities of these cells from two different sources were compared. The cells on the composite scaffold showed the highest alkaline phosphatase activity compared to the controls, cells on tissue culture polystyrene and cells on collagen scaffolds without in situ-formed calcium phosphate. MSCs isolated from both Wharton's jelly and menstrual blood showed a significant level of osteogenic activity, but those from Wharton's jelly performed better. In this study it was shown that collagen nanocomposite scaffolds seeded with cells obtained non-invasively from human tissues could represent a potential construct to be used in bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    PubMed Central

    Cai, Chuan; Wang, Ying

    2009-01-01

    Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  13. Tangible nanocomposites with diverse properties for heart valve application

    NASA Astrophysics Data System (ADS)

    Vignesh Vellayappan, Muthu; Balaji, Arunpandian; Priyadarshini Subramanian, Aruna; Aruna John, Agnes; Jaganathan, Saravana Kumar; Murugesan, Selvakumar; Mohandas, Hemanth; Supriyanto, Eko; Yusof, Mustafa

    2015-06-01

    Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases.

  14. Phosphate-Bonded Fly Ash.

    DTIC Science & Technology

    1994-12-09

    FCODE OC ______________ ARLINGTON VA 22217-5660 - dis~bu~i.19~ 3 B Navy Case No. 75,787 PATENTS PHOSPHATE -BONDED FLY ASH IN’NA G. TALMY DEBORAH A. HAUGHT...2 3 , CaO. MgO, etc. with which the H.PO4 reacts to form the polymer-like phosphate bonds which hold the fly ash particles together. In the second...conventional means. The moisture (water) content of the aqueous HP0 4 /fly ash mixture is preferably from about 3 to about 5 weight percent for semidry

  15. Titania-lanthanum phosphate photoactive and hydrophobic new generation catalyst

    SciTech Connect

    Jyothi, Chembolli K.; Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Sankar, Sasidharan; Smitha, V.S.; Warrier, K.G.K.

    2011-07-15

    Titania-lanthanum phosphate nanocomposites with multifunctional properties have been synthesized by aqueous sol-gel method. The precursor sols with varying TiO{sub 2}:LaPO{sub 4} ratios were applied as thin coating on glass substrates in order to be transparent, hydrophobic, photocatalytically active coatings. The phase compositions of the composite powders were identified by powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The anatase phase of TiO{sub 2} in TiO{sub 2}-LaPO{sub 4} composite precursors was found to be stable even on annealing at 800 deg. C. The glass substrates, coated with TL1 (TiO{sub 2}-LaPO{sub 4} composition with 1 mol% LaPO{sub 4}) and TL50 (composite precursor containing TiO{sub 2} and LaPO{sub 4} with molar ratio 1:1) sols and annealed at 400 deg. C, produced contact angles of 74 deg. and 92 deg., respectively, though it is only 62 deg. for pure TiO{sub 2} coating. The glass substrates, coated with TL50 sol, produced surfaces with relatively high roughness and uneven morphology. The TL1 material, annealed at 800 deg. C, has shown the highest UV photoactivity with an apparent rate constant, k{sub app}=24x10{sup -3} min{sup -1}, which is over five times higher than that observed with standard Hombikat UV 100 (k{sub app}=4x10{sup -3} min{sup -1}). The photoactivity combined with a moderate contact angle (85.3 deg.) shows that this material has a promise as an efficient self-cleaning precursor. - Graphical abstract: Multifunctional TiO{sub 2}-LaPO{sub 4} composite stabilizes anatase phase with enhanced photocatalytic activity, and moderately higher hydrophobicity is a promising material for self-cleaning application. Highlights: > Titania-lanthanum phosphate nanocomposites were synthesized by aqueous sol-gel method. > Transparent, hydrophobic, photoactive coatings were developed on glass substrates. > The glass substrates, coated with TL1 annealed at 400 deg. C, produced a contact angle of 74 deg

  16. Block copolymer/ferroelectric nanoparticle nanocomposites

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  17. Designing new ferrite/manganite nanocomposites.

    PubMed

    Muscas, G; Anil Kumar, P; Barucca, G; Concas, G; Varvaro, G; Mathieu, R; Peddis, D

    2016-01-28

    Two kinds of nanocomposites of transition metal oxides were synthesized and investigated. Each nanocomposite comprises nanoparticles of La0.67Ca0.33MnO3 and CoFe2O4 in similar volume fractions, however arranged with different morphologies. The temperature-dependent magnetic and electrical properties of the two systems are found to greatly differ, suggesting different degrees of interaction and coupling of their constituents. This is confirmed by magnetic field-dependent experiments, which reveal contrasted magnetization reversal and magnetoresistance in the systems. We discuss this morphology-physical property relationship, and the possibility to further tune the magnetism and magneto-transport in such nanocomposites.

  18. Permeation properties of polymer/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Kalendova, A.; Merinska, D.; Gerard, J. F.

    2012-07-01

    The important characteristics of polymer/clay nanocomposites are stability, barrier properties and in the case of polyvinyl chloride also plasticizer migration into other materials. Therefore, the permeation properties of polymer/clay nanocomposites are discussed in this paper. The attention was focused to the polyethylene (PE) and polyvinyl chloride (PVC). Natural type of montmorillonite MMTNa+ and modified types of montmorillonite from Southern Clay Products were used as the inorganic phase. As the compounding machine, one screw Buss KO-kneader was employed. The principal aim is to fully exfoliate the clay into polymer matrix and enhanced the permeation properties. Prepared samples were tested for O2 and CO2 permeability. Polymer/clay nanocomposite structure was determined on the base of X-ray diffraction and electron microscopy (TEM).

  19. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  20. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Ren, Zhifeng (Inventor); Dresselhaus, Mildred (Inventor)

    2008-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  1. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    SciTech Connect

    Lu, Hong; Burke, Peter G.; Gossard, Arthur C.; Zeng, Gehong; Ramu, Ashok T.; Bahk, Je-Hyeong; Bowers, John E.

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nano­structures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μm thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  2. Au Based Nanocomposites Towards Plasmonic Applications

    NASA Astrophysics Data System (ADS)

    Panniello, A.; Curri, M. L.; Placido, T.; Reboud, V.; Kehagias, N.; Sotomayor Torres, C. M.; Mecerreyes, D.; Agostiano, A.; Striccoli, M.

    2010-06-01

    Incorporation of nano-sized metals in polymers can transfer their unique features to the host matrix, providing nanocomposite materials with improved optical, electric, magnetic and mechanical properties. In this work, colloidal Au nanorods have been incorporated into PMMA based random co-polymer, properly functionalized with amino groups and the optical and morphological properties of the resulting nanocomposite have been investigated by spectroscopic and AFM measurements. Au nanorods have demonstrated to preserve the plasmon absorption and to retain morphological features upon the incorporation, thus making the final metal modified polymer composite exploitable for the fabrication of plasmonic devices. The prepared nanocomposites have been then patterned by Nano Imprint Lithography technique in order to demonstrate the viability of the materials towards optical applications.

  3. Semimetal/semiconductor nanocomposites for thermoelectrics.

    PubMed

    Lu, Hong; Burke, Peter G; Gossard, Arthur C; Zeng, Gehong; Ramu, Ashok T; Bahk, Je-Hyeong; Bowers, John E

    2011-05-24

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:In(x)Ga(1−x)Sb as a promising p-type thermoelectric material. Nanostructures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By co-doping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μ m thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  4. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2012-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  5. Nanocomposites with High Thermoelectric Figures of Merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  6. Block copolymer/ferroelectric nanoparticle nanocomposites.

    PubMed

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-09-21

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.

  7. Photorelease of phosphates: Mild methods for protecting phosphate derivatives

    PubMed Central

    Senadheera, Sanjeewa N; Yousef, Abraham L

    2014-01-01

    Summary We have developed a new photoremovable protecting group for caging phosphates in the near UV. Diethyl 2-(4-hydroxy-1-naphthyl)-2-oxoethyl phosphate (14a) quantitatively releases diethyl phosphate upon irradiation in aq MeOH or aq MeCN at 350 nm, with quantum efficiencies ranging from 0.021 to 0.067 depending on the solvent composition. The deprotection reactions originate from the triplet excited state, are robust under ambient conditions and can be carried on to 100% conversion. Similar results were found with diethyl 2-(4-methoxy-1-naphthyl)-2-oxoethyl phosphate (14b), although it was significantly less efficient compared with 14a. A key step in the deprotection reaction in aq MeOH is considered to be a Favorskii rearrangement of the naphthyl ketone motif of 14a,b to naphthylacetate esters 25 and 26. Disruption of the ketone-naphthyl ring conjugation significantly shifts the photoproduct absorption away from the effective incident wavelength for decaging of 14, driving the reaction to completion. The Favorskii rearrangement does not occur in aqueous acetonitrile although diethyl phosphate is released. Other substitution patterns on the naphthyl or quinolin-5-yl core, such as the 2,6-naphthyl 10 or 8-benzyloxyquinolin-5-yl 24 platforms, also do not rearrange by aryl migration upon photolysis and, therefore, do not proceed to completion. The 2,6-naphthyl ketone platform instead remains intact whereas the quinolin-5-yl ketone fragments to a much more complex, highly absorbing reaction mixture that competes for the incident light. PMID:25246963

  8. Polymeric nanocomposites: compounding and performance.

    PubMed

    Utracki, L A

    2008-04-01

    Polymeric nanocomposites (PNC) are binary mixtures of strongly interacting, inorganic platelets dispersed in a polymeric matrix. For full exfoliation, the thermodynamic miscibility is required. There are three basic methods of organically-modified clay dispersion that might result in PNC: (1) in polymer solution (followed by solvent removal), (2) in a monomer (followed by polymerization), and (3) in molten polymer (compounding). Most commercial PNC are produced by the second method, but it is the third one that has the greatest promise for the plastics industry. Similarly as during the manufacture of polymer blends, the layered silicates must be compatibilized by intercalation with organic salts and/or addition of functionalized macromolecules. Compounding affects the kinetics of dispersion process, but rarely the miscibility. Melt compounding is carried out either in a single-screw (SSE) or a twin-screw extruder (TSE). Furthermore, an extensional flow mixer (EFM) might be attached to an extruder. Two versions of EFM were evaluated: (1) designed for polymer homogenization and blending, and (2) designed for dispersing nano-particles. In this review, the dispersion of organoclay in polystyrene (PS), polyamide-6 (PA-6) or in polypropylene (PP) is discussed. The PNC based on PS or PA-6 contained two components (polymer and organoclay), whereas those based on PP in addition had a compatibilizer mixture of two maleated polypropylenes. Better dispersion was found compounding PNC's in a SSE + EFM than in TSE with or without EFM. The mechanical performance (tensile, flexural and impact) was examined.

  9. Internal charge behaviour of nanocomposites

    NASA Astrophysics Data System (ADS)

    Nelson, J. Keith; Fothergill, John C.

    2004-05-01

    The incorporation of 23 nm titanium dioxide nanoparticles into an epoxy matrix to form a nanocomposite structure is described. It is shown that the use of nanometric particles results in a substantial change in the behaviour of the composite, which can be traced to the mitigation of internal charge when a comparison is made with conventional TiO2 fillers. A variety of diagnostic techniques (including dielectric spectroscopy, electroluminescence, thermally stimulated current and photoluminescence) have been used to augment pulsed electro-acoustic space charge measurement to provide a basis for understanding the underlying physics of the phenomenon. It would appear that, when the size of the inclusions becomes small enough, they act cooperatively with the host structure and cease to exhibit interfacial properties, leading to Maxwell-Wagner polarization. It is postulated that the particles are surrounded by high charge concentrations in the Gouy-Chapman-Stern layer. Since nanoparticles have very high specific areas, these regions allow limited charge percolation through nano-filled dielectrics. The practical consequences of this have also been explored in terms of the electric strength exhibited. It would appear that there was a window in which real advantages accrue from the nano-formulated material. An optimum loading of about 10% (by weight) is indicated.

  10. Hierarchical Nanocomposites for Device Applications

    NASA Astrophysics Data System (ADS)

    Watkins, James

    We have outlined templating strategies for electronic and optical device fabrication that include self-assembly of well-ordered polymer/nanoparticle hybrids and nanoimprint lithography using novel materials sets. Using additive-driven self-assembly, for example, we demonstrate the formation of periodic nanocomposites with tunable magnetic and optical characteristics containing up to 70 wt. % of metal, metal oxide and/or semiconducting nanoparticles through phase specific interactions of the particles with either linear block copolymer or brush block copolymer (BBCP) templates. The BBCP templates provide direct access to large domain spacings for optical applications and spontaneous alignment within large volume elements. We have further developed highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index and a new imprinting process that allows direct printing of patterned 2-D and 3-D crystalline metal oxide films and composites with feature sizes of less than 100 nm. Applications in flexible electronics, light and energy management, and sensors and will be discussed.

  11. Macromolecular Diffusion in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gam, Sangah; Meth, Jeff; Zane, Steve; Winey, Karen; Clarke, Nigel; Composto, Russell

    2011-03-01

    Macromolecular diffusion in crowded systems is important in biological and engineered systems. We have studied macromolecular diffusion through a model polymer nanocomposite (PNC) containing phenyl grafted silica nanoparticles (NPs), randomly distributed in a polystyrene matrix. Over a wide range of NP loading and tracer molecular weight (M), the scaling of the diffusion coefficient with M is in excellent agreement with the entropic barrier model (EBM) previously used to describe diffusion of DNA through confined media (e.g., gels and nanopores). To investigate the effect of NP size, diffusion was measured in PNC's with silica NPs having diameters of 28 and 12 nm. The normalized diffusion coefficients (D / D0) plotted against the interparticle separation relative to probe size (i.e., ID/ 2 Rg) collapse on a master curve. Diffusion in a poly(methyl methacrylate):silica NP system was also investigated to understand how attractive interactions (i.e., enthalpy) perturb motion relative to the polystyrene and phenyl-silica NP system which is athermal. Finally, a flux-based model is proposed and compared with experimental results.

  12. Colorless and transparent copolyimide nanocomposites.

    PubMed

    Bae, Hye-Jin; Kim, Yong Seok; Chang, Jin-Hae

    2014-12-01

    Copolyimides (Co-PIs) were synthesized from 2,2'-bis(trifluoromethyl) benzidine (TFB) and different ratios of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and pyromellitic dianhydride (PMDA). The Co-PI films were obtained from poly(amic acid) (PAA) by solution-casting through typical chemical and thermal imidizations. The thermal properties and optical transparency of the Co-PI films with various PMDA monomer contents were investigated. It was found that with increasing PMDA content, the thermal transition temperatures of the Co-PI films increased. Co-PI nanocomposites were prepared with various amounts of organically modified hectorite (STN) on a TFB:6FDA:PMDA = 1.0:0.9:0.1 mole ratio Co-PI hybrid film to examine the thermal properties, morphology, and optical transparency. The thermo-optical properties of the Co-PI hybrid films deteriorated with increasing clay content. However, the coefficient of thermal expansion (CTE) and oxygen barrier properties of the PI hybrid films improved with increasing clay content.

  13. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  14. New polyurethane nanocomposites based on soya oil.

    PubMed

    Mohammed, Issam Ahmed; Abd Khadir, Nurul Khizrien; Jaffar Al-Mulla, Emad Abbas

    2014-01-01

    New polyurethane (PU) nanocomposites were prepared from a dispersion of 0 - 5% montmorillonite (MMT) clay with isocyanate and soya oil polyol that was synthesized via transesterification of triglycerides to reduce petroleum dependence. FT-IR spectra indicate the presence of hydrogen bonding between nanoclay and the polymer matrix, whereas the exfoliated structure of clay layers was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical microscopy, mechanical and thermal analyses were done to investigate significant improvement of the nanocomposites. The results showed PU-3% nanoclay (NC) showed optimum results in mechanical properties such as tensile and flexural strength but the lowest in impact strength.

  15. Clay-based Nanocomposites Possibilities and Limitations

    NASA Astrophysics Data System (ADS)

    Papoulis, Dimitris

    2011-09-01

    In the last decades, clay mineral based nanocomposites and polymer-clay nanocomposites (PCNC) have been proposed as very useful materials for many uses including photocatalysis, medicinal uses as tissue engineering or modified drug delivery systems. Clay minerals and especially montmorillonite, kaolinite, halloysite palygorskite and sepiolite are the most used clay minerals because of their high surface areas, colloidal dimensions of their particles and other properties. This lecture aims at reporting on very recent developments in the use of clay minerals and PCNC as materials with photocatalytic and medical interest.

  16. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    PubMed Central

    Jeon, In-Yup; Baek, Jong-Beom

    2010-01-01

    Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.

  17. Glucose-6-Phosphate Dehydrogenase Revisited

    PubMed Central

    O'Connell, Jerome T.; Henderson, Alfred R.

    1984-01-01

    Hemolytic diseases associated with drugs have been recognized since antiquity. Many of these anemias have been associated with oxidizing agents and deficiencies in the intraerythrocytic enzyme glucose-6-phosphate dehydrogenase. This paper outlines the discovery, prevalence, and variants of this enzyme. Methods of diagnosis of associated anemias are offered. PMID:6502728

  18. Why nature really chose phosphate.

    PubMed

    Kamerlin, Shina C L; Sharma, Pankaz K; Prasad, Ram B; Warshel, Arieh

    2013-02-01

    Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning

  19. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder ...

  20. Magnetite seeded precipitation of phosphate.

    PubMed

    Karapinar, Nuray; Hoffmann, Erhard; Hahn, Hermann H

    2004-07-01

    Seeded precipitation of Ca phosphate on magnetite mineral (Fe3O4) surfaces was investigated using a Jar Test system in supersaturated solutions at 20 degrees C and ionic strength 0.01 mol l(-1) with relative super saturation, 12.0-20.0 for HAP. pH of the solution, initial phosphorus concentration and molar Ca/P ratio were investigated as the main parameters, which effect the seeded precipitation of Ca phosphate. Results showed that there is no pronounced effect of magnetite seed, neither positive nor negative on the amount of calcium phosphate precipitation. pH was found to be the main parameter that determines the phosphate precipitated onto the seed surface. Increasing of the pH of precipitation reaction was resulted in the decrease in percentage amount of phosphate precipitated onto seed surfaces to total precipitation (magnetite seeded precipitation efficiency). It was concluded that the pH dependence of magnetite-seeded precipitation should be considered in the light of its effect on the supersaturated conditions of solution. Saturation index (SI) of solution with respect to the precipitate phase was considered the driving force for the precipitation. A simulation programme PHREEQC (Version 2) was employed to calculate the Saturation-index with respect to hydroxyapatite (HAP) of the chemically defined precipitation system. It was found a good relationship between SI of solution with respect to HAP and the magnetite seeded precipitation efficiency, a second order polynomial function. Results showed that more favorable solution conditions for precipitation (higher SI values of solution) causes homogenous nucleation whereas heterogeneous nucleation led to a higher magnetite seeded precipitation efficiency.

  1. Sintering of calcium phosphate bioceramics.

    PubMed

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful.

  2. Phosphate based oil well cements

    NASA Astrophysics Data System (ADS)

    Natarajan, Ramkumar

    The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

  3. Urea phosphate as granular or fluid fertilizers

    SciTech Connect

    Blouin, G.M.

    1984-01-01

    Studies are being conducted of the production and agronomic characteristics of the phosphoric acid-urea adduct, urea phosphate, and of the various granular and fluid fertilizers that can be produced from it. Flowsheets are given for the production of urea phosphate. Characteristics of unpurified and purified urea phosphate are also given. (DLC)

  4. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  5. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  6. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  7. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  8. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  9. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  10. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  11. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  12. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  13. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  14. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  15. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized as...

  16. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  17. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6285 Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  18. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  19. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  20. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  1. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  2. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  4. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  5. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  7. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  8. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  9. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  10. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  11. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  12. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di...

  13. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  14. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  15. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  16. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized as...

  17. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  18. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  19. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  20. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized as...

  1. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  2. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  4. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  5. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono...

  6. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  9. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  10. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  11. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  12. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  13. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  14. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  15. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  16. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  17. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  19. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  20. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  1. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  2. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  3. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  4. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  5. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  6. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  9. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  10. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  11. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono...

  12. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  13. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6290 Disodium phosphate. (a) Product. Disodium phosphate...

  15. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  16. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  18. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  19. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  20. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  1. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  2. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  3. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  4. 40 CFR 721.5995 - Polyalkyl phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyalkyl phosphate. 721.5995 Section... Substances § 721.5995 Polyalkyl phosphate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyalkyl phosphate (PMN P-95-1772) is...

  5. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  6. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  7. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  8. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized as...

  9. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  10. Mineral resource of the month: Phosphate rock

    USGS Publications Warehouse

    Jasinski, Stephen M.

    2013-01-01

    As a mineral resource, “phosphate rock” is defined as unprocessed ore and processed concentrates that contain some form of apatite, a group of calcium phosphate minerals that is the primary source for phosphorus in phosphate fertilizers, which are vital to agriculture.

  11. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering.

    PubMed

    Duan, Bin; Cheung, Wai Lam; Wang, Min

    2011-03-01

    Biomaterials for scaffolds and scaffold fabrication techniques are two key elements in scaffold-based tissue engineering. Nanocomposites that consist of biodegradable polymers and osteoconductive bioceramic nanoparticles and advanced scaffold manufacturing techniques, such as rapid prototyping (RP) technologies, have attracted much attention for developing new bone tissue engineering strategies. In the current study, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microspheres and calcium phosphate (Ca-P)/PHBV nanocomposite microspheres were fabricated using the oil-in-water (O/W) and solid-in-oil-in-water (S/O/W) emulsion solvent evaporation methods. The microspheres with suitable sizes were then used as raw materials for scaffold fabrication via selective laser sintering (SLS), which is a mature RP technique. A three-factor three-level complete factorial design was applied to investigate the effects of the three factors (laser power, scan spacing, and layer thickness) in SLS and to optimize SLS parameters for producing good-quality PHBV polymer scaffolds and Ca-P/PHBV nanocomposite scaffolds. The plots of the main effects of these three factors and the three-dimensional response surface were constructed and discussed. Based on the regression equation, optimized PHBV scaffolds and Ca-P/PHBV scaffolds were fabricated using the optimized values of SLS parameters. Characterization of optimized PHBV scaffolds and Ca-P/PHBV scaffolds verified the optimization process. It has also been demonstrated that SLS has the capability of constructing good-quality, sophisticated porous structures of complex shape, which some tissue engineering applications may require.

  12. Ice-templated Self-assembly of VOPO4-Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hoon; Lee, Young-Woo; Lee, Seung Woo; Ha, Jeong Sook; Lee, Sang-Soo; Son, Jeong Gon

    2015-09-01

    A simple ice-templated self-assembly process is used to prepare a three-dimensional (3D) and vertically porous nanocomposite of layered vanadium phosphates (VOPO4) and graphene nanosheets with high surface area and high electrical conductivity. The resulting 3D VOPO4-graphene nanocomposite has a much higher capacitance of 527.9 F g-1 at a current density of 0.5 A g-1, compared with ~247 F g-1 of simple 3D VOPO4, with solid cycling stability. The enhanced pseudocapacitive behavior mainly originates from vertically porous structures from directionally grown ice crystals and simultaneously inducing radial segregation and forming inter-stacked structures of VOPO4-graphene nanosheets. This VOPO4-graphene nanocomposite electrode exhibits high surface area, vertically porous structure to the separator, structural stability from interstacked structure and high electrical conductivity, which would provide the short diffusion paths of electrolyte ions and fast transportation of charges within the conductive frameworks. In addition, an asymmetric supercapacitor (ASC) is fabricated by using vertically porous VOPO4-graphene as the positive electrode and vertically porous 3D graphene as the negative electrode; it exhibits a wide cell voltage of 1.6 V and a largely enhanced energy density of 108 Wh kg-1.

  13. Ice-templated Self-assembly of VOPO4–Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes

    PubMed Central

    Lee, Kwang Hoon; Lee, Young-Woo; Lee, Seung Woo; Ha, Jeong Sook; Lee, Sang-Soo; Son, Jeong Gon

    2015-01-01

    A simple ice-templated self-assembly process is used to prepare a three-dimensional (3D) and vertically porous nanocomposite of layered vanadium phosphates (VOPO4) and graphene nanosheets with high surface area and high electrical conductivity. The resulting 3D VOPO4–graphene nanocomposite has a much higher capacitance of 527.9 F g−1 at a current density of 0.5 A g−1, compared with ~247 F g−1 of simple 3D VOPO4, with solid cycling stability. The enhanced pseudocapacitive behavior mainly originates from vertically porous structures from directionally grown ice crystals and simultaneously inducing radial segregation and forming inter-stacked structures of VOPO4–graphene nanosheets. This VOPO4–graphene nanocomposite electrode exhibits high surface area, vertically porous structure to the separator, structural stability from interstacked structure and high electrical conductivity, which would provide the short diffusion paths of electrolyte ions and fast transportation of charges within the conductive frameworks. In addition, an asymmetric supercapacitor (ASC) is fabricated by using vertically porous VOPO4–graphene as the positive electrode and vertically porous 3D graphene as the negative electrode; it exhibits a wide cell voltage of 1.6 V and a largely enhanced energy density of 108 Wh kg−1. PMID:26333591

  14. Deoxyguanosine phosphate mediated sacrificial bonds promote synergistic mechanical properties in nacre-mimetic nanocomposites.

    PubMed

    Martikainen, Lahja; Walther, Andreas; Seitsonen, Jani; Berglund, Lars; Ikkala, Olli

    2013-08-12

    We show that functionalizing polymer-coated colloidal nanoplatelets with guanosine groups allows synergistic increase of mechanical properties in nacre-mimetic lamellar self-assemblies. Anionic montmorillonite (MTM) was first coated using cationic poly(diallyldimethylammonium chloride) (PDADMAC) to prepare core-shell colloidal platelets, and subsequently the remaining chloride counterions allowed exchange to functional anionic 2'-deoxyguanosine 5'-monophosphate (dGMP) counterions, containing hydrogen bonding donors and acceptors. The compositions were studied using elemental analysis, scanning and transmission electron microscopy, wide-angle X-ray scattering, and tensile testing. The lamellar spacing between the clays increases from 1.85 to 2.14 nm upon addition of the dGMP. Adding dGMP increases the elastic modulus, tensile strength, and strain 33.0%, 40.9%, and 5.6%, respectively, to 13.5 GPa, 67 MPa, and 1.24%, at 50% relative humidity. This leads to an improved toughness seen as a ca. 50% increase of the work-to-failure. This is noteworthy, as previously it has been observed that connecting the core-shell nanoclay platelets covalently or ionically leads to increase of the stiffness but to reduced strain. We suggest that the dynamic supramolecular bonds allow slippage and sacrificial bonds between the self-assembling nanoplatelets, thus promoting toughness, still providing dynamic interactions between the platelets.

  15. Promotion of the gamma-phase of Polyamide 6 in its Nanocomposite with Phosphate Glass

    SciTech Connect

    Rawal, A.; Fang, X. W.; Urman, K.; Iverson, D.; Otaigbe, J. U.; Schmidt-Rohr, K.

    2008-01-29

    The effect of tin fluorophosphate-glass (Pglass) nanoparticles on the polyamide-6 (PA6) matrix in Pglass/PA6 hybrids has been investigated by {sup 13}C solid-state nuclear magnetic resonance (NMR). The crystallinity determined by direct-polarization {sup 13}C NMR combined with longitudinal relaxation-time (T1C) filtering varied between 31 and 44%. T1C-filtered {sup 13}C spectra with cross polarization clearly showed resonances of both the {alpha}- and {gamma}-crystalline phases of PA6, typically at ratios near 45:55, while the similarly processed neat polymer contained only the {alpha}-phase. This suggests that the Pglass promotes the growth of the {gamma}-crystalline phase.

  16. Construction of iron-polymer-graphene nanocomposites with low nonspecific adsorption and strong quenching ability for competitive immunofluorescent detection of biomarkers in GM crops.

    PubMed

    Yin, Kaifei; Liu, Anran; Shangguan, Li; Mi, Li; Liu, Xu; Liu, Yuanjian; Zhao, Yuewu; Li, Ying; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2017-04-15

    We developed a new immunofluorescent biosensor by utilizing a novel nanobody (Nb) and iron-polymer-graphene nanocomposites for sensitive detection of 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacdterium tumefaciens strain CP4 (CP4-EPSPS), which considered as biomarkers of genetically modified (GM) crops. Specifically, we prepared iron doped polyacrylic hydrazide modified reduced graphene nanocomposites (Fe@RGO/PAH) by in-situ polymerization approach and subsequent a one-pot reaction with hydrazine. The resulting Fe@RGO/PAH nanocomposites displayed low nonspecific adsorption to analytes (11% quenching caused by nonspecific adsorption) due to electrostatic, energetic and steric effect of the nanocomposites. After Nb immobilizing, the as-prepared Fe@RGO/PAH/Nbs showed good selectivity and high quenching ability (92% quenching) in the presence of antigen (Ag) and polyethylene glycol (PEG) modified CdTe QDs (Ag/QDs@PEG), which is a nearly 4 fold than that of the unmodified GO in same condition. The high quenching ability of Fe@RGO/PAH/Nbs can be used for detection of CP4-EPSPS based on competitive immunoassay with a linearly proportional concentration range of 5-100ng/mL and a detection limit of 0.34ng/mL. The good stability, reproducibility and specificity of the resulting immunofluorescent biosensor are demonstrated and might open a new window for investigation of fluorescent sensing with numerous multifunctional graphene based materials.

  17. Memory-effects of magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Razzaq, Muhammad Yasar; Behl, Marc; Lendlein, Andreas

    2012-09-01

    The thermally induced shape memory effect (SME) is the capability of a material to fix a temporary (deformed) shape and recover a `memorized' permanent shape in response to heat. SMEs in polymers have enabled a variety of applications including deployable space structures, biomedical devices, adaptive optical devices, smart dry adhesives and fasteners. By the incorporation of magnetic nanoparticles (mNP) into shape-memory polymer (SMP), a magnetically controlled SME has been realized. Magnetic actuation of nanocomposites enables remotely controlled devices based on SMP, which might be useful in medical technology, e.g. remotely controlled catheters or drug delivery systems. Here, an overview of the recent advances in the field of magnetic actuation of SMP is presented. Special emphasis is given on the magnetically controlled recovery of SMP with one switching temperature Tsw (dual-shape effect) or with two Tsws (triple-shape effect). The use of magnetic field to change the apparent switching temperature (Tsw,app) of the dual or triple-shape nanocomposites is described. Finally, the capability of magnetic nanocomposites to remember the magnetic field strength (H) initially used to deform the sample (magnetic-memory effect) is addressed. The distinguished advantages of magnetic heating over conventional heating methods make these multifunctional nanocomposites attractive candidates for in vivo applications.

  18. Reactive Nanocomposites for Controllable Adhesive Debonding

    DTIC Science & Technology

    2011-08-01

    noncontact debond initiations. It is also noted that the RNC provides the quickest debond found in published literature. 2. Nanocomposite Debond...With paste adhesives, the pressure is applied uniformly, and excess resin in the bond line is forced out of the interfacial area to the thickness

  19. Hierarchical cooperative binary ionic porphyrin nanocomposites.

    PubMed

    Tian, Yongming; Busani, Tito; Uyeda, Gregory H; Martin, Kathleen E; van Swol, Frank; Medforth, Craig J; Montaño, Gabriel A; Shelnutt, John A

    2012-05-18

    Cooperative binary ionic (CBI) solids comprise a versatile new class of opto-electronic and catalytic materials consisting of ionically self-assembled pairs of organic anions and cations. Herein, we report CBI nanocomposites formed by growing nanoparticles of one type of porphyrin CBI solid onto a second porphyrin CBI substructure with complementary functionality.

  20. PCL/MWCNT Nanocomposites as Nanosensors

    NASA Astrophysics Data System (ADS)

    Grozdanov, Anita; Buzarovska, Alexandra; Avella, Maurizio; Errico, Maria E.; Gentile, Gennaro

    Due to the unique electronic, metallic and structural properties of carbon nanotubes (CNTs) as compared to other materials, researchers focused on utilizing these characteristics for engineering applications such as actuators, hydrogen storage materials, chemical sensors and nanoelectronic devices. Many papers have been published utilizing CNTs as the sensing material in pressure, flow, thermal, gas, optical, mass, strain, stress, chemical and biological sensors. Amongst many of their superior electro-mechanical properties, the piezoresistive effect in CNTs is attractive for designing strain sensors. When CNTs are subjected to a mechanical strain, a change in their chirality leads to modulation of the conductance. In this paper, a novel carbon nanotube/biopolymer nanocomposite was used to develop a piezoresistive strain nano bio-sensor. A biocompatible polymer matrix has been used to provide good interfacial bonding between the carbon nanotubes. Multi-walled carbon nanotubes (MWCNT, diameter d = 30-50 nm, purity >95%) have been used for the preparation of polycaprolactone (PCL)-based nanocomposites (PCL/MWCNT). The nanocomposites were prepared by mixing the MWCNTs and PCL in a tetrahydrofuran solution for 24 h. Characterization of the PCL/MWCNTs nanocomposite films was performed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) and scanning electron microscopy (SEM), as well as by mechanical and electrical measurements.

  1. Polymer nanocomposites for lithium battery applications

    DOEpatents

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  2. Crystallization behavior of polyamide-6 microcellular nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Andreas Winardi

    2004-09-01

    The crystallization behaviors of polyamide-6 (PA-6) and its nanocomposites undergoing the microcellular injection molding process are studied using Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD), Polarized Optical Microscopy (POM), and Differential Scanning Calorimetry (DSC). The relationships among the morphology, the mechanical property of the...

  3. Versatile nanocomposites in phosphoproteomics: a review.

    PubMed

    Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Hussain, Dilshad; Saeed, Adeela; Musharraf, Syed Ghulam; Huck, Christian W; Bonn, Günther K

    2012-10-17

    Protein phosphorylation is one of the most important post-translational modifications. Phosphorylated peptides are present in low abundance in blood serum but play a vital role in regulatory mechanisms and may serve as casual factors in diseases. The enrichment and analysis of phosphorylated peptides directly from human serum and mapping the phosphorylation sites is a challenging task. Versatile nanocomposites of different materials have been synthesized using simple but efficient methodologies for their enrichment. The nanocomposites include magnetic, coated, embedded as well as chemically derivatized materials. Different base materials such as polymers, carbon based and metal oxides are used. The comparison of nanocomposites with respective nanoparticles provides sufficient facts about their efficiency in terms of loading capacity and capture efficiency. The cost for preparing them is low and they hold great promise to be used as chromatographic materials for phosphopeptide enrichment. This review gives an overview of different nanocomposites in phosphoproteomics, discussing the improved efficiency than the individual counterparts and highlighting their significance in phosphopeptide enrichment.

  4. A novel piezoresistive polymer nanocomposite MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Seena, V.; Hari, K.; Prajakta, S.; Pratap, Rudra; Ramgopal Rao, V.

    2017-01-01

    A novel polymer MEMS (micro electro mechanical systems) accelerometer with photo-patternable polymer nanocomposite as a piezoresistor is presented in this work. Polymer MEMS Accelerometer with beam thicknesses of 3.3 µm and embedded nanocomposite piezoresistive layer having a gauge factor of 90 were fabricated. The photosensitive nanocomposite samples were prepared and characterized for analyzing the mechanical and electrical properties and thereby ensuring proper process parameters for incorporating the piezoresistive layer into the polymer MEMS accelerometer. The microfabrication process flow and unit processes followed are extremely low cost with process temperatures below 100 °C. This also opens up a new possibility for easy integration of such polymer MEMS with CMOS (complementary metal oxide semiconductor) devices and circuits. The fabricated devices were characterized using laser Doppler vibrometer (LDV) and the devices exhibited a resonant frequency of 10.8 kHz and a response sensitivity of 280 nm g-1 at resonance. The main focus of this paper is on the SU-8/CB nanocomposite piezoresistive MEMS accelerometer technology development which covers the material and the fabrication aspects of these devices. CoventorWare FEA analysis performed using the extracted material properties from the experimental characterization which are in close agreement to performance parameters of the fabricated devices is also discussed. The simulated piezoresistive polymer MEMS devices showed an acceleration sensitivity of 126 nm g-1 and 82 ppm of ΔR/R per 1 g of acceleration.

  5. Wear Resistant Amorphous and Nanocomposite Steel Coatings

    SciTech Connect

    Branagan, Daniel James; Swank, William David; Haggard, Delon C; Fincke, James Russell; Sordelet, D.

    2001-10-01

    In this article, amorphous and nanocomposite thermally deposited steel coatings have been formed by using both plasma and high-velocity oxy-fuel (HVOF) spraying techniques. This was accomplished by developing a specialized iron-based composition with a low critical cooling rate (?104 K/s) for metallic glass formation, processing the alloy by inert gas atomization to form micron-sized amorphous spherical powders, and then spraying the classified powder to form coatings. A primarily amorphous structure was formed in the as-sprayed coatings, independent of coating thickness. After a heat treatment above the crystallization temperature (568°C), the structure of the coatings self-assembled (i.e., devitrified) into a multiphase nanocomposite microstructure with 75 to 125 nm grains containing a distribution of 20 nm second-phase grain-boundary precipitates. Vickers microhardness testing revealed that the amorphous coatings were very hard (10.2 to 10.7 GPa), with further increases in hardness after devitrification (11.4 to 12.8 GPa). The wear characteristics of the amorphous and nanocomposite coatings were determined using both two-body pin-on-disk and three-body rubber wheel wet-slurry sand tests. The results indicate that the amorphous and nanocomposite steel coatings are candidates for a wide variety of wear-resistant applications.

  6. Nanocomposite Antifriction Coatings for Innovative Tribotechnical Systems

    NASA Astrophysics Data System (ADS)

    Shtanskii, D. V.; Bondarev, A. V.; Kiryukhantsev-Korneev, F. V.; Levashov, E. A.

    2015-11-01

    Different approaches to formation of hard multicomponent coatings with improved tribological characteristics in a wide temperature range are considered. It is shown that deposition of a thin surface layer or introduction of additional structural components into nanocomposite coatings, which play the role of a solid lubricant, lowers substantially the friction factor and increases the wear resistance

  7. Quantifying the properties of nano-composites.

    NASA Astrophysics Data System (ADS)

    Daw, Murray; Zhang, Bo; He, Jian; Tritt, Terry

    2008-03-01

    With the proliferation of nano-composites produced for possible thermoelectric application, we ask the question: To what extent is a given nano-composite like other composites? Or, in other words, when do we know that we have something new? To address this we apply the classical theory of composites to specific nano-composites grown and characterized at Clemson. The theory is very simple and assumes explicitly very simple properties of the materials, the most important being Fourier's Law/Ohm's Law. Given this assumption, the theory of composites can be applied to the nano-composites based on what is known of the microstructure. This ``classical'' result then forms the basis by which the properties can be compared to determine if non-classical effects are being observed. One simple theory is the application of rigorous bounds, such as the Hashin-Strikman Bounds which are based only on very simple microstructural descriptors. Another simple theory is the application of FEM, which can be constructed directly from SEM images of the samples using the NIST code ``OOF''. The FEM produces specific predictions for the composite properties. We find that the Hashin-Strikman Bounds are very useful for analyzing the thermal conductivities of composites, but are too loose to be useful for low-temperature electrical conductivity of composites composed of metals and insulators, where the FEM technique can be applied successfully.

  8. Durable Nanocomposites for Superhydrophobicity and Superoleophobicity

    NASA Astrophysics Data System (ADS)

    Steele, Adam

    Anti-wetting surfaces and materials have the potential for dramatic performance improvements such as drag reduction on marine vehicles and fluid power systems as well as anti-fouling on aircraft and wind turbines. Although a wide variety of synthetic superhydrophobic surfaces have been developed and investigated, several critical obstacles remain before industrial application can be realized, including: (1) large surface area application, (2) multi-liquid anti-wetting, (3) environmentally friendly compositions, (4) mechanical durability and adhesion, and (5) long-term performance. In this dissertation, nanocomposite coatings have been investigated to generate high performance anti-wetting surfaces that address these obstacles which may enable application on wind turbine blades. Solution processable materials were used which self-assemble to create anti-wetting nanocomposite surfaces upon spray coating and curing. As a result, the first superoleophobic nanocomposite, the first environmentally friendly superhydrophobic compositions, and the first highly durable superhydrophobic nanocomposite coatings were created. Furthermore, the mechanisms leading to this improved performance were studied.

  9. Nanocomposites in food packaging – A review

    USDA-ARS?s Scientific Manuscript database

    A nanocomposite is a multiphase material derived from the combination of two or more components, including a matrix (continuous phase) and a discontinuous nano-dimensional phase with at least one nano-sized dimension (i.e. less than 100 nm). The main types of nanostructures are presented in this ch...

  10. Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications.

    PubMed

    Peng, Erwin; Choo, Eugene Shi Guang; Chandrasekharan, Prashant; Yang, Chang-Tong; Ding, Jun; Chuang, Kai-Hsiang; Xue, Jun Min

    2012-12-07

    In this study, MnFe(2)O(4) nanoparticle (MFNP)-decorated graphene oxide nanocomposites (MGONCs) are prepared through a simple mini-emulsion and solvent evaporation process. It is demonstrated that the loading of magnetic nanocrystals can be tuned by varying the ratio of graphene oxide/magnetic nanoparticles. On top of that, the hydrodynamic size range of the obtained nanocomposites can be optimized by varying the sonication time during the emulsion process. By fine-tuning the sonication time, MGONCs as small as 56.8 ± 1.1 nm, 55.0 ± 0.6 nm and 56.2 ± 0.4 nm loaded with 6 nm, 11 nm, and 14 nm MFNPs, respectively, are successfully fabricated. In order to improve the colloidal stability of MGONCs in physiological solutions (e.g., phosphate buffered saline or PBS solution), MGONCs are further conjugated with polyethylene glycol (PEG). Heating by exposing MGONCs samples to an alternating magnetic field (AMF) show that the obtained nanocomposites are efficient hyperthermia agents. At concentrations as low as 0.1 mg Fe mL(-1) and under an 59.99 kA m(-1) field, the highest specific absorption rate (SAR) recorded is 1588.83 W g(-1) for MGONCs loaded with 14 nm MFNPs. It is also demonstrated that MGONCs are promising as magnetic resonance imaging (MRI) T(2) contrast agents. A T(2) relaxivity value (r(2) ) as high as 256.2 (mM Fe)(-1) s(-1) could be achieved with MGONCs loaded with 14 nm MFNPs. The cytotoxicity results show that PEGylated MGONCs exhibit an excellent biocompatibility that is suitable for biomedical applications.

  11. Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites.

    PubMed

    Shangguan, Li; Zhu, Wei; Xue, Yanchun; Liu, Songqin

    2015-02-15

    A photoelectrochemical (PEC) aptasensor for highly sensitive and specific detection of thrombin was developed by using graphene–CdS nanocomposites multilayer as photoactive species and electroactive mediator hexaammineruthenium(III) chloride (Ru(NH(3))(6)(3+)) as signal enhancer. Graphene–CdS nanocomposites (G–CdS) were synthesized by one-pot reduction of oxide graphene and CdCl2 with thioacetamide. The photoactive multilayer was prepared by alternative assembly of the negatively charged 3-mercaptopropionic acid modified graphene–CdS nanocomposites (MPA-G–CdS) and the positively charged polyethylenimine (PEI) on ITO electrode. This layer-by-layer assembly method enhanced the stability and homogeneity of the photocurrent readout of G–CdS. Thrombin aptamer was covalently bound to the multilayer by using glutaraldehyde as cross-linking. Electroactive mediator (Ru(NH(3))(6)(3+)) could interact with the DNA phosphate backbone and thus facilitated the electron transfer between G–CdS multilayer and electrode and enhanced the photocurrent. Hybridizing of a long complementary DNA with thrombin aptamer could increase the adsorption amount of (Ru(NH(3))(6)(3+)), which in turn boosted the signal readout. In the presence of target thrombin, the affinity interaction between thrombin and its aptamer resulted in the long complementary DNA releasing from the G–CdS multilayer and decreasing of photocurrent signal. On the basis of G–CdS multilayer as the photoactive species, (Ru (NH(3))(6)(3+)) as an electroactive mediator, and aptamer as a recognition module, a high sensitive PEC aptasensor for thrombin detection was proposed. The thrombin aptasensor displayed a linear range from 2.0 pM to 600.0 pM and a detection limit of 1.0 pM. The present strategy provided a promising ideology for the future development of PEC biosensor.

  12. Graphene based nanocomposite hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  13. Electrically Conductive Metal Nanowire Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoxiong

    This thesis investigates electrically conductive polymer nanocomposites formulated with metal nanowires for electrostatic discharge and electromagnetic interference shielding. Copper nanowires (CuNWs) of an average length of 1.98 mum and diameter of 25 +/- 4 nm were synthesized. The oxidation reaction of the CuNWs in air can be divided into two stages at weight of 111.2% on TGA curves. The isoconversional activation energies determined by Starink method were used to fit the different master plots. Johnson-Mehl-Avrami (JMA) equation gave the best fit. The surface atoms of the CuNWs are the sites for the random nucleation and the crystallite strain in the CuNWs is the driving force for the growth of nuclei mechanism during the oxidation process. To improve the anti-oxidation properties of the CuNWs, silver was coated onto the surface of the CuNWs in Ag-amine solution. The prepared silver coated CuNWs (AgCuNWs) with silver content of 66.52 wt. %, diameter of 28--33 nm exhibited improved anti-oxidation behavior. The electrical resistivity of the AgCuNW/low density polyethylene (LDPE) nanocomposites is lower than that of the CuNW/LDPE nanocomposites with the same volume percentage of fillers. The nanocomposites formulated with CuNWs and polyethylenes (PEs) were compared to study the different interaction between the CuNWs and the different types of PE matrices. The electrical conductivity of the different PE matrices filled with the same concentrations of CuNWs correlated well with the level of the CuNW dispersion. The intermolecular force and entanglement resulting from the different macromolecular structures such as molecular weight and branching played an important role in the dispersion, electrical properties and rheological behaviour of the CuNW/PE nanocomposites. Ferromagnetic polycrystalline nickel nanowires (NiNWs) were synthesized with uniform diameter of ca. 38 nm and an average length of 2.68 mum. The NiNW linear low density polyethylene (LLDPE

  14. Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers.

    PubMed

    Shi, Pujiang; Abbah, Sunny A; Chuah, Yon Jin; Li, Jun; Zhang, Yong; He, Pengfei; Wong, Hee Kit; Goh, James C H

    2017-09-20

    The efficient delivery of bioactive molecules via rationally designed nanoparticles is an important focus in regenerative medicine. The yolk shell nanocomposite particles described herein are composed of silk fibroin movable cores formed within voided calcium carbonate shells to load and control the release of labile cytokines. These particles are excellent carrier vehicles of potent molecules as they sustained the release of bioactive Bone Morphogenetic Protein 2 (BMP-2) for more than 28 days in vitro. Implantation into bone defects in rabbits corroborates the in vitro results and also reveals that upon contact with phosphate containing body fluids, implanted yolk shell particles agglomerate and transform into a filler that adapts to defect contour to further act as an absorbable hemostatic agent. Taken together, the fabrication of these yolk shell particle-based "bone fillers" could expand the horizon for the development of newer generations of advanced bioactive materials in tissue regeneration applications.

  15. A new silver ion conducting SbI3-Ag4P2O7 nanocomposite solid electrolyte

    NASA Astrophysics Data System (ADS)

    Suthanthiraraj, S. Austin; Sarumathi, R.

    2013-12-01

    This paper presents an investigation on a new series of silver ion conducting nanocomposite materials of silver pyrophosphate-based solid electrolytes with various amounts of antimony iodide. The detailed electrical conductivity studies carried out by impedance spectroscopic analysis in the frequency range from 20 Hz to 1 MHz have shown that silver ionic conductivity attains a maximum value of 4.1 × 10-4 S cm-1 at room temperature for the typical composition having 60 mol% of SbI3. Powder samples characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetric analysis and silver ionic transport studies were identified to indicate the existence of AgI, in addition to certain new phases in all the different compositions of the system. The conduction channel for Ag+ ions across phosphate network was found to get expanded by the presence of iodide ion. The formation of P-O-M (M=Sb3+) within the crystal structure is also favoured, where Sb3+ ions may serve as ionic cross-links between non-bridging oxygen of different phosphate groups. The field emission scanning electron microscopic investigations of their microstructures have suggested the presence of nanocomposites, leading to the observed electrical conductivity data coupled with many interesting features closely related to the particle size and practical application as solid electrolyte for the fabrication of solid-state battery at ambient conditions.

  16. Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications

    NASA Astrophysics Data System (ADS)

    Sung, Yun-Mo; Shin, Young-Keun; Ryu, Jae-Jun

    2007-02-01

    Homogeneous mixtures of hydroxyapatite (HAp) and yttria-stabilized zirconia (YSZ) nanoparticles were successfully synthesized using chemical co-precipitation and subsequent calcination. For the synthesis of HAp/YSZ nanopowder, the Ca/P atomic ratio was 1.73 to obtain high-content stoichiometric hydroxyapatite phase and to suppress β-tricalcium phosphate (β-TCP) formation. The agglomerated crystalline powders were milled using YSZ ball media to obtain well-separated nanoparticles. The final particle size of the HAp and YSZ was ~50-70 and ~15-30 nm, respectively. The crystallinity and morphological feature of the nanopowder was analysed using x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses. The ball-milled nanopowder mixture was hot pressed at 1100 °C for 1 h under 20 MPa in vacuum atmosphere. The sintered HAp/YSZ nanocomposites exhibited approximately 99% of the theoretical density, due not only to the fine nanoscale of the particles, but also to the homogeneous distribution of the nanoparticle mixture. They also showed fine grain structures of the HAp phase due to the suppressed grain growth by YSZ particles. The nanocomposites showed improved mechanical properties, flexural strength of ~155 MPa and fracture toughness of ~2.1 MP m1/2, due to the YSZ contribution to the HAp matrix.

  17. ZnO nanorods/Au hybrid nanocomposites for glucose biosensor.

    PubMed

    Wei, Yinyin; Li, Ying; Liu, Xiaoqian; Xian, Yuezhong; Shi, Guoyue; Jin, Litong

    2010-09-15

    ZnO nanorods/Au hybrid nanocomposites (ZnO/Au) with Au nanocrystals growing on the surface of ZnO nanorods were synthesized via a simple and facile hydrothermal route. The prepared ZnO/Au nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) for the morphology study. The composites had a good electron transferring and biocompatibility. The glucose biosensor was fabricated by entrapping glucose oxidase (GOx) in this composite matrix using cross-linking method with glutaraldehyde and Nafion solutions. The proposed biosensor responded to glucose linearly over concentration range of 0.1-33.0 μM (R(2)=0.9956), and the detection limit was 10nM (S/N=3) at an operating potential of +0.55 V in pH 7.4 phosphate buffered solution (PBS). The biosensor exhibited a high and reproducible sensitivity, short response time (within 5s), good storage stability and high affinity to GOx (K(M)(app)=0.41 mM). The effects of electroactive interferents at the testing conditions can be negligible which showed a good selectivity of the biosensor. It is estimated that this ZnO/Au is an attractive material for the fabrication of efficient amperometric biosensors.

  18. Preparation of silver-hydroyapatite/PVA nanocomposites: Giant dielectric material for industrial and clinical applications

    NASA Astrophysics Data System (ADS)

    Uddin, Md Jamal; Middya, T. R.; Chaudhuri, B. K.

    2015-02-01

    Pure hydroxyappatite Ca10(PO4)6(OH)2 (or HAP) was prepared from eggshell and potassium dihydrogen phosphate (KH2PO4) by a simple self-chemical reaction method. The clean eggshell was heated at 800 °C in air giving the source of CaO. Appropriate amount of CaO was dissolved in KH2PO4 solution at 37°C for few days. The PH value decreases with increasing the duration of preparation of HAP. Silver nanoparticles derived from silver nitrate solution using black tea leaf extract had been introduced to hydroxyapatite due to its biocompatibility. The unique size- dependent properties of nanomaterials make them superior and indispensable. In this work, hydroxyapatite-silver nanoparticles/polyvinyl alcohol (PVA) composites with 4 different concentrations of hydroxyapatite (1-4 wt %) were prepared by bio-reduction method. Several techniques like XRD and SEM were used to characterize the prepared samples. Frequency dependent capacitance and conductance of the samples were measured using an impedance analyzer. The results showed a remarkable increase in dielectric permittivity (~5117) with low loss (~0.23) at1000 HZ and room temperature (300K) for 4wt% Hydroxapatie-Silver/PVA nanocomposite. Such nanocomposite might be directly applied in manufacturing clinical devices and also for embedding capacitor applications.

  19. Effect of ultrasound irradiation on the production of nHAp/MWCNT nanocomposites.

    PubMed

    Lobo, Anderson O; Zanin, Hudson; Siqueira, Idalia A W B; Leite, Nelly C S; Marciano, Fernanda R; Corat, Evaldo J

    2013-10-01

    Large amounts of nanohydroxyapatite (nHAp)-multiwall carbon nanotube (MWCNT) nanocomposites are produced by two different aqueous precipitation methods. The ultrasonic irradiation (UI) and slow-drip addition under continuous magnetic stirring (DMS) methods were used to investigate the precipitation of nHAp acicular crystals. Calcium-nitrate, diammonium hydrogen phosphate, and ammonium hydroxide were used as precursor reagents. Superhydrophilic MWCNT were also employed. XPS analysis evidences that the functionalized MWCNTs are composed of 18 to 20 at.% of oxygen and that this property influences the nHAp formation. The high surface area of the MWCNT decreases the mean free path of ions, favoring the nHAp formation assisted by UI. The crystallinity was evaluated using the Scherrer equation. Semi-qualitative energy dispersive spectroscopy (EDS) analysis showed that the main components of HAp powders were calcium and phosphorus in the ratio Ca/P around of 1.67. Bioactivity properties of the nHAp/MWCNT-UI nanocomposites could be evaluated after 14 days soaking in simulated body fluid medium. Scanning electron microscopy, EDS, Fourier transform infrared attenuated total reflection spectroscopy, and X-ray diffraction techniques proved that the apatites formed on the surface and to points that the nHAp/MWCNT-UI have potential biological applications.

  20. Bonds between metals and nanocomposites created by explosion welding

    NASA Astrophysics Data System (ADS)

    Bondar', M. P.; Karpov, E. V.; Lukyanov, Ya. L.

    2016-09-01

    This paper describes the study of the influence of a microstructure characterized by directed or chaotic distribution of nanoinclusions and strain rate on the deformability of nanocomposites. It is revealed that, under identical loading conditions, cracks are formed in nanocomposites whose structural elements are mostly directed in the same way at lower strain rates than in nanocomposites with chaotic distribution of the reinforcer. It is shown that, as the strain rate increases, the influence of the structural order on the limiting deformation reduces due to transition from shear strain to rotational strain. No cracks are formed in the creation of bonds between metals and nanocomposites by explosion welding. The experimental results obtained in the study of transverse bending of two-layer welded beams and the structure in the vicinity of the weld reveal that the obtained metal-nanocomposite bond has a uniform structure retained in deformation, with fracture occurring in the nanocomposite.

  1. Synthesis of Mg-Decorated Carbon Nanocomposites from MesoCarbon MicroBeads (MCMB) Graphite: Application for Wastewater Treatment

    DOE PAGES

    Zhang, Yan; Guo, Xingming; Yao, Ying; ...

    2016-09-19

    The potential application of a carbon nanocomposite from battery anode materials modified with magnesium (Mg) was explored to remove phosphate from aqueous solutions. Thermogravimetric analysis (TGA) shows that the Mg content of the prepared Mg/C composite is around 23.5%. Laboratory batch adsorption kinetics and equilibrium isotherm experiments demonstrate that the composite has an extremely high phosphate adsorption capacity of 406.3 mg PO4/g, which is among the highest phosphate removal abilities reported so far. Results from XRD, SEM-EDX, and XPS analyses of the postsorption Mg/C composite indicate that phosphate adsorption is mainly controlled by the precipitation of P to form Mg3(PO4)2·8H2Omore » and MgHPO4·1.2H2O nanocrystals on the surface of the adsorbent. Finally, the approach of synthesizing Mg-enriched carbon-based adsorbent described in this work provides new opportunities for disposing spent batteries and developing a low-cost and high-efficiency adsorbent to mitigate eutrophication.« less

  2. [Phosphate sensing and parathyroid gland].

    PubMed

    Mizobuchi, Masahide; Suzuki, Taihei

    2012-10-01

    In the latter 1990s, phosphate, as well as calcium, has been shown to have a direct action on parathyroid function. Since then although many researchers have tried to detect the phosphate sensor in parathyroid gland, none has found it yet. In 2000s, the importance of FGF23 was revealed in patients with autosomal dominant hypophosphatemic rickets and then investigating the role of FGF23 in mineral metabolism has spread. FGF23 target organs comprise those that express coreceptor Klotho, such as kidney and parathyroid glands. While associations of calcium sensing receptor or vitamin D receptor with parathyroid function have been mainly investigated for parathyroid dysfunction, many efforts recently have made to study the effects of FGF23 on parathyroid glands.

  3. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue.

  4. Nucleoside phosphorylation by phosphate minerals.

    PubMed

    Costanzo, Giovanna; Saladino, Raffaele; Crestini, Claudia; Ciciriello, Fabiana; Di Mauro, Ernesto

    2007-06-08

    In the presence of formamide, crystal phosphate minerals may act as phosphate donors to nucleosides, yielding both 5'- and, to a lesser extent, 3'-phosphorylated forms. With the mineral Libethenite the formation of 5'-AMP can be as high as 6% of the adenosine input and last for at least 10(3) h. At high concentrations, soluble non-mineral phosphate donors (KH(2)PO(4) or 5'-CMP) afford 2'- and 2':3'-cyclic AMP in addition to 5'-and 3'-AMP. The phosphate minerals analyzed were Herderite Ca[BePO(4)F], Hureaulite Mn(2+)(5)(PO(3)(OH)(2)(PO(4))(2)(H(2)O)(4), Libethenite Cu(2+)(2)(PO(4))(OH), Pyromorphite Pb(5)(PO(4))(3)Cl, Turquoise Cu(2+)Al(6)(PO(4))(4)(OH)(8)(H(2)O)(4), Fluorapatite Ca(5)(PO(4))(3)F, Hydroxylapatite Ca(5)(PO(4))(3)OH, Vivianite Fe(2+)(3)(PO(4))(2)(H(2)O)(8), Cornetite Cu(2+)(3)(PO(4))(OH)(3), Pseudomalachite Cu(2+)(5)(PO(4))(2)(OH)(4), Reichenbachite Cu(2+)(5)(PO(4))(2)(OH)(4), and Ludjibaite Cu(2+)(5)(PO(4))(2)(OH)(4)). Based on their behavior in the formamide-driven nucleoside phosphorylation reaction, these minerals can be characterized as: 1) inactive, 2) low level phosphorylating agents, or 3) active phosphorylating agents. Instances were detected (Libethenite and Hydroxylapatite) in which phosphorylation occurs on the mineral surface, followed by release of the phosphorylated compounds. Libethenite and Cornetite markedly protect the beta-glycosidic bond. Thus, activated nucleic monomers can form in a liquid non-aqueous environment in conditions compatible with the thermodynamics of polymerization, providing a solution to the standard-state Gibbs free energy change (DeltaG degrees ') problem, the major obstacle for polymerizations in the liquid phase in plausible prebiotic scenarios.

  5. Semi empirical hardness predictive model for AZ91 nanocomposite

    NASA Astrophysics Data System (ADS)

    Zaidi, N. H. A.; Jamaludin, S. B.; Zaidi, A. M. A.; Ahmad, K. R.

    2016-07-01

    AZ91 nanocomposite was exposed to several heat treatment processes and the effect of precipitation hardening on hardness was studied as a function of time and temperature. The investigation shows the significant of time and temperature are the main role in the precipitation hardening process of the nanocomposite. Kinetics study show a deceptive activation energy of 21 kJ/mol of the AZ91 nanocomposite. A relationship was derived to predict the maximum hardness at given time and temperature.

  6. Solid Propellant Burn Rate Modifiers Based on Reactive Nanocomposite Materials

    DTIC Science & Technology

    2010-10-26

    Burn Rate Modifiers Based on Reactive Nanocomposite Powders. Propellants Explosives and Pyrotechnics , 35, pp. 260 – 267 (2010) 8. Badiola, C...of Structural Refinement and Composition in Al-MoO3 Nanocomposites Prepared by Arrested Reactive Milling. Propellants Explosives and Pyrotechnics , 31...Reactive Nanocomposite Materials Prepared by Arrested Reactive Milling 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) E.L. Dreizin

  7. Investigation and Preparation of High Impact Polystyrene Nanocomposites

    NASA Astrophysics Data System (ADS)

    Khoshniyat, A. R.; Aalaie, J.; Rahmatpour, A.; Khanbabaie, G.

    2010-03-01

    A series of polymer—organoclay nanocomposite materials consisting of polystyrene (PS) and high impact polystyrene (HIPS), layered montmorillonite organo clay (MMT) were prepared by dispersing nanophase in the organic PS matrix via in situ thermal polymerization. The nanocomposite effects on the chemical resistance and mechanical properties modification of PS and HIPS were investigated and characterized by XRD, SEM, chemical and mechanical testing. The results show That HIPS/organo clay nanocomposites have the best chemical resistant.

  8. Preparation of nanocomposites containing nanoclusters of transition metals

    SciTech Connect

    Milne, S.B.; Lukehart, C.M., Wittig, J.E.

    1996-10-01

    New nanocomposites containing nanoclusters of transition metals have been prepared and characterized by TEM, XRD, and energy dispersive spectroscopy. Organometallic or other coordination compounds functionalized with trialkoxysilyl groups have been synthesized and covalently incorporated into silica xerogels using standard sol-gel techniques. Thermal oxidative treatment of these xerogels in air followed by reduction in hydrogen yielded the desired nanocomposite phases. Using these methods, Mo, Re, Fe, Ru, Os, Pd, Pt, Cu. and Ag nanocomposites have been prepared.

  9. Resorbable calcium phosphate bone substitute.

    PubMed

    Knaack, D; Goad, M E; Aiolova, M; Rey, C; Tofighi, A; Chakravarthy, P; Lee, D D

    1998-01-01

    The in vitro and in vivo properties of a novel, fully resorbable, apatitic calcium phosphate bone substitute (ABS) are described. The ABS was prepared from calcium phosphate precursors that were hydrated to form an injectable paste that hardens endothermically at 37 degrees C to form a poorly crystalline apatitic calcium phosphate (PCA). The PCA reaction product is stable in vivo as determined by FTIR and XRD analysis of rabbit intramuscular implants of ABS retrieved 4, 7, and 14 days postimplantation. Bone formation and resorption characteristics of the ABS material were characterized in a canine femoral slot defect model. Femoral slot defects in dogs were filled with either autologous bone implants or the ABS material. Sections of femoral bone defect site from animals sacrificed at 3, 4, 12, 26, and 52 weeks demonstrated that new bone formation proceeded similarly in both autograft and ABS filled slots. Defects receiving either material were filled with trabecular bone in the first 3 to 4 weeks after implantation; lamellar or cortical bone formation was well established by week 12. New bone formation in ABS filled defects followed a time course comparable to autologous bone graft filled defects. Histomorphometric evaluation of ABS resorption and new bone formation indicated that the ABS material was greater than 99% resorbed within 26 weeks; residual ABS occupied 0.36+/-0.36% (SEM, n = 4) of the original defect area at 26 weeks. Quantitatively and qualitatively, the autograft and ABS were associated with similar new bone growth and defect filling characteristics.

  10. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation.

    PubMed

    Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D; McComb, David W; Porter, Alexandra E; Stevens, Molly M

    2012-08-28

    Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization.

  11. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation

    PubMed Central

    Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D.; McComb, David W.; Porter, Alexandra E.; Stevens, Molly M.

    2012-01-01

    Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization. PMID:22879397

  12. Fabrication of non-enzymatic biosensor based on metallic catalyst-TiO2 hollow sphere nanocomposite for determining biomolecules.

    PubMed

    Kwen, Hai-Doo; Yang, Hee-Soo; Lee, In-Ho; Choi, Seong-Ho

    2012-07-01

    A PtRu@TiO2-hollow nanocomposite for the detection of biomolecules was synthesized by chemical reduction. First, poly(styrene-co-vinylphenylboronic acid), PSB, was prepared as a template (approximately 250 nm) by surfactant-free emulsion polymerization. Second, PSB/TiO2 core-shell spheres were prepared by sol-gel reaction. Finally, TiO2 hollow spheres (TiO2-H) were then formed after removing the PSB template by calcination at 450 degrees C under air atmosphere. To prepare the electrocatalyst, PtRu nanoparticles (NPs) were deposited onto the TiO2-H surface by chemical reduction. The prepared PtRu@TiO2-H nanocomposite was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis. A non-enzymatic sensor was fabricated by depositing the as-prepared PtRu@TiO2-H nanocomposite on the surface of a glassy carbon electrode (GCE), which was prepared by a hand casting method with Nafion solution as a binder. The sensor was tested as a biomolecule sensor, especially for the detection of glucose and dopamine. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the PtRu@TiO2-H nanocomposite showed better catalytic function toward the oxidation of dopamine. The sensing range of the non-enzymatic sensor for glucose was 5.0-100 mM in a phosphate buffer. The results demonstrated the potential usefulness of this bimetallic@TiO2-H bifunctional catalyst for biosensor applications.

  13. Porous alumina based ordered nanocomposite coating for wear resistance

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Muthukumar, M.; Bobji, M. S.

    2016-08-01

    Uniformly dispersed nanocomposite coating of aligned metallic nanowires in a matrix of amorphous alumina is fabricated by pulsed electrodeposition of copper into the pores of porous anodic alumina. Uniform deposition is obtained by controlling the geometry of the dendritic structure at the bottom of pores through stepwise voltage reduction followed by mild etching. The tribological behaviour of this nanocomposite coating is evaluated using a ball on flat reciprocating tribometer under the dry contact conditions. The nanocomposite coating has higher wear resistance compared to corresponding porous alumina coating. Wear resistant nanocomposite coating has wide applications especially in protecting the internal surfaces of aluminium internal combustion engines.

  14. Polystyrene/MoS{sub 2}@oleylamine nanocomposites

    SciTech Connect

    Altavilla, Claudia; Ciambelli, Paolo; Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore

    2014-05-15

    The effects of adding different concentrations of MoS{sub 2}@oleylamine nano particles on the thermal and mechanical properties of polystyrene (PS) nanocomposites have been investigated. X-ray diffraction and optical microscopy were used to characterize the morphology of the resulting nanocomposites. The thermal stability of the nanocomposites has been characterized by thermogravimetric analysis. It has been found that the MoS{sub 2}@oleylamine nanoparticles have a good compatibility with the PS matrix forming homogeneous dispersion even at high concentrations. The PS/MoS{sub 2}@oleylamine nanocomposites showed enhanced thermal stability in comparison with neat polystyrene.

  15. Development and characterization of piezoresistive porous TPU-MWNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Rizvi, R.; Naguib, H.

    2014-05-01

    This study reports on the piezoresistance characterization of pressure sensing porous nanocomposites. A thermoplastic polyurethane (TPU) was chosen as an elastomeric matrix, which was reinforced with multiwall carbon nanotubes (MWNT) by high shear twin screw extrusion mixing. Porosity was introduced to the composites through the phase separation of a single TPU-carbon-dioxide gas solution. Interactions between MWNT and TPU were elucidated through rheology and electrical conductivity measurements and microstructure imaging. The piezoresistance (pressure-resistance) behavior of the nanocomposites was investigated and found to be dependent on MWNT concentration and nanocomposite microstructure. Mechanisms of piezoresistance in solid and porous nanocomposites are proposed.

  16. Apyrase Functions in Plant Phosphate Nutrition and Mobilizes Phosphate from Extracellular ATP1

    PubMed Central

    Thomas, Collin; Sun, Yu; Naus, Katie; Lloyd, Alan; Roux, Stanley

    1999-01-01

    ATP, which is present in the extracellular matrix of multicellular organisms and in the extracellular fluid of unicellular organisms, has been shown to function as a signaling molecule in animals. The concentration of extracellular ATP (xATP) is known to be functionally modulated in part by ectoapyrases, membrane-associated proteins that cleave the γ- and β-phosphates on xATP. We present data showing a previously unreported (to our knowledge) linkage between apyrase and phosphate transport. An apyrase from pea (Pisum sativum) complements a yeast (Saccharomyces cerevisiae) phosphate-transport mutant and significantly increases the amount of phosphate taken up by transgenic plants overexpressing the gene. The transgenic plants show enhanced growth and augmented phosphate transport when the additional phosphate is supplied as inorganic phosphate or as ATP. When scavenging phosphate from xATP, apyrase mobilizes the γ-phosphate without promoting the transport of the purine or the ribose. PMID:9952450

  17. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis.

    PubMed

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-11-24

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO4(2-), NO3(-), Cl(-), and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis.

  18. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis

    PubMed Central

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-01-01

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO42−, NO3−, Cl−, and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis. PMID:26554016

  19. Properties of Calcium Phosphate Cements With Different Tetracalcium Phosphate and Dicalcium Phosphate Anhydrous Molar Ratios.

    PubMed

    Hirayama, Satoshi; Takagi, Shozo; Markovic, Milenko; Chow, Laurence C

    2008-01-01

    Calcium phosphate cements (CPCs) were prepared using mixtures of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA), with TTCP/DCPA molar ratios of 1/1, 1/2, or 1/3, with the powder and water as the liquid. Diametral tensile strength (DTS), porosity, and phase composition (powder x-ray diffraction) were determined after the set specimens have been immersed in a physiological-like solution (PLS) for 1 d, 5 d, and 10 d. Cement dissolution rates in an acidified PLS were measured using a dual constant composition method. Setting times ((30 ± 1) min) were the same for all cements. DTS decreased with decreasing TTCP/DCPA ratio and, in some cases, also decreased with PLS immersion time. Porosity and hydroxyapatite (HA) formation increased with PLS immersion time. Cements with TTCP/DCPA ratios of 1/2 and 1/3, which formed calcium-deficient HA, dissolved more rapidly than the cement with a ratio of 1/1. In conclusion, cements may be prepared with a range of TTCP/DCPA ratios, and those with lower ratio had lower strengths but dissolved more rapidly in acidified PLS.

  20. Phosphate: are we squandering a scarce commodity?

    PubMed

    Ferro, Charles J; Ritz, Eberhard; Townend, Jonathan N

    2015-02-01

    Phosphorus is an essential element for life but is a rare element in the universe. On Earth, it occurs mostly in the form of phosphates that are widespread but predominantly at very low concentration. This relative rarity has resulted in a survival advantage, in evolutionary terms, to organisms that conserve phosphate. When phosphate is made available in excess it becomes a cause for disease, perhaps best recognized as a potential cardiovascular and renal risk factor. As a reaction to the emerging public health issue caused by phosphate additives to food items, there have been calls for a public education programme and regulation to bring about a reduction of phosphate additives to food. During the Paleoproterzoic era, an increase in the bioavailability of phosphate is thought to have contributed significantly to the oxygenation of our atmosphere and a dramatic increase in the evolution of new species. Currently, phosphate is used poorly and often wasted with phosphate fertilizers washing this scarce commodity into water bodies causing eutrophication and algal blooms. Ironically, this is leading to the extinction of hundreds of species. The unchecked exploitation of phosphate rock, which is an increasingly rare natural resource, and our dependence on it for agriculture may lead to a strange situation in which phosphate might become a commodity to be fought over whilst at the same time, health and environmental experts are likely to recommend reductions in its use.

  1. The role of phosphate in kidney disease.

    PubMed

    Vervloet, Marc G; Sezer, Siren; Massy, Ziad A; Johansson, Lina; Cozzolino, Mario; Fouque, Denis

    2017-01-01

    The importance of phosphate homeostasis in chronic kidney disease (CKD) has been recognized for decades, but novel insights - which are frequently relevant to everyday clinical practice - continue to emerge. Epidemiological data consistently indicate an association between hyperphosphataemia and poor clinical outcomes. Moreover, compelling evidence suggests direct toxicity of increased phosphate concentrations. Importantly, serum phosphate concentration has a circadian rhythm that must be considered when interpreting patient phosphate levels. Detailed understanding of dietary sources of phosphate, including food additives, can enable phosphate restriction without risking protein malnutrition. Dietary counselling provides an often underestimated opportunity to target the increasing exposure to dietary phosphate of both the general population and patients with CKD. In patients with secondary hyperparathyroidism, bone can be an important source of serum phosphate, and adequate appreciation of this fact should impact treatment. Dietary and pharmotherapeutic interventions are efficacious strategies to lower phosphate intake and serum concentration. However, strong evidence that targeting serum phosphate improves patient outcomes is currently lacking. Future studies are, therefore, required to investigate the effects of modern dietary and pharmacological interventions on clinically meaningful end points.

  2. Polyimide nanocomposites based on cubic zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Ramasubramanian Sharma, Gayathri

    2009-12-01

    In this research, cubic zirconium tungstate (ZrW2O8) was used as a filler to reduce the CTE of polyimides (PI), and the effect of ZrW2O8 nanoparticles on the bulk polymer properties was studied. Polyimides are high performance polymers with exceptional thermal stability, and there is a need for PIs with low CTEs for high temperature applications. The nanofiller, cubic ZrW2O8, is well known for its isotropic negative thermal expansion (NTE) over a wide temperature range from -272.7 to 777°C. The preparation of nanocomposites involved the synthesis of ZrW 2O8 nanofiller, engineering the polymer-filler interface using linker groups and optimization of processing strategies to prepare free-standing PI nanocomposite films. A hydrothermal method was used to synthesize ZrW 2O8 nanoparticles. Polyimide-ZrW2O8 interface interaction was enhanced by covalently bonding linker moieties to the surface of ZrW2O8 nanoparticles. Specifically, ZrW 2O8 nanoparticles were functionalized with two different linker groups: (1) a short aliphatic silane, and (2) low molecular weight PI. The surface functionalization was confirmed using X-ray photoelectron spectroscopy and thermal gravimetric analysis (TGA). Reprecipitation blending was used to prepare the freestanding PI-ZrW2O8 nanocomposite films with up to 15 volume% filler loading. SEM images showed the improvements in polymer-filler wetting behavior achieved using interface engineering. SEM images indicated that there was better filler dispersion in the PI matrix using reprecipitation blending, compared to the filler dispersion achieved in the nanocomposites prepared using conventional blending technique. The structure-property relationships in PI-ZrW2O8 nanocomposites were investigated by studying the thermal degradation, glass transition, tensile and thermal expansion properties of the nanocomposites. The properties were studied as a function of filler loading and interface linker groups. Addition of ZrW2O8 nanoparticles did not

  3. PBS/chitosan and polyolefin nanocomposites: Synthesis, properties and biodegradation

    NASA Astrophysics Data System (ADS)

    Patwary, Md. Fakhruddin

    The current study focuses on the synthesis of biodegradable polymer nanocomposites as alternative to conventional composite systems. In this study, biodegradable nanocomposites of chitosan and PBS blend were generated (type 1 composites) utilizing graphene, silica and silicate as fillers. Nanocomposites of non-biodegradable PE and PP were also produced using the same fillers along with a functional additive, which enables the polymers to degrade (type 2 composites). Suitable weight ratio of poly(butylene succinate) (PBS) and chitosan (Cs) to prepare nanocomposites was identified based on the ease of processing, better mixing ability of the fillers with the matrix materials and the mechanical properties of the composites. The nanocomposites were characterized for their thermal, rheological, mechanical and morphological properties. It was observed that graphene incorporation provided the best improvement in Young's modulus and storage modulus in all cases. Thermal degradation resistance of the graphene nanocomposites was also the highest. Storage modulus, loss modulus and viscosity of nano-composites enhanced as a function of filler content. XRD analysis indicated that chitosan was well mixed with PBS and slight changes in crystallinity for both PE and PP nanocomposites were observed on incorporation of filler. The chitosan-PBS nanocomposites were observed to biodegrade as a function of time during the soil burial test. Bio-degradation was, in general, slowed down by the presence of fillers. MINITAB 16 software could be utilized to model and predict the elastic modulus of PBS-Cs nanocomposites based on DMA and shear rheology data. The preliminary degradation studies of PE and PE nanocomposites with 2.5% additive exhibited varying degrees of degradation in all the samples.

  4. Potential of Starch Nanocomposites for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  5. Preparation and Characterization of Novel Montmorillonite Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mansa, Rola

    Clay minerals have historically played a consequential role in human health. While the beginnings were rooted in geophagy, a primitive act of consuming earth, the health-related uses of clay minerals have evolved and diversified over time.. As excipients in pharmaceutical formulations, clay minerals can attribute novel properties onto intercalated compounds. Intercalating oxybenzone, a UV filter, within the interlamellar space of montmorillonite is desirable in order to minimize direct contact with skin. Intercalating resveratrol, a compound known for attributing beneficial effects onto human health, may be advantageous since this compound is susceptible to cis-trans isomerisation. The strategy of using alkylammonium--modified clay was undertaken and proved successful for the intercalation of oxybenzone. The field of biopolymer/layered silicate nanocomposites is heavily researched for use in a multitude of applications. Novel montmorillonite nanocomposites were prepared with neutral guar gum and cationic guar gum, using an environmentally friendly process and are fully characterized.

  6. Cuprous Ion Conducting Montmorillonite- Polypyrrole Nanocomposites

    NASA Astrophysics Data System (ADS)

    Krishantha, D. M. M.; Rajapakse, R. M. G.; Tennakoon, D. T. B.; Bandara, W. M. A. T.; Thilakarathna, P. N. L.

    2006-06-01

    Solid state polymer-Silicate nanocomposite based on Polypyrrole-Cu+-montmorilonite were prepared and electrical properties were investigated. In this preparation, Na-montmorillonite (Na+-MMT) was purified by repeated washing with distilled water and the intergallery cations were exchanged for Cu(II). The cupric ions exchanged-MMT(Cu(II)-- MMT) was again exposed to pyrrole in aqueous acidic solution to yield polypyrrole-Cu+-MMT nanocomposite. DC polarization test and AC impedance measurement reveal that the materials are mixed conductors. The ionic conductivity is due to the motion of cuprous ions which is facilitated by microstructure of polypyrrrole present in the intergalleries. An electrochemical cell was fabricated using the materials which can be represented by Cu(s)/ Cu+-PPY-MMT/Cu2SO4 (s)/Na2SO4(S)-Na2S2O8(s)/ and gave a 1.00 V. The cell is rechargeable.

  7. Dynamics in Polymer Melts and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Schneider, Gerald

    Intense research has led to substantial progress in the field of polymer melts and nanocomposites, both regarding the fundamental understanding and the relationship to applications. From a fundamental point of view, knowing the microscopic single chain dynamics is important. It may even lead to optimized materials ranging from the classical car tire to battery or fuel cell applications. In polymer melts, different processes, such as diffusion, reptation, contour length fluctuations, etc. occur and determine the macroscopic results, e.g. obtained by rheology. In nanocomposites confinement effects and interactions of chains with surfaces play an important role. High resolution techniques, such as small-angle neutron scattering or neutron spin echo spectroscopy are suited to explore the structure and dynamics of chains. The presentation illuminates the fundamental relationship between the microscopic dynamics and the mesoscopic properties, exploiting different experimental techniques, such as dielectric spectroscopy, rheology, neutron scattering and neutron spin echo spectroscopy.

  8. Reversible Thermal Stiffening in Polymer Nanocomposites.

    PubMed

    Senses, Erkan; Isherwood, Andrew; Akcora, Pinar

    2015-07-15

    Miscible polymer blends with different glass transition temperatures (Tg) are known to create confined interphases between glassy and mobile chains. Here, we show that nanoparticles adsorbed with a high-Tg polymer, poly(methyl methacrylate), and dispersed in a low-Tg matrix polymer, poly(ethylene oxide), exhibit a liquid-to-solid transition at temperatures above Tg's of both polymers. The mechanical adaptivity of nanocomposites to temperature underlies the existence of dynamically asymmetric bound layers on nanoparticles and more importantly reveals their impact on macroscopic mechanical response of composites. The unusual reversible stiffening behavior sets these materials apart from conventional polymer composites that soften upon heating. The presented stiffening mechanism in polymer nanocomposites can be used in applications for flexible electronics or mechanically induced actuators responding to environmental changes like temperature or magnetic fields.

  9. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites.

    PubMed

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-02-10

    Natural rubber (NR) latex particles were oxidized using KMnO4 as oxidant to promote the insertion of hydroxyl groups in the surface polyisoprene chains. Different degrees of oxidation were investigated. Both unoxidized and oxidized NR (ONR) latex were used to prepare nanocomposite films reinforced with cellulose nanocrystals (CNCs) by casting/evaporation. The oxidation of NR was carried out to promote chemical interactions between the hydroxyl groups of ONR with those of CNCs through hydrogen bonding. The effect of the degree of oxidation of the NR latex on the rheological behavior of CNC/NR and CNC/ONR suspensions, as well as on the mechanical, swelling and thermal properties of ensuing nanocomposites was investigated. Improved properties were observed for intermediate degrees of oxidation but they were found to degrade for higher oxidation levels.

  10. Laser-assisted photothermal imprinting of nanocomposite

    SciTech Connect

    Lu, Y.; Shao, D.B.; Chen, S.C.

    2004-08-30

    We report on a laser-assisted photothermal imprinting method for directly patterning carbon nanofiber-reinforced polyethylene nanocomposite. A single laser pulse from a solid state Nd:YAG laser (10 ns pluse, 532 and 355 nm wavelengths) is used to melt/soften a thin skin layer of the polymer nanocomposite. Meanwhile, a fused quartz mold with micro sized surface relief structures is pressed against the surface of the composite. Successful pattern transfer is realized upon releasing the quartz mold. Although polyethylene is transparent to the laser beam, the carbon nanofibers in the high density polyethylene (HDPE) matrix absorb the laser energy and convert it into heat. Numerical heat conduction simulation shows the HDPE matrix is partially melted or softened, allowing for easier imprinting of the relief pattern of the quartz mold.

  11. Investigation on Curcumin nanocomposite for wound dressing.

    PubMed

    Venkatasubbu, G Devanand; Anusuya, T

    2017-05-01

    Curcuma longa (turmeric) has a long history of use in medicine as a treatment for inflammatory conditions. The primary active constituent of turmeric and the one responsible for its vibrant yellow color is curcumin. Curcumin is used for treatment of wound and inflammation. It had antimicrobial and antioxidant property. It has low intrinsic toxicity and magnificent properties like with comparatively lesser side-effects. Cotton cloth is one of the most successful wound dressings which utilize the intrinsic properties of cotton fibers. Modern wound dressings, however, require other properties such as antibacterial and moisture maintaining capabilities. In this study, conventional cotton cloth was coated with Curcumin composite for achieving modern wound dressing properties. Curcumin nanocomposite is characterized. The results show that coated cotton cloth with Curcumin nanocomposite has increased drying time (74%) and water absorbency (50%). Furthermore, they show antibacterial efficiency against bacterial species present in wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Reversible Thermal-Stiffening in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan; Akcora, Pinar

    2015-03-01

    Silica nanoparticles adsorbed with a high glass-transition temperature polymer, PMMA (Tg: 130 °C) are shown to uniformly disperse in a low-Tg polymer matrix, PEO (Tg: -60 °C). These nanocomposites exhibit an unusual reversible liquid-to-solid transition at temperatures above Tg's of both polymers. Mechanical adaptivity of PEO nanocomposites to temperatures underlies the existence of dynamically asymmetric bound layers on particles, and more importantly their impact on mechanical behavior, which sets these materials apart from conventional polymer composites that soften upon heating. Moreover, the growth rate of elastic moduli at temperatures above Tg of PMMA presents an Arrhenius-type relaxation with activation energy well-matching with the α- β merging region of PMMA. These results suggest that the mobility of the surface-bound polymer is essential for reinforcement contrary to commonly accepted glassy-layer hypothesis.

  13. Characterization of Nanocomposites by Thermal Analysis

    PubMed Central

    Corcione, Carola Esposito; Frigione, Mariaenrica

    2012-01-01

    In materials research, the development of polymer nanocomposites (PN) is rapidly emerging as a multidisciplinary research field with results that could broaden the applications of polymers to many different industries. PN are polymer matrices (thermoplastics, thermosets or elastomers) that have been reinforced with small quantities of nano-sized particles, preferably characterized by high aspect ratios, such as layered silicates and carbon nanotubes. Thermal analysis (TA) is a useful tool to investigate a wide variety of properties of polymers and it can be also applied to PN in order to gain further insight into their structure. This review illustrates the versatile applications of TA methods in the emerging field of polymer nanomaterial research, presenting some examples of applications of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA) and thermal mechanical analysis (TMA) for the characterization of nanocomposite materials.

  14. Ultrastrong and stiff layered polymer nanocomposites.

    PubMed

    Podsiadlo, Paul; Kaushik, Amit K; Arruda, Ellen M; Waas, Anthony M; Shim, Bong Sup; Xu, Jiadi; Nandivada, Himabindu; Pumplin, Benjamin G; Lahann, Joerg; Ramamoorthy, Ayyalusamy; Kotov, Nicholas A

    2007-10-05

    Nanoscale building blocks are individually exceptionally strong because they are close to ideal, defect-free materials. It is, however, difficult to retain the ideal properties in macroscale composites. Bottom-up assembly of a clay/polymer nanocomposite allowed for the preparation of a homogeneous, optically transparent material with planar orientation of the alumosilicate nanosheets. The stiffness and tensile strength of these multilayer composites are one order of magnitude greater than those of analogous nanocomposites at a processing temperature that is much lower than those of ceramic or polymer materials with similar characteristics. A high level of ordering of the nanoscale building blocks, combined with dense covalent and hydrogen bonding and stiffening of the polymer chains, leads to highly effective load transfer between nanosheets and the polymer.

  15. Graphite oxide flame-retardant polymer nanocomposites.

    PubMed

    Higginbotham, Amanda L; Lomeda, Jay R; Morgan, Alexander B; Tour, James M

    2009-10-01

    Graphite oxide (GO) polymer nanocomposites were developed at 1, 5, and 10 wt % GO with polycarbonate (PC), acrylonitrile butadiene styrene, and high-impact polystyrene for the purpose of evaluating the flammability reduction and material properties of the resulting systems. The overall morphology and dispersion of GO within the polymer nanocomposites were studied by scanning electron microscopy and optical microscopy; GO was found to be well-dispersed throughout the matrix without the formation of large aggregates. Mechanical testing was performed using dynamic mechanical analysis to measure the storage modulus, which increased for all polymer systems with increased GO loading. Microscale oxygen consumption calorimetry revealed that the addition of GO reduced the total heat release and peak heat release rates in all systems, and GO-PC composites demonstrated very fast self-extinguishing times in vertical open flame tests, which are important to some regulatory fire safety applications.

  16. Nanocomposite protective coatings for battery anodes

    DOEpatents

    Lemmon, John P; Xiao, Jie; Liu, Jun

    2014-01-21

    Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

  17. Nanocomposite and method of making thereof

    DOEpatents

    Tangirala, Ravisubhash; Milliron, Delia J.; Llordes, Anna

    2016-03-15

    An embodiment of an inorganic nanocomposite includes a nanoparticle phase and a matrix phase. The nanoparticle phase includes nanoparticles that are arranged in a repeating structure. In an embodiment, the nanoparticles have a spherical or pseudo-spherical shape and are incompatible with hydrazine. In another embodiment, the nanoparticles have neither a spherical nor pseudo-spherical shape. The matrix phase lies between the nanoparticles of the nanoparticle phase. An embodiment of a method of making an inorganic nanocomposite of the present invention includes forming a nanoparticle superlattice on a substrate. The nanoparticle superlattice includes nanoparticles. Each nanoparticle has organic ligands attached to a surface of the nanoparticle. The organic ligands separate adjacent nanoparticles within the nanoparticle superlattice. The method also includes forming a solution that includes an inorganic precursor. The nanoparticle superlattice is placed in the solution for a sufficient time for the inorganic precursor to replace the organic ligands.

  18. Preparation and Characterization of Polyimide Nanocomposites

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    2002-01-01

    Many properties of polymeric materials can be enhanced by dispersing small quantities of clay nanocomposites throughout the polymer. Among the enhancements are increases in modulus and resistance to erosion by atomic oxygen and reductions in thermal expansivity, gas permeability, and flammability. To achieve the full extent of enhancement with these polymer-clay nanocomposites, the clay nanoparticles, which have thicknesses of only one-to-several nanometers and lengths and widths of hundreds of nanometers to micrometers, must be exfoliated one from another and then individually dispersed throughout the polymer. This dispersion is achieved only after alkali metal cations (usually Na(+)) that reside on the surfaces of the nanoparticles have been replaced by organocations (typically a quaternary amine cation). This renders the surface of the nanoparticle a more hospitable interface for the organic polymer matrix. Following the cation exchange, the organic clay is either mixed directly into the polymer or is dispersed in monomer which is later polymerized around the nanoparticle.

  19. Insight into biological phosphate recovery from sewage.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy.

  20. Inherited Disorders of Calcium and Phosphate Metabolism

    PubMed Central

    Gattineni, Jyothsna

    2014-01-01

    Purpose of Review Inherited disorders of calcium and phosphate homeostasis have variable presentation and can cause significant morbidity. Understanding the mode of inheritance and pathophysiology of these conditions will help in the diagnosis and early institution of therapy. Recent Findings Identification of genetic mutations in human subjects and animal models has advanced our understanding of many inherited disorders of calcium and phosphate regulation. Identification of mutations of CaSR also has improved our understanding of hypocalcemic and hypercalcemic conditions. Mutations of Fgf23, Klotho and phosphate transporter genes have been identified as causes for disorders of phosphate metabolism. Summary Calcium and phosphate homeostasis is tightly regulated in a narrow range due to their vital role in many biological processes. Inherited disorders of calcium and phosphate metabolism though uncommon can have severe morbidity. Genetic counseling of the affected families is an important part of the follow up of these patients. PMID:24553630

  1. Inherited disorders of calcium and phosphate metabolism.

    PubMed

    Gattineni, Jyothsna

    2014-04-01

    Inherited disorders of calcium and phosphate homeostasis have variable presentation and can cause significant morbidity. An understanding of the mode of inheritance and pathophysiology of these conditions will help in the diagnosis and early institution of therapy. Identification of genetic mutations in humans and animal models has advanced our understanding of many inherited disorders of calcium and phosphate regulation. Identification of mutations of calcium-sensing receptor has improved our understanding of hypocalcemic and hypercalcemic conditions. Mutations of Fgf23, Klotho and phosphate transporter genes have been identified to cause disorders of phosphate metabolism. Calcium and phosphate homeostasis is tightly regulated in a narrow range due to their vital role in many biological processes. Inherited disorders of calcium and phosphate metabolism though uncommon can have severe morbidity. Genetic counseling of the affected families is an important part of the follow-up of these patients.

  2. Application of Calcium Phosphate Materials in Dentistry

    PubMed Central

    Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.

    2013-01-01

    Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541

  3. Tetracalcium phosphate: Synthesis, properties and biomedical applications.

    PubMed

    Moseke, C; Gbureck, U

    2010-10-01

    Monoclinic tetracalcium phosphate (TTCP, Ca(4)(PO(4))(2)O), also known by the mineral name hilgenstockite, is formed in the (CaO-P(2)O(5)) system at temperatures>1300 degrees C. TTCP is the only calcium phosphate with a Ca/P ratio greater than hydroxyapatite (HA). It appears as a by-product in plasma-sprayed HA coatings and shows moderate reactivity and concurrent solubility when combined with acidic calcium phosphates such as dicalcium phosphate anhydrous (DCPA, monetite) or dicalcium phosphate dihydrate (DCPD, brushite). Therefore it is widely used in self-setting calcium phosphate bone cements, which form HA under physiological conditions. This paper aims to review the synthesis and properties of TTCP in biomaterials applications such as cements, sintered ceramics and coatings on implant metals.

  4. Insitu grafting silica nanoparticles reinforced nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Han, Chun-Rui; Duan, Jiu-Fang; Xu, Feng; Sun, Run-Cang

    2013-10-01

    Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties.Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties. Electronic supplementary information (ESI) available: FTIR spectra of SNP after silane treatment, dynamic oscillatory shear measurements as a function of frequency, constrained polymer chain analysis by a change in the peak height in loss factor spectra, molecular weight of grafted chains at different stages of gelation, prediction of the SNP reinforcing mechanism in the

  5. Casimir Forces Between Thermally Activated Nanocomposites

    DTIC Science & Technology

    2001-11-01

    M6xico, Circuito de la Investigaci6n Cientifica, Ciudad Universitaria , M6xico, DF, 04510, M6xico. ABSTRACT We present a theoretical study of the...function of the slabs is needed. For a nanocomposite slab made of a host material with a dielectric function cj,(o) and inclusions with dielectric...8-2a wheref is the volume fraction of the inclusions and ox is the effective polarizability given by the Maxwell Garnett theory. This expression for

  6. Nematic Elastomer Nanocomposites as Electromechanical Actuators

    DTIC Science & Technology

    2005-03-07

    water. Testing using dynamic mechanical thermal analyzer (DMTA) provided data on the tensile modulus and damping properties , as a function of nanotube...This issue is often ignored in studies of composites for their mechanical properties , but is key for the actuation response. Figure 1b shows the...been deflected into more fundamental studies of nanocomposite formation, alignment and development of ways of characterizing their properties . The

  7. Asphaltenes-based polymer nano-composites

    DOEpatents

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  8. Graphitic carbon nitride based nanocomposites: a review.

    PubMed

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2015-01-07

    Graphitic carbon nitride (g-C(3)N(4)), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C(3)N(4) suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C(3)N(4) could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C(3)N(4)-based nanocomposites can be classified and summarized: namely, the g-C(3)N(4) based metal-free heterojunction, the g-C(3)N(4)/single metal oxide (metal sulfide) heterojunction, g-C(3)N(4)/composite oxide, the g-C(3)N(4)/halide heterojunction, g-C(3)N(4)/noble metal heterostructures, and the g-C(3)N(4) based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C(3)N(4)-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C(3)N(4)-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C(3)N(4)-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C(3)N(4)-based advanced nanomaterials.

  9. Graphitic carbon nitride based nanocomposites: a review

    NASA Astrophysics Data System (ADS)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  10. Molecular Mechanisms of Failure in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gersappe, Dilip

    2002-07-01

    Molecular dynamics simulations of polymers reinforced with nanoscopic filler particles reveal the mechanisms by which nanofillers improve the toughness of the material. We find that the mobility of the nanofiller particle, rather than its surface area, controls its ability to dissipate energy. Our results show similarities between the toughening mechanisms observed in polymer nanocomposites and those postulated for biological structural materials such as spider silk and abalone adhesive.

  11. Silver Sodalites Novel Optically Responsive Nanocomposites

    DTIC Science & Technology

    1988-01-01

    00 0 01- SILVER SODALITES 00 NOVEL OPTICALLY RESPONSIVE NANOCOMPOSITES By Geoffrey A. Ozin+, Andreas Stein+, John P. Godber* and Galen D. Stucky# D...93106 2 A range of novel silver sodalites have been synthesized. These solid state microstructures are viewed as p g silver salts omprised of nar...enployed to interrogate the structre and properties of the parent silver sodalites , as well as the dmical and physical transformations of the

  12. Labeling Cells with Silver/Dendrimer Nanocomposites

    DTIC Science & Technology

    2005-01-01

    labeling. A PAMAME5.NH 2 dendrimer was used as a template to prepare first a silver -dendrimer complex in an aqueous solution at biologic pH=7.4...electron microscope operating at 200 kV. Samples were prepared by mounting a drop of aqueous solutions of nanoparticles on carbon-coated copper grids...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP019741 TITLE: Labeling Cells with Silver /Dendrimer Nanocomposites

  13. Graphene-silicone elastomer nanocomposite

    NASA Astrophysics Data System (ADS)

    Pan, Shuyang

    The incorporation of fillers to improve the Young's modulus, tensile strength, and elongation at failure of polymeric matrices is ubiquitous. While Young's modulus and tensile strength of the matrix increase with the filler concentration, a threshold filler concentration must be achieved for the elongation at failure to increase. Furthermore, a decrease in elongation at failure has also been observed beyond a critical filler concentration. While the increases in modulus and tensile strength have been attributed to the transfer of mechanical load to the stronger filler, the onset and reversal in elongation at failure are not understood. In this thesis, we use a functionalized graphene sheet (FGS) -- silicone elastomer (SE) nanocomposite as a model system to demonstrate the mechanisms responsible for this observed filler concentration-dependant elongation at failure as well its subsequent reversal. We will also demonstrate the mechanisms that create the continual increase in tensile strength as filler concentration increases. As the lateral size of FGS strongly influences the tensile strength of the resulting composite, in the first part of this thesis, we show that the oxidation path and the mechanical energy input influence the size of graphene oxide sheets derived from graphite oxide. The cross-planar oxidation of graphite from the (0002) plane results in periodic cracking of the uppermost graphene oxide layer, limiting its lateral dimension to less than 30 microm. We use an energy balance between the elastic strain energy associated with the undulation of graphene oxide sheets at the hydroxyl and epoxy sites, the crack formation energy, and the interaction energy between graphene layers to determine the cell size of the cracks. Under both edge-to-center and cross-planar oxidations, the size of graphene oxide sheets is determined by the aspect ratio of graphite and the mechanical energy input in processing the sheets. In the second part of this thesis, we use

  14. Optical properties of polyimide/silica nanocomposite

    NASA Astrophysics Data System (ADS)

    Tommalieh, M. J.; Zihlif, A. M.

    2010-12-01

    The optical properties of thin films of polyimide/silica nanocomposites prepared via sol-gel process were investigated as a function of nanosilica particles content. Absorption and reflectance spectra were collected by a spectrophotometer giving UV-radiation of wavelength range 200-800 nm. The optical data obtained were analyzed in terms of absorption formula for non-crystalline materials. The calculated values of the optical energy gap and the width of the energy tails of the localized states exhibited silica concentration dependence. The direct optical energy gap for neat polyimide is about 1.95 eV, and decreases to a value of 1.8 eV for nanocomposite of 25 wt% nanosilica content. It was found that the calculated refractive index and dielectric constants of nanocomposites increase with silica particles content. The overall dependence of the optical and dielectrical constants on silica content in polyimide matrix is argued on the basis of the observed morphology and overlap of the localized energy sates of different color centers. The EMT model was fitted to the observed dielectric data.

  15. Laser Additive Manufacturing Bulk Graphene Copper Nanocomposites.

    PubMed

    Hu, Zengrong; Chen, Feng; Ling, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J

    2017-08-30

    The exceptional mechanical properties of graphene enable itself as ideal nanofiller to reinforce the metal matrix composites (MMCs). In this work, graphene copper (Gr-Cu) nanocomposites have been fabricated by laser additive manufacturing process. The transmission electron microscope (TEM), X-ray diffraction (XRD), and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectrum, energy disperse spectroscopy (EDS) and TEM results demonstrate the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. Microstructures were characterized by high resolution TEM (HRTEM) further reveal the interface between copper matrix and graphene. With addition of graphene, mechanical properties of the composites were significantly enhanced. Nanoindentation tests show that average modulus value and hardness of the composites are 118.9 GPa and 3 GPa respectively; a 17.6% and a 50% increase were achieved compared with pure copper, respectively. This work opens a new way to manufacture the figure strong copper based composites with ultra-strong mechanical property, and provides alternatives for applications in electrical and thermal conductors. © 2017 IOP Publishing Ltd.

  16. Superhydrophobic nanocomposite surface topography and ice adhesion.

    PubMed

    Davis, Alexander; Yeong, Yong Han; Steele, Adam; Bayer, Ilker S; Loth, Eric

    2014-06-25

    A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.7, and 1.6 μm on three test surfaces. The three surfaces displayed superhydrophobic performance with modest variations in skewness and kurtosis. The arithmetic roughness level of 1.6 μm is the smoothest superhydrophobic surface yet produced with these spray-based techniques. These three nanocomposite surfaces, along with a polished aluminum surface, were impacted with a supercooled water spray in icing conditions, and after ice accretion occurred, each was subjected to a pressurized tensile test to measure ice-adhesion. All three superhydrophobic surfaces showed lower ice adhesion than that of the polished aluminum surface. Interestingly, the intermediate roughness surface yielded the best performance, which suggests that high kurtosis and shorter autocorrelation lengths improve performance. The most ice-phobic nanocomposite showed a 60% reduction in ice-adhesion strength when compared to polished aluminum.

  17. Electrical Properties of PVDF Based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Contreras, Jerry; Foltz, Heinrich D.; Duan, Yuping; Hhuq, Hasina F.; Tidrow, Steven C.; Chipara, Mircea

    2015-03-01

    Nanocomposites based on polyvinylidene fluoride (PVDF) have been obtained by melt mixing, loading the polymeric matrix with various weight fraction (between 0 % to 40 %) of different fillers (multiwalled carbon nanotubes, carbon nanofibers, and barium titanate). Pellets of nanocomposites have been obtained by hot pressing at about 175 oC. Copper contacts have been deposited on the as obtained pellets and the electrical features have been measured by using the two point technique. PVDF is a semicrystalline ferroelectric and piezoelectric polymer with a glass transition temperature of -35 oC and a melting temperature of about 175 oC. Electrical measurements have been performed in a wide range of frequencies starting from dc to ac (up to about 250 MHz). The dependence of the resistivity and dielectric constant on frequency and temperature (between -50 oC to 150 oC) was investigated in detail. Supplementary DSC, WAXS, and Raman data provided detailed information regarding the effect of fillers on phase transitions (glass, crystallization, and melting) and crystalline composition/structure of these nanocomposites.

  18. Design and Characterization of Carbon Nanotube Nanocomposites

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.; Lillehei, Peter T.; Wise, Kristopher E.; Park, Cheol; Rouse, Jason H.

    2003-01-01

    Revolutionary design concepts in future aerospace vehicles will depend on extraordinary material properties to permit significant reduction of mass and size of components, while imparting intelligence. Due to their combination of remarkable electrical and mechanical properties, carbon nanotubes (CNT) are expected to enable this paradigm shift in design concepts. However, significant challenges still exist in translating these CNT properties into the macrostructures required for future generations of aerospace vehicles. While an accepted route for making the leap from nanostructures to useful macrostructures has not been fully charted, this paper will give an overview of the approach taken by some researchers at NASA Langley Research Center to sort out issues involved in the development of CNT nanocomposites for multifunctional structures. Specifically, the dispersion of carbon nanotubes in polymer matrices, characterization of nanocomposites, the role of quantum computation in providing guidance for processing and the use of computational analysis in data interpretation will be covered. Significant improvements in mechanical and electrical properties of CNT nanocomposites with very low loadings of CNTs are described and lend credence to the potential for using CNTs in achieving technological leaps in composite development.

  19. Transient ion ejection during nanocomposite thermite reactions

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Piekiel, Nicholas; Chowdhury, Snehaunshu; Lee, Donggeun; Zachariah, Michael R.

    2009-10-01

    We observe an intense ion pulse from nanocomposite thermite reactions, which we temporally probe using a recently developed temperature jump/time of flight mass spectrometer. These ion pulses are observed to be much shorter in duration than the overall thermite reaction time. Ion ejection appears in stages as positive ions are ejected prior to nanocomposite thermite ignition, and ignition of the thermite mixtures leads to a second ionization step which is primarily dominated by negative species. The positive species are identified from mass spectrometric measurements and the results show that the positive ion species are comprised of Na ions with minor species of Al and K ions. This observation can be explained by a diffusion based ion-current mechanism, in which strong Al ion diffusion flux formed through the oxide shell, and the surface Na and K ions from salt contaminations are ejected by the strong electrostatic repulsion. The fact that the negative ionization step occurs during the ignition event suggests a strong relation between the nanocomposite thermite reaction and the negative ionization process.

  20. Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites

    PubMed Central

    2017-01-01

    Inspired by the ability of the sea cucumber to (reversibly) increase the stiffness of its dermis upon exposure to a stimulus, we herein report a stimuli-responsive nanocomposite that can reversibly increase its stiffness upon exposure to warm water. Nanocomposites composed of cellulose nanocrystals (CNCs) that are grafted with a lower critical solution temperature (LCST) polymer embedded within a poly(vinyl acetate) (PVAc) matrix show a dramatic increase in modulus, for example, from 1 to 350 MPa upon exposure to warm water, the hypothesis being that grafting the polymers from the CNCs disrupts the interactions between the nanofibers and minimizes the mechanical reinforcement of the film. However, exposure to water above the LCST leads to the collapse of the polymer chains and subsequent stiffening of the nanocomposite as a result of the enhanced CNC interactions. Backing up this hypothesis are energy conserving dissipative particle dynamics (EDPD) simulations which show that the attractive interactions between CNCs are switched on upon the temperature-induced collapse of the grafted polymer chains, resulting in the formation of a percolating reinforcing network. PMID:28852703